
Clemson University
TigerPrints

All Theses Theses

5-2015

Determination of Chaos in Different Dynamical
Systems
Sherli Koshy-Chenthittayil
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Koshy-Chenthittayil, Sherli, "Determination of Chaos in Different Dynamical Systems" (2015). All Theses. 2115.
https://tigerprints.clemson.edu/all_theses/2115

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2115?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Determination of Chaos in Different Dynamical
Systems

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mathematics

by

Sherli Koshy-Chenthittayil

May 2015

Accepted by:

Dr. Elena Dimitrova, Committee Chair

Dr. Eleanor Jenkins

Dr. Brian Dean



Abstract

It has been widely observed that most deterministic dynamical systems go into

chaos for some values of their parameters. There are many ways to measure chaos.

One popular way uses Lyapunov exponents. The objective of this thesis is to find the

parameter values for a system that determines chaos via the Lyapunov exponents.The

paper by Wolf et.al.,[2] proposed the frequently used choice of calculating such ex-

ponents using Gram-Schmidt orthonormalization process. The work in this thesis

centered on coding and verifying the algorithm in [2], as well as using the code to

investigate three biological models [7],[6] and [1] to find parameters/initial conditions

to give chaos. Finally it also considers as future work choosing appropriate sampling

algorithms to better understand the parameter space for which we may obtain chaos.
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Chapter 1

Introduction

It is an indisputable fact that chaos exists not just in theory. The objective

of this thesis is to find the parameter values for a system that determines chaos via

Lyapunov exponents. Before we delve into chaos, let us go through the background

needed for it.

1.1 Background information

• Dynamical systems A dynamical system consists of a set of possible states,

together with a rule determining the present state based on the previous state

[3]. For example consider a simple dynamical system given by xn+1 = 2xn. Here

the variable n stands for time and xn denotes the population at time n.

• Deterministic Dynamical Systems A deterministic dynamical system is one

in which the present state is determined uniquely from the past states. In our

previous example, the present population is completely determined by the pre-

vious one.

If randomness occurs in the prediction of the new state, then the system is no
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longer deterministic but a random or stochastic process. An example of such a

process is flipping a fair coin to determine if it will rain or not. A coin has no

predictive power over rain.

Types of Dynamical Systems

• Discrete-time Dynamical Systems : If the rule is applied at discrete times, the

system is called a discrete-time dynamical system. Our example is a discrete

system.

• Continuous-time Dynamical Systems : It is essentially the limit of discrete sys-

tem with smaller and smaller updating times. In this case, the governing rule

will become a set of differential equations. Instead of expressing the current

state as a function of the previous state, the differential equation expresses the

rate of change of the current state as a function of the previous state [3].

We will be considering continuous dynamical systems with ordinary differential

equations.

As we all know, an ordinary differential equation is one in which the solutions are

functions of an independent variable. In our case the independent variable will be

time denoted by t. Such equations come in two types:

• An autonomous differential equation is one in which t does not appear explicitly.

An example for this would be the equation of pendulum given by:

dx

dt
= − sinx.
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• A nonautonomous differential equation is one where t explicitly appears. The

equation of the forced damped pendulum:

(1 + c)
dx

dt
= − sinx+ ρ sin t

is an example for such an equation.

Any nonautonomous system can be transformed into an autonomous system

by introducing a new variable y and setting it to be equal to t. This conversion

requires an additional differential equation. For the above example the autonomous

version would be:

(1 + c)
dx

dt
= − sinx+ ρ sin y

dy

dt
= 1

1.2 Behavior of the dynamical systems

We shall describe the behavior of the dynamical systems in terms of equilib-

rium solutions, limit cycles and chaos.

• Equilibrium solutions: A constant solution of the autonomous differential

equation
dx

dt
= f(x) is called an equilibrium of the equation[3]. In other words,

it is a solution which satisfies f(x) = 0. The solutions either converge to the

equilibrium or diverge away from it.
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• Periodic orbits: If there exists a T > 0 such that F (t + T, v0) = F (t, v0),∀t

and if v0 is not an equilibrium, then the solution F (t, v0) is called a periodic

orbit or cycle. Here F (t, v0) denotes the value of the solution at time t with

initial value v0. Also the periodic orbit traces out a simple closed curve.

• Chaotic orbit: An orbit that exhibits an unstable behavior that is not itself

fixed or periodic is called a chaotic orbit. At any point in such an orbit, there

are points arbitrarily near that will move away from the point during further

iteration. In terms of solutions, it means they are very sensitive to small per-

turbations in the initial conditions and almost all of them do not appear to be

either periodic or converge to equilibrium solutions.

For autonomous differential equations on the real line, bounded solutions must con-

verge to an equilibrium. For planar autonomous systems, solutions that are bounded

may instead converge to periodic orbits or cycles. In this case solutions cannot be

chaotic. There is no such restriction in three-dimensional cases. These results follow

from the Poincaré-Bendixson Theorem. A classic three-dimensional system which

displays stable equilibria and chaotic behavior for different values of a parameter is

the Lorenz model given below:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz.

4



For σ = 10, β = 8/3, Lorenz found that the system behaved chaotically for ρ ≥ 24.74.

The chaotic attractor is shown below:

Figure 1.1: Lorenz attractor

This figure depicts the orbit of a single set of initial conditions. This is a

numerically observed attractor since the choice of almost any initial condition in a

neighborhood of the chosen set results in a similar figure [3].

A chaotic attractor can be dissipative (volume-decreasing), locally unstable (orbits

do not settle down to stationary, periodic, or quasiperiodic motion) or stable at large

scale(i.e. they get trapped in a strange attractor).

In the next chapter, we discuss ways to measure chaos using the Lyapunov spec-

trum. In the third chapter, we go on to evaluate the spectrum for three continuous-

time dynamical systems based on biological populations. The final chapter considers
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as future work choosing appropriate sampling algorithms to better understand the

parameter space for which we may obtain chaos.
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Chapter 2

Evaluation of Lyapunov Spectrum

2.1 Definitions

A usual measure of chaos is finding the Lyapunov spectrum of the system. If

at least one of the Lyapunov exponents is positive then the bounded aperiodic orbit

is said to be chaotic [3]. As the systems investigated in this thesis are continuous, the

definition of the exponent will be given in terms of such a dynamical system.[2]

Consider a continuous dynamical system in an n-dimensional phase space. We are

observing the long term behavior of an infinitesimal n-sphere (i.e. sphere of very

small radius) of initial conditions. Due to the locally deforming nature of the flow,

the sphere eventually becomes an n-ellipsoid. The Lyapunov exponent is calculated

for each dimension and it is dependent on the length of the principal axis of the

ellipsoid. It is given by:

λi = lim
t→∞

1

t
log2

pi(t)

pi(0)
(2.1)

where pi(t) denotes the length of the ellipsoidal principal axis at time t and pi(0)
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denotes its length at time t = 0.

The exponents are generally given in decreasing order, i.e. λ1 > λ2 > · · · > λn.

The exponents give us an idea of whether a specific direction in the phase space is

contracting or expanding. An expanding direction signifies a positive exponent and

contracting a negative one. As the orientation of the ellipsoid is varying continuously,

we cannot speak of a definite direction with respect to the exponent. For a dissipative

dynamical system, we will have at least one negative Lyapunov exponent. If the

exponent is positive, we wouldn’t expect a bounded attractor unless some folding

of widely separated trajectories takes place. So for that particular direction, the

system goes through a repeated stretching and folding processes. As a result of this,

we cannot predict the long-term behavior of the system given the initial conditions

which is the very definition of chaos.

For a one-dimensional system, the Lyapunov spectrum clearly consists of one

value. For a discrete dynamical system, it is positive for a chaotic regime, zero

for a marginally stable orbit and negative for a periodic orbit [2]. For a continuous

one-dimensional dynamical system, the Lyapunov exponent will always be negative.

For a continuous three-dimensional system which is dissipative (i.e volume decreas-

ing), the possible spectra are as follows:

(+, 0,−) denotes a strange attractor, (0, 0,−) denotes a two-torus, (0,−,−) for a

limit cycle and finally (−,−,−) for a fixed point.

This can be extended to n-dimensions. The magnitude of the Lyapunov exponent

computes the attractor’s dynamics;i.e it tells us the number of orbits after which we

cannot predict the future behavior of the initial condition [2].
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2.2 Procedure for calculation of Lyapunov Expo-

nents

The definition of Lyapunov exponents requires us to define principal axes with

initial conditions. These axes need to evolve with the equations of the system. The

issue is we cannot guarantee the condition of small separations for times on the

order of hundreds of orbital periods needed for convergence in a chaotic system. To

overcome this, the authors of [2] use a phase space together with a tangent space

approach. A fiducial trajectory (center of the sphere) is obtained by the action of

the non-linear system on some initial conditions. Now to obtain the trajectories of

points on the surface of the sphere, we consider the action of the linearized system

on points very close to the fiducial trajectory. In fact, the principal axes are defined

by the evolution via the linearized equations of an initially orthonormal vector frame

anchored to the fiducial trajectory. [2].

To define the trajectories on the points of the sphere we need the concept of a

linearized system or variational equations. Consider a dynamical system of the form

~x
′

= ~F (~x),where ~x = (x1, x2, . . . , xn) , ~F = (f1, f2, . . . , fn). It’s easy to generate the

state-space trajectory φ(~x0) by using any numerical ODE solver. But what happens

if there are small perturbations in ~x? The formal way to describe how these pertur-

bations react is with the use of partial derivatives. For instance,
∂f1
∂x2

is how much

the slope of the first variable (f1) changes if you perturb the second variable x2. [5]
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Consider the Lorenz system:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

To set up the linearized system corresponding to the above equations we would need

the Jacobian of the right-hand side which is given by:

J =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


where fi is the right-hand side of the ith differential equation. For a n-dimensional

system we would have an n× n matrix.

For the Lorenz system the Jacobian is


−σ σ 0

ρ− z −1 −x

y x −β


To set up the variational equations we would need to describe the variations. For

this consider the following matrix:
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[δ] =


δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3


where δxi is the component of the x variation that came from the ith equation.

The column sums of this matrix are the lengths of the x,y, and z coordinates

of the evolved variation. The rows are the coordinates of the vectors into which the

original x,y, and z components of the variation have evolved.

The linearized equations are:


δ̇x1 δ̇y1 δ̇z1

δ̇x2 δ̇y2 δ̇z2

δ̇x3 δ̇y3 δ̇z3

 =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z



δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3


For the Lorenz system, it would be:


δ̇x1 δ̇y1 δ̇z1

δ̇x2 δ̇y2 δ̇z2

δ̇x3 δ̇y3 δ̇z3

 =


−σ σ 0

ρ− z −1 −x

y x −β



δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3


So now in addition to the original system of n non-linear equations we will have an

additional n2 linearized equations. The system now has n+n2 = n(n+ 1) equations.

To implement the procedure mentioned initially for creating the fiducial trajec-

tory we solve the new system of n(n + 1) differential equations with any numeri-

cal ode algorithm, e.g., Runge-Kutta 4 for some initial conditions and a time range

[tstart, tstart+ ts] where tstart denotes the initial time and ts denotes the time step.

11



In a chaotic system, each vector tends to fall along the local direction of most rapid

growth. In addition, the finite precision arithmetic of computing, the collapse towards

a common direction causes the tangent space orientation of all axis vectors to become

indistinguishable. To overcome this, Wolf et.al.,[2] use repeated Gram-Schmidt re-

orthonormalization(GSR) procedure on the vector frame.

Let the linearized equations act on the initial frame of orthonormal vectors to give

a set of vectors {v1, v2, . . . , vn}. In other words, after we solve the system of n(n+ 1)

equations, consider the components corresponding to the variational equations. Then

GSR provides the following orthonormal set {v′1, v′2, . . . , v′n}:

v′1 =
v1
‖v1‖

,

v′2 =
v2 − 〈v2, v′1〉v′1
‖v2 − 〈v2, v′1〉v′1‖

...

v′n =
vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1
‖vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1‖

where 〈, 〉 denotes the Euclidean inner-product. The orthonormal set thus obtained

now serves as the new initial conditions for our linearized system. We then solve the

system again now with these new initial conditions and a new time-range [tstart, tstart+

ts] where tstart has now been changed to tstart + ts and ts denotes the time step.

This procedure is repeated n times.

It is seen that GSR never affects the direction of the first vector in a system, so this

vector tends to seek out the most rapidly growing direction in the tangent space[2].

The length of vector v1 is proportional to 2λ1t so in this way we can obtain the first

12



Lyapunov exponent λ1. According to the construction of v′2, we are changing the

direction of v2. Because v2’s direction is being changed, it is not free to chase after

the most rapidly growing direction nor the second most. Also note that the vectors

v′1 and v′2 span the same subspace as v1 and v2. The area defined by the vectors

v1 and v2 is proportional to 2(λ1+λ2)t. As v′1 and v′2 are orthogonal, we may determine

λ2 directly from the mean rate of growth of the projection of vector v2 on vector v′2

[2].

Extending this line of thought to n-dimensions, we conclude that the subspace

spanned by the n vectors is not affected by the GSR process. The long-term evolution

of the n−volume defined by these vectors is proportional to 2
∑n

i=1 λit. Projection of

the evolved vectors onto the new orthonormal frame correctly updates the rates of

growth of each of the principal axes in turn, providing estimates of the Lyapunov

exponents.

The code from the Wolf paper [2] was verified on standard systems, like Lorenz and

Rossler.

13



System Equations Parameters Initial

Conditions

Lyapunov

Spectrum

(in [2])

Lyapunov

Spectrum

obtained

Lorenz

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

σ = 10.0,

ρ = 45.92,

β = 4.0

x = 10.0,

y = 1,

z = 0

λ1 = 2.16,

λ2 = 0.00,

λ1 = −32.4

λ1 = 2.1676,

λ2 = 0.0001,

λ3 = −32.4644

Rossler

ẋ = −(y + z)

ẏ = x+ ay

ż = b+ z(x− c)

a = 0.15,

b = 0.20,

c = 10.0

x = 10.0,

y = 1,

z = 0

λ1 = 0.13,

λ2 = 0.00,

λ3 = −14.1

λ1 = 0.1309,

λ2 = 0.0013,

λ3 = −14.1669

Table 2.1: Lyapunov Spectrum in [2] vs Lyapunov Spectrum obtained through the

MATLAB code
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Chapter 3

Systems under consideration

In this chapter we shall consider different dynamical systems and study some

parameters in each system which may give chaos. The systems considered are all

motivated by biological experiments.

3.1 Kot System

3.1.1 The Unforced System

The first system we consider was analyzed by Kot,Sayler and Schulz [7]. It

is a double-monod system with a prey (protozoan) and a predator (bacteria). The

system initially analyzed in the work did not consider a forced inflowing nutrient and

did not exhibit chaotic behavior. The unforced nutrient system [7] is given by:

15



dS

dt
= D [Si − S]− µ1

Y1

SH

K1 + S
(3.1)

dH

dt
= µ1

SH

K1 + S
−DH − µ2

Y2

HP

K2 +H
(3.2)

dP

dt
= µ2

HP

K2 +H
−DP (3.3)

where

1. S represents the concentration of limiting substrate.

2. H represent the concentration of the prey.

3. P represents the predator concentration.

4. D is the dilution rate.

5. µ1 and µ2 represent the maximum specific growth rate of the prey and predator

respectively.

6. Y1 is the yield of the prey per unit mass of substrate. Similarly Y2 is the biomass

yield of the predator per unit mass of prey

For ease of calculations, the authors of [7] re-scaled the concentrations by the in-

flowing substrate concentrations, the prey by its yield constant and the predator by

its yield constants i.e.

x =
S

Si
, y =

H

Y1Si
, z =

P

Y1Y2Si
, τ = D ∗ t

16



The resulting re-scaled equations are as follows:

dx

dτ
= 1− x− Axy

a+ x
(3.4)

dy

dτ
=

Axy

a+ x
− y − Byz

b+ y
(3.5)

dz

dτ
=

Byz

b+ y
− z (3.6)

Here A =
µ1

D
, a =

K1

Si
, B =

µ2

D
, and b =

K2

Y1Si
.

The following parameters were used for the calculations:

D = 0.1, Si = 115

Yi µi h−1 Ki mg/l
Prey 0.4 0.5 8

Predator 0.6 0.2 9

Table 3.1: Values of parameters for microbial model presented in Kot, et.al. [7]

As mentioned before, on analysis of the model, the authors Kot et.al.,[7] observed

equilibrium points and no chaos. Upon calculation of Lyapunov spectrum we obtain

(0,-,-) which agrees with the nature of the model. The zero exponent is due to the

system being autonomous.

3.1.2 The Forced System

In this case they consider when the nutrient is being forced into the system

out of phase with internal substrate. The equations used to model that system were

17



as follows [7]

dS

dt
= D

[
Si

(
1 + ε sin

(
2π

T
t

))
− S

]
− µ1

Y1

SH

K1 + S

dH

dt
= µ1

SH

K1 + S
−DH − µ2

Y2

HP

K2 +H
dP

dt
= µ2

HP

K2 +H
−DP

where the parameters and variables are as in the unforced model (Eqn. 3.1).

For ease of calculations, the authors of [7] again re-scaled the concentrations as

they did in the unforced model. The resulting re-scaled equations are as follows:

dx

dτ
= 1 + ε sin (ωτ)− x− Axy

a+ x
(3.7)

dy

dτ
=

Axy

a+ x
− y − Byz

b+ y
(3.8)

dz

dτ
=

Byz

b+ y
− z (3.9)

where ω =
2π

DT
.

The parameters A, a,B, b were calculated as before. The values in Table 3.1

were applied to this model as well.

3.1.3 Results of Simulation

In [7], the authors vary the value of ω to observe the behavior of the model.

The choice of this parameter was because it drives the periodic forcing of the inflowing
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substrate, which in turn causes chaos for certain values of ω. For ω = 5π
6

and ε = 0.6

they observed chaotic behavior which was simulated below:

Figure 3.1: Manifold plot of forced model in [7] when ω = 5π
6

and ε = 0.6

Accordingly, varying ω over a range of [0, 6π] indicated that the system goes

in and out of chaos. As ε was the coefficient of the sinusoidal term in Eqn.(3.9), it

was also varied in a range of [0, 1] to observe the dynamics.
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Figure 3.2: 3-D plot depicting chaos and non-chaos with changes in ε and ω

In the above figure, the maximum Lyapunov exponent was plotted against ω

and ε. A positive maximum exponent depicts chaos, a negative maximum exponent

depicts a fixed point and if the maximum exponent is zero it could mean either a

two-torus or a limit cycle.

Another set of parameters which seemed worthwhile to investigate were the dilution

rate D and the inflowing substrate concentration Si. These two parameters can

be controlled by the chemostat’s operator. Varying them would give us an idea of

whether the system exhibits chaos or not.

20



Figure 3.3: 3-D plot depicting chaos and non-chaos with changes in D and Si

As can be seen in both the figures, the parameters ε,ω,D,Si are interesting param-

eters which can be investigated further to understand the model’s behavior.
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3.2 Kravchenko System

Nikolay S.Strigul and Lev V.Kravchenko in their paper [6] consider a model

based on Monod kinetics. The variables under consideration are the concentration of

PGPR (aerobic non-nitrogen fixing bacteria), resident micro-organisms, oxygen and

soluble substrate.

The mathematical model consists of four non-linear ordinary differential equations

which are as follows:

dX

dT
= X (µX [S, P,N ] + F [Z]− αX −D1)

dZ

dT
= Z (µZ [S, P,N ] + F [X]− βZ −D2)

dS

dT
= W (t) + L−DS(S − S0)−

XµX [S, P,N ]

YXS
− ZµZ [S, P,N ]

YZS
dP

dT
= DP (P0 − P )− XµX [S, P,N ]

YXP
− ZµZ [S, P,N ]

YZP

A brief description of the parameters and variables are as follows [6]

• X stands for the concentration of PGPR

• Z is the concentration of micro-organisms

• S denotes concentration of soluble organic compounds.

• P is the amount of molecular oxygen.

• T stands for time

• µX [S, P,N ] is the specific growth-rate which is given by the Monod formula for

several limiting resources and the formula is
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µX [S, P,N ] = µmX
S

S + θKSX

P

P +KPX

N

N + θKNX

where µmX , maximal specific growth rate, KSX , KPX , KNX stand for the affinity

constants for the organic substrate, molecular oxygen and mineral nitrogen

compounds respectively and θ soil’s water content.

• µZ [S, P,N ] is also derived in the same manner as above. The form is

µZ [S, P,N ] = µmZ1

S

S + θKSZ1

P

P +KPZ1

N

N + θKNZ1

+

µmZ2

S

S + θKSZ2

KPZ2

P +KPZ2

N

N + θKNZ2

where µmZ1 ,µmZ2 are the growth rates for the aerobic and anaerobic parts of the

microbes, KSZ1 , KSZ2 , KPZ1 , KPZ2 , KNZ1 , KNZ2 like before are affinity constants

for the organic substrate, oxygen and nitrogen with 1 and 2 denoting the aerobic

and anaerobic parts, respectively.

• F (Z) = H1Z,G(X) = H2X stand for the inter-species interaction between the

microflora and PGPR.

• αX, βZ denote intra-specific interactions.

• D1, D2 are the death coefficients.

• W (t) is a root exudation function which is maximum during day time(i.e. first

12 hours) and minimum during night time(i.e. last 12 hours). For our simulation

purposes W (t) has been estimated using a Fourier series calculation.

• L is the rate of decomposition of insoluble carbon compounds.

• YXS, YZS, YXP , YZP are growth yield constants for the substrate and oxygen.
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• DS is the rate of diffusion of soluble carbon from the rhizosphere.

• DP stands for the diffusion rate of oxygen into the rhizosphere.

• S0 is the substrate concentration outside the rhizosphere.

• P0 is the concentration of oxygen in the surrounding area.

The authors developed the model to match experimental results. For the param-

eters mentioned in the paper there was no chaos detected which can be seen by the

time-series portrait of the solutions.[6]

Figure 3.4: Time series plot of the solutions to the system in [6]
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3.2.1 Simulation Results

Further analysis of the model in [6] indicates possibly chaos. Based on that

observation the initial conditions of the PGPR and micro-organism concentration

were varied in the ranges [0.1, 60] and [0.1, 10] respectively. For those values, the

maximum Lyapunov exponent was calculated.

Figure 3.5: 3-D plot of the Lyapunov exponent when X and Z were varied. (The

purple denotes the z-plane at 0)

As can be seen in the figure, the maximum Lyapunov exponent stays negative

and thus no chaos is seen.

Another choice was the parameter KSX ∈ [0.1, 60] and the micro-organism con-

centration. It was seen that though the exponent was still negative, it was closer to

zero.
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Figure 3.6: 3-D plot of the Lyapunov exponent when KSX and Z were varied

For efficiency we could re-scale the model. Using the transformations S =

θKSXs;P = KPXp;N = θKNXn;X = YSXx;Z = YZSz;T =
1

µmX
t we get the

following equations:

dx

dt
= x [µx(s, p, n)− h1z − αsx− d1]

dz

dt
= z [µz(s, p, n)− h2x− βsz − d2]

ds

dt
= νsw(t/µmX) + l − ds(s− s0)−

x

yxs
µx(s, p, n)− z

yzs
µz(s, p, n)

dp

dt
= dp(p− p0)−

x

yxp
µx(s, p, n)− z

yzp
µz(s, p, n)

(3.10)

where µx(s, p, n) =
s

s+ 1
· p

p+ 1
· n

n+ 1

µz(s, p, n) =
µmZ1

µmX
· s

s+ ksz1
· p

p+ kpz1
· n

n+ knz1
+
µmZ2

µmX
· s

s+ ksz2
· p

p+ kpz2
· n

n+ knz2

h1 =
YZSH1

µmX
, h2 =

YXSH2

µmX
, αs =

YXSα

µmX
, βs =

YZSβ

µmX
,
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d1 =
D1

µmX
, d2 =

D2

µmX
, ds =

Ds

µmX
, dp =

Dp

µmX
,

νs =
1

µmXϑKSX

, l =
L

µmXϑKSX

, s0 =
S0

KSX

, p0 =
P0

KPX

,

ksz1 =
KPZ1

KSX

, ksz2 =
KPZ2

KSX

, yxs = yzs = ϑKSX ,

kpz1 =
KPZ1

KPX

, kpz2 =
KPZ2

KPX

, yxp =
KPXYXP
YXS

, yzp =
KPXYZP
YZS

,

knz1 =
KNZ1

KNX

, knz2 =
KNZ2

KNX

It was noticed that on changing just two parameters or initial conditions chaos was

not obtained. This gives rise to the question that we might need to investigate more

parameters to get a clear idea of whether chaos truly exists in this model.
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3.3 System based on Becks paper [1]

In a paper by Becks et.al.,[1], experimental data on a chemostat experiment

including 2 preys, a predator and a nutrient was observed and chaotic states were

observed for varying levels of the dilution parameter. The model given below was

motivated by the results of that paper.

We describe the data using a similar kind of kinetics as described in the pre-

vious two models. The general description of the system is given by

dR

dt
= R

[
µNR

(
N

KNR +N

)
− δR

]
− µPR
YPR

(
R

KPR +R

)
P −DR (3.11)

dC

dt
= C

[
µNC

(
N

KNC +N

)
− δC

]
− µPC
YPC

(
C

KPC + C

)
P −DC (3.12)

dP

dt
= P

[
µPR

(
R

KPR +R

)
+ µPC

(
C

KPC + C

)
− δP

]
−DP (3.13)

dN

dt
= DN0 −R

[
µNR
YNR

(
N

KNR +N

)]
− C

[
µNC
YNC

(
N

KNC +N

)]
−DN. (3.14)

The variables R and C represent the prey species of rods and cocci, respectively. We

let P represent the predator species, and N represents a nutrient source to the system.

The parameter D represents dilution rate for input of nutrients to the system.

The parameters in the model determine the feeding habits of the predator and

prey, as well as death and growth rates for each species. These parameters may be

used to specify particular behaviors of the organisms, e.g., growth rates due to feeding

on nutrient sources rather than prey.

• µN∗ is defined as maximum growth rates for the associated species based on

consumption of nutrients and

• µP∗ denotes the maximum growth rates for predator based on consumption of

the associated prey species.
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• KN∗ is the half saturation constant for the species on the nutrient

• KP∗ is the half saturation constant for the predator on the associated species.

Note these latter constants may determine a “preference” for one prey over the

other.

• YN∗ denotes yield coefficients for the species on the nutrient

• YP∗ denotes the yield coefficients for the predator associated with the prey

species.

• Death rates for each species are given by δ∗

The model equations and system parameters were estimated by Molz as part of per-

sonal correspondence. The intent was to derive a mathematical model whose dynam-

ics closely resembled the experimental dynamics seen in Becks, et.al. [1].

Specific values of the parameters used for the model are provided in Table 3.2.

Species

Parameter R C P

µN∗ 12 / day 6 / day

µP∗ 2.2 / day 2.2 / day

KN∗ 8e-6 gm/cc 8e-6 gm/cc

KP∗ 1e-6 gm/cc 1e-6 gm/cc

YN∗ 0.1 gm R / gm N 0.1 gm C / gm N

YP∗ 0.12 gm P / gm R 0.12 gm P / gm C

δ∗ 0.5 / day 0.25 / day 0.08 / day

Table 3.2: Table of values for model equations (3.11) - (3.14) used in the numerical

simulations.
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3.3.1 Results of Simulation

In [1], the authors found that on varying only the dilution rate, the system

went into and out of chaos. So the dilution rate D is a suitable choice to study the

dynamics of the system. Another choice is the initial nutrient concentration. They

were varied in the ranges [0.3, 2] and [0.1, 1] respectively and the maximum Lyapunov

exponent was calculated.

Figure 3.7: 3-D plot depicting chaos and non-chaos with changes in D and N

We observe that the system is in chaos for those choices of the parameters.

Another choice was the dilution rate and concentration of the predator population.

It was again observed that the system stays in chaos.
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Figure 3.8: 3-D plot depicting chaos and non-chaos with changes in D and P
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Chapter 4

Metropolis-Hastings Algorithm

In all the models that were investigated, a common thread was the choice of

parameters that lead into chaos. They were chosen based on their significance to

the model. But the simulations could only investigate at most two at a time. The

entire parameter space was not investigated. For some of the models that involved

exploring a 28-dimensional space. An efficient way of doing this would be to use the

Metropolis-Hastings Algorithm. All the notations that follow are taken from Chib

and Greenberg 1995 [4]

4.1 The Algorithm

Our objective is to generate those parameter values which would give us a

positive Lyapunov exponent. Thus, we need an efficient algorithm for accepting or

rejecting a possible combination of parameters. Suppose we have a starting point x

and we wish to move to another point y in the space. We do so by introducing a

probability that the move is made. If the move is not made we return to our previous

point. Thus transitions from x to y are given by:
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q(x, y)α(x, y)

where q(x, y) is the candidate generating density and α(x, y) is the probability of move.

We assume both x and y are generated from a probability distribution π(∗). Now we

define the probability of the move as follows:

α(x, y) =


min

[
π(y)q(y, x)

π(x)q(x, y)
, 1

]
if π(x)q(x, y) > 0

1 otherwise

(4.1)

The choice of the candidate generating density is ours. It could be based on

the Lyapunov exponents. The algorithm is as follows:

• Initialize with x0.

• For j = 1, 2, . . . , N .

– Generate y from q(xj, ∗) and u from Uniform(0,1).

– Set

xj+1 =

 y if u ≤ α(xj, y)

xj otherwise
(4.2)

– Return the values
{
x1, x2, . . . , xN

}
.

It should be noted that we do not need knowledge of the normalizing con-

stant(it is called so since π(x) and π(y) are constant for given values of x and y) π(∗)

because it appears in both the numerator and denominator. Also we are assum-

ing that q(x, y) need not be q(y, x) i.e., the candidate generating density need not be

symmetric.
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Chapter 5

Conclusions

Most deterministic dynamical systems go into chaos for some values of their

parameters. There are many ways to measure chaos. One popular way uses Lya-

punov exponents. The paper by Wolf et.al.,[2] proposed the frequently used choice

of calculating such exponents using Gram-Schmidt orthonormalization process. The

work in this thesis centered on coding and verifying the algorithm, as well as using

the code to investigate three biological models to find parameters/initial conditions

to give chaos. It was also noted that the Metropolis-Hastings algorithm can be used

as an effective way of investigating the parameter space to obtain chaotic behavior.

This can be done by using the Metropolis-Hastings sampler to move from one point

in the paramater space to another in an effective way.

A possible way to depict higher-dimensional results would be to use the parallel-

coordinates plot. This would help us to understand the interaction between the

parameters and the initial conditions. Implementation of all of these components

could help in analyzing further models. An example of such a plot for the Kot system

is given below:
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Chaotic Dynamics Visualization

Select System:  Kot    DataPoints to plot: 10

Location on Y0 axis: 0.7938766281031762

Figure 5.1: Parallel Coordinates Plot of ε, ω, initial values of the variables x, y, z of

the Forced System in [7] and the Maximum Lyapunov Exponent

The figure helps us understand the values of the parameters for which we get a posi-

tive Lyapunov exponent and thus chaos.

Another example for the Lorenz system with all the parameters varied is shown

below:
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Chaotic Dynamics Visualization

Select System:  Lorenz    DataPoints to plot: 10

Location on x axis: 17.167581068283567

Figure 5.2: Parallel Coordinates Plot of ρ, β, σ, initial values of the variables x, y, z

of the Lorenz system and the Maximum Lyapunov Exponent

Further mathematical analysis of the models may give us a proper starting

value for the Metropolis sampling so that we don’t take a shot in the dark. Another

possible avenue of research would be to consider if chaos is a proper indicator of the

health of the system. In other words, if we can properly convert a dynamical system

into a optimization/game-theoretic model, we can analyze if chaotic behavior is an

optimal solution.

To conclude, the calculation of Lyapunov exponents and sampling of parameter

space would give us a better understanding of some models which may be difficult to

analyze otherwise.
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Appendices
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Appendix A MATLAB code for determining

Lyapunov Spectrum

This appendix includes the MATLAB code for determining the Lyapunov

Spectrum. It is based on the paper by Wolf et al [2].

%Code from Wolf paper

%Before passing f make sure f=@system where system is function

%corresponding to your system

function lyapOut = myLyap(f,p,Initial,t,ts)%f is the ode system,

%p is the parameter set, init is the initial conditions,

%t is the time interval for the ode solver, ts is the timestep

%N = number of nonlinear equations,

%NN = Total number of equations

N=length(Initial); %length(Initial) gives us the size of original system

NN=N*(N+1);

% initialize arrays

Y=zeros(NN,1);

CUM=zeros(N,1);

GSC= zeros(N,1);
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znorm=zeros(N,1);

y0 = Y;

lyap = zeros(N,1);

S=zeros(N,1);

len = round((t(2)-t(1))/ts);

for i = 1:N

Y(i,1) = Initial(i);

end

%Initial Conditions for linear system(Orthonormal frame)

for i =1:N

Y((N+1)*i,1) = 1.0;

end;

tstart = t(1);

for iterLyap=1:len

[tvals,y] = ode45(@(t,y)(f(t,y,p)), [tstart,tstart+ts], Y);

Y = y(size(y,1),:)’;

for i = 1:N
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for j = 1:N

y0(N*i+j,1) = Y(N*i+j,1);

end

end

tstart=tstart+ts;

%Construct a new orthonormal basis by Gram-Schmidt Method

%Normalize first vector

znorm(1,1)=0.0;

for j=1:N

znorm(1,1)=znorm(1,1) + y0(N*j+1,1)^2;

end;

znorm(1,1)=sqrt(znorm(1,1));

for j=1:N

y0(N*j+1,1) = y0(N*j+1,1)/znorm(1,1);

end;

%Generate the new orthnormal set of vectors

for j=2:N

%Generate j-1 GSR coefficients

for k= 1:j-1

GSC(k,1) =0.0;

for l=1:N

GSC(k,1) = GSC(k,1) + y0(N*l+j,1)*y0(N*l+k,1);
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end;

end;

%Construct a new vector

for k=1:N

for l=1:j-1

y0(N*k+j,1) = y0(N*k+j,1) - GSC(l,1)*y0(N*k+l,1);

end;

end

%calculate the vector’s norm

znorm(j,1) =0.0;

for k=1:N

znorm(j,1)= znorm(j,1) + y0(N*k+j,1)^2;

end;

znorm(j,1) =sqrt(znorm(j,1));

%normalize the new vector

for k=1:N

y0(N*k+j,1) = y0(N*k+j,1)/znorm(j,1);

end;

end;

%update running vector magnitudes

for k=1:N

CUM(k,1) = CUM(k,1) + log(znorm(k,1))/log(2.0);
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end;

%normalize exponent and print every 10 iterations

%if (rem(i,10)== 0)

for k=1:N

lyap(1,k) = CUM(k,1)/(tstart-t(1));

end;

if iterLyap == 1

lyapExp = lyap;

else

lyapExp = [lyapExp; lyap];

end

for i = 1:N

for j = 1:N

Y(N*j+i,1) = y0(N*j+i,1);

end

end

lyapOut = lyap(1,1:N);

end
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Appendix B MATLAB code for the mathematical

models

B.1 The Kot system

%Kot Equations

function YPRIME= kotfn1(t,x,p)

YPRIME = zeros(12,1);

D = p(1);si=p(2);mu1=p(3);mu2=p(4);y1=p(5);y2=p(6);k1=p(7);k2=p(8);eps=p(9);om= p(10);

A = mu1/D ;

a = k1/si ;

B = mu2/D ;

b = k2/y1/si ;

YPRIME(1,1) = 1 + eps*sin(om*t) - x(1,1) - ...

(A*x(1,1)*x(2,1)/(a+x(1,1)));

YPRIME(2,1) = (A*x(1,1)*x(2,1))/(a+x(1,1)) - ...

x(2,1) -( B*x(2,1)*x(3,1))/( b+x(2,1) );

YPRIME(3,1) = (B*x(2,1)*x(3,1))/(b+x(2,1)) - x(3,1) ;

% Copies of linearized equations of motion
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for j=0:2

YPRIME(4+j,1) = x(4+j,1)*(-1-(A*x(2,1))/(a+x(1,1)) + ...

(A*x(2,1)*x(1,1))/(a+x(1,1))^2) - ...

x(7+j,1)*((A*x(1,1))/(a+x(1,1)));

YPRIME(7+j,1) = x(4+j,1)*((A*x(2,1))/(a+x(1,1))-...

(A*x(1,1)*x(2,1))/((a+x(1,1))^2))+...

((A*x(1,1))/(a+x(1,1))-1-(B*x(3,1))/(b+x(2,1))+...

B*x(2,1)*x(3,1)/(b+x(2,1))^2)*x(7+j,1)-...

((B*x(2,1))/(b+x(2,1)))*x(10+j,1);

YPRIME(10+j,1) = (B*x(3,1)/(b+x(2,1))-...

(B*x(3,1)*x(2,1))/(b+x(2,1))^2)*x(7+j,1)+...

((B*x(2,1))/(b+x(2,1))-1)*x(10+j,1);

end;

end

B.1.1 The Kravchenko system

%Kravchenko Equations

function xp= Krav_original(t,x,p)

xp = zeros(20,1);

H1 = p(1) ; % original

H2 = p(2) ; % original

alpha = p(3); % original

beta = p(4) ; % original
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D1 = p(5) ;

D2 = p(6);

R = p(7) ;

r = p(8) ;

DS = 2*R*1e-6/(R-r)^2/(R+r) ;

DP = 2*R*1e-3/(R-r)^2/(R+r) ;

% DS = p(7);

%

% DP = p(8);

L = p(9) ;

S0 = p(10);

P0 = p(11); % original

KSZ1 = p(12); % original

KSZ2 = p(13); % original

YXS = p(14);

YZS = p(15);

KPZ1 = p(16) ;
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KPZ2 = p(17);

YXP = p(18);

YZP = p(19);

KNZ1 = p(20);

KNZ2 = p(21);

MUZ1 = p(22);

MUZ2 = p(23);

MUX = p(24);

N = p(25);

theta = p(26);

KSX = p(27);

KPX = p(28);

KNX = p(29);

%Defining the function Mu_x(s,p,n)

Mu_x = MUX*((x(3,1)/(x(3,1)+theta*KSX))*...

(x(4,1)/(x(4,1)+KPX))*(N/(N+theta*KNX)));

%Defining the functions Mu_z1(s,p,n) and Mu_z2(s,p,n)

Mu_z1 = (MUZ1)*((x(3,1)/(x(3,1)+KSZ1*theta))*...

(x(4,1)/(x(4,1)+KPZ1))*(N/(N+KNZ1*theta)));

Mu_z2 = (MUZ2)*((x(3,1)/(x(3,1)+KSZ2*theta))*...

(KPZ2/(x(4,1)+KPZ2))*(N/(N+KNZ2*theta)));

%Evaluating the root exudation function
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f = 4;

for n =1:100

f = f + 8/n/pi*( sin(18.5*n*pi/12) - sin(6.5*n*pi/12) )*cos(n*pi*t/12);

f = f + 8/n/pi*( cos(6.5*n*pi/12) - cos(18.5*n*pi/12) )*sin(n*pi*t/12);

end

%Original System of equations

xp(1,1) = x(1,1)*(Mu_x+H1*x(2,1)-alpha*x(1,1)-D1) ;

xp(2,1) = x(2,1)*(Mu_z1 + Mu_z2+H2*x(1,1)-beta*x(2,1)-D2);

xp(3,1) = f+L - DS*(x(3,1)-S0)-((x(1,1)/YXS)*Mu_x)-(x(2,1)/YZS)*(Mu_z1+Mu_z2);

xp(4,1) = DP*(P0-x(4,1)) -((x(1,1)/YXP)*Mu_x)-(x(2,1)/YZP)*(Mu_z1+Mu_z2);

% Copies of linearized equations of motion

for j=0:3

xp(5+j,1) = (Mu_x-2*alpha*x(1,1)+H1*x(2,1)-D1)*x(5+j,1)+H1*x(1,1)*x(9+j,1)+...

(x(1,1)*((Mu_x*theta*KSX)/(x(3,1)*(x(3,1)+theta*KSX))))*x(13+j,1)+...

(x(1,1)*((Mu_x*KPX)/(x(4,1)*(x(4,1)+KPX))))*x(17+j,1);

xp(9+j,1) = H2*x(2,1)*x(5+j,1)+(Mu_z1+Mu_z2-2*beta*x(2,1)+H2*x(1,1)-D2)*x(9+j,1) + ...

x(2,1)*(((theta*KSZ1*Mu_z1)/(x(3,1)*(x(3,1)+KSZ1*theta)))+...

(((KSZ2*Mu_z2*theta)/(x(3,1)*(x(3,1)+KSZ2*theta)))))*x(13+j,1)+...

x(2,1)*(((KPZ1*Mu_z1)/(x(4,1)*(x(4,1)+KPZ1)))-...

(((Mu_z2)/((x(4,1)+KPZ2)))))*x(17+j,1);

xp(13+j,1) = -(Mu_x/YXS)*x(5+j,1)-((Mu_z1+Mu_z2)/YZS)*x(9+j,1)-...
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(DS+x(1,1)*(Mu_x*theta*KSX)/(YXS*x(3,1)*(x(3,1)+theta*KSX))+...

(x(2,1)/YZS)*(((theta*KSZ1*Mu_z1)/(x(3,1)*(x(3,1)+theta*KSZ1)))+...

(((theta*KSZ2*Mu_z2)/(x(3,1)*(x(3,1)+KSZ2*theta))))))*x(13+j,1)-...

(x(1,1)*(KPX*Mu_x)/(YXS*x(4,1)*(x(4,1)+KPX))+...

(x(2,1)/YZS)*(((KPZ1*Mu_z1)/(x(4,1)*(x(4,1)+KPZ1)))-...

(((Mu_z2)/((x(4,1)+KPZ2))))))*x(17+j,1);

xp(17+j,1) = -(Mu_x/YXP)*x(5+j,1)-((Mu_z1+Mu_z2)/YZP)*x(9+j,1)-...

(x(1,1)*(Mu_x*theta*KSX)/(YXP*x(3,1)*(x(3,1)+theta*KSX))+...

(x(2,1)/YZP)*(((theta*KSZ1*Mu_z1)/(x(3,1)*(x(3,1)+KSZ1*theta)))+...

(((theta*KSZ2*Mu_z2)/(x(3,1)*(x(3,1)+KSZ2*theta))))))*x(13+j,1)-...

(DP+x(1,1)*(KPX*Mu_x)/(YXP*x(4,1)*(x(4,1)+KPX))+(x(2,1)/YZP)*...

(((KPZ1*Mu_z1)/(x(4,1)*(x(4,1)+KPZ1)))-...

(((Mu_z2)/((x(4,1)+KPZ2))))))*x(17+j,1);

end

end

B.2 The Becks System

%Becks Equations

function xp= Becks(t,x,p)

xp = zeros(20,1);

% growth rates (1/sec)

% values below are in 1/day; divide by 24*3600 to get seconds

munr = p(1) ; % original

munc = p(2) ; % original
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mupr = p(3); % original

mupc = p(4) ; % original

% mass (g)

mr = p(5) ;

mc = p(6);

mp = p(7);

%

% half-saturation constants (g/cc)

knr = p(8);

knc = p(9) ;

kpr = p(10) ;

kpc = p(11);

Kpr = kpr/mr;

Kpc = kpc/mc;

% death rates (1/sec)

% values below are in 1/day; divide by 24*3600 to get seconds

dr = p(12); % original

dc = p(13); % original

dp = p(14); % original

% initial nutrient (g/cc)
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N0 = p(15); % original

% N0 = 2.3e-5 ;

%

% yield coefficients

ypr = p(16);

ypc = p(17) ;

ynr = p(18);

ync = p(19);

%

% dilution rate

% values below are in 1/day; divide by 24*3600 to get seconds

D = p(20); % original

xp(1,1) = x(1,1)*(munr*x(4,1)/(x(4,1)+knr) - dr) -...

mupr/ypr*mp/mr*x(1,1)/(Kpr+x(1,1))*x(3,1) - D*x(1,1) ;

xp(2,1) = x(2,1)*(munc*x(4,1)/(x(4,1)+knc) - dc) - ...

mupc/ypc*mp/mc*x(2,1)/(Kpc+x(2,1))*x(3,1) - D*x(2,1) ;

xp(3,1) = x(3,1)*(mupr*x(1,1)/(Kpr+x(1,1)) + ...

mupc*x(2,1)/(Kpc+x(2,1)) - dp) - D*x(3,1) ;

xp(4,1) = D*N0 - x(1,1)*munr*mr/ynr*x(4,1)/(knr+x(4,1)) - ...

x(2,1)*munc*mc/ync*x(4,1)/(knc+x(4,1)) - D*x(4,1);
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% Copies of linearized equations of motion

for j=0:3

xp(5+j,1) = ((munr*x(4,1))/(x(4,1)+knr)-dr-mupr/ypr*mp/mr*x(3,1)/(Kpr+x(1,1))+...

mupr/ypr*mp/mr*x(1,1)/((Kpr+x(1,1))^2)*x(3,1))*x(5+j,1)-...

(mupr/ypr*mp/mr*x(1,1)/(Kpr+x(1,1)))*x(13+j,1)+...

x(1,1)*x(17+j,1)*(munr/(x(4,1)+knr)-munr*x(4,1)/(x(4,1)+knr)^2);

xp(9+j,1) = x(9+j,1)*(munc*x(4,1)/(x(4,1)+knc) - dc-...

mupc/ypc*mp/mc*x(3,1)/(Kpc+x(2,1))+...

mupc/ypc*mp/mc*x(2,1)/(Kpc+x(2,1))^2-D)-...

(mupc/ypc*mp/mc*x(2,1)/(Kpc+x(2,1)))*x(13+j,1)+...

(x(2,1)*(munc/(x(4,1)+knc)-munc*x(4,1)/(x(4,1)+knc)^2))*x(17+j,1);

xp(13+j,1) = x(3,1)*x(5+j,1)*((mupr/(Kpr+x(1,1))-mupr*x(1,1)/(Kpr+x(1,1))^2)) + ...

x(3,1)*x(9+j,1)*((mupc/(Kpc+x(1,1))-mupc*x(1,1)/(Kpc+x(1,1))^2))+...

x(17+j,1)*(mupr*x(1,1)/(Kpr+x(1,1)) + mupc*x(2,1)/(Kpc+x(2,1)) - dp-D) ;

xp(17+j,1) = -x(5+j,1)*(munr*mr/ynr*x(4,1)/(knr+x(4,1))) - ...

x(9+j,1)*munc*mc/ync*x(4,1)/(knc+x(4,1)) +...

x(17+j,1)*(- x(1,1)*munr*mr/ynr/(knr+x(4,1))+ ...

x(1,1)*munr*mr/ynr*x(4,1)/(knr+x(4,1))^2- ...

x(2,1)*munc*mc/ync/(knc+x(4,1))+ x(2,1)*munc*mc/ync*x(4,1)/(knc+x(4,1))^2-D);

end;

end
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