
Clemson University
TigerPrints

All Theses Theses

8-2014

Protein Nano-Object Integrator: Generating
Atomic-Style Objects for Use in Molecular
Biophysics
Nicholas Smith
Clemson University, nsmith@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Biological and Chemical Physics Commons, and the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Smith, Nicholas, "Protein Nano-Object Integrator: Generating Atomic-Style Objects for Use in Molecular Biophysics" (2014). All
Theses. 1899.
https://tigerprints.clemson.edu/all_theses/1899

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268638603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/196?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1899?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

PROTEIN NANO-OBJECT INTEGRATOR:
GENERATING ATOMIC-STYLE OBJECTS FOR USE IN

MOLECULAR BIOPHYSICS

A Thesis

Presented to
the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree
Master of Science

Physics and Astronomy

by

Nicholas David Fenimore Smith
August 2014

Accepted by:

Dr. Emil Alexov, Committee Chair
Dr. Feng Ding

Dr. Hugo Sanabria

ii

ABSTRACT

As researchers obtain access to greater and greater amounts of computational power, focus has

shifted towards modeling macroscopic objects while still maintaining atomic-level details. The

Protein Nano-Object Integrator (ProNOI) presented here has been designed to provide a

streamlined solution for creating and designing macro-scale objects with atomic-level details to

be used in molecular simulations and tools. To accomplish this, two different interfaces were

developed: a Protein Data Bank (PDB), PDB-focused interface for generating regularly-shaped

three-dimensional atomic objects and a 2D image-based interface for tracing images with

irregularly shaped objects and then extracting three-dimensional models from these images.

Each interface is dependent upon the C++ backend utility for generating the objects and ensures

that the output is consistent across each program. The objects are exported in a standard PDB

format which allows for the visualization and manipulation of the objects via standard tools

available in Molecular Computational Biophysics.

iii

DEDICATION

I would like to take this time to thank both my parents, David and Ruth Smith, and my research

advisor, Dr. Emil Alexov, for their extraordinary support of my path through the graduate

program here at Clemson University. They have both supported every decision I have made and

have helped me succeed in spite of the trials I have faced. I am truly grateful for their care and

support.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

DEDICATION .. iii

TABLE OF FIGURES .. v

INTRODUCTION ... 1

SIGNIFICANCE .. 4

METHODS .. 6

GENERATION OF ATOMIC-STYLE REGULAR GEOMETRIC OBJECTS (PDB-BASED PRONOI) 6

PARALLELEPIPED .. 7

SPHERE... 8

CYLINDER ... 10

CONE .. 12

GENERATION OF IRREGULAR GEOMETRIC OBJECTS (IMAGE-BASED PRONOI) 13

SPHEROID .. 14

TUBE .. 17

VISUALIZATION METHODS .. 22

FUTURE DEVELOPMENTS .. 25

RESULTS ... 26

SPHERE .. 27

PARALLELEPIPED .. 29

CYLINDER ... 32

CONE .. 34

TUBE .. 34

SPHEROID .. 35

HYBRIDIZED COMPLEX OBJECTS .. 36

REFERENCES .. 38

v

TABLE OF FIGURES

Figure 1 The Parallelepiped Rendering ... 8

Figure 2 The Sphere Rendering ... 9

Figure 3 The Cylinder Rendering ... 11

Figure 4 The Cone Rendering .. 13

Figure 5 The Spheroid Rendering .. 17

Figure 6 The Tube Rendering .. 18

Figure 7 The Tube Close-Up... 21

Figure 8 PDB-based ProNOI Screenshot .. 23

Figure 9 Image-based ProNOI Screenshot ... 25

Figure 10 A Sphere with a Virus .. 28

Figure 11 Spherical Electric Potential Graph ... 29

Figure 12 A Parallelepiped with Membrane .. 30

Figure 13 Semi-Infinite Plane Solvation Energy Graph .. 31

Figure 14 A Cylinder with DNA .. 32

Figure 15 Disc of Charge Electric Potential Graph ... 33

Figure 16 Cone with Atomic Force Microscope Cantilever ... 34

Figure 17 A Tube with a DNA Strand ... 35

Figure 18 A Spheroid with a Mitochondrion ... 36

Figure 19 A Hybrid Tube and Spheroid with a Fluorescent Neuron .. 37

file:///D:/Downloads/Masters%20Thesis%20Final%20Emil.docx%23_Toc393551486
file:///D:/Downloads/Masters%20Thesis%20Final%20Emil.docx%23_Toc393551490
file:///D:/Downloads/Masters%20Thesis%20Final%20Emil.docx%23_Toc393551492
file:///D:/Downloads/Masters%20Thesis%20Final%20Emil.docx%23_Toc393551494
file:///D:/Downloads/Masters%20Thesis%20Final%20Emil.docx%23_Toc393551496
file:///D:/Downloads/Masters%20Thesis%20Final%20Emil.docx%23_Toc393551497

1

INTRODUCTION

In the field of Computational Biophysics, much emphasis has been placed on developing and

designing methods and software for modeling and visualizing macromolecules and nano-

objects. Two general types of presenting macromolecular structures exist; the first being

atomic-style objects which are comprised of a number of atoms with specific properties and are

arranged in a specific manner in three dimensional (3D) space. The other method is called

continuum modeling which focuses on continuous structures with a well-defined shape and

macroscopic characteristics but without any atomic details. For Molecular Biophysics, atomic-

style objects are preferred as they are natively supported by the tools used to process and

simulate molecular structures (Cornell, Cieplak et al. 1995) (Mackerell 2004) (Phillips, Braun et

al. 2005). Of particular interest is the DelPhi program, which is an application that calculates the

electrostatic potential by solving the Poisson-Boltzmann Equation (PBE) (Li, Li et al. 2012).

Electrostatics play a profound role in molecular biology since biological macromolecules are

made of thousands or even millions of atoms, with different sizes and partial charges situated at

short distances within the macromolecule. The importance of electrostatic interactions and

energies is illustrated by the fact that many biological phenomena are predominantly

electrostatic in origin such as the salt-dependence of binding (Talley, Ng et al. 2008) and folding

(Tan and Chen 2011), pH-dependence (Alexov 2004), and pKa shifts in proteins (Alexov, Mehler

et al. 2011) and RNAs (Tang, Alexov et al. 2007). The main obstacle in modeling electrostatics in

biological systems is the presence of water (Baker and McCammon 2003). DelPhi is based on the

continuum approach and solves the PBE via a Finite-Difference algorithm. In parallel, the DelPhi

web server was developed which was aimed at providing easy access to electrostatic calculators

2

for biological systems that did not require existing computational infrastructure on the user’s

end (Sarkar, Witham et al. 2013). Many other electrostatic computational software packages

exist, such as APBS (Baker, Sept et al. 2001), AMBER (Cornell, Cieplak et al. 1995), CHARMM

(Mackerell 2004), and MIBPB (Chen, Chen et al. 2011), which all require an atomic-style

presentation of the objects being modeled. In addition, all existing visualization packages, such

as PyMol (Schrödinger 2010), Chimera (Pettersen, Goddard et al. 2004), and Jmol (Herraez

2006), also need atomic structures of the objects to be visualized. As the availability of

significant computational power becomes available to researchers, scientists have been able to

model larger and larger objects, including nano-objects, with atomic level details (Li, Petukh et

al. 2013) (Baker, Sept et al. 2001) (Sarikaya, Tamerler et al. 2003) (Stone, Phillips et al. 2007).

However, experimentally, it is very unlikely that atomic representations of large objects will be

available anytime soon. So then, there is a need for converting these nano-objects into atomic-

style representations for use in molecular simulations and visualization. This is what this

research was intended to accomplish. It was done in two steps: first, by developing an atomic-

style presentation for simple geometrical figures and second, by extending the approach to

include irregularly shaped objects.

The first endeavor developed by the lab was the Protein Nano-Object Integrator known as

ProNOI (Smith, Campbell et al. 2012). This program generated atomic structures in the form of

Protein Data Bank (PDB) files for a handful of geometrical objects such as a cone, a

parallelepiped, a sphere, and a cylinder. These objects could be used to represent a variety of

scenarios occurring in molecular biophysics: the cone a tip of an atomic force microscope, the

parallelepiped as a plate of a dielectric material such as glass or a membrane, the sphere as a

3

virus or spherical nanoparticle, and the cylinder as a subcellular microtubule or as a

generalization of a long piece of DNA. The base program was written in C++, an object-oriented

language, and integrated into both the DelPhi 2.0 webserver a(Smith, Witham et al. 2012) and

its own standalone Java interface(Smith, Campbell et al. 2012). By developing a program that

was able to generate and model such hybrid systems, this provided researchers with better

tools for analyzing much more complex systems.

The second stage of ProNOI development was the incorporation of tubes and spheroids with the

addition of a 2D image viewer for tracing purposes. These two new objects can be used to

represent more realistic macroscopic objects within molecular and subcellular environments.

This provides researchers with a tool that can generate scenes with objects that are close

approximations of things such as cellular organelles, and it can even generate approximations of

highly irregular objects such as the endoplasmic reticulum or the neuron by using splines and

other geometric principles. In keeping with design principles, this new version of ProNOI,

termed Image-based ProNOI, generates these objects in the same format as its previous version

and seamlessly extends the current functions of the program.

DelPhi was also updated in the midst of this project. Previously, the code base was written in

FORTRAN, a computing language that is remarkably fast but somewhat outdated as it does not

embrace many of the modern programming paradigms and features available to researchers

today. This prompted the lab to begin developing a C++ version of DelPhi which incorporated a

number of unique features such as a scalable interface for managing and marshalling data, a

modular architecture that would allow future developers to extend its functionality, and native

support for ProNOI object generation integration. Once this development is finished, DelPhi will

4

begin relying on the C++ portion of ProNOI for modelling geometric objects and other

macroscopic spaces for some of the more unique problems it is attempting to tackle.

SIGNIFICANCE

Currently in the field of computational biophysics, there is no visualization and modeling

package able to handle objects without explicitly defined atomic details. This means that

researchers are unable to visualize and simulate environments that may not have an atomic

structure, such as a dielectric plate or the tip of an atomic force microscope, without significant

efforts. This project is aimed at providing a streamlined solution for creating and designing

macro-scale objects with atomic-level details. These objects would then be exported in a format

that is easily recognizable by standard molecular viewers and visualization packages such as

Jmol (Herraez 2006), VMD (Humphrey, Dalke et al. 1996), or Chimera (Pettersen, Goddard et al.

2004). This allows researchers to first design the macro-scale scene using these new tools and

then place the biological macro-molecules or other predefined objects into this scene via tools

that are commonly available in standard Biophysics software packages. It is important to note

that the variability of the dimensions and the makeup of these common objects prevents a

uniform the standardization of their structure, which, in turn, limits their availability to the

research community. Since the project aims to provide researchers with tools for manipulating

and scaling these objects according to their own specifications, standardization of the macro-

objects’ structure is not an issue as both the macroscopic dimensions and atomic-level

properties can be redefined and rescaled using the tools developed here with relative ease.

5

The capabilities of typical Computational Biophysics tools, while varied and robust, have lacked

functions which can handle scalable atomic objects. Most molecular viewers such as Jmol, VMD,

Chimera, provide tools for translating and rotating proteins and other biomolecules in a scene.

Other functions include protonating the residues of a biomolecule, creating an explicit water

shell or box, sequence alignment and other homology modeling techniques, and direct

downloads from protein databases for direct insertion of PDB structures into a scene (Dolinsky,

Czodrowski et al. 2007) (Case, Cheatham et al. 2005) (Phillips, Braun et al. 2005; Biasini, Bienert

et al. 2014). However, each of these viewers has not been able to provide scalable atomic

structures for nano-structure simulations and would benefit greatly from this development.

While developing the PDB-based ProNOI, it was critical that, whenever the objects were altered,

the differences between the original macro-object and the altered macro-object be visible to

the user. This would allow the user to see how this change will affect the overall scene and to

better utilize the sliders and property boxes to precisely manipulate the macro-object to meet

their exact specifications. This entire process is done in real-time by presenting the user with a

wireframe graphic representation which is later converted to a full atomic model once the user

has finalized the changes to the scene.

Another point to note is that, while the primary focus of this work is rendering integrated

biological and nano-scale objects, this methodology can be applied to a number of other

disciplines. The primary physical problem addressed by the targeted programs is obtaining an

electrostatic potential distribution throughout the space of the scene by solving the Poisson-

Boltzmann, however, programs that are equipped to handle similar problems such as molecular

diffusion, heat transfer, and other types of simulations that require atomic-level details could

6

benefit from these tools as well. By simply converting the output style of the objects to a more

suitable format for the associated problem, new types of geometries and environments could be

explored without requiring a massive effort on the part of the research community.

As DelPhi is converted into a C++ application, the C++ ProNOI object generation utilities have

been integrated into the architecture of DelPhi and been made available for use. This

integration of the ProNOI library into DelPhi will allow it to tackle a variety of new problems and

pave the way for future developments. As the C++ conversion is finalized and tested, DelPhi will

begin to branch out into new disciplines and begin applying its methods of grid-based finite

difference to a new collection of simulations. By enabling DelPhi to internally handle

environments comprised of biological macromolecules and nano-objects, this gives the program

a significant edge over existing applications and programs.

METHODS

GENERATION OF ATOMIC-STYLE REGULAR GEOMETRIC OBJECTS (PDB-BASED

PRONOI)

Here, the algorithms for generating an atomic-style presentation of the four regular geometrical

shapes (parallelepiped, sphere, cone and cylinder) are presented and described. The variables

required to construct each shape have been featured as the (a) subfigure of figures 1-4.

7

PARALLELEPIPED

The initial dimensions of the parallelepiped are built upon user’s input which provides the

coordinates on the reference corner and three adjacent vertices, as seen on Figure 1a. It is

necessary for the parallelepiped to be filled with pseudo-atoms such that the distance between

the pseudo-atoms be a constant scalar parameter, which can be varied to achieve the desired

degree of resolution. As this would limit the number of points being constructed on the path of

the line, it was found that a seam would form at the ends of the vectors and result in non-

uniform objects. In order to correct this, the maximum number of points kv allowed on the line �⃗�

is calculated using integer division on the given resolution p. This is translated into a new

spacing between the points, represented by pv , that evenly distributed the points along the line

by the following equations:

 𝑘𝑣 = |�⃗�| 𝑝⁄

𝑝𝑣 = |�⃗�| 𝑘𝑣⁄

(1.1)

(1.2)

Each vector of the box is then normalized and multiplied by the new spacing to create an

incremental vector. This is then used to create an array of points along the path of the original

vector, and is also done for the original three vectors of the box. A different incremental vector

is added to a copy of the array of points to extend the points over a single side of the box. This is

repeated for each side of the box with several if-statements to eliminate duplicate points on the

edges and corners. Once the arrays that define the shape are complete, a method for printing

the points out in the proper PDB format was designed as can be seen in Figure 1a.

8

Figure 1 (a) The input parameters of the parallelepiped with the three base vectors and the origin (b) The generated
sketch of the parallelepiped before point generation (c) The surface rendering of the parallelepiped (c) The solid
rendering of the parallelepiped. These figures were generated with precision 1.0, origin vector (2,2,2), and vectors
(2,2,10), (2,8,2), (10,2,2).

SPHERE

The user inputs the coordinates of the center of the sphere and its radius as in Figure 2a, which

are then used for the pseudo-atomic filling of the resulting sphere. By translating to arc-length,

the calculations that involve creating cyclic polygons to fit a maximum number of points inside a

circle in the sphere were relaxed. The final process generated a sphere using a completely

spherical coordinate system. First, the change in theta, Δθ, is calculated by the following

formula:

9

 𝑘𝑟 = 𝜋𝑟 𝑝⁄

∆𝜃 = 𝜋𝑟 𝑘𝑟⁄

(2.1)

(2.2)

where kr is the number of points allowed on the circle by the precision p and the radius of the

circle r. Then, starting with the top of the sphere and by incrementing θ, a circle is generated for

each value of θ between zero and π which then uses the above equation to generate an

incremental value for φ using 2πr instead of πr. These incremental values are then looped over

to generate an array of points that extended over the surface of the sphere. This process results

in a uniform distribution of points across the surface of the shape with no singularities.

Figure 2 (a) The initial sketch of the sphere with the radius and origin (b) The surface rendering of the sphere (c) The
solid rendering of the sphere. These figures were generated with precision 1.0, origin vector (6,6,6), and radius 5.0.

10

CYLINDER

Generally, the cylinder is constructed by generating circles along a vector for the body. A

quaternion rotation algorithm handles rotation of desired shapes/sizes. The cylinder is

constructed first by calculating the direction vector that pointed from the first origin to the

second. This is then translated into spherical coordinates and copied; this clone is incremented

by π/2 in the θ direction and its radius is set to the given radius of the cylinder. By cross

multiplying with the original vector, a third normalized vector is created, and its radius set to the

given radius. These latter two vectors form the plane normal to the direction vector and thereby

normal to the cylinder itself, and the third vector is later used as the axis of rotation for the

quaternion. The rotational quaternion q is formed using the following formula:

 cos (𝜃) = �̂� ∙ 𝑑𝑖�̂� (3.1)

𝑞 = cos (θ 2⁄) + �⃗� sin(𝜋 − θ 2⁄) (3.2)

where �̂� is the unit vector in the z direction, 𝑑𝑖�̂� is the unit vector pointing towards the direction

vector, �⃗� is the axis of rotation (the third aforementioned vector), and θ is the angle between

the z-axis and the direction vector. This quaternion rotates a given vector about the axis of

rotation by θ. The rotation equation for rotating a vector �⃗� is:

 �⃗�′ = 𝑞 �⃗� 𝑞∗ (4)

where q* is the complex conjugate of the quaternion q and 𝑣′⃗⃗ ⃗⃗ is the new rotated vector from

the original vector. The cylinder is then built by generating circles of points centered along z-axis

with spacing equal to the given resolution of the object between them. The top and bottom of

the cylinder are generated by creating circles of varying radii. The radius for each new circle is

calculated by transforming a vector that lay in the x-y plane with a magnitude of the given radius

11

into an incremental vector with a length equal to the given precision and then looping over this

vector to create an ever-increasing radius up to the edge of the outer cylindrical ring. Once the

set of circles are constructed, they are added to by the direction vector to create the top surface

of the cylinder. Each of these points are then inserted into the above equation to find the new

point in the cylinder’s actual direction and written out to the resulting PDB file as rendered in

Figure 3b.

Figure 3 (a) The initial sketch of the cylinder with the radius, direction, and origin (b) The surface rendering of the
cylinder (c) The solid rendering of the cylinder. These figures were generated with precision 1.0, origin vector (1,2,3),
direction vector (9,10,11), and radius 4.0.

12

CONE

The user specifies the coordinates of the two origins and the opening angle in degrees which is

exemplified in Figure 4a. The radius r of the cone is calculated using the following formula:

 𝑟 = |𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗⃗| tan 𝜃 (5)

where 𝑑𝑖�̂� is the direction vector and θ is the opening angle. The direction and right angle

vectors are calculated using the same steps as the cylinder as well as the rotational quaternion

and its associated parameters. The difference lay in the construction of the outer rings of the

cone. The radii of these rings are found by multiplying the sine of the opening angle by a new

precision which is then subtracted incrementally from the radius of the bottom level. The new

precision is determined by using the outer edge of the cone to redistribute the allowed number

of points, similar to previous objects. At each level, the circle of points is formed in the x-y plane

using the radius and a z-axis increment of cosine of the opening angle multiplied by the new

precision, and rotated using the quaternion methods developed for the cylinder (Figure 4b).

13

Figure 4 (a) The initial sketch of the cone with the opening angle, direction, and origin (b) The surface rendering of the
cone (c) The solid rendering of the cone. These figures were generated with precision 1.0, origin vector (-1,2,3),
direction vector (6,7,8), and opening angle of 23.7°.

GENERATION OF IRREGULAR GEOMETRIC OBJECTS (IMAGE-BASED PRONOI)

In the latest development, several new objects were designed in order to accurately represent

the several new objects that did not conform to uniform shapes. These two new objects are a

spheroid and a tube. The spheroid shape is drawn by rotating an ellipse about one of its axes

and the tube can be thought of as a curve with the cross section of a circle. The target

environment for these objects was an image, and so, the shapes were designed to be placed in

the x-y plane. However, by using modern molecular viewers, it is trivial to move and rotate the

output to any desired orientation or z-offset. These two shapes would form the basis of

development for the Image-based ProNOI and were later incorporated into an expansion of the

C++ object generation utilities.

14

SPHEROID

The spheroid is generated using only a handful of variables. Since the basic shape can be

reduced to an ellipse, the only inputs required are the A-axis, the B-axis, the origin vector, and

the angle of rotation in the x-y plane as can be seen from Figure 5a. It should be noted that the

A-axis and B-axis parameters correspond to the semi major and semi minor axes of the ellipse,

but, depending on the user’s input, the semi major axis could be either the a-axis or the b-axis.

One point of interest to note is that while the x-y plane cross section is an ellipse, the x-z plane

cross section is a circle. So, rather than slicing the shape via the x-y plane by directly

incrementing z, the circular cross section was divided into evenly spaced angle increments that

were precision length apart using the same method that was developed for the PDB-based

ProNOI (eq. 2). Each angle generated from this division of the circle was then used as the basis

for an ellipse in the x-y plane. This new ellipse has its own A and B axes (termed A’ and B’) which

can be derived from the general form of a spheroid:

 𝑥2 + 𝑧2

𝐴2
+

𝑦2

𝐵2
= 1

(6.1)

 𝑥2

𝐴2 − 𝑧2
+

𝑦2

(1 −
𝑧2

𝐴2)𝐵2

= 1
(6.2)

 𝐴′ = √𝐴2 − 𝑧2 (6.3)

15

𝐵′ = 𝐵√1 −
𝑧2

𝐴2

(6.4)

𝐴′ = 𝐵′

𝐴

𝐵

(6.5)

 𝐵′ = 𝐵 𝑠𝑖𝑛𝜃 (6.6)

And since the spheroid’s cross section in the x-z plane is a circle, the B’ axis in Equation 6.6 can

be easily identified from right angle methods. Once this ellipse’s dimensions have been

calculated, the problem then arises as to how to evenly space pseudo-atoms along the

perimeter. In order to calculate the elliptical arc length and design a method similar to the

circular point generation, it would require computing and approximating elliptical integrals of

the second kind and involve several other integration tools and techniques not currently

implemented in the ProNOI package. However, it is important to note that the desired outcome

is not precise arc length but precise absolute distance between the pseudo-atoms placed on the

ellipse. So, by using the equations for the parametric form of an ellipse:

𝑝(𝑡) = {

𝑥(𝑡) = 𝐴 sin(𝑡)

𝑦(𝑡) = 𝐵 cos(t)

(7)

And by approximating the location of a neighboring point by varying t and using the derivatives

of the above equations, the location of the next point can be approximated and placed by using

the iterative method shown here:

�⃑⃗⃗�(𝑡𝑖) = {

𝑥′(𝑡𝑖) = 𝐴𝑐𝑜𝑠(𝑡𝑖)

𝑦′(𝑡𝑖) = −𝐵𝑠𝑖𝑛(𝑡𝑖)

(8.1)

16

𝑡𝑖+1 = 𝑡𝑖 + ∆𝑡 = 𝑡𝑖 +

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − ‖𝑝(𝑡𝑖) − 𝑝(𝑡0)‖

‖�⃑⃗⃗�(𝑡𝑖)‖

(8.2)

By looping through this process until Δt approaches zero (or less that 0.001 for PDB files), the

next point can be spaced approximately precision length apart from the previous point p(t0).

Once this next point is found, the process repeats until t approaches 2π and comes back to the

start of the ellipse. This can then be repeated for each ellipse generated by the circle-plane

slicing method, thereby generating a spheroid where no two pseudo-atoms are closer than the

precision value specified as seen in Figure 5b. Now, this method only builds a hollow spheroid,

but if both the A-axis and B-axis are decremented uniformly – such that the minimum distance

between successive spheroids remains at precision – then a solid spheroid can be generated via

multiple hollow spheroids as can be seen in Figure 5c.

17

Figure 5 (a) initial trace of the spheroid as a 2D ellipse in the interface program with a bounding box for reference (b)
The surface rendering of the spheroid (c) The solid rendering of the spheroid. These figures were generated with
precision 1.0, origin vector (126,111,0), A and B axes as 88 and 39.5, and rotational angle as 27°.

TUBE

The second new shape generated by the Image-based ProNOI is the tube. This object can be

reduced to a set of control points with a thickness, a bias, and a tension parameter to specify

the behavior and appearance of the tube as shown in Figure 6a. The tube generation was

accomplished through the use of Cubic Hermite splines to interpolate between the control

points, circular rings to provide a surface for the shell of the tube, and rails of points to prevent

torsion along the length of the tube (Catmull 1974).

18

Figure 6 (a) The first visualization step inside the interface, each circle is a click from the user added as a control point
(b) The final rendering of the tube in Jmol. These figures were generated with precision 1.0 Å, tube width of 10 Å, bias
and tension of 0, and a collection of 8 points.

The cubic Hermite splines used for the curve interpolation use a basis of four piecewise

polynomial functions to interpolate points between two predefined control points and their

neighbors while maintaining the continuity of the curves and their first derivatives with their

neighboring curves at the endpoints of the intervals. The four polynomial basis functions are:

 ℎ00(𝑡) = 2𝑡3 − 3𝑡2 + 1 (9.1)

 ℎ10(𝑡) = 𝑡3 − 2𝑡2 + 𝑡 (9.2)

 ℎ01(𝑡) = −2𝑡3 + 3𝑡2 (9.3)

 ℎ11(𝑡) = 𝑡3 − 𝑡2 (9.4)

They each use a parameter t that is defined to be on [0, 1] for interpolating successive points on

the curve. These functions are then combined by utilizing two inner control points, between

19

which the spline will be generated, and two outer control points, necessary for determining the

derivatives at the two inner points. This results in the following equation:

 𝑝(𝑡) = ℎ00(𝑡)𝑝1⃗⃗⃗⃗⃑ + ℎ10(𝑡)𝑚1⃗⃗ ⃗⃗ ⃗⃑ + ℎ01(𝑡)𝑝2⃗⃗⃗⃗⃑ + ℎ00(𝑡)𝑚2⃗⃗ ⃗⃗ ⃗⃑ (10)

where p1,2 represents the two inner control points and m0,1 represents the approximate

derivatives at those points. The derivatives were found by utilizing the following equations:

(𝑚1⃗⃗ ⃗⃗ ⃗⃑)𝑥 =

(𝑥1 − 𝑥0)(1 + 𝑏𝑖𝑎𝑠)(1 − 𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

2

+
(𝑥2 − 𝑥1)(1 − 𝑏𝑖𝑎𝑠)(1 − 𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

2

(11.1)

(𝑚2⃗⃗ ⃗⃗ ⃗⃑)𝑥 =

(𝑥2 − 𝑥1)(1 + 𝑏𝑖𝑎𝑠)(1 − 𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

2

+
(𝑥3 − 𝑥2)(1 − 𝑏𝑖𝑎𝑠)(1 − 𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

2

(11.2)

where x0,1,2,3 are the four control points with x1,2 representing the x-component of the inner

control points and the bias and tension parameters are user-specified and control the overall

shape and curvature of the spline. By recomputing the derivatives for each spatial component,

these parameters are then fed into the interpolation equation, and, by precisely varying t, a

uniform distribution of points can be interpolated along the interval (p1, p2). Now, since the

tubes are expected to be placed within a 2D image, the above equations have only been

generalized to a 2D plane as seen in Figure 6b, however, it is trivial to extend this method to

three dimensions if necessary.

Once the Image-based ProNOI has been given a set of ordered control points, it then begins to

interpolate evenly spaced points along the spline curve to act as guide points for the tube. It was

20

noted in earlier designs of this program that, unless the points were somewhat close together,

the tube collapsed and deformed in region with high curvature. The additional control point

generation serves to eliminate this malformation by over-specifying the system. The method

used to distribute these points along the curve is similar to the spheroid’s ellipse point

generation as it uses derivative prediction and a similar iterative method to place points along

the curve. By taking the derivative with respect to t of the four cubic Hermite basis functions:

 ℎ00′(𝑡) = 6𝑡2 − 6𝑡 (12.1)

 ℎ10′(𝑡) = 3𝑡2 − 4𝑡 + 1 (12.2)

 ℎ01′(𝑡) = −6𝑡2 + 6𝑡 (12.3)

 ℎ11′(𝑡) = 3𝑡2 − 2𝑡 (12.4)

The slope at each interpolated point can be found and used to approximately predict where the

next point will lie, given a value for the change in t. So, by using the iterative method shown

previously and replacing p and m with the values defined by the spline functions, guide points

can be evenly distributed along the curves.

Once the guide points have been generated, a ring of points is then generated around each

guide point in order to act as the rails upon which the actual tube points will be placed. Each

ring is designed in the same fashion as the circle point distribution for the spheroid and has a

diameter equal to the user-specified thickness. However, it is critical that each rail remains at

the same location on the tube in order to prevent twisting and contorting the final spline curve.

Therefore, as the process loops over each guide point, it creates a new collection of points in a

ring precision-length apart in the x-y plane and then rotates this ring in the x-y plane so that the

top point of the ring lines up with the spline’s tangential direction. The ring is then rotated out

21

of the x-y plane so that the direction vector normal to the ring is parallel to the spline’s

tangential direction. Each point on the ring is then added to its own separate rail array for use in

generating the actual tube pseudo-atoms in this next step.

Upon generating the ring of rail points around the initial guide points, the process then takes

each rail array and, by using the spline interpolation shown earlier, generates a curve composed

of evenly spaced points. This method ensures that each point on the tube will remain precision

length apart even in areas with sharp curvature.

In order to generate a solid tube, the process described above is repeated with a precisely

shrinking thickness around the same control points. This variable thickness ensures that the

tubes are precision length apart without altering the shape of the resulting tube as can be seen

Figure 7 (a) Close-up of the solid tube generation (b) Close-up of the hollow tube generation. These figures were
generated with precision 1.0 Å, tube width of 10 Å, bias and tension of 0, and a collection of 8 points.

22

in Figure 7a. The change in thickness is found by using the same line-point distribution method

for the original PDB-based ProNOI methods and the change is bounded so that the last tube

generated is a single line in the center of the solid tube.

VISUALIZATION METHODS

The PDB-based ProNOI was developed for modifying PDB files using a Java interface with an

embedded Jmol Applet (see Figure 8). This allowed the program to bypass many of the typical

visualization hurdles by using pre-developed tools in its design. This program handles the four

regular objects: parallelepiped, sphere, cylinder, and cone, and allows for the insertion and

modification of multiple objects within the loaded PDB. To optimize the object visualization

process, each inserted object is first traced by utilizing the vector drawing methods within the

Jmol applet controlled via sliders and text boxes assigned to each of the objects dimensional

properties. This prevents excessive system calls to the C++ object generation tool and allows the

user to easily align the atomic-style objects with the other objects in the scene without a large

amount of computational overhead. Once properly placed, an object’s atomic properties, such

as atomic precision, dielectric constant, atomic radius, atom type, and object name, can then be

altered to the user’s specifications. Once the entire scene has been sketched out and

configured, the objects can then be generated and the PDB updated to display the results of the

C++ object generation utility immediately. If further modifications are needed, each object can

be individually modified and tampered with and the scene regenerated. If this occurs, newly

modified objects will be marked in the list to show that their properties have not been posted to

the PDB. Once this has finished, the scene can be regenerated to display the new output of the

23

object generator.

Figure 8 Screenshot of the PDB-based ProNOI with multiple objects rendered around a protein.

The Image-based ProNOI was developed for processing 2D images and converting them to 3D

PDB models (see Figure 9). It uses the wxPython interface library for rendering the tools within

the window and the manipulating the images. Several drawing methods have already been

exposed in the library for tracing irregular objects such as spheroids and tube by using ellipses

and splines, respectively. These simple drawing tools were later hooked up to sliders and text

boxes in order to enable a higher degree of precision when tracing the objects. The designer

also supports the creation and tracking of multiple objects within the image. Each ellipse can be

24

adjusted separately as the designer provides a fine degree of control over its shape, orientation,

and location within the image. The splines are traced separately but can still be added and

deleted freely. They have also been coupled with a simple undo button to help mitigate any

mistakes the user might make.

It is important to note that the spline drawing function within the wxPython library does not

represent a cubic Hermite spline. In order to better match the output from the object

generation code, a spline interpolation method was developed that divided each interval into

segments by slowly incrementing the parametric t parameter in the spline equations (eq. 9).

Once these points were found, the interface then drew straight lines between the points on the

interval, which proved to be an accurate approximation for the spline as long as the interval was

divided into ten or more segments.

Once the objects within the image were traced and their properties assigned, the designer then

sends this data to the object generation code to be processed. The data sent to the program,

however, is scaled by a couple of parameters. The most important parameter is the image scale.

As these images used in the program might not necessarily have all the same Angstroms per

pixel, it was critical that the user be given a method for mapping the resolution of the image,

25

measured in pixels, onto the PDB environment, measured in Angstroms.

Figure 9 A screenshot of the Image-based ProNOI tracing a fluorescent neuron. Several tubes and an ellipse are
present.

FUTURE DEVELOPMENTS

In future versions of the project, the lab plans on adding several useful features to the code

depending on the success/reception of the initial release. The first major addition will be off-

plane object generation for both tubes and ellipsoids. Currently, the tubes and ellipsoids that

are traced in the image are centered in the x-y plane; later developments will add options for

reorienting these shapes in 3D space and tools for accurately visualizing these changes. In

addition, the PDB-based ProNOI will be updated to include these two new shapes.

26

Future versions of the Image-based ProNOI will attempt to automate the tracing portion of the

interface by using tracing the outline of the objects in the image. This will then allow the

program to fit either an ellipse or a tube into the outline to pass to the object generation code

which will help prevent a significant portion of user error.

As DelPhi is further developed, the methods designed here will allow DelPhi to handle complex

environments and situations resulting from the problems involving modeling biological

macromolecules alongside cellular components and nano-objects. In addition, DelPhi is planning

on expanding its toolset to be able to handle problems such as heat diffusion, dispersion, and

other types of fundamental Molecular Biophysics problems. By allowing DelPhi to tackle a wider

variety of environments, ProNOI will greatly enhance its utility and usability.

RESULTS

The results presented here demonstrate the level of similarity between the generated objects

and some examples found in molecular biology, biochemistry, and nano-science. Here we focus

on the geometrical presentation of the objects, rather on the physical characteristics. The

reason for that is the complexity of the objects and the lack of analytical solution to compare

with. It should be reiterated that we are aiming at modeling objects for which PDB structure

does not exist and therefore comparison of electrostatic potential and energy calculated with

DelPhi using the object and PDB structure is not available as well. However, in case of sphere

and parallelepiped, where analytical solutions can be obtained, we provide comparison of

electrostatic energy.

27

Each one of the objects was generated by ProNOI in less than a second on a low-end laptop. As

the generation of the objects did not lead to any significant computational delay in the user

interface and performed significantly faster than expected, no precise runtime measurements

were taken. In addition, the issues complicating the rendering of some of these figures occurred

when other visualization packages attempted to visualize the scenes generated by ProNOI. The

number of atoms placed into the file was simply too large for the viewer to handle. This typically

occurred at atom counts larger than 100,000. So, the current bottleneck in the process is the

limits of the current visualization software.

SPHERE

The first image is simply for illustrating the similarities between the sphere rendering (Figure

10b) and the crystal structure of a virus (PDB ID: 3KIC) (Lerch, Xie et al. 2010) (Figure 10a). Very

few viruses have PDB structure and modeling them as a sphere with a particular radius and

charge distribution may be the only way of studying them computationally. While this

representation may mask some of the finer details of the virus structure, simulations much

larger than the virus itself will benefit greatly from this scaled-down version of the virus protein.

28

Figure 10 (a) adeno-associated virus serotype 3B (PDB ID 3KIC) (b) The sphere solid rendering shown previously.

As mentioned above, our focus is geometrical modeling. However, in the case of a sphere, an

analytical solution for the electric potential of a continuous sphere does exist. This solution has

been compared to the electric potential calculated through DelPhi using a ProNOI generated

sphere with a radius of 2Å and a precision of 1Å (see Figure 11). As evidenced by the graph, the

atomic-style object closely mirrors the continuous analytical solution at each point on the curve.

This reaffirms the accuracy of the type of modeling chosen.

29

PARALLELEPIPED

In Figure 12, one of the featured POPE membranes from the ProBLM Webserver (Alexov,

Kimmett et al. 2014) is shown next to the solid rendering of the parallelepiped from the PDB-

based ProNOI. As stated above, in many cases the PDB file of membrane may not be available

and the membrane should be modeled via a parallelepiped object. In the ProBLM Webserver,

there is an option to use ProNOI to build a membrane with similar properties to the explicit

membranes but with user-specified dimensions, allowing for greater control over the resulting

PDB and subsequent simulations.

Figure 11 The analytical solution for the electric potential of a continuous sphere as compared to the results of the
atomic-style sphere electric potential.

30

Figure 12 (a) The POPE 75x75 membrane from the ProBLM Webserver (b) The solid rendering of the parallelepiped
shown previously.

In order to demonstrate the accuracy of this style of modeling, a series of experiments were

performed to compare the solvation energies of a set of parallelepipeds as a spherical charge

approached the objects with an older style of continuum parallelepiped modeling in DelPhi. The

results of this simulation can be seen in Figure 13 and it is evident that the energies of the

atomic-style objects closely mirror that of the continuum model.

31

Figure 13 The chart comparing a set of atomic-style parallelepipeds with various values of precision generated by
ProNOI with the continuous plane solution provided by DelPhi

32

CYLINDER

In Figure 14, the first ever photograph of DNA is shown next to the solid cylinder generated by

the PDB-based ProNOI. It can be easily seen that this strand of DNA can be generalized to a long

cylinder with specific dielectric properties and surface/volumetric charge.

Figure 14 (a) A photograph of a strand of DNA adapted with permission from (Gentile, Moretti et al. 2012). Copyright
2014 American Chemical Society. (b) The cylinder solid rendering shown previously.

As before, an analytical solution exists for the electric potential of a large disc of charge, which

can be compared to a wide cylinder generated by ProNOI. This experiment used an atomic-style

cylinder with a radius of 5Å, height of 0.5Å, and a precision of 1.0Å that was charged with 1e per

atom alongside a theoretical disk of the same radius. The results of the this simulation done in

DelPhi can be seen in Figure 15 and clearly shows the atomic-style object results closely matches

the analytical electric potential.

33

Figure 15 The comparison of the known electric potential a disk of charged material with the computational solution
of the electric potential of a wide cylinder as provided by DelPhi.

34

CONE

In Figure 16, the tip of a used atomic force microscope cantilever can be seen alongside the solid

cone rendering from the PDB-based ProNOI. The similarities between the two objects are clearly

shown by the figure below.

Figure 16 (a) View of cantilever in Atomic Force Microscope (magnification 1000x) adapted from
http://commons.wikimedia.org/wiki/File:AFM_%28used%29_cantilever_in_Scanning_Electron_Microscope,_magnific
ation_1000x.GIF (b) The cone solid rendering shown previously.

TUBE

In Figure 17, a strand of ssDNA is shown above the PDB of a tube designed to trace the length it.

This figure partially demonstrates the capabilities of the Image-based ProNOI as this same

method that was used to create the tube can be applied to much more complex images.

35

SPHEROID

Figure 18 shows a mitochondrion modeled next to the spheroid generated from the Image-

based ProNOI. While the structure may have internal components, these features are masked

by the shell of the mitochondrion, which resembles the shape of a spheroid.

Figure 17 (a) A wiggled strand of single-stranded linear DNA adapted from the Electron Micrograph Library, Institute
for Molecular Virology, University of Wisconsin - Madison (b) The tube rendering of the DNA generated via the Image-
based ProNO shown previously.

36

HYBRIDIZED COMPLEX OBJECTS

The next figure, Figure 19, shows a neuron that is highlighted via fluorescent microscopy. The

outline of this cell was traced using the Image-based ProNOI and exported to a PDB file shown in

Figure 19b using a combination of both spheroids and tubes. This figure demonstrates that the

shapes can be combined and rearranged into hybrid shapes consisting of multiple “basic”

shapes for advanced object modeling, and since the program innately supports multiple objects

Figure 18 (a) A TEM photograph of a mitochondrion, a standard textbook image (b) The solid rendering of the
spheroid from ProNOI shown previously.

37

Figure 19 (a) The ProNOI-traced outline of a fluorescent neuron, a standard textbook image (b) The hybrid spheroid-
tube PDB rendering generated from ProNOI rendered using multiple objects each with a precision of 1.0 Å and a bias
and tension of 0

38

REFERENCES

Alexov, E. (2004). "Numerical calculations of the pH of maximal protein stability. The effect of
the sequence composition and three-dimensional structure." Eur J Biochem 271(1): 173-
185.

Alexov, E., T. Kimmett, et al. (2014). "ProBLM Web Server: Protein and membrane placement
and orientation package." Computational and Mathematical Methods in Medicine.

Alexov, E., E. L. Mehler, et al. (2011). "Progress in the prediction of pKa values in proteins."
Proteins 79(12): 3260-3275.

Baker, N. A. and J. A. McCammon (2003). "Electrostatic interactions." Methods Biochem Anal 44:
427-440.

Baker, N. A., D. Sept, et al. (2001). "Electrostatics of nanosystems: application to microtubules
and the ribosome." Proc Natl Acad Sci U S A 98(18): 10037-10041.

Biasini, M., S. Bienert, et al. (2014). "SWISS-MODEL: modelling protein tertiary and quaternary
structure using evolutionary information." Nucleic Acids Res.

Case, D. A., T. E. Cheatham, 3rd, et al. (2005). "The Amber biomolecular simulation programs." J
Comput Chem 26(16): 1668-1688.

Catmull, E. a. R. R. (1974). "A Class of Local Interpolating Splines." Computer Aided Geometric
Design: 317-326.

Chen, D., Z. Chen, et al. (2011). "MIBPB: a software package for electrostatic analysis." J Comput
Chem 32(4): 756-770.

Cornell, W. D., P. Cieplak, et al. (1995). "A Second Generation Force Field for the Simulation of
Proteins, Nucleic Acids, and Organic Molecules." Journal of the American Chemical
Society 117(19): 5179-5197.

39

Dolinsky, T. J., P. Czodrowski, et al. (2007). "PDB2PQR: expanding and upgrading automated
preparation of biomolecular structures for molecular simulations." Nucleic Acids Res
35(Web Server issue): W522-525.

Gentile, F., M. Moretti, et al. (2012). "Direct imaging of DNA fibers: the visage of double helix."
Nano Lett 12(12): 6453-6458.

Herraez, A. (2006). "Biomolecules in the computer: Jmol to the rescue." Biochem Mol Biol Educ
34(4): 255-261.

Humphrey, W., A. Dalke, et al. (1996). "VMD: visual molecular dynamics." J Mol Graph 14(1): 33-
38, 27-38.

Lerch, T. F., Q. Xie, et al. (2010). "The structure of adeno-associated virus serotype 3B (AAV-3B):
insights into receptor binding and immune evasion." Virology 403(1): 26-36.

Li, C., M. Petukh, et al. (2013). "Continuous development of schemes for parallel computing of
the electrostatics in biological systems: implementation in DelPhi." J Comput Chem
34(22): 1949-1960.

Li, L., C. Li, et al. (2012). "DelPhi: a comprehensive suite for DelPhi software and associated
resources." BMC Biophys 5: 9.

Mackerell, A. D., Jr. (2004). "Empirical force fields for biological macromolecules: overview and
issues." J Comput Chem 25(13): 1584-1604.

Pettersen, E. F., T. D. Goddard, et al. (2004). "UCSF Chimera--a visualization system for
exploratory research and analysis." J Comput Chem 25(13): 1605-1612.

Phillips, J. C., R. Braun, et al. (2005). "Scalable molecular dynamics with NAMD." J Comput Chem
26(16): 1781-1802.

Sarikaya, M., C. Tamerler, et al. (2003). "Molecular biomimetics: nanotechnology through
biology." Nat Mater 2(9): 577-585.

40

Sarkar, S., S. Witham, et al. (2013). "DelPhi Web Server: A comprehensive online suite for
electrostatic calculations of biological macromolecules and their complexes." Commun
Comput Phys 13(1): 269-284.

Schrödinger, L. (2010). The PyMOL Molecular Graphics System, Version~1.3r1.

Smith, N., B. Campbell, et al. (2012). "Protein Nano-Object Integrator (ProNOI) for generating
atomic style objects for molecular modeling." BMC Struct Biol 12: 31.

Smith, N., S. Witham, et al. (2012). "DelPhi web server v2: incorporating atomic-style
geometrical figures into the computational protocol." Bioinformatics 28(12): 1655-1657.

Stone, J. E., J. C. Phillips, et al. (2007). "Accelerating molecular modeling applications with
graphics processors." J Comput Chem 28(16): 2618-2640.

Talley, K., C. Ng, et al. (2008). "On the electrostatic component of protein-protein binding free
energy." PMC Biophys 1(1): 2.

Tan, Z. J. and S. J. Chen (2011). "Salt contribution to RNA tertiary structure folding stability."
Biophys J 101(1): 176-187.

Tang, C. L., E. Alexov, et al. (2007). "Calculation of pKas in RNA: on the structural origins and
functional roles of protonated nucleotides." J Mol Biol 366(5): 1475-1496.

	Clemson University
	TigerPrints
	8-2014

	Protein Nano-Object Integrator: Generating Atomic-Style Objects for Use in Molecular Biophysics
	Nicholas Smith
	Recommended Citation

	tmp.1409848255.pdf.PpLqn

