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Abstract

Mutual trust is a key factor in human-human collaboration. Inspired by this social

interaction, we analyze human-agent mutual trust in the collaboration of one human and

(semi)autonomous multi-agent systems. In the thesis, we derive time-series human-agent

mutual trust models based on results from human factors engineering. To avoid both over-

trust and under-trust, we set up dynamic timing models for the multi-agent scheduling

problem and develop necessary and sufficient conditions to test the schedulability of the

human multi-agent collaborative task.

Furthermore, we extend the collaboration between one human and multiple agents

into the collaboration between multi-human network and swarm-based agents network. To

measure the collaboration between these two networks, we propose a novel measuremen-

t, called fitness. By fitness, we can simplify multi-human and swarms collaboration into

one-human and swarms collaboration. Cooperative control is incorporated into the swar-

m systems to enable several large-scale agent teams to simultaneously reach navigational

goals and avoid collisions.

Our simulation results show that the proposed algorithm can be applied to human-

agent collaboration systems and guarantee effective real-time scheduling of collaboration

systems while ensuring a proper level of human-agent mutual trust.
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Chapter 1

Introduction

1.1 Overview

As the labor cost increases and the autonomy technology advances, the number

of human operators per agent has been reduced to a large extent. In future operations,

it is envisioned that one human operator can work with multiple agents [7, 69]. In this

pursuit, building mutual trust between human operators and (semi)autonomous agents is of

particular importance since mutual trust is the basis of collaboration, which may improve

task efficiency and reduce risks and errors. Similar to human-human trust, human-agent

mutual trust includes both human-to-agent trust and agent-to-human trust. On one hand, if

a human operator trusts agents in a task, he/she will delegate the task to these agents and

hence reduce workload. On the other hand, if an agent trusts a human operator, that is, the

agent believes in the commands from the human operator, it will finish the task based on

these input commands.

Human-to-agent trust is a significant factor to guarantee successful human-agent

collaboration (HAC) [20]. The recent meta-analysis [28] studies the factors involved in

trust for human-robot interaction (HRI), which includes robot-related, human-related, and
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environmental-related factors. In [21], Freedy et al. study the critical performance at-

tributes of trust in HRI and develop a collaborative performance model. In [17], Yanco

and Desai investigate the HRI problems involved in remote robot teleoperation (RRT) and

summarize five categories of trust models. Apart from the above qualitative works, the dy-

namic aspect of trust under different operating conditions of an automated system is studied

in [32]. Itoh and Tanaka propose a mathematical model of trust in automation based on the

expectation of humans from the automation, dependability of the automation, and pre-

dictability of automation behaviour. Most of the existing literature has been focused on the

unilateral human-to-agent trust. Nevertheless, since there exists interaction in the HAC sys-

tem, trust between humans and agents should be bilateral, including both human-to-agent

trust and agent-to-human trust. Here, the agent-to-human trust is similar to the human-to-

agent trust, which inversely depends on the human performance. Based on different levels

of agent-to-human trust, an agent will select different modes, such as “DECLINE” or “AC-

CEPT”, to response [39, 46]. Therefore, inspired by the time-series trust model proposed

in [39, 46], and the theoretical framework for trust in [28], we derive time-series dynamic

models for the mutual trust between a human operator and a (semi)autonomous agent. The

human-to-agent trust model is a function of agent performance and agent fault rates. The

agent-to-human trust model is a function of human performance and human fault rates.

A human operator needs to distribute attention to each agent when collaborating

with a multi-agent system. This case is analogous to the classic research topic in real-time

scheduling. The collaboration with each agent can be understood as the execution of an

individual task and the human operator can be viewed as a single processor when he/she

needs to share attention with one agent at a time [69]. In this case, it is necessary to develop

a dynamic scheduling algorithm so that human can allocate his/her attention for each agent

in real time.

In the literature [43, 58], there are three classical scheduling algorithms: fixed pri-
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ority scheduling, dynamic priority scheduling, and mixed priority scheduling, respectively.

The paper [43] also discusses three corresponding boundary conditions for the schedula-

bility test of these algorithms. Murray et al. in [48] develop a mathematical model for

simultaneously routing multiple unmanned aerial vehicles (UAVs) and scheduling human

operators, subject to operator workload considerations. However, they only consider the

problem as constrained mathematical programming for task allocation and neglect the dy-

namic interactions between the human operators and the UAVs. Nevertheless, due to digital

control intermediate between human and agents, we consider discrete-time scheduling in

our paper. In [24], Gooding et al. develop a generalized discrete-time scheduling mod-

el based on the Embedded-Time Graph (ETG). Another general scheduling framework is

developed by Pantelides in [51] based on the Resource-Task Network (RNT) process repre-

sentation. In [71], Yee et al. present two methods to improve the efficiency of discrete-time

scheduling algorithms. However, these continuous and discrete-time algorithms for pro-

cessor scheduling are not applicable in our dynamic systems where the ultimate goal is

not just to meet deadlines but also to avoid both “over-trust” and “under-trust”. Therefore,

in [59,60,74], we propose a dynamic timing model and necessary and sufficient conditions

for schedulability test for dynamic systems. Specifically, for the human multi-agent col-

laboration system, we introduce a novel scheduling algorithm called “highest-trust-first”

scheduling, which can guarantee effective real-time scheduling of manual and autonomous

control of agents [69]. Furthermore, in the paper [67], based on the bilateral trust dynam-

ic models and extending the “highest-trust-first” scheduling [69], we propose a rigorous

schedulability test algorithm using the dynamic timing model to avoid both “over-trust”

and “under-trust”. In this part, we give a more detailed discussion of the dynamic timing

model, proof of (the necessary and) sufficient conditions of schedulability, explanation of

the schedulability test algorithm, as well as provide more detailed analysis of the simu-

lation results. Note that the above part has been composed into two papers and accepted
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by the American Control Conference (ACC) [67] and the Cyber Physical Systems (CPS)

journal [66].

It is further envisioned that multiple agents are expanded into a swarm of agents

in the human-agent collaboration systems. Swarm-agents is a new approach to coordinate

large numbers of basic agents, which takes its inspiration from social insects [54]. A swarm

system typically consists of a big number of relatively simple agents that act independently

and in parallel on the various tasks that must be completed in order for the swarm to achieve

its overall goal [5]. In the paper [34], Keller et al present a coupled reaction-diffusion

partial derivative dynamic equations to model the motions of swarms. In the paper [8],

Bonabeau et al provide a response threshold model to simulate the swarm-human dynam-

ics, where uses the associated response threshold to combine the number of workers and

the belonging task. Similarly, in [9], Bonabeau et al once again propose a new response

threshold to simulate the succession of tasks. In the literature [40], Lerman et al uses a

probability approach to describe the states of some group of robots based on a macroscop-

ic quantity. In papers [3, 52, 53], Romanczuk et al propose a model of collective motion

based on escape and pursuit responses. In the paper [73], Yu et al investigate swarming

behaviors in multi-agent systems with nonlinear dynamics. In the paper [23], authors pro-

pose N-member “individual-based” continuous time swarm models by two fundamentally

different approaches to analyze the swarm dynamics, which are spatial and non-spatial ap-

proaches. For the spatial approaches, the space (environment) is either explicitly or implic-

itly present in the model and the analysis. The environment framework is usually projected

by the profile functions, which can represent the plane, cone, and concave-convex. In the

individual-based swarm models, the space is related with the profiles of each (separate) in-

dividual while the profiles depict the clusters’ shapes in the group-based systems [23, 73].

For the non-spatial approaches, the swarming dynamics are described in a non-spatial way

in terms of frequency distributions of groups of various size. It is assumed that groups
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of various population levels split or merge into other groups based on the inherent group

dynamics, environmental conditions, and communications with other groups [26].

To improve the efficiency for a one-human and swarm-agents collaboration sys-

tem, we extend unique human operator to multiple human. Hence, we need to focus on

the multi-human system. In [42], Lieberman et al study evolutionary dynamics for ho-

mogeneous or spatially extended populations. They generalize population structure by

arranging individuals on a graph. In [12], Champagnat et al unify basic evolutionary mod-

els to account for mutation bias and random drift between multiple evolutionary attractors

and describe a population in which the adaptive traits of individuals influence their birth

rate, the mutation process, their death rate, and how they interact with each other and their

external environment. Replicator-Mutator dynamics are used to describe the dynamics of

complex adaptive systems in population genetics, biochemistry and models of language

learning [29, 37]. In the paper [31], Hussein uses the replicator-mutator dynamical equa-

tions to model the process of building individual behavioral inclinations. In [68], Wang

et al extend the replicator-mutator dynamics into a distributed version for multi-agent net-

works with local interactions. In [64], Wang uses the replicator-mutator dynamics to model

users and advertisers behaviors. In our case, we will use the replicator-mutator dynamical

equations to model the individual human operator preference inclinations.

1.2 Contribution

The major contributions of this thesis are listed as follows: 1) We propose bilater-

al trust models, i.e., the human-to-agent trust model and agent-to-human trust model; 2)

Based on these two trust models, we introduce a mutual trust-based scheduling method to

determine the priority for the agent team; 3) Based on new trust models and the agent se-

lection method, we provide a schedulability test to check the schedulability of the human
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multi-agent system, combining with the dynamic timing model; 4) Furthermore, we extend

the collaboration between one human and multiple agents into the collaboration between

multi-human network and swarm-based agents network; 5) To measure the collaboration

between these two networks, we propose a novel measurement, called ’fitness’.

1.3 Structure of Thesis

The organization of this thesis is as follows: In Chapter2, we first propose the t-

wo unilateral trust models. In Chapter 3, we introduce dynamic real-time scheduling for

human-agent collaboration systems based on mutual trust. Based on this result, we derive

a necessary and sufficient schedulaiblity test algorithm. In Chapter 4, we extend the one

human and multi-agent collaboration systems into the multi-human and swarm-agents col-

laboration systems. Besides, we co-design the scheduling and cooperative control for this

network. Combining the replicator-mutator dynamics, we propose a novel measurement,

called’fitness’. Discussion and future works are provided in Chapter 5.

6



Chapter 2

MUTUAL TRUST

2.1 Trust model

In this chapter, we start from the case where one human operator collaborates with

one agent. Here, we introduce two dynamic trust models: human-to-agent trust model

TH→A, and agent-to-human trust model TA→H , respectively.

First, it has been shown that human-to-agent trust is affected by three broad cat-

egories of influential variables, which are agent performance, human performance, and

environmental factors [55]. It is further pointed out in the meta-analysis [28] that agent

performance is strongly related to the trust level, the environmental factors are moderately

associated with the trust level, and the human performance has the least relationship with

the trust evolution. Therefore, combining the qualitative trust model [55] and time-series

trust model proposed in [39, 41, 46], we have the following human-to-agent trust model:

TH→A(k) = A1TH→A(k − 1) +B1PA(k)−B2PA(k − 1) +D1FA(k)−D2FA(k − 1),

(2.1)

where k denotes the discrete time step, PA(k) denotes the agent performance, FA(k) de-
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notes the agent fault rate under the autonomous/manual control mode, and A1, B1, B2, D1,

and D2 are constant coefficients whose values depend on the human operator, the agent,

and the collaborative task. As the above equation shows, the current trust level TH→A(k) is

determined by the prior trust level TH→A(k− 1), change of agent performance, and change

of agent fault rate.

Next, we consider the agent-to-human trust model. Similar to human-to-agent trust,

the agent-to-human trust model, TA→H(k), will depend on the change of performance of

the human collaborator, PH , and the human fault rate, FH . Analogous to Equation (2.1),

we propose the following agent-to-human trust model:

TA→H(k) = A2TA→H(k − 1) + C1PH(k)− C2PH(k − 1) + E1FH(k)− E2FH(k − 1),

(2.2)

where A2, Ci, Ei, i = 1, 2 are constant coefficients. The human-agent mutual trust models

apply to each agent in the multi-agent system with varying coefficients specific to agent

capabilities.

2.2 Trust & Use of automation

To avoid both “over-trust” and “under-trust”, we assume that both TH→A(k) and

TA→H(k) must fall within the desired regions [1] denoted as, TH→A(k) ∈ [TH→A,l, TH→A,u]

and TA→H(k) ∈ [TA→H,l, TA→H,u] for k ≥ 0. If the human-to-agent trust TH→A(k) ex-

ceeds its corresponding upper limit (TH→A(k) ≥ TH→A,u), this indicates that the human

operator has too much trust on the autonomous operation of the agents, i.e., “over-trust”.

To overcome this problem, the human operator should start to control the agent manual-

ly. On the other hand, if the human-to-agent trust TH→A(k) goes below the lower limit

(TH→A(k) ≤ TH→A,l), it means that the human operator has too little trust on the au-
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tonomous operation of the agents and puts too much manual control, i.e., “under-trust”. In

this case, the human operator should allow the autonomous operation of agent itself rather

than control it manually.

Similarly, if the agent-to-human trust level TA→H(k) exceeds its corresponding up-

per limit (TA→H(k) ≥ TA→H,u), this indicates that the agent relies too much on the human

operator’s manual control, i.e., “over-trust”. To avoid this situation, the agent should be

controlled autonomously without human intervention. On the other hand, if the agent-to-

human trust TA→H(k) goes below the lower limit ( TA→H(k) ≤ TA→H,l), this indicates that

the agent has too little trust on the human operator, i.e., “under-trust”. In this case, the

agent should be operated manually.

2.3 Agent performance model

We consider two modes when a human collaborates with an agent: the autonomous

mode and the manual mode, with different performance models given by the following two

different equations [15]

Pn,A(k) =

 (1− kn,A)Pn,A(k − 1) + kn,APn,A,min, (autonomous mode)

(1− kn,H)Pn,A(k − 1) + kn,HPn,A,max, (manual mode)
(2.3)

where Pn,A,max, Pn,A,min ∈ [0, 1] stand for the maximum and minimum performance of the

agent An, and kn,A, kn,H ∈ (0, 1) are the performance coefficients for autonomous mode

and manual mode, respectively. The agent performance model (2.3) guarantees that Pn,A of

each agent An is bounded between [Pn,A,min, Pn,A,max], given that their initial performance

falls within [Pn,A,min, Pn,A,max]. From Equation (2.3), the performance of an agent will

decrease under the autonomous mode and increase under the manual mode.

9



2.4 Human performance model

The Yerkes-Dodson law [72] describes human performance as an empirical mod-

el with respect to human arousal and task difficulty. In our paper, human performance

means the capability and efficiency of the human operator collaborating with an agent. We

represent the following performance model, as [6]

PH(k) = (PH,max − PH,min)

(
r(k)

β

)β (
1− r(k)

1− β

)1−β

+ PH,min, (2.4)

where β ∈ (0, 1) represents the difficulty of a task for a human (a smaller value of β repre-

sents a more difficult task [45]), r(k) represents the utilization, and PH,max and PH,min rep-

resent the maximum and minimum human performance value, respectively. Note that the

human performance model (2.4) guarantees that PH is bounded between [PH,min, PH,max].

Inspired by the single-server queue model [56, 69], we introduce the following uti-

lization model for the case when one human operator collaborates with multiple agents

r(k) = (1− 1

τ
)r(k − 1) +

u(k)

τ
, (2.5)

u(k) =

 1 manual mode

0 autonomous mode
,

where u(k) denotes the control mode of an agent and τ > 0 is a time constant that deter-

mines the extent to which past utilization affects the current state. The time constant τ here

represents the inverse of the sensitivity of the operator to its recent utilization history, which

means a larger τ corresponds to lower sensitivity, and vice versa. As shown in Eq. (2.5),

the utilization ratio r(k) is determined by the control modes of all agents. r(k) increases

in the manual mode (u(k) = 1) and decreases in the autonomous mode (u(k) = 0). The

utilization ratio r(k) is bounded between 0 and 1.
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Chapter 3

DYNAMIC REAL-TIME

SCHEDULING FOR HUMAN-AGENT

COLLABORATION SYSTEMS BASED

ON MUTUAL TRUST

3.1 Multi-Agent Schedulability

Consider the case where a human operator collaborates with N (semi)autonomous

agents and denote the agents as {A1, ..., AN}. Based on the above analysis, we define

the schedulability of a human multi-agent collaborative team in terms of mutual trust as

follows. We use the subscript n to represent each agent An in the following notation.

Definition 3.1.1. Consider an arbitrary time period starting from ka and ending at kb,

denoted as k ∈ [ka, kb]. For any agent An (1 ≤ n ≤ N ) that is collaborating with a

human operator, if both the human-to-agent and agent-to-human trust level fall within the

11



limits of the desired trust region, i.e., Tn,H−A(k) ∈ [Tn,H−A,l, Tn,H−A,u] and Tn,A−H(k) ∈

[Tn,A−H,l, Tn,A−H,u], the human multi-agent collaboration system is said to be schedulable

within [ka, kb].

As we can see from the above definition, the most simple and straightforward way

of schedulability test is to (1) compute mutual trust Tn,H−A(k) and Tn,A−H(k) at each time

step k ∈ [ka, kb]; and (2) then check whether both trust values fall within the desired trust

region at each time step. However, this method requires a lot of computation resources,

which makes it impractical for online computing. In the following part of this paper, we

will show that the schedulability test can be performed at only a small set of critical time

points instead of every time step. Based on this observation, we will develop necessary and

sufficient conditions to check the schedulability of such human multi-agent system.

3.2 Dynamic Timing Model

In this paper, we develop trust based scheduling algorithm to allocate human-attention

to each agent so that the mutual trust level of each human-agent pair falls within the de-

sired trust region. Existing schedulability tests may not be directly applicable to the prob-

lem of trust based scheduling. The fixed priority scheduling algorithms, such as the rate-

monotonic scheduling (R.M.S.) [43], can only be used in systems where the scheduling

parameters are constant over each period, which is not the case for our dynamic systems.

On the other hand, the dynamic or mixed priority scheduling algorithms, such as the ear-

liest deadline first (E.D.F.) scheduling [43], guarantee the tasks to finish before deadline

while our goal is to maintain the trust level within the desired region in addition to meet

deadlines which increases the complexity of the schedulability test.

We define two parameters, collaboration time In(k) and period Ln for each agen-

t. The choice of In(k) will dynamically change according to the bilateral trust levels,
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i.e., Tn,H−A and Tn,A−H within the previous period Ln. Coordinating a set of agents

{A1, · · · , An} corresponds to executing a set of tasks Γ = {τ1, ... , τN} on a single core pro-

cessor. Based on the above analysis, we apply the “highest-trust-first” scheduling method

in the multi-agent systems [43,59]. When the human-to-agent trust approaches to the upper

limit, the human operator tends to over trust. When the agent-to-human trust goes below

the lower limit, the agent tends to under trust the human operator. In both cases, manual

control is required and hence the agent should have priority to be chosen to collaborate

with the human operator. Therefore, the “highest-trust-first” scheduling method will select

the agent with trust values approaching to the corresponding limits and give it the highest

priority to be manually operated. As we discussed in the previous section, we will not use

Definition 3.1.1 to test if a given human multi-agent collaboration system is schedulable.

Instead, we develop necessary and sufficient conditions to achieve this goal by adopting a

dynamic timing model to save computational efforts [61].

To describe the current status of agents at any time step k and build up the dynamic

timing model, we introduce an evolution model of a state vector Z(k) = [Q(k), S(k), O(k)]

within any sub-interval [kw, kw+1], where Pw = kw+1−kw is the length of each sub-interval.

Note that our study is under the discrete-time setting. More details about the definition of

sub-intervals and division procedure from one given period into a series of sub-intervals

can be found in [59].

The state Q(k) = [q1(k), ..., qN(k)] indicates how long after time step, k, the next

collaboration request from An will launch, and it satisfies the following update equations:


qn(kw) = qn(kw − 1)− 1, if qn(kw − 1) > 1 (3.1a)

qn(kw) = Ln, if qn(kw − 1) = 1 (3.1b)

qn(kw + εw) = qn(kw)− εw, ∀ εw ∈ [1, Pw − 1] (3.1c)

where εw is an integer representing time step. Equations (3.1a) and (3.1b) show the evo-
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lution of the state vector qn(k) from the end of the last sub-interval to the beginning of

the current sub-interval. As we can see, this evolution may jump, depending the value of

qn(kw − 1). On the other hand, Equation (3.1c) shows that the evolution of qn(k) within

the sub-interval [kw + 1, kw +Pw− 1], which is consistent. The initial condition during the

whole time interval is set as qn(ka) = Ln.

We choose Pw ≤ min{q1(kw), ..., qN(kw)} so that the requests from agents only

arrive at kw, but not at any other time step within [kw + 1, kw + Pw − 1]. Hence, the

largest possible window length Pw can be expressed as: Pw = min{q1(kw), ..., qN(kw), kb−

kw} [59].

The state S(k) = [s1(k), ..., sN(k)] indicates the remaining collaboration time re-

quired after time step, k, by agent An, and it satisfies the following update equations:



sn(kw) = max{0, sn(kw − 1)−max{0, 1−
∑
i∈HP

ui(kw − 1)}}, (3.2a)

if qn(kw − 1) > 1

sn(kw) = In(kw), if qn(kw − 1) = 1 (3.2b)

sn(kw+εw)=max{0, sn(kw)−max{0, εw−
∑
i∈HP

kw+εw∑
k=kw

ui(k)}}, (3.2c)

∀ εw ∈ [1, Pw−1]

where the term HP represents a set containing all the agents which have higher priority

than An. Equations (3.2a) and (3.2b) show the evolution of the state vector sn(k) from the

end of the last sub-interval to the beginning of the current sub-interval. Equation (3.2d)

shows that the evolution of sn(k) within the sub-interval [kw + 1, kw +Pw − 1]. The initial

condition for S(k) is sn(ka) = In(ka). In addition, if qn(kw − 1) = 1 and sn(kw − 1) > 1,

the system will be unschedulable as the collaboration time for one agent will exceed its

period.

The state O(k) = [o1(k), ..., oN(k)] indicates two situations: (1) When the human

14



still collaborates with the agentAn, on(k) denotes the length of time from the initial request

of An to the current time step, k; (2) When the collaboration between the human and the

agent An is completed, on(k) denotes the length of time from the initial request of An to

the collaboration completion time, and it satisfies the following update equations:



on(kw) = on(kw − 1) + sgn(sn(kw − 1)), if qn(kw − 1) > 1 (3.3a)

on(kw) = 0, if qn(kw − 1) = 1 (3.3b)

on(kw+εw) = on(kw)+sgn(sn(kw))min{sn(kw)+
∑
i∈HP

si(kw), εw}, (3.3c)

∀ εw ∈ [1, Pw−1]

where sn(kw) +
∑
i∈HP

si(kw) denotes the total time steps propagated before the agent An

finishes collaboration with the human operator. Equations (3.3a) and (3.3b) show the evo-

lution of the state vector on(k) from the end of the last sub-interval to the beginning of

the current sub-interval. Equation (3.3d) shows that the evolution of on(k) within the sub-

interval [kw + 1, kw + Pw − 1]. The initial condition is on(ka) = 0.
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Figure 3.1: Three acyclic agents collaborating with one operator

Example 3.2.1. Consider agents {A1, A2, A3} with [I1(k), I2(k), I3(k)] = [1, 2, 3] and

[L1, L2, L3] = [4, 5, 10]. The three acyclic agents are scheduled under a fixed priority
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preemptive scheduling algorithm such that the agent with the smallest interaction time gets

the highest priority.

Fig. 3.1 demonstrates the scheduled behavior of {A1, A2, A3}. The upper arrows

indicate the time steps when the collaboration request from agents launch.

We can observe that at time step k = 6, the next collaboration request from agents

{A1, A2, A3} will launch at 8, 10, and 10 respectively. Thus, we have

Q(6) = [q1(6), q2(6), q3(6)] = [8− 6, 10− 6, 10− 6] = [2, 4, 4].

After time step k = 6, A2 and A3 have NOT finished collaboration with human operator in

their corresponding periods. Hence, we have

S(6) = [s1(6), s2(6), s3(6)] = [0, 1, 2].

For A1, it launches collaboration request at time step 4 and finished collaboration with

human operator at current time step in its second period. Hence, o1(6) = 1. For A2, it

launches collaboration request at time step 5 and has NOT finished collaboration with hu-

man operator at time step 6 in its second period. Hence, o2(6) = 1. For A3, it launches

collaboration request at time step 1 and has NOT finished collaboration with human oper-

ator at time step 6 in its first period. Hence, o3(6) = 6. Therefore, we have

O(6) = [o1(6), o2(6), o3(6)] = [1, 1, 6].

Similarly, at time step k = 14, we have state vectors as

Q(14) = [2, 1, 6], S(14) = [0, 0, 2], O(14) = [1, 2, 4].
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Based on the evolutions of state variables and Definition 3.1.1, the schedulability

of the human-agent collaboration system can now be redefined as follows.

Definition 3.2.1. A human multi-agent collaboration system is schedulable within time in-

terval [ka, kb] if and only if the system is schedulable within each sub-interval [kw, kw+1] ∈

[ka, kb]. The system is schedulable within a sub-interval [kw, kw+1] if and only if each indi-

vidual agent An is schedulable within [kw, kw+1].

The following theorems state the necessary and sufficient conditions for the schedu-

lability of an agent An within a sub-interval [kw, kw+1].

Theorem 3.2.1. (Sufficient Condition) An agent An is schedulable within [kw, kw+1] if it

satisfies one of the following conditions:

1. on(kw+1 − 1) = Ln − 1 and sn(kw+1 − 1) = 0;

2. on(kw+1 − 1) < Ln − 1.

The proof can be found in [59]. The following corollary gives a less conservative

sufficient condition.

Corollary 3.2.1. (Sufficient and necessary Condition) An agent An is schedulable if and

only if it satisfies one of the following conditions within [kw, kw+1]:

1. on(kw+1 − 1) = Ln − 1 and sn(kw+1 − 1) = 0 or 1;

2. on(kw+1 − 1) < Ln − 1.

The extension made by Corollary 3.2.1 is the addition of condition, sn(kw+1−1) =

1.
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Proof. For the first condition, we have the following proof. The schedulability ofAn within

[kw, kw+1] is satisfied if the dynamic response time of An is equal to Ln − 1 at time step

kw+1 − 1, and the effective collaboration request from An has been completed by the time

step kw+1 − 1, i.e., sn(kw+1 − 1) = 0. Consider the case when the dynamic response time

of An is equal to Ln− 1 at time step kw+1− 1, and the effective collaboration request from

An has not been completed by the time step kw+1 − 1. If the task remains active for only

one more time step, i.e., sn(kw+1 − 1) = 1, the schedulability of An within [kw, kw+1] is

still satisfied.

For the second condition, if the dynamic response time of An is smaller than Ln−1

at time step kw+1 − 1, the schedulability of An within [kw, kw+1] is automatically satisfied.

Utilizing Corollary 3.2.1, the schedulability of the human multi-agent collaboration

system does not need to be checked at every time step according to Definition 3.1.1. In-

stead, the entire time interval [ka, kb] is decomposed into several sub-intervals [kw, kw+1]

and the system schedulability only needs to be checked at the beginning of each sub-

interval. Clearly, this method requires less computation resources.

3.3 Schedulability Test Algorithm

We can now perform the dynamic schedulability test over the time interval [ka, kb]

using an algorithm based on Theorem 3.2.1. This algorithm is composed of 6 parts, as

shown below. It iteratively checks the schedulability of each agent, An.

Description of Algorithm 3.1: First, the human performance model, PH(ka), is

measured based on the human utilization and task difficulty, by Equation (2.4). Meanwhile,

we can obtain the agent performance model, Pn,A(ka), based on Equation (2.3). Next,

Tn,H−A(ka) and Tn,A−H(ka) can be calculated, based on Equations (2.1) and (2.2). The
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Algorithm 3.1: Main Algorithm
Data: r(ka), PH(ka), {un(ka)}Nn=1, {Ln, In(ka)}Nn=1,

{Pn,A(ka), Tn,H−A(ka), Tn,A−H(ka), qn(ka), sn(ka), on(ka)}Nn=1

Result: {DSn}Nn=1

1 for each An ∈ Γ do
2 DSn = [ ];
3 dsn = 1;

4 k = 1;
5 w = 1;
6 kw = ka;
7 Algorithm 3.2;
8 return {DSn}Nn=1 ;

state vectors [Q(k), S(k), O(k)] are achieved from Equations (3.1), (3.2), and (3.3). Finally,

we choose the initial collaboration time In(ka) within the period of Ln. For each agent, we

initiate the schedulability result, dsn, as 1, which means it is schedulable at the beginning.

We use the variable dsn to represent the schedulability result with dsn = 1 representing

schedulable and dsn = 0 otherwise. The set DSn contains the schedulability results during

the time interval [ka, kb].

Description of Algorithm 3.2: We choose k = ka as the beginning time of the first

fixed priority window, kw=1, and then determine whether kw is currently within the time

range [ka, kb]. As Lines 3-7 show, we check each fixed priority window according to state

vector, Q(k).

Description of Algorithm 3.3: If the system is schedulable, i.e., dsn = 1, we first

update the performance {Pn,A, PH}, human-to-agent trust level, Tn,H−A(k), and agent-to-

human trust level, Tn,A−H(k). At the beginning of a new sub-interval, the corresponding εw

will be reset and start to count from 1. State vectors [Q(k), S(k), O(k)] can be then updated

based on Equations (3.1), (3.2), and (3.3). k shown in Lines 8 and 10 is within the time

interval [kw, kw + εw].
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Algorithm 3.2: Determination of the fixed priority window
Data: r(ka), PH(ka), {un(ka)}Nn=1, {Ln, In(ka)}Nn=1,

{Pn,A(ka), Tn,H−A(ka), Tn,A−H(ka), qn(ka), sn(ka), on(ka)}Nn=1

Result: Pw
1 while kw < kb do
2 for each An do
3 if qn(kw − 1) == 1 then
4 qn(kw) = Ln;

5 else
6 qn(kw) = qn(kw − 1)− 1;

/* The length of the current fixed priority window Pw */
7 Pw = min{q1(kw), ..., qN(kw), kb − kw};
8 kw+1 = kw + Pw;
9 Algorithm 3.3;

10 w = w + 1;

11 return Pw ;

Description of Algorithm 3.4: We first calculate the error vector for next time

step, k+1, based on the difference between the upper limit and the current trust level in the

human-to-agent case and the difference between the current trust level and the lower limit

in the agent-to-human case. The term en,H−A(k + 1) = Tn,H−A,u − Tn,H−A(k) represents

the deviation of the current human-agent trust level away with the upper limit. When the

human-to-agent trust level approaches to the upper limit, the system is then close to the

“over-trust” situation, which means that the manual should be activated. Similarly, we

define another term en,A−H(k + 1) = Tn,A−H(k) − Tn,A−H,l. When the agent-to-human

trust level approaches to the lower limit, it represents the “under-trust” situation, which

also suggests the activation of manual mode. The agent with the minimum error will be

chosen to collaborate with.

Description of Algorithm 3.5: We update the collaboration time of each agent

In(k) by calculating the maximum and minimum mutual trust levels. When the human-

to-agent trust level becomes too high or the agent-to-human trust level becomes too low,

20



Algorithm 3.3: Update of the trust level and state variables for dynamic timing
model

Data: r(ka), PH(ka), {un(ka)}Nn=1, {Ln, In(ka)}Nn=1, Pw
{Pn,A(ka), Tn,H−A(ka), Tn,A−H(ka), qn(ka), sn(ka), on(ka)}Nn=1

Result: {Tn,H−A(k), Tn,A−H(k), qn(k), sn(k), on(k)}Nn=1

1 if dsn == 1 then
2 εw = 1;

3 qn(kw)
Eq.(3.1a)&(3.1b)←−−−−−−−−− {qn(kw − 1), Ln};

4 sn(kw)
Eq.(3.2a)&(3.2b)←−−−−−−−−− {sn(kw − 1), {un(kw)}Nn=1, qn(kw − 1), In(kw)};

5 on(kw)
Eq.(3.3d)&(3.3d)←−−−−−−−−− {sn(kw − 1), {un(kw)}Nn=1, qn(kw − 1)};

6 while within the subinterval [kw, kw+1] do
7 for each An do
8 Pn,A(k + 1)

Eq.(2.3)←−−−− {Pn,A(k), un(k)};
9 PH(k + 1)

Eq.(2.4)←−−−− r(k);

10 Tn,H−A(k + 1)
Eq.(2.1)←−−−−

{Tn,H−A(k), Pn,A(k + 1), Pn,A(k), FA(k + 1), FA(k)};
11 Tn,A−H(k + 1)

Eq.(2.2)←−−−−
{Tn,A−H(k), PH(k + 1), PH(k), FH(k + 1), FH(k)};

12 qn(kw + εw)
Eq.(3.1c)←−−−−− {qn(kw)};

13 sn(kw + εw)
Eq.(3.2d)←−−−−− {sn(kw), {un(kw)}Nn=1, qn(kw)};

14 on(kw + εw)
Eq.(3.3d)←−−−−− {sn(kw), {un(kw)}Nn=1, qn(kw)};

15 Algorithm 3.4;
16 Algorithm 3.5;
17 εw = εw + 1;
18 k = k + 1 ;

19 for each An do
20 Algorithm 6;

21 return {Tn,H−A(k), Tn,A−H(k), qn(k), sn(k), on(k)}Nn=1;
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Algorithm 3.4: Agent selection
Data: {Tn,H−A(k), Tn,A−H(k), sn(k)}Nn=1

Result: i
1 for each An do

/* G is a set of agents with the non-zero remaining collaboration time*/
2 en,H−A(k + 1) = Tn,H−A,u − Tn,H−A(k);
3 en,A−H(k + 1) = Tn,A−H(k)− Tn,A−H,l;
4 G = [ ];
5 if sn(kw + εw) > 0 then
6 G = [G, An ];

7 if G is not empty then
8 i = minAn∈G([en,H−A(k + 1), en,A−H(k + 1)]);
9 if n == i then

10 un(k + 1) = 1;

11 else if n 6= i then
12 un(k + 1) = 0;

13 return i ;

we increase the amount of collaboration time, as shown in Lines 6-11. Note that the value

of In(k) cannot go beyond Ln. On the other hand, when the human-to-agent trust level

becomes too low or the agent-to human trust level becomes too high, we decrease the

amount of collaboration time, as shown in Lines 12-17. Note that the value of In(k) cannot

be smaller than zero. Besides, δ1, δ2, δ3, δ4 > 0 are constant small values guaranteeing that

In(k) is adjusted before the mutual trust level goes beyond the upper and lower limits.

Description of Algorithm 3.6: We first determine whether the time instance is a

new launched time point of the request from An, as shown in Line 1. If so, based on the

updated state variables and sufficient and necessary conditions as Corollary 3.2.1 shows,

we will perform dynamic schedulability test. Next, the above process repeats for n =

1, · · · , N . Finally, we will end the entire loop and output the schedulability results.
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Algorithm 3.5: Update of the collaboration time
Data: {Tn,H−A(k), Tn,A−H(k), Ln, In(ka)}Nn=1

Result: {In(k)}Nn=1

1 for each An do
2 Tn,H−A,max = maxk−Ln≤τ≤k Tn,H−A(τ);
3 Tn,A−H,max = maxk−Ln≤τ≤k Tn,A−H(τ);
4 Tn,H−A,min = mink−Ln≤τ≤k Tn,H−A(τ);
5 Tn,A−H,min = mink−Ln≤τ≤k Tn,A−H(τ);
6 if Tn,H−A,max > Tn,H−A,u − δ1 and Tn,H−A,min > Tn,H−A,d then
7 φ1 = 1 ;

8 if Tn,A−H,min < Tn,A−H,l + δ2 and Tn,A−H,max < Tn,A−H,d then
9 φ2 = 1 ;

10 if φ1 ∪ φ2 = 1 then
11 In(k) = min{In(k) + 1, Ln} ;

12 if Tn,H−A,min < Tn,H−A,l + δ3 and Tn,H−A,max < Tn,H−A,d then
13 φ3 = 1 ;

14 if Tn,A−H,max > Tn,A−H,u − δ4 and Tn,A−H,min > Tn,A−H,d then
15 φ4 = 1 ;

16 if φ3 ∪ φ4 = 1 then
17 In(k) = max{In(k)− 1, 0} ;

18 return {In(k)}Nn=1 ;
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Algorithm 3.6: Schedulability test
Data: Ln, {qn(k), sn(k), on(k)}Nn=1

Result: {DSn}Nn=1

1 if qn(kw+1 − 1) == 1 then
2 if on(kw+1 − 1) < Ln − 1 then
3 dsn = 1 within the subinterval [kw, kw+1];

4 else if on(kw+1 − 1) = Ln − 1 and sn(kw+1 − 1) = 0 or 1 then
5 dsn = 1 within the subinterval [kw, kw+1];

6 else
7 dsn = 0 within the subinterval [kw, kw+1];

8 else
9 dsn = dsn within the subinterval [kw, kw+1];

10 DSn = {DSn, dsn};
11 return {DSn}Nn=1 ;

3.4 Simulation Results

3.4.1 Parameter setup

We simulate the scenario when a human operator collaborates with three hetero-

geneous agents: {A1, A2, A3}. The agent performance can be updated by Equation (2.3)

and the choice of parameters for each agent is listed in Table 3.1. Each agent has its initial

performance as [P1,A(0), P2,A(0), P3,A(0)] = [0.08, 0.15, 0.11]. The human operator has

his/her performance as described by Equation (2.4). We assume that the task difficulty for

the human operator is β = 0.8 and the maximum human performance, PH,max, and mini-

mum human performance, PH,min, are 1 and 0, respectively. The initial human performance

is PH(0) = 0.25 and the initial utilization ratio is r(0) = 0.1.

The mutual trust levels between the human operator and each agent An follow the

dynamic models discussed in Equations (2.1) and (2.2). The constant coefficients in these

equations are chosen as An,1 = 1, An,2 = 1, Bn,1 = −0.5, Bn,2 = 0.5, Cn,1 = −0.5,

Cn,2 = 0.5, Dn,1 = 0.005, Dn,2 = 0.005, En,1 = 0.005, En,2 = 0.005 and the fault rates
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Table 3.1: Coefficients in Agent Performance Model

kR kH PA,min PA,max

A1 0.17 0.25 0.02 0.85
A2 0.15 0.25 0.05 0.96
A3 0.25 0.17 0.04 0.9

follow the standard normal distributionN(0, 1). The initial mutual trust values between the

human operator and three agents are assumed to be [TH−A,1(0), TH−A,2(0), TH−A,3(0)] =

[1.93, 1.9, 1.98] and [TA−H,1(0), TA−H,2(0), TA−H,3(0)] = [1.93, 1.9, 1.98]. The goal is to

make sure that mutual trust level Tn(k) = [Tn,H−A(k);Tn,A−H(k)] stays within a desired

trust region as time propagates. In this simulation, we choose the desired trust regions

with the lower bounds T1,l = 1.45, T2,l = 1.35, T3,l = 1.25, the upper bounds T1,u =

2.15, T2,u = 2.35, T3,u = 2.25, and the ideal expert level Tn,d =
Tn,u+Tn,l

2
for each agent.

Note that we set the same bound for both human-to-agent and agent-to-human trust regions.

As discussed in Section 3.2, we choose the initial parameters in the periodic strategy

as

[I1, L1] = [2, 10]s [I2, L2] = [3, 10]s [I3, L3] = [4, 10]s (3.4)

where each pair [In, Ln] for n = 1, 2, 3 denotes that the human operator must collaborate

with the agent An for In seconds within every Ln seconds. Note that the value of In(k) will

dynamically change according to Algorithm 5.

3.4.2 Results and discussions

Fig. 3.2 shows the evolution of the human-to-agent trust level and agent-to-human

trust level for all three agents within the time interval [1, 200]. The green lines represent the

upper bound and lower bound of the desired trust regions. The cyan dashed lines represent
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the ideal expert level. The black lines represent the human-to-agent trust level and the

pink dotted lines represent the agent-to-human trust level. The red squares represent the

(de)activation of manual control. We can observe that the human operator interacts with one

agent at a time. Here, “1” means that the human operator is collaborating with the agent;

and “0” means no collaboration. Finally, the blue dotted lines represent the schedulability

results, where “1” means that the system is schedulable and “0” means NOT schedulable.

From the figure, it can be seen that the mutual trust level in each human-agent pair is

consistently bounded within the desired regions and the human-agent system is always

schedulable, which indicates that the proposed scheduling algorithm could guarantee the

ultimate goal. Besides, the plenty amount of time between one control mode and another

suggests that the human has enough time to respond, decide and take an action. Hence, this

scheduling scheme can be adopted into the more practical human-in-the-loop applications.

As mentioned above, in order to save computational efforts, we set up a dynamic

timing model and develop necessary and sufficient conditions to check the schedulability.

To verify this computational efficiency improving, we calculate the computational time of

the schedulability test by using two methods and compare results. The first one is that

we compute the mutual trust values and check whether they fall within the desired trust

regions at each time step, as Definition 3.1.1 shows. Another one is that we test the schedu-

lability by necessary and sufficient conditions based on the dynamic timing model. The

comparison experiment is performed on a Dell laptop with Processor 2.4 GHz, Intel Core

i7-4500U, and Memory 12GB by using Matlab version 2015Ra. For the convenience of

comparing, each simulation window length is extended tenfold, i.e., [0, 2000]. We run both

methods 50 times and then calculate the averaged computational time of the schedulability

test for each method. After calculating, we can see that the runtime of the second method

is approximately 6 times faster than the first one. Hence, we can conclude that there is

an obvious computational efficiency improvement for the schedulability test based on the
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dynamic timing model.
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(a) T1(k) between the human and agent 1
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(b) T2(k) between the human and agent 2
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(c) T3(k) between the human and agent 3

Figure 3.2: Mutual trust within the time interval [1, 200].
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Chapter 4

FORMATION CONTROL FOR

LARGE-SCALE HUMAN-SWARMS

COLLABORATION SYSTEMS BASED

ON MUTUAL TRUST

4.1 Human-swarms collaboration systems

Swarm systems are distributed in nature and well-suited for tasks that are concerned

with the space [19, 33, 44, 54]. Environmental monitoring and freightage are examples of

swarms application [38]. Take freightage as an example, which has a wide range of civilian

and military applications. When heavy objects are needed to move in constrained terrains,

we can deploy a swarm of agents to save labor cost and satisfy space requirements. Al-

though an agent, like UGV, is small enough to meet the demand of terrain, it can not afford

the weight. Therefore, a swarm of agents will be used to support this kind of objects. Based

on the object’s size and shape, several swarms will be employed. Hence, control should be
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considered for swarms to satisfy the requirements of the space. The swarm coordination

and control problems have attracted considerable attention from researchers recently. Sev-

eral control methods have been proposed. In the paper [35], Kim et al present a framework

for decentralized control of self-organizing swarm systems based on the artificial poten-

tial functions. Agents in a swarm self-organize to flock and achieve formation through

attractive and repulsive forces among themselves using the artificial potential functions.

Gazi et al, in [22], design continuous-time control schemes for swarms via a constructive

analysis based on artificial potential functions and sliding mode control techniques. In the

paper [47], Morgan et al develop a model predictive control implementation, which pro-

vides fuel-optimal collision-free motion for the reconfiguration of swarms of spacecrafts.

Sayama, in [57], presents new methods of decentralized control with which swarms of a-

gents can spontaneously organize and maintain non-trivial heterogeneous formations. The

swarm formation control method proposed in [2] based on potential fields satisfies scala-

bility (to varying numbers of swarm members) and supports multiple formations. In the

paper [13], Cheng et al describe a decentralized algorithm for coordinating a swarm of

identically-programmed mobile agents to spatially self-aggregate into arbitrary shapes us-

ing only local interactions. In [14], Coppin et al analyze the way representational gaps

between man and swarms-agents can impact global performances. In [36], Kolling et al

investigate principles of control for large swarms and to determine how human perform in

controlling swarms using implementations of these principles for a complex foraging task

in a variety of challenging environments.

To construct a swarm system, we imitate the dynamic model from biological sys-

tems [49]. Wild geese in biology usually arrange in different formations when they migrate

seasonally. There is generally a leading wild goose in a flock. Similarly, for land animal-

s, such as zebra and horses, when they move to other territories, there always exists one

leader in the herd [70]. Besides, fish is always divided into numerous schools based on d-
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ifferent destinations, during mass migration [10]. Inspired by these phenomena in biology,

we imagine a leading agent in a swarm as a leading animal in a flock [11, 30]. That is to

say, each leading agent is responsible for its belonging swarm. Furthermore, other agents

in the swarm will follow the motion of this leading agent. Hence, a leading agent and its

followers constitute a swarm system.

In a network consisted of several swarm systems, communication among leading

agents is not easily available due to limitation of bandwidth. This is because as the size of a

swarm system increases, the available bandwidth to the leader decreases [27]. Furthermore,

the leading agent will always keep in touch with its followers to direct them, occupying for

its own limited communication bandwidth. Besides, agents have strict communication con-

straints asking team members to be in close physical proximity to communicate [4]. Hence,

a leading agent prefers to communicate with nearby agents. This is also often observed in

biology swarms [62, 63]. However, when we employ such a network in the practical ap-

plication, communication within the network is necessary. To address this issue, we are

used to adopting a centralized control system to distribute information [18]. Nevertheless,

for a large-scaled network, i.e., a network composed of a large number of swarm systems,

human operators will be adopted. It will be critical to include the human at some level of

decision making within these swarming networks both as a safety check and also to en-

sure that the automation is truly supporting overall mission goals [16]. Since the number

of complex problems and the space of possibilities which swarms will assist in are vast,

enabling the control of swarms by a human operator who could interact with the autonomy

and adapt to specific challenges in a variety of conditions is still crucial [36]. Therefore, it

is necessary for a human team to join in the swarms’ loop.

Although some researchers have talked about the collaboration between human and

swarms [14,16,36,36], human operators are just on the swarms’ loop, which means human

only supervise the swarms’ work. Nevertheless, in our case, we incorporate the human fac-
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tors into the swarms’ loop, which means human will truly cooperate with swarms. Besides,

to measure the collaboration between human network and swarm network, we propose a

novel measurement, called ’fitness’. Furthermore, using this novel measurement, we pro-

pose a scheduling algorithm to guarantee a successful human-swarm collaboration system.

4.2 Swarm setup

For a human-swarm collaboration system, each swarm has its own task. In this

part, we focus on the motion of a swarm of mobile agents in the planar space, which

means each swarm has its own coordinate. We consider the motion of a swarm under two

modes: manual model and autonomous mode. The manual mode means a human operator

inputs the neighbouring swarms’ information, such as position and velocity, to the leader

of the current collaborating swarm. If this operator provides the neighbouring information

at every time instant during a time interval, we say the human controls a swarm perfectly

or the swarm is under pure manual mode. On the other hand, the autonomous means the

leading agent and its followers run automatically based on the initial given neighbours’

information. That is, the neighbours’ information will not be updated. Here, we relate

the swarm performance with the formation shape constructed by the leading agent and the

diversity of the following agents in this swarm. Hence, under the manual mode, the more

information a leader knows, the better its belonging swarm performance. On the contrary,

the less information a leader knows, the worse the swarm performance. To save human

resources, we wish less human operators collaborate with more swarms, which leads to

the time delay of information input. This time delay results from the allocation of human

attention since one human can only collaborate with one swam at one time. We define the
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time delay as τ , which satisfies the following update equation.

τm = om(t)−max{0, Im − sm(t)}, if sm(t) = sm(t− 1) and om(t) > 0 (4.1)

where om(t) is the dynamic response time for swarm m, Im is the collaboration time with

swarm m, and sm(t) is the residue time. The update equations of the dynamic response

time and the residue time can be found in Chapter 3.2. Im − sm(t) denotes the loss of

collaboration time. sm(t) = sm(t − 1) means the human stopping collaboration with the

swamm. When the human stops collaborating with the swarm, the propagation of dynamic

response time removing the loss of collaboration time represents the delay time.

Assume that the horizontal and vertical coordinates of a position, q = (x, y)T , are

independent. The dynamics of the leading agent in the swarm m is given by [25, 50]

Q̇m(t) =

 Φ Qm(t) + Γ um(t), (manual mode)

Φ Qm(t) + Γ um(t− τm), (autonomous mode)
(4.2)

Φ =



0 1 0 0

0 −1 0 0

0 0 0 1

0 0 0 −1



Γ =



0 0

−kf 0

0 0

0 −kf
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Qm(t) = [xm(t), ẋm(t), ym(t), ẏm(t)]T

um(t) = [umx(t), umy(t)]
T

where kf is the positive feedback gain.

The um works as formation control input to shape several clusters, aiming to shape

a regular N-polygon. Hence, the formulation of um is given by

um(t) =


N∑

n=1,n6=m

xm(t)−xn(t)−Rdxm,n√
(xm(t)−xn(t)−Rdxm,n)2+(ym(t)−yn(t)−Rdym,n)2

N∑
n=1,n6=m

ym(t)−yn(t)−Rdym,n√
(xm(t)−xn(t)−Rdxm,n)2+(ym(t)−yn(t)−Rdym,n)2

 (4.3)

where N indicates the number of clusters in the space, Rdxm,n and Rdym,n represen-

t the respective desired distance between the center of a cluster m and neighbour clusters,

(xm, ym)T marks the position of the leader of swarm m in the Cartesian coordinate system,

and (xn, yn)T stands for the position of the leader of neighbouring swarm n.

When the leading agent lies under autonomous mode, we put the control in the

form, developed by

um(t− τ) =


N∑

n=1,n 6=m

xm(t)−xn(t−τ)−Rdxm,n√
(xm(t)−xn(t−τ)−Rdxm,n)2+(ym(t)−yn(t−τ)−Rdym,n)2

N∑
n=1,n 6=m

ym(t)−yn(t−τ)−Rdym,n√
(xm(t)−xn(t−τ)−Rdxm,n)2+(ym(t)−yn(t−τ)−Rdym,n)2

 (4.4)

Based on the system shown in Equation (4.2), we first define a Lyapunov function

as [25],
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V (t) = 1
2

N∑
m=1

{
ẋm(t)2 + ẏm(t)2

+
N∑

n=1,n 6=m
2kf
√

(xm(t)− xn(t)−Rdxm,n)2 + (ym(t)− yn(t)−Rdym,n)2

}
,

further obtaining V̇ = ∇V · Q̇.

Theorem 4.2.1. If a leading agent in the swarm m is under pure manual mode, the control

law um(t) given by (4.3) drives ẋm(t)→ 0, ẏm(t)→ 0, xm(t)−xn(t)→ Rdxm,n (n 6= m),

and ym(t)− yn(t)→ Rdym,n (n 6= m)

Proof. Computing V̇ = ∇V · Q̇ gives

V̇ =
N∑
m=1



N∑
n=1,n6=m

kf
xm−xn−Rdxm,n√

(xm−xn−Rdxm,n)2+(ym−yn−Rdym,n)2

ẋm
N∑

n=1,n6=m
kf

ym−yn−Rdym,n√
(xm−xn−Rdxm,n)2+(ym−yn−Rdym,n)2

ẏm



T

·



ẋm

−ẋm −
N∑

n=1,n 6=m
kf

xm−xn−Rdxm,n√
(xm−xn−Rdxm,n)2+(ym−yn−Rdym,n)2

ẏm

−ẏm −
N∑

n=1,n6=m
kf

ym−yn−Rdym,n√
(xm−xn−Rdxm,n)2+(ym−yn−Rdym,n)2


=

N∑
m=1

−(ẋ2
m + ẏ2

m) ≤ 0

(4.5)

Therefore, we can conclude that the system constructed by leading agents under manual

mode is stable holding for any N .

34



Remark 4.2.1. When a leading agent in the swarm m is under pure autonomous mode, the

control law um(t − τ) is given by (4.4). We cannot guarantee the system constructed by

leading agents is stable because the term um(t − τ) in the Lyapunov function 4.5 cannot

be cancelled out and further V̇ ≤ 0 cannot be confirmed.

Inspired by the swarm model in [23], we propose the equation of motion for each

individual agent i in a swarm as following

Q̇i
m(t) = −Aim (Qi

m(t)−Qm(t)) + Ψ uim(t), (4.6)

Ψ =



1 0

0 0

0 1

0 0


Qi
m(t) = [xim(t), ẋim(t), yim(t), ẏim(t)]T

uim(t) = [uimx(t), u
i
my(t)]

T

where Aim is a positive coefficient for agent i in the swarm m.

Self-organization refers to the ability of a swarm to form an appropriate division

of labor given current task demands or stimuli. When a swarm moves, the agents in the

swarm should satisfy the properties of self-organization which have linear attraction and

bounded repulsion. In our case, since every agent in a swarm will follow the leader, we
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only consider the bounded repulsion property. Hence, the formula of uim is given by

ui
m =


M∑

j=1,j 6=i
g(xim − xjm)

M∑
j=1,j 6=i

g(yim − yjm)


where M indicates the number of agents in a cluster and qim = (xim, y

i
m)T marks the position

of the agent i in the swarm m.

The function g(·) represents the function of mutual repulsion between the individ-

uals. The explicit formulae are given by

g(xim−xjm) =


b (xim − xjm − dmx) exp(−

(xim−x
j
m−dmx)2

c
), xim − xjm ≥ dmx

0, |xim − xjm| < dmx

b (xim − xjm + dmx) exp(− (xim−x
j
m+dmx)2

c
), xim − xjm ≤ −dmx

(4.7)

g(yim − yjm) =


b (yim − yjm − dmy) exp(−

(yim−y
j
m−dmy)2

c
), yim − yjm ≥ dmy

0, |yim − yjm| < dmy

b (yim − yjm + dmy) exp(− (yim−y
j
m+dmy)2

c
), yim − yjm ≤ −dmy

(4.8)

where b and c are positive constants and dm = [dmx, dmy] denotes the minimum safety

distance for collision avoidance. Note that g(z) ≤ b∗ = b
√

c
2
exp(−1

2
). The proof can be

found in Appendix A.

Furthermore, we will analyze the cohesion properties for agents in a swarm. We

first define the differences between an individual agent i and the leader of the swarm , as

Ei = Qi
m −Qm.
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Note that Ėi = Q̇i
m − Q̇m, which is

Ėi = −AimEi + Ψuim − ΦQm − Γum

Defining the Lyapunov function as Vi = 1
2
||Ei||2 = 1

2
EiTEi. V̇i is further given by

V̇i = ĖT
i Ei = −Aim(Ei)TEi + (Ψuim)TEi − (ΦQm)TEi − (Γum)TEi. Expanding V̇i, we

can obtain

V̇i = −Aim||Ei||2 + uimx(x
i
m − xm) + uimy(y

i
m − ym)

−ẋm(xim − xm) + ẋm(ẋim − ẋm)− ẏm(yim − ym) + ẏm(ẏim − ẏm)

+kfumx(ẋ
i
m − ẋm) + kfumy(ẏ

i
m − ẏm)

V̇i = −Aim||xim − xm||2 +

{
M∑

j=1,j 6=i
g(xim − xjm)

}
(xim − xm)

−ẋm(xim − xm) + ẋm(ẋim − ẋm)− Aim||ẋim − ẋm||2 + kfumx(ẋ
i
m − ẋm)

−Aim||yim − ym||2 +

{
M∑

j=1,j 6=i
g(yim − yjm)

}
(yim − ym)

−ẏm(yim − ym) + ẏm(ẏim − ẏm)− Aim||ẏim − ẏm||2 + kfumy(ẏ
i
m − ẏm)

From the swarm systems in Equation (4.2) and the Lyapunov function shown in

Equation (4.5), we can see the velocities of the leading agent in two directions will converge

to constants. Hence, we set ẋm < ax and ẏm < ay. Besides, we can obtain umx and umy

are bounded within N − 1 from the formula of the formation control um . Combining with

g(z) < b∗, we have
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V̇i ≤ −Aim||xim − xm||2 + (M − 1)b∗ ||xim − xm||+ ax ||xim − xm||

−Aim||ẋim − ẋm||2 + ax ||ẋim − ẋm||+ kf (N − 1) ||ẋim − ẋm||

−Aim||yim − ym||2 + (M − 1)b∗ ||yim − ym||+ ay ||yim − ym||

−Aim||ẏim − ẏm||2 + ay ||ẏim − ẏm||+ kf (N − 1) ||ẏim − ẏm||

V̇i ≤ −Aim||xim − xm||
{
||xim − xm|| −

(M−1)b∗+ax
Ai

m

}
−Aim||ẋim − ẋm||

{
||ẋim − ẋm|| −

ax+kf (N−1)

Ai
m

}
−Aim||yim − ym||

{
||yim − ym|| −

(M−1)b∗+ay
Ai

m

}
−Aim||ẏim − ẏm||

{
||ẏim − ẏm|| −

ay+kf (N−1)

Ai
m

}
Therefore, we can conclude that as long as ||xim − xm|| > (M−1)b∗+ax

Ai
m

, ||yim −

ym|| > (M−1)b∗+ay
Ai

m
, ||ẋim − ẋm|| > ax+kf (N−1)

Ai
m

, and ||ẏim − ẏm|| > ay+kf (N−1)

Ai
m

, we have

V̇i < 0. Hence we will guarantee that as these differences decrease, eventually the bounds

for position and velocity will be achieved.

Lemma 4.2.1. Consider the swarm described by the model in Equation (4.6). Then as

t→∞, we have qim → Bε(qm), where

Bε(qm) = {(xim, yim) :
√

(xim − xm)2 + (yim − ym)2 ≤ εm}

εm =

√{
(M − 1)b∗ + ax

min{Aim}

}2

+

{
(M − 1)b∗ + ay

min{Aim}

}2

In addition, we have

−ax + kf (N − 1)

Aim
≤ (ẋim − ẋm) ≤ ax + kf (N − 1)

Aim

−ay + kf (N − 1)

Aim
≤ (ẏim − ẏm) ≤ ay + kf (N − 1)

Aim
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These results are important because they prove the cohesiveness of the swarm and

provides bounds for the swarm size and the following agents’ velocities in this swarm.

Remark 4.2.2. Notice that no matter whether a leading agent in the swarm m is under the

autonomous mode or under the manual mode, both of these two formation control laws are

bounded with N − 1. It indicates that the control modes of the leading agent in a swarm

will not affect the cohesiveness of the following agents in this swarm.

4.3 Collaboration framework

For large-scale human-swarms collaboration systems, how to connect human opera-

tors and swarms is a big challenge for us. In this part, we will propose a new measurement

to pair human operators and swarms and guarantee successful human-swarms collabora-

tions.

4.3.1 Trust model

In Chapter 2, we introduce two unilateral trust models. Considering the swarm

systems we have set up, we extend the human-agent trust model to human-swarm trust

model, i.e., TH→S(t) and TS→H(t).

Combining the qualitative trust model [55] and time-series trust model proposed

in [39], a similar human-to-swarm trust model is proposed as follows:

Tm,H→S(t) = A1Tm,H→S(t− 1) +B1Pm,S(t)−B2Pm,S(t− 1)

+D1Fm,S(t)−D2Fm,S(t− 1),

(4.9)

where Pm,S(t) denotes the swarm performance and Fm,S(t) denotes the swarm fault rate.

A1, B1, B2, D1, and D2 are constant coefficients whose values depend on the human oper-
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ator, the swarm, and the collaborative task. As the above equation shows, the current trust

level Tm,H→S(t) is determined by the prior trust level Tm,H→S(t − 1), change of swarm

performance, and change of swarm fault rate.

Next, we consider the unilateral swarm-to-human trust model Tm,S→H(t). It has

been shown that a swarm is composed of a leading agent and its followers. Hence the

swarm-to-human trust should consider every agent’s trust in human within the swarm. We

propose the following swarm-to-human trust model:

Tm,S→H(t) =
1

M

M∑
i=1

TAi
m→H(t), (4.10)

where M represents the number of agents in a swarm and Aim denotes the agent i in the

swarm m. TAi
m→H(t) is defined in Chapter 2.2, which depends on the change of human

performance PH and human fault rate FH .

4.3.2 Swarm performance model

We propose the swarm performance model based on the cohesiveness of the swarm

and swarm systems formation situation. The cohesiveness is measures by the distances

between the leader and each following agent in the swarm while the formation situation

is measured by the relative distances between the current swarm and its neighbours. The

performance model is updated in the following equation

Pm,S(t) = (1− km)

1−

∑
i∈M

eim(t)∑
i∈M

εm

+ km

∑
n∈N,n 6=m

ARdm,n(t)∑
n∈N,n6=m

Rdm,n
(4.11)

where eim(t) =
√

(xim(t)− xm(t))2 + (yim(t)− ym(t))2 is the distance between the po-

sition of an individual agent i and the leader in the swarm m at current time instant t,
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M represents the number of agents in the swarm m, εm is the bounded size of the swar-

m m shown in Lemma (4.2.1), ARdm,n(t) =
√

(xm(t)− xn(t))2 + (ym(t)− yn(t))2 de-

notes the instantaneous relative distance between the swarm m and its neighbour n, and

Rdm,n =
√
Rdx2

m,n +Rdy2
m,n represents the desired relative distance between the swarm

m and its neighbouring swarm n.

Compared with the performance models shown in Chapter 2.3, the swarm perfor-

mance model in this part is no more an update formula but an instantaneous equation based

on the position of agents at every time instant.

4.3.3 Human attention preference

In the individual-based replicator-mutator (RM) dynamics, each agent in the net-

work decides how to allocate its resources to the tasks based on its own tasking priorities

and the local communications with its neighbouring agents as well [64]. In a similar fash-

ion, we model the multi-human systems based on the individual-based replicator-mutator

dynamics.

Consider a human network that forms a weighted graph Gh = (Vh, Eh) with a set

of vertices Vh of human hk, k = 1, 2, . . . , n. An edge ejk ∈ Eh connects hj with hk. Here,

we consider the aforementioned graph as an agent relational one associated with human

hj with a set of nodes representing agent ri, i = 1, 2, . . . , N . Let Aj = [ajik], a
j
ii = 1,

denote the rewards matrix of Gh, where ajik describes the prioritization of agent ri over

rk evaluated by human hj under only local interactions with its neighbours, which mainly

depends on the initial relative distance. The smaller the distance between rk and ri is,

the larger ajik becomes. Note that ajik < ajii = 1. It indicates only the agent ri itself has

the largest priority. Let pj(t) = (pj1(t), pj2(t), . . . , pjN(t))T ∈ RN be a vector of allocated

attentions of human hj to agent r = (r1, r2, . . . , rN) at time t. That is, pji represents the
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percentage of the preferred attentions that human hj allocates to agent ri. Let the total

attention of human hj be 1, we have cTpj(t) = 1, where c = (1, 1, . . . , 1)T ∈ RN .

A local-interaction version of the individual-based evolutionary dynamics with so-

cial interactions model developed in [31] is developed to model the evolution of pj(t).

For each human hj , define the expected rewards gained by preferring to agent ri at

time t as f ji (t) =
N∑
k=1

ajik(t)p
j
k(t), i ∈ 1, 2, , N . The expected rewards vector of agents R

associated with human hj at time t can be given in matrix form, as f j(t) = Aj(t)pj(t) ∈ R.

Let F(t) = diag(f(t)). Define φj(t) = f j(t)Tpj(t) as the total rewards gained by human

hj via the attention’s allocation of all the agents R. Let Qj(t) = [qjik] be the mutation matrix

associated with human hj , which is a row stochastic matrix satisfying
N∑
k=1

qjik(t) = 1. The

component qjik is the likelihood that human hj reallocates its attention from agent ri to

agent rk (i 6= k) at time t.

Now consider the effect of local interactions between human operators within the

network. Let us first define two parameters. f jh > 0 describes the capability differences of a

human team. ahjn describes the strength of the link or connectedness of human hj to his/her

neighbour hn. Let the parameter φjh be the total capability of human hj’s neighborhood hn

and it is defined as

φjh =
N∑
n=1

fnh a
h
jn

where N is the number of human operators.

Human hj’s individual evolutionary replicator-mutator equation can be written in

the matrix form, as

ṗj(t) = [Qj(t)]TFj(t)pj(t)− φj(t)pj(t) +
N∑
n=1

fnh a
h
jnp

n(t)− φjh(t)p
j(t) (4.12)

where pn(t) represents the neighbouring human hn’s attention allocation.
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According to this model, human hj’s attention allocation vector pj(t) updates ac-

cording to its own valuation of different agents ri (given by the first two terms) as well as

the effects of the neighbouring humans allocation pn(t) (given by the latter two terms).

4.3.4 Fitness

At first, we define a relation for the node and task information. fitness(i, j) is the

fitness value between a task and a node. Wi is the workload of the ith task in the Task

Manager. Sj is the CPU speed of the jth node according to the Resource Information

Service. Hence, Wi/Sj represents the actual execution time of the ith task with respect to

the jth node. Ei is the expected execution time of the ith task. Users can set Ei of tasks. If

users do not set the Ei, the Task Manager will set it automatically [65].

This method uses the difference of execution time of the ith task, i.e., Wi/Sj − Ei,

to estimate how “fit” a node is for a task. The fitness value shows how suitable the task is

to the node. The fitness value ranges from 0 to 100000. Larger fitness values will indicate

greater suitability between a given task and a node. The fitness value is defined as follows:

fitness(i, j) =
100000

1 + |Wi/Sj − Ei|

Inspired by the above relationship, we define a new ‘fitness’ between human teams

and swarms. This fitness value is proposed as follows:

fitness(sm, hj) =
1

1 + |pjm(t)Pm,S(t)− P ∗m,S|
(4.13)

where pjm represents the allocated attentions of human hj to the leading agent in the swarm

m, Pm,S(t) represents the performance of the swarm m, and P ∗m,S represents the desired

performance of the swarm m. Furthermore, pjm(t)Pm,S(t) presents the actual performance
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with respect to human hj . The desired performance denotes the performance when a swarm

can maintain desired relative distances with its neighbours and each agent in this swarm

approaches the leader agent as closely as possible but still keep safety distances with each

other to avoid collisions.

This formula analogously uses the difference of performance of the mth swar-

m, i.e., pjm(t)Pm,S(t) − P ∗m,S , to estimate how “fit” a human is for a swarm. Note that

pjm(t), Pm,S(t) and P ∗m,S can be guaranteed within the open interval (0, 1) based on Equa-

tion. (4.12) and (4.11). We scale the numerator from 10000 to 1 to make the fitness value

range from 0 to 1. Larger fitness values will indicate greater suitability between a given

swarm and a human.

4.4 Real-time scheduling

Based on the measurement “ fitness”, we can simplify a large-scale multi-human

and swarms collaboration system into several one-human and swarms collaboration sys-

tems. Since the human operator only collaborates with leading agents, one-human and

swarms collaboration systems can be approximately thought as one-human multi-agent

collaboration systems. Hence, we propose a similar scheduling algorithm as shown in

Chapter 3.3, called Minimum-Gap-First.

Consider, one gap asEH→S(t) = [e1,H→S(t), . . . , eN,H→S(t)] where any em,H→S(t) ∈

EH→S(t) represents the difference between the current human-to-swarm trust level Tm,H→S(t)

with respect to the swarm m and its desired trust lower limit Tn,l, i.e., em,H→S(t + 1) =

Tm,H→S(t) − Tn,l. The other gap as ES→H(t) = [e1,S→H(t), . . . , eN,S→H(t)] where any

em,S→H(t) ∈ ES→H(t) represents the difference between the current swarm-to-human

trust level Tm,S→H(t) and its desired trust upper limit Tn,u, i.e., em,S→H(t + 1) = Tn,u −

Tm,S→H(t). We define this scheduling as the swarm with the smallest gap gets the highest
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priority from a human operator. Algorithms 4.1 and 4.2 discuss the detailed implementa-

tion.

Description of Algorithm 4.1: We first update the state vectors [Q(t), S(t), O(t)]

based on the period {Lm}Nm=1, collaboration time {Im}Nm=1, and control modes. Here

we notate the control modes as {ctrm(t)}Nm=1. Note that in this scheduling algorithm

these three state are updated in the continuous-time case while Equations (3.1), (3.2),

and (3.3) update in the discrete-time case. When we switch between these two cases,

the previous time step k − 1 should be replaced by t− to indicate a time point just before

a given time instant. However, the core update procedures are same in these two cas-

es. Furthermore, we update the following system states, i.e., PH(t), {Pm,S(t + 1)}Nm=1,

{Tm,H→S(t + 1), Tm,S→H(t + 1), qm(t + 1), sm(t + 1), om(t + 1)}Nm=1 . Note that {n ∈

N̄} = {n ∈ N, n 6= m}.

Description of Algorithm 4.2: We first calculate the gap vectors for next time in-

stant, t + 1, based on the difference between the current trust level and the lower limit

in the human-to-swarm case and the difference between the upper limit and the current

trust level in the swarm-to-human case. As Lines 4 and 5 show, based on the fitness val-

ue and the number of human operator H, we categorize each directional gap vector into

H sub-vectors. For example, if the human-swarm collaboration systems include 2 human

operators and 4 swarms of agents and the current fitness result is fitness = [1, 1, 2, 2].

This result means Swarms 1&2 are suitable for Human 1 and Swarms 3&4 are suitable for

Human 2. Hence, we have H = 2, N1 = 2, and N2 = 2. Furthermore, the trust gaps be-

tween Human 1 and Swarms 1&2 are grouped while the trust gaps between Human 2 and

Swarm 3&4 are grouped. Each human will further decide which swarm to collaborate from

the corresponding human-swarms group at the current time instant, as Lines 6-15 shows.

When the human-to-swarm trust level approaches to the lower limit, an operator is sched-

uled to interact with a swarm. It indicates that this swarm performance degrades, which
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means the formation deviates from the desired situation. Hence, in order to upgrade the

swarm performance, the human operator should interact with this swarm and provide more

neighbours’ information for the swarm. When the agent-to-human trust level approaches

to the upper limit, it represents the current swarm becomes “ blind” due to lack of neigh-

bours’ information and further feels “anxious”. Hence, this swarm desires to collaborate

with a human operator and gets more information. The swarm with the minimum gap will

be chosen to collaborate with.

4.5 Simulation Results

4.5.1 Parameter setup

We simulate the scenario such that two human operators collaborate with four

swarms led by four heterogeneous agents: {S1, S2, S3, S4}. Each leading agent is fol-

lowed by 25 agents. The states of each leading agent can be updated by Equation (4.2).

The choice of initial states and desired distances between each leading agent and its neigh-

bours are listed in Tables 4.1 and 4.2. The agent performance can be updated by Equa-

tion (4.6). The choice of parameters with respect to control inputs shown in Equations (4.7)

and (4.8) for each following agent is listed in Table 4.3. Note that the initial condition for

each agent in each swarm is set randomly. Each swarm has its initial performance as

[P1,S(0), P2,S(0), P3,S(0), P4,S(0)] = [0.23, 0.27, 0.25, 0.29].

The human-to-swarm trust levels follows the dynamic model discussed in Equa-

tion (4.9). The constant coefficients in this equation are chosen as A1 = 1, B1 = 0.5,

B2 = 0.5, D1 = 0.005, D2 = 0.005, and the fault rates follow the standard normal dis-

tribution N(0, 1). The initial trust values between the human operator and four swarms

are assumed to be [TH1−S1(0), TH1−S2(0), TH1−S3(0), TH1−S4(0)] = [1.6, 1.6, 1.6, 1.6] and
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Algorithm 4.1: Co-design of control and scheduling
Data: r(t),{ctrm(t)}Nm=1,{Qm(t),um(t)}Nm=1, {Lm, Im}Nm=1, fitness(t),

PH(t), {Pm,S(t)}Nm=1, {{pjm}Nm=1}Hj=1, {{Qm
i,uim}Mi=1}Nm=1,

{{eim(t)}Mi=1}Nm=1, {
∑
n∈N̄

ARdm,n(t)}Nm=1,

{Tm,H→S(t), Tm,S→H(t), qm(t), sm(t), om(t)}Nm=1

Result: r(t+ 1), {ctrm(t+ 1)}Nm=1, fitness(t+ 1), PH(t+ 1),
{Pm,S(t+ 1)}Nm=1, {Tm,H→S(t+ 1), Tm,S→H(t+ 1)}Nm=1,
{qm(t+ 1), sm(t+ 1), om(t+ 1)}Nm=1

1 for each Sm do
2 qm(t+ 1)

Eq.(3.1)←−−−− {qm(t), Lm};
3 sm(t+ 1)

Eq.(3.2)←−−−− {sm(t), ctrm(t), qm(t), Im};
4 om(t+ 1)

Eq.(3.3)←−−−− {sm(t), ctrm(t), qm(t)};
5

∑
n∈N̄

ARdm,n(t+ 1)
Eq.(4.2)←−−−− {Qm(t),um(t), om(t)};

6 eim(t+ 1)
Eq.(4.6)←−−−− {Qi

m(t),uim(t)};
7 Pm,S(t+ 1)

Eq.(4.11)←−−−−− {eim(t+ 1),
∑
n∈N̄

ARdm,n(t+ 1)};

8 r(t+ 1)
Eq.(2.5)←−−−− {r(t), ctrm(t)};

9 PH(t+ 1)
Eq.(2.4)←−−−− r(t);

10 fitness(t+ 1)
Eq.(4.13)←−−−−− {Pm,S(t), pjm};

11 Tm,H−S(t+ 1)
Eq.(4.9)←−−−−{Tm,H−S(t), Pm,S(t+ 1), Pm,S(t), FS(t+ 1), FS(t)};

12 Tm,S−H(t+ 1)
Eq.(4.10)←−−−−− {Tm,S−H(t), PH(t+ 1), PH(t), FH(t+ 1), FH(t)};

13 Algorithm 4.2;
14 return r(t+ 1), {ctrm(t+ 1)}Nm=1, PH(t+ 1), {Pm,S(t+ 1)}Nm=1,
{Tm,H→S(t+ 1), Tm,S→H(t+ 1), qm(t+ 1), sm(t+ 1), om(t+ 1)}Nm=1 ;

47



Algorithm 4.2: Minimum-Gap-First Scheduling
Data: {ctrm(t)}Nm=1, {Pm,S(t)}Nm=1, fitness(t),

{Tm,H→S(t), Tm,S→H(t), sm(t+ 1)}Nm=1

Result: {mj}Hj=1

1 for each Sm do
/* G is a set of agents with the non-zero remaining collaboration time*/

2 em,H→S(t+ 1) = Tm,H→S(t)− Tn,l;
3 em,S→H(t+ 1) = Tn,u − Tm,S→H(t);

4 {{emj ,H→S}
Nj

mj=1(t+ 1)}Hj=1 ←− {fitness(t)};
5 {{emj ,S→H}

Nj

mj=1(t+ 1)}Hj=1 ←− {fitness(t)};
6 for each Hj do
7 Gj = [ ];
8 if smj

(t+ 1) > 0 then
9 Gj = [G, Smj ];

10 if Gj is not empty then
11 mj = minSmj∈G([{emj ,H→S}

Nj

mj=1(t+ 1), {emj ,S→H}
Nj

mj=1(t+ 1)]);

12 if m == mj then
13 ctrm(t+ 1) = 1;

14 else if m 6= mj then
15 ctrm(t+ 1) = 0;

16 return {mj}Hj=1 ;
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Table 4.1: Initial Condition in Leading Agent Systems

x(0) [m] y(0) [m] vx(0) [m/s] vy(0) [m/s]
S1 100 105 5 8
S2 101 106 6 7
S3 108 103 7 6
S4 102 107 8 5

Table 4.2: Desired Relative Distances

Rdx/Rdy S1 [m] S2 [m] S3 [m] S4 [m]
S1 0/0 100/0 100/-50 0/-50
S2 -100/0 0/0 0/-50 -100/-50
S3 -100/50 0/50 0/0 -100/0
S4 0/50 100/50 100/0 0/0

[TH2−S1(0), TH2−S2(0), TH2−S3(0), TH2−S4(0)] = [1.6, 1.6, 1.6, 1.6]. Note that the swarm-

to-human trust levels are combination of all agent-to-human trust levels. Hence, we set

the same constant coefficients and initial trust values as those used in Chapter 3.4. In this

simulation, we choose the trust regions with the lower bounds T1,l = 1.2, T2,l = 1.2, T3,l =

1.2, T4,l = 1.2, the upper bounds T1,u = 3.2, T2,u = 3.2, T3,u = 3.2, T4,u = 3.2.

In addition, the parameters in the periodic strategy are shown in Table 4.4

4.5.2 Results and discussions

Fig. 4.1 shows the shape formation in the coordinate plane of swarm systems un-

der pure manual mode within time interval [1, 100]. We know each leading agent under

manual mode can obtain whole neighbouring information during this time interval. Hence,

from Fig. 4.1(a), we can get the desired formation based on the defined relative distances.

Fig. 4.1(b) depicts the layout of Swarm 1 and shows that each following agent can avoid

collision from other agents. This indicates that Equation (4.7) takes effect on mutual repul-
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Table 4.3: Parameters in Following Agent Systems

a b c
{Agenti1}25

i=1 1 2 30
{Agenti2}25

i=1 1 2 40
{Agenti3}25

i=1 1 2 50
{Agenti4}25

i=1 1 2 60

Table 4.4: Parameters in Periodic Strategy

S1 S2 S3 S4

H1 [I1, L1] = [15, 50]s [I1, L1] = [18, 50]s [I1, L1] = [19, 50]s [I1, L1] = [16, 50]s
H2 [I2, L2] = [16, 50]s [I2, L2] = [17, 50]s [I2, L2] = [18, 50]s [I2, L2] = [15, 50]s

sion between the individuals in one swarm.

Fig. 4.2 shows the shape formation in the coordinate plane of swarm systems under

pure autonomous mode within time interval [1, 100]. As we discuss, each leading agen-

t under autonomous mode can only obtain neighbouring information at the initial time.

Hence, from Fig. 4.2(a), we can see the shape formation deviates from the desired shape.

Fig. 4.2(b) depicts the layout of Swarm 1 as well. When the leading agent lost the direction,

the following agents also lost their directions.

In addition, we observe from Figures. 4.1 and 4.2 that the circle areas defined in

Lemma 4.2.1 can cover all agents in each swarm. Note that we use same parameters in these

two modes to obtain the same bounded area for each swarm. Here, we have [b, c] = [2, 30]

and ax = ay = 1. The radius of the area is εm =

√{
(M−1)b∗+ax

min{Ai
m}

}2

+
{

(M−1)b∗+ay
min{Ai

m}

}2

.

Here, min{Aim} is assigned a random.

Fig. 4.3 shows the shape formation in the coordinate plane of swarm systems sched-

uled by the minimum-gap-first algorithm. Furthermore, we compare the shape formations

under these three cases shown in Fig. 4.4. The area surrounded by blue line represents the
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Figure 4.1: Formation under pure manual mode.
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desired shape under pure manual model while the area surrounded by green line denotes

the worst case under autonomous mode. Besides, the area enclosed by pink line is the for-

mation scheduled by the minimum-gap-first algorithm. We can clearly see the area in this

case approaches to the best formation shape.

Fig. 4.5 depicts the human-to-swarm trust levels. The red line shows ’fitness’ re-

sults. Note that we scale the ’fitness’ value to 0.5 and 1. When the red line goes to 0.5, it

indicates Human 1 is collaborating with a swarm. When the red line reaches 1, it represents

Human 2 is collaborating with a swarm. In addition, we can observe as time propagates,

human-to-swarm trust levels will converge to steady. This observation coincides with the

human-to-swarm-trust model in that the trust model depends on the states of swarm sys-

tems which will get stable based on Theorem 4.2.1 and Lemma 4.2.1. Fig. 4.6 shows the

dynamic of leading agents in each swarm. Fig. 4.7 depicts the swarm-to-human trust levels.

Here swarm-to-human trust is no more trust between a swarm and a fixed human operator.

Based on ’fitness’ results, swarm will produce corresponding trust levels towards different

human operator.

Finally, we discuss the relation between human workload and the acceptable for-

mation shape. From Fig. 4.4, we can observe that the proposed scheduling algorithm can

guarantee the formation shape under this scheduling algorithm is located between the shape

under pure autonomous mode and manual mode. In this part, we also utilize the trust levels

to decide the control modes. However, the ultimate goal is no more to guarantee the trust

levels within the trust bounds as Chapter 3 shows, but to determine the acceptable forma-

tion. From the minimum-gap-scheduling algorithm, we know the control mode depends on

the trust gaps between trust levels and trust bounds. Furthermore, the control mode decides

the formation shape. That is to say, we need to balance two trust levels to have an accept-

able shape. Since the workload can be reflected by the delay time, we directly analyze the

statistics of delay time.
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Table 4.5 and 4.6 show the formation shapes under different trust bounds. Note

that we run the simulation under each trust bound 20 times and take the average. From

these two tables, we can observe that the deviation from the desired shape is small if the

standard variance of delay time, i.e., Std(τ ), is relatively small. The standard variance of

delay time reflects the distribution of human workload to each swarm. The smaller the stan-

dard variance of delay time is, the more equal the distribution of human workload to each

swarm is. This indicates if each swarm can obtain the relatively more information from

human operators compared with the case under the pure autonomous mode, the formation

constructed by swarm systems is perfect. Besides, we can observe as the bound increases,

the standard variance of delay time has the increment trend. Combining with the range of

trust levels shown Figures. 4.5 and 4.7, we can say when human operator makes a decision,

if he or she cares both swarm-to-human trust levels and human-to-swarm trust levels, that

is, the human operator cares both his/her own opinions and swarm’s willing, the decision

55



Time
10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5
Trust Levels
Control Mode

(a) Human-to-Swarm 1 Trust

Time
10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

Trust Levels
Control Mode

(b) Human-to-Swarm 2 Trust

Time
10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

Trust Levels
Control Mode

(c) Human-to-Swarm 3 Trust

Time
10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

Trust Levels
Control Mode

(d) Human-to-Swarm 4 Trust

Figure 4.5: Human-to-swarm trust

56



Time
10 20 30 40 50 60 70 80 90 100

X
-p

o
s
it
io

n
 (

m
)

0

50

100

150

200
Swarm1
Swarm2
Swarm3
Swarm4

Time
10 20 30 40 50 60 70 80 90 100

X
-v

e
lo

c
it
y
 (

m
/s

)

-5

0

5

10
Swarm1
Swarm2
Swarm3
Swarm4

(a) X-direction

Time
10 20 30 40 50 60 70 80 90 100

Y
-p

o
s
it
io

n
 (

m
)

80

100

120

140 Swarm1
Swarm2
Swarm3
Swarm4

Time
10 20 30 40 50 60 70 80 90 100

Y
-v

e
lo

c
it
y
 (

m
/s

)

-5

0

5

10
Swarm1
Swarm2
Swarm3
Swarm4

(b) Y-direction

Figure 4.6: Leading Agents Dynamic.

57



Time
10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5
Trust Levels
Fitness Results

(a) Swarm 1-to-Human Trust

Time
10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

Trust Levels
Fitness Results

(b) Swarm 2-to-Human Trust

Time
10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

Trust Levels
Fitness Results

(c) Swarm 3-to-Human Trust

Time
10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

Trust Levels
Fitness Results

(d) Swarm 4-to-Human Trust

Figure 4.7: Swarm-to-human trust

58



Table 4.5: Relation between upper trust bounds and formation shape

Upper
bound

τ1 τ2 τ3 τ4 Mean(τ ) Std(τ )
Scheduled
shape

Desired
shape

Worst
shape

6.2 55 61 80 4 50 32.5 303.5 300 460
5.2 56 81 61 2 50 33.5 304.5 300 460
4.2 52 10 97 41 50 36 308.5 300 460
3.2 71 28 52 49 50 17.6 300 300 460

Table 4.6: Relation between lower trust bounds and formation shape

Lower
bound

τ1 τ2 τ3 τ4 Mean(τ ) Std(τ )
Scheduled
shape

Desired
shape

Worst
shape

2.2 50 66 80 4 50 33.1 303.5 300 460
1.2 81 18 49 52 50 25.7 304.5 300 460
0.2 52 20 87 41 50 28.1 308.5 300 460

for control mode is more reasonable. However, even if the distribution of human workload

is not equal, the formation shape deviates slightly from the perfect formation shape and

is still acceptable. Hence, we can conclude that the scheduling algorithm can guarantee

successful human-swarm collaboration.
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Chapter 5

Conclusions and Discussion

In this paper, we propose bilateral trust models for the collaborations between hu-

man and (semi)autonomous agents. Specifically, we offer a human-to-agent trust model

based on results in human factors and a novel agent-to-human trust model based on human-

human collaboration. We develop a dynamic timing model to describe the status of differ-

ent state variables, and use it to derive necessary and sufficient conditions for schedulability

test to save computational efforts.

Furthermore, we extend the collaboration between one human and multiple agents

into the collaboration between multi-human network and swarm-based agents’ network.

A corresponding swarm system is set up. Cooperative controls are incorporated into the

swarm systems to enable several swarms to simultaneously reach navigational goals and

avoid collisions between each agent in the swarm. To measure the collaboration between

human systems and swarm systems, we propose a novel measurement, called ’fitness’.

Our simulation results show that the proposed algorithm can also be applied to this

large-scaled collaboration system and guarantees effective real-time scheduling of the hu-

man multi-agent collaboration system while ensuring a proper level of human-agent mutual

trust.
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Appendix A The maximum value of g(·) function

According to the explicit formulae of the function g(·) shown in Equations. (4.7)and (4.8),

we can summarize the g(·) function in one formula, as

g(z) =


b (z − d) exp(− (z−d)2

c
), z ≥ d

0, |z| < d

b (z + d) exp(− (z+d)2

c
), z ≤ −d

where b, c, and d are positive constants. Note that g(z) is a continuous function in the entire

value range.

I. When z ≥ d, we have dg
dz

= b exp(− (z−d)2

c
)[1− 2(z−d)2

c
].

Let dg
dz

= 0. We obtain

b exp(− (z−d)2

c
)[1− 2(z−d)2

c
] = 0

⇒ (z − d)2 = c
2

⇒ z =
√

c
2

+ d

When (z − d)2 < c
2
⇒ d < z <

√
c
2

+ d, we have dg
dz
> 0.

When (z − d)2 > c
2
⇒ z >

√
c
2

+ d , we have dg
dz
< 0.

When (z − d)2 = 0⇒ z = d , we have g(d) = 0.

Hence, we can conclude that when z ≥ d, the maximum value of function g(z) is

b
√

c
2
exp(−1

2
) at z =

√
c
2

+ d.

II. When |z| < d, we have g(z) = 0.

III. When |z| ≤ −d, we have dg
dz

= b exp(− (z+d)2

c
)[1− 2(z+d)2

c
].
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Let dg
dz

= 0. We obtain

b exp(− (z+d)2

c
)[1− 2(z+d)2

c
] = 0

⇒ (z + d)2 = c
2

⇒ z = −
√

c
2
− d

When (z + d)2 < c
2
⇒−

√
c
2
− d < z < −d, we have dg

dz
> 0.

When (z + d)2 > c
2
⇒ z < −

√
c
2
− d , we have dg

dz
< 0.

When (z + d)2 = 0⇒ z = −d , we have g(−d) = 0.

Hence, we can conclude that when z ≤ −d, the maximum value of function g(z) is

0 at z = −d.

Therefore, we can conclude that g(z) ≤ b
√

c
2
exp(−1

2
) for z ∈ R1 .

For the z ∈ R1 case with b = 5, c = 40, and d = 1, this function is shown in Fig. 1.
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Figure 1: g(z) Function
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and formation control of swarms with non-holonomic agents using potential functions
and sliding mode techniques. Turk J Elec Engin, 15(2):149–168, 2007.

[23] Veysel Gazi and Kevin M Passino. Stability analysis of social foraging swarms. Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(1):539–
557, 2004.

[24] William Bryan Gooding. Specially structured formulations and solution methods for
optimisation problems important to process scheduling. PhD thesis, Purdue Univer-
sity, 1994.

[25] Bill Goodwine and Panos Antsaklis. Multiagent coordination exploiting system sym-
metries. In American Control Conference (ACC), 2010, pages 830–835. IEEE, 2010.
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