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Abstract

When a high-mass star (& 4M�) explodes at the end of its life, a supernova occurs, leaving

its degenerate core and a fast-moving shell of matter, known as a supernova remnant (SNR). The

SNR shell lasts for many thousands of years, generating emissions from low-frequency radio (∼ 10−7

eV) up to γ-ray regime (∼ 1015 eV). It is also believed that SNRs are the predominant source of

galactic cosmic rays, accelerating a population of thermal ions, primarily protons, up to relativistic

energies by means of the diffusive shock acceleration (DSA) mechanism.

The small population of thermal (Boltzmann) particles, p ∼ 10−3 eV, that are accelerated

to relativistic energies, p ∼ 1015 eV, extract a significant amount of energy from the SNR shell.

The existence of a small but highly energetic population of non-thermal particles feeds back into

the dynamic evolution of the SNR, which, in turn, affects the production of new particles and the

continued acceleration of particles already swept up in the shock.

Much research has been done in investigating the case of particles accelerated in spherically

symmetric SNRs; we present here the first simulations of supernova remnant evolution with non-

linear cosmic ray feedback in multiple dimensions. The research here presents a new approach to an

old problem, allowing for a deeper investigation into the role of cosmic ray production in supernova

remnant environments.

The findings here show that, at the early stages of SNR evolution, the presence of cosmic

rays in the shocks modifies the growth of hydrodynamic instabilities; severely damping the Rayleigh-

Taylor instabilities in particular. We also find that the young remnant produces a strong TeV

population of CRs that can generate TeV emissions that could be observed with or without the SNR

interacting with an adjacent molecular cloud. However, the GeV emissions that could distinguish

between the hadronic and leptonic population of CRs could not be observed by Fermi-LAT without

the interacting molecular cloud.

ii



Acknowledgments

First and foremost, I thank God the Father, through whom all things are, God the Son,

through whom we are blessed, and God the Holy Spirit, through whom we gain Wisdom. Without

Him, this research would be still in Dieter’s mind.

I’d like to thank my family: my parents and my brothers & sisters. I thank you for not

complaining (much) about my living and raising your grandchildren/nephew & nieces so far away

from you. I promise I won’t make my nieces and nephews call me “Uncle Doctor Josh” (or some

variation therein).

My wife’s family also deserves a multitude of thanks. Grandmom & Grandpop Cornely,

Mom-mom & Pop-pop Schmidt, Mom & Dad, Tom, Marykate, Frank & Jenna and their children

(Isabel, Neil, & Caleb) have been a tremendous cast of supporters for my goals.

To my children: Joseph, Colette, Rosemarie, & Kathleen. Watching you four grow has been

an amazing experience, one that I hope you can replicate, but doing so has proved to be a strong

inspiration to work hard. I hope my example can prove to be useful for you and/or your spouse.

I owe a lot to Ken-Ichi Nishikawa (UAH), Phil Hardee (UA), and Yosuke Mizuno (TITech)

for their assistance in helping me learn computational hydrodynamics in my early days at Clemson.

Their continued offering of help, including the use of TACC’s Stampede cluster which I used for

most of simulations contained here, has not gone unappreciated.

I’d like to thank Dieter who has dealt with my insistence on getting/writing codes before

working on the physics for the last 51/2 years with a great deal of patience. I suppose that as long

as you remember that Fortran 90+ > C, it will have been worth it.

Lastly, I am most gracious of my wife’s infinite patience and her complete support of me

and my ambitions. Her well-wishing, pushy comments, tears, and, most of all, love gave me the

iii



strength to keep plowing through, despite my doubts and trials. This thesis is dedicated entirely to

her. Rachel: you are the joy of my life, and I thank God for every day I have with you.

iv



Table of Contents

Page

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Acceleration Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Supernova Remnant Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 SNR Evolutionary Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 n-Dimensional Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Cosmic Ray Modified Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 High Energy Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Numerical Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Diffusive Shock Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 SNR Evolution Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Cosmic Ray Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Synthetic Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A Rankine-Hugoniot Jump Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B Derivation of Differential Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . 80
C Non-dimensionalized Hydrodynamic Equations . . . . . . . . . . . . . . . . . . . . . 82

v



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



List of Tables

Page

1.1 Table of ionization rates as a function of height for flight 7, adapted from Hess (1912).
The two data columns, Appar. 1 & 2, show the increase in ionization rate with height. 2

vii



List of Figures

Page

1.1 Schematic diagram of Rutherford’s gold-leaf electroscope. As the (charged) cosmic ray
particle comes into the vacuum chamber (the gray box), the ionized particle causes the
leaf to be discharged, falling back towards the metal rod. Taken from L’Annunziata
(2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fluxes of nuclei of the primary cosmic ray in particles/(energy/nucleus) as a function
of energy/nucleus. The heavier nuclei have been scaled to fit on the plot. Taken from
(Olive & et al. (PDG), 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Cosmic ray spectrum above 1 GeV, from Matthiae (2010). The transition from galac-
tic to extragalactic sources begins around the knee at E ∼ 3× 1015 eV. . . . . . . . 5

1.4 Sketch of the Pierre Auger Observatory site. The red dots indicate a water Cherenkov
detector; the four labeled locations are the fluorescence sites with the green lines
indicating their field of view. From Matthiae (2010). . . . . . . . . . . . . . . . . . . 6

1.5 All-sky map of galactic point sources detected by H.E.S.S telescope array overlaid onto
an all-sky map of the diffuse γ-ray emission as observed by Fermi-LAT. The types of
points sources are described in the legend. Image credit: http://tevcat.uchicago.edu/ 8

1.6 Zoom-in of the observed distribution of Galactic SNRS. Data selected from Green
(2014), rejecting only the SNRs outside of the range [−100, 100]× [−30, 30]. . . . . . 8

1.7 Hillas criteria for a proton with v = c; the points designate fiducial values of B and
R for various astrophysical objects while the error bars represent the ranges of values. 9

1.8 Graphical representation of a particle’s trajectory as it scatters off a tangled magnetic
field at the interface of a shock (thick black line). . . . . . . . . . . . . . . . . . . . . 10

2.1 single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 The evolution of the 1D blast wave due to an over-pressure in a very small region.

All values are scaled to peak values at r ' 1. . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Density plot, in g/cm−3, of simulation evolving the Rayleigh-Taylor instability. . . . 22
2.4 Image of the Crab Nebula, image credit: NASA, ESA, J. Hester and A. Loll (Arizona

State University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 The blue region shows the progression of the heavy shock as it enters and accelerates

into the lower-density region in red. The white bulge leading the RTI finger is the
forward shock, noticeably absent in the RTI simulation. . . . . . . . . . . . . . . . . 23

2.6 Density map of the Kelvin-Helmholtz instability. The red fluid (lower density) is
moving towards the right while the blue fluid (higher density) is moving towards the
left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Linear density map of the magnetized Kelvin-Helmholtz instability. The magnetic
field, initially acting only in the x-direction, inhibits the growth of the perturbations
seen in Figure 2.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



2.8 One-dimensional solution to the cosmic-ray modified shock. In red is the pure hydro-
dynamic shock, showing the classic σ = 4 jump. In blue is the cosmic-ray modified
hydrodynamic shock, showing the foot ahead of the shock with a jump of σ = 5.5. . 28

2.9 X-ray spectrum of Tycho’s remnant (SN 1572). Region A and Region B are on
the north-eastern and south-eastern side of the remnant, respectively. Image from
Badenes et al. (2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Synthetic spectrum of a population of nonthermal electrons in an isotropic medium.
S is the source functions, Equations 2.27 through 2.29, divided by the proportionality
constant k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 The emissivity due to π0 → 2γ mechanism (blue dashed curve) with the γ-ray spec-
trum from the leptonic processes in gray (symbols remain the same). . . . . . . . . . 34

2.12 Energy resolution as a function of energy for on-axis events, via the updated pass7
analysis, discussed in Ackermann et al. (2012), that allows for better resolution for
E < 300 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Differential sensitivity of the detector as a function of energy for on-axis events, via
the updated pass7 analysis; adapted from Ackermann et al. (2012). . . . . . . . . . . 36

2.14 γ-ray emission from SNR W44, adapted from Ackermann et al. (2013). The observed
flux (filled circles) as measured by Fermi-LAT follow the pion decay path (solid line),
rather than a bremsstrahlung spectrum (dashed line). . . . . . . . . . . . . . . . . . 36

3.1 Discretized grid in x with xi − xi−1 = ∆x. uni are elements of U at position xi and
time tn: ui = U (xi, tn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Radial density and velocity profiles of a 15 M� Type II SNR with parameters E0 =
1051 erg, t = 8 years, q = 1.0, s = 2, and n = 9. The velocity is scaled by 100 so as
to be visible alongside the density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Example of oscillatory behavior due to boundary conditions. The red curve is an
example of the result of non-smooth boundaries between adjacent domains. . . . . . 45

4.1 Azimuthally-averaged logarithmic density profiles for the three models (labeled). . . 49
4.2 Logarithmic density plot of the three models, γ = 1.1, γ = 5/3 and MHD+CR

respectively. Each image is from the same t ' 1.3 kyr with nlow = −1.0 . . . . . . . 50
4.3 Linear number density-squared plot of the γ = 5/3 and MHD+CR models with fixed

min/max values as described in the text, both having ages of t = 1.3 kyr; the actual
maxima are 12.64 and 11.52 cm−6, respectively. . . . . . . . . . . . . . . . . . . . . . 51

4.4 Location of the forward shock as a function of time for the two SNR models; in blue
is the pure MHD simulation and in green the MHD+CR model. . . . . . . . . . . . . 52

4.5 Ratio of cosmic ray energy to gas energy as a function of time. . . . . . . . . . . . . 53
4.6 n(p = 2 GeV/c) for the SNR model at t ≈ 1.3 kyr, logarithmically scaled between

10−10 erg/cm3 and 10−7 erg/cm3. The existence and cause of the ripples are discussed
in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Color map of log10(n9) at an early phase of a preliminary test case with a high diffusion
coefficient, D0 = 3×1026 cm2/s. Overlaid is the logarithmic density contours, showing
that the distribution is diffusing far downstream. . . . . . . . . . . . . . . . . . . . . 55

4.8 Linear colormap of injection sites for the model remnant at t = 1.3 kyr. Overlaid is
the logarithmic density contours, showing that the particles being injected are located
near the forward and reverse shocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Linear colormap of number density for the model remnant at t = 1.3 kyr with the
arrows representing the magnetic field vectors. . . . . . . . . . . . . . . . . . . . . . 57

4.10 Logarithmic color plot of the cosmic ray pressure, pcr, in the upper quarter plane. The
bulk of the pressure exists within the shocked region, with a small amount generated
near the reverse shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



4.11 Diverging color map of the gas pressure to cosmic ray pressure ratio; red is where pcr
dominates over pgas, blue the inverse and the white where the two are equivalent. . . 59

4.12 Magnitudes of the gradients of the gas pressure (left) and cosmic ray pressure (right).
The gas pressure features a gradient behind the reverse shock that the cosmic ray
pressure does not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 Plot of the logarithm of the gas pressure (in erg/cm3) for the MHD+CR (blue) and
γ = 5/3 (red) simulations. Though not shown, the CR pressure fills the gap in the
V-structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.14 Synthetic emission map of 0.2-2 keV X-rays, color map is logarithmic in intensity; the
line-of-sight column density is assumed to be 1021 cm. . . . . . . . . . . . . . . . . . 62

4.15 False-color image of the galactic SNR, Cas A. Low energy X-rays (∼0.2-2 keV) in
red, high energy X-rays (∼8-10 keV) in blue, while green is the intermediate energies.
Image credit: NASA/CXC/SAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.16 Synthetic emission map of synchrotron radiation for the case of ν > νc. . . . . . . . . 64
4.17 Synthetic emission map due to the production of cosmic ray protons in the model SNR. 65
4.18 HESS γ-ray image of SN 1006; the linear color scale is in units of excess counts

per π × (0.05◦)2. The white contours correspond to constant X-ray intensity from
XMM-Newton. From Acero et al. (2010) . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.19 Integrated γ-ray spectrum of the SNR; the green solid curve is due to the π0 → 2γ
decay and the blue dotted curve that of the bremsstrahlung emission. The differential
sensitivity of Fermi-LAT is well above this limit. . . . . . . . . . . . . . . . . . . . . 67

4.20 The same as Figure 4.19, except looking at the TeV emission spectrum. The black
dots are the 50h on-source sensitivity limits for H.E.S.S. . . . . . . . . . . . . . . . . 68

4.21 The γ-ray emissions from five galactic SNRs (labeled). The SNRs in blue are older
than 10,000 years, Cas A (in the darker red) is roughly 300 years old, and RX J1713
(light red) is approximately 1600 years old. From Dermer (2011) . . . . . . . . . . . 69

5.1 Integrated γ-ray spectrum of the SNR when using a molecular cloud of density nH ∼
100 cm−3 as the target, rather than the ambient ISM density of nH ∼ 0.1 cm−3. . . . 74

x



Chapter 1

Introduction

In this chapter, we will discuss the origin and historical development of the theory of cosmic

rays, 1.1. In Section 1.2, we will discuss the method by which the cosmic ray particles can gain their

extreme energies. Then, in Section 1.3, we outline the dissertation.

1.1 Cosmic Rays

1.1.1 Historical Perspective

At the end of the 1800’s, it was observed that an electroscope would discharge in the presence

of radioactive materials (Becquerel, 1896). An electroscope provides a measure of ionization by

measuring the rate at which a charged gold-leaf returns to a neutral position after being discharged

(see Figure 1.1); thus if the leaf returned to the neutral position it was due to an oppositely charged

particle neutralizing the charge of the leaf (L’Annunziata, 2007; Falkenburg & Rhode, 2012).

Further observations showed that, even in the absence of radioactive materials, the electro-

scope could spontaneously discharge. Conventional thought at the time was that the background

radiation was coming from the surface of the earth. Thus, as one increases in altitude, the expected

ionization rate should decrease. However, Wulf (1910) showed that the ionization rate decreased

at a slower rate, a 13% decrease at 300 m instead of the expected 27% decrease at that altitude.

However, his conclusions were refuted by the investigation by Dominico Pacini (Pacini et al., 2011;

Walter & Wolfendale, 2012).
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Figure 1.1: Schematic diagram of Rutherford’s gold-leaf electroscope. As the (charged) cosmic ray
particle comes into the vacuum chamber (the gray box), the ionized particle causes the leaf to be
discharged, falling back towards the metal rod. Taken from L’Annunziata (2007)

In 1912, Victor Hess made his historical journey in a hot air balloon with three electroscopes

(Hess, 1912), two of which measured the ionization rate of γ-rays with the third measuring β-

particles. While increasing in altitude to a peak of ∼ 5400 meters1, Hess observed that the ionization

rate was also increasing. Table 1.1 shows the data Hess collected in his flight for the detection of

γ-rays.

Time Height (m) Appar. 1
(
cm−3s−1

)
Appar. 2

(
cm−3s−1

)
06:45 - 07:45 1,400 15.8 14.4
07:45 - 08:45 2,500 17.3 12.3
08:45 - 09:45 3,600 19.8 16.5
09:45 - 10:45 4,700 40.7 31.8
10:45 - 11:15 4,200 28.1 22.7
11:15 - 11:45 1,200 9.7 11.5
11:45 - 12:10 150 11.9 10.7
12:25 - 13:12 0 15.0 11.6

Table 1.1: Table of ionization rates as a function of height for flight 7, adapted from Hess (1912).
The two data columns, Appar. 1 & 2, show the increase in ionization rate with height.

1The altitude fluctuated between 4400 and 5350 m, according to Hess’ paper; the recorded values in Table 1.1 are
the estimated mean values in the hour-long windows.
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Hess called this radiation Höhenstralung (“radiation from above”) as the results strongly

suggested the radiation enters Earth’s atmosphere from above, rather than emanating from the

surface. Some of Hess’s observations were made during the night, which also ruled out the sun as

a possible source, leaving only cosmic sources. Robert Millikan coined the phrase “cosmic ray,”

believing that the ionizing radiation was made of photons and not matter (Millikan, 1925; Am-

ato, 2014). Despite evidence showing that cosmic rays (CRs) are indeed highly energetic, charged

particles (primarily protons, see Section 1.1.2), the name cosmic ray has persisted.

It wasn’t until the early part of the 1930’s that the remarkable proposal by Baade & Zwicky

(Baade & Zwicky, 1934) brought to light a possible source for the high-energy CRs. Several years

prior, the pair had discovered a new class of objects that they called super-novae (SNe), objects

that were nearly as bright as their host galaxy; they proposed these objects were responsible for

accelerating CRs Their argument relied on the energy output of supernova and the energy content

in the observed cosmic rays.

The energy density of CRs is roughly wcr = 1eV/cm3, which is of the same order of mag-

nitude as thermal energy from stars and the magnetic field energy density (Parker, 1969; Gabici,

2011). If the particles are contained within the volume of the galactic disc, VD ≈ 1067 cm3, and

remain there for a characteristic time-scale of τ ≈ 107 years before escaping the galaxy or destruction

via collisions, then the required power to maintain a steady-state production of cosmic ray particles

is,

Lcr =
VD · wcr

τ
∼ 1040 erg/s (1.1)

The SNe rate is roughly 2 per century; if each deposits the canonical 1051 ergs of kinetic energy, this

amounts to LSNe ∼ 1041 erg/s. Thus, if a SNe converts 10% of its kinetic energy into accelerating

particles, then SNe alone can account for the production of CRs in the galaxy. Since this production

should exist for a long duration, it is the supernova remnant (SNR) that should be the primary

accelerator; see also Ginzburg & Syrovatskii (1964).

1.1.2 Modern Observations

The energies of CRs range from the MeV (Webber et al., 2011) to GeV/TeV (Panov et al.,

2009; Adriani et al., 2013) and above the EeV range (Matthiae, 2010). The composition of these

particles is primarily bare nuclei, accounting for approximately 98% of observed CRs; of this 98%,

3



roughly 90% are protons, 9% are helium nuclei (α-particles) and the remaining 1% being heavier

atoms (Schlickeiser, 2002; Olive & et al. (PDG), 2014), see also Figure 1.2.

Figure 1.2: Fluxes of nuclei of the primary cosmic ray in particles/(energy/nucleus) as a function of
energy/nucleus. The heavier nuclei have been scaled to fit on the plot. Taken from (Olive & et al.
(PDG), 2014).

With these energies, and assuming a background magnetic field of B ∼ 1µG, the gyroradius

of a CR proton ranges from 1011 cm (roughly an AU) to 1024 cm (roughly a megaparsec); this
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indicates that particles with energies above 1018 eV must be extra-galactic in origin as the gyroradius

is roughly a kiloparsec, a length that is larger than the height of the galactic disk.

As CRs are charged particles, they are reflected by the galactic magnetic field, disassociating

their measured trajectory from their source (Strong et al., 2007). The observed energy spectrum

follows a broken power-law,

J(E) ∝


E−2.7 1010eV < E . 1015eV

E−3.0 1015eV . E . 1018eV
(1.2)

as seen in Figures 1.2 and 1.3. This suggests that a single source is responsible for the acceleration

to these high energies.

Figure 1.3: Cosmic ray spectrum above 1 GeV, from Matthiae (2010). The transition from galactic
to extragalactic sources begins around the knee at E ∼ 3× 1015 eV.

The transition between the two cases is called the knee while the transition above 1018 eV is

called the ankle. At the highest energies is the Greisen-Zatsepin-Kuz’min limit (GZK limit, Greisen

(1966); Zatsepin & Kuz’min (1966)). This limit is the maximum energy of a CR before interactions

with cosmic microwave background photons become possible, thereby destroying the particles; this
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limit is calculated to be E = 5 × 1019 eV. Despite this, particles with energies exceeding this

limit have been observed, including the famous Oh-my-God particle (Linsley, 1963) with an energy

E ∼ 3× 1020 eV.

At the lower end of the CR energy spectrum, in the MeV and GeV range, direct observations

of CRs can be done by using calorimeters, scintillators and/or spectrometers on space-borne instru-

ments, such as the Alpha Magnetic Spectrometer (AMS, Aguilar et al. (2013)), or balloon-borne

instruments, such as the Advanced Thin Ionization Calorimeter (ATIC, Panov et al. (2009)). When

a CR particle collides with a particle in Earth’s atmosphere, the photons present in the resulting

cascade of subatomic particles (which include electrons, muons and pions) can be detected with

imaging air Cherenkov telescope (IACT) detectors, such as the High Energy Stereoscopic System

(H.E.S.S., Aharonian et al. (1997)) into the TeV range.

Figure 1.4: Sketch of the Pierre Auger Observatory site. The red dots indicate a water Cherenkov
detector; the four labeled locations are the fluorescence sites with the green lines indicating their
field of view. From Matthiae (2010).

Above this range, direct measurements of CRs rely on the aforementioned air showers, as the

small fluxes (< 1 particle per square-meter per year for E > PeV) and small collector sizes of space-

borne instruments cannot regularly detect CR particles. Small scintillator arrays (A ∼ (200 m)2),

6



such as Karlsruhe Shower Core and Array Detector (KASCADE, Antoni et al. (1999)), can be used

to detect the muons and electrons produced in CR air showers, produced by CR primaries with

energies in the PeV and EeV range. At the highest energies, 1018 eV to 1020 eV, air fluorescence

techniques, as used by High Resolution Fly’s Eye (HiRes, Matthews (2001)) and Akeno Giant Air

Shower Array (AGASA, Hayashida et al. (1994)), and water Cherenkov detectors, such as the Pierre

Auger Observatory (Matthiae, 2010) (see Figure 1.4), can be used to detect the subatomic particles

in the air showers.

In addition to the direct measurement of CR, indirect measurements of reactions involving

them can be made. For leptonic CRs (electrons), bremsstrahlung and inverse Compton processes

eject a γ-ray photon; for the hadronic CRs (protons, ions), collisions with ambient protons can

produce either neutral pions, π0, or charged pions, π±, via interactions (Schlickeiser (2002); Reynolds

(2008); see also Section 2.6), such as

p+ p→


p+ p+ π0

p+ n+ π+.

(1.3)

The pions produced in the above interactions quickly decay to2

π0 → 2γ

π+ → µ+ + νµ

(1.4)

where the two γ’s in the first interaction have an energy in the pion rest-frame of Eγ = mπ0/2 ∼

70 MeV. The muons produced in the decay of the charged pion will further decay into neutrinos

and electron or positrons. For typical assumptions of hadronic acceleration, approximately 8 γ-ray

photons are produced for every three neutrinos (Kelner et al., 2006; Kappes et al., 2007).

The photons generated from the decay of the neutral pion can then traverse from their

source unimpeded, where a high-energy photon detector, such as Fermi-LAT (Atwood et al., 2007)

or H.E.S.S. (Aharonian et al., 1997), would be able to measure the particle’s energy and trajectory.

Figure 1.5 shows an emission map of γ-ray photons (Eγ > 1 GeV), as detected by Fermi-LAT, with

point sources pulled from the H.E.S.S catalog that are known to be within the galaxy.
2The two decay modes shown are the largest branching ratios for those particles, each with BR > 0.988; there are

other decay channels.
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Figure 1.5: All-sky map of galactic point sources detected by H.E.S.S telescope array overlaid onto
an all-sky map of the diffuse γ-ray emission as observed by Fermi-LAT. The types of points sources
are described in the legend. Image credit: http://tevcat.uchicago.edu/

Due to the shape of the galaxy (Gerhard, 2002; Churchwell et al., 2009) and our location

within it, it should be expected that the distribution of SNRs lies primarily along the galactic

plane, as seen in Figure 1.5. A catalogue of galactic SNRs has been compiled (Green, 2014), as

can be seen in Figure 1.6 below. The catalogue contains information, such as sizes and the types,

on over 250 known galactic SNRs from radio observations, X-ray observations, γ-ray observations,

and combinations thereof. A second catalog (Ferrand & Safi-Harb, 2012) contains over 310 objects

measured in the X-ray and γ-ray energies, including pulsars and neutron stars in addition to the

SNRs.

-100 -75 -50 -25 0 25 50 75 100
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-10

0

10

20
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Figure 1.6: Zoom-in of the observed distribution of Galactic SNRS. Data selected from Green (2014),
rejecting only the SNRs outside of the range [−100, 100]× [−30, 30].
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1.1.3 Limiting Energies

As particles are accelerated, the gyroradius increases as well3, RL ∝ pc. As the gyroradius

increases, it becomes increasingly difficult to confine the particle in the magnetic field of the accel-

erator. It then follows that there is some maximum energy that the particle can obtain while being

accelerated; this maximum is given by (Hillas, 1984)

Emax ' 1015ZβBµGRL,pc eV (1.5)

where Z is the atomic number, β the relative velocity of the particle, BµG is the magnetic field in

units of micro-Gauss and RL,pc is the gyroradius in units of parsecs. Figure 1.7 depicts the required

magnetic field strengths and gyroradii required for a proton of energy E = 1015 eV (blue line) and

E = 1020 eV (red line). Any object above the line has the capability of accelerating a proton to

those energies. As evidenced on the figure below, SNRs are capable of accelerating particles up to

the knee (E ∼ 1015 eV).

Figure 1.7: Hillas criteria for a proton with v = c; the points designate fiducial values of B and R
for various astrophysical objects while the error bars represent the ranges of values.

3We will use p to denote the particle momentum and, later, p to denote gas pressures (typically with a subscript
as well).
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1.2 Acceleration Mechanism

1.2.1 Fermi Acceleration

The proposed mechanism of accelerating particles from thermal velocities to relativistic

speeds is through the Fermi process. In this mechanism, we consider a collisionless shock, a discon-

tinuous shift in physical states in which the mean-free-path of collisions is larger than the system,

with the upstream region moving with velocity u1 and the downstream region moving with velocity

u2 (u1 � u2). The magnetic field in the shock region is expected to be highly turbulent, leading to

scattered motions of particles co-moving with the shock, see Figure 1.8.

u1, ρ1

(upstream)
u2, ρ2

(downstream)

Figure 1.8: Graphical representation of a particle’s trajectory as it scatters off a tangled magnetic
field at the interface of a shock (thick black line).

Each time the particle crosses the shock front, it gains energy

E1 = (1 + α)E0 (1.6)

where α ∝ u1 − u2 is the fraction energy gain per crossing. If the crossing is repeated k times, the

total energy after those k crossings is

Ek = (1 + α)kE0. (1.7)
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For particles diffusing across the shock, the return probability depends on the downstream

velocity:

Pret ≡ 1− σu2 (1.8)

where σ = ρ1/ρ2 is the compression ratio, σ = 4 for the case of an ideal gas, with γ = 5/3, and a

strong shock. After k crossings, the number of particles remaining is

Nk = N0P
k
ret (1.9)

The differential particle population can be determined by manipulating Equations 1.7 and 1.9 to

give a natural power-law function in E4:

dN

dE
∝
(
E

E0

)s−1

(1.10)

where s = lnPret/ ln(1 + α). For σ = 4, we obtain s = −1, giving a slope of -2. This is reasonably

close to the observed power law in the spectrum seen in Figure 1.3; the remaining difference can be

accounted for in the propagation of the particles in the galaxy (Caprioli et al., 2010b).

1.2.2 Diffusive Shock Acceleration

The Fermi process can be modeled by the mathematical framework called diffusive shock

acceleration (O’C Drury, 1983; Kirk, 1994; Malkov & O’C Drury, 2001). In this mechanism, we

describe the particle population with a phase-space distribution, f (p,x, t); the transport of the

particles can then be modeled by the Lagrangian diffusion equation:

df

dt
= ∇ · (D∇f) (1.11)

where D = vr2g/lcoh is the diffusion coefficient with particle speed v, rg the particle gyroradius, and

lcoh the coherence length of the magnetic field. When lcoh ∼ rg, we obtain the oft-used Bohm diffu-

sion coefficient. As the diffusion coefficient depends on the magnetic field, it mimics the interaction

of the Fermi process.

As the particles flow along with the moving shock, the bulk motion of the fluid must be
4See Appendix B for the derivation of this from the above and the value s = −1 claimed.
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accounted for, modifying the above to

∂f

∂t
+ u · ∇f = ∇ · (D∇f) (1.12)

where u is the fluid velocity. In order to conserve energy in the process, we need a term that

represents the adiabatic change in energy associated with the compression and expansion of the

cosmic ray gas. Following Parker (1969)5, the above becomes

∂f

∂t
+ u · ∇f = ∇ · (D∇f) +

1
3

(∇ · u) p
∂f

∂p
(1.13)

Formally, there is also a source term, Q(p,x, t) that should be included in Equation 1.13, but we

will ignore it for now, and hold off the discussion of it until Section 3.2.2.

In order to connect the DSA model to the Fermi process, we analyze Equation 1.13 in

one-dimension for the steady-state solution:

u
∂f

∂x
=

1
3

(
∂u

∂x

)
p
∂f

∂p
(1.14)

which has a solution

f = f0(p) + f1(p)
px
p

(1.15)

By matching boundary conditions at the shock, we obtain

[
f1 −

u1

c
p
∂f

∂p

]
up

=
[
f1 −

u2

c
p
∂f

∂p

]
down

(1.16)

In the downstream region, we expect that f1 = 0 because the distribution of particles should be

isotropic. In the upstream region, we expect f1 = 3f0 (u1/c). Inserting this into the above, we

obtain

(u1 − u2) p
∂f

∂p
= −3u1f0 (1.17)

For the case of a strong shock, u1 = 4u2, which indicates that f0 ∝ p−4. The distribution f(p,x, t)

5Gleeson & Axford (1967) derive another elegant form of Parker’s transport equation, but choose to work with the
particle’s kinetic energy, T , rather than the momentum p.
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is then related to the observed spectrum, dN/dE, via the integral over the momentum space:

dN

dE
∝
∫
f (p,x, t) p2dp ∝ p−2 = E−2 (1.18)

From the relativistic relation E ∼ pc, we see that the diffusive shock acceleration mechanism also

produces the characteristic E−2 power-law slope that the Fermi mechanism produces.

1.2.3 CR Diffusion

The diffusion coefficient in 1.13 is typically spatially dependent, D = D (p,x, t), where the

spatial dependence is satisfied through the magnetic field, similar to the treatment by Bohm. In

the low-momentum limit, we expect D ∝ p2 and in the high-momentum limit, D ∝ p (Kang et al.,

2000). These two limits and the magnetic field dependence give rise to a diffusion coefficient of the

form,

D (p,x, t) =
D0

B(x, t)
z2

√
1 + z2

(1.19)

where D0 is the diffusivity, B(x, t) is the magnitude of the magnetic field, and z = p/mc. However,

Malkov (1999) showed that for non-linear shock acceleration, as long as the particle diffusivity grows

faster than √p, the case over the whole range of momenta considered, the energy spectrum becomes

independent of the shock compression.

As particles gain energy, they are capable of diffusing out further from the shock that

accelerated it. As these higher-energy particles do so, their presence modifies the ambient, effectively

warning the plasma of the oncoming shock by heating it and thereby modifying the shock structure

(see Section 2.5). As this heating process increases the downstream temperature, the injection

momentum will also be increased; however, the lower energy particles are virtually unaffected by

this heating process.

The changes to the shock structure (Kirk, 1994; Jun & Jones, 1997) also changes the spec-

trum such that it is no longer defined by a single power-law (Kang et al., 2009; Caprioli et al.,

2010a). Instead, the spectrum becomes curved and, in the case of the steady-state solution, takes

the form

f(p, t) ∼

[
f0

(
p

pinj

)−q0
+ f1

(
p

pmax(t)

)−q1]
exp

[
−
(

p

pmax(t)

)α]
(1.20)

where the constants depend on the shock conditions, the amplitude f0 is the Maxwellian value at
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p = pinj , and the amplitude f1 can be determined by the condition that fs(pmax) ∝ p−4
max. In the

general case, the spectrum becomes flatter at the higher energies where the shock compression ratio

increases due to the preheating.

1.3 Research Goal

There have been many successful models produced of CR production in SNR shocks, such as

Ellison & Bykov (2011) and Caprioli et al. (2010a). However, these models remain one-dimensional6

for the fact their interests lie in reproducing the X-ray spectra of observed remnants, such as SNR RX

J1713.7-3946 (Muraishi et al., 2000; Ellison et al., 2010), under the assumption of non-equilibrium

ionization due to significantly increased computation times (see Teşileanu et al. (2008) for details

on the numerics of this assumption).

The models put forth by Kang et al. (2002) and Jones & Kang (2005), while also focusing in

planar shocks and spherically symmetric models, introduce adaptive mesh refinement (see Section

3.1) into the momentum-space of the particle distribution while focusing primarily on the structure

of shock interactions (Jun & Jones, 1997; Kang et al., 2009), though some of their more recent

interests have been in the radiation from CR-modified shocks (Edmon et al., 2011; Kang et al.,

2012)

One of the first goals of this thesis is to study the role of knot-formation in the production of

cosmic rays. The knots in supernova remnants develop due to instabilities in the fluids, particularly

the Rayleigh-Taylor instability (Chevalier & Klein, 1978; Blondin & Ellison, 2001). There have been

some studies into this instability in the presence of efficient particle acceleration (e.g., Blondin &

Ellison (2001), Ferrand et al. (2010), and Fraschetti et al. (2010)), however, these studies mimicked

the particle acceleration by modifying the adiabatic index, γ, to be less than the ideal gas value of

γ = 5/3, rather than incorporating an active cosmic-ray production mechanism7.

As SNR shocks are a site for accelerating protons, there should be some observational

signature of the hadronic cosmic rays due to interactions of the accelerating particles and the thermal

population of protons in the ambient ISM & SNR shell. The sensitivity of Fermi-LAT requires a

molecular cloud to be near the SNR to provide a high-density target for the detection of the π0-
6Formally, it is spherically symmetric with dependence in only one direction, r.
7In the case of Ferrand et al. (2010) and Fraschetti et al. (2010), the adiabatic index is turned into a hydrodynamic

variable so it is dynamically changing, rather than the static-value approach taken by Blondin & Ellison (2001).
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decay signature. We investigate the possibility of a residual pion spectrum that should exist around

a “naked” SNR (one without a nearby molecular cloud) and the observational requirements therein

to observe this emission.
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Chapter 2

Supernova Remnant Evolution

In this chapter, we present the background theory on the dynamic evolution of supernova

remnants (Section 2.1), the methods of modeling these objects (Sections 2.2, 2.3, 2.4), the role of

cosmic ray production in the shocks (Section 2.5), and the observational signatures of these extreme

explosions (Section 2.6).

2.1 SNR Evolutionary Phases

At the end of a massive1 star’s life, it explodes with a kinetic energy of ∼ 1051 ergs, roughly

one percent of the total binding energy of the stellar collapse2. As the stellar ejecta progress outwards

in the ambient medium, the remnant can be characterized in three distinct phases: (a) the free

expansion phase, (b) the energy conserving phase, (c) the momentum-conserving phase. Each of

these will be discussed below.

In the first phase of supernova remnant evolution, the free expansion phase, the shock wave

generated by the explosion moves into an approximately homogeneous interstellar medium (ISM)

with a very large Mach number (M > 100). Assuming that the initial energy, E0, of the explosion

is purely kinetic, then the maximum velocity is

vej =
(
α

2E0

Mej

)1/2

(2.1)

1The lower limit of “massive” is not well defined, ranging from 5M� to 8M�, depending on the author.
2The other 99% are released in the form of neutrinos; see Rampp (2000).
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where α is a constant that depends on the parametrization of the SNR density (Truelove & McKee,

1999). The shock radius scales as

R(t) = vejt =
(
α

2E0

Mej

)1/2

t (2.2)

The ISM gas is separated from the ejecta by a contact discontinuity, a surface where the pressure

and velocity are approximately equal but with differing densities–this is unlike a shock in which all

three quantities would change. Behind this contact discontinuity, a reverse shock develops in the

ejected material. Ahead of the contact discontinuity, the ISM gas is being compressed to form a

thin shell.

When the mass of the accumulated matter on the shell is approximately equal to the mass

of the initial explosion, it enters the energy-conserving phase (often called the Sedov phase). In this

phase, the position of the forward shock can be given by

R(t) = βE
1/5
51 n

−1/5
0 t

2/5
5 pc (2.3)

where E51 = E0/1051 erg, t5 = t/105 yr, n0 = n/100 cm−3 and β a constant of O(1).

The amount of energy lost due to radiation is negligible up to this phase. However, as the

remnant ages, the accumulated losses become significant. It is around this time that the remnant

enters the third phase, the momentum-conserving phase (sometimes called the snow-plow phase).

The momentum conditions requires

4π
3
R3 dR

dt
=

4π
3
R3

0v0 (2.4)

which integrates to give

R(t) = R0

[
1 + 4

v0
R0

(t− t0)
]1/4

(2.5)

where R0 and v0 are the location of forward shock via Equation 2.3, and velocity, respectively, at

time t = trad ' 104E
4/17
51 n

−9/17
0 years (Blondin et al., 1998). Once the velocity of the forward

shock is approximately equal to the sound speed of the ISM, c2s = γp/ρ, the SNR is no longer
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distinguishable from the ISM. This occurs after

tfade ≈ 106E
27/85
51 n−31/85

(
cs

10 km/s

)−7/5

yr (2.6)

Figure 2.1 shows the the position of the forward shock of an SNR as a function of time, combining

all three phases, where E0 = 1051 erg, Mej = 4M�, and n = 1 cm−3.

log10 t (years)

lo
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R ∝ t

R ∝ t2/5

R ∝ t1/4

Figure 2.1: Position of the forward shock as a function of time, showing the different phases of the
SNRs life. The dashed gray lines indicate the approximate separations between regimes.

2.2 Hydrodynamics

Being very hot plasmas, supernova remnant ejecta can be well modeled using the (ideal)

Eulerian hydrodynamic equations,

∂ρ

∂t
+∇ · π = 0 (2.7a)

∂π

∂t
+∇ · (u : π + pgasI) = 0 (2.7b)

∂E

∂t
+∇ · (uE + upgas) = 0 (2.7c)
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where ρ is the mass density, π = ρu is the momentum density, pgas is the gas pressure, I is the

identity tensor, and

E =
1
2

π · π
ρ

+
pgas

(γ − 1)

is the total energy3 with γ the adiabatic index. The equations represent the mass conservation,

momentum conservation, and energy conservation respectively. We also denote u : π to indicate the

dyad product, defined by

a : b =


a1b1 a1b2 a1b3

a2b1 a2b2 a3b3

a3b1 a3b2 a3b3

 (2.8)

2.2.1 Blast Waves

We first consider the Euler equations for a symmetric (planar, cylindrical or spherical)

system. Rather than using the conservative form of Equation 2.7, we opt for the primitive form,

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

(
∂u

∂r
+
su

r

)
= 0 (2.9a)

∂u

∂t
+ u

∂u

∂r
+

1
ρ

∂p

∂r
= 0 (2.9b)

∂p

∂t
+ u

∂p

∂r
− ρc2s

(
∂u

∂t
+ u

∂su

∂r

)
= 0 (2.9c)

where c2s = γp/ρ is the square of the speed of sound and s ∈ (0, 1, 2) represents the geometry (planar,

cylindrical, spherical, respectively).

We can then consider simple scaling relations:

u ≡ ṘU(η), ρ ≡ ρ0Ω(η), p = ρ0Ṙ
2P (η) (2.10)

where η is the scaled coordinate, ρ0 a constant, and U, Ω, P are functions that give the shape of the

solution for all time and space. We can then recognize that

∂h(η)
∂t

=
∂h

∂η

∂η

∂t
= −η Ṙ

R
h′ (2.11)

∂h(η)
∂r

=
∂h

∂η

∂η

∂r
=

1
R
h′ (2.12)

3pgas = (γ − 1)E being the ideal gas equation of state, connecting the pressure to the internal energy.

19



which allows us to write Equation 2.9 as

[U − η] Ω′ + ΩU ′ +
s

η
UΩ = 0 (2.13a)

RR̈

Ṙ2
UΩ + [U − η]U ′Ω + P ′ = 0 (2.13b)

2
RR̈

Ṙ2
P + [U − η]

[
P ′ − γP Ω′

Ω

]
= 0 (2.13c)

Figure 2.2: The evolution of the 1D blast wave due to an over-pressure in a very small region. All
values are scaled to peak values at r ' 1.

For the blast wave problem, we can argue from dimensional analysis that

R(t) = ξ

(
Et2

ρ

)1/5

(2.14)

where ξ is a constant that can be determined from the units chosen. The above scaled equations
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then reduce to4,

[U − η] Ω′ + ΩU ′ +
s

η
UΩ = 0 (2.15a)

−3
2
UΩ + [U − η]U ′Ω + P ′ = 0 (2.15b)

−3P + [U − η]
[
P ′ − γP Ω′

Ω

]
= 0 (2.15c)

These equations show an independence on the scale of the physical system. A nuclear bomb exploding

above the New Mexico will expand in the same manner as a star exploding in space.

As an example, consider the domain r ∈ [0, 2] of a stationary uniform density, ρ = 1 and

pressure, p ∼ 10−5, and place an over-pressure, p ∼ 102, in a very small region, r ≤ 10−2. Evolving

these variables using Equations 2.15 (or similarly Equations 2.7), then the result is the classic Sedov

blast-wave (Sedov, 1946; Taylor, 1955). At a time t = 1, the (scaled) values appear as in Figure 2.2.

2.3 n-Dimensional Hydrodynamics

In moving from one dimension into two or three dimensions, minor perturbations in the fluid

flow can lead to unsteady growth, resulting in instabilities. Of particular importance in astrophysical

fluids are the Rayleigh-Taylor, the Kelvin-Helmholtz, and Richtmyer-Meshkov instabilities. Each of

these will be discussed in turn.

2.3.1 Rayleigh-Taylor Instability

The Rayleigh-Taylor instability (RTI) occurs when two fluids of differing densities are placed

on top of one another under a constant gravity. In this case, the momentum conservation equation

is modified to account for the gravitational force:

∂π

∂t
+∇ · (π : u + pI) = ρg (2.16)

where g is the constant gravitational acceleration.

By placing the more dense fluid atop the less dense fluid, the force of gravity, after the

introduction of minor perturbations at the interface, causes “fingers” to develop as the fluids begin
4Appendix C shows the derivation from Equation 2.9 to the Equation 2.15.
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to mix. As the effects of gravity and acceleration (in the opposite direction) are indistinguishable,

the instability also grows when the less dense fluid accelerates into the more dense fluid. This latter

condition is often satisfied in systems with extreme pressure (temperature) where the effect of gravity

is effectively negligible; the classic example is a supernova remnant.

Figure 2.3 shows the results of a simulation growing a single Rayleigh-Taylor finger on a 2D

plane with periodic boundary conditions in the y direction. Figure 2.4 shows the Crab Nebula, an

historic supernova remnant that shows the RTI through much of its structure.

Figure 2.3: Density plot, in g/cm−3, of simula-
tion evolving the Rayleigh-Taylor instability.

Figure 2.4: Image of the Crab Nebula, image
credit: NASA, ESA, J. Hester and A. Loll (Ari-
zona State University)

For small perturbations, linear analysis can show that the position of the interface between

the two fluids rises exponentially as

y(x, t) = y0(x)eλt

where λ =
√
Aωg where A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number (with ρ2 the more dense

of the two), g the gravitational acceleration and α the spatial wave-number. At late times, the

assumption of an exponential rise fails and the Kelvin-Helmholtz instability begins to grow along

the fingers.
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2.3.2 Richtmyer-Meshkov Instability

The Richtmyer-Meshkov instability (RMI) is similar to the RTI, in that there are two fluids

of differing densities that are being accelerated, one into the other. However, unlike RTI where the

acceleration is a constant between both fluids, the acceleration in this case is due to the interface

between two fluids being impulsively accelerated (i.e., a shock passes through the interface).

At late times the structure of the RMI is very similar to the RTI; this is because the

instability for RMI evolves quadratically in time whereas the RTI evolves exponentially. Figure

2.5 shows the development of the RMI due to a Mach 3 shock accelerating into the interface of a

low-density (ρ = 0.14) and high-density (ρ = 1.4) fluids.

Figure 2.5: The blue region shows the progression of the heavy shock as it enters and accelerates
into the lower-density region in red. The white bulge leading the RTI finger is the forward shock,
noticeably absent in the RTI simulation.

This type of instability appears to develop at the interface of helium and hydrogen in the

outer shell of a core collapse supernova (Kifonidis et al., 2003), and, along with the RTI, appear to

be responsible for the chemical mixing in supernova ejecta.

2.3.3 Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability (KHI) is a type of shearing instability, caused by the

interface of two fluids, which need not be of different densities, moving in opposite directions. This

instability appears during the late stages of the RMI & RTI. As the fingers extend further into the

medium, the stalk of the finger moves in an opposite direction as the ambient.
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Figure 2.6 shows a density map of a simulation at t = 0.83 s that was perturbed in velocity

with a cosine function of amplitude of 0.01. The key signature of the KHI is the curved hooks that

appear at the interface of the two fluids. This instability grows linearly in the early phases, before

becoming highly turbulent in the non-linear evolution at late times.

Figure 2.6: Density map of the Kelvin-Helmholtz instability. The red fluid (lower density) is moving
towards the right while the blue fluid (higher density) is moving towards the left.

2.4 Magnetohydrodynamics

Plasmas are quasi-neutral, so the effects of the magnetic field generated by the moving

charges can play a significant role in the evolution of the dynamics (the field started with Alfvén

(1946); a more recent and thorough review can be found in Goedbloed & Poedts (2004)). In this
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case, Equation 2.7 becomes

∂ρ

∂t
+∇ · π = 0 (2.17a)

∂π

∂t
+∇ · (u : π + ptotI−B : B) = 0 (2.17b)

∂E

∂t
+∇ · (uE + uptot + B (B · u)) = 0 (2.17c)

where ptot = pgas + pB is the total pressure, with pB = B · B/2 where we choose to define the

magnetic field as B = Bcgs/
√

4π (i.e., a scaled magnetic field for convenience of notation). It is also

necessary to include the dynamic evolution of the magnetic field into the system of equations:

∂B
∂t
−∇ · (B : u− u : B) = 0 (2.17d)

with the further constraint that ∇ · B = 0. These are called the magnetohydrodynamic (MHD)

equations.

2.4.1 MHD Instabilities

Due to the presence of the magnetic pressure and the divergenceless condition, the magnetic

field lines restrict the fluid flows. If a fluid flow is along the z direction, then the total pressure tensor

takes the form 
p+ 1

2B
2 0 0

0 p+ 1
2B

2 0

0 0 p− 1
2B

2


⊥

⊥

‖

(2.18)

where ⊥ and ‖ designate the direction the pressure is applied with respect to the magnetic field.

The perpendicular components serve to compress the field lines while the parallel component serves

to straighten the lines.

As an example, adding a magnetic field, B =
(

1
2 , 0, 0

)
, to the KHI problem reduces the

amplitudes of the instability and increase the timescale before onset. Figure 2.7 shows the KHI

developing at t ' 1.5 seconds, slightly later than Figure 2.6 and noticeably less unstable due to the

magnetic field constraining the flows. Similar reductions in the growth of the instabilities occur for

the RMI and RTI.
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Figure 2.7: Linear density map of the magnetized Kelvin-Helmholtz instability. The magnetic field,
initially acting only in the x-direction, inhibits the growth of the perturbations seen in Figure 2.6.

2.5 Cosmic Ray Modified Shocks

The presence of a population of energetic particles in the forward shock, although small in

number density compared to the fluid density, introduces a feedback interaction with the dynamical

evolution. As the CR particles scatter off the magnetic field in the shock during the DSA process,

the energy the particles gain come from the bulk kinetic energy of the flow (Kirk, 1994). Since

the flow velocity is part of the DSA equation (Equation 1.13), the extraction of energy by the CRs

affects the compression/expansion of the CR fluid, creating a feedback between the shock and the

CR particles. The feedback mechanism can be described by a cosmic ray pressure, pcr, found from

the phase-space distribution discussed in Section 1.2.2, via the integral

pcr(x) =
4πmc2

3

∫ pmax

pmin

p4f
dp√

1 + p2
(2.19)

where pmin ∼ αmcs is the minimum momentum of the particle population (here α > 1 constant, m

the particle mass and cs the speed of sound) and pmax the maximum cut-off momentum.
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The gradient of this pressure adds a new force term to the magnetohydrodynamic equation:

∂ρ

∂t
+∇ · π = 0 (2.20a)

∂π

∂t
+∇ · (ρu : π + ptotI−B : B) = −∇pcr (2.20b)

∂E

∂t
+∇ · (uE + uptot + B (B · u)) = −u · ∇pcr (2.20c)

∂B
∂t

+∇ · (B : u− u : B) = 0 (2.20d)

These are then the cosmic ray modified magnetohydrodynamic equations.

With a shock, we can derive the Rankine-Hugoniot jump conditions (see Appendix A),

which can show the compression ratio of the density, velocity, and pressures of the two interacting

fluids. Under hydrodynamics or parallel-magnetohydrodynamics (u ‖ B), the compression ratio is

ρ1

ρ2
≡ σ =

(γ + 1)M2
2

(γ − 1)M2
2 + 2

(2.21)

where the subscripts indicate the shocked (1) and unshocked (2) regions, M2 = u2/cs,2 is the

downstream Mach number and γ the adiabatic index. For a strong shock, this approximates to

σ ' (γ + 1)/(γ − 1) which leads to σ = 4 for γ = 5/3 of an ideal gas.

In the presence of efficient cosmic ray acceleration, the particle population can diffuse down-

stream, generating a precursor “foot” ahead of the shock (Jun & Jones, 1997). The foot grows due

to an adiabatic compression such that pgas ∝ ργ , leading to a modified structure of the shock.

Under CR-modified shocks, there are four states in the flow: (1) the (far) upstream state, (2) the

pre-shocked state, (3) the post-shocked state, (4) the (far) downstream state.

Due to the existence of the foot, the Rankine-Hugoniot jump conditions for a hydrodynamic

flow must account for this precursor. This leads to the jump relation,

σ = (γ + 1)M2
1

/[
(γ + 1)M2

1

σγ−1
0

+ 2

]
σ−γ0 (2.22)

where σ0 is the compression ratio between the upstream and precursor states. In the presence of a

strong shock, this above reduces to

σ ≈ γ + 1
γ − 1

σ0 (2.23)
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Figure 2.8: One-dimensional solution to the cosmic-ray modified shock. In red is the pure hydro-
dynamic shock, showing the classic σ = 4 jump. In blue is the cosmic-ray modified hydrodynamic
shock, showing the foot ahead of the shock with a jump of σ = 5.5.

Figure 2.8 shows a 1D slice in a 2D simulation of the cosmic-ray modified shock alongside a pure

hydrodynamic shock with the same initial conditions of a Mach 4 shock interacting with a low-density

medium: Ul =
(
4,−9.65× 10−5, 0.75

)
; Ur =

(
1.0,−3.86× 10−4, 6.67× 10−5

)
where U = (ρ, u, p);

the cosmic ray pressure was initialized to the same value as the gas pressure. The measured jump

is about 5.5, while using the strong-shock approximation gives 5.2, an agreement to ' 5%.

2.6 High Energy Emissions

Observations of supernova remnants come in a variety of wavelengths, from radio and optical

(Weiler & Sramek, 1988), to X-ray and γ-ray (Reynolds, 2008; Helder et al., 2012; Vink, 2012).

Each wavelength can provide different information regarding the state of the plasma. The radio

observations can provide information on the magnetic field configuration (Reynoso et al., 2013) while

the X-ray plasma can provide details of, among other things, the the temperature of the plasma and

ionization stage of a particular element. The types of emissions can be broadly attributed to either
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a thermal (Maxwellian) population of (charged) particles or a nonthermal (typically power-law)

population of particles; each population will be briefly discussed.

2.6.1 Thermal Emissions

For sufficiently large temperatures, the X-ray emissions of SNRs predominately feature

spectral lines of metals such as Si, S and Fe, see Figure 2.9. When an electron in an atom makes

the transition Ei → Ej (with i > j), the emitted X-ray photon has an energy of the difference

EX = Ei − Ej ; since each element has a unique set of energy levels, the emitted X-rays are also

unique and can be used tracers of the local state. However, at temperatures greater than 108 kelvin

(10 keV), these features are lost as the dominant process is electron bremsstrahlung (Kaastra et al.,

2008; Vink, 2012).

Figure 2.9: X-ray spectrum of Tycho’s remnant (SN 1572). Region A and Region B are on the north-
eastern and south-eastern side of the remnant, respectively. Image from Badenes et al. (2006).

The line emissions lie on top of continuum emissions, which come from a few different

sources, including the bremsstrahlung (also called free-free emission) and recombination (free-bound
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emission)5. For a Maxwellian population of particles, the bremsstrahlung emissivity is given by

εff = η gff (Te)T 1/2
e exp

[
− hν

kBTe

]
ne
∑
i

niZ
2
i erg/s/cm3/Hz (2.24)

where η ∼ 10−27 is a constant, gff (Te) ≈ 1 is the gaunt-factor and i denotes the various ion species

(Rybicki & Lightman, 1984). For solar compositions, this emissivity is dominated by electron-proton

collisions, so often the substitution ne
∑
niZ

2
i ≈ nenH is used.

The free-bound emission occurs when an electron is captured into an atomic shell. The

energy of the emitted photon is the

hνn = Ee + χn (2.25)

where n is the quantum number, Ee the energy of the electron and χn the ionization potential. Due

to the higher statistical weights for the atomic shells, the electron is more likely to be captured into

a high-n shell where the energy differences between levels are small. Due to this, the free-bound

emission can show sharp edges near the series limits. For a given energy level, the emissivity is given

by

εfb = ξnenz+1
gi
gi+1

σ(hν)νχ2
nT
−3/2 exp

[
− Ee
kTe

]
erg/s/cm3/Hz (2.26)

where ξ ∼ 106 is a constant, gi are the statistical weights of the ion (before and after recombination)

and σ(hν) ∝ ν−3 is the photo-ionization cross-section. The decreasing flux counts at the higher

energies (see Figure 2.9) is a feature of the continuum emissions.

2.6.2 Nonthermal Emissions

Radio observations of SNRs showed synchrotron emission (Weiler & Sramek, 1988), due

to electrons spiraling around a magnetic field. The fluxes observed could only be explained by

a population of electrons obeying a power-law distribution, N(E) = kE−s, rather than following

a Maxwell-Boltzmann distribution of particles The emissivity due to the nonthermal synchrotron

radiation is given by (Reynolds, 2008)

dnsy,γ
dEγ dt dV

' k10−23
(
8.31× 10−8

)(s−1)/2
B

(s+1)/2
⊥ E−(1+s)/2

γ

γ

erg cm3 s
(2.27)

5The Review paper by Kaastra et al. (2008) contains details on all the different types of thermal emissions, we
cover these two for brevity.
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where B⊥ is the direction of the magnetic field projected onto the plane of the sky. For s = 2

expected of cosmic rays, this becomes

dnsy,γ
dEγ dt dV

' k 4× 10−27

(
B⊥
Eγ

)3/2
γ

erg cm3 s

The same population of cosmic ray electrons would also be responsible for two other non-

thermal emissions: bremsstrahlung and inverse Compton (Gaisser et al., 1998; Schlickeiser, 2002),

both of which emit in the γ-ray regime. For the bremsstrahlung emission, the electrons pass near a

massive partner (typically assumed a proton), the interaction between the two deflects the electron

from its path, causing the emission of a photon. The bremsstrahlung emissivity is,

dnbr,γ
dEγ dt dV

' k 7× 10−16nHE
−s
γ

γ

erg cm3 s
(2.28)

For inverse Compton, the electrons require an ambient photon field to upscatter. For a single

electron of energy Ee = γmec
2 in an isotropic photon field dnγ/dV (γ/cm3/erg), the emissivity of

the upscattered photon population is given by (Houck & Allen, 2006; Reynolds, 2008),

dnic,γ
dEγ dt dV

' k
∫
E−sdE

∫
σKN (Eγ , ε,Γ)

dnγ
dV

dε
γ

erg cm3 s
(2.29)

where ε is the initial photon energy, Eγ is the photon energy after upscattering, Γ is the Lorentz

factor and σKN is the angle-integrated Klein-Nishina cross-section:

σKN (Eγ , ε,Γ) =
3σT
4εγ2

[
2q ln q + (1 + 2q)(1− q) +

(Γq)2 (1− q)
2 (1 + Γq)

]

Γ = 4εγ/mc2; q ≡ Eγ
Γ (γmec2 − Eγ)

(2.30)

with σT ∼ 6.65× 10−25 cm2 the Thomson cross-section.

Assuming a B = 1µG background magnetic field in a medium with nH = 0.11 cm−3, a

Maxwellian population of ambient photons of temperature T ≈ 2.7 K, and purely leptonic cosmic

rays following a distribution of the form,

N(E) dE ' k
(
E

E0

)−2

exp
[
E0 − E
E1

]
dE (2.31)
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Figure 2.10: Synthetic spectrum of a population of nonthermal electrons in an isotropic medium. S
is the source functions, Equations 2.27 through 2.29, divided by the proportionality constant k.

where E0 = 109 eV and E1 = 1013 eV limit the distribution, the emissivity of the leptonic emission

processes is given above in Figure 2.10. For this particle distribution, the fluxes of the inverse-

Compton (blue solid curve) and bremsstrahlung (green dash-dot curve) rise as

Sic/k ∝ E1/2 (2.32)

Sbr/k ∝ E (2.33)

and fall at the high-energy end with the exponential cut-off of the distribution N(E).

As mentioned in Section 1.1.2, the emissions attributed to the accelerated protons is the

pion emission. The emissivity of the pion emission is given by (Dermer, 1986; Kelner et al., 2006),

dnpp,γ
dEγ dt dV

= 8πnH
∫ ∞
Eπ,min

dEπ

(E2
π −m2

π)−1/2

∫ ∞
Ep,min

dEpN(Ep)
dσ(Ep, Eπ)

dEπ
(2.34)

with nH the ambient density, Eπ,min = Eγ + (m2
π/4Eγ) the threshold energy for generating the
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photon from the pion, Ep,min = 2
(
p2
π +m2

π

)1/2 +m2
π/2mp ≈ 1.2 GeV the minimum energy required

for the relativistic proton to generate a pion, with momentum pπ, in the collision with an ambient

proton (Stecker, 1971), and dσ/dEπ the cross-section of the pp→ π0 + anything reaction.

For a power law following N(E) = kE−2, the photopion spectrum is symmetric about

Eγ ≈ 70 MeV, leading to the same power-law index for the very large and very small γ-ray energies:

dnpp,γ
dEγ dt dV

∝
(
Eγ
mπ

)±sπ
(2.35)

where the positive power is taken for Eγ � mπ and the negative for the other extreme, Eγ � mπ;

in both cases, sπ = 4s/3 − 1.04 is the power-law index of the pion spectrum and s the power-law

index of the cosmic ray protons (Schlickeiser, 2002). Thus, the rise of the pion emission for this

population of cosmic ray protons follows

Spp/k ∝ E1.63 (2.36)

which is significantly steeper than the bremsstrahlung and inverse Compton mechanisms, hence the

low-energy regime being the signature of hadronic acceleration6.

Using Equation 2.31 as the distribution function for CR protons7 in the same environment

as the electrons (nH = 0.11 cm−3, etc), the γ-ray emissions due to the decay of neutral pions can

be seen in Figure 2.11 below. The sharp kink near log(E) ' 8 is due to the approximation of the

cross-section (Kamae et al., 2006).

2.6.3 High Energy Observations

For an on-axis photon, the Fermi-LAT resolution (Ackermann et al., 2012), as a function

of energy, takes the form as seen in Figure 2.12 below. From Figure 2.11, we require observa-

tions in the Eγ ∼ 100 MeV range to determine the difference between the pion spectrum and the

bremsstrahlung/inverse Compton spectrum (via comparing the rise of the flux). In this range, the

energy resolution is ∆E/E ∼ 0.2 for an on-axis event; this decreases quickly for off-axis events.

However, the larger issue with observing the naked SNRs is not the resolution at these lower
6Note that for s 6= 2, the γ-ray spectrum becomes asymmetric with the larger index having a rapid decline above

E > 1 GeV and a smaller index having a shallower rise above E > 1 GeV. For any index, the spectrum is very hard
for E < 300 MeV.

7The normalization constant k is different for the electron & proton spectra, requiring an extra multiplicative
factor of ∼ 90, as shown by Houck & Allen (2006).
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Figure 2.11: The emissivity due to π0 → 2γ mechanism (blue dashed curve) with the γ-ray spectrum
from the leptonic processes in gray (symbols remain the same).

energies, but the differential sensitivity. In Figure 2.13, we see a plot of the differential spectrum for

Fermi-LAT , assuming a point-source with a power-law spectrum of index 2. At the lower energies,

we require a flux greater than a few 10−11 erg/cm2/s in order to observe the γ-ray emissions.

For the SNRs interacting with molecular clouds, the sensitivity of Fermi-LAT is sufficient

to observe the γ-ray emission (see Section 2.6.3). For example, SNR W44, has been observed with

Fermi (Abdo et al., 2010; Ackermann et al., 2013; Yoshiike et al., 2013). Due to the interaction of the

SNR shock with a nearby molecular cloud, the integrated flux of the remnant is significantly above

the needed 10−11 level. For this particular remnant, the proton spectrum necessary to generate this

spectrum follows a smoothly broken power-law8,

dN

dp
∝ p−2.36

[
1 +

(
p

pbr

)1.14/β
]−β

(2.37)

8The values of the power law indices displayed are the nominal values, Ackermann et al. (2013) gives values with
the statistical errors.
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Figure 2.12: Energy resolution as a function of energy for on-axis events, via the updated pass7
analysis, discussed in Ackermann et al. (2012), that allows for better resolution for E < 300 MeV.

where pbr = 22± 8 GeV/c where β ≈ 19.

The pion spectrum, given by Equation 2.34, depends linearly on the ambient density, nH .

In the case of W44, the assumption was for nH = 100 cm−3. If W44 were a naked remnant, the

ambient density would be on the order of nH ' 0.1 cm−3. This would put the integrated spectrum

about 3 orders of magnitude below the differential spectrum thresholds for Fermi-LAT. Thus, if we

are to be able to observe a naked SNR, either the emissions must very strong or the observational

tool be very sensitive.

9The parameter β is not defined in Ackermann et al. (2013), this value is currently unknown; the author of the
paper believes it to be 1 but is not sure, however using the cosmicp code suggests β ≈ 0.5 is a better fit.
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Figure 2.13: Differential sensitivity of the detector as a function of energy for on-axis events, via the
updated pass7 analysis; adapted from Ackermann et al. (2012).

Figure 2.14: γ-ray emission from SNR W44, adapted from Ackermann et al. (2013). The observed
flux (filled circles) as measured by Fermi-LAT follow the pion decay path (solid line), rather than a
bremsstrahlung spectrum (dashed line).
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Chapter 3

Numerical Methods

In this Chapter we briefly describe the method of numerical hydrodynamics in Section 3.1,

including the numerical model of the SNR profile (Section 3.1.1). Section 3.2 discusses the algorithm

for modeling the diffusive shock acceleration (DSA) mechanism for accelerating cosmic ray protons.

3.1 Numerical Hydrodynamics

As described in Section 2.5, the dynamic evolution of a SNR when incorporating the CR

feedback can be modeled by the cosmic-ray modified magnetohydrodynamic equations:

∂ρ

∂t
+∇ · π = 0 (3.1a)

∂π

∂t
+∇ · (u : π + ptotI−B : B) = −∇pcr (3.1b)

∂E

∂t
+∇ · (uE + uptot + B (B · u)) = −u · ∇pcr (3.1c)

∂B
∂t
−∇ · (B : u− u : B) = 0 (3.1d)

where the variables are the same as those defined earlier. Passive scalars, denoted by ψj , that mark

interesting regions of the fluid flow follow the Lagrangian advection,

Dtψ =
∂ψj
∂t

+ u · ∇ψj = 0 (3.1e)
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For the CR distribution function, f(x, p, t), these passive scalars are used to track the dynamic

evolution.

The Euler equations are modeled numerically; as computers are discrete counting machines,

we must first discretize Equation 3.1. This requires defining a domain of positions and associated

averaged values for elements of U = (ρ, π, E, B, ψj)
T , see Figure 3.1. The center of each domain is

indexed by i, j, k for the x, y, and z directions respectively, while cell interfaces, used for the fluxes,

are defined along the mid-point between cells, e.g., i± 1/2.

xi−1 xi xi+1

xi−1/2 xi+1/2

uni uni+1uni−1

Figure 3.1: Discretized grid in x with xi−xi−1 = ∆x. uni are elements of U at position xi and time
tn: ui = U (xi, tn).

There are many hydrodynamic codes publicly available that can be used, we chose to use

AstroBEAR, an acronym for Astronomical Boundary Embedded Adaptive Refinement. This code

solves the hydrodynamic equations on a Cartesian domain with block-structured adaptive mesh

refinement (AMR), which adaptively increases the resolution1 at interesting regions by adding new

domains with a cell-width and time step of

dx`+1 =
1
2
dx`

dt`+1 =
1
2
dt`

(3.2)

such that dt`/dx` is constant for all levels ` (Berger & Oliger, 1984; Berger & Colella, 1989).

AstroBEAR is also highly parallelized, scaling well into the ten-thousand processor range.

The details of the general method of numerical hydrodynamics, including interpolation schemed, can

be found in Cunningham et al. (2009)2 while Carroll-Nellenback et al. (2013) discusses the AMR

engine and parallelization techniques used.
1As will be discussed in Section 3.2, this aspect of AstroBEAR will not be employed for the cosmic ray simulations.
2This discusses v1.0; the current release is v3.0 which has improved many aspects of v1.0.
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The source terms required for cooling and cosmic ray production are handled separately

from the hydrodynamics solver. The latter will be discussed in the next chapter while the former is

discussed next.

3.1.1 Supernova Remnant Profile

An accurate self-similar solution to the interaction of the SNR and ISM material can be

found in Chevalier (1982), see Figure 3.2. The density follows a power-law function,

ρ(r, t) =


tn−3

(
r
g

)−n
r < Rc

qr−s r > Rc

(3.3)

where Rc is the location of the contact discontinuity, where the shocked ejecta and shocked ambient

are distinguished. The velocity is assumed to be linear while the pressure is determined in a self-

consistent treatment. From physical arguments relating to the accelerations and velocities of the

ejecta and ambient gas, it is required that s < 3 and n > 5.

However, the interaction region of the self-similar profile is extremely small compared to the

final size of the remnant, requiring a large number of grids to accurately resolve it.
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Figure 3.2: Radial density and velocity profiles of a 15 M� Type II SNR with parameters E0 = 1051

erg, t = 8 years, q = 1.0, s = 2, and n = 9. The velocity is scaled by 100 so as to be visible alongside
the density.
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The width of the contact discontinuity is roughly 0.015 pc. In evolving the remnant to

tage ∼ 103 years, the radius at the forward shock is approximately 12 pc. In order to resolve the

CD, the grid spacing must be less than that, which would require roughly 15,000 grid cells. This

is feasible with pure MHD simulations, particularly with the AMR, but, as will be discussed in the

next section, the resolution is too great for the diffusive component of the DSA solver.

As an alternative, one can assume that a total ejecta mass, Mej , is uniformly distributed

within a small radius, Rej ≤ 1 pc and inject the total energy, Etot ∼ 1051 erg, into the region as

thermal and kinetic components, Et = (1−α)Etot and Ek = αEtot for α ∈ (0, 1) (Truelove & McKee,

1999; Rodŕıguez-González et al., 2011; Toledo-Roy et al., 2014). The resulting long-time evolution

is similar to that found by the self-similar solution.

3.2 Diffusive Shock Acceleration

3.2.1 Multidimensional DSA

In vector form, the diffusive shock acceleration equation takes the form (O’C Drury, 1983;

Kirk, 1994; Malkov & O’C Drury, 2001)

∂f

∂t
+ u · ∇f = ∇ · (D(p)∇f) +

p

3
(∇ · u)

∂f

∂p
+Q (3.4)

with all variables as defined in Section 1.2. In order to numerically solve this equation with the

necessary resolution, one would need to have ∆ ln p < 0.1. Solving Equation 3.4 in one dimension

with such resolution can be done, but the code would spend much of its run-time updating the

distribution f(x, p, t) due to the stability restriction, ∆t ∝ ∆x2 for the diffusion term, as compared

to the advection time-step restriction of ∆t ∝ ∆x. Using this method for long-term studies in

multiple dimensions is not feasible, even with efficient parallelization to 10,000 processing cores.

For that reason, we employ the coarse-grained momentum volume (CGMV) method (Jones

& Kang, 2005; Edmon, 2010). This method uses the fact that the well-studied distribution f(p)

has a piece-wise power-law form in momentum space: f ∝ p−q(p), where q(p) = −d ln f/d ln p ≈ 4.

In this method, Equation 3.4 is recast into two equations, one each for the following moments of
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f(x, p):

ni,` =
∫ p`+1

p`

p2fi (p) dp (3.5a)

which is related to the spatial number density of accelerated particles in the range ∆p` = [p`, p`+1]

and

gi,` =
∫ p`+1

p`

p3fi (p) dp (3.5b)

which is related to the total energy density of the particles in the momentum bin. In both cases, i

and ` represent the spatial and momentum index, respectively. The combination of ni,` and gi,` can

be used to determine the full distribution, fi,`, and particle pressure, pCR, via simple iteration.

A direct substitution of Equation 3.5a into Equation 3.4 results, in one dimension, in

∂n`
∂t

+ u
∂n`
∂x

= Fn` − Fn`+1 − n`
∂u

∂x
+

∂

∂x

(
Dn`

∂n`
∂x

)
+Qn` (3.6)

where Fn` is the momentum-space flux between adjacent cells:

Fn` =
[
q(p`)Dn`

p`
− 1

3
p`
∂u

∂x

]
p2
`f(p`). (3.7)

We also define Dn` and Q(n`) as the moment-integrated diffusion coefficient and source term, re-

spectively:

Dn` =
1
n`

∫ p`+1

p`

D(p)p2f(p) dp (3.8)

Qn` =
∫ p`+1

p`

p2S (p) dp (3.9)

A similar set of equations can be derived for g`.

There are two advantages of using n` and g`. The first is that, due to the taking of the

moments, the required number of cells is an order of magnitude less, O(10) for each n and g compared

to O(100) for f alone. This alone allows for a faster total solution of the diffusion component, as

there are significantly less number of cells. The other advantage is that time-step is not limited by
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∆t ∝ ∆x2 as is the case of the finite-difference method. Here, the limiting time-step is

∆t ∼ 2
(

∆x
us

)
∆ ln p. (3.10)

The investigation of Jones & Kang (2005) show that when ∆ ln p > 2.3, the cosmic ray pressure

induces an over-pressure in the region of the shock and that for 1 . ∆ ln p . 1.5, the resulting

spectrum is approximately equal to the ∆ ln p < 0.1 case of the finite-difference method.

The particle acceleration solver utilizes the operator splitting technique (Yanenko, 1971;

Marchuk, 1990; Khan & Liu, 1998) along one-dimensional slices of the two-dimensional domain.

This requires Equation 3.6 to be split up as

dn`
dt

= −u∂n`
∂x

(3.11a)

dn`
dt

= Fn` − Fn`+1 − n`
∂u

∂x
+

∂

∂x

(
Dn`

∂n`
∂x

)
+Qn` (3.11b)

The first step of the splitting, Equation 3.11a is the advection of the particle population, this is

taken care of by Equation 3.1e in AstroBEAR. The second step is handled by the particle acceleration

subroutine added to AstroBEAR.

3.2.2 Cosmic Ray Injection

The addition of new particles into the acceleration mechanism is called injection. There are

two methods commonly used to describe the injection (Caprioli et al., 2010b; Jones & Kang, 2005).

The first is called the flux-fraction model in which a small, fixed fraction of the thermal particle flux

through the shock, ηinj , is injected at momentum pinj ∼ mcs where cs is the speed of sound in the

fluid in the region downstream of the shock. In this case, the source term takes the form

S (p, x, t) = ηinj
ρ1us

4πmp2
inj

δ (p− pinj)w (x− xs) (3.12)

where ρ1 the upstream mass density, us the shock velocity relative to the upstream velocity, xs

the shock location and w(a) ∼ exp
(
−a2

)
is a (normalized) weighting function that smooths the

injection over the shock region.

The other injection method is called the thermal leakage model in which particles with
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momenta in the tail of the Maxwellian distribution can leak upstream across the shock (the particle

velocities must be large enough to be able to move across the plasma without being scattered by

the MHD waves). In this model, a leakage function is approximated by (Kang et al., 2002)

τinj

(
ε,

v

ud

)
= H [ṽ − (1 + ε)]

(
1− ud

v

)−1
(

1− 1
ṽ

)
exp

[
− (ṽ − (1 + ε))−2

]
(3.13)

where v is the particle velocity, ε = B0/B⊥ ∼ 0.25 is the measure of the magnetic turbulence,

ud = us/r is the ratio of the shock velocity (us) and compression ratio (r), ṽ = εv/ud is the

normalized particle velocity, and H[x] the Heaviside step function.

It has been shown elsewhere that both models produce the same particle spectrum (Jones

& Kang, 2005; Caprioli et al., 2010b); due to its simplicity, we adopt the fixed fraction method for

injecting particles.

3.2.3 Cosmic Ray Diffusion

The momentum flux values computed in the CGMV algorithm and the injection are com-

bined into a single source value,

S = ∆Fn` − n`
∂u

∂x
+Q(n`) (3.14)

These are then added to the distribution while solving the diffusion of the population, making the

diffusion component of the algorithm effectively a diffusion equation with a source term. This takes

the form (cf. Equation 3.11b),
∂f

∂t
=
∂2f

∂x2
+ S (3.15)

This is solved in a semi-implicit method, meaning that the left- and right-hand sides depend on both

the n and the n+ 1 states (Crank & Nicolson, 1947), resulting in

fn+1 − fn

∆t
=

1
2
[
F
(
fn+1

)
+ F (fn)

]
+ Si (3.16)

where F is the numerical flux operator. This can be then molded into the operator formalism,

A+f
n+1
i+1 +A0f

n+1
i +A−f

n+1
i−1 = H (fn, S) (3.17)
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where H (fn, S) contains all the fn values and the source term, and A± = −∆t/2∆x2. As i ranges

in values from 1 to I, this is a matrix equation:



A0 A+ 0 · · · 0

A− A0 A+ · · · 0

0
. . . A0

. . .
...

... 0 A− A0 A+

0 · · · 0 A− A0





f1

f2

f3
...

fI


=



H1

H2

H3

...

HI


(3.18)

And since the elements of the matrix are along the main diagonal and the adjacent diagonals

above (below) the main diagonal, this particular matrix is called a tridiagonal matrix. Due to

its symmetry, this has an analytic solution that can be computed in O (I) time as compared to a

Gaussian elimination scheme that requires O
(
I3
)

time.

3.2.4 Numerical Issues

Implicit and semi-implicit methods are sensitive to boundary conditions due to the dis-

cretization error of the method. Poorly defined boundary conditions can introduce oscillatory data

into the domain that can reduce the accuracy from second-order to first-order in space, see Figure

3.3. This is also true for parallelized simulations, when passing information from one processor

to another3. In the case of the particle distributions, n(x, p) and g(x, p), the oscillatory behavior

generally arises due to the diffusion of the particle population off the domain (i.e., the particles are

advected out of the grid on processor 1 and onto the grid of processor 2).

In order to remedy this, Edmon (2010) developed an algorithm called Multidimensional

Adaptive Sub-cycling Tridiagonal (MAST) that eliminates the oscillations by first allowing the ghost

cells between the furthest cell (the left-most point in Figure 3.3) and the computational domain (the

solid line) to be free-floating, such that the sub-cycles of the diffusion solver can smoothly transition

to the ideal, smooth solution. When solutions vary too much, the tridiagonal solver is restarted

with a larger number of iterations and smaller dx until either the oscillations are no longer present

or the maximum number of sub-cycling iterations, nmaxiter ∼ Dmax dt/dx
2, is reached, at which point

the solution prints a warning and takes the average of the three cells (i− 1, i, i+ 1).

3In this case, the boundary is not a physical boundary of the simulation, but a computational one (an interior
boundary).
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Domain Boundary

Ideal distribution

Poor distribution

Figure 3.3: Example of oscillatory behavior due to boundary conditions. The red curve is an example
of the result of non-smooth boundaries between adjacent domains.

Testing has also shown that the system can be over-resolved, leading to the production of a

vacuum in the distributions (n, g ≤ 0). When the resolution is too great, the particles can diffuse out

of the cell, possibly cross several cell boundaries. Aside from the negative CR densities, the vacuum

solutions also lead to an unphysical negative pressure associated with the CRs. The underlying issue

is that the diffusion length of the interior boundaries is limited by the computational domain,

ld = kmax
∆t
∆x

(3.19)

By increasing resolution (decreasing ∆x), the diffusion length also increases proportionately. As the

interior boundaries are set by AstroBEAR at execution, the increase in resolution must be matched

by a decrease in the number of processors, leading to a nonlinear increase in execution time.

3.2.5 Synthetic Pion Spectrum

We utilize an updated version of the cosmicp code4 to create the synthetic emission map

for the photopions and, by assuming that the distribution for leptons follows the same power-law

distribution as the electrons (scaled appropriately), we also generate a synthetic spectra of the

leptonic emissions for comparison. Given an input spectrum, N(E), over a set range of energies, a

background photon field, and the local ambient densities, the cosmicp code can return the expected
4Private communication, see Edmon et al (2011) for details of cosmicp
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nonthermal γ-ray emissions via Equations 2.27, 2.28, 2.29 and 2.34, following the parametrizations

of Kelner et al. (2006) and Kamae et al. (2006). Figures 2.10 and 2.11 were generated using this

code.

3.3 Simulation Parameters

For the DSA simulations, we deposit M? = 4M� into a small volume, R? = 1.0 pc, with an

initial energy, Ei = 1051 erg, that is split between thermal (Et = (1−α)Ei) and kinetic (Ek = αEi)

energies at a 40:60 ratio (i.e., α = 0.6). The maximum velocity at R? is then computed via (Truelove

& McKee, 1999),

vmax(R?) =
√

10
3
Ek
M?

(3.20)

and the internal pressure,

pgas =


(γ − 1)Et/V r ≤ R?

δρambT r > R?

(3.21)

where V = 4πR3
?/3 is the volume of the SNR, δ contains the appropriate scaling factors and T =

103 K is the temperature of the ambient region. These conditions are the same for the comparison

test-cases as well: one in which the adiabatic index takes the standard value of 5/3 and one in which

it is 1.1, representing the effects of the presence of CRs (Blondin & Ellison, 2001; Schure et al.,

2009b). The magnetic field is uniform with magnitude |B| = 10−6 µG and pointing in the NW

direction; the Bz component is required to be zero for numerical MHD in two dimensions.

The physical grid is [−20 , 20] pc along each side of the two dimensional, Cartesian domain

and the simulation runs from t = 0 to t = 1500 yrs. Due to the constraints put forth in Section

3.2.4, we restrict the MHD+CR simulation to a resolution of 15002 cells (dx ≈ 8.2 × 1016 cm); the

comparison cases contain one level of AMR (dxeff ≈ 4.1× 1016 cm).

As the cosmic ray energy density is wcr ≈ 1 eV/cm−3 (see Section 1.1.1), we initialize a

uniform background pressure due to cosmic rays equal to this value, spread across the whole grid.

Using Equation 2.19 and the expectation that f(p) ∝ p−4, we can generate the moments n and g

from this background pressure. Though there is this background particle population, it does not

contribute to the injection of fresh particles in the injection algorithm described in Section 3.2.2, as

the density, ρ1, is the upstream mass density of the plasma and does not account for the existing CR
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particles. However, the dynamic evolution of the remnant will affect the injection of fresh particles

as the values of ρ1, us and pinj will vary across different shocks in the remnant.

The diffusion coefficient chosen satisfies the conditions presented by Malkov & O’C Drury

(2001) (see also Section 1.2.3), taking the form

D(x, p) = D0

(
B0

B(x)

)
p0.51 (3.22)

where D0 = 3× 1024 cm2/s and B(x) the magnitude of the magnetic field and B0 = 10−6 µG. The

choice of D0 stems from the assumption of a Bohmian diffusion; the value arising as the maximum

after the remnant is evolved for 1500 years.

In addition to this form of the diffusion coefficient, we allow for cross-field diffusion by

multiplying the result of Equation 3.8 with the a parameter that accounts for the direction of the

magnetic field,

Dn` → Dn`

(
Bn
|B|

+ κ
1−Bn
|B|

)
(3.23)

where Bn is the magnetic field in the direction of the solver, |B| the magnitude of the magnetic field

in the computational cell and κ a constant that represents the fraction of the tangential magnetic

field leaked into the normal direction; we take κ = 0.16, consistent with the requirement that

0.1 ≤ κ ≤ 0.2 (Scalo & Elmegreen, 2004).

47



Chapter 4

Results

In this chapter, we present the analysis of the simulations. Section 4.1 compares the results

of the SNR evolution between the differing models, focusing the the dynamical effects of the cosmic

ray feedback. We then discuss the production of cosmic rays in Section 4.2, followed by the discussion

on the synthetic spectra of the SNRs in Section 4.3.

4.1 SNR Evolution Models

The production and presence of the cosmic rays feeding back into the hydrodynamics is

known to cause a difference in the shock structure (see Section 2.5). In the evolution of the SNR

models tested, the effects on the modified equation of state (i.e., γ = 1.1 versus γ = 5/3) also

introduces a change in the shock structure. In this latter case, the Rankine-Hugoniot jump conditions

should lead to a steeper jump between the upstream and downstream regions for the strong, planar

shock,

σγ=1.1 = 21 (4.1)

as compared to the σγ=5/3 = 4 case. In the case of the SNR, the remnant shocks the ambient gas,

causing a change in the shock structure (though this is not observed in the γ = 1.1 case, see Figure

4.1). The measured jumps of the forward shock (between the shocked and unshocked ambient gas)
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and the reverse shock (between the shocked and unshocked ejecta) are

σ =


17, — γ = 1.1

3.6, 2.3 γ = 5/3

3.1, 4.0 MHD + CR

(4.2)

where the null value for γ = 1.1 is due to the lack of the shocked ambient gas. The net jump

(unshocked ambient to unshocked ejecta) for the latter two models is 8.5 and 12.0, respectively.

Figure 4.1: Azimuthally-averaged logarithmic density profiles for the three models (labeled).

The width of the interaction region between the ambient and the ejecta is inversely related
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to the compression ratio, σ. For the γ = 1.1 model, the region is ∼ 1 pc, whereas the MHD+CR and

γ = 5/3 model have an interaction region that is several parsecs wide, due to the shocked ambient

gas. This thinner region allows for the Rayleigh-Taylor fingers of the γ = 1.1 model to penetrate

the forward shock (see Figure 4.2), while the fingers in the γ = 5/3 and MHD+CR models are still

far from forward shock.

Figure 4.2: Logarithmic density plot of the three models, γ = 1.1, γ = 5/3 and MHD+CR respec-
tively. Each image is from the same t ' 1.3 kyr with nlow = −1.0

The growth of the RTI is also incredibly damped in the MHD+CR model. The studies by

Ferrand et al. (2010) and Fraschetti et al. (2010), in which the CR were modeled by a spatially-

dependent adiabatic index, γ(x), show no such damping of the RTI. Fraschetti et al. (2010) suggest

that if the density behind the reverse shock is lower as compared to the density behind the forward

shock, it might “hinder the development of the RT fingers.” We find the opposite to be true:

when the density is relatively higher behind the reverse shock, the development of the RT fingers is

hindered1 (compare the blue and green curves in Figure 4.1).

A more detailed comparison of these two figures can be seen in Figure 4.3. Here, in order

to emphasize the difference in the RT fingers, we plot the square of the number density and fix the

scales to be in the range 0.001 and 12; doing so, however, also obscures the location of the forward

shock from view. The longest of RT fingers in the MHD+CR model are roughly the same size as

those found in the γ = 5/3 model, however the majority of the RT fingers in the MHD+CR model

are less than half that.

1Other test cases, which failed due to the numerical issues mentioned in Section 3.2.4, showed similar structure as
the model presented here, prior to their failing.
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The location of the shocks as a function of time presents little difference between the two

models. Figure 4.4 shows the azimuthal-averaged location of the forward shock of the MHD+CR

and γ = 5/3 models. For much of the early life of the remnant, t < 600 yrs, the locations of the

forward shock do differ. However, at later times the difference disappears, indicating an acceleration

of the forward shock in the MHD+CR model.

Figure 4.4: Location of the forward shock as a function of time for the two SNR models; in blue is
the pure MHD simulation and in green the MHD+CR model.

At t ≈ 1 kyr, the location of the forward shock for the MHD+CR model overtakes the pure

magnetohydrodynamic model. This is likely due to slight asymmetries caused by the alignment of

the background magnetic field and the method of mapping the hydrodynamic variables from the 2D

Cartesian grid it is evolved on to the 1D radial profile. This may be more evident when observing

the location of the reverse shock over the whole range, as the two models cross paths a few times. In

this early phase of the SNR evolution, the production of cosmic rays has not subtracted a substantial

amount of energy, Figure 4.5, to reduce the locations of the shock with respect to the pure MHD

comparison case.
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Figure 4.5: Ratio of cosmic ray energy to gas energy as a function of time.

4.2 Cosmic Ray Production

4.2.1 Cosmic Ray Population

Due to the scale of the remnant, the particle population is rather well-contained within the

shocked region of the plasma. The diffusion length for the p = 2 GeV/c population is ld ≈ 3×1012 cm,

well within a single computational cell. An extension of the model to a larger diffusion coefficient,

D0 ∼ 1026 cm2/s, introduced a vacuum solution in the particle population moments, as mentioned

in Section 3.2.42. Figure 4.6 shows the color map of the n`=9 moment, as it the n moment that

is associated with number density of CR particles and the 9th moment is the bin covering the

p = 2 GeV/c momentum.

The ripples in the moment are due to the injection of new particles and the high advection

to diffusion length scales. In this case, the advection length is ladv = u dt ≈ 6 × 1015 cm, about

three orders of magnitude larger than the diffusion length scale. As a result of this, the injection
2With that diffusivity, the largest momentum bin, p ∼ 13 TeV/c, would have a diffusion length of 3.6 × 1016 cm,

which is larger than the computational cell.
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Figure 4.6: n(p = 2 GeV/c) for the SNR model at t ≈ 1.3 kyr, logarithmically scaled between
10−10 erg/cm3 and 10−7 erg/cm3. The existence and cause of the ripples are discussed in the text.

occurring at the forward shock builds up a population faster than the existing population can diffuse

out, which would smooth the distribution. Figure 4.7 shows log10 n(p = 2 GeV/c) at t ≈ 400 yr for

the preliminary test case in which D0 = 3 × 1026 cm2/s, such that the ladv/ldif ≈ 10. In this case

here, the diffusion of the population smooths out ripples.

4.2.2 Cosmic Ray Injection

From Section 3.2.2, the injection source term, Equation 3.12, spreads the new CR particles

across the shock interface via the weighting function w(a) ∼ exp(−a2). Figure 4.8 shows a linear

colormap of the injection sites, computed by

Si,j =
i+nnsh∑
l=i−nnsh

j+nnsh∑
m=j−nnsh

1
(
Mmax
i,j > Ms

)
(4.3)
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Figure 4.7: Color map of log10(n9) at an early phase of a preliminary test case with a high diffusion
coefficient, D0 = 3 × 1026 cm2/s. Overlaid is the logarithmic density contours, showing that the
distribution is diffusing far downstream.

where nsh is the width of the shock, Mmax
i,j is the maximum Mach number across the shock (bounded

by [i− nsh, i+ nsh]× [j − nsh, j + nsh]) and 1 is the indicator function,

1 (a > b) =


1 a > b

0 otherwise
(4.4)

Here we choose Ms = 2 to be the threshold Mach number for injection.

As expected, the injection sites occur mostly at the forward shock with an alignment of

the extended injection sites and the external magnetic field. The cause of the East-West alignment

behind the reverse shock is unknown; the Mach number at the shocks in the four cardinal directions

are all ∼ 15, which is sufficient for injection. While the magnetic field behind the reverse shock

along the N,S directions is tangled (North) and aligned quasi-perpendicular (South, not shown) to
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Figure 4.8: Linear colormap of injection sites for the model remnant at t = 1.3 kyr. Overlaid is the
logarithmic density contours, showing that the particles being injected are located near the forward
and reverse shocks.

the shock flow, see Figure 4.9, the injection routine does not account for the magnetic field, only

the shock strength, so the alignment of the two fields is not sufficient to explain the N-S gap in the

injection.

The preliminary simulation, in which the diffusion coefficient was a factor of 100 larger

than the work presented, also had an ambient density of 1 cm−3 (10 times larger than the work

presented); in this simulation, the same interior asymmetry appears. However, due to the incorrect

CR populations leading directly to the failure of the simulation, the comparison of these two models

remain unconvincing.
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Figure 4.9: Linear colormap of number density for the model remnant at t = 1.3 kyr with the arrows
representing the magnetic field vectors.

4.2.3 Cosmic Ray Pressure

One of the key aspects to the presence of the highly energetic particle population is the

existence of the feedback pressure term, pcr, in Equations 2.20. Figure 4.10 shows the pseudocolor

plot of the cosmic ray pressure, with the lower and upper limits set in order to capture the location

of the pressure. The interior of the remnant has been evacuated of the pressure term, reducing it to

the pcr ∼ 10−15 erg/cm3 level at the core whereas the ambient is around pcr ∼ 10−11 erg/cm3.

The injection algorithm described in Section 3.2.2 is agnostic to the location of the shock. So

long as the shock exists with sufficient strength, the injection algorithm will deposit fresh particles

into the appropriate momentum bin. Particles at the reverse shock can also be drawn into the

acceleration mechanism, hence the thin strip of pcr behind the reverse shock in the upper portion

of the remnant (see Figure 4.10 above); however it is also unlikely that this population will escape

through the shocked material to generate any observable photon.

Two equally important aspects to the cosmic ray pressure are, first, its relation to the gas

pressure and, second, the strength of the gradient of the cosmic ray pressure. With regards to the

first, Figure 4.11 shows a diverging color map of the gas pressure to cosmic ray pressure ratio. The

regions in which the cosmic ray pressure is dominant are colored in red while the regions in which

the gas pressure is the dominant pressure is in blue; the white region, which constitutes the shocked

gas, the pressures are equivalent.
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Figure 4.10: Logarithmic color plot of the cosmic ray pressure, pcr, in the upper quarter plane.
The bulk of the pressure exists within the shocked region, with a small amount generated near the
reverse shock.

As mentioned above, the pressure due cosmic rays in the interior of the remnant is on the

order of 10−15 erg/cm3 while the gas pressure is on the order of 10−10 erg/cm3, which is on the same

scale as the ambient pressure in the interstellar medium for the model. The magnetic pressure,

pb = 1
2b

2 (not shown), is featured predominantly along the outer edge of the reverse shock along the

off-axes (i.e., SW and NE rims); along the direction of the magnetic field, it is slightly smaller in

magnitude than the cosmic ray pressure.

With regards to the second point, the magnitude of the pressure gradients, |∇pg,cr|, can be

seen in Figure 4.12, with that of the gas pressure on the left and that of the cosmic ray pressure on

the right; both images are of the same time, t = 1.3 kyr. The magnitude of the cosmic ray pressure3

scales linearly from 0 to 0.17 (at the forward shock) while the gas pressure scales linearly from 0 to

0.32 (at the forward shock).

3These are code units, multiply by 3.1× 10−22 to get it into physical units of erg/cm4.
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Figure 4.11: Diverging color map of the gas pressure to cosmic ray pressure ratio; red is where pcr
dominates over pgas, blue the inverse and the white where the two are equivalent.

It is also interesting to note that the gas pressure features a gradient ahead of and behind

the reverse shock (of roughly equal strengths, 0.11 versus 0.14 respectively), the cosmic ray pressure

features only a single gradient ahead of the reverse shock. The gradient behind the shock also exists

for the γ = 5/3 model, however the pressure gradient ahead of the reverse shock is significantly

weaker, at a value |∇pgas| ∼ 0.02; the gradient at the forward shock is also about 3 times the

MHD+CR pgas gradient, with a value of 1.03.

The lack of the third pressure gradient can be attributed to the initially constant cosmic

ray pressure and the large velocity of the SNR ejecta. As the SNR kicks out material from the

core, the interior is evacuated of the cosmic ray particles; this leads to the vacuum and a lack of the

pressure building up behind the reverse shock. Whereas the gas pressure is initialized with a large

value in the interior and a lower value in the ambient. As the remnant evolves, the pressure slowly

decreases from pg ∼ 10−5 to pg ∼ 10−10 in the interior, but is still driving the reverse shock, hence

the appearance of the third gradient.

The gas pressure in the SNR also changes with the presence of the cosmic rays. Figure 4.13
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Figure 4.12: Magnitudes of the gradients of the gas pressure (left) and cosmic ray pressure (right).
The gas pressure features a gradient behind the reverse shock that the cosmic ray pressure does not.

shows the azimuthal averages of the gas pressures at t ≈ 800 yrs for the γ = 5/3 (red) and MHD+CR

(blue) models. The V-structure to the pressure profile is a result of the CR pressure building up

at the reverse shock. The gas pressure for the MHD+CR is reduced by ∼50% as compared to the

γ = 5/3 case; using the net pressure, pgas + pcr, the production of cosmic rays reduces the pressure

by 26%.

4.3 Synthetic Spectra

4.3.1 Synthetic X-ray Emissions

In the low-density regime, the X-ray emission coefficient can be approximated as,

jν(n, T ) ≈ n2
eξ(T ) (4.5)

where ne is the number density of electrons (with the additional assumption ne ≈ nH), T the

temperature of the computational cell and ξ(T ) a smoothly varying function of temperature (Toledo-

Roy et al., 2014). Figure 4.14 shows the emission map of the soft X-ray (0.2 to 2.0 keV) over the

whole remnant. Due to the two dimensional nature of the simulation, this emission map effectively
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Figure 4.13: Plot of the logarithm of the gas pressure (in erg/cm3) for the MHD+CR (blue) and
γ = 5/3 (red) simulations. Though not shown, the CR pressure fills the gap in the V-structure.

traces the square of the density (Figure 4.3); a three dimensional simulation would allow for line-of-

sight integrations along rotations that are not possible with 2D (see, for instance, Toledo-Roy et al.

(2014)).

Still, this can be compared to images of a galactic SNR, such as Cassiopeia A in Figure 4.15

below. The brightest portion of the remnant is the interaction region of the shocked ejecta, where

the temperatures reach ∼ 50 million Kelvin and densities of the order of 4 cm−3. For our remnant,

at t ∼ 320 yr, the temperatures of the shocked ejecta reach into the 80 million Kelvin range with

densities around 1-2 cm−3.

While the goal was not to model Cas A, it is worth pointing out that some of the differences

can be attributed to the smaller circumstellar environment in our model. Typical main sequence

stellar winds result in densities around 10 cm−3, rather than the 0.1 cm−3 chosen for this model. One
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Figure 4.14: Synthetic emission map of 0.2-2 keV X-rays, color map is logarithmic in intensity; the
line-of-sight column density is assumed to be 1021 cm.

of the preliminary test models used an ambient density of 1 cm−3, however, the simulation failed to

evolve the remnant in an accurate manner due to numerical issues discussed in Section 3.2.4. The

test managed to evolve the simulation to t ≈ 300 yr before failure; Figure 4.7 shows the density

contours (all in red) at this point, with the peak at about 3.2 pc, with npeak ∼ 16 cm−3.

For the high-frequency case (ν > νc), we can approximate the thermal synchrotron emission

of the remnant using the relation,

Lν ' ν−αn1−αp2α
gas (Btot sinψ)α+1 (4.6)

where α = 0.5 and ψ is the angle of the magnetic field with respect to the viewer; pgas is used as a

proxy for temperature, as p ∼ nT . The orientation of the magnetic field and the computation of ψ
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Figure 4.15: False-color image of the galactic SNR, Cas A. Low energy X-rays (∼0.2-2 keV) in red,
high energy X-rays (∼8-10 keV) in blue, while green is the intermediate energies. Image credit:
NASA/CXC/SAO

leads to the synchrotron emissivity not aligning with the ambient magnetic field, peaking instead in

the B ⊥ u direction.

The evolution of the magnetic field in this simulation also leads to the maxima occurring

where the peak of the synchrotron emission found in Figure 4.16 occurs: along the NE/SW direction4.

Reynoso et al. (2013) suggest that the acceleration efficiency, η in Equation 3.12, varies with the

alignment of the magnetic field and the fluid flow, such that the most efficient particle acceleration

is when the magnetic field and shock are quasi-parallel.

From the discussion in Section 2.6, some of the thermal emissions in the X-ray regime follow

the temperature and density, Lν ∝ nαT β . In the case of the SNR models, the density peaks at the

reverse shock (see Figure 4.1) while the temperature features a maximum value across the whole of

the shocked region (of the order 108 K). These features are captured in the synthetic models of the

X-ray emission from the shocked medium.
4We are assuming here that north is pointing straight upwards, aligned with the y axis.
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Figure 4.16: Synthetic emission map of synchrotron radiation for the case of ν > νc.

4.3.2 Synthetic γ-ray emissions

The cosmicp code mentioned in Section 3.2.5 is accurate to 1% when there are & 10 energy

bins per decade in energy. In order to capture the full spectrum, we require 10 decades of energy,

from Eγ = 10−5 GeV to Eγ ∼ 105 GeV. However, the CGMV method employed in AstroBEAR uses

only 16 total energy bins for the range Eγ = 10−5 GeV to Eγ = 104 GeV, which presents a problem

of resolution.

To remedy this, we use a polynomial interpolation to fill in the extra energy bins between

the known data points. From the n known points, we can construct a polynomial of the form

p(x) =
n∑
i=0

 ∏
0≤j≤n,j 6=i

x− xj
xi − xj

 yi (4.7)

However, this introduces large oscillations, called Runge’s phenomenon, near the boundaries. To
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overcome this issue, we use a piecewise interpolation where n = 3, choosing the closest three points

to x.

From the cosmicp code, we generated a sequence of emission maps at ∼ 20 year intervals.

Figure 4.17 shows the remnant in γ-ray, due solely to the pion decay. The resolution of the map was

artificially reduced so as to reproduce the expected image of an SNR as observed by Fermi-LAT ;

using the actual resolution from the simulation would result in an image similar to that of Figure

4.14. The region exterior to the remnant was also ignored in the computation of the emission, as

the focus is on the signal from the remnant itself.

Figure 4.17: Synthetic emission map due to the production of cosmic ray protons in the model SNR.

The emissions trace the shocked region, where the remnant has swept up and accelerated

ambient particles. The diffuse emissions in the interior are an artifact of the original particle spectra

in that region. This expected feature follows the picture shown in Figure 4.6: the particle population

exists mostly in the shock, with a diffuse population in the interior.

Though the pion decay would be unaffected by the existence of the magnetic field, the

65



emissions from the interior seem to be slightly stronger along the direction parallel to the magnetic

field, rather than the anti-parallel direction. Figure 4.18 shows the TeV emission of the galactic

SNR SN 1006 (Acero et al., 2010), in which the largest emissions are along the NE and SW rims5

In this case, the magnetic field points along the direction of the two bright lobes (Reynoso et al.,

2013). Referring back to Figure 4.11, the cosmic ray pressure also appears to be dominant behind

the reverse shock along the direction of the magnetic field, which would lead to the stronger emission

in that region, as pcr is a measure of the the particle population.

Figure 4.18: HESS γ-ray image of SN 1006; the linear color scale is in units of excess counts per
π× (0.05◦)2. The white contours correspond to constant X-ray intensity from XMM-Newton. From
Acero et al. (2010)

Integrating over the whole remnant shell, the γ-ray emissions from the remnant can be seen

in Figure 4.19. For the leptonic emissions, we assume that the CR population evolved by AstroBEAR

has a leptonic component that is appropriately scaled (see Footnote 7 in Chapter 2). We also set

5The West & East directions for SN 1006 are backwards compared to our terminology.
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the distance of the remnant to 2 kpc. The asymmetry of the pion spectrum is due to the index

being less than 2. The red curve in the image is the total emissions due to the decay of the pion

and bremsstrahlung radiation.

Figure 4.19: Integrated γ-ray spectrum of the SNR; the green solid curve is due to the π0 → 2γ
decay and the blue dotted curve that of the bremsstrahlung emission. The differential sensitivity of
Fermi-LAT is well above this limit.

At the peak, the emissions here are roughly 3 orders of magnitude too dim to be observed

by Fermi-LAT. At the lowest energy limit, where Fermi-LAT would be able to detect the difference

between π0 decay and the leptonic emissions, the strength of the emissions are roughly 6 orders

of magnitude too dim to observe. At the highest energies, Eγ > 100 GeV, the emissions could be

observed by an imaging atmospheric Cherenkov telescope (IACT) such as H.E.S.S. (Aharonian et al.,

1997). Figure 4.20 shows the TeV emissions of the model remnant (same colors as Figure 4.19) with

the 50 hour on-source sensitivity of H.E.S.S. shown in the black points.

The peak in the TeV range is consistent with the picture of particle acceleration as a function

of SNR age. Figure 4.21 shows the γ-ray emissions of five galactic SNRs with different ages. The

figure suggests that the younger remnants generate TeV emissions while the older remnants emit

primarily in the GeV range. While we have not evolved our remnant to an old age, Figures 4.19 and
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Figure 4.20: The same as Figure 4.19, except looking at the TeV emission spectrum. The black dots
are the 50h on-source sensitivity limits for H.E.S.S.

4.20 seem to agree with the understanding of particle acceleration.
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Figure 4.21: The γ-ray emissions from five galactic SNRs (labeled). The SNRs in blue are older
than 10,000 years, Cas A (in the darker red) is roughly 300 years old, and RX J1713 (light red) is
approximately 1600 years old. From Dermer (2011)
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Chapter 5

Summary and Conclusions

In this final chapter, we summarize the dissertation (Section 5.1) and then conclude with a

discussion and implications of the results from Chapter 4 (Section 5.2).

5.1 Summary

In Chapter 1, we presented the theory of cosmic ray production in supernova remnants,

starting with the first observations of cosmic rays with Victor Hess and coming to present γ-ray

observatories Fermi-LAT and H.E.S.S. The theory of Fermi acceleration was then presented to

discuss a viable method by which a particle can, slowly over a long period of time, gain a substantial

amount of energy. The physical model can then be described in the mathematical model of diffusive

shock acceleration.

Then, in Chapter 2, we discussed the dynamic evolution of SNRs and methods of modeling

them, via the magnetohydrodynamic equations. Incorporating multiple dimensions in the hydrody-

namics introduced new possibilities of instabilities growing in the fluid flow, which could be damped

through the inclusion of the cosmic ray acceleration. We also discussed the high energy emissions

observed from SNRs, what processes can generate emissions in the X-ray and γ-ray regimes.

Chapter 3 presented the method by which we evolve the magnetohydrodynamics and the

particle distribution, f(x, p, t) in a self-consistent manner, using the code AstroBEAR. We then

discussed the origins of the multidimensional diffusive shock acceleration solver algorithm, MAST,

as developed by Edmon (2010). The solver allows for simulations of the production of cosmic rays
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in any shocked medium and in up to two dimensions1, which allows for a deeper investigation into

the role of cosmic ray production in SNR environments.

With this algorithm, we performed simulations of nonlinear CR production in two-dimensional

studies of supernova remnant evolution, the first of its kind. We then used the distribution obtained

from the simulation as an investigative tool into the production of high energy γ-ray emissions due

to the decay of neutral pions. The results were then presented in Chapter 4.

5.2 Conclusion

5.2.1 Production of Cosmic Rays

We have modeled the dynamic evolution of a 4M� SNR in a low-density environment with

an accurate and efficient DSA solver to correctly capture the feedback mechanism of the cosmic ray

pressure. Due to the low-diffusion coefficient used, the kinetic expansion of the gas occurs faster

than the particles are able to diffuse downstream, which would normally preheat the ambient. For

this reason, the particle population features ripples (see Figure 4.6). At later times, as the remnant

grows in size, the diffusion coefficient would increase, allowing for the higher-energy particles to

diffuse downstream and preheat the ambient, warning it of the oncoming shock. However, a time-

dependent diffusion coefficient is not currently incorporated into the model.

Despite the rippled appearance of the particle population, the cosmic ray pressure still

features a smooth distribution, see Figure 4.10. This is due to the fact that the different moments

of the distribution function, f(x, p, t), have different characteristic diffusion lengths due to the

weighted diffusion coefficient,

Dn` =
1
n`

∫ p`+1

p`

D(p)p2f(p) dp, (5.1)

Dg` =
1
g`

∫ p`+1

p`

D(p)p3f(p) dp, (5.2)

so the distributions can diffuse to different positions, but the net effect of the interpolation of the

moments n and g virtually eliminate the ripples in the pressure.

The preliminary test case shown in Figure 4.7 allowed for a larger diffusion length than

the model presented, but failed due to numerical issues. The Lagrangian advection scheme used
1The algorithm is set up so as to allow for three-dimensional simulations, however it has not been tested.
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in AstroBEAR, Equation 3.1e, requires that ψ ≤ 1 and u/usc ≤ 1 for stability purposes2. At some

point before the first output file was written, the lowest three n` moments increased in magnitude to

values > 1, leading to the instabilities that developed; the velocities all stayed less than u/usc ≤ 0.3.

It is currently unknown how these values manage to increase so greatly, as the initial conditions are

otherwise the same between this test and the presented model.

It is well known that the cosmic ray pressure generates a large gradient at the forward

shock (Kang et al., 2009); however few studies into the reverse shock have also been performed

(Zirakashvili & Ptuskin, 2012). We have found that the cosmic ray pressure acts very strongly at

the reverse shock as well (Figure 4.12). This extra pressure gradient is attributed to the agnostic

injection algorithm employed which would allow for an injection at any shock. Other models tend

to favor particle acceleration at the forward shock due to the fact that it is that population that

escapes the forward shock to generate the observed hadronic and/or leptonic emissions.

We find that the existence of the accelerated particles at the reverse shock serves to reduce

the flow of the ejecta and stunt the growth of the Rayleigh-Taylor instabilities (see Figures 4.2 and

4.3). It is also possible that the weak diffusion limit used in this model allowed for the build-up of

CRs in the shocked region, which in turn gave rise to a pressure term that would, ordinarily, not be

present. Thus, more extensive modeling of the SNR+CR interactions are needed to decide which of

the two cases it should be.

The acceleration rate of particles is expected to be larger at perpendicular shocks (Ellison

et al., 1995), as the magnetic field in the perpendicular region is compressed, increasing the magnetic

field gradient. Figure 4.8 shows that the alignment of the perpendicular shock does lead to a wider

injection region. As particles are accelerated by the magnetic gradient, a compressed magnetic field

should result in a faster acceleration. However, the picture of SN 1006 by Reynoso et al. (2013)

suggest that, while this aspect may be true, the brightest emissions come from the parallel shock

(Figure 4.18). This could be explained by an increased injection efficiency in the parallel shocks

as compared to the perpendicular shocks. Currently, such a spatially-dependent model of injection

efficiency is not known.
2For numerical hydrodynamics, precision can be lost when multiplying a value of magnitude 10−8 and another

value of magnitude 1024; thus we scale all variables so as to be near 1. Here, usc = 3.911× 109 cm/s ∼ 0.13c.
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5.2.2 High Energy Emissions

The magnetohydrodynamics lead to a synthetic synchrotron emission, Figure 4.16, that

shows a maximum when the alignment of the magnetic field is perpendicular to the flow, as Lν ∝

B
3/2
tot . AstroBEAR requires that, for two dimensional studies, the magnetic field in the z direction

be zero. If we modeled the remnant in three dimensions and integrated the synchrotron emission

along a line of sight, it is likely that the non-zero Bz component of the field would contribute to the

synchrotron emission.

The magnetic field evolution follows Faraday’s Law, in conjunction with a zero Lorentz

force,
∂B
∂t

= ∇ · (B : u− u : B) (5.3)

So when the two fields are aligned, then the magnetic field is obviously stationary (taking both

components to be along the x direction):

∂Bx
∂t

= ∇ · (Bxux − uxBx) = 0 (5.4)

Which should be true for any working model. Due to the limit of two dimensions, the emission

map is a slice of the remnant and not the whole of the remnant. Adding a third dimension would

obviously increase the simulation run-time, but would give a more accurate picture to the magneto-

hydrodynamics, and thus the synchrotron emission.

Non-ideal effects in the magnetic field evolution could also play a role in the anti-alignment.

When incorporating the current density, j = η∇ × B with η the resistivity, the Lorentz force law

modifies Faraday’s equation to be,

∂B
∂t

= ∇ · (B : u− u : B)−∇× (η∇×B) (5.5)

which can admit a non-zero solution along the parallel:

∂Bx
∂t

= η
∂2Bx
∂y2

+ η
∂2Bx
∂z2

(5.6)

where we’ve assumed that η is either spatially independent or slowly-varying, such that ∇η = 0.

It is thought that magnetic reconnection, driven by the resistive MHD model, can be a site
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of particle acceleration (Lazarian et al., 2012). Due to the nature of the acceleration mechanism in

reconnection events, the kinetic DSA method presented here would not be able to model the particle

acceleration. However, modeling the magnetic resistivity alongside the DSA mechanism is still an

intriguing avenue of research.

Figure 5.1: Integrated γ-ray spectrum of the SNR when using a molecular cloud of density nH ∼
100 cm−3 as the target, rather than the ambient ISM density of nH ∼ 0.1 cm−3.

As expected, the γ-ray emissions are strongest in the shell of the SNR, with a slight alignment

with the background field. Figure 4.19 shows that the integrated emissions of a naked remnant, at

t ≈ 1300 years, would be far too weak to be detectable with Fermi-LAT. If we had a molecular

cloud, with an ambient density of nMC ∼ 100 cm−3, interacting with this remnant, the signal would

increase by three orders of magnitude (nMC/nISM ∼ 1000), as the spectrum is linear in ambient

density,
dnpp,γ

dEγ dt dV
= nHF (Eγ) (5.7)

where F (Eγ) is the result of the integrals of Equation 2.34. Using the molecular cloud as the target

would increase the signal by the three orders of magnitude, bringing it into view of Fermi-LAT

(see Figure 5.1 above). However, the remnant’s signal in the 100 MeV range is still too weak for
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Fermi-LAT to observe and distinguish the two emission mechanisms.

Note also that this is for a relatively close remnant, at a distance of 2 kpc. Since the flux

depends on the distance as D−2, then the signal would rapidly decrease as we assumed a more

distant remnant. In order to obtain a observable spectrum at further distances, the production of

cosmic rays would have to increase. Since cosmic rays are only added via the injection parameter,

we find that it is likely that η > 10−4 that we have, based on the one dimensional studies, assumed

here. Ferrand et al. (2010) show in their study of SNR evolution that the injection efficiency ought to

be greater than 5× 10−4. Though their simulation was based on dynamically evolving the adiabatic

index, the larger value of the injection efficiency will certainly result in a change of the particle

spectrum.

From Figure 4.20, we see that the emission from a young, nearby, naked SNR should be

observable with an IACT, such as H.E.S.S. The catalog by Ferrand & Safi-Harb (2012) contains 9

objects that were detected with H.E.S.S and not with Fermi-LAT . Of those, 3 fit the age criterion

of our model, but two are interacting with a molecular cloud and the details of the environment

of the third source are currently unknown (Aharonian et al., 2008). With this small sample size

of observations and simulations, we cannot conclude or rule out our model the production of in

situ γ-ray emissions in the early evolution of a naked SNR; however the simulation does present a

spectrum that, if the SNR were interacting with a molecular cloud, would be observable with an

IACT, giving credence to the model.

While the DSA solver efficiently produced an accurate picture of nonlinear cosmic ray pro-

duction in supernova remnants, more simulations are required to further understand the role of

diffusion and injection in the SNR shell, in particular the role of the magnetic field in both. The

future models must also be done in three dimensions, so as to ensure capturing the total emissions,

both the synchrotron and pion decay, along the line of sight.
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Appendix A Rankine-Hugoniot Jump Conditions

A.1 MHD Jump Conditions

The jump conditions come from considering a stationary state (∂U/∂t = 0) and looking at

the gradient across the x-direction, dT/dx = 0. For the MHD equations, this reduces to,

[bx]21 = 0 (8)

[uxby − uybx]21 = 0 (9)

[ρux]21 = 0 (10)

[ρu2
x + p+

1
2
b2y]21 = 0 (11)

[ρuxuy − bxby]21 = 0 (12)[
1
2
ρu2ux +

γ

γ − 1
pux + by (uxby − uybx)

]2
1

= 0 (13)

where u2 = u2
x + u2

y, b = B/
√
µ0, [A]21 = A2 −A1 and all other terms take their normal meaning.

The general solution to this, using two dimensions, is taking b = (bx, by) and u = (ux, uy)

such that

uxby − uybx = 0

via Equation (2). From this, Equation (5) reduces to

by,1
by,2

= σ
u2

2 − u2
A,2

u2
2 − σu2

A,2

= σ
M2
A,2 − 1

M2
A,2 − σ

(14)

where σ = ρ1/ρ2 = u2/u1 is the compression ratio (see Equation (3)) and MA = u/uA is the Alfvenic

Mach number3.

We then compute the pressure ratios from (4) and (6). The first gives us

p1

p2
= 1 + γM2

2

(
1− 1

σ

)
+ β−1

2

1 + σ2

(
M2
A,2 − 1

M2
A,2 − σ

)2
 (15)

while the second gives us
p1

p2
= σ +

1
2

(γ − 1)M2
2

[
σ − 1

σ

]
(16)

3The Alfvenic Mach number is the Mach number in the normal direction, not the tangential direction
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where β = p/ 1
2b

2 is the ratio of gas pressure to magnetic pressure and M = u/cs is the Mach number.

Setting these equal to each other, we have,

1 + γM2
2

(
1− 1

σ

)
+ β−1

2

1 + σ2

(
M2
A,2 − 1

M2
A,2 − σ

)2
 = σ +

1
2

(γ − 1)M2
2

[
σ − 1

σ

]

which reduces to4

M2
2

[
σ

2
(γ − 1) +

1
2σ

(γ + 1)− γ
]

+ β−1
2

1 + σ2

(
M2
A,2 − 1

M2
A,2 − σ

)2
+ (σ − 1) = 0 (17)

In the case of M2 →∞, we find that σ ≈ (γ + 1)/(γ − 1). If we assume a parallel flow, by = 0, then

we can ignore the β2 term (i.e., β2 → ∞) as the magnetic terms disappear from (4) and (6). This

reduces the above to the common hydrodynamic relation,

σ =
(γ + 1)M2

2

(γ − 1)M2
2 + 2

(18)

A.2 Cosmic Ray Modified MHD Jump Conditions

The MHD equations from the previous section are modified slightly such that we account

for the particle pressure, pc,

[bx]21 = 0 (19)

[uxby − uybx]21 = 0 (20)

[ρux]21 = 0 (21)

[ρu2
x + p+

1
2
b2y + pc]21 = 0 (22)

[ρuxuy − bxby]21 = 0 (23)[
1
2
ρu2ux +

γ

γ − 1
pux + by (uxby − uybx) + pcux

]2
1

= 0 (24)

4To account for angles, MA →MA(cos θ)−1 and β → β(sin θ)−2 where the magnetic field components used, bx, by ,
are replaced with the magnitude |b|.
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The analysis is very much the same leading to only a slightly modified version of the previously

determined jump conditions,

M2
2

[
σ

2
(γ − 1) +

1
2σ

(γ + 1)− γ
]

+ β−1
2

1 + σ2

(
M2
A,2 − 1

M2
A,2 − σ

)2


+(σ − 1) +
pc,2
p2

[
γσ − σ − γ

γ

]
+

1
γ

pc,1
p2

= 0

(25)

The unfortunate side-effect of incorporating the cosmic ray pressure in the (magneto)hydrodynamics

is that the new pressure terms eliminate the ability to solve the jumps purely in terms of the down-

stream region, due to the presence of the pc,1/p2 term.
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Appendix B Derivation of Differential Energy Spectrum

Beginning with Equations 1.7 and 1.9,

Nn = (1− Pesc)nN0 (1)

En = (1 + α)nE0 (2)

where Pret = 1− Pesc. We then take the natural logarithm of this,

log
(
Nn
N0

)
= n log (1− Pesc) (3)

log
(
En
E0

)
= n log (1 + α) (4)

which gives us n from both equations,

n =
log (Nn/N0)
log (1− Pesc)

(5)

n =
log (En/E0)
log (1 + α)

(6)

Then setting these two equal to each other, we obtain

log (Nn/N0)
log (1− Pesc)

=
log (En/E0)
log (1 + α)

(7)

Since both the energy gain, α, and escape probability, Pesc, are constants (see below), we can define

s =
log(1− Pesc)

log(1 + α)
(8)

we obtain

log
(
N

N0

)
= s log

(
E

E0

)
(9)

or
N

N0
=
(
E

E0

)s
(10)

and
dN

dE
=
N0s

E0

(
E

E0

)s−1

(11)
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which is Equation 1.10.

The rate at which particles cross the shock is nc/4 (regardless of direction) where n is the

number density of particles. The particles are advected downstream at a rate of nU/4 (where U is

the shock velocity). Thus, the fraction of particles lost is

Pesc =
nU/4
nc/4

=
U

c
(12)

Which, since U � c, means very few particles escape, as expected. The logarithm of one minus this

is then,

log(1− Pesc) = log
(

1− U

c

)
≈ −U

c
(13)

and similarly for the energy gain term,

log (1 + α) = log
(

1 +
4
3
β

)
≈ 4

3
V

c
=
U

c
(14)

where the V is the velocity at which the particle sees the shock in either frame and is equal to 3U/4,

hence the canceling of the 4/3 term. Thus, s = −1 and Equation 11 is

dN

dE
=
N0s

E0

(
E

E0

)−2

(15)

81



Appendix C Non-dimensionalized Hydrodynamic Equations

Using the primitive variables, ρ, u, pgas instead of the conservative variables ρ,π, E, the

Eulerian hydrodynamics equations become

∂ρ

∂t
= −∇ · ρu (1)

∂u

∂t
= −u · ∇u− 1

ρ
∇pgas (2)

∂pgas
∂t

= −u · ∇pgas − ρc2s∇ · u (3)

where c2s = γpgas/ρ is the adiabatic speed of sound for an ideal gas. For the general spherically

symmetric case,

∇ ·A =
1
rs
∂rsAr
∂r

where s = 0 for a planar coordinate system, s = 1 for a cylindrical coordinate system, and s = 2 for

a spherical coordinate system. The primitive equations then become,

∂ρ

∂t
= − 1

rs
∂

∂r
(rsρu) (4)

∂u

∂t
= −u∂u

∂r
− 1
ρ

∂pgas
∂r

(5)

∂pgas
∂t

= −u∂pgas
∂r

− γpgas
ρ

(
∂ρ

∂t
+ u

∂ρ

∂r

)
(6)

where u is the radial velocity and Equation 1 was used in the last line. Applying the derivatives,

∂ρ

∂t
= −u∂ρ

∂r
− ρ

(
∂u

∂r
+
su

r

)
(7)

∂u

∂t
= −u∂u

∂r
− 1
ρ

∂pgas
∂r

(8)

∂pgas
∂t

= −u∂pgas
∂r

− γpgas
ρ

(
∂ρ

∂t
+ u

∂ρ

∂r

)
(9)

Then using the relations

u ≡ ṘU(η), ρ ≡ ρ0Ω(η), p = ρ0Ṙ
2P (η) (10)
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and

∂h(η)
∂t

=
∂h

∂η

∂η

∂t
= −η Ṙ

R
h′ (11)

∂h(η)
∂r

=
∂h

∂η

∂η

∂r
=

1
R
h′ (12)

we get

−ρ0Ω′
ηṘ

R
= −ṘUρ0Ω′

1
R
− ρ0Ω

(
ṘU ′

1
R

+
s

ηR
ṘU

)
(13)

R̈U − ṘU ′ Ṙ
R
η = −ṘUṘU ′ 1

R
− 1
ρ0Ω

(
ρ0Ṙ

2P ′
1
R

)
(14)

2ρ0R̈ṘP − ρ0Ṙ
2P ′

Ṙ

R
η = −ṘUρ0Ṙ

2P ′
1
R
− γ ρ0Ṙ

2P

ρ0Ω

(
−ρ0Ω′

Ṙ

R
η + ṘUρ0Ω′

1
R

)
(15)

The first line has a common factor of ρ0Ṙ/R; the second line has a common factor of 1/R

but we can also divide by Ṙ2; the third line has a common factor of ρ0 but we can also multiply by

R/Ṙ3,

−Ω′η = −UΩ′ − Ω
(
U ′ +

s

η
U

)
(16)

RR̈

Ṙ2
U − U ′η = −UU ′ − 1

Ω
P ′ (17)

2
RR̈

Ṙ2
P − P ′η = −P ′U − γP (−η + U)

Ω′

Ω
(18)

which can be further reduced to Equation 2.13 by simple rearrangement,

[U − η] Ω′ + ΩU ′ +
s

η
UΩ = 0 (19a)

RR̈

Ṙ2
UΩ + [U − η]U ′Ω + P ′ = 0 (19b)

2
RR̈

Ṙ2
P + [U − η]

[
P ′ − γP Ω′

Ω

]
= 0 (19c)
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For the blast wave problem, we have that

R(t) = ξ

(
E

ρ

)1/5

t2/5 (20)

Ṙ(t) =
2
5
ξ

(
E

ρ

)1/5

t−3/5 =
2
5
R

t
(21)

R̈(t) = − 6
25
ξ

(
E

ρ

)1/5

t−8/5 = − 6
25
R

t2
(22)

so then the product RR̈/Ṙ2 becomes

RR̈

Ṙ2
= (R)

(
− 6

25
R

t2

)(
25
4
t2

R2

)
= −3

2
(23)

and Equation 19 becomes

[U − η] Ω′ + ΩU ′ +
s

η
UΩ = 0 (24a)

−3
2
UΩ + [U − η]U ′Ω + P ′ = 0 (24b)

−3P + [U − η]
[
P ′ − γP Ω′

Ω

]
= 0 (24c)

which is Equation 2.15.
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B., Keogh, D., Klochkov, D., Kluźniak, W., Kneiske, T., Komin, N., Kosack, K., Kossakowski,
R., Lamanna, G., Lemoine-Goumard, M., Lenain, J.-P., Lohse, T., Marandon, V., Marcowith, A.,
Masbou, J., Maurin, D., McComb, T. J. L., Medina, M. C., Méhault, J., Moderski, R., Moulin,
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Komin, N., Kosack, K., Lamanna, G., Latham, I. J., Lemière, A., Lemoine-Goumard, M., Lenain,
J.-P., Lohse, T., Martin, J. M., Martineau-Huynh, O., Marcowith, A., Masterson, C., Maurin, D.,
Maurin, G., McComb, T. J. L., Moderski, R., Moulin, E., de Naurois, M., Nedbal, D., Nolan, S. J.,
Ohm, S., Olive, J.-P., de Oña Wilhelmi, E., Orford, K. J., Osborne, J. L., Ostrowski, M., Panter,
M., Pedaletti, G., Pelletier, G., Petrucci, P.-O., Pita, S., Pühlhofer, G., Punch, M., Ranchon, S.,
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