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ABSTRACT 

The optimization of the energy consumption in household refrigerators should 

consider the influence of the gasket which determines the heat transfer and air infiltration 

rate. In this research project, engineering methods are developed to evaluate the heat 

leakage due to the gasket and air infiltration in domestic refrigerators.  

In the first study, experimental and numerical approaches are applied to evaluate 

the gasket heat transfer based on the “Reverse Heat Load Method”. The main objective is 

to find the effective heat leakage with the dimensions of energy leakage per gasket length 

per temperature difference (W/m.K). An insulated cubic box with a 216,000 𝑐𝑚3 interior

enclosure (60cm x 60cm x 60cm) was designed to accept a matching set of adjoining 

refrigerator door and wall cuts placed inside the cavity.  The door and walls are surrounded 

by thick insulation material so that only the gasket region is exposed to the ambient 

environment. A heat source was placed inside the center of the box to create a desired 

temperature difference between the interior and the ambient. Thermocouples measured the 

interior and ambient temperatures while six heat flux sensors, mounted on the exposed 

gasket region, measured the heat flux exiting the box through this region. Two restrictions 

were imposed with the heat flux sensors to evaluate the heat leakage purely experimentally. 

The heat flux sensors did not offer sufficient resolution to fully resolve the surface heat 

flux distribution, and they were incapable of directly measuring the heat flux leaving 

through the gasket due to its complex geometry. Therefore, Computational Fluid Dynamics 

(CFD) simulations were necessary to complete the heat flux profile between the 
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experimental data points recorded by the sensor (the CFD results were supplied by a 

colleague, Mr. Feng Gao). Accordingly, a two dimensional (2D) simulation was performed 

to provide a shape profile of the heat flux leaving the gasket region which may be used to 

fit the experimental data using a “Least Mean Square Error” approach. The estimated heat 

loss at the gasket region with the original gasket installed on the sample refrigerator was 

0.20 W/m.K. Extensive testing with other gaskets showed that their design and materials 

influenced the heat loss of the refrigerator.  

The second study developed a methodology to identify the leaks, to estimate the air 

infiltration rate, and to calculate the energy loss associated with air leaks in domestic 

refrigerators. The water drain tube was determined to be the primary air leak source due to 

the presence of the evaporator fan inside the freezer compartment. In addition, many other 

leaks with unknown sizes were found through bubble tests about the cabinet. Two identical 

refrigerators were employed to evaluate the impact of the air loads. One refrigerator 

remained with its original conditions and the other unit was completely sealed so that there 

existed a single inlet (water drain tube) and a single outlet (a drilled hole). The intact 

refrigerator was used to measure the normal operating conditions with respect to the 

ambient environment (e.g. pressure and temperature differences) to mimic these conditions 

in the sealed unit. The sealed unit had a hole drilled into the cabinet and the water drain 

tube remained open to the ambient. The size of the drilled hole was adjusted until the same 

pressure difference was achieved on the new unit at the same temperature difference. A 

flow meter measured the air flow through the hole and thermocouples measured the 

ambient and interior temperatures simultaneously. The energy leakage due to the air 

infiltration was calculated using the first law of thermodynamics based on two 
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temperatures and mass flow rates at the inlet and outlet. The actual air infiltration rate was 

measured and the effective heat transfer rate due to the air infiltration rate was calculated 

4.4 Watts. Modeling shows that refrigerators are not under steady state operation. They 

“breathe” drawing air in during cooling and forcing air out during warming between 

compressor cycles. A hypothetical perfectly sealed unit is shown to produce forces upwards 

of 1550 N (350 lbf) on the fresh food door due to this effect alone.  
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1. INTRODUCTION

Over the last decades, domestic refrigerators have been known as one of the 

significant energy consumer devices in home applications. A lot of research has been 

conducted to develop methodologies to study weaknesses in existing designs of domestic 

refrigerators in order to achieve a significant reduction in the power consumption.  There 

are some papers [1, 2, 3] that suggested design modifications to improve the performance 

of refrigerators. However, not many publications are available on the magnetic door gasket 

section; although there is a significantly high percentage of the heat loss attributed to the 

gasket section. Hasanuzzaman [4] studied the power consumption of a refrigerator 

experimentally due to cabinet load variations, such as cabinet water load and water pan 

area, and the changes of environmental conditions like ambient temperature, and 

thermostat setting. He has mentioned that the refrigerator power consumption in the most 

optimized case is 53 percent lower than the worst case conditions. Twenty nine percent of 

the heat loss occurred specifically through the gasket region. Boughton [5] determined the 

heat loss at the edges of the door gasket, called edge loss, to be about 30 percent of the total 

thermal load. EPA’s Air and Energy Engineering Laboratory [6] reported that the heat loss 

due to the gasket region varies between 10 to 30 percent based on the refrigerator model, 

gasket effectiveness and ambient conditions. They also found that gasket infiltration results 

in a significant portion of energy loss in domestic refrigerators.  Hilligweg [7] and Tao and 

Sun [8] designed different test configurations based on the “Reverse Heat Load Method” 

in order to evaluate the total heat loss attributed to the gasket section. They both conclude 

that the heat loss occurred due to the gasket region is around 13 percent of the total thermal 
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load. Bansal [9] studied reducing the energy consumption in five major household 

applications including fresh-food and freezer compartments. He named magnetic door 

gasket as one of the main weaknesses resulting in reducing the energy efficiency in 

refrigerators. He remarks that the magnet material, surface conditions, gasket flexibility 

and gasket compressibility are the primary factors which influence the refrigerator 

performance. Figure 1.1 shows a 2D cross section of designed geometry for CFD 

simulation and a 2D cross section of the real gasket installed on the sample refrigerator.   

 (a) 

    (b) 

Figure 1.1: Magnetic door gasket cross section. (a) 2D geometry of the gasket. (b) Real gasket cross section 
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There are many schemes proposed in order to investigate and evaluate the heat 

transfer of household refrigerators. Some researchers have focused on computational and 

numerical analysis, while others have executed experiments to predict the heat transfer 

characteristics in domestic refrigerators. Sim and Ha [10] analyzed and quantified the heat 

loss of the refrigerator by implementing the “Reverse Heat Load Method”. They employed 

a heater to add energy, a voltage regulator to control the heater input power, thermocouples 

to measure temperatures, and a data acquisition system to record the measured 

temperatures on the computer.  The refrigerator was placed inside a controlled temperature 

and humidity chamber for about 20 hours of heating to keep the environmental conditions 

consistent. The authors highlighted that 20 hours is the required time for achieving a steady 

state condition for this sample refrigerator with the provided conditions. It is also 

mentioned that mounting several thermocouples in different locations within the cabinet is 

necessary in order to obtain an accurate temperature contour from the cabinet which is 

technically required to evaluate the interior temperature at different locations. They 

concluded that the interior temperature difference with respect to ambient temperature has 

a nearly linear relationship with the heat input. Kim [11] studied the heat transfer near the 

magnetic door gasket with the aid of numerical analysis by taking advantage of running 

CFD software, FLUENT. He also took some temperature measurements experimentally to 

evaluate the computational results. Thus, the heat transfer characteristic for a 2-D geometry 

of a gasket region was investigated under 3 different circumstances to figure out which 

condition leads to the actual final temperatures measured experimentally. However, this 

approach has some weaknesses. First of all, it is assumed that the heat transfer coefficient 
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is constant over the gasket region which is not true in real operation conditions. Also, 

they’ve considered the incoming air flow is constant which limits its applicability. 

The Ventilation Measurement Technique (VMT) is widely used to estimate the air 

infiltration in buildings, HVAC systems, open refrigerated displays and household 

refrigerators [12, 13, 14]. The main advantage of applying this method is determination of 

the overall ventilation rate through a simple calculation. The Trace Gas Technique (TGT) 

is named as one of the most reliable and accurate procedures for measuring the air 

infiltration rate [15]. The air infiltration through the gasket in domestic refrigerators was 

investigated by Huelsz [16]. The approach is injecting trace gas into two separate 

refrigerator units: one with the real condition as a baseline experiment and the other with 

the gasket perfectly sealed. The selected trace gas, 𝐶𝑂2, is being injected into the units 

through the water drain tube until a desired 𝐶𝑂2 concentration is reached inside the cabinet. 

Afterwards, the concentrations of 𝐶𝑂2 are recorded from each unit as a function of time 

until the gas concentrations approach to a certain value. However, the researchers did not 

consider the real interior pressure over the operation condition. According to the paper, the 

pressure difference between the ambient and interior was not measured over the experiment 

in spite of the fact that the interior pressure was increasing while 𝐶𝑂2 was being injected 

into the cabinet and it might have affected the results. Also, the ducts between the freezer 

and fresh-food compartments were sealed which influenced the normal air flow paths 

inside the cabinet. The author also attempted to quantify the total thermal loads due to the 

gasket based on quasi-one-dimensional theory in which thermal coefficients were 

evaluated experimentally and numerically. Afonso and Castro [17] also applied the TGT 

to the domestic refrigerator to evaluate air infiltration rate in domestic refrigerators. The 
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paper measured and compared the air leakage through one new and one old gasket installed 

at a time on a sample refrigerator. They found the air turnover is 1.1 times per hour through 

the freezer compartment and 2.1 times per hour through the fresh food compartment while 

a new gasket is installed on the units. These values increase to 12.7 for the fresh-food 

cabinet and 6.7 for the freezer compartment with old gaskets. The total loss reported for 

the new gasket, 3.28 W, is approximately 7% of the compressor power consumption 

averaged over an hour of operation, or approximately 3% of the compressor power 

consumption during operation. 

 

1.1. Reverse Heat Load Method (RHLM) 

 The Reverse Heat Load Method (RHLM) forms the basis for much of the present 

work. It is an experimental setup in which a heat source is placed inside a refrigerator which 

is itself generally put into a controlled temperature - humidity chamber. The heating 

element is directly wired to a variable power supplier (VARIAC) to adjust the inner air 

temperature by adding heat within the unit. The interior temperature distribution is not 

entirely uniform, so the unit is instrumented with a number of thermocouples mounted on 

different locations in order to obtain an accurate temperature profile from the interior. Also, 

the ambient temperature is being monitored by an additional thermocouple placed outside 

the unit. There is always heat flux travelling through the walls of the unit due to the 

presence of temperature difference between the interior and ambient.  Heat flux sensors are 

capable of being installed on any desired flat (and some curved) surfaces of the unit for 

taking heat flux measurements. This experimental setup gives enough control to generate 
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a desired temperature difference between the inner air and ambient temperatures by 

adjusting the variable power supplier connected to the heater. However, attention should 

be paid to reach a steady state condition before getting any temperature or heat flux 

measurement. Suitable time for reaching steady state condition depends on the design 

conditions. Some researchers [8, 10] state that 20 hours is sufficient to achieve steady state 

conditions. In this study, we plot the running time average for the temperature and heat 

flux to identify the steady state conditions: 

𝐹(𝑡) =
1

𝑡
∫ 𝑃(𝑡)𝑑𝑡

𝑡

0
                                                 (1.1)                                     

Note that the reverse heat load method does not have the capability of investigating the 

compressor or evaporator operation performance. This method is a simplified model which 

is widely used to study the heat transfer characteristic of a refrigerator cabinet. It has been 

used to obtain the heat transfer coefficient for the walls, doors, gasket or the divider 

between the freezer and fresh-food compartments [5, 10, 18]. 

1.2. The Objectives of Present Study 

Evaluation of the “gasket heat leakage” and the “refrigerator air infiltration” are the 

primary purposes of conducting the presented research. We are seeking to develop a 

feasible and reliable methodology to evaluate the gasket heat leakage, estimate the air 

infiltration rate and its associated heat loss for a sample domestic refrigerator.  

Based on definition, the gasket heat leakage is evaluated in the unit of energy leakage per 

unit time, per unit length, per unit temperature difference across the gasket (e.g. W/m.K). 

The pattern of the gasket and the presence of the “hot loop” over the circumference of the 
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freezer cabinet are predicted to be the significant parameters increasing the heat transfer at 

the gasket region. The presented methodology shows how to evaluate the gasket heat 

leakage with a combination of experimental and CFD results. Performing the experiment 

has some limitations due to the heat flux sensor applicability; therefore, a computational 

modeling was developed to calculate the total gasket heat leakages. A 2D cross section of 

the gasket region was designed and imported to “ANSYS FLUENT” to study the heat 

transfer across the gasket region computationally.  The CFD provides a “shape profile” of 

the heat flux passing through the gasket region, but not the exact quantitative value of the 

flux. Thus, the calculated shape profile is used to be best fit the experimental data via the 

“Least Mean Square Error” method in order to provide a continues heat flux profiles over 

the gasket region. The profile is then numerically integrated to obtain the gasket heat 

leakage. This approach gives enough data to compare the gaskets and identify the most 

effective one.  

In addition, a pure experimental methodology was developed to identify the air 

leakage, measure air exchange rate and its corresponding energy heat loss in the sample 

commercial refrigerator. Two separate refrigerators are used to get the air leakage 

measurements. These units are the same, but with different operating conditions. The first 

unit is a real unit which has a single obvious leakage path to the freezer, the water drain 

tube. However, as shown later, there are many additional leakages of unknown size and 

relative importance. The experiment with the real unit is used solely to measure normal 

operating conditions needed to mimic the conditions on the second unit. The second unit 

is an identical unit, but completely sealed with the drain tube open and a hole drilled in the 

wall of the fresh food compartment. The hole size is adjusted until the real pressure 
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differences between both freezer and fresh food compartments and ambient are achieved. 

This essentially recreates the operating conditions of the unsealed unit by providing an 

equivalent leakage area. Now the single inflow mass flow rate with a flow meter and the 

single mass flow rate out can be measured with both temperatures needed for finding the 

enthalpies. Having these data, the air infiltration rate and its corresponding energy loss can 

be calculated.  

All experimental work reported was done by the author. All CFD results were done 

by his colleague, Mr. Feng Gao, and have been reported in a previous M.S. thesis [22]. 
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2. GASKET HEAT LEAKAGE 
 

Geometry complexity and heat leakage of the real refrigerator cabinet are the major 

reasons that made us come up with an idea to design and build a simplified cabinet concept, 

named the “Blue Box,” for measuring the heat leakage through the gasket region 

(Figure 2.1 (b)). The main idea behind this approach is based on the energy conservation 

law. The blue box (Figure 2.1 (a)) contains a cubic interior volume of approximately 60 

cm x 60 cm x 60 cm within which a heat load can be placed along with thermocouples to 

measure the enclosed air temperature. Adjoining refrigerator door and wall cut outs can 

then be placed inside the box so that the only portion exposed to the ambient environment 

is the gasket region, while thoroughly insulating all remaining sections with greater than 

30 cm of insulation. The Blue Box operates by placing a heat source within the inner box, 

then bringing the entire mass to a thermal steady state. Both the (time averaged) interior 

and exterior temperatures are measured with thermocouples. Heat flux sensors are mounted 

on the outside of the exposed gasket region as shown in Figure 2.1 (b). Detailed CFD 

simulations are then conducted to match the experimental conditions but using a 2D slice 

of the Blue Box with matching exposed gasket section. Being 2D the CFD is not meant to 

predict the actual heat transfer and temperatures found in the experiment. The CFD only 

provides a “shape profile” of the heat flux leaving the gasket region along the coordinate, 

s, defined in Figure 2.2, in which the experimental heat flux sensors are placed. This shape 

profile can then be matched by a Least Mean Square Error (LMSE) analysis to the 

experimental data that essentially fills in the missing information between the six heat flux 

sensors. The resulting profile can then be numerically integrated along the 31 cm surface 

line and then divided by the experimentally measured temperature difference to provide 
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the heat leakages. Note that the door sections are removable and any set of doors can be 

cut and placed within the Blue Box for measurements. In addition, all CFD reported herein 

is completely predictive and produced using “best practices” described below. No model 

constants, grid refinement, or anything was changed to better fit any experimental data.  

 (a) 

  (b) 

Figure 2.1: (a) Blue box, (b) picture of the six heat flux sensors positioned on the exposed portion of the 

gasket region 
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Figure 2.2: Temperature contours from CFD of a 2D cross section of the Blue Box 

 

2.1. Gasket Region 

The “gasket region” is defined as a 16 cm deep edge of the door section with a 15 

cm section of the adjoining wall. The actual gasket itself occupies a 1.9 cm gap within the 

overall 31 cm long gasket region. However, the methodology developed herein allows the 

gasket region dimensions to be specified as any smaller portion of the exposed region that 

a user wishes to choose. The methodology developed allows for the determination of the 

gasket region heat leakage per unit time, per unit length and per unit temperature difference 

between the interior and exterior. Figure 2.3 shows the cross sections of the three gaskets 

which were investigated on this research.  
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Figure 2.3: Cross sections of the investigated gaskets 

 

 

2.2. Test Facilities 

Heat flux sensors and thermocouples with their associated amplifiers were used to 

measure temperature and heat flux values accurately. Also, some software filters are 

employed to reduce the noise of the signals to increase the measurement accuracy. A heater 

and a VARIAV were used to simply add the needed heat inside the box. The specification 

of the equipment used for running the test is discussed in this section.  

2.2.1. Heat Flux Sensors 

Heat flux, by definition, is a rate of energy transferred per unit time across a unit 

area. The unit of heat flux is watts per square meter (
𝑊

𝑚2) in the SI system.  

 

𝑞′′ =  
𝑞

𝐴
=  −𝑘

𝜕𝑇

𝜕𝑥
                                       (2.1) 
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A heat flux sensor is a transducer that converts the transferred heating energy to an 

electric signal which is proportional to the sensor thermal conductivity and the temperature 

difference existing across the sensor. A thermopile is a major component of a heat flux 

sensor. It measures the temperature using series connections of numerous thermocouples 

which gives the heat flux sensor the capability of getting the surface temperature difference 

across the HFS (Heat Flux Sensor). Figure 2.4 shows how heat flux sensor looks like.  

Getting accurate heat flux measurements by heat flux sensors requires careful 

experimental design as well as implementation of calibration systems. Heat flux calibration 

is a procedure leading to mimic the measurement environment as close as possible with 

high repeatability. Diller [20] states that the presence of heat flux sensor may alter the 

temperature field causing error in results which can be reclined with an accurate 

calibration.  Presence of air between the sensor and the attached surface can also cause 

some error in the measurement. 

A variety of types of heat flux sensors are available based on application limitations. 

According to our application, a high sensitive heat flux sensor with capability of 

installation on curved and flat surfaces is required which makes it possible to measure low 

heat flux values and generate measurable output voltage. After a careful investigation on 

calibrated heat flux sensors, HFS-4-Omega is chosen in order to measure heat flux for our 

application. Low thermal impedance, high sensitivity, fast response, wide temperature 

operation and flexible surface are the highlighted features for the specified heat flux sensor. 

It is a self-generating device requiring no external voltage or current stimulation so that the 

sensor does not generate any additional heat itself. However, being self-generating causes 

the sensor output voltage to be very small which makes the calibration procedure 
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complicated. The sensor sensitivity is 6.5
µ V
𝐵𝑡𝑢

𝐹𝑡2−𝐻𝑟

; therefore, heat flux variations are not 

detectable by a DAQ system with 16 bits resolution. However, any commercial amplifier 

with microvolt resolution can boost the sensor signals to a higher level which is readable 

by the DAQ system. Note that the output of the selected amplifier is specified based on the 

resolution of the data acquisition system. 

 

 

 

 

 

 

 

 

 

 

To mount a heat flux sensor, the following should be considered: 

 An appropriate adhesive tape should be used for sticking the sensor on 

the         surface. The temp-rating for the adhesive tape should be higher 

than 200℉.  

 The heat flux sensor should be securely mounted on the surface with no 

air bubbles or gaps. Presence of air between the sensor and surface leads to 

an error in measurements. 

  Figure 2.4 Heat Flux Sensor 
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 The heat flux sensor should be mounted in the right direction. Positive 

(+) values for heat flux must refer to the heat that is going into the surface 

that the sensor is mounted on; likewise, negative (–) for heat flowing out of 

the surface. 

 

2.2.2. Amplifier (Nano-Voltmeter) 

Heat flux sensors are extremely sensitive devices requiring a suitable amplifier to 

measure their low output signals, as low as 10−3 𝜇𝑉, and amplify them to an appropriate 

level which is proper for the DAQ system input. All these heat flux sensors should be 

directly wired to the nano-voltmeter (or a sufficient amplifier) so that their generated output 

voltage can be measured. The nano-voltmeter is required because the output from the heat 

flux sensors is at the micro-volt level. The nano-voltmeter has an internal signal conditioner 

which has a primary use of converting a signal that is difficult to be read by the data 

acquisition into a more easily read format.  

According to the requirements, Agilent 34420-A is the preferred amplifier for our 

application. Agilent 34420-A is basically a nano volt meter with low noise and high-gain 

technology of measurement. It can measure a large voltage interval between 10nV to 1000 

V based on the application. The resolution of this nano voltmeter is 10−8 V which works 

best for getting voltage measurement from the heat flux sensors with 𝜇𝑉 range output. It 

benefits from analog output letting the nano voltmeter communicate with the DAQ system 

to transfer the displayed readings to the computer. The nano-voltmeter has two input 

channels and one analog output; therefore, at each stage of the experiment, two heat flux 

sensors can be connected to the nano-voltmeter, but just one of their responses is reported 
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to the data acquisition system at a time. Accordingly, after recording the response of one 

of heat flux sensors, it is necessary to switch the heat flux sensor manually and measure 

another response. There were two nano-voltmeters on hand for the experiments; therefore, 

two measurements at a time were taken.  

A suitable gain for the nano-voltmeter is defined regarding the input and the desired 

output. The output voltage is related to the input signal as follows:  

 

𝑅𝑒𝑎𝑑𝑖𝑛𝑔

𝑆𝑝𝑎𝑛
= 𝐶ℎ𝑎𝑟𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒                                         (2.2) 

 

2.2.3. Thermocouple  

A thermocouple is widely used for taking temperature measurements. It is operating 

by converting a temperature gradient into electric signals. Thermocouples are available in 

a variety of “types” such as K, T, N, J, etc. A proper thermocouple type is selected by 

considering the working temperature interval and the atmosphere conditions. T type 

working temperature interval is ranged from −250℃ to +400℃ which meets our 

application requirements. This type of thermocouple is self-powered, so it requires no 

external power to generate electrical signals. Two different kinds of T type thermocouples 

are measuring the temperature variation in our application. The first model is an insulated 

thermocouple measuring the interior and exterior air temperature for the experiments. It is 

also used to determine and specify the thermal boundary layer to substitute the values into 

CFD simulations. The thermal boundary layer has a great impact on CFD calculation since 

significant temperature variations occur in this specific layer. The second model is an 
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adhesive T type thermocouple which is suitable for any flat surface temperature 

measurement. It is simply fixed on any flat surface in order to measure its temperature.  

Wide range operation, fast response, high precision and signal stability are the 

advantages of employing thermocouples for measuring the temperature [21]. They are also 

rugged transducers which are insensitive to vibration and capable of being used in 

hazardous environment. However, note that, achieving system errors of less than one 

degree Celsius (°C) is the limitation of using thermocouple for getting temperature 

measurements. The thermocouple output signal is in the range of microvolts so that a few 

microvolts of noise pick up can result in significant errors in temperature measurements. 

Therefore, there are some hardware and software features recommended to restrict any 

possible noises.  

 

2.2.4. Thermocouple Amplifier  

Amplifying signals is a process of manipulating the input signals in such a way that 

makes the input signals suitable to be read in the next stage for further processing. The 

thermocouple output signal is less than 75 millivolts and most of the data acquisition 

systems are not sensitive enough to be driven directly by that small signals. Therefore, an 

amplifier is connected to the thermocouple to boost the signals.  It is recommended to try 

using lower gain settings first and use no greater gain settings than is required.  
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2.2.5. Anti-Alias Pre-Filter 

Anti-alias pre-filter is a function to reduce the high-frequency noise compartment 

in the analog signal coming from the sensor. It is placed between the A/D (analog to digital) 

convertor and the sensor to prevent aliasing. It is worth it to mention that aliasing occurs 

when the sample rate is not at least two times higher than sample frequency.  

 

2.2.6.   Low Pass Filter  

A low pass filter, by definition, is a filter that can pass signals with frequencies 

lower than the specified cutoff frequency and attenuate signals with frequencies higher 

than the defined cutoff frequency.  

 

2.2.7.     Poor Junction Connection 

The thermocouple wires eventually break after lots of usage so it is recommended 

to connect the bare wires to a connector to protect wires from being damaged. Connectors 

are in different types, it is necessary to use a connector with the same type of the connected 

thermocouple.  

 

2.2.8.   Calibration 

Calibration is one of the most complex procedures of setting up the experiments. 

The thermocouple temperature-voltage relationship is nonlinear. Note that any 

decalibration can result in a temperature reading which appears to be correct. Accordingly, 

enough attention should be paid to apply the calibration curve to the output signals. 
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2.2.9.   Sample Compression  

Sample compression is a function that acquires a large number of data points and 

takes their average which results in reducing them to a single data point in the resultant 

signal.  The amount of the acquired data is specified by reduction specification.  

 

2.2.10. Data Acquisition System 

  A Data Acquisition System (DAQ) is utilized to process the electrical signals 

which are being fed via connected sensor or transducers like pressure transducer, heat flux 

sensor, thermocouple, etc. The processed electrical signals are proportional to the quantity 

of the physical phenomena being measured. The DAQ system is able to print out the 

measured signals via a USB cable to a desktop computer. The data can be primarily 

monitored on the computer by a software package like LabVIEW or any equivalent 

software package. Then, raw data are converted to physical units and stored on the 

computer. Number of I/O Channels, maximum sample rate, portability, software 

Compatibility, operating System, bus and resolution are the factors which should be 

considered in selecting a proper data acquisition system for any applications.  

 

2.2.11.   Current Sensor 

Current sensors can detect and measure AC or DC electrical current and generate 

an output voltage proportional to the measured current. This kind of sensors is provided 

with wide varieties of input and output ranges. Input current interval and output signal 

range are the factors that should be considered to select an appropriate current sensor for 

any application.   
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2.3. Experimental Setup 

This research is mainly focused on the experimental portion of the study. The 

author has provided some assistance with the CFD simulations [22]; however, his 

contribution and the content of this thesis are predominantly on the experimental portion. 

Figure 2.5 shows the flow chart diagram of the sequence of experimental procedure for 

measuring, recording and displaying the temperature and heat flux values from the blue 

box.  

 

 

Figure 2.5: Flowchart for hardware connections 

Thermocouple

TC-Amplifier

DAQ System

Computer

NI-Labview

Data Display 
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The Reverse Heat Load experiment is mainly falling into two separate parts; one is 

generating a temperature difference and the other measuring the heat leaking through the 

gasket region. Heater, power supplier, voltmeter, and ammeter are the required equipment 

to warm the interior and quantify the input power. On the other hand, heat flux sensors, 

thermocouples, TC amplifier, nano-voltmeter (or capable amplifier), data acquisition 

system, desktop computer, and a software package (LABVIEW or equivalent) are required 

in order to measure heat leakage and temperature differences as well as process and store 

the data.  

A heater is placed inside the box to produce a desired temperature difference 

(Figure 2.6). The heater is directly wired to a power supplier placed out of the box. The 

power supplier has an indicator which shows how many volts it is supplying to the heater. 

If the indicator is not very accurate, a voltmeter can be connected to the power supplier in 

a parallel circuit for measuring the output voltage of the supplier. An ammeter must be 

connected to the power supplier in a series circuit to measure the electric current. The 

power applied to the heater is simply calculated from voltage value times current 

value, 𝑃 = 𝑉 × 𝐼.  

The rate of energy leakage from the gasket region must be measured. This is the 

most sensitive part of the experiment since any small changes in each of the factors has a 

significant effect on the final results. The heat flux sensors are very sensitive and must be 

carefully, and well, adhered to the surface. To equip the box with the measurement 

equipment, first start with the thermocouples. We mounted at three thermocouples to 

measure the air temperature in the lower, middle, and upper elevations within the box. 

Another thermocouple is required to be placed out of the box to measure the ambient 
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temperature. All these sensors should be directly wired to their associated TC amplifiers. 

The TC amplifier has different gains to set on; however, note that it is recommended to try 

using lower gain settings first and to use no greater gain settings than required to minimize 

signal noise. As far as we have investigated, 25 is the best value for the gain to be set on 

the amplifier based on range of the temperature measurement in our application. Finally, 

all the TC amplifiers and nano-voltmeter should be wired to the data acquisition system. 

The function of data acquisition system is to process all these signals and transfer them to 

a computer to be recorded and analyzed. The computer needs a software package such as 

LabVIEW to convert these signals to desired temperature or heat flux units. Calibration 

curves are provided by the manufacturer for all sensors. All wiring was run through two 

holes drilled through the side of the box (one for the power cable and another for the sensor 

wiring). Insulating silicone was then applied to fill the holes. 

For the present experiments, six heat flux sensors are required to be placed on the 

exposed gasket region (Figure 2.1(b)). The corresponding locations of the six heat flux 

sensors used in the experiment are at s locations: 0.03m, 0.09m, 0.14m, 0.192m, 0.258m, 

and 0.303 meters (Figure 2.1(b)).  These heat flux sensors are very sensitive to air motions 

in the room. The data they generate oscillates widely when disturbances to the room occur; 

including the AC turning on, doors opening, even people walking nearby. Therefore, a 

protective plastic sheet was taped over the sensor section for all data collection (Figure 2.7) 

This, and sufficient time averaging of data, proved sufficient for the purposes of this study. 

Note though that when measuring the “ambient” temperature needed for the temperature 

difference across the gasket region, the outside thermocouple(s) is placed within the 

covering.  
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Figure 2.6: A view inside of the instrumented Blue Box (for experiments the heating element is centered 

within the box) 

 

 

Figure 2.7: protective covering to minimize heat flux sensor noise due to air motion. This was later cut to 

fit better and taped along the edges with duct tape 
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Once sealed, the Blue Box still has several locations that require additional 

insulation in the form of added silicone on top of duct tape (so it can be removed easily). 

A thermal imaging camera proved useful in locating gaps needing additional insulation 

(Figure 2.8).  

(a) 

(b) 

Figure 2.8: Thermal camera images of the Blue Box: (a) from approximately 3 m away with one of the 

students in the picture for perspective, and (b) a close up of the gasket region 
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It is also crucial to use a fiberglass adhesive tape with sufficient temperature rating 

to mount the sensors inside the box so that the sensors will be tightly stuck to the wall 

during the experiments. To mount the heat flux sensor, it is very important to visually 

inspect each sensor to ensure it is securely mounted to the surface with no air bubbles or 

gaps. Any such defect was found to result in large amounts of noise in the signal and 

erroneous heat flux values. Therefore, the sensors should be mounted as tightly as possible 

to the wall and adhesive tape should cover all exposed edges. Note that the heat flux sensors 

come with their own adhesive coating. We chose not to use it though as the sensor can only 

be moved once or twice this way.  

To start reading the data points from the sensors, the box should first reach a steady 

state condition after the heating element is turned on, the box is sealed, and all additional 

silicone and tape insulation is added. From a “cold” start, it is found that it takes 

approximately three days to reach the steady state condition. When simply opening the box 

to make changes relatively quickly the box remains “hot” and typically one day is sufficient 

to get back to steady state. Some steps should be taken to confirm that the box has reached 

the steady state condition. First of all, start recording the primary data points and keep 

waiting till the inner air temperature does not change significantly (see Figure 2.9). 
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Figure 2.9: The inner air temperature vs. time from Experiment #3 at steady state 

 

Next, the running averaged temperature is calculated as a function of time to 

determine how long averaging must be done to achieve converged experimental values 

(Figure 2.10). The same procedure is done for the heat flux sensors. To quantify the 

deviation from the average values, the next step is calculating the standard deviation from 

all data points after determining the average. Figure 2.10 illustrates a running calculation 

of the standard deviation of a temperature signal. The standard deviation, or root mean 

square (rms), provides a measure of how much the signal oscillates about its mean. 

Approximately four hours is needed to fully collect converged statistics. 
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Figure 2.10: The running standard deviation of the temperature signal associated with Figure 2.9 

 

The heat flux sensor signals are treated in a similar manner. Both running average 

and standard deviations of heat flux data are calculated for all. Figure 2.11, Figure 2.12, 

Figure 2.13 illustrate a typical (steady state) heat flux sensor instantaneous reading, running 

average, and running standard deviation, respectively. 

 

Figure 2.11: Example instantaneous heat flux sensor reading as a function of time 
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Figure 2.12: Example running average heat flux sensor reading as a function of time 

 

 

Figure 2.13: Example running standard deviation heat flux sensor reading as a function of time 

 

All sensors were sampled at a rate of 0.5 Hz. This provides a very sufficient time 

resolution of all signals while maintaining reasonable data file sizes for post processing of 

the averages and standard deviations. Final averages and standard deviations from all six 

heat flux sensors from all five experiments are provided in Appendix A.  
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2.4.  Experimental Results  

Temperature and heat flux measurements for three different gasket models with 

three different input loads are presented. The repeatability of the heat flux measurements 

were also investigated and reported in this section.   

2.4.1.  Temperature Measurements 

The test was run for three different gasket models with three input heat loads.  The 

first set of experiments were conducted with a single gasket but different heat loads in order 

to find out the temperature differences created across the gasket associated with the 

specified input powers. Therefore, 9.2, 13.14 and 18.13 watts were set on the heater, 

resectively, and their associated temperature differences were recorded. Table 2.1 presents 

the final teperature difference created across the first gasket, named “original”,  after 

reaching the steady state conditions with repect to the input heat load powers.  

 

Table 2.1: Recorded temperature difference for three different heat loads with a single gasket 

Exp. Gasket  Heat Load ΔT 

1  

1, original  

9.2 W 20.2 K 

2 13.14 W 26.6 K 

3 18.13 W 34.6 K 

 

Afterward, two more gasket were installed on Blue box while a single heat load, 

13.14 watts, was adjusted on the heating element. The temperature difference appeared on 

the final temperatures existing across the gasket can simply illustrates which gasket is the 
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more effective compared to the other investigated gaskets. Table 2.2  shows the final 

temperature differences created across different gaskets.  

 

Table 2.2: Recorded temperature difference for three different gaskets with a single heat load 

Exp. Gasket Heat Load ΔT 

2 1, Original  13.14 W 26.6 K 

4 2, Black Side-by-Side 13.14 W 25.2 K 

5 3, White 13.14 W 25.6 K 

 

2.4.2.  Heat Flux Measurement 

Based on the aforementioned, six heat flux sensors are placed on the exterior 

surface of the exposed gasket region (Figure 2.1(b)). Table 2.3 shows an example of the 

heat flux reading values from mounted heat flux sensors at their certain locations. To 

review all the recorded data for the conducted experiments, please refer to Appendix A.   

 

Table 2.3: Example of measured heat flux running through the exposed gasket region for the expriment#1, 

Original gasket, ∆𝑇 = 20.2℃ , ∆𝑇𝑟𝑚𝑠= 0.148℃ 

 

 

 Sensor Mean  𝑯𝒆𝒂𝒕 𝑭𝒍𝒖𝒙 
(𝑾

𝒎𝟐⁄ ) 
RMS  𝑯𝒆𝒂𝒕 𝑭𝒍𝒖𝒙 

(𝑾
𝒎𝟐⁄ ) 

HFS 1 17.3 1.94 

HFS 2 12.2 1.55 

HFS 3 4.76 1.06 

HFS 4 8.57 0.71 

HFS 5 19.7 1.31 

HFS 6 20.5 0.6 
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2.4.3.  Repeatability 

Repeatability of the experiments was also thoroughly investigated. Several of the 

experiments were repeated with more than a week between runs. Figure 2.14 provides an 

example of two such data sets that were obtained for the conditions of the experiment with 

the white gasket (Experiment #5). Data are shown from two different runs of the same 

experiment performed, demonstrating the reproducibility of the results. The “error” bars 

are the standard deviation of the data used to calculate the average heat fluxes 

 

Figure 2.14: Measured surface heat flux distribution as a function of the surface path s for Experiment #5 
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2.5.  CFD Simulation 

CFD simulation is performed based on the exact dimension of the Blue Box but in 

a 2D cross section; 3D simulations being extremely computationally taxing and not 

necessary for present purposes. For learning more about the performed CFD simulation 

procedure, please refer to Mr. Feng Gao master’s thesis “Numerical simulation of the heat 

leakage at the gasket region of domestic refrigerator” [22]. As discussed above, the purpose 

of the CFD for this investigation is only to produce heat flux surface “shape factors.” Being 

2D, the CFD is not expected to produce the actual experimentally measured surface heat 

fluxes or temperature differences. However, the “shape” of the gasket surface heat flux 

profile should be extremely similar to that of the experiments conducted along the center 

plane of the Blue Box. The assumption is that the shape factors produced by the CFD can 

then be scaled to “best fit” the experimental data to provide the entire surface heat flux 

distribution. For present purposes, “best fit” is defined as the scaling of the CFD produced 

surface profiles that minimizes the square error of the CFD profile with the six 

experimental heat flux sensor measurements for each configuration of the experiment. This 

is the “Least Mean Square Error,” or LMSE, approach to error minimization. The 

FORTRAN code used to evaluate the LMSE for Experiment #1 is provided in Appendix 

B. This assumption that the CFD produced profiles will match the shape of the real 3D 

surface heat flux distribution is confirmed in the following. Note that several CFD 

simulations were implemented based on the applied heating powers and gasket geometries 

used for conducting the experiments.  
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As shown in Figure 2.15, the simulations are based on the 2D geometry of the blue 

box (cross-section). The orange rectangle in the following picture represents the heating 

element. The power of this heater is specified based on the experimental specifications.  

Figure 2.16 shows a zoom in of the gasket region for original gasket. Note that a 5 mm 

thick portion of the ambient air along the gasket region is included in the domain. The first 

step in conducting a CFD simulation in Fluent (or any CFD package) is specifying the 

geometry. This can be either internally in the ANSYS package through their Design 

Modeler software, or externally through a variety of packages such as CATIA or 

SolidWorks, then imported back into ANSYS. 

 

Figure 2.15: The 2D geometry of the blue box used in CFD simulation. The gravity vector points to the left 

of the figure 
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Figure 2.16: Zoom in of the (a) gasket region of the domain and specification of the boundary condition 

implemented in the CFD simulations 

 

The exact geometry of the all the investigated gaskets were perfectly designed and 

imported to ANSYS fluent to provide a specific heat flux shape profile for each gasket.  
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2.6. Combined Experimental and Computational Methodology: 

Final Product 

Figure 2.17 shows all of the “raw” data obtained from the experiments and the CFD 

of the Blue Box. There is a final step in the process for the data of Figure 2.17. 

 

Figure 2.17: Experimental and CFD obtained surface heat fluxes as a function of the surface path 

coordinate: the original “raw” data 
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Figure 2.18: the same data non-dimensionalized by the surface length and the heat load in Watts. The 

“error” bars are the standard deviation of the data used to calculate the average heat fluxes 

 

Figure 2.19: Comparison of the surface heat flux profiles for each of the three gaskets with a 13.14 W heat 

load (Experiments 2, 4, and 5) 
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As stated above, the CFD is 2D and is not expected to produce the same temperature 

differences as the 3D Blue Box (in the CFD the heating element is infinitely long in the 

third direction). Nevertheless, the “shape” of the surface heat flux is expected to be the 

same in the 2D CFD in comparison to the centerline (symmetry plane) of the Blue Box 

surface. Therefore, the CFD is only used to produce the shape factors necessary to fill in 

the information between the six experimental heat flux sensors. What needs to be 

determined is the multiplication factor needed to correct the CFD produced shape factors 

to “best fit” the experimental data. Note that for a given gasket any of the CFD profiles 

produced at the various heat loads can be used as the profiles are independent of 

temperature difference when normalized (Figure 2.18). The “best fit” is defined for present 

purposes as that scaling factor which minimizes the mean square error – the so called Least 

Mean Square Error (LMSE) approach.  

This process occurs as follows. First, a CFD shape profile is chosen for the 

particular gasket (eg. 9.2 W for Experiment #1). Next, the six CFD calculated values of the 

surface heat flux corresponding to the locations of the six heat flux sensors used in the 

experiment are extracted; ie. at s= 0.03 m, 0.09 m, 0.14 m, 0.192 m, 0.258 m, and 0.303 m 

(Figure 2.1(b), Figure 2.2).  We then want to find the scaling parameter, α, that, when 

multiplying the six CFD values, minimizes the mean square error with the six experimental 

data points. The mean square error is defined as: 

𝑀𝑆𝐸 =
1

𝑁
∑ (Expi –  α CFDi)26

𝑖=1               (2.3) 
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In practice this is done using a short code written in FORTRAN that cycles through 

values of α in small increments over a reasonable range and then reports the value that 

produced the minimum error. An example code is provided in Appendix B.  

Once obtained the entire CFD curve for that experiment is multiplied by the 

correction factor α and the experimental data and corrected CFD profile can be plotted 

and/or analyzed (e.g. Figure 2.20, Figure 2.21). 

(a) 
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 (b)

(c) 

Figure 2.20: Best fit (Least Mean Square Error) surface heat flux profiles for Experiments (a) #1, (b) #2, 

and (c) #3 – varying heat loads all with the originally supplied gasket. The “error” bars are the standard 

deviation of the data used to calculate the average heat fluxes. Part (c) also labels the locations A-F 

corresponding to those of Figure 2.1 (b). 
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(a)

(b) 

Figure 2.21: Best fit (Least Mean Square Error) surface heat flux profiles for Experiments (a) #4 (black 

side-by-side gasket), (b) #5 (white gasket), at fixed heat load. The “error” bars are the standard deviation of 

the data used to calculate the average heat fluxes. 
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The final CFD profile is then numerically integrated over the entire domain length 

for the path “s” of Figure 2.2. This yields the heat leakage rate in Watts per unit length of 

the gasket region, W/m. We use a commercial plotting package, Tecplot, to produce most 

of the plots in this report. It has a numerical integration tool built in that was used to obtain 

the W/m values reported herein. However, a similar FORTRAN (or other language) code 

could easily be written to perform the numerical integration. Note too that any domain 

length can be chosen if one wants to define the “gasket region” as something smaller than 

the 31 cm wide section used for this report.  

 

W/m = ∫(W/m2)(s)ds.                    (2.4) 

 

For the present report all integration is from s=0 to s=31 cm. This is the region 

defined as the “gasket region”. The procedure therefore allows great flexibility in defining 

the gasket region dimensions. Once the heat leakage is obtained in W/m this value can 

simply be divided by the experimentally measured temperature difference.  

The methodology developed allows for the determination of the gasket region heat leakage 

per unit length and per unit temperature difference between the interior and exterior. The 

final results for five experiments with three different gaskets are summarized in Table 2.4. 

Gasket 1 appears to be the most effective of the three gaskets tested. It produces the 

smallest heat leakage and the largest temperature difference. 
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Table 2.4: Time averaged temperature differences and heat leakages for the gasket region from the Blue 

Box experiments 

 

 

 

 

 

 

The approach described above rests on the assumption that there is a linear variation 

of the heat flux per unit length of the gasket region with the temperature difference. The 

desired heat leakage factor in units of W/m.K is after all the slope of the W/m along the 

surface as a function of the temperature difference. Its use therefore implicitly assumes 

linearity. This assumption was confirmed to hold for both the experimental data and for 

the CFD results; at least within the degree of uncertainty of the approach (note that 

Experiments 1-3 in Table 2.1 appear to have a slight increase of heat leakage with 

temperature difference but the differences are only 0.01 W/m.K). One means of doing this 

is to take all of the “raw” data and then non-dimensionalize it. Figure 2.18 presents all of 

the raw data plus the same data normalized by the gasket surface length (0.31 m) and the 

specific heat load for each case. The “collapse” of the data in Figure 2.19 of the figure 

confirms the linear scaling (as did other tests).  

 

 

 

Exp. Heat Load 

(W) 

Gasket ΔT 

(K) 

Heat 

Leakage 

(W/m.K) 

1 9.2   

1, Original 

 

20.2 0.19 

2 13.14  26.6 0.20 

3 18.13  34.6 0.21 

4 13.14  2, Black Side-by-

Side 

25.2 0.23 

5 13.14  3, White 25.6 0.22 
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2.7. Future Improvement  

Our first conceptual design was to build the Blue Box to better isolate a length of 

the gasket region than can be done in an actual refrigerator. We provided a literature review 

in which others have measured the gasket heat leakage in actual refrigerators using the 

reverse heat load method (placing a heating element inside the unit). They then place heat 

flux sensors on all inner surfaces, multiply each by its area, add up all the values and 

subtract from the input load. The original concept was that the heat flux distribution in a 

unit is far too complex to do this accurately. We first proposed to use the Blue Box to do 

the same. With a much simpler geometry the results should be more accurate. 

Unfortunately, it turned out to not be that simple. We placed heat flux sensors along all of 

the inner walls at 16 locations. By playing with the surface area attached to each heat flux 

measurement we could get any answer. So, to get accurate results we had to move the heat 

flux sensors to the outer surface and couple the methodology with CFD as described above.  

For the future improvement we suggested that the box benefits from having a longer 

section of the exposed gasket. It should have the ability to be turned such that the gasket 

region is aligned vertically since convection in the vertical direction might have a 

significant effect on heat transfer. The Blue Box may also benefit from having a much 

longer portion of both door and wall pieces exposed to the ambient rather than just the 31 

cm section used for the prototype. Whereas the first concept benefited from having as much 

insulation as possible this is not as important under the current methodology. Having larger 

sections of the door and wall exposed could create a more natural flow of heat through the 

gasket region as well as allow the measurement of both the gasket and the wall/door away 

from it. Any design changes though should retain a symmetric flow/heat transfer profile 
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such that only 2D CFD is needed for the shape factors. In addition, the current Blue Box 

has an interior made entirely of wood. Therefore, great care must be taken to not heat the 

box to dangerous temperatures. This is particularly true since the box is left unattended for 

days at a time. Searching the literature suggests that the internal temperature can be quite 

high, but some evidence exists for smoldering as low as 80 0C (albeit for much longer 

times). Another safety precaution would be to simply line the interior of the box with a fire 

retardant material. 

 

2.8. Summary 

A comprehensive methodology for experimentally determining heat leakages 

through gasket regions of refrigerators has been developed. The process involves using the 

“Blue Box” to isolate the heat transfer through only the portion of the gasket region that is 

of interest. Heat flux sensors are then placed along the outer perimeter of the gasket region 

and thermocouples are used to measure temperatures inside and outside of the box. The 

box has a heating element inside which heats the box to steady state using the “reverse heat 

load” method. The six heat flux sensors do not have the resolution necessary to fully resolve 

the surface heat flux distribution. Therefore, two dimensional (2D) computational fluid 

dynamics (CFD) is used to provide “shape factors” of the surface heat flux that are then 

best fit to the experimental data. Once integrated and divided by the temperature difference 

these profiles provide the heat leakage per unit gasket length, per unit temperature 

difference. The methodology has been used to test three gaskets and shown to be 

sufficiently accurate to determine differences in different gasket behaviors (Table 2.4). 

Note that the door sections are removable and any set of doors can be cut and placed within 
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the Blue Box for measurements. Finally, additional CFD were conducted which show that 

the addition of a freezer fan increases the experimentally determined heat leakage values 

by approximately 20%. The further addition of a hot pipe increases these values by a further 

10%. 
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3. EXPERIMENTAL INVESTIGATION ON AIR LEAKAGE FOR 

DOMESTIC REFRIGERATORS 
 

This research was conducted with the objective of developing an experimental 

methodology to identify and measure air exchange flow rates and corresponding heat 

leakages in commercial refrigerators due to air leakages. The idea for this project started 

with a journal paper written by Alfonso, Castro [17]. The paper measured air leakage rates 

and energy losses through both new and old gaskets on the same refrigerator. Only their 

results for new gaskets are pertinent to the present study. They found that the air changed 

over 1.1 times per hour through the freezer compartment and 2.1 times per hour through 

the fresh food compartment. They measured the effective heat transfer at 0.93 W and 2.35 

W, respectively. The total loss reported, 3.28 W, is approximately 7% of the compressor 

power consumption averaged over an hour of operation, or approximately 3% of the 

compressor power consumption during operation.  

The volumetric flow rates corresponding to these air change rates (I) are: 

 for a freezer (subscript fr) having a volume (V) of 0.11 m3, and  

𝐼𝑓𝑟 × 𝑉𝑓𝑟 = 2 𝐿𝑖𝑡𝑒𝑟𝑠
𝑚𝑖𝑛⁄                                                    (3.1) 

 for a fresh food (subscript ff) having a volume of 0.41 m3 

 

𝐼𝑓𝑓 × 𝑉𝑓𝑓 = 14 𝐿𝑖𝑡𝑒𝑟𝑠
𝑚𝑖𝑛⁄                                                  (3.2) 
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These values were used to specify the flow meter used in the current study. 

However, as shown below they are far larger than measured flow rates. Possible reasons 

for the errors in the paper are discussed below. 

 

It was determined that the air intake was primarily through the water drain tube due 

to the presence of the fan during operation (Bernoulli’s Equation: velocity goes up, 

pressure goes down, creating a low pressure region near the water drain tube inside the 

unit). However, we now understand that this is only part of the reason for the air intake. 

Air flows are predominantly cyclic with air mass inside of the cabinet increasing during 

compressor operation as the internal temperature decreases. This causes the air to become 

denser and therefore the cabinet gains air mass. After compressor operation the heavy air 

then “falls” back out of the cabinet. This is essentially a “breathing” and “exhaling” 

process.  

Based on the above, three tasks for this project were to: 1) find the leaks and their 

relative importance, 2) measure the air leakages both in and out, and 3) calculate the energy 

losses associated with air leakage. This was to be done with one refrigerator in order to 

develop the proper methodology.  

The First Law of thermodynamics for a control volume enclosing a refrigerator is: 

𝛿𝐸𝑐𝑣

𝛿𝑡
=  �̇� −  �̇� + [∑ �̇�𝑖𝑛ℎ𝑖𝑛 − ∑ �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡]               (3.3) 

where the term on the left represents the time rate of change of the total energy within the 

control volume, 𝑄 ̇ is energy transfer through heat transfer, �̇� is the power consumption by 

the compressor, and the final term in brackets represents the net energy increase or decrease 
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due to air infiltration (�̇� being the mass flow rates, and h being the enthalpy). Note that 

changes in potential and kinetic energy have been neglected in the bracketed term. This 

assumption has been verified to be valid and is widely used in studies such as the present 

one. The focus of this study is the last term in brackets; i.e. determining the effective energy 

gains or losses due to air flow through leakages: 

�̇�𝑒𝑓𝑓 = ∑ �̇�𝑖𝑛ℎ𝑖𝑛 − ∑ �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡                                 (3.4) 

 

The primary problem in directly measuring �̇�𝑒𝑓𝑓 in a refrigerator is in locating all 

of the possible leakage points, and then measuring the mass flow rates and temperatures 

(needed to obtain the enthalpies) of all of them. However, we have developed two 

methodologies to measure �̇�𝑒𝑓𝑓. The first involves completely sealing a refrigerator 

leaving only a single inlet and a single outlet for which we can measure the mass flow rates 

and temperatures. The two holes are sized to mimic operating conditions measured in an 

unsealed unit. The second is based on mass conservation and only requires knowledge of 

the internal air temperatures as a function of time and the internal freezer and fresh food 

volumes. Given a proper flow meter the first approach will be more accurate since the latter 

approach involves neglecting additional volumes within the cabinet that air can occupy and 

having to estimate the average temperature at which air exits the cabinet. 
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3.1.  Methodology 1 

The presented methodology requires two experiments to measure the air and energy 

losses directly. The first law of thermodynamics shows that the energy loss due to leakages 

is the sum of all the mass flow rates out multiplied by the enthalpy of the air at each 

temperature minus the same for the inflows. This approach neglects changes in potential 

and kinetic energy; however, these have been calculated and shown to be negligible. This 

methodology is considered to be accurate given the proper equipment. However, a second 

methodology described below shows that the flow meter currently used is not sufficiently 

accurate for the actual flow rates that are predicted indirectly through the second approach 

based on mass conservation. 

 

3.1.1.  Experiment 1 

For the first experiment, we have one unsealed (normal operating) unit that has a 

single obvious leakage path to the freezer through the drain tube. However, as shown 

below, there are many additional leakages of unknown size and relative importance. The 

first law cannot be directly used to calculate all of the mass flow rates and associated 

temperatures needed to find the enthalpies. Therefore, this experiment is used solely to 

measure normal operating conditions needed to mimic the real refrigerator conditions in 

the second unit discussed next (pressure differences between the freezer and fresh food 

compartments and the ambient, temperatures, and the normal compressor operating cycle 

time).  
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3.1.2.  Experiment 2 

Therefore, we have a second identical, but completely sealed, unit - other than the 

drain tube and a second hole drilled in the wall of the fresh food compartment. The 

procedure for sealing the unit is discussed later. We adjusted the hole size until we were 

getting the same pressure differences between the freezer and fresh food compartments and 

ambient measured in the real unsealed conditions. This essentially recreates the operating 

conditions of the unsealed unit by providing an equivalent leakage area. We now can 

directly measure the single inflow mass flow rate with a flow meter and the single mass 

flow rate out along with both temperatures needed to find the enthalpies. Mass flow rates 

are obtained by multiplying the measured volumetric flow rates by the density of the air 

calculated from the ideal gas law. With the single inlet – single outlet, calculating the 

energy loss due to air infiltration is straightforward: 

 

�̇�𝑒𝑓𝑓 = ∑ �̇�𝑖𝑛ℎ𝑖𝑛(𝑇𝑖𝑛) − ∑ �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡 (𝑇𝑜𝑢𝑡)                       (3.5) 

  

where �̇�𝑒𝑓𝑓 is the effective heat transfer rate, 𝑇𝑖𝑛 is the room temperature at the drain tube 

inlet, and 𝑇𝑜𝑢𝑡 is the fresh food temperature at the exit hole (both being measured with 

thermocouples).  
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Figure 3.1: Pictures of the sealed unit. 

 

 

 

3.1.3.  Experimental Data Collected 

Experimental data recorded for this project includes temperatures, pressure 

differences, and inflow and outflow flow rates for both an original and sealed units. 

Figure 3.1 shows pictures of the experimental apparatus for the sealed unit. Figure 3.2, 

Figure 3.3 and Figure 3.4 show internal temperatures and pressure differences measured 

from the unsealed freezer and fresh food compartments as functions of time. Very accurate 

low pressure transducers were used to measure the actual pressure difference between both 

the freezer and fresh food compartments and the ambient. The differential transmitter used 
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for getting the pressure measurements had ±0.25% accuracy and the operation rage was 

±0.05 inches of water. 

 

 

Figure 3.2: Example data for the temperature of unsealed fresh food compartment and freezer compartment 

  

 

Figure 3.3: Example data for pressure difference between the unsealed fresh food compartment and 

ambient as a function of time. 
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Figure 3.4: Example data for pressure difference between the unsealed freezer compartment and ambient 

as a function of time. 

 

 

Figure 3.5: Example data for the sealed refrigerator air temperature entering the unit from the room and 

exiting the unit through the fresh food compartment as a function of time. These are the temperatures used 

to calculate the inflow and outflow enthalpies 
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Although the presented data were gathered during multiple realizations, each figure 

is scaled to begin with the end of the compressor operation for ease of comparison. 

Figure 3.5 presents the temperatures within the cabinet sections as well as the ambient 

temperature measured at the intake at the drain tube. This ambient is used to calculate the 

intake air enthalpy as described below. The outflow enthalpy is obtained from the fresh 

food compartment temperature. Figure 3.6 and  Figure 3.7 present the horizontal pressure 

differences between the fresh food and freezer compartments relative to outside ambient, 

respectively. 

 

 

Figure 3.6: Example data for the sealed refrigerator pressure difference between the fresh food 

compartment and ambient as a function of time 
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Figure 3.7: Example data for the sealed refrigerator pressure difference between the fresh food 

compartment and ambient as a function of time 

 

Positive values indicate that the pressure inside the cabinet is lower than ambient. 

A comparison with the pressure differences for the unsealed unit (Figure 3.3, Figure 3.4) 

shows good agreement during operation. The only significant difference is at the moments 

when the compressor either starts or shuts down. These “spikes” are considered negligible 

to the conclusions of the study. 

Finally, flow rates as a function of time are presented for the sealed unit in 

Figure 3.8, Figure 3.9 and Figure 3.10. Both Figure 3.8 and Figure 3.9 are for the inflow at 

the water drain entrance. The DAQ was unable to record negative flow rates so the zero 

values in Figure 3.9 represent unknown possible outflows. Therefore, the flow meter was 

reversed to gather the outflow data as shown in Figure 3.9. The spikes in Figure 3.9 

represent the end of compressor operation. At that point the cold dense air within the unit 

simply “falls” outside through both the drain tube and the exit hole in the fresh food 
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compartment as shown in Figure 3.9. Other than that, the outflow through the drain tube is 

negligible. 

 

 
Figure 3.8: Example data for the sealed refrigerator air flow rate entering the drain tube as a function of 

time 

 

 
Figure 3.9: Example data for the sealed refrigerator air flow rate exiting the drain tube as a function of time. 
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Figure 3.10: Example data for the sealed refrigerator flow rate exiting the fresh food compartment via the 

drilled hole as a function of time. 
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min. As the purpose of the present work is primarily on developing the methodology the 

current uncertainty is not considered overly important to the conclusions of the study. 

 

3.1.4.  Example Calculations 

In order to calculate the energy leakage rates due to air infiltration only data for the 

inlet and outlet flow rates and temperatures (enthalpies) are needed from the sealed 

refrigerator: 

�̇�𝑒𝑓𝑓 = ∑ �̇�𝑖𝑛ℎ𝑖𝑛(𝑇𝑖𝑛) − ∑ �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡 (𝑇𝑜𝑢𝑡)                (3.6) 

These data are found in Figure 3.5, Figure 3.8 and Figure 3.10. In theory �̇�𝑒𝑓𝑓 can 

be calculated as a running function of time if all of the data are collected simultaneously 

and if the enthalpy of the air as a function of time is available within the software. This 

should be done in practice in order to determine the net energy losses over an entire 

operation cycle. We did not have sufficient equipment to collect all data simultaneously so 

only a single example calculation is provided during compressor operation (at which point 

energy loss rates are maximal). We use the intake flow rate to be 0.075 liters / min 

(Figure 3.8) and the out flow to be 0.025 liters / min (Figure 3.9) during compressor 

operation as mentioned above. Mass flow rates are obtained by multiplying by the density. 

The density is calculated from the temperature using the ideal gas law: 𝜌 =  
𝑃

𝑅𝑇
 , where 𝜌 is 

density in kg/m3, P is standard atmospheric pressure 101325 Pa (pressure differences are 

approximately 1-2 Pa and completely negligible), R = 287 J/(kg.K) is the specific gas 

constant, and the temperature T is in K. We use 𝑇𝑖𝑛 = 295.5 K and 𝑇𝑜𝑢𝑡= 274 K from 
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Figure 3.5 near the end of compressor operation (note again the time dependence). At these 

temperatures the corresponding enthalpies are ℎ𝑖𝑛= 295 kJ/kg and ℎ𝑜𝑢𝑡= 275 kJ/kg. The 

calculated mass flow rates and heat leakage after proper unit conversion are: 

�̇�𝑖𝑛 ≈ 1.5 x 10-6 kg/s 

�̇�𝑜𝑢𝑡≈ 5.4 x 10-7 kg/s 

�̇�𝑒𝑓𝑓≈ 0.3 W 

This, again, represents an approximate value for the maximum energy loss rate 

during compressor operation. As mentioned above, an average over an entire cycle would 

provide more useful information. 

One indirectly related issue is a compressor power consumption comparison of the 

sealed refrigerator when running with the two holes opened vs. when the two holes are 

sealed. This data is provided in section 3.10. 

3.2.  Methodology 2 

The above calculation shows that the outflow mass flow rate is substantially less 

than the intake mass flow rate. At first thought it may seem that the unit is not completely 

sealed and that additional mass flow rates in or out have not been accounted for. However, 

the explanation is that the process is not steady. As the air is being cooled during 

compressor operation (Figure 3.5) the density of the air is increasing and the unit is 

accumulating air mass. In contrast, after compressor operation the temperatures rise within 

the cabinet forcing air out as it expands. This is very similar to a “breathing” cycle. 

Therefore, a proper unsteady mass balance must be considered. At any given time: 
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𝛿𝑀𝑐𝑣

𝛿𝑡
=  �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡                                         (3.7) 

where 
𝛿𝑀𝑐𝑣

𝛿𝑡
 is the time rate of change of the total mass of air within the control volume 

defined by the outside surface of the refrigerator. This term can be decomposed as: 

𝛿𝑀𝑐𝑣

𝛿𝑡
=  

𝜕𝑚𝑓𝑟

𝜕𝑡
+

𝜕𝑚𝑓𝑓

𝜕𝑡
+

𝜕𝑚𝑎𝑑𝑑

𝜕𝑡
      (3.8) 

 

or: 

𝛿𝑀𝑐𝑣

𝛿𝑡
= 𝑉𝑓𝑟  

𝜕𝜌𝑓𝑟

𝜕𝑡
+ 𝑉𝑓𝑓  

𝜕𝜌𝑓𝑓

𝜕𝑡
+ 𝑉𝑎𝑑𝑑  

𝜕𝜌𝑎𝑑𝑑

𝜕𝑡
                (3.9) 

where 𝑉𝑓𝑟 is the freezer compartment volume (0.11 m3) 𝑉𝑓𝑓  is the fresh food compartment 

volume (0.41 m3), and 𝑉𝑎𝑑𝑑  is the total additional volume that air can occupy within the 

control volume (the aforementioned volumes be strictly the manufacturer’s defined useable 

volume).  

The mass rate gains during compressor operation (or losses between operations) 

can be calculated by approximating the derivatives as incremental changes in densities 

divided by their corresponding time change increments, again using the ideal gas law to 

obtain densities. This can be done for the freezer volume and the fresh food volumes as 

both the volumes and temperatures are known. It cannot be calculated for the missing 

additional volume since neither the volume or the (average) temperature is known. For 

practical purposes this missing volume is neglected hereinafter. The fresh food and freezer 

temperatures are presented in Figure 3.11 and Figure 3.12, respectively, for one compressor 

cycle. These data correspond to the unsealed original unit (Figure 3.2). From this data the 
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instantaneous densities can be calculated from the ideal gas law assuming constant absolute 

pressure (measured pressure changes are 10-5 than that of atmospheric). This allows 

calculation of the instantaneous mass flow rates and the instantaneous �̇�𝑒𝑓𝑓 due to air 

infiltration. The effective energy transfer rates are then calculated as: 

�̇�𝑒𝑓𝑓 = ∑ �̇�𝑖𝑛ℎ(𝑇𝑖𝑛)      (3.10) 

during compressor operation while room temperature air is being entrained, and as: 

�̇�𝑒𝑓𝑓 = ∑ �̇�𝑜𝑢𝑡ℎ(𝑇𝑜𝑢𝑡)     (3.11) 

between compressor operation when the air is exiting the unit. Both �̇� values are positive 

numbers in the above. Figure 3.13 presents the measured mass flow rate as a function of 

time calculated from the temperature. While the compressor is not operating the negative 

mass flow rate indicates flow out of the unit. Once the compressor turns on then the flow 

is reversed and enters the unit. For the enthalpy flowing out of the unit a mass weighted 

average temperature is used between the freezer and fresh food temperatures: 

𝑇𝑜𝑢𝑡 =  
𝜌𝑓𝑟𝑇𝑓𝑟

𝜌𝑜𝑢𝑡
+

𝜌𝑓𝑓𝑇𝑓𝑓

𝜌𝑜𝑢𝑡
       (3.12) 

The energy transfer rates due to the air infiltration is presented in Figure 3.14 for 

the same one cycle period used in Figure 3.11, Figure 3.12 and Figure 3.13. Both mass and 

energy are exiting the unit while the compressor is off due to leakages. This does not 

indicate cooling. It is simply the energy associated with the exiting air mass. Energy is 

entering during compressor operation due to the intake of warm room temperature air with 

relatively large peak rate values as the compressor starts (≈13 W; see Figure 3.14). 
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However, when averaged over the time the compressor is operating the new result is �̇�𝑒𝑓𝑓 

≈ 4.4 W. 

 

Figure 3.11: The fresh food compartment temperature as a function of time for the original unsealed 

refrigerator over one compressor cycle. 

 

Figure 3.12: The freezer compartment temperature as a function of time for the original unsealed 

refrigerator over one compressor cycle. 
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Figure 3.13: The mass flow rate into and out of the unit calculated from the temperature changes as a 

function of time for the original unsealed refrigerator over one compressor cycle (positive indicates into the 

unit). 

 

Figure 3.14: The energy transfer rate into and out of the unit calculated from the temperature changes as a 

function of time for the original unsealed refrigerator over one compressor cycle. 
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Positive indicates into the unit. Negative values occur between compressor cycles 

but do not represent cooling. They are simply due to cold air mass losses and their 

associated energies. 

3.3.  Alfonso and Castro 2010 and the Effects of Pressure 

Differences on Sealing the Unit 

Even relatively small pressure differences acting over large surfaces result in very 

large forces. Consider a 1 psi (6895 Pa) pressure difference acting over a refrigerator door 

say 2 foot by 3 foot. That’s 864 lbf (3843 N) of force. So, it was tried to pull a vacuum (or 

pressurize as we did) using a standard vacuum pump it produces pressure forces so large 

that the air simply forces its way through any available leakage path. The purchased 

standard pump produces either 10 psi of vacuum pull or 25 psi of pressurization. We were 

able to reduce the applied pressure down to 0.14 psi (960 Pa) and were able to find and 

seal enough of the holes for the unit to hold 0.11 psi. But, on that same hypothetical door 

this is still 120 lbf (540 N) if the applied pressure held. In order to understand the leakage 

rates through missing holes would require applying actual operating pressure difference, 

which we cannot do due to their very small values as discussed further below. 

During compressor operation, the pressure difference induced by the fan in the 

freezer is only about 0.0003 psi (2.0 Pa) [0.25 lbf (1.1 N) on the 2’ x 3’ door]. Although 

we cannot produce that pressure artificially to confirm that we now have approximately 

zero flow rate for our sealed unit, we have essentially confirmed it under operation. This is 

further confirmed quantitatively below. 

The “orifice equation” shows that the flow rate scales with the square root of the 

pressure difference. Therefore, as we reduce the pressure difference linearly the flow rate 
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reduces quadratically. We’ve now measured the actual flow rate entering the unit through 

the drain tube to be approximately 0.075 liter per minute (Figure 3.8) – although not correct 

due to the meter’s accuracy. A better estimate from the mass conservation experiment is 

0.6 liters per minute. This is a factor of 25 lower than would be needed to get the results 

from the Alfonso and Castro paper. That means that the refrigerator in the paper had a 

pressure difference about 5 times that of our unit (square root). Evidence that the paper has 

substantial error includes: 

 

 They used a tracer gas decay rate to determine the air leakage rather than measuring it 

directly as we are doing. To start the experiment they have to pump the tracer gas in. 

This will increase the pressure inside. They did not measure any pressure differences. 

It’s not too difficult to see how they could have raised the pressure difference from 

0.0003 psi (2.0 Pa) to 0.0015 psi (10 Pa) (factor 5) (as an example). This alone would 

raise the air flow rate by a factor of 25 and be consistent with the results presented in 

the paper.  

 We’ve found that the mass of air inside the unit “breathes” in cycles – in during 

compressor operation and out between. Alfonso and Castro [17] assumes that the 

system is in steady state with no accumulation. They calculate their energy losses using 

a single �̇� = �̇�𝑖𝑛= �̇�𝑜𝑢𝑡  

 Furthermore, if we pump air in through the drain tube at the flow rate needed to produce 

the air turn over times reported in the paper it’s very obvious that it is too large (you 

can feel the air blowing out along the gasket edges easily).  
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3.4.  The Hypothetical Completely Sealed Refrigerator 

     Assuming one could completely seal a refrigerator from air leakages the behavior 

of the unit would change dramatically is the same set thermostat temperatures remained 

unchanged. For a completely sealed unit the density of the air inside would have to remain 

constant. In this case, temperature changes would result in pressure changes rather than 

density changes. Figure 3.2 provides the following minimum and maximum temperatures 

for the original unsealed unit: 

𝑇𝑓𝑟𝑚𝑖𝑛
= 250 K 

𝑇𝑓𝑟𝑚𝑎𝑥
= = 260 K 

𝑇𝑓𝑓𝑚𝑖𝑛
= 268 K 

𝑇𝑓𝑓𝑚𝑎𝑥
 = 275 K 

So, assuming that the unit starts at time 0 with one standard atmosphere of 

pressure and at the maximum temperatures the densities in the two compartments would 

be: 

𝜌𝑓𝑟_0 =  
𝑃𝑎𝑡𝑚

𝑅𝑇𝑓𝑟_𝑚𝑎𝑥
 = 1.36 kg/m3      (3.13) 

𝜌𝑓𝑓_0 =  
𝑃𝑎𝑡𝑚

𝑅𝑇𝑓𝑓_𝑚𝑎𝑥
 = 1.28 kg/m3    (3.14) 

 

In which case the change in pressure during a compressor cycle to the minimum 

temperatures would cause pressure changes of: 
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∆𝑃𝑓𝑟 =  𝑃𝑎𝑡𝑚 −  𝜌𝑓𝑟_0𝑅𝑇𝑓𝑟_𝑚𝑖𝑛 =- 3,745 Pa = - 0.54 psi   (3.15) 

∆𝑃𝑓𝑓 =  𝑃𝑎𝑡𝑚 −  𝜌𝑓𝑓_0𝑅𝑇𝑓𝑓_𝑚𝑖𝑛 =- 2,872 Pa = - 0.42 psi   (3.16) 

 

If we assume that the freezer door has an area of 2 ft2 and the fresh food 

compartment door has an area of 6 ft2 this results in the following forces keeping the 

doors closed: 

𝐹𝑜𝑟𝑐𝑒𝑓𝑟= 690 N = 155 lbf 

𝐹𝑜𝑟𝑐𝑒𝑓𝑓= 2,870 N = 360 lbf 

In reality the forces would be even larger as when the refrigerator is opened then 

closed the starting maximum temperatures would be even larger due to the door opening. 

The moral of the story is that while some energy can be observed by minimizing air 

leakages, too much minimization will eventually result in very large forces on the cabinet 

doors. 

 

3.5.  Future Improvements 

For further measurements, we recommend having two flow meters and some 

additional equipment such that four temperatures (inflow, outflow, freezer compartment, 

and fresh food compartment) can be measured simultaneously. If all data is taken during a 

single simultaneous run of the experiment then the time dependent rate of energy loss 

through air infiltration can be directly measured as a function of time (rather than estimated 
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at single times when multiple runs have to be made). This would allow the average energy 

losses associated with air flows over an entire cycle to be calculated. 

A higher quality lower pressure flow meter must also be purchased. As mentioned 

above, the purchased flow meter was originally specified by the data in Alfonso and Castro 

2010. We estimated approximately 15 liters/min net flow into the unit to recreate their 

specified air turn over times. However, actual measured flow rates are ~0.1 liters/min and 

well within the noise level of the flow meter. This is very important to gathering accurate 

data as the flow rates being measured with the current flow meter are well within its noise 

range leaving substantial uncertainty in the measured energy leakage rates. Additional 

accuracy can be obtained by conducting the experiments in a psychrometric chamber as 

the inlet and outlet enthalpies and mass flow rates are affected by humidity. 

 

3.6.  Procedure for Sealing the Cabinet 

Figure 3.15 shows our experiment configuration that we set up to pressurizing the 

refrigerator in order to detect any possible leaks. An air compressor, pressure tank, pressure 

regulator and pressure gauge are used to pressurize the system at the certain pressure. A 

flowmeter is also installed to measure the flow rate in this test configuration. A pressure 

pump creates a 25 psi air pressure at the outlet which is routed through pressure tank to 

control oscillations. Afterwards, air flows toward the safety valve and pressure regulator. 

The pressure regulator is reducing the air pressure to a suitable pressure so that the desired 

flow rate is obtained at the flowmeter. 0.14 PSI is found as a proper pressure which 

provides enough air flow and air pressure that let us detect the leaks visually by applying 
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bubble soap and looking for the bubble formation. High pressure air is entering the unit 

through the water drain tube.  

 

Figure 3.15: The experimental set up for pressurizing the refrigerator to find and seal the leakages. 

 

 

Obviously, air escaped from the gasket and any existed gaps until all leaks get 

sealed on the cabinet. The initial step was taking the doors off, filling up any obvious gaps 

with silicon and letting it dry out. Also, taking the hinges off and filling up the holes with 

silicon is necessary. The doors should be put back on the cabinet and be tighten by wrap 

ratchet straps. It is helpful to inject some silicone at the gasket edges while the ratchet 

straps are strongly tighten. Also, all the corners and edges on the back, bottom or sides of 

the unit should be taped by HVAC tape. We found HVAC tape as a very strong tape being 

able to make the gaps air tight against the applied air pressure. 
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Once the cabinet is completely sealed, the pressure regulator should be set on a 

certain pressure value (we found 0.14 psi suitable for our application). The high pressure 

air is entering the unit via the water drain tune so that the unit is pressurized.  Now, pressure 

gauge should be monitored to make sure if the gauge shows the exact pressure set on the 

pressure regulator proving that the unit is air tight. Keep sealing the unit till the pressure 

gauge shows the pressure set on the pressure regulator.  

Almost all gaps due to the electrical wiring are leaking; therefore, they should be 

filled up with foam and silicone.  Likewise, all edges should be sealed with multiple layers 

of HVAC tapes.  

       

 (a) 



71 

 

                                                                                                             (b) 

Figure 3.16: (a) and (b) shows the major leakage paths 

 

3.7.  Getting Pressure Measurements from Refrigerator 

Getting pressure measurements helps us understand the characteristic of the interior 

pressure behavior with respect to ambient pressure. Figure 3.17 shows the sample 

refrigerator that we selected to learn about its interior pressure behavior over a complete 

cycle. In this study, two high quality pressure transducers are measuring the pressure 

differences. The operation range of these pressure transducers are ±0.05 (in. water 

column). Each pressure transducer is wired to an amplifier to improve the output signals 

and make a small pressure difference variations detectable for the DAQ system. Data is 

recorded on a computer via the DAQ system for further processing. 
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Figure 3.17: Images of the selected units - Top bottom 

The pressure transducer is measuring the interior pressure of the refrigerator 

through a tube entering the cabinet via a hole drilled in the side wall. The pressure 

difference between the freezer and ambient and the pressure difference between fresh food 

compartment and ambient are measured separately. The pressure transducers being only 

capable of getting horizontal pressure difference measurements; i.e. they cannot measure 

hydrostatic pressure differences. Therefore, if the hydrostatic pressure difference exists, it 

should be added to the pressure measured by the sensors. 

 

𝑃𝑂 −  𝑃𝐹 = 𝑃𝐹,𝑂                                                   (3.17)               

𝑃𝑂 −  𝑃𝑅 = 𝑃𝑅,𝑂                                                   (3.18)           

𝑃𝐹,𝑂 −  𝑃𝑅,𝑂 = 𝑃𝑅 −  𝑃𝐹 = 𝑃𝑅,𝐹                               (3.19) 
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∆𝑃𝑇𝑜𝑡𝑎𝑙 =  𝑃𝑅,𝐹 +  ∆𝑃𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐                       (3.20)                  

∆𝑃𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =  𝜌. 𝑔. ∆ℎ                                      (3.21)                      

 

Density of the air is a function of temperature. Therefore, it is more accurate to 

calculate the hydrostatic pressure between freezer and fresh food compartments from 

outside of the cabinet so that the temperature profiles are defined clearly at the inlet and 

outlet points; moreover, there is no air velocity to obscure the measurement due to dynamic 

pressures. 

The mechanism of Top Bottom refrigerator was simple enough to understand. The 

compressor, evaporator fan and condenser fan start running to cool down the interior 

temperature simultaneously. There is a thermostat placed inside the fresh food 

compartment. Once the temperature in fresh food compartment reaches a certain value set 

on the thermostat, the compressor and the fans stop working. Therefore, the interior 

pressure in the refrigerator changes as follows: the pressure of the cabinet is getting lower 

and lower as the compressor is working and the cabinet is being cooled; however, the 

interior pressure is increasing over the idle cycle while the interior temperature is getting 

warmer.  

The following plots show how inner pressure changes over idle and running cycles. 

The blue graph in Figure 3.18 shows the pressure difference between freezer compartment 

and ambient. According to the diagram, the minimum pressure in freezer compartment is 

measured when the compressor start running. It also shows the pressure of the freezer is 

always lower than the ambient pressure while the doors are closed and the compressor is 
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running. There is a spikes at a cycle showing that the pressure of the freezer compartment 

gets higher than ambient pressure once the compressor stop running. As soon as the 

compressor stops working, the interior pressure suddenly gets higher than the ambient 

pressure and then decreases quickly to a negative pressure value and remains almost steady 

till the compressor starts running again. Similarly, the red graph shows the pressure 

difference between the fresh food compartment and ambient. It illustrates that the pressure 

in fresh food compartment is behaving opposite. The pressure in the fresh food 

compartment is mostly higher than ambient pressure over the idle and running cycles. The 

pressure inside the fresh food cabinet increases as the compressor is operating so that the 

maximum pressure in the fresh food cabinet is recorded at the end of the operating cycle. 

However, there is a spike at a cycle showing that the fresh food pressure gets lower than 

ambient pressure for a couple of minutes at the beginning of the running cycle.  

  

 

Figure 3.18: Difference of pressure between the cabinets and ambient. 
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Figure 3.19 illustrates how pressure difference changes between the compartments 

over two complete cycles. The graph proves that freezer pressure is always lower than the 

fresh food pressure. The lowest pressure difference between the freezer and fresh food 

compartments gets to 0.004 (in. W), but it is never disappeared. The pressure difference is 

increasing over the running cycle and the maximum pressure difference is as high as 0.007 

(in. W). Accordingly, it can be claim that the pressure of the freezer is always lower than 

the fresh food compartment causing the air always naturally flows from fresh food 

compartment to freezer cabinet to compensate the pressure difference. 

 

Figure 3.19: Pressure difference between fresh food cabinet and freezer without considering hydrostatic 

pressure. 
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refrigerator, hydrostatic pressure exists due to the height difference between freezer and 

fresh food compartments. Thus, hydrostatic pressure should be taken into consideration 

and added to the static pressure difference measured by the pressure transducers in order 

to get the actual pressure difference between these compartments.  

∆𝑃𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =  𝜌. 𝑔. ∆ℎ     (3.22) 

The height difference between the drilled holes is 1.02 (m) and the density of the 

air is on the day of the experiment was 1.2 (kg/𝑚3). 

∆𝑃𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 1.20 ∗ 9.81 ∗ 1.02 = 12.01 Pa = 12.01  𝑃𝑎𝑠𝑐𝑎𝑙 = 0.05’’WC 

 

Following is the sample calculation showing how the actual pressure difference 

between the compartments varies over a cycle. Figure 3.20 shows the actual pressure 

difference between the compartments by considering their hydrostatic pressure difference. 

𝑃𝐹,𝑂,𝑀𝑎𝑥 ≈ 0.007’’ WC 

𝑃𝑅,𝑂,𝑀𝑎𝑥 ≈ −0.001’’ WC 

𝑃𝑀𝑎𝑥 = 𝑃𝐹,𝑂,𝑀𝑎𝑥 −  𝑃𝑅,𝑂,𝑀𝑎𝑥 +  ∆𝑃𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 ≈ 0.058’’ WC     (3.23) 
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Figure 3.20: Actual Pressure difference between fresh food cabinet and freezer. 
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Figure 3.21: Difference of pressure between the cabinets and ambient with closed water drain tube. 

 

Figure 3.22: Pressure difference between fresh food cabinet and freezer without hydrostatic pressure. 
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and closed. The measurements were made at different times and perhaps with different 

room conditions (temperature, humidity). Some cycles are observed with both longer and 

shorter durations for the closed configuration. This makes some sense when considering 

the very large forces that would be created if the unit was truly 100% sealed. So, as the 

closed configuration begins operating it quickly creates pressures sufficient to find some 

small paths into and out of the unit. In addition, these were the last measurements made. 

The tape and other seals may have loosened over the weeks of measurements. 

 

Figure 3.23: Compressor power consumption for the sealed refrigerator with the drain tube and drilled fresh 

food compartment holes open. 
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Figure 3.24: Compressor power consumption for the sealed refrigerator with the drain tube and drilled fresh 

food compartment holes closed. 

 

 

3.11.  Summary 

The water drain tube was identified as a primary (but not the only) path for air to 

infiltrate the unit. This occurs due to the evaporator fan creating a low pressure point near 

the entrance to the tube within the freezer compartment as well as to the air temperature 

dropping thereby increasing the air density. The pressure difference between the freezer 

and fresh food compartments with respect to the outside ambient pressure was measured 

during normal operation on a given unit. The gasket and many other leakage paths were 

identified. Therefore, the entire unit was completely sealed using HVAC tape, expanding 

foam, silicone, and ratchet straps leaving only the water drain tube open. Next drill a hole 

through the wall of the fresh food compartment and adjust the diameter to match the 

originally measured pressure differences while operating. The hole acts as the single 
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effective leakage area of the original unit thereby replicating its behavior. This creates a 

single-inlet, single-outlet (SISO) system amenable to energy calculation. Then, flow rates 

and temperatures were measured at the inlet and outlet locations during operation. Given 

the two mass flow rates and temperatures the energy leakage due to air infiltration can be 

directly calculated from the first law of thermodynamics as �̇�𝑖𝑛ℎ𝑖𝑛(𝑇𝑖𝑛) −

�̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡(𝑇𝑜𝑢𝑡), where the �̇� is the measured mass flow rates at the inlet and outlet and 

the enthalpies, h, are obtained from thermodynamic tables at the measured temperatures. 

As a conclusion, the methodology developed is sound and effective in measuring 

air infiltration and energy losses. The energy loss due to air leakages based on the flow 

meter approach estimates an upper energy loss rate of ≈ 0.3 W during compressor 

operation. An alternative approach based on calculating the air accumulation rate within 

the refrigerator directly from temperature measurements predicts a corresponding energy 

loss rate up to ≈ 13 W for a brief time at the start of compressor operation. When averaged 

over one compressor operation the effective heat transfer rate due to air infiltration is 

approximately 4.4 W. This latter value is a much better estimate as the data obtained with 

the flow meter are not mass conserving by nearly an order of magnitude. In addition, the 

air turn over times and energy leakage rates reported in “Air infiltration in domestic 

refrigerators: The influence of the magnetic seals conservation, Clito Alfonso and Manuel 

Castro [17], are incorrect and substantially over predicted. They predict air infiltration rates 

of ≈ 16 liters / min. We show this is not possible above. This value was used in specifying 

the flow meter purchased for the project. Actual values we measured are ≈ 0.1 liters / min 

on a flow meter scaled from 0 – 15 liters / min. Mass conservation dictates that the 

infiltration rate must be one order of magnitude larger. The only conclusion is that the 
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meter is completely inaccurate for these small flow rates. Moreover, during the compressor 

operation the pressure difference between the freezer and ambient was measured to be 

approximately 2.9 x 10-4 psi (2 Pa) below ambient and near negligible in the fresh food 

compartment. There are a large number of paths for air flow and air leakage, including 

between the insulating foam and the outer and inner cabinet liners. Sealing a unit is very 

difficult. The unit does not hold pressure (and only small pressures of the order of the 

operating conditions) until essentially all the holes are sealed. Until that point the air simply 

finds another path to another leakage. Therefore, pressurization at relatively small pressure 

differences ~0.01 – 0.1 psi recommended as a means of finding the leakage points because 

soap water can be used and the leakages visualized via the formation of soap bubbles. A 

thermal imaging camera can also be used to help detect leakages but is not necessary. Air 

flows are predominantly cyclic with air mass inside of the cabinet increasing during 

compressor operation as the internal temperature decreases. This causes the air to become 

denser and therefore the cabinet gains air mass. After compressor operation the heavy air 

then “falls” back out of the cabinet. The cabinet is essentially “breathing;” “inhaling” air 

in during compressor operation, then “exhaling” air while the compressor is off. 

If all leakages were completely sealed and the cycle thermostat set points remained 

the same the change in pressure between the cabinet and ambient would create forces of 

at least 300+ lbf on the fresh food door and at least 150 lbf on the freezer door from 

outside!  

Therefore, while energy can be saved by better sealing the unit eventually pressure 

differences will become problematic as the leakages decrease. 
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4. CONCLUSION 
 

 In the presented study, the heat loss due to the gasket region and the air leakage 

attributed to a domestic refrigerator were experimentally investigated and evaluated.  

The primary interest for the former study is measuring the heat leakage due to the 

defined gasket region in the unit of energy per unit time, per unit length along the gasket, 

per unit of temperature difference (w/m.K). To do so, a concept “Blue Box” was designed 

and built in order to isolate the heat transfer through the gasket region. Six heat flux sensor 

are installed along the outer surface of the exposed gasket region to measure the heat flux 

coming out of the box through this specific section. A number of thermocouples are 

responsible for getting temperature measurement over the experiments from box interior 

and ambient. There is a heater located inside the box which is used for adjusting the desired 

temperature difference across the gasket section. However, the heat flux sensors do not 

have enough resolution to resolve all surface heat flux distribution; therefore, 2D 

Computational Fluid Dynamics simulations are performed to provide the shape factors of 

the surface heat flux. The provided shape profile can be fit to the experimental data. 

Afterwards, the fitted shape profile can be integrated to provide us with the heat leakage in 

the unit of energy per unit time per unit length (w/m). Then, dividing this value by the 

temperature existing across the gasket region leads to the heat leakage in the interested unit 

(W/m.K). The heat leakage due to the gasket region in fresh-food compartment is estimated 

to be about 14% of the total thermal load. This value increased to 17% for the freezer 

compartment due to the higher temperature difference existing between the freezer interior 

and outside word.  
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Fresh food  compartment 

Heat Leakage 0.20 (W/m.K) 

Gasket Length 3.4 (m) 

∆𝑇 20 (℃) 

𝑃𝑙𝑜𝑠𝑠 13.6 (W) 

𝑃𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 95 (W) 

Gasket heat loss 14% 

Table 4.1: Heat loss due to the gasket region in fresh food compartment of the sample refrigerator 

 

 

 

 

 

 

Table 4.2: Heat loss due to the gasket region in freezer compartment of the sample refrigerator 

The former research was defined on identifying the major air leakage paths and 

evaluating the air turn-over rate for freezer and fresh-food compartments with new gaskets 

installed. The pressure difference between each compartment and ambient was measured 

over the compressor operation and idle time on a sample refrigerator. Water drain tube and 

gasket are identified as primary paths for the air leakage. To measure the air turn over, the 

Freezer  compartment 

Heat Leakage 0.20 (W/m.K) 

Gasket Length 2.4 (m) 

∆𝑇 35 (℃) 

𝑃𝑙𝑜𝑠𝑠 16.8 (W) 

𝑃𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 95 (W) 

Gasket heat loss 17% 
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unit should be completely sealed such that it can hold a pressure inside. However, it is a 

difficult procedure to seal all the air leakages. Actually, there are a large number of paths 

for the air to leak while the doors are closed. The unit does not hold any pressure until all 

the leakages are sealed. To detect the paths, it is recommended to pressurize the unit at a 

relatively small pressure difference, say 0.1 psi, so that it provides enough pressure at each 

air leakage path to let the bubbles appear when the soup water apply. Also, a thermal 

camera can be helpful to detect the air leakage paths, but is not necessary.  Once the unit 

is sealed, a hole should be drilled through the wall of the fresh food compartment and the 

diameter has to be adjusted to match the originally measured pressure differences while the 

unit is operating. Note that the water drain tube is left open over the measurements.  This 

creates a single-inlet, single outlet (SISO) system amenable to energy calculation. Next, 

flow rates and temperature are measured at the specified inlet and outlet. Having two 

temperatures and the mass flow rates at the inlet and outlet, the energy leakage due to the 

air infiltration can be calculated.  The effective heat transfer rate due to air infiltration is 

calculated approximately 4.4 W which is about 4.6% of the total energy.  Similarly, the 

actual air infiltration rates are ≈ 0.1 liters/min on a flow meter scaled from 0 – 15 liters / 

min.  

 

Energy Loss due to Air Infiltration  

𝑷𝒍𝒐𝒔𝒔 4.4 (W) 

𝑷𝒍𝒐𝒔𝒔 95 (W) 

Air infiltration heat loss rate 4.6% 

Table 4.3: Heat loss due to the air infiltration  
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Appendix A 

Quantitative Time Averaged Data 

 

Table A.1: Measured heat flux running through the exposed gasket region for the expriment#1, Original 

gasket, ∆𝑻 = 20.2℃ , ∆𝑻𝒓𝒎𝒔= 0.148℃ 

Experiment 1 

Gasket: Original  

Heat load : 9.20 W 

∆𝑻 = 20.2 ℃ 

∆𝑻𝒓𝒎𝒔= 0.148℃ 

Heat leakage =  0.19 

W/m.K 

  

Sensor Mean Heat Flux (𝑾
𝒎𝟐⁄ ) RMS Heat Flux (𝑾

𝒎𝟐⁄ ) 

HFS 1 17.3 1.94 

HFS 2 12.2 1.55 

HFS 3 4.76 1.06 

HFS 4 8.57 0.71 

HFS 5 19.7 1.31 

HFS 6 20.5 0.6 

 

 

Table A.2: Measured heat flux running through the exposed gasket region for the expriment#2, Original 

gasket, ∆𝑻 = 26.6℃ , ∆𝑻𝒓𝒎𝒔= 0.01℃ 

Experiment 2 

Gasket: 

Heat load : 13.14 W 

∆𝑻 = 26.6℃ 

∆𝑻𝒓𝒎𝒔= 0.01℃ 

Heat leakage =  0.20 

W/m.K 

  

Sensor Mean Heat Flux (𝑾
𝒎𝟐⁄ ) RMS Heat Flux (𝑾

𝒎𝟐⁄ ) 

HFS 1 25.2 2.58 

HFS 2 18.3 2.04 

HFS 3 7.79 1.72 

HFS 4 11.2 0.59 

HFS 5 25.7 0.78 

HFS 6 26.3 0.60 
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Table A.3: Measured heat flux running through the exposed gasket region for the expriment#3, Original 

gasket, ∆𝑻 = 34.6℃ , ∆𝑻𝒓𝒎𝒔= 0.03℃ 

Experiment 3 

Gasket: 

Heat load : 18.13 W 

∆𝑻 = 34.6 ℃ 

∆𝑻𝒓𝒎𝒔= 0.03 ℃ 

Heat leakage =  0.21  

W/m.K 

  

Sensor Mean Heat Flux (𝑾
𝒎𝟐⁄ ) RMS Heat Flux (𝑾

𝒎𝟐⁄ ) 

HFS 1 33.4 3.23 

HFS 2 24.0 2.43 

HFS 3 10.6 2.35 

HFS 4 15.7 0.76 

HFS 5 36.1 1.61 

HFS 6 39.9 1.31 

 

 

Table A.4: Example measured heat flux running through the exposed gasket region for the expriment#1, 

Original gasket, ∆𝑻 = 25.2℃  

Experiment 4 

Gasket: Black –Side by 

Side 

Heat load : 13.14 W 

∆𝑻 = 25.2 ℃ 

∆𝑻𝒓𝒎𝒔=  

Heat leakage =  0.23 

W/m.K 

  

Sensor Mean Heat Flux (𝑾
𝒎𝟐⁄ ) RMS Heat Flux (𝑾

𝒎𝟐⁄ ) 

HFS 1 24.86                         3.20 

HFS 2 18.06                         2.15 

HFS 3 7.13                         1.24 

HFS 4 10.65                         0.93 

HFS 5 27.02                         2.39 

HFS 6 30.46                         1.51 
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Table A.5: Example measured heat flux running through the exposed gasket region for the expriment#1, 

Original gasket, ∆𝑻 = 25.6℃ , ∆𝑻𝒓𝒎𝒔= 0.11℃ 

Experiment 5 

Gasket: White  

Heat load : 13.14 W 

∆𝑻 = 25.6 ℃ 

∆𝑻𝒓𝒎𝒔= 0.11℃ 

Heat leakage =  0.22 

W/m.K 

  

Sensor Mean Heat Flux (𝑾
𝒎𝟐⁄ ) RMS Heat Flux (𝑾

𝒎𝟐⁄ ) 

HFS 1 24.9 2.88 

HFS 2 17.6 2.28 

HFS 3 7.46 1.45 

HFS 4 10.5 1.52 

HFS 5 24.8 1.69 

HFS 6 27.3 1.43 
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Appendix B 

FORTRAN Code for Least Square Error Analysis 

      PROGRAM FIT 

      PARAMETER(N=6,M=100,NMAX=1000) 

      real*8 X(N),Y(N),lms(NMAX) 

      real*8 dlta,maxa,mina,error,minerror 

      integer minnumber 

      mina=0.2d+00 

      maxa=2.d+00 

      dlta=(maxa-mina)/dble(float(NMAX-1)) 

C Input the six experimental heat flux measurements 

      X(1)=17.35 

      X(2)=12.22 

      X(3)=4.76 

      X(4)=8.57 

      X(5)=19.70 

      X(6)=20.54 

C Input the CFD curve values at the same locations 

      Y(1)=19.66 

      Y(2)=11.44 

      Y(3)=8.15 

      Y(4)=7.82 

      Y(5)=19.93 

      Y(6)=25.06 
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      do j=1,NMAX 

      a=mina+dlta*dble(float(j-1)) 

      lms(j)=0.d+00 

      error=0.d+00 

      do i=2,N 

      error=(X(i)-a*Y(i))*(X(i)-a*Y(i)) 

      lms(j)=lms(j)+error 

      enddo 

      enddo 

      do j=2,N 

      lms(j)=lms(j)/float(N) 

      end do 

      minerror=999.d+00 

      do j=1,NMAX 

      if(minerror.gt.lms(j))then 

      minerror=lms(j) 

      minnumber=j 

      endif 

      enddo 

      print*,minerror,minnumber,mina+dlta*dble(float(minnumber-1)) 

      pause 

      end 
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