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ABSTRACT 

The M1 Abrams tank contains track pads consist of a high density rubber. This 

rubber fails prematurely due to heat buildup caused by the hysteretic nature of elastomers. 

It is therefore desired to replace this elastomer by a meta-material that has equivalent 

nonlinear deformation characteristics without this primary failure mode. A meta-material 

is an artificial material in the form of a periodic structure that exhibits behavior that differs 

from its constitutive material. After a thorough literature review, topology optimization 

was found as the only method used to design meta-materials. Further investigation 

determined topology optimization as an infeasible method to design meta-materials with 

the targeted nonlinear deformation characteristics. Therefore, a method was developed in 

this thesis to logically and systematically design meta-material unit cells using engineering 

principles to achieve the desired nonlinear response. This method, called the Unit Cell 

Synthesis Method, requires the designer to have a fundamental understanding of the 

geometric nonlinearity of an elemental geometry. One or more of these elemental 

geometries are then systematically combined into a unit cell. A size optimization is 

performed on promising unit cell concepts to tune the geometry and converge its response 

towards that of the target. Application of this method was successful in generating a meta-

material to meet the response of the rubber pad. The method represented in this thesis is 

meant to serve as a framework for future designers to develop meta-materials for nonlinear 

targeted responses. 
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CHAPTER 1. INTRODUCTION 

1.1. Overview of Abrams Military Track Pad System 

The M1 Abrams tank weighs upwards of 63 tons and can travel at speeds up to 45 

mph [1]. The track system provides a robust means for the tank to traverse a diverse range 

of environments. The current track system used in the M1 tank is the T186LL and a 

dissected track link can be seen in Figure 1.1 [2].  

 

Figure 1.1. Components of the T186LL Track Link [2] 

The track system is comprised of individual track links that are connected via steel 

linkages and bushings. Under standard operation, the track links come into contact with 

road wheels which support the weight of the tank. A diagram showing this interaction can 

be seen in Figure 1.2 [3]. In this figure, it can be seen that the track link consists of three 

primary components: the ground pad, the steel plate, and the backer pad. The primary focus 

of this research will be on the backer pad. 
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Figure 1.2. 2D Representation of a Road Wheel and Track Link [3] 

The track pad has several functions including road surface protection, sound-

deadening, traction on hard surfaces, and most importantly vibration reduction. The track 

pad has similar functions to those of automotive pneumatic tires. The pad must support the 

vehicle weight as it experiences both compressive and shear loadings, operate at high 

speeds for a long duration, and must have low wear for durability and replacement 

considerations [4].  
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The current track backer pad is composed of Styrene Butadiene Rubber (SBR) 

combined with a filler material. The filler contains short fiber reinforcements that act to 

resist tearing, chunking, and abrasion [1]. Chunking is defined as a loss of material which 

typically results from crack propagation and thermal degradation of the rubber [2]. 

Examples of chunking on the backer pad are shown in Figure 1.3. 

 

Figure 1.3. Track Backer Pad Failures Due to Chunking [2] 

1.2. Motivation for Replacing Elastomer Track Pad 

The rubber backer pad on a M1 Abrams tank operates as a dampening interface 

between the metal track link and the road wheel. Under normal operation, the backer pad 

experiences high strain rate and cyclic loading conditions. These severe conditions result 

in limited fatigue life of the pad and lead to increased tank downtime and high maintenance 

costs. Previous research has been completed in order to understand the primary mode of 

failure in an effort to prolong the track pad’s serviceable life.  
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Lesuer et al. in [5] were some of the first to begin experimental investigations in 

failure of tank track pads in 1983. Lesuer et al. in [6] developed some of the first computer 

models to understand track pad failure in 1985. Their work showed that track pad life is a 

function of temperature, environment, and number of loading cycles. One of their results, 

shown in Figure 1.4, relates increased temperatures and cycling stresses to decaying 

residual strength [6]. 

 

Figure 1.4. Decaying of Elastomer Properties w.r.t. Cycling Stress [6] 

 In [7], Mars and Ostberg defined a 2-term Ogden hyperelastic model of the current 

elastomer, performed dynamic simulations to capture the effects of a rollover event, and 

used these to estimate damage accumulation via a fatigue life solver. A rollover event can 

be defined as the entire process for a track pad to complete a single revolution in the track 

system. In this single revolution, seven successive road wheels initialize contact with the 

pad and traverse across the top of the pad via rotation. The rollover event completes when 

the track pad traverses the top of the track system which is not in contact with the ground. 

Within this rollover event, the road wheel causes high strain rates to occur and the 
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elastomer experiences mostly compressive and some shear deformations (especially when 

turning). The goal of the authors was aimed at understanding how damage developed in 

the elastomer part.  

Ostberg and Bradford explored the loading distribution of the road wheel on the 

backer pads in [2].  The infrared image in Figure 1.5 shows the temperature of the backer 

pad after 12 miles at a constant 40 mph. Consistent operation at elevated temperatures 

degrades elastomer material properties. Thus, it is necessary to minimize energy losses, 

specifically those due to thermal energy caused by the deformation of the backer pad [2].  

 

Figure 1.5. Thermal Map of M1 Abrams Track Pad and Road Wheel [2] 

 The primary source of elevated temperatures within the backer pad elastomer is due 

to the material’s inherent loss coefficient. Elastomers are nonlinear materials with respect 

to their stress-strain response. However, hysteresis is exhibited in the loading cycle (or 

loading and unloading) as depicted on the left side of Figure 1.6. The area between these 

two curves is energy loss, most of which converts into thermal energy. The heat generated 

due to one cycle of loading cannot dissipate away from the elastomer at a fast enough rate 
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due to the elastomers’ low thermal conductivity [9]. This leads to the high buildup of 

thermal energy shown in Figure 1.5. 

1.3. Motivation for Designing a Meta-Material 

 Rodger Walser coined the term “meta-material” in 1999 and discussed a strategy 

in which to design meta-materials for a desired purpose in [11]. Meta-materials are a class 

of artificial materials that are so named due to their designed purpose of achieving specific 

global properties. Specific definitions vary in literature but the objective remains the same 

throughout [12]. These artificial materials are designed to achieve behavior that cannot be 

found in nature in response to some need or application. In the context of this thesis, a 

meta-material is an artificial material that contains unit cells at the local level which, 

combined through tessellation, creates a global medium that can be considered 

homogeneous but with properties different from the base material. The uniqueness of 

global physical behavior in meta-materials emerges from the combination of the 

constitutive material and geometry of the unit cells. A graphical representation of how 

 

Figure 1.6. Loading and Unloading Stress-Strain Curves for (Left) Elastomer, and (Right) Linear 

Elastic  Material [8] 
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meta-materials can be tuned to achieve targeted properties via optimization is shown in 

Figure 1.7. 

Based on the source of thermal energy in the current track pad, the undesired heat 

generation could be eliminated by replacing the high loss elastomer with a material that 

exhibits little to no loss. As shown in the right side of Figure 1.6, linear elastic materials 

do not exhibit the same hysteresis as elastomers. Therefore, such materials are desired as 

replacement to the current rubber track pad. Ashby presents a useful material comparison 

based on the loss coefficient and Young’s Modulus material properties in Figure 1.8. As 

shown, most metals have a desired low loss coefficient. However, the Young’s Modulus 

of metals is several orders of magnitude too high for the intended application – replacing 

the elastomer track pad. Since all properties listed in this Ashby chart are those of solid, 

homogeneous materials, it is reasonable to expect that designing a meta-material with a 

metallic constitutive material can yield the desired Young’s Modulus without significantly 

compromising the loss coefficient.  

 

Figure 1.7. Methodology to Optimize Meta-Material to Achieve target Properties [10] 
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Figure 1.8. Ashby Chart Comparing Materials According to Loss Coefficient and Young's 

Modulus [3,9] 

1.4. Research Questions 

This thesis focuses on answering the following questions by testing their associated 

hypotheses: 

R1. Can a meta-material be developed in which the global behavior of the resultant 

medium exhibits nonlinear compressive behavior similar to that of the current 

elastomer? 

H1. A meta-material can be designed whose global behavior in compression is of 

similar nonlinearity to that of the current elastomer. 

R2. What method can be used to successfully develop a meta-material to meet the 

nonlinear deformation response of the current application?  

a. Is topology optimization a feasible method to accomplish this? 

b. If not, can a method be developed to accomplish this? 
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H2. A meta-material can be developed using topology optimization to meet the material 

behavior requirements. 

1.5. Thesis Outline 

This thesis is organized into six chapters. The current chapter has introduced the 

motivation and research objectives of this work.  

Chapter 2 will review the current literature about the two primary methods that can 

be used to design meta-materials, including the merits and applications of each.  

Chapter 3 describes the methods used and the results of designing a unit cell with 

the desired properties via topology optimization and the lessons learned from that work.  

Chapter 4 describes the method to design a unit cell with the desired properties via 

a fundamental understanding of beam shapes, tuning the geometry with parametric 

optimization, and presents the resulting geometry.  

Chapter 5 is a discussion of the results obtained in Chapters 3 and 4, lessons learned, 

and presents a possible generalization of the method used in Chapter 4 to create a design 

framework for meta-material design.  

Chapter 6 concludes this work by summarizing the methods used, obtained results, 

and significance and laying out areas of future work. 
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CHAPTER 2. LITERATURE REVIEW 

 In an effort to understand the best approach to successfully solve the design 

problem, a literature review of relevant historic and contemporary research in the field was 

conducted. This literature review is organized into existing approaches to design meta-

materials by topology optimization and tune existing topologies via size optimization. 

Example applications in these areas for designing meta-materials are also presented. 

2.1. Methods to Design and Optimize Meta-Materials 

2.1.1. Topology Optimization 

Topology optimization (TO) is a numerical optimization approach requiring little 

input from the designer that often yields novel unit cell geometries. There are two primary 

methods that have been developed to implement TO: the Homogenization Method (HM), 

and Level Sets.  

2.1.1.1. Fundamentals of the Homogenization Method 

The HM was born from the mathematical theory of homogenization, or relation 

between macro- and micro-level properties [13]. This theory was adapted for use in TO by 

creating a method to determine effective properties of heterogeneous media to enable 

implementation in the finite element method [14]. The HM, therefore, combines 

homogenization theory with a finite element solver to solve an optimization problem that 

aims to determine the optimal topology of some structure. Bendsøe and Kikuchi developed 
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and first applied the HM in TO in [15]. Hassani and Hinton developed an extensive 

mathematical formulation of the HM, and several variants, in [16–18].  

The HM designs a topology by optimizing the material distribution within the 

discretized design domain via the addition or removal of material in microstructures within 

this domain. These microstructures can have voids with various shapes. One such example 

is shown in Figure 2.1 where the microscopic unit cell and void are in the shape of a square 

and the void is defined by its height, width, and rotation. The microstructure of each unit 

cell in the domain can vary from completely solid, completely void, or any range in 

between.  

The optimization algorithm modifies these unit cell microstructures, or design 

variables, based on data of the finite element results and the update scheme chosen to 

improve the objective function value. These new cell microstructures are then related to 

effective properties for finite element purposes using homogenization theory and submitted 

for the next iteration. This iterative process continues until some convergence criteria is 

met [19]. While both gradient and non-gradient based optimization algorithms applied to 

 

Figure 2.1. Microscopic Unit Cell Variables in Square Void [19] 
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TO problems can be found in literature, Sigmund convincingly proves in [20] that gradient 

based algorithms are superior in computation time, computation cost, and yield more 

optimal topologies. 

 In order to perform TO using the HM, the optimization procedure must be 

formalized. While the objective function is problem dependent, an example of the classic 

TO problem for minimizing compliance given a volume fraction constraint is given [21] 

below  

   min
𝑥

:  𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =  ∑ 𝑥𝑒𝑢𝑒
𝑇𝐾0𝑢𝑒

𝑁
𝑒=1  

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
𝑉(𝑥)

𝑉0
= 𝑓 

         :  𝐾𝑈 = 𝐹 

          :  0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 1  

(2.1) 

where 𝑐(𝑥) is the objective function to minimize strain energy, 𝑓 is the volume fraction 

constraint, 𝐾𝑈 = 𝐹 is the finite element solution, and the remaining constraint is the range 

of allowable element densities [21]. The minimum of the element density range is 

constrained to be above zero, denoted by 𝑥𝑚𝑖𝑛, to prevent singularity issues in the stiffness 

matrix in performing the finite element analysis. 

 An example implementing the TO problem described in equation (2.1) for 

minimizing compliance is shown in Figure 2.2. This left figure depicts the boundary 

conditions of a cantilevered beam with a single point load on the free end. The optimized 

topology for a structure with maximum stiffness is shown in the right figure. Here, the 

black portions indicate solid material, white indicates void of material, and shades of grey 

represent some gradient of material and voids. Due to manufacturing constraints limiting 
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the production of microstructures represented by shades of grey, modifications of the 

original HM have been developed to improve manufacturability. 

 
 

Figure 2.2. Example (left) Boundary Conditions and (right) Solution using the HM [22] 

2.1.1.2. The SIMP Method 

One of the first adaptations of the HM in TO is the Solid Isotropic Material with 

Penalization method (SIMP). The purpose of this variant is to eliminate topologies that are 

not manufacturable. The SIMP method accomplishes this by penalizing design variables if 

their density lies between 0 (completely void) or 1 (completely solid). The penalization is 

implemented by raising the element density to an exponential factor of “𝑝” in the objective 

function. Extending the optimization formulation represented in equation (2.1) to enforce 

penalization under the SIMP method is shown below. 

   min
𝑥

:  𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =  ∑ 𝑥𝑒
𝑝𝑢𝑒

𝑇𝐾0𝑢𝑒
𝑁
𝑒=1  

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
𝑉(𝑥)

𝑉0
= 𝑓 

         :  𝐾𝑈 = 𝐹 

          :  0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 1  

(2.2) 

 It is useful to note that the SIMP method yields the original HM by setting the 

penalization factor to one. As this penalization factor increases, the intermediate densities 
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are shown to be removed from the solution. Using the same boundary conditions as in 

Figure 2.2 (left), results of using the SIMP method are shown in Figure 2.3 by setting the 

penalization to 1.5 (left) and 3 (right) [22]. Note that the solution with penalization of 1.5 

yields a more defined solid topology than the solution in Figure 2.2, however there still 

exists intermediate densities in the solution. The solution with penalization of 3 yields a 

defined solid solution with little intermediate densities along the solid-void borders. Thus, 

the solution with penalization factor of 3 yields the best manufacturable solution and was 

found to be the best penalization factor for eliminating intermediate densities in the 

literature. 

  

Figure 2.3. Example Solutions of SIMP Method with (left) p=1.5 and (right) p=3 [22] 

 It is also important to note that a specific drawback of the SIMP method is the effect 

that increasing the penalization factor has on the objective function. As the penalization 

factor increases, the converged solution will yield objective function values that are less 

optimal. Since the objective function is a measure of the desired value, this phenomenon 

can be graphically portrayed in Figure 2.4 [23]. In this figure, normalized stiffness is 

compared to the volume fraction across different penalization values. The curves shown 

are theoretical maximums at the specified penalization and volume fraction. This graph 

expresses how enforcing the manufacturing constraint via the SIMP method severely limits 
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physical performance as there is a significant gap between the theoretically optimal 

solution (with penalization factor of 1) and the manufacturable optimal solution (typically 

with penalization factor of 3). For example, consider the minimum compliance example of 

a cantilever beam with design space and loading conditions shown in Figure 2.2 (left). The 

solution with penalization factor of 1 is shown in Figure 2.2 (right) as a black, white, and 

gradient solution. However, the solution with penalization factor of 3, shown in Figure 2.3 

(right), is strictly a black and white solution. In the latter, it is clear where the boundaries 

of the material are and a part can then be manufactured. However, in the grayscale solution 

(with penalization factor of 1), it is unclear how to manufacture these intermediate 

densities. 

 

Figure 2.4. The Effect of Varying “p” in the SIMP Method [23] 
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2.1.1.3. The Inverse Homogenization Problem 

The HM can be used to solve two general classes of problems: the standard 

homogenization problem, and the inverse homogenization problem (IHP). The former has 

been previously described as in the minimum compliance example (2.1.1.1). In this class 

of problems, some homogenized property is being optimized in the objective function (e.g. 

compliance) while some constraint(s) is applied (e.g. volume). However, the IHP reverses 

this optimization problem. Instead, the objective function may be to optimize volume with 

a constraint on the homogenized elastic properties, or elasticity tensor. This allows the 

designer to target specific material properties. 

The IHP was first introduced by Sigmund in [24]. In this paper, Sigmund explained 

how the optimization problem could be formulated to target linear elastic material 

properties. The base cell, Y , is rectangular in 2  and is defined as 

 0 0

1 2]0, [ ]0, [Y Y x Y   (2.3) 

where 0

1Y  and 0

2Y  are the horizontal and vertical lengths of the unit cell, respectively. The 

global properties of the material can then be defined as  

 0( ) *( )1
( )H kl kl

ijkl ijpq pq pq
Y

E E dY
Y

     (2.4) 

where 0( )kl

pq  is the desired pre-strain defined for uniaxial tension along the x- and y-

direction, and pure shear. 
*( )kl

pq  is the resulting solution of Y-periodicity. The optimization 

procedure is described using optimality criteria and Lagrangian multipliers. Sigmund then 

provided examples in 2D for various target properties while minimizing volume. Sigmund 

later expands on this work in [25] by applying the approach specifically to a strain energy 
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formulation and applying it to both 2D and 3D examples. These two papers serve as the 

foundation for designing structures via TO with prescribed material properties. 

2.1.1.4. Considerations for the Design of Meta-Materials 

 Designing meta-materials using TO requires properly defining an appropriate unit 

cell design space, enforcing periodic boundary conditions, and developing the optimization 

problem as an IHP. Each of these issues will be briefly discussed in the following section. 

 One of the fundamental considerations in the design of meta-materials via TO is 

defining the base unit cell, or design domain. Bénard and Diaz discuss in [26] how periodic 

tilings, or prototiles, of cells can be defined in different geometric patterns. They prove that 

all prototiles can be represented in fundamental domains, or parallelograms, defined by 

vectors 1v and 2v  from a corner of the tile. Another constraint for fundamental domains is 

that their area must be equal to that of the prototile. In Figure 2.5, the left image shows a 

geometric pattern using Polyhex, or hexagonal, prototiles. The right image shows the same 

pattern represented by a parallelogram fundamental domain. A primary reason to identify 

such a prototile is for characterization into a domain that can be discretized into common 

finite elements. 

 In a later work ([27]), Bénard and Diaz also prove that fundamental domains may 

not be unique to a given pattern, as shown in Figure 2.6. However, in this figure, note that 

domain S is not fundamental as it fails the area constraint. In reference to symmetric 

domains used in TO, the authors note that representing the microstructure domain using 
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other geometries than squares allows one to enforce other symmetry conditions that can 

increase the design space and the chance of developing new solutions.  

 

Figure 2.6. Fundamental Domains for an L-Shaped Prototile [27] 

Meta-materials can be designed via TO to target specific material properties per an 

adapted IHP. Once the fundamental domain, Y, has been established, the effective 

properties of Y are assumed to be homogenous throughout the meta-material. The 

connectivity between unit cells is just as important as the internal topology of the unit cell. 

  

Figure 2.5. Example of (left) a Polyhex Prototile and (right) a Parallelogram Fundamental Domain 

of this Pattern [26] 
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Therefore, enforcing periodic boundary conditions are essential. Once these boundary 

conditions are in place, the designer must only consider a single unit cell design space, Y.  

In [28], Sigmund explains how the IHP can be applied to the design of meta-

materials. The IHP process as applied to meta-materials is shown in Figure 2.7 (depicted 

by black arrows) and compared to the traditional homogenization problem (depicted by 

white arrows). Sigmund develops the optimization setup for a meta-material IHP and 

presents three examples of its application in the design of meta-materials with prescribed 

elastic and electromagnetic properties. 

2.1.1.5. Level Set Method 

Level Set approaches in topology optimization employ a level set model embedded 

in a scalar function of a higher dimension to represent a structural boundary. This method 

operates by moving the structural boundary that is implicitly defined in the level set 

function that is driven by the objective function. A thorough numerical formulation of a 

level set in TO is given by Wang et al. in [29]. Additionally, a literature review of level set 

 

Figure 2.7. Procedure Overview for Applying IHP to the Design of Meta-Materials [28] 



20 

formulations and applications is given by van Dijk et al. in [30]. Level set methods typically 

involve tight coupling with a finite element solver which limits implementation with a 

commercial finite element solver [31]. Additionally, optimized designs are typically highly 

dependent on the initial guess of material distribution [32]. This phenomenon can be seen 

in Figure 2.8 where the number of holes in the initial material distribution is directly 

correlated to the number of holes in the optimized topology. Unfortunately, there were no  

instances in literature where level sets were used to design meta-materials. 

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

 
(e) 

Figure 2.8 Level Set TO of Cantilever Beam: (a) Boundary Conditions, (b) Initialization with 

Many Small Holes and (c) its Solution, (d) Initialization with Few Large Holes and (e) its Solution 

[32] 



21 

2.1.2. Size Optimization 

Size optimization (SO) is an approach that searches for optimal dimensions, 

orientation, and/or curvature of the unit cell given a topology. Therefore, the topology and 

variables, typically geometric dimensions, to be optimized must be specified by the 

designer. This fact distinguishes SO as a method to tune an existing topology instead of 

one to design a topology. The number of design variables is typically few, (less than 10). 

SO iterates over an optimization algorithm coupled with an analytical tool, such as finite 

element analysis, to calculate the objective function until it finds an optimal solution. The 

optimization problem SO solves is typically in regards to a whole system with known 

boundary conditions or the unit cell of a meta-material with periodic boundary conditions. 

A variety of optimization algorithms can be employed in SO problems, each with 

their own merits. Considerations for choosing algorithms include required convergence 

time, available computational resources, computational cost per iteration, availability of a 

gradient evaluation, the number of design variables, and the size of the design domain. 

Gradient based approaches, such as sequential linear/quadratic programming, quasi-

Newton, and feasible directions, yield fast convergence but require a gradient evaluation 

and are susceptible to local optima [33]. Non-gradient based approaches, such as genetic 

algorithms and particle swarms, are inspired by organic systems, can be considered robust 

by exploring much of the design domain, but typically converge slowly with high 

computational cost [34]. Unique heuristic methods are less common and problem specific, 

but may yield better results than traditional approaches [35,36]. Exhaustive search, though 

not a traditional optimization algorithm, is an effective and robust method for determining 
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the global optima within a small design domain or if computational cost is not a concern. 

Additionally, Response Surfaces and Neural Networks are approximation tools that can be 

used in combination with several of the above algorithms to further decrease convergence 

time and computational cost [33,37,38]. 

2.2. Applications in Designing Meta- Materials 

The following section describes applications of the previously defined methods in 

designing meta-materials. A large number of meta-material design problems were found 

in the literature. The literature sought to optimize properties of mechanical, piezo-

electrical, thermal, fluid, or acoustic nature. In an effort to down-select, focus was placed 

on the type of application, complexity of the problem, and relevance to the current research. 

Since the properties being targeted in the current work are mechanical in nature, that will 

be the focus of applications presented herein.  

2.2.1. Applications of Topology Optimization 

Czech et al. in [39] designed a meta-material with targeted shear properties to serve 

as the shear band in a non-pneumatic wheel. This optimization process had two levels: a 

top-level wheel optimization targeting meta-material thickness and shear strength required 

to meet design specifications, and a bottom-level topology optimization targeting shear 

strength and meta-material thickness obtained in the top level, but using a different 

constitutive material. Traditional asymptotic homogenization (or HM) assumes the size of 

the unit cell is significantly smaller than the design domain in order to approximate 
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homogenized material properties. The authors instead used a variant of the HM, called 

Volume Averaging Method, in combination with a SIMP approach to solve this IHP. The 

authors provide a detailed explanation of how the Volume Averaging Method relaxes the 

HM limitation between unit cell size and global design domain to ensure accuracy of the 

global optimization analysis in [10]. Three linearly elastic material models (polycarbonate, 

steel, and aluminum) were optimized and compared with an objective of minimizing 

volume and constraints of average and maximum contact pressure. A genetic algorithm 

coupled with a neural network was used for the top-level optimization procedure while the 

developed topology optimization scheme was used for the bottom-level optimization. 

In [40], Gibiansky and Sigmund optimized a three-phase meta-material for extreme 

bulk modulus in order to determine minimum compliances across different volume fraction 

constraints. The novelty in this work is the emphasis on a three-phase meta-material. All 

the previous literature is in reference to a two-phase optimization (typically material and 

void). Thus, a three-phase meta-material is inherently a composite meta-material consisting 

of at least two different materials and void. The objective function maximized the bulk 

modulus of the periodic unit cell with constraints on the volume fraction of each phase, a 

symmetric effective elasticity tensor, and controls for numerical stability. The authors state 

this to be an IHP, however the presented optimization setup contradicts this statement as 

material properties are maximized instead of constrained. One example of a three-phase 

optimized meta-material resulting from this work is shown in Figure 2.9. 

 Carstensen et al. is the most recent attempt (as of the time of this review) to address 

both geometric and material nonlinearity in TO in [41] and apply it to a meta-material 
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design problem aimed at maximizing energy absorption. In their approach, equilibrium is 

described in terms of the residual force vector to be solved by an iterative nonlinear finite 

element solver. The authors decouple the design domain from the finite element domain to 

eliminate numerical issues presented in large deformations of void elements when 

computing the objective function (strain energy). Geometric nonlinearity is appropriately 

accounted for by replacing the Cauchy stress tensor (used for small deformation) with the 

second Piola Kirchoff stress tensor (used for large deformation). To account for material 

nonlinearity, the authors relate the elastic constitutive matrix, plastic hardening modulus, 

and yield stress for each element based on the Von Mises yield function with isotropic 

hardening. The authors then apply their proposed setup to design a meta-material consisting 

of a bulk metallic glass material which typically has brittle failure in bulk form (feature 

size > 1 mm) but microscopically ductile. The objective function maximizes energy 

absorbed with constraints on volume fraction, minimum feature size, and periodic 

boundary conditions. Numerical and experimental comparisons of the TO results to those 

of a regular hexagonal honeycomb structure with equivalent volume fraction are presented. 

 

Figure 2.9. A Three-Phase Meta-Material (a) Unit Cell, and (b) in a 3x3 Array via TO  [40] 
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The designed meta-material was shown to exhibit much better energy absorption behavior 

than the honeycomb, (though it would be interesting to compare the designed meta-material 

to the SO honeycomb designed in [42] with the same objective). While the authors present 

a high-level overview of their nonlinear approach in TO, a much more rigorous 

mathematical formulation is necessary to validate this method. As it stands, the authors 

present a useful extension in TO theory to account for nonlinear problems. 

2.2.2. Applications of Size Optimization  

Mehta in [43] performs SO on a proposed contact-aided regular and auxetic 

honeycomb topology to determine if such contact can cause stress relief as compared to 

the traditional alternatives. The optimization setup consists of a multi-objective function 

maximizing stress relief and gap height with three geometric manufacturing constraints. 

The Non-dominating Sorting Genetic Algorithm (NSGA-II) was chosen due to its ability 

to handle two objectives efficiently and discover the Pareto curve. Mehta applies these 

proposed compliant mechanism topologies in a morphing airfoil example.  

Shultz et al. performs SO in [42] to design a honeycomb meta-material for 

maximized specific energy absorption experiencing in-plane crushing. The optimization 

procedure consists of maximizing specific energy absorption with a geometric 

manufacturing constraint and a free geometric variable while maintaining constant material 

volume. The Multi-Island Genetic Algorithm was chosen in combination with a Response 

Surface to explore the design domain. An in-depth explanation for choosing the specific 

genetic algorithm was not provided and it was noted that other algorithms may have been 
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chosen. The unit cell can be seen before (left) and after (right) undergoing SO in Figure 

2.10. 

  

Figure 2.10. Unit Cell of a Honeycomb Unit Cell before (left) and after (right) SO for Maximum 

Energy Absorption [42] 

Choi and Patel, in [44], propose a method to reliably handle random or uncertain 

constraints in the design of meta-materials. In one of their examples, the authors apply SO 

to a maximum stiffness truss structure problem with a pre-defined topology. The objective 

function is to minimize strain energy with member thickness and overall volume 

constraints. A gradient based Sequential Quadratic Programming algorithm was used due 

to the low number of design variables and availability of an analytical model of the system. 

The authors discuss probabilistic failure based on loading uncertainty in their results. 

2.3. Conclusions 

TO is a numerical method to distribute material within the design domain in an 

optimal layout to meet an objective. TO using the HM is the only method discovered in the 

literature to design meta-materials. Size optimization is a method that has been used in the 

literature to tune meta-materials with a pre-defined unit cell topology to meet an objective. 

Therefore, this method optimizes the dimensions of an existing unit cell topology instead 
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of designing a novel one. Based on this literature review, TO with the HM will be used to 

design a meta-material to replace the tank track pad. 
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CHAPTER 3. DESIGNING VIA TOPOLOGY OPTIMIZATION 

3.1. Objective 

An existing commercially available TO tool was chosen to solve the meta-material 

design problem. The chosen TO tool was Optistruct 12.0 by Altair Engineering, Inc. This 

tool was chosen due to its use of a vetted HM formulation with SIMP, widespread use in 

industry, and availability. The software enables several manufacturing constraints 

including minimum feature size, maximum feature size, and constant cross-section. 

Optistruct is a solver that works in tandem with HyperMesh, an advanced meshing software 

from the same company.  

3.2. TO in Optistruct 

In order to determine the feasibility of using Optistruct to solve the design problem, 

two hypothetical tests were run. These test setups and their results are described in the 

following sub-sections. 

3.2.1. Unit Cell Setup 

The premise of the design problem is to match a nonlinear deformation curve under 

uniaxial loading with a meta-material. An example Unit Cell (UC) geometry with boundary 

conditions and a uniaxial load is shown in Figure 3.1. A uniform pressure, P, was applied 

on one end for the uniaxial load. Boundary conditions were enforced as shown to restrict 

movement in the y-direction and for symmetry in the x-y plane. Thus, a resulting topology 

would need to be mirrored in the x-y plane to fully represent the UC. The geometry was 
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initially chosen with dimensions 10mm x 10mm x 1mm and the material was chosen to be 

common steel (E = 210 GPa,   = 7850 kg/m3,   = 0.30). 

 

Figure 3.1. Initial UC with boundary conditions and uniaxial loading 

This UC, along with the loading and boundary conditions, was created within 

HyperMesh as shown in Figure 3.1. In this figure, the green volume represents the design 

space, in which material can be distributed per the TO algorithm. The yellow volumes 

 

Figure 3.2. Representative UC in Optistruct 



30 

represent the non-design space where solid material must remain to ensure the boundary 

conditions and pressure loading locations remain intact throughout the optimization. 

3.2.2. Single Load Case 

The first test in Optistruct was constrained to target a single compliance given a 

single load case. Compliance, the inverse of stiffness, is a measure of strain energy as 

defined below as 

 
1 1

2 2
V

T TKu dC Vu       (3.1) 

Compliance was used due to its availability in Optistruct as a response variable. The 

applied pressure was P1 = 2,000 MPa and the targeted compliance of the UC was 3,685 

MJ, which represents 5x the displacement of the same geometry with solid steel. A 

geometric nonlinear analysis was used to solve the equilibrium equations. The 

corresponding optimization setup can be seen in equation (3.2) below. 

   min
𝑥

:  𝑓(𝑥) =
𝑉(𝑥)

𝑉0
 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝐶(𝑃1) = 3685 MJ 

         :  𝐾𝑈 = 𝐹 

         :  0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 1  

(3.2) 

The software was able to converge to a solution to this optimization problem and the 

resulting UC topology is shown in Figure 3.3 with color indicating element densities. The 

topology was not consistent through the thickness due to the boundary condition along the 

x-y plane preventing displacement in the z-direction. The UC geometry was then tested 

across several pressure loads to determine its stress-strain response. This response is shown 
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in Figure 3.4. Note that a pseudo-strain in terms of overall UC deformation was calculated 

as  

 % (100)
avg

Deformation
L


   (3.3) 

where 
avg  is the average displacement at the end of the UC where the pressure is applied 

and L  is the length of the UC (10 mm). 

  

Figure 3.3. UC topology solution to single load case, (right) top, and (left) bottom 

 

 

Figure 3.4. Uniaxial tension curve for UC with single targeted compliance 
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3.2.3. Multiple Load Case 

 The second test was constrained to target multiple compliances corresponding to 

multiple load cases. The two load cases were P1 = 2,000 MPa and P2 = 10,000 MPa with 

corresponding compliances of 3,685 MJ and 97,000 MJ, respectively. This second loading 

and compliance were chosen arbitrarily to determine if the deformation response of the 

first TO solution could be tuned, i.e. as shown in Figure 3.5. In this figure, the blue curve 

is the response of the first TO solution and the red curve is a hypothetical target response 

corresponding to the two compliances mentioned previously.  

As in the first test, a geometric nonlinearity analysis was used to solve the 

equilibrium equations. The corresponding optimization setup can be seen in equation (3.4) 

   min
𝑥

:  𝑓(𝑥) =
𝑉(𝑥)

𝑉0
 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝐶(𝑃1) = 3685 MJ 

         :  𝐶(𝑃2) =  97000 MJ 

         :  𝐾𝑈 = 𝐹 

         :  0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 1  

(3.4) 

 

Figure 3.5. Hypothetical uniaxial tension curve with two targeted compliances 
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 Unfortunately, Optistruct was unable to converge to a solution for this second 

optimization with two targeted compliances and did not yield a resulting UC topology. 

3.3. Discussion 

Based on the inability for Optistruct to yield a solution to the multiple compliance 

problem, it was determined that the software was not suitable to solve the intended meta-

material design problem. After closer examination of both the theoretical capabilities of 

the HM and current capabilities of the chosen software, several reasons surfaced to explain 

why this occurred. Three primary limitations were discovered, including geometric 

nonlinearity, periodic boundary conditions, and aspect ratio of the UC. These issues are 

described in detail below.  

3.3.1. Geometric Nonlinearity  

It is important to frame the objective of the overall design problem in question. As 

mentioned in section 1.3, the goal of replacing the rubber track pad with a meta-material 

with some elastic constitutive material is driven by the idea of replacing material 

nonlinearity with geometric nonlinearity. With this in mind, a TO tool must be able to 

account for geometric nonlinearity in both the homogenization formulation and in solving 

for the equilibrium. 

It is important to note the difference between solving a nonlinear finite element 

analysis and accounting for geometric nonlinearity in the homogenization formulation of 

the TO algorithm. A nonlinear finite element analysis, which Optistruct has the capability 

to solve, is the iterative solver that steps through increased load steps or displacements until 
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the intended load or displacement is reached [45]. This is a well-known and explored 

theoretical topic in the finite element method (FEM) that has been widely implemented in 

commercial FEM packages, including Optistruct. Meanwhile, accounting for geometric 

nonlinearity in the mathematic TO formulation is not as trivial and well explored.  

3.1.3.1.  Difference in Linear and Nonlinear TO Formulation 

In the formulation for linear elasticity under the small deformation assumption, 

stress and strain can be simplified to the Cauchy stress tensor,  , and the infinitesimal 

strain tensor,  , respectively. The infinitesimal strain tensor can be denoted as 

 
1

2

ji
ij

j i

dd

x x


 
   




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  (3.5) 

The foundation of the HM lies in the homogenized stiffness tensor, H

ijC , which represents 

the global constitutive properties of the homogenized media in question. In the linear 

elastic case, this tensor is determined by the following equation 

 ( ) ( ) ( ) ( )

0 0

1
( ) ( )( )H e i e i T e e j e J

ij

e

C d d K d d


  

   (3.6) 

where ( )

0

e id is the nodal displacements for the ith element, eK  is the element stiffness 

matrix, and   represents the design variable. Note that in (3.6) the displacements 

correspond to the infinitesimal strain tensor,   [41].  

 In continuum mechanics, geometric nonlinearity can be defined by significant 

changes in shape and location between the initial, X, and final, x, configurations [46]. This 

can be appropriately accounted for by using the second Piola Kirchoff stress, S , and the 
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Green-Lagrangian strain tensor, 
ijE . The Green-Lagrangian strain tensor is defined as 

ijE

[38, 43] below 

 
1

2

i
ij

j j

j k k

i i

dd d d
E

X X X X
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        

  (3.7) 

In geometric nonlinearity, the homogenized stiffness tensor H

ijklC  must be calculated 

as a tangent to the current strain state using the Green-Lagrangian strain tensor at the 

currently deformed state as shown in the equation below 

 tan 0 0)1
( )

( t

ijk
e e

l ijkl ijkl kl

l

e

e e

t
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g
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E E
E E

E E
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E
K

 

 
    (3.8) 

which is derived from taking the derivative of the second Piola Stress tensor with respect 

to the Green-Lagrangian strain tensor [47]. The homogenized stiffness tensor, H

ijklC , is 

required to numerically represent the effective properties of the microscopic structure 

created by the design variables. It is then used to relate these properties in the finite element 

domain for solving of the equilibrium equations in the finite element analysis.  

 The nonlinear terms of stress and strain would further impact the optimization 

scheme in TO depending on how the objective function is formulated. Since the 

optimization algorithm is typically gradient-based, sensitivities of the design variables 

must be calculated by taking the partial derivative of the objective function with respect to 

the design variable. If the objective function is formulated to maximize some homogenized 

material properties, or H

ijklC , then linear or nonlinear stress and strain tensors matters in the 

complexity of the sensitivity derivation. The reviewed papers that have done this have used 

the adjunct method to derive the sensitivity equations [47,48]. In terms of the current meta-
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material design problem, the optimization can be set up by constraining the target material 

properties instead of optimizing for them. Thus, this issue can be circumvented in this case.  

3.1.3.2.  Consideration of Material Nonlinearity 

 The sources that consider and derive the equations for geometric nonlinearity 

simultaneously take material nonlinearity into account. The constitutive material will 

exceed yielding in many cases where geometric nonlinearity has a pronounced effect. In 

these cases, it would be critical to take material nonlinearity into consideration. However, 

in the intended track pad meta-material problem, it is required that the final structure should 

not yield in the range of deformation it undergoes as it should recover fully after each cyclic 

loading. Thus, material nonlinearity is not required in the TO formulation as the maximum 

stresses seen in the resulting structure will be below yielding of the constitutive material 

by design. 

3.3.2. The Nonlinear Inverse Homogenization Problem 

The IHP class of TO problems was introduced 2.1.1.3 as a way to target specific 

material properties instead of minimizing or maximizing them. However, closer inspection 

of the reviewed literature reveals that the IHP has only been used to target linearly elastic 

materials. For instance, Sigmund in [24] and Diaz and Bénard in [27] both targeted a single 

stiffness tensor under the assumption of linear elasticity. Most recently, Czech targeted a 

single shear modulus in [49] to design a meta-material UC under the assumption of linear 

elasticity even though strains of up to 10% were observed.  
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In order to solve the current problem, there exists several targeted stiffness tensors 

that represent the tangent to the stress-strain curve at different strain levels. Therefore, this 

problem represents a nonlinear IHP. A visual comparison of the target responses for a linear 

and nonlinear IHP can be found in Figure 3.6. The optimization setup for such a nonlinear 

IHP is not trivial as to how to implement multiple targeted stiffness tensors at different 

strain levels in terms of constraints. The complexity arises as the target stiffness tensor 

becomes strain-dependent in the nonlinear case where it is not so in the linear case. As of 

the time of this writing, a nonlinear IHP has not yet been formulated or solved in the 

literature. 

 

Figure 3.6 Illustrative Comparison of Target Responses in a Linear and Nonlinear IHP 

3.3.3. Periodic Boundary Conditions 

As mentioned in section 2.1.1.4, one of the primary concerns in tailoring TO for 

the design of meta-materials is applying periodic boundary conditions to the UC. This is 

not a new or complex feature in the context of implementing in a finite element analysis, 

as it has been done in [27,39,50,51] among others. The applied boundary conditions 

presented in 3.2.1 were ill posed to effectively simulate periodic connectivity with other 
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UCs. Unfortunately, Optistruct does not currently have the ability to apply such boundary 

conditions and therefore limits the ability to design a meta-material UC accordingly. 

3.3.4. Unit Cell Aspect Ratio 

A more obscure limitation of TO in the design of meta-materials is its inability to 

consider aspect ratio of the UC, or design space, as a design variable. This is a downfall of 

the overall method of TO and not Optistruct specifically. Even in linear elasticity examples, 

 

 

a) Boundary Conditions 

 

 

b) 105x20 

 

c) 60x35 

 

d) 46x46 

 

e) 30x65 

Figure 3.7. Linear elastic TO a) boundary conditions with aspect ratio “x” by “y” and b-e) 

results with different aspect ratios 

y 

x 
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it can be seen that the aspect ratio of the design space can change the resulting topological 

design.  

 The results in Figure 3.7 were created via the 88-line TO Matlab code readily 

available in [52] where the author uses linear elasticity with an objective of minimizing 

strain energy. The top figure (a) shows the cantilever beam boundary conditions used. The 

following four images (b-e) show the various results due to changes in aspect ratio. Note 

that the same number of elements (2100), volume fraction (0.4), minimum radius (1.5), 

and penalization factor (3.0) were used in each example. This figure serves to illustrate the 

importance of considering aspect ratio of the design space when performing TO.  

 In most design problems not considering meta-materials, such as the one in Figure 

3.7, changing the aspect ratio of the design space changes the physical problem, thus aspect 

ratio is not at issue. However, this is not the case in the design of a meta-material as the 

design space of a UC is arbitrary and unknown before a solution is obtained. Bénard and 

Diaz state in [26] that the choice in UC geometry can limit the solution set of achievable 

meta-materials. Since a change in the aspect ratio of a UC design space changes the 

inherent TO problem, the UC aspect ratio must be considered as another design parameter 

when performing TO in the design of meta-materials. As of the time of this writing, the 

author has not found any literature that explores the affect that changing the aspect ratio of 

the design space has on the existence and uniqueness of solutions using TO in the design 

of a meta-material UC.  
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3.4. Conclusions  

The results from this chapter directly answer research question 2.a and associated 

hypothesis, reproduced below. 

R2. What method can be used to successfully develop a meta-material 

to meet the nonlinear deformation response of the current 

application? 

  a. Is topology optimization a feasible method to accomplish 

this? 

H2. A meta-material can be developed using topology optimization to 

meet the material behavior requirements. 

The literature review in Chapter 2 indicates that the only method to design meta-

materials is TO. It is determined that it may be possible to use TO to solve the current meta-

material design problem by appropriately addressing the issues discussed in the previous 

sections. This might be accomplished by developing the necessary TO formulation and 

developing a code accordingly. However, such a formulation and its associated code would 

be highly complex and outside the scope of the current work due to time limitations. Based 

on the results that Optistruct cannot be used in the design of the meta-material UC, it is 

determined that another tool or method must be used to obtain a solution. Thus, for the 

purposes of this work, the second hypothesis was proved false. 
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CHAPTER 4. DESIGNING VIA ENGINEERING PRINCIPLES 

4.1. Objective 

A new method is needed to design meta-materials based on some physical 

understanding of the base UC and its periodic interaction with adjacent UCs. Therefore, 

engineering principles were used to obtain this understanding and aid in the design of a 

meta-material UC that exhibits the same deformation as the targeted rubber response. 

This chapter is organized to cover the following:  

 An explanation of the evaluation method of a uniaxial meta-material 

response  

 Description of the evolution of the initial “Brick” UC design 

 Description of the evolution of the final “BrickOval” UC design 

 Discussion of other considerations when designing and evaluating meta-

material UCs 

 Conclusions on the results and how they address the research questions 

4.2. Method of Evaluation 

When replacing a solid, homogenous material with an equivalent meta-material 

structure, the targeted equivalent properties and a method to evaluate such properties must 

be determined. In the case of the current elastomer, a 2nd order Ogden hyperelastic model 

can be used to fully define the homogenous mechanical properties in uniaxial tension and 

compression, equibiaxial tension, and pure shear depicted in Figure 4.1. The resulting 

stress-strain curves are representative of internal forces in the elastomer as a homogeneous 
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continuum and can be related to the 2nd Piola Kirchoff stress tensor at different strain levels, 

as done by Dangeti in [3]. 

 

Figure 4.1 Current Elastomer Stress-Strain Response [3] 

 These stresses and strains correspond to the infinitesimal element of the rubber pad 

indicated in Figure 4.2 (a) after deformation with the appropriate load condition. Therefore, 

an equivalent replacement to this rubber pad might experience the same response 

characterized by these infinitesimal stresses and strains. However, the stress-strain 

relationship in a meta-material is not valid, as shown in Figure 4.2 (b) after deformation. 

This is invalid for the meta-material due to its combination of material and void at the 

infinitesimal level. Ultimately, a meta-material is a structure combined in a patterned 

continuum and its properties must be analyzed on a larger scale  
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than classical elasticity. Thus, a different method must be chosen to compare the rubber 

properties to that of the designed meta-material. 

The ultimate goal in the current design problem is not to replace the rubber pad 

with a meta-material that exhibits the same equibiaxial tension or shear characteristics. 

Instead, it is to replace the pad with a meta-material that has the same behavior in the 

primary loading condition,  

compression. Thus, the evaluation method can be relaxed to focus only on a comparison 

of compression response. Therefore, a uniaxial deformation calculation, or % vertical 

deformation, can then be defined as a so-called “meta-strain” as shown below 

 Meta train % Vertical Deformation (100)S
H


     (4.1) 

where H  represents the total height of the rubber or meta-material pad and   represents 

the vertical displacement after deformation, as shown in Figure 4.2 (a) and (b). The meta-

strain will be calculated for every load case corresponding to the range of the target 

response and will allow for direct comparison between the rubber and meta-material. 

In order to compare the meta-material, the % vertical deformation target values 

must be determined for the rubber pad. The analysis setup is shown in Figure 4.3 with the 

rubber pad on top of a rigid body. Only half of the rubber pad in the x-direction (67 x 21 

mm instead of 134 x 21 mm) was modeled to ensure the mesh was not biased about the 

center and to decrease simulation time. Therefore, boundary conditions were imposed on 

the right side of the pad to ensure no translation in the x-direction. Additionally, the rigid 

body was used to allow the rubber to translate in the negative x-direction without friction 

as it deformed.  A radius of 2 mm was used on the bottom corner of the rubber pad to allow 
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deformation at higher strains without excessive element-level deformation at the corner of 

the pad and prevent the need for adaptive meshing. 

(a) 

 

(b

) 

 

Figure 4.2 Example Methods of Determining Material Properties of (a) Rubber and (b) Meta-

Material 
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Figure 4.3 Load and Boundary Conditions for Rubber Pad 

 Pressures were applied in compression to the rubber pad corresponding to the 4 

stresses listed in Table 4.1. The infinitesimal strain values of the rubber material model 

corresponding to the given stresses are shown in comparison with the % vertical 

deformation at the center of the rubber pad from this analysis. A comparison in terms of % 

difference between infinitesimal strain and % vertical deformation shows that there is little 

to no difference between the values of these two types of target responses (within 2%) 

despite the methods used to achieve them. This small variation can be attributed to 

numerical anomalies of running the finite element simulation. Due to the small difference 

between these two sets of values, the author has chosen to use the original strain values as 

Table 4.1 Target % Vertical Deformation Values 

Stress [Mpa] Strain [-] 
% Vertical 

Deformation [-] 
% Difference 

-0.3817 5.000% 5.073% -1.459% 

-0.8384 10.000% 9.841% 1.587% 

-2.0632 20.000% 20.135% -0.677% 

-3.9327 30.000% 29.495% 1.682% 
 

Rubber 

Rigid Body 
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targets for comparison with that of the meta-material designs. These target % vertical 

deformation values can be seen as a response to the applied stresses in Figure 4.4.  

 

 
Figure 4.4 Uniaxial Compression Target Response  

4.3. Design of the Brick Unit Cell 

The following subs-sections explain the process in designing the initial concept UC 

based on engineering principles. 

4.3.1. Element Geometry 

Since the objective of this application is to replace a nonlinear material with a 

nonlinear geometry, it is appropriate to understand this geometric nonlinearity in 

structures. One such structure is the Fixed-Fixed Beam (FFB) with its free body diagram 

shown in the top left of Figure 4.5. This figure also shows how the geometric nonlinearity 

is affected based on the aspect ratio, /L h , of the beam. As this ratio increases, the 

structure’s geometric nonlinearity becomes increasingly more pronounced. Note that this 
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figure intentionally does not show numerical values as this nonlinear behavior is true across 

different elastic materials, though the force-displacement values will change. In order to 

accomplish the desired large deformations needed to replace the elastomer, it is proposed 

to use this FFB in a UC and achieve large deformations via bending. 

 

Figure 4.5 FFB Free Body Diagram and Geometric Nonlinearity based on Aspect Ratio 

4.3.2. Integration into a UC 

A UC is now designed with a focus on integrating the FFB. In order for a UC to 

contain a FFB, the boundary conditions of this element geometry must be preserved. For 

the purposes of a UC, the applied point load can be approximated as a localized distributed 

load. The fixed ends and applied load can then be enforced via the same member, or strut. 

The FFB with boundary conditions as enforced by three struts can be seen in Figure 4.6. 

The FFB is shown here with a high aspect ratio to allow for geometric nonlinearity. The 

strut should correspondingly have negligible deformation as compared to the FFB. This 
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will enable the FFB to act as the primary mode of deformation in the UC and allow the 

designer to isolate and modify its parameters appropriately. 

      

Figure 4.6 FFB with Boundary Conditions Preserved 

 Once boundary conditions were enforced, considerations were given to UC 

periodicity and connectivity. The strut was therefore modified as shown in Figure 4.7. A 

repeating UC now emerges from this periodicity, denoted as the “Brick” concept. This 

concept uses a meta-material layer shift of half-UC length to impose the load from layer 1, 

via strut a , to cause bending in the FFB, b , which is constrained to both struts 1c  and 2c  

in layer 2. These layer 2 struts would then impose the load on the next layer. In this way, 

the load path continues throughout the meta-material where the strut acts as the boundary 

condition and load source for the current and successive layer, respectively. 

      

Figure 4.7 Modified Strut to Allow UC Periodicity and Connectivity 
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4.3.3. Evaluation of Brick UC Concept 

The “Brick” UC concept must now be evaluated. The “Brick” UC is shown in 

Figure 4.8 with its four design parameters. Parameters 1t  and L  are most closely tied with 

the FFB while 2t  and H  modify the strut. 

 

Figure 4.8 "Brick" UC with Parameters 

4.3.3.1. UC Tessellation 

The “Brick” UC was then tessellated into a 4x4 meta-material array with loading 

and boundary conditions as shown in Figure 4.9. The existing track pad has approximate 

dimensions of 136 x 21 mm in the two-dimensional cross-section of interest. The number 

of UCs chosen in the tessellation was based on the initial dimensions chosen for the 

parameters and the available design space of the current application. It was acknowledged 

that the number of UCs required to fill this design space would change as the parameters 

of the UC changed. Thus, iteration would be carried out with respect to optimal UC 

parameters and tessellation as needed. The boundary conditions were imposed such that 

the bottom layer was fixed and the vertical sides of the exterior UCs could only translate 

in the y-direction. These boundary conditions on the sides of the meta-material were 

imposed to prevent collapse of the overhanging UCs. 
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Figure 4.9 "Brick" UC in a 4x4 Tessellation 

4.3.3.2. Sensitivity Analysis  

A sensitivity analysis was conducted of the 4x4 “Brick” UC tessellation to 

determine the feasibility of modifying the UC parameters such that the vertical deformation 

response converges towards that of the target. The sensitivity analysis only analyzed three 

of the four “Brick” concept parameters. The strut thickness, 2t , was not analyzed since the 

strut was designed to not have an effect on vertical deformation. The strut will only displace 

due to rigid body motion. Even though overall height of the UC, H , modifies the strut, it 

is analyzed due to its contribution to the total height of the tessellated meta-material. This 

contribution effects the vertical meta-material deformation properties defined in (4.1). The 

contribution of UC height, UCH , in the total height of the 4x4 tessellation is shown below 

as 

 14( ) 3( )Total UCH H t     (4.2) 
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where TotalH is the total height of the meta-material. The height is not simply four times UC 

height since there are overlaps in the UCs as they share the same thickness, 1t . The 

sensitivity analysis performed was a Full Factorial. The parameters are shown in Table 4.2 

with their high and low values. All dimensions are shown in millimeters. The Python script 

used to perform this analysis is included in Chapter 7. 

Table 4.2 Full Factorial Parameters and Values 

 High (1) Low (0) 

L [mm] 15.0 10.0 

H [mm] 5.0 3.0 

t1 [mm] 0.100 0.075 
 

  

The results of the Full Factorial analysis are shown in Figure 4.10 and compared to 

the target curve. The legend indicates the UC parameters as high or low with the order of 

“ L , H , 1t .” In other words, curve “101” refers to the “Brick” UC with a length of 15.0 mm, 

 

Figure 4.10 Full Factorial Analysis of 4x4 "Brick" Tessellation 
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height of 3.0 mm, and 1t   thickness of 0.100 mm. A constant strut thickness, 2t , of 0.5 mm 

was maintained through all tests. All simulations were evaluated with a constitutive 

material of generic steel with a linear elastic material model (E = 210 GPa,   = 7850 

kg/m3,   = 0.30). The results in Figure 4.10 show that increasing UC width and decreasing 

thickness 1t  both increase the % vertical deformation of the 4x4 meta-material. Increasing 

the height of the UC decreases the overall % vertical deformation. 

4.3.3.3.Conclusion on Feasibility 

The results of Full Factorial analysis of the “Brick” UC parameters indicate that no 

combination of parameters will enable convergence of the nonlinear response towards that 

of the target. Each factorial response exhibits higher stiffening as additional load is applied 

than that of the target curve. There is no evidence from the factorial responses that this rate 

of stiffening can be modified. Therefore, the “Brick” UC concept is deemed infeasible in 

matching the target response. 

4.4. Design of the BrickOval Unit Cell 

Since the “Brick” UC concept could not converge to the target response, a design 

iteration in terms of a geometric modification of this concept is proposed. This 

modification and its results are described in the following sub-sections. 
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4.4.1. Additional Element Geometry 

The basis of the “Brick” UC concept was the FFB and its deformation. However, 

as this geometry alone did not enable tuning towards the target response, another geometry 

is proposed to be combined with the existing “Brick” geometry. This proposed geometry 

is the oval, or constant-thickness curved beam. The oval has three parameters which control 

its behavior. These parameters, along with their sensitivities to geometric nonlinearity 

under a compressive loading, can be seen in Figure 4.11. This figure shows that either 

decreasing the oval thickness or increasing the ratio of R1/R2 both increase geometric 

nonlinearity of the geometry.  

 

Figure 4.11 Oval Geometric Free Body Diagram Nonlinearity based on Parameter Sensitivities 

 The primary difference between the FFB and the oval under compression is that 

they have inverse stiffening properties. In other words, the FFB stiffens as additional load 

is applied while the oval under compression softens as additional load applies. Therefore, 
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by combining these two geometries in the same UC, an effective UC stiffness may occur 

similar to that of adding springs in parallel, defined in the equation below 

 1 2effK K K     (4.3) 

where effK  is the effective stiffness, 1K  represents the stiffness of the FFB, and 2K  

represents the stiffness of the oval. This combination of geometries with inverse stiffness 

responses is predicted to allow for a UC geometry with parameters that can be adjusted to 

match the target response. This combination of each individual stiffness to match the target 

response is shown in Figure 4.12. 

  

Figure 4.12 Predicted Effect Of Combining Oval with FFB in a UC 

4.4.2. Integration into Brick UC Concept 

The oval geometry was added to the “Brick” UC design as shown in Figure 4.13 

along with UC design parameters. Since the radii of the oval geometry was constrained to 

the right and left strut and to the top and bottom FFB, the only additional design parameter 

in the new, “BrickOval”, UC concept is the oval thickness, t3. 

ε 
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Figure 4.13 Integration of Oval with FFB in UC 

 The “BrickOval” UC combines the FFB in oval geometry in a manner consistent 

with springs in parallel. This can be proven by analyzing the load path through the 

geometry as shown in Figure 4.14. The total force, TotF , is applied to the springs in parallel. 

 

 

 

 

Figure 4.14 Load Path of (top) Springs and (bottom) Geometries in Parallel 
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Thus, each spring experiences only a portion of the total force, i.e. 1 2TotF F F  . Similarly, 

the “BrickOval” geometry combines the FFB and oval in parallel as each geometry sees a 

portion of the total applied force.  

4.4.3. Evaluation of BrickOval UC Concept 

This new BrickOval UC concept was evaluated in a similar manner to the previous 

concept. The UC was tessellated into a 4x4 array as before. An example tessellation is 

shown in Figure 4.15 with the same material properties, loading, and boundary conditions 

as the previous concept. 

 

Figure 4.15 Example 4x4 Tessellation of BrickOval UC 

 A Full Factorial was not required with the “BrickOval” concept. A sensitivity 

analysis was done only by varying the oval thickness, 3t , for a high and low value while 

maintaining all other variables the same. As can be seen from Figure 4.16, as the oval 

thickness increases, the rate at which the vertical response stiffens decreases. In other 

words, the curvature of the response curve decreases.  
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Figure 4.16 Sensitivity of Oval Thickness in BrickOval Design 

Note that for the lower oval thickness value, the “BrickOval” concept has a 

deformation response similar to that of the original “Brick” UC design. This result supports 

the analogy of springs in parallel in equation (4.3) as shown in the equation below 

 
2

1
0
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K

effK K


    (4.4) 

where the effective stiffness becomes that of the FFB as the stiffness of the oval approaches 

zero. 

Since the sensitivity analysis results indicate that the “BrickOval” UC parameters can be 

modified to adjust the nonlinear response towards the target curve, this design is deemed a 

feasible candidate.  
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4.4.4. Size Optimization of UC 

Since the “BrickOval” UC is deemed feasible, the concept will undergo a Size 

Optimization (SO) of its parameters to converge the vertical deformation response towards 

that of the target curve. 

4.4.4.1. Optimization Setup and Procedure 

The SO has an objective to minimize the difference in the obtained curve and the 

target curve via the sum of least squares as shown below 

  
2

1

min :
N

t c

i i
f

i

f  


     (4.5) 

where t

i  and c

i are the target and concept % vertical deformation, respectively, for load 

case i . For the given application, the four load cases and their respective target % vertical 

deformation values are given in Table 4.1. The optimization routine was carried out in 

ModeFrontier to optimize the input UC parameters. These UC parameters were input to a 

Python script that assembled the appropriate 4x4 BrickOval meta-material, applied the load 

and boundary conditions, generated a mesh, and performed a finite element analysis for all 

four load cases in Abaqus.  

 Three variables that directly affected the FFB and oval were considered as 

optimization variables – L , 1t , and 3t . The UC height, H , and strut thickness, 2t , were 

held constant at 5.0 mm and 1.0 mm, respectively. A constraint was placed on the 

“BrickOval” UC geometry such that oval thickness, 3t , could not exceed the thickness of 
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the FFB, 1t , due to geometric considerations in assembling the UC via the Python script. 

This constraint was enforced in the optimizer by creating a variable   such that  

 3 1t t    (4.6) 

where 0< <1. A representation of the graphical optimization setup in ModeFrontier can 

be seen in Figure 4.17. A genetic algorithm, specifically the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II), was chosen to explore the design space with a generation 

size of 15 and default mutation parameters (crossover probability of 0.9 and mutation 

 

Figure 4.17 Optimization Setup in ModeFrontier 
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probability of 1.0). The initial generation was selected via a design of experiments of a 

Uniform Latin Hypercube to evenly sample the design space. The Python script used in 

this optimization to automate the geometry generation based on input variables, execute 

the four load cases, and then output the desired values is included in Appendix B.  

4.4.4.2.  Results from Optimization 

The algorithm converged as indicated by the design history shown in Figure 4.18. 

This figure shows the convergence of the objective function over the designs. Note that the 

objective values are plotted on a logarithmic scale.  

 

Figure 4.18 Optimization Design History and Objective Convergence 

  The design with the lowest objective function value (at 3.5534 E-04), and therefore 

most closely matching the target curve, is shown in Figure 4.19. This response can be seen 

to match the target curve very closely as the objective function value correlates to an 

average difference of 0.94% difference between the target and optimized responses. 
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Figure 4.19 Optimized Meta-Material Deformation Response 

 The optimized design corresponding with this curve can be seen in Figure 4.20 in 

an assembled 4x4 array. The dimensions of this array are 138 mm by 18.815 mm which 

fits within the application design space mentioned previously. The optimized UC 

dimensions corresponding to this design are listed in Table 4.3. 

 

Figure 4.20 Optimized BrickOval Design in a 4x4 Array 

 

Table 4.3 Dimensions of Optimized UC 

 Dimension [mm] 

L 36.000 

H 5.000 

t1 0.395 

t2 1.000 

t3 0.352 
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4.4.5. Conclusion on BrickOval UC Design 

These results are very promising since the “BrickOval” UC was able to be 

systematically designed to match the targeted nonlinear deformation curve. Therefore, the 

primary objective of this work in replacing the material nonlinearity of the current rubber 

pad with geometric nonlinearity of a designed meta-material was achieved. However, there 

are two constraints that are not met with this design: stress and manufacturability. The most 

important of these constraints is that the maximum stress observed in the 4x4 structure was 

400% above yield stress of the constitutive material, steel. This excessive stress prevents 

the nonlinearity observed from the linear elastic simulation from being experimentally 

viable in a physical prototype. Additionally, the manufacturability is limited as current 

additive manufacturing processes have a limit of manufacturing members with a minimum 

size of 0.4 mm. This issue can be addressed by either improved manufacturing techniques 

to further decrease this constraint or by scaling the UC, as will be discussed later in this 

chapter.  It should also be noted that the height and strut thickness were constrained in this 

optimization procedure. It may be possible to further modify the “BrickOval” UC 

parameters to further decrease the stress to within permissible limits. 

4.5. Design Considerations 

There exists numerous considerations in the design of meta-materials. Exploring 

these design considerations can lead to more concrete design principles. Three such 

considerations will be discussed in detail along with their implications on the current 

application. 
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4.5.1. Homogenization Limit 

The homogenization limit can be determined to obtain the vertical deformation 

properties of an infinitely-tessellated meta-material. Since an infinite continuum of UCs 

cannot be simulated, a convergence study can be performed to find the asymptote in which 

these homogenized properties theoretically lie. This study will also reveal the relative effect 

of boundary conditions in the context of determining bulk material properties of meta-

materials. However, it is important to note that different boundary conditions and UC 

geometries may have a different effect on convergence towards the homogenization limit.  

A uniaxial deformation response homogenization limit can be defined as the limit 

in which increasing the number of UCs in the meta-material no longer has any effect on 

the vertical properties obtained. The reason differences in these vertical properties exist is 

primarily due to boundary conditions. As the number of UCs increases, the less overall 

effect the boundary conditions have. Thus, a homogenization limit for these vertical 

properties can be determined. 

A test was run on the optimized BrickOval solution to determine the 

homogenization limit of this specific UC geometry. This test was run for seven different 

n-by-n UC tessellations across the same four load cases (shown in Table 4.1) used to 

evaluate the meta-material. Only even numbers were used for the n-by-n tessellations due 

to odd numbers changing how the boundary conditions are applied to the meta-material 

because of the half-UC shift between layers in the y-direction. These homogenization limit 

results are shown in Figure 4.21. 



64 

 In this figure, it can be seen that as the tessellation increases, the change in vertical 

deformation continuously decreases. This can be further seen in Table 4.4 where the 

percent change in deformation is shown between similar tessellations across all load cases. 

Note that the difference between the 8x8 and 10x10 is about the same as that between the 

20x20 and 30x30. This indicates convergence of properties. 

Table 4.4 % Difference in Vertical Deformation Comparison Across Load Cases 

 % Difference in Vertical Deformation 

Applied 

Pressure 
2x2 / 4x4 4x4 / 6x6 6x6 / 8x8 8x8 / 10x10 10x10 / 20x20 20x20 / 30x30 

-0.3817 -34.227% -8.739% -4.036% -2.228% -3.000% -3.036% 

-0.8384 -35.700% -10.514% -4.953% -2.751% -3.601% -3.889% 

-2.0632 -33.619% -10.976% -5.272% -3.053% -5.374% -2.425% 

-3.9327 -33.860% -10.624% -5.097% -2.957% -5.525% -2.042% 
 

  

 Perhaps the clearest way to see this convergence is in Figure 4.22 where the % 

vertical deformation is plotted across the various meta-material tessellations for each load 

case. In every load case, convergence towards some property is visibly seen through 

 

Figure 4.21 % Deformation Homogenization Limit Results for BrickOval UC 
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exponential decay towards an asymptote. For the BrickOval UC, approximate convergence 

is seen at a tessellation of 20x20. This differs from the results of Czech in [49] where 

convergence was expressed to exist at a tessellation of 10x10. This difference most likely 

exists due to the varying aspect ratio of the UC, the UC geometry, and the boundary 

conditions applied. The UC aspect ratio in that work was 1:1 while the optimized 

BrickOval was 7.2:1. The internal geometries were vastly different and Czech applied 

symmetric boundary conditions to simulate infinite UC tessellation.  

 
Figure 4.22 % Deformation Convergence towards Homogeneous Properties 

4.5.2. Unit Cell Scaling 

Another consideration in the design for meta-material UCs is the concept of UC 

scaling. Understanding how global properties and internal stresses change as a result of 

scaling can be useful in guiding the design of the UC. A study was performed on the 

optimized BrickOval solution by scaling the UC dimensions to determine both of these 

trends while maintaining a 4x4 UC tessellation. Scaling in this case refers to multiplying 
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all dimensions by a scalar value. The comparison of % vertical deformation between the 

scaled meta-materials are shown in Table 4.5.  

Table 4.5 Comparison of Vertical Deformation between Scaled Unit Cells 

 Scale 

 0.1 0.25 0.5 1 2 4 10 

Applied Pressure 

[MPa] 
% Difference from Datum [-] 

-0.3817 0.020% -0.062% 0.009% - 0.000% -0.009% -0.023% 

-0.8384 0.016% -0.064% 0.006% - 0.000% -0.009% -0.027% 

-2.0632 0.017% -0.026% 0.010% - 0.000% -0.001% 0.008% 

-3.9327 0.014% -0.010% 0.004% - 0.000% 0.000% 0.009% 
 

 

This table clearly shows that scaling the meta-material has virtually no effect on 

the bulk deformation properties. Additionally, Figure 4.23 shows that the stress distribution 

and max stresses exhibited in the UCs at the datum, 0.1x scaled, and 10x scaled UC’s are 

all equivalent. The max stresses in each are about 2100 MPa. These results are promising 

for the designer in terms of enabling freedom to modify the UC size to fit the design space, 

allow for a more homogeneous meta-material continuum, or meet specific manufacturing 

constraints once the UC has been designed to match the target response. The designer can 

scale the UC without increasing the maximum observed stresses. However, if the max 

stress in the optimized UC is above the permissible value, then the designer cannot scale 

the UC to reduce the stresses to the desired level. It should also be noted that if the designer 

decreases the UC size to enable additional UCs to fill the design space, this change in 

tessellation size will change the % vertical deformation properties as indicated in 4.5.1. 

Therefore, the UC parameters may have to be optimized again to match the target curve. 
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a) 

 

b) 

 

c) 

 

Figure 4.23 Max Stress and Stress Distribution Comparison of a) Datum, b) 0.1 Scale, and c) 10.0 Scale UC’s 
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4.5.3. Material Selection 

The choice of material in design is important for the component’s performance, 

cost, manufacturability, and other factors [9].  

4.3.5.1. Theoretical Objective 

For the current application, the working principle of the “BrickOval” UC design is 

to obtain large global deformation via bending without yielding of the constitutive material, 

i.e. low strains at the local level. However, the choice in this constitutive material 

inherently determines the maximum global deformation before yielding given a geometric 

configuration.  

In the analyses presented in 4.4 for the “BrickOval” design, the constitutive 

material was chosen to be steel. However, an optimal material for the current application 

would be one in which the difference between yield stress and elastic modulus is minimized 

to allow maximum deformation before yielding. In other words, an optimal constitutive 

material of the UC should minimize the ratio 

 : YE    (4.7) 

where E  is elastic modulus and Y  is yield stress of the material. An Ashby chart 

comparing these two properties can be found in Figure 4.24. In this diagram, elastomers 

can be found to have an exceptionally desirable ratio in the range of 1:1-10:1. Of course, 

the current elastomer is being replaced by a linear elastic metal. By contrast, the steel used 

in the simulations has a ratio of 360:1. The linear elastic metal with the lowest ratio is that 

of titanium alloy Ti 3Al-8V-6Cr-4Mo-4Zr-0.05Pd ( E = 102 GPa, Y  = 1103 MPa,   = 
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0.32) at 90:1. Therefore, simulations should be run with this titanium alloy to analyze the 

feasibility of any meta-material UC design that aims to achieve maximum deformation 

before yielding. 

4.3.5.2. Initial Results 

Based on the selection of the titanium alloy as the best material choice to achieve 

large deformations before yielding, several simulations were run with titanium to 

determine the feasibility of the “BrickOval” geometry to be redesigned to both match the 

nonlinear target response and fall within the permissible stress limits of the alloy. To 

determine this initial feasibility, the “BrickOval” parameters were manually tuned to get a 

close approximation of the target vertical deformation response as shown in Figure 4.25. 

 

Figure 4.24 Ashby Chart Comparing Material Strength and Elastic Modulus [9] 
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Figure 4.25 Initial Titanium Results via Manual Tuning 

These initial results showed that to achieve the 20% vertical deformation, the 

internal stresses fell from 400% yield stress with steel down to 130% yield stress with the 

titanium alloy. This shows that an appropriate material selection marks significant 

improvement in decreasing the internal stresses, but still does not meet the constraint.  

4.6. Conclusions 

The results from this chapter directly answer research questions 1 and 2.b as well 

as the first hypothesis, reproduced below. 

R1. Can a meta-material be developed in which the global behavior of 

the resultant medium exhibits nonlinear compressive behavior 

similar to that of the current elastomer? 
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H1. A meta-material can be designed whose global behavior in 

compression is of similar nonlinearity to that of the current 

elastomer. 

The results of the “BrickOval” geometry clearly show that a meta-material can in-

fact be developed in which the global behavior, in this case meta-strain, exhibits nonlinear 

compressive behavior similar to that of the current elastomer. Therefore, the first research 

question has been answered by validating the first hypothesis. Since successful results 

yielded from combining only two elemental geometries, it may be possible that other 

solutions exist to this same problem that combine other elemental geometries not yet 

explored.  

R2. What method can be used to successfully develop a meta-material 

to meet the nonlinear deformation response of the current 

application? 

  b. Can a method be developed to accomplish this? 

The approach using engineering principles to design the meta-material UC 

ultimately allowed the target nonlinear response to be met via the “BrickOval” UC design 

and simultaneously answered this research question. Unfortunately, the stress observed in 

the “BrickOval” UC was found to exceed the yield stress, even after a material selection 

analysis was completed. Therefore, the “BrickOval” UC design is not a feasible solution 

to replace the rubber pad in the current application. 

Important conclusions were drawn regarding the general meta-material UC design. 

There is an effect of the number of UCs in the meta-material in regards to its resulting % 



72 

vertical deformation response that must be considered by the designer. For the “BrickOval” 

UC design, the homogenization limit is seen to be found at a 20x20 UC tessellation wherein 

significant change in the deformation response is not seen by further increasing the number 

of UCs. Additionally, the designer can linearly scale the UC without changing the 

deformation response or the stresses experienced in the structure. This allows the designer 

to easily scale a solution that matches the target response to meet manufacturing 

constraints. Lastly, a material selection was completed for the given application under the 

premise of achieving large UC deformation via bending without yielding the constitutive 

material. The analysis showed that the best material for this application has a minimum 

value of elastic modulus to yield stress. Therefore, for any application under the given 

premise of maximizing bending without yielding the constitutive material, titanium alloy 

Ti 3Al-8V-6Cr-4Mo-4Zr-0.05Pd is the optimal material. Though this material is 

expensive, initial feasibility of UC designs towards matching the target response should be 

determined with this alloy before further material selection continues with cost 

consideration.  
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CHAPTER 5. A UNIT CELL SYNTHESIS METHOD FOR META-MATERIAL 

DESIGN 

 The logic and process used in the previous chapter to design and develop the 

“Brick” and “BrickOval” UCs was systematic. This systematic process can be abstracted 

into a design framework aimed at designing meta-materials from a UC level to match a 

targeted nonlinear response. This chapter proposes such a design method and details its 

systematic and logical progression.  

5.1. Method Introduction 

5.1.1. Scope 

The scope of the Synthesis method is to aid designers in developing meta-materials 

to meet targeted nonlinear deformation responses. These meta-materials are constrained to 

be two-dimensional geometries that are extruded in the third dimension. Therefore, 

development of a three-dimensional lattice structure, which might also be considered a 

meta-material, is outside the scope of this design method. 

5.1.2. Intellectual Basis 

The intellectual basis this method operates on is the designer’s fundamental 

understanding of the geometric nonlinearities of element geometries. This fundamental 

understanding includes the sensitivity of geometric nonlinearity to geometry parameters 

including aspect ratios, thicknesses, radii, etc… This understanding precedes the design 
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process and should therefore be known before implementation. Once implemented, 

geometric parameters can be adjusted to tune the response towards that of the target. 

5.1.3. Method Overview 

The Synthesis design method is a systematic procedure to develop a UC. The main 

steps of this procedure is visually summarized in the flowchart in Figure 5.1. There exists 

six steps in the method with a focus on building the UC around one or more known 

 

Figure 5.1 Synthesis UC Design Method Flowchart 
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geometric element and its corresponding geometric nonlinearity. These steps will be 

explained in detail in the next section. 

5.2. Method Description 

5.2.1. Step 1: EFG Repository 

An Elemental Functional Geometry (EFG) is defined as a geometry whose 

deformation response is used to meet the target response. As mentioned previously, this 

method is predicated on the designer’s understanding of geometry nonlinearity of different 

shapes. Thus, a repository containing EFGs is essential. This repository should contain 

several geometries with pre-determined information including the parameters that control 

the size and shape of each geometry and the sensitivity of these parameters affecting 

 

Figure 5.2 Example EFGs and their General Nonlinear Behavior 
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geometric nonlinearity. The repository will serve as a starting point in which a designer 

can choose from in Step 2. A set of four EFGs and their associated geometric nonlinearities 

is plotted in Figure 5.2 after being subjected to concentrated loads and undergoing large 

deformation.  Three of these nonlinear responses experience stiffening with respect to 

displacement, but the oval geometry subjected to a pushing load has an inverse behavior. 

Thus, the designer can combine these differing and complimentary EFG deformation 

behaviors in a single UC to tune the overall meta-material behavior towards that of the 

target curve. This combination of EFGs and their stiffnesses can be considered in the same 

way springs can be combined in series or in parallel.  

5.2.2. Step 2: EFG Selection and Combination 

There are many ways in which EFGs can be combined. For the purpose of this 

work, these combinations will be categorized in the manner shown in Table 5.1 to represent 

different configurations that can be applied to a UC. 

Table 5.1 Possible Connection Configurations 

Connection Configuration Description 

0th Order Single EFG 

1st Order 
Combination of two 0th order configurations 

(series or parallel) 

2nd Order 
Combination of two 1st order configurations 

(series or parallel) 
 

 

Based on these definitions, the EFGs shown in Figure 5.2 represent four different 

0th order configurations. The combination of 0th order EFGs into different 1st order 
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configurations can be seen in Figure 5.3 while combinations of two 1st order configurations 

into different 2nd order configurations can be seen in Figure 5.4. The nonlinear 0th order 

stiffnesses of the EFGs combined to create a 1st order effective stiffness shown in series (

,eff sK ) and parallel ( ,peffK ) below as 

 

1

,

1 2

1 1
eff sK

k k



 
  
 

  (4.1) 

 ,p 1 2effK k k    (4.2) 

where 1k  and 2k  are the 0th order EFG stiffnesses, respectively. The effective stiffnesses 

of these connection configurations are shown in Figure 5.3 and Figure 5.4 as red and blue 

 

Figure 5.3 1st Order Connection Configuration 

 

Figure 5.4 2nd Order Connection Configuration 
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curves, respectively. It can be seen from the possible configurations shown that a wide 

range of nonlinear deformation is possible and, upon tuning geometric parameters, many 

target responses can be met in this manner. Thus, the designer can use these connection 

configurations to synthesize a UC geometry. 

5.2.3. Step 3: ESG Design to Form UC 

Along with EFGs, the other required element to synthesize the UC is the Elemental 

Structural Geometry (ESG). The ESGs act as the structural components in a UC and serve 

as the rigid support or connection of the EFGs and adjacent UCs. Therefore, they typically 

have higher stiffness and do not interfere with the deformation of EFGs. Thus, the designer 

must design or select ESGs to form the UC that adhere to the following requirements: 

1. An ESG must exhibit high stiffness and low deformation compared to the 

EFG(s) 

2. An ESG must complete the topology of the UC by connecting the EFGs 

between UCs 

The first requirement of the ESG serves to isolate the tunable nonlinear properties 

of the EFG while the second requirement serves to complete the UC in order to allow 

tessellation into a meta-material. Based on the fact that ESG deformation must be low, it 

is unnecessary to determine their deformation behavior before integration with the UC 

design. 
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5.2.4. Step 4: Tessellate of UC into a Meta-Material 

 Once a UC geometry has been designed, the meta-material can be formed by 

tessellating the UC several times in the x- and y- directions. For computational analysis 

and optimization purposes, a representative volume element (RVE) of the meta-material is 

constructed through tessellation of the UC. The number of UCs in the RVE depends on 

several factors. It is well known that the fewer UCs that exist in each direction, the more 

prominent the effect of boundary conditions. When the meta-material to be designed is 

much larger than the size of a UC, the target meta-material can be considered 

homogeneous. In this case, many UCs are required in the RVE and a convergence study is 

necessary to validate the homogeneous behavior. However, for applications with a 

restrictive design space, the dimension of the RVE can ultimately be determined by the 

size of the target structure and this size becomes the driving factor in the allowable number 

of UCs in the tessellation. Figure 5.5 shows how an example RVE with many UCs can be 

chosen to represent a portion of the meta-material. Likewise, the UC can be shown 

tessellated into both a RVE and the meta-material. 

 

Figure 5.5 Decomposition of a Meta-Material  into RVE and Tessellation of  UC 
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5.2.5.  Step 5: Perform Concept Evaluation 

Since the meta-material design is to have a target deformation behavior which is 

different from that of its constitutive material, a means of determining the effective 

mechanical properties of the meta-material must be determined. For a meta-material RVE 

tessellated with a large number of UCs, the meta-material is evaluated based on the RVE’s 

deformation characteristics. For a given target deformation behavior, typically described 

by one or multiple stress-strain curves, proper finite element analyses are performed on the 

RVE to obtain the force-displacement behavior of the meta-material. A so-called meta-

strain can then be defined as the percentage of uniaxial deformation (i.e. average 

displacement) of the meta-material defined by 

 meta-strain = % Uniaxial Deformation (100)
H


   (4.3) 

where   is the displacement and H  is the original height of the meta-material, as shown 

in Figure 5.6. The meta-material is subjected to a series of load cases corresponding to the 

range of the target curve. The meta-strain is then calculated at each load case to determine 

 

Figure 5.6 Example Meta-Material with Uniaxial Loading (left) and after Deformation (right) 
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the RVE deformation response which can then be compared to the target curve for 

evaluation.  

The complete deformation behavior of a nonlinear material can be defined by a 

material tensor which contains multiple nonlinear variables. While the nonlinear material 

tensor can be determined by the material’s stress-strain responses under a variety of loading 

conditions and deformation modes, it is often the case that one or two deformation modes 

dominate the deformation of the target material in a given application. Therefore, in most 

cases, it is sufficient to only take the stress-strain response of the target material in its 

dominant deformation mode(s) and find a meta-material solution to match the dominant 

deformation behavior. With the identified target stress-strain response, the ability to tune 

UC parameters to match the desired response is paramount before moving on to the next 

step. Determining this feasibility can be done by carrying out and analyzing a design of 

experiments study. This is a necessary intermediate step between the formation of the 

concept UC and optimizing UC parameters to meet the desired behavior.  

If the concept UC with the selected EFG configuration is found to have a 

deformation behavior close to the desired material response during the concept evaluation 

stage, this concept UC is regarded as a “feasible” design. Otherwise, a different EFG 

configuration of the same or a higher order is selected and Steps 2-5 are repeated with the 

new conceptual UC until feasibility is obtained. Note that, higher order EFG configurations 

typically lead to an increase in the design parameters of the UC which may impart more 

tuning ability to match the target behavior. While there may be multiple ways of combining 

the EFGs to achieve the desired deformation behavior, as shown in Figure 5.3 and Figure 
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5.4, it is logical that one starts with the lowest order configurations for the simplicity of the 

unit cell.   

5.2.6. Step 6: Perform Size Optimization  

An optimization of the dimensions of the EFGs and ESGs in the UC is conducted 

once the UC concept is deemed feasible. The optimization procedure will converge the 

deformation response of the meta-material towards that of the target response. The 

optimization setup can be mathematically written as 

  
2

1

min
N

t c

i i
f

i

f  


    (4.4) 

where t

i  and c

i  are the target strain and pseudo-strain (i.e. % vertical deformation) of the 

meta-material RVE, respectively, at the i-th load level in a total of N  load cases. The 

optimization algorithm should be chosen based on considerations of convergence 

properties and ability to handle the number of UC design parameters. Once the 

optimization is converged, the resulting meta-material should have a deformation response 

equivalent to that of the target. Note that, the solution of such an optimization problem is 

typically not unique. Whether the result of an optimization run is acceptable also depends 

on an evaluation against the application-specific design constraints. After a converged 

solution is obtained, the design constraints are analyzed to further rule out a potentially 

infeasible design of the meta-material. Such design constraints include manufacturing 

feasibility, material-dependent stress allowance, and the requirement of non-contact within 

permissible deformation limits within the UC. If a meta-material design is deemed 
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infeasible in this step, either the placement of the EFGs in the current configuration or their 

initial dimensions are modified and another SO is carried out with the new initial conditions 

until the desired deformation behavior is obtained and the design constraints are satisfied. 

However, if the SO iterations do not yield an acceptable optimal design, then the designer 

goes back to Step 2. Then, a different EFG configuration of the same or a higher order is 

selected and Steps 2-6 are repeated with the new conceptual UC. However, once Step 6 is 

completed and meets all design constraints, the resulting meta-material is a feasible 

solution. 

5.3. Discussion 

The four elemental geometries presented in this work (Figure 5.2) can be viewed 

as examples for future development. It is intended that many additional EFGs be studied 

and added to the repository. In order to achieve this, users of this method can add to the 

research knowledge by testing new EFGs and adding them to the repository by sharing 

them with the research community.  

When determining and classifying new EFGs, it is important to note how the 

boundary conditions and direction of loading both affect nonlinearity of the same 

geometry. Boundary and loading conditions differentiate the fixed-fixed beam and the 

cantilever beam. The additional constraints on the fixed-fixed beam increases its geometric 

nonlinearity as shown in Figure 5.2. A second example is how the direction of loading 

changes the nonlinear response of the oval depicted in the same figure. The pushing load 

results in a softening response whereas the pulling load yields a stiffening response. 
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Therefore, geometries with different boundary or loading conditions that yield different 

geometric nonlinearities will result in different EFGs. 

The optimization objective presented in this work is but one method to converge 

the concept design’s response to that of the target. This objective function can and should 

be modified to meet the designer’s specific needs. In the current work, the sum of least 

squares considers all load case responses to be of equal weighting. In specific applications, 

it may be useful to increase the weight of responses at critical load cases to ensure 

convergence on these values. This would be useful in the case of a highly nonlinear target 

response that is difficult to converge on within the required tolerance.  

In the development of the “BrickOval” UC in Chapter 4, it is clear how a single 

EFG, the fixed-fixed beam, was integrated in the “Brick” UC by using a 0th order 

configuration. After testing for feasibility during concept evaluation (Step 5), it was 

determined that the concept’s behavior could not converge to the target response. Thus, the 

design was iterated by repeating steps 2-5. In this second iteration, the oval was added to 

the fixed-fixed beam by means of a 1st order configuration in parallel with EFGs having 

inverse stiffnesses. The effective stiffness of this configuration can be visualized on the 

right image of Figure 5.3. In the tank track pad application, the number of UC tessellations 

was ultimately limited by the available design space. Based on the “BrickOval” UC design, 

the convergence study showed that a RVE of 20x20 UCs would be necessary to determine 

properties representative of a meta-material with a very large number of UCs. 
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5.4. Conclusion 

The method proposed in this chapter expands on the answer to the research question 

2.b presented in Chapter 4. 

R2. What method can be used to successfully develop a meta-material 

to meet the nonlinear deformation response of the current 

application? 

  b. Can a method be developed to accomplish this? 

The proposed design method represents a general design framework that was 

developed to design meta-materials to match a nonlinear target response. However, the 

abstraction of the approach developed in Chapter 4 into a general design framework adds 

to the knowledge base of the design community. Specifically, it can be used as a tool for 

designers seeking to develop meta-materials to match a nonlinear target response, 

especially given the absence of any other meta-material design methods for this application 

in the current literature.  

It is important to note that the design framework presented in this work is 

preliminary. This method must be applied to many additional case studies to prove its 

validity. Many new EFGs should be explored and analyzed to build a substantial EFG 

library for designers to choose from. Additional EFG connection configurations can also 

be explored for targeting higher order and more complex nonlinear responses. Furthermore, 

a multi-objective optimization process can be implemented to minimize stress while also 

considering other manufacturability constraints to further reduce design time. The method 

presented in this work only considers a single target deformation curve. It would be useful 
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to extend to this framework to simultaneously target multiple deformation modes such as 

equi-biaxial tension, compression, and shear. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

This research contained within this work was successful in answering all three 

research questions and was able to contribute to the knowledge in the research community 

regarding meta-material design. The first, and primary, research question was, “Can a 

meta-material be developed in which the global behavior of the resultant medium exhibits 

nonlinear compressive behavior similar to that of the current elastomer?” The “BrickOval” 

unit cell was developed based on engineering principles and was successful in matching a 

nonlinear deformation response of the given tank track pad application. This primary 

research objective was reached only after answering the second and third research 

questions. 

The second research question was, “What method can be used to successfully 

develop a meta-material to meet the nonlinear deformation response of the current 

application?” This research question was answered by asking two separate sub-questions. 

Research question 2.a was, “Is topology optimization a feasible method to 

accomplish this?” Through a literature review of contemporary research, it was first 

determined that topology optimization was the only existing method used to design meta-

material topologies. After further investigation, it was determined that topology 

optimization is currently not a suitable method to design a meta-material to match a 

nonlinear deformation response. The current limitations in topology optimization include 

implementation of geometric nonlinearity in the numeric formulation of the optimization 

algorithm, determining a process to solve the nonlinear inverse homogenization problem, 
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using periodic unit cell boundary conditions, and taking into account the unit cell aspect 

ratio. These four limitations should be addressed in future research to increase the domain 

of applications topology optimization can be successfully used as a design tool. 

Research question 2.b was, “Can a method be developed to accomplish this?” A 

method involving engineering principles, a fundamental understanding of elemental 

geometry nonlinearity, and combining the stiffnesses of multiple elemental geometries was 

used in the design of the “BrickOval” unit cell. This method was then abstracted into the 

more general Unit Cell Synthesis Method that represents a framework to be used as a 

design tool for future meta-material designers targeting a nonlinear response. The proposed 

synthesis method answers sub-question 2.b as well as original research question 2 by 

showing that a meta-material with the desired response could be developed. 

6.2. Broader Impact 

This work yielded knowledge that will have several broader impacts. The four 

limitations in topology optimization can be used as gaps to be addressed in future research 

to expand the applications in which this technique can be successfully used as a design 

tool. The meta-material that was designed in Chapter 4 demonstrated it was possible to 

design a meta-material to match a nonlinear deformation response. This was a previously 

unexplored area and therefore expands the knowledge in meta-material design and its 

potential applications. Additionally, the logical and systematic design method depicted in 

Chapter 5 represents a framework that can aid future meta-material designers. Finally, 
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users of this method can add to the research knowledge by testing new EFGs, adding them 

to the repository, and sharing them with the research community.  

6.3. Future Work 

6.3.1. Tank Track Pad Application 

While this work proved that designing a meta-material to match the target response 

was feasible, several application-specific constraints were not met. The maximum stress 

experienced within the constitutive material must be lowered to well below that of yielding 

to not only eliminate the possibility of plastic deformation, but to also consider the high 

cycle life of the meta-material. Also, manufacturing constraints such as minimum feature 

size should be considered in greater detail. Therefore, the meta-material redesign should 

use the framework provided addressing these issues under static load conditions, and 

optimized to match the response curve. 

Once this has been accomplished, dynamic simulations must be conducted to 

ensure the meta-material response matches that of the current rubber pad under these more 

complex conditions. At the meta-material level, aspects of strain rate and road wheel 

interaction should be compared to that of the current rubber pad. At the track system level, 

issues of vibration and dampening effects should also be considered. Before the meta-

material can be implemented with the physical track system, one must determine how to 

replicate the boundary conditions in the simulations within the physical system. This is not 

a trivial task as a possible solution may introduce friction and other forces that were not 

considered in these models. The ultimate motivation of the meta-material design was to 
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improve fatigue life of the current rubber pad. Thus, the fatigue properties should be 

determined by appropriate simulations and physical testing.  

6.3.2. Synthesis Method 

Currently, the proposed method has not been rigorously tested to prove its use as a 

design tool. Therefore, this method should be applied to many different case studies to 

prove validity. Also, the proposed meta-material design method only represents a 

framework and, as a result, a number of improvements can be made to increase its 

usefulness as a design tool. Many new EFGs should be explored and analyzed to build a 

substantial EFG repository for designers to choose from. Additional EFG connection 

configurations can also be explored for targeting higher order and more complex nonlinear 

responses. Furthermore, a multi-objective optimization process can be implemented to 

minimize stress while also considering other manufacturability constraints to further 

reduce design time. The method presented in this work only considers a single target 

deformation curve. It would be useful to extend this framework to simultaneously target 

multiple deformation modes such as equi-biaxial tension, compression, and shear. 
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APPENDIX A.  PYTHON SCRIPT FOR BRICK DESIGN 

The following Python script was used to generate data for the sensitivity analysis 

of the “Brick” UC design. This script generated the UC geometry per dimensional inputs, 

tessellated the UC into a 4x4 meta-material, applied loading and boundary conditions, 

generated a mesh on the meta-material, iterated a static nonlinear analysis across four load 

cases, and exported results of each analysis to a report file. The code was generalized to 

allow inputs of “1” or “0” for each of the three variables of interest ( L , H , and 1t ) to 

indicate “high” and “low” values, respectively. 

 

# # Brick UC Sensitivity Python Script 

# # By: Zachary Satterfield 

# # 3/14/2015 

# 

 

w=0 

h=0 

t=0 

# ------ 

# ------ INPUT VARIABLES 

# ------  

# ------  

# ------ Dimensions 

# ------  

if w==1: 

 Width=15 

else: 

 Width=10 

if h==1: 

 Height=5.0 

else: 

 Height=3.0 

if t==1: 

 t_2=0.1 

else: 

 t_2=0.075 
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t_1=0.5 

thick=1.0   # thickness 

# ------  

# ------ Material Properties 

# ------  

density=7.75e-06 

E_mod=210000 

Poisson=0.30 

# ------  

# ------ Names 

# ------ 

rptName='brick_orthogonal_'+str(w)+str(h)+str(t)+'.rpt' 

# ------  

# ------ Load  

# ------ 

pressure1=0.4 

pressure2=0.8 

pressure3=2.0 

pressure4=4.0 

# ------ 

# ------  

 

from abaqus import * 

from abaqusConstants import * 

session.Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=164.556259155273,  

    height=151.574996948242) 

session.viewports['Viewport: 1'].makeCurrent() 

session.viewports['Viewport: 1'].maximize() 

from caeModules import * 

from driverUtils import executeOnCaeStartup 

executeOnCaeStartup() 

session.viewports['Viewport: 1'].partDisplay.geometryOptions.setValues( 

    referenceRepresentation=ON) 

s = mdb.models['Model-1'].ConstrainedSketch(name='__profile__',  

    sheetSize=200.0) 

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints 

s.setPrimaryObject(option=STANDALONE) 

s.Spot(point=(0.0, 0.0)) 

s.FixedConstraint(entity=v[0]) 

s.rectangle(point1=(0.0, 0.0), point2=(Width, Height)) 

s.rectangle(point1=(1.0, 1.0), point2=(Width-1, Height-1)) 

session.viewports['Viewport: 1'].view.setValues(nearPlane=184.137,  

    farPlane=192.986, width=38.7365, height=18.6266, cameraPosition=(6.9825,  
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    3.412, 188.562), cameraTarget=(6.9825, 3.412, 0)) 

s.ObliqueDimension(vertex1=v[4], vertex2=v[5], textPoint=(3.32142686843872,  

    -1.53938269615173), value=Width) 

s.ObliqueDimension(vertex1=v[1], vertex2=v[2], textPoint=(-2.46543073654175,  

    2.35099101066589), value=Height) 

s.DistanceDimension(entity1=g[6], entity2=g[2], textPoint=(0.526414394378662,  

    6.3199577331543), value=1.0) 

s.DistanceDimension(entity1=g[8], entity2=g[4], textPoint=(9.81687927246094,  

    6.51644229888916), value=1.0) 

s.DistanceDimension(entity1=g[9], entity2=g[5], textPoint=(11.548999786377,  

    -0.0461080074310303), value=1.0) 

s.DistanceDimension(entity1=g[7], entity2=g[3], textPoint=(12.3363265991211,  

    4.31582641601563), value=1.0) 

s=mdb.models['Model-1'].sketches['__profile__'] 

s.Parameter(name='dimensions_0', path='dimensions[0]', expression=str(Width)) 

s.Parameter(name='dimensions_1', path='dimensions[1]', expression=str(Height),  

    previousParameter='dimensions_0') 

s.Parameter(name='t1', path='dimensions[3]', expression=str(t_1),  

    previousParameter='dimensions_1') 

s.Parameter(name='dimensions_2', path='dimensions[2]', expression='t1',  

    previousParameter='t1') 

s.Parameter(name='t2', path='dimensions[5]', expression=str(t_2),  

    previousParameter='dimensions_2') 

s.Parameter(name='dimensions_4', path='dimensions[4]', expression='t2',  

    previousParameter='t2') 

p = mdb.models['Model-1'].Part(name='Part-1', dimensionality=TWO_D_PLANAR,  

    type=DEFORMABLE_BODY) 

p = mdb.models['Model-1'].parts['Part-1'] 

p.BaseShell(sketch=s) 

s.unsetPrimaryObject() 

p = mdb.models['Model-1'].parts['Part-1'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

del mdb.models['Model-1'].sketches['__profile__'] 

session.viewports['Viewport: 1'].view.setValues(nearPlane=20.1852,  

    farPlane=24.5361, width=18.724, height=8.47169, viewOffsetX=2.47589,  

    viewOffsetY=0.814535) 

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=ON,  

    engineeringFeatures=ON) 

session.viewports['Viewport: 1'].partDisplay.geometryOptions.setValues( 

    referenceRepresentation=OFF) 

mdb.models['Model-1'].Material(name='Material-1') 

mdb.models['Model-1'].materials['Material-1'].Density(table=((density, ), )) 

mdb.models['Model-1'].materials['Material-1'].Elastic(table=((E_mod, Poisson),  

    )) 
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mdb.models['Model-1'].HomogeneousSolidSection(name='Section-1',  

    material='Material-1', thickness=thick) 

p = mdb.models['Model-1'].parts['Part-1'] 

f = p.faces 

faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

region = p.Set(faces=faces, name='Set-1') 

p = mdb.models['Model-1'].parts['Part-1'] 

p.SectionAssignment(region=region, sectionName='Section-1', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues( 

    optimizationTasks=OFF, geometricRestrictions=OFF, stopConditions=OFF) 

a = mdb.models['Model-1'].rootAssembly 

a.DatumCsysByDefault(CARTESIAN) 

p = mdb.models['Model-1'].parts['Part-1'] 

a.Instance(name='Part-1-1', part=p, dependent=OFF) 

session.viewports['Viewport: 1'].view.setValues(nearPlane=19.3892,  

    farPlane=25.3322, width=26.8518, height=12.1491, viewOffsetX=5.51218,  

    viewOffsetY=2.49527) 

a = mdb.models['Model-1'].rootAssembly 

a.LinearInstancePattern(instanceList=('Part-1-1', ), direction1=(1.0, 0.0,  

    0.0), direction2=(0.0, 1.0, 0.0), number1=2, number2=1, spacing1=(Width-t_1)/2,  

    spacing2=5.0) 

a = mdb.models['Model-1'].rootAssembly 

a.translate(instanceList=('Part-1-1-lin-2-1', ), vector=(0.0, Height-t_2, 0.0)) 

#: The instance Part-1-1-lin-2-1 was translated by 0., 4.5, 0. with respect to the assembly 

coordinate system 

a = mdb.models['Model-1'].rootAssembly 

a.InstanceFromBooleanMerge(name='Part-2', instances=(a.instances['Part-1-1'],  

    a.instances['Part-1-1-lin-2-1'], ), originalInstances=SUPPRESS,  

    domain=GEOMETRY) 

session.viewports['Viewport: 1'].view.setValues(nearPlane=16.9686,  

    farPlane=27.7528, width=46.1837, height=20.8958, viewOffsetX=10.4106,  

    viewOffsetY=5.00072) 

a = mdb.models['Model-1'].rootAssembly 

a.LinearInstancePattern(instanceList=('Part-2-1', ), direction1=(1.0, 0.0,  

    0.0), direction2=(0.0, 1.0, 0.0), number1=3, number2=2, spacing1=(Width-t_1),  

    spacing2=2*(Height-t_2)) 

a = mdb.models['Model-1'].rootAssembly 

a.InstanceFromBooleanMerge(name='Part-3', instances=(a.instances['Part-2-1'],  

    a.instances['Part-2-1-lin-1-2'], a.instances['Part-2-1-lin-2-1'],  

    a.instances['Part-2-1-lin-2-2'], a.instances['Part-2-1-lin-3-1'],  
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    a.instances['Part-2-1-lin-3-2'], ), originalInstances=SUPPRESS,  

    domain=GEOMETRY) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues( 

    adaptiveMeshConstraints=ON) 

mdb.models['Model-1'].StaticStep(name='Step-1', previous='Initial', nlgeom=ON) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1') 

mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=( 

    'S', 'PE', 'PEEQ', 'PEMAG', 'LE', 'U')) 

a = mdb.models['Model-1'].rootAssembly 

v1 = a.instances['Part-3-1'].vertices 

verts1 = v1.getSequenceFromMask(mask=('[#0 #20000 ]', ), ) 

a.Set(vertices=verts1, name='yDisp') 

#: The set 'yDisp' has been created (1 vertex). 

regionDef=mdb.models['Model-1'].rootAssembly.sets['yDisp'] 

mdb.models['Model-1'].historyOutputRequests['H-Output-1'].setValues(variables=( 

    'U2', ), frequency=LAST_INCREMENT, region=regionDef, sectionPoints=DEFAULT,  

    rebar=EXCLUDE) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,  

    predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF) 

a = mdb.models['Model-1'].rootAssembly 

s1 = a.instances['Part-3-1'].edges 

side1Edges1 = s1.getSequenceFromMask(mask=('[#0 #3e000 ]', ), ) 

region = a.Surface(side1Edges=side1Edges1, name='Surf-1') 

mdb.models['Model-1'].Pressure(name='Load-1', createStepName='Step-1',  

    region=region, distributionType=UNIFORM, field='', magnitude=pressure1,  

    amplitude=UNSET) 

a = mdb.models['Model-1'].rootAssembly 

e1 = a.instances['Part-3-1'].edges 

edges1 = e1.getSequenceFromMask(mask=('[#0 #3e000000 ]', ), ) 

region = a.Set(edges=edges1, name='Set-2') 

mdb.models['Model-1'].DisplacementBC(name='BC-1', createStepName='Step-1',  

    region=region, u1=0.0, u2=0.0, ur3=UNSET, amplitude=UNSET, fixed=OFF,  

    distributionType=UNIFORM, fieldName='', localCsys=None) 

a = mdb.models['Model-1'].rootAssembly 

e1 = a.instances['Part-3-1'].edges 

edges1 = e1.getSequenceFromMask(mask=('[#0 #1101000 #1 ]', ), ) 

region = a.Set(edges=edges1, name='Set-3') 

mdb.models['Model-1'].DisplacementBC(name='BC-2', createStepName='Step-1',  

    region=region, u1=0.0, u2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF,  

    distributionType=UNIFORM, fieldName='', localCsys=None) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=ON, loads=OFF,  

    bcs=OFF, predefinedFields=OFF, connectors=OFF) 

session.viewports['Viewport: 1'].assemblyDisplay.meshOptions.setValues( 

    meshTechnique=ON) 
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a = mdb.models['Model-1'].rootAssembly 

e1 = a.instances['Part-3-1'].edges 

edges1 = e1.getSequenceFromMask(mask=('[#0 #441000 #1 ]', ), ) 

a.Set(edges=edges1, name='Set-3') 

p = mdb.models['Model-1'].parts['Part-1'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=OFF,  

    engineeringFeatures=OFF, mesh=ON) 

session.viewports['Viewport: 1'].partDisplay.meshOptions.setValues( 

    meshTechnique=ON) 

# --- 

# --- Mesh --- 

# --- 

p = mdb.models['Model-1'].parts['Part-3'] 

e = p.edges 

pickedEdges = e.getSequenceFromMask(mask=( 

    '[#150448a4 #41541451 #a124510b #a ]', ), ) 

p.seedEdgeBySize(edges=pickedEdges, size=t_1*0.4, deviationFactor=0.1,  

    constraint=FINER) 

p = mdb.models['Model-1'].parts['Part-3'] 

e = p.edges 

edges = e.getSequenceFromMask(mask=('[#150448a4 #41541451 #a124510b #a ]', ), ) 

p.Set(edges=edges, name='EdgeSeeds_ThickBeam') 

p = mdb.models['Model-1'].parts['Part-3'] 

e = p.edges 

pickedEdges = e.getSequenceFromMask(mask=( 

    '[#eafbb75b #beabebae #5edbaef4 #35 ]', ), ) 

p.seedEdgeBySize(edges=pickedEdges, size=t_2*0.3, deviationFactor=0.1,  

    constraint=FINER) 

p = mdb.models['Model-1'].parts['Part-3'] 

e = p.edges 

edges = e.getSequenceFromMask(mask=('[#eafbb75b #beabebae #5edbaef4 #35 ]', ),  

    ) 

p.Set(edges=edges, name='EdgeSeeds_ThinBeam') 

p = mdb.models['Model-1'].parts['Part-3'] 

p.generateMesh() 

# --- 

# ---  

# ---  

session.viewports['Viewport: 1'].view.setValues(nearPlane=69.5691,  

    farPlane=80.017, width=44.8615, height=20.3804, viewOffsetX=2.63266,  

    viewOffsetY=0.179799) 

a1 = mdb.models['Model-1'].rootAssembly 

a1.regenerate() 
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a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

a = mdb.models['Model-1'].rootAssembly 

e1 = a.instances['Part-3-1'].edges 

edges1 = e1.getSequenceFromMask(mask=('[#0 #10000 ]', ), ) 

a.Set(edges=edges1, name='Set-4') 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,  

    predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=OFF, bcs=OFF,  

    predefinedFields=OFF, connectors=OFF, adaptiveMeshConstraints=ON) 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues( 

    adaptiveMeshConstraints=ON) 

regionDef=mdb.models['Model-1'].rootAssembly.sets['Set-4'] 

mdb.models['Model-1'].FieldOutputRequest(name='F-Output-2',  

    createStepName='Step-1', variables=('UT', ), frequency=LAST_INCREMENT,  

    region=regionDef, sectionPoints=DEFAULT, rebar=EXCLUDE) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues( 

    adaptiveMeshConstraints=OFF) 

session.viewports['Viewport: 1'].assemblyDisplay.meshOptions.setValues( 

    meshTechnique=OFF) 

mdb.Job(name='Job-1', model='Model-1', description='', type=ANALYSIS,  

    atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,  

    memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,  

    explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,  

    modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',  

    scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=1,  

    numGPUs=0) 

mdb.jobs['Job-1'].submit(consistencyChecking=OFF) 

#  

# ----- Wait for job to complete 

#  

mdb.jobs['Job-1'].waitForCompletion() 

#  

# ----- Generate Report 

#  

o3 = session.openOdb(name='Job-1.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs['Job-1.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=OFF,  

    sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  
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    variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 

 

 

 # --- 

 # --- 

 # --- Second Load Step --- 

 # ---  

 # --- 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=OFF, loads=ON,  

     bcs=ON, predefinedFields=ON, connectors=ON) 

mdb.models['Model-1'].loads['Load-1'].setValues(magnitude=pressure2) 

mdb.jobs['Job-1'].submit(consistencyChecking=OFF) 

 #  

 # ----- Wait for job to complete 

 #  

mdb.jobs['Job-1'].waitForCompletion() 

 #  

 # ----- Generate Report 

 #  

o3 = session.openOdb(name='Job-1.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs['Job-1.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=ON,  

     sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  

     variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 

 

 

# --- 

# --- 

# --- Third Load Step --- 

# ---  

# --- 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=OFF, loads=ON,  

    bcs=ON, predefinedFields=ON, connectors=ON) 

mdb.models['Model-1'].loads['Load-1'].setValues(magnitude=pressure3) 

mdb.jobs['Job-1'].submit(consistencyChecking=OFF) 

#  

# ----- Wait for job to complete 
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#  

mdb.jobs['Job-1'].waitForCompletion() 

#  

# ----- Generate Report 

#  

o3 = session.openOdb(name='Job-1.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs['Job-1.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=ON,  

    sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  

    variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 

 

 

# --- 

# --- 

# --- Fourth Load Step --- 

# ---  

# --- 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=OFF, loads=ON,  

    bcs=ON, predefinedFields=ON, connectors=ON) 

mdb.models['Model-1'].loads['Load-1'].setValues(magnitude=pressure4) 

mdb.jobs['Job-1'].submit(consistencyChecking=OFF) 

#  

# ----- Wait for job to complete 

#  

mdb.jobs['Job-1'].waitForCompletion() 

#  

# ----- Generate Report 

#  

o3 = session.openOdb(name='Job-1.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs['Job-1.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=ON,  

    sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  

    variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 
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APPENDIX B.  PYTHON SCRIPT FOR BRICKOVAL DESIGN 

The following Python script was used in a ModeFrontier optimization routine to 

optimize the dimensions of the “BrickOval” UC design. This script generated the UC 

geometry per dimensional inputs, tessellated the UC into a meta-material, applied loading 

and boundary conditions, generated a mesh on the meta-material, iterated a static nonlinear 

analysis across four load cases, and exported results of each analysis to a report file. This 

script was generalized to modify all five “BrickOval” UC parameters, tessellate the UC a 

specified number of times in the x- and y-directions, respectively, and apply loading and 

boundary conditions accordingly. 

 

# # BrickOval UC Python Script 

# # By: Zachary Satterfield 

# # 10/01/2015 

# 

# Number of UCs in x-direction 

xdir = 4 

# Number of UCs in y-direction (divided by two) 

ydir = 2 

jobName = 'BO_'+str(xdir)+'x'+str(2*ydir) 

# # ------ 

# # ------ INPUT VARIABLES 

# # ------  

# # ------  

# # ------ Dimensions 

# # ------  

 

Width=25.0 

Height=5.0 

t_2=0.65 

t_3=0.5 

t_1=1.5 

thick=1.0           # thickness 

ovalbig=Width/2-t_1 

ovalsmall=Height/2-t_2 



107 

# ------  

# ------ Material Properties 

# ------  

density=7.75e-06 

E_mod=210000 

Poisson=0.30 

# ------  

# ------ Names 

# ------ 

rptName='BO_'+str(xdir)+'x'+str(2*ydir)+'.rpt' 

# ------  

# ------ Load  

# ------ 

pressure1=0.4 

pressure2=0.8 

pressure3=2.0 

pressure4=4.0 

# ------ 

# ------  

 

import math 

from abaqus import * 

from abaqusConstants import * 

session.Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=164.556259155273,  

    height=151.574996948242) 

session.viewports['Viewport: 1'].makeCurrent() 

session.viewports['Viewport: 1'].maximize() 

from caeModules import * 

from driverUtils import executeOnCaeStartup 

executeOnCaeStartup() 

session.viewports['Viewport: 1'].partDisplay.geometryOptions.setValues( 

    referenceRepresentation=ON) 

s = mdb.models['Model-1'].ConstrainedSketch(name='__profile__',  

    sheetSize=200.0) 

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints 

s.setPrimaryObject(option=STANDALONE) 

s.Spot(point=(0.0, 0.0)) 

s.FixedConstraint(entity=v[0]) 

s.rectangle(point1=(0.0, 0.0), point2=(Width, Height)) 

s.rectangle(point1=(1.0, 1.0), point2=(Width-1, Height-1)) 

 

s.ObliqueDimension(vertex1=v[4], vertex2=v[5], textPoint=(3.32142686843872,  

    -1.53938269615173), value=Width) 

s.ObliqueDimension(vertex1=v[1], vertex2=v[2], textPoint=(-2.46543073654175,  
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    2.35099101066589), value=Height) 

s.DistanceDimension(entity1=g[6], entity2=g[2], textPoint=(0.526414394378662,  

    6.3199577331543), value=1.0) 

s.DistanceDimension(entity1=g[8], entity2=g[4], textPoint=(9.81687927246094,  

    6.51644229888916), value=1.0) 

s.DistanceDimension(entity1=g[9], entity2=g[5], textPoint=(11.548999786377,  

    -0.0461080074310303), value=1.0) 

s.DistanceDimension(entity1=g[7], entity2=g[3], textPoint=(12.3363265991211,  

    4.31582641601563), value=1.0) 

s=mdb.models['Model-1'].sketches['__profile__'] 

s.Parameter(name='dimensions_0', path='dimensions[0]', expression=str(Width)) 

s.Parameter(name='dimensions_1', path='dimensions[1]', expression=str(Height),  

    previousParameter='dimensions_0') 

s.Parameter(name='t1', path='dimensions[3]', expression=str(t_1),  

    previousParameter='dimensions_1') 

s.Parameter(name='dimensions_2', path='dimensions[2]', expression='t1',  

    previousParameter='t1') 

s.Parameter(name='t2', path='dimensions[5]', expression=str(t_2),  

    previousParameter='dimensions_2') 

s.Parameter(name='dimensions_4', path='dimensions[4]', expression='t2',  

    previousParameter='t2') 

p = mdb.models['Model-1'].Part(name='Part-1', dimensionality=TWO_D_PLANAR,  

    type=DEFORMABLE_BODY) 

  

p = mdb.models['Model-1'].parts['Part-1'] 

p.BaseShell(sketch=s) 

s.unsetPrimaryObject() 

p = mdb.models['Model-1'].parts['Part-1'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

del mdb.models['Model-1'].sketches['__profile__'] 

s = mdb.models['Model-1'].ConstrainedSketch(name='__profile__',  

    sheetSize=200.0) 

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints 

s.setPrimaryObject(option=STANDALONE) 

s.Spot(point=(Width/2, Height/2)) 

 

s.FixedConstraint(entity=v[0]) 

session.viewports['Viewport: 1'].view.setValues(nearPlane=186.181,  

    farPlane=190.942, width=21.4928, height=10.3349, cameraPosition=(3.72162,  

    1.84548, 188.562), cameraTarget=(3.72162, 1.84548, 0)) 

s.EllipseByCenterPerimeter(center=(Width/2, Height/2), axisPoint1=(t_1, Height/2),  

    axisPoint2=(Width/2, t_2)) 

s.EllipseByCenterPerimeter(center=(Width/2, Height/2), axisPoint1=(Width, Height/2),  

    axisPoint2=(Width/2-t_1/2, Height/2+t_2)) 
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s.autoDimension(objectList=(g[2], )) 

#: 2 dimensions added 

 

s.autoDimension(objectList=(g[4], )) 

#: 2 dimensions added 

 

s=mdb.models['Model-1'].sketches['__profile__'] 

s.Parameter(name='Bigdim', path='dimensions[0]', expression=str(ovalbig)) 

s.Parameter(name='dimensions_2', path='dimensions[2]', expression='Bigdim+'+str(t_3),  

    previousParameter='Bigdim') 

s.Parameter(name='Littledim', path='dimensions[1]', expression=str(ovalsmall),  

    previousParameter='dimensions_2') 

s.Parameter(name='dimensions_3', path='dimensions[3]',  

    expression='Littledim+'+str(t_3), previousParameter='Littledim') 

 

p = mdb.models['Model-1'].Part(name='Part-2', dimensionality=TWO_D_PLANAR,  

    type=DEFORMABLE_BODY) 

p = mdb.models['Model-1'].parts['Part-2'] 

p.BaseShell(sketch=s) 

s.unsetPrimaryObject() 

p = mdb.models['Model-1'].parts['Part-2'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

del mdb.models['Model-1'].sketches['__profile__'] 

 

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=ON,  

    engineeringFeatures=ON) 

session.viewports['Viewport: 1'].partDisplay.geometryOptions.setValues( 

    referenceRepresentation=OFF) 

mdb.models['Model-1'].Material(name='Material-1') 

mdb.models['Model-1'].materials['Material-1'].Density(table=((7.75e-06, ), )) 

mdb.models['Model-1'].materials['Material-1'].Elastic(table=((210000.0, 0.3),  

    )) 

mdb.models['Model-1'].HomogeneousSolidSection(name='Section-1',  

    material='Material-1', thickness=thick) 

p = mdb.models['Model-1'].parts['Part-2'] 

f = p.faces 

faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

region = p.Set(faces=faces, name='Set-1') 

p = mdb.models['Model-1'].parts['Part-2'] 

p.SectionAssignment(region=region, sectionName='Section-1', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 

p = mdb.models['Model-1'].parts['Part-1'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 
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mdb.models['Model-1'].HomogeneousSolidSection(name='Section-2',  

    material='Material-1', thickness=thick) 

mdb.models['Model-1'].HomogeneousSolidSection(name='Section-3',  

    material='Material-1', thickness=thick) 

p = mdb.models['Model-1'].parts['Part-1'] 

f = p.faces 

faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

region = p.Set(faces=faces, name='Set-1') 

p = mdb.models['Model-1'].parts['Part-1'] 

p.SectionAssignment(region=region, sectionName='Section-2', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues( 

    optimizationTasks=OFF, geometricRestrictions=OFF, stopConditions=OFF) 

a = mdb.models['Model-1'].rootAssembly 

a.DatumCsysByDefault(CARTESIAN) 

p = mdb.models['Model-1'].parts['Part-1'] 

a.Instance(name='Part-1-1', part=p, dependent=OFF) 

a = mdb.models['Model-1'].rootAssembly 

p = mdb.models['Model-1'].parts['Part-2'] 

a.Instance(name='Part-2-1', part=p, dependent=OFF) 

 

a = mdb.models['Model-1'].rootAssembly 

 

 

a.InstanceFromBooleanMerge(name='Part-3', instances=(a.instances['Part-1-1'],  

    a.instances['Part-2-1'], ), originalInstances=SUPPRESS, domain=GEOMETRY) 

p = mdb.models['Model-1'].parts['Part-1'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

p = mdb.models['Model-1'].parts['Part-3'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

 

  

a = mdb.models['Model-1'].rootAssembly 

a.LinearInstancePattern(instanceList=('Part-3-1', ), direction1=(1.0, 0.0,  

    0.0), direction2=(0.0, 1.0, 0.0), number1=1, number2=2, spacing1=10.0,  

    spacing2=Height-t_2) 

 

a = mdb.models['Model-1'].rootAssembly 

a.translate(instanceList=('Part-3-1-lin-1-2', ), vector=((Width-t_1)/2, 0.0, 0.0)) 
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#: The instance Part-3-1-lin-1-2 was translated by 4.75, 0., 0. with respect to the assembly 

coordinate system 

a = mdb.models['Model-1'].rootAssembly 

a.InstanceFromBooleanMerge(name='Part-4', instances=(a.instances['Part-3-1'],  

    a.instances['Part-3-1-lin-1-2'], ), originalInstances=SUPPRESS,  

    domain=GEOMETRY) 

  

 

a = mdb.models['Model-1'].rootAssembly 

a.LinearInstancePattern(instanceList=('Part-4-1', ), direction1=(1.0, 0.0,  

    0.0), direction2=(0.0, 1.0, 0.0), number1=xdir, number2=ydir, spacing1=Width-t_1,  

    spacing2=2*(Height-t_2)) 

 

final = list() 

 

for i in range(xdir): 

 for j in range(ydir): 

  if (j == 0 and i == 0): 

   continue 

  newline = "mdb.models['Model-1'].rootAssembly.instances['Part-4-1-lin-%d-%d']," 

%(i+1,j+1) 

  final.append(newline)  

 

#print final   

finalline = "".join(final) 

#print finalline 

 

lastline = "mdb.models['Model-

1'].rootAssembly.InstanceFromBooleanMerge(domain=GEOMETRY,instances=(mdb.m

odels['Model-1'].rootAssembly.instances['Part-4-1'],"+ finalline +"),name='Part-5', 

originalInstances=SUPPRESS)" 

exec(lastline) 

 

 

session.viewports['Viewport: 1'].assemblyDisplay.setValues( 

    adaptiveMeshConstraints=ON) 

mdb.models['Model-1'].StaticStep(name='Step-1', previous='Initial',  

    initialInc=0.0625, nlgeom=ON) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1') 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,  

    predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF) 

 

#......................................................................................................#  

#### Bottom face set creation #### 
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bottom = list() 

  

for i in range(xdir): 

 big_lines = "((Width/3+%d*(Width-t_1), 0, 0.0),),"%(i) 

 bottom.append(big_lines) 

 

for i in range(xdir-1): 

 small_lines = "((t_1/3+%d*(Width-t_1), 0, 0.0),),"%(i+1) 

 bottom.append(small_lines) 

 

  

# print bottom  

bottomline="".join(bottom) 

 

#print bottomline 

bottomfaceset = "mdb.models['Model-1'].parts['Part-5'].Set(edges=mdb.models['Model-

1'].parts['Part-5'].edges.findAt(" + bottomline + " ), name='Bottom face')" 

exec(bottomfaceset) 

 

#......................................................................................................#  

 

#### Top surface set creation #### 

 

top = list() 

 

for i in range(xdir): 

 big_lines_top = "(((Width-t_1)/2+Width/3+%d*(Width-t_1), Height*ydir*2-(2*ydir-

1)*t_2, 0.0),),"%(i) 

 top.append(big_lines_top) 

 

for i in range(xdir-1): 

 small_lines_top = "(((Width-t_1)/2+t_1/3+%d*(Width-t_1), Height*ydir*2-(2*ydir-

1)*t_2, 0.0),),"%(i+1) 

 top.append(small_lines_top) 

 

topline = "".join(top) 

#print topline 

 

topfaceset = "mdb.models['Model-1'].parts['Part-5'].Surface(name='Top surface', 

side1Edges= mdb.models['Model-1'].parts['Part-5'].edges.findAt(" + topline + "))" 

exec(topfaceset)  

 

#......................................................................................................#   
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#### Left face set creation #### 

 

left = list() 

 

for i in range(ydir): 

 partline_left1 = "((0.0, Height/3 + %d*2*(Height-t_2), 0.0),),"%(i) 

 partline_left2 = "(((Width-t_1)/2,Height-t_2+Height/3 + %d*2*(Height-t_2), 0.0),),"%(i) 

# left.append(partline_left1) 

 left.append(partline_left2) 

  

#Print left 

 

leftline = "".join(left) 

#print leftline 

leftfaceset = "mdb.models['Model-1'].parts['Part-5'].Set(edges=mdb.models['Model-

1'].parts['Part-5'].edges.findAt(" + leftline + " ), name='Left face') " 

exec(leftfaceset) 

 

#......................................................................................................#  

 

#### Right face set creation #### 

 

right = list() 

 

for i in range(ydir): 

 partline_right1 = "((xdir*Width-(xdir-1)*t_1, Height/3 + %d*2*(Height-t_2), 0.0),),"%(i) 

 partline_right2 = "(((Width-t_1)/2 + xdir*Width -(xdir-1)*t_1,Height-t_2+Height/3 + 

%d*2*(Height-t_2), 0.0),),"%(i) 

# right.append(partline_right1) 

 right.append(partline_right2) 

  

#Print right 

 

rightline = "".join(right) 

 

#print rightline 

 

rightfaceset = "mdb.models['Model-1'].parts['Part-5'].Set(edges=mdb.models['Model-

1'].parts['Part-5'].edges.findAt(" + rightline + " ), name='Right face') " 

exec(rightfaceset)  

 

#......................................................................................................#  

 

a1 = mdb.models['Model-1'].rootAssembly 
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region = a1.instances['Part-5-1'].surfaces['Top surface'] 

mdb.models['Model-1'].Pressure(name='Load-1', createStepName='Step-1',  

    region=region, distributionType=UNIFORM, field='', magnitude=pressure1,  

    amplitude=UNSET) 

 

a = mdb.models['Model-1'].rootAssembly 

region = a.instances['Part-5-1'].sets['Bottom face'] 

mdb.models['Model-1'].DisplacementBC(name='BC-1', createStepName='Step-1',  

    region=region, u1=0.0, u2=0.0, ur3=UNSET, amplitude=UNSET, fixed=OFF,  

    distributionType=UNIFORM, fieldName='', localCsys=None) 

session.viewports['Viewport: 1'].view.setValues(nearPlane=16.6264,  

    farPlane=28.0949, width=48.3506, height=21.8762, viewOffsetX=17.4052,  

    viewOffsetY=6.52403) 

 

a = mdb.models['Model-1'].rootAssembly 

region = a.instances['Part-5-1'].sets['Left face'] 

mdb.models['Model-1'].DisplacementBC(name='BC-2', createStepName='Step-1',  

    region=region, u1=0.0, u2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF,  

    distributionType=UNIFORM, fieldName='', localCsys=None) 

 

a = mdb.models['Model-1'].rootAssembly 

region = a.instances['Part-5-1'].sets['Right face'] 

mdb.models['Model-1'].DisplacementBC(name='BC-3', createStepName='Step-1',  

    region=region, u1=0.0, u2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF,  

    distributionType=UNIFORM, fieldName='', localCsys=None) 

 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=ON, loads=OFF,  

    bcs=OFF, predefinedFields=OFF, connectors=OFF) 

a4 = mdb.models['Model-1'].rootAssembly 

e1 = a4.instances['Part-5-1'].edges 

edges1 = e1.getSequenceFromMask(mask=('[#0 #2 ]', ), ) 

a4.Set(edges=edges1, name='Set-3') 

regionDef=mdb.models['Model-1'].rootAssembly.sets['Set-3'] 

 

 

mdb.models['Model-1'].FieldOutputRequest(name='F-Output-2',  

    createStepName='Step-1', variables=('UT', ), frequency=LAST_INCREMENT,  

    region=regionDef, sectionPoints=DEFAULT, rebar=EXCLUDE) 

session.viewports['Viewport: 1'].assemblyDisplay.meshOptions.setValues( 

    meshTechnique=ON) 

p = mdb.models['Model-1'].parts['Part-3'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=OFF,  

    engineeringFeatures=OFF, mesh=ON) 
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session.viewports['Viewport: 1'].partDisplay.meshOptions.setValues( 

    meshTechnique=ON) 

p = mdb.models['Model-1'].parts['Part-5'] 

session.viewports['Viewport: 1'].setValues(displayedObject=p) 

 

# ------ 

# ------ Mesh ------ 

# ------ 

p = mdb.models['Model-1'].parts['Part-5'] 

p.seedPart(size=0.1, deviationFactor=0.1, minSizeFactor=0.1) 

session.viewports['Viewport: 1'].view.setValues(nearPlane=320.662,  

    farPlane=324.741, width=19.1738, height=9.20882, viewOffsetX=-13.1888,  

    viewOffsetY=-7.51207) 

p = mdb.models['Model-1'].parts['Part-5'] 

p.generateMesh() 

session.viewports['Viewport: 1'].view.setValues(nearPlane=302.284,  

    farPlane=343.119, width=191.322, height=91.8882, viewOffsetX=13.1103,  

    viewOffsetY=25.1928) 

a = mdb.models['Model-1'].rootAssembly 

a.regenerate() 

 

# ----- Job 

mdb.Job(name=jobName, model='Model-1', description='', type=ANALYSIS,  

    atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,  

    memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,  

    explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,  

    modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',  

    scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=1,  

    numGPUs=0) 

mdb.jobs[jobName].submit(consistencyChecking=OFF) 

#  

# ----- Wait for job to complete 

#  

mdb.jobs[jobName].waitForCompletion() 

#  

# ----- Generate Report 

#  

o3 = session.openOdb(name=jobName+'.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs[jobName+'.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=OFF,  

    sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  
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    variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 

  

 # --- 

 # --- 

 # --- Second Load Step --- 

 # ---  

 # --- 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=OFF, loads=ON,  

     bcs=ON, predefinedFields=ON, connectors=ON) 

mdb.models['Model-1'].loads['Load-1'].setValues(magnitude=pressure2) 

mdb.jobs[jobName].submit(consistencyChecking=OFF) 

 #  

 # ----- Wait for job to complete 

 #  

mdb.jobs[jobName].waitForCompletion() 

 #  

 # ----- Generate Report 

 #  

o3 = session.openOdb(name=jobName+'.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs[jobName+'.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=ON,  

    sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  

    variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 

 

 # --- 

 # --- 

 # --- Third Load Step --- 

 # ---  

 # --- 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=OFF, loads=ON,  

     bcs=ON, predefinedFields=ON, connectors=ON) 

mdb.models['Model-1'].loads['Load-1'].setValues(magnitude=pressure3) 

mdb.jobs[jobName].submit(consistencyChecking=OFF) 

 #  

 # ----- Wait for job to complete 

 #  

mdb.jobs[jobName].waitForCompletion() 
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 #  

 # ----- Generate Report 

 #  

o3 = session.openOdb(name=jobName+'.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs[jobName+'.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=ON,  

    sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  

    variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 

  

 # --- 

 # --- 

 # --- Fourth Load Step --- 

 # ---  

 # --- 

a = mdb.models['Model-1'].rootAssembly 

session.viewports['Viewport: 1'].setValues(displayedObject=a) 

session.viewports['Viewport: 1'].assemblyDisplay.setValues(mesh=OFF, loads=ON,  

     bcs=ON, predefinedFields=ON, connectors=ON) 

mdb.models['Model-1'].loads['Load-1'].setValues(magnitude=pressure4) 

mdb.jobs[jobName].submit(consistencyChecking=OFF) 

 #  

 # ----- Wait for job to complete 

 #  

mdb.jobs[jobName].waitForCompletion() 

 #s  

 #h ----- Generate Report 

 #i 

 #t  

o3 = session.openOdb(name=jobName+'.odb') 

lastFrame=o3.steps['Step-1'].frames[-1] 

session.viewports['Viewport: 1'].setValues(displayedObject=o3) 

odb = session.odbs[jobName+'.odb'] 

session.fieldReportOptions.setValues(printXYData=OFF, printTotal=OFF) 

session.writeFieldReport(fileName=rptName, append=ON,  

    sortItem='Node Label', odb=odb, step=0, frame=lastFrame, outputPosition=NODAL,  

    variable=(('UT', NODAL, ((COMPONENT, 'UT2'), )), )) 

 

 


	Clemson University
	TigerPrints
	12-2015

	Design of a Meta-Material with Targeted Nonlinear Deformation Response
	Zachary Satterfield
	Recommended Citation


	tmp.1452267725.pdf.erUZW

