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ABSTRACT 

 The bald eagle (Haliaeetus leucocephalus) is an extensively researched tertiary 

predator.  Studies have delineated information about its life history and the influences of 

various stressors on reproduction.  Due to the bald eagles position at the top of the food 

web, it is susceptible to biomagnification of a wide array of xenobiotics.  In Michigan the 

bald eagle population has recovered strongly since the population bottle-neck of the 

1960s.  In the 1960s when Michigan’s eagle population was first being monitored less 

than 100 nests were occupied yearly (i.e., active breeding pairs existed).  Today there are 

approximately 500 occupied nests each year and over 700 breeding areas in the state.   

 Because p,p’-dichlorodiphenyltrichloroethylene (p,p’-DDE), PCBs and Hg are 

often all found in individual nestling eagles and eagle eggs it is hard to establish a 

causative effect between individual persistent chemical and declined reproduction.  Field 

studies and laboratory work has shown a correlation between p,p’-DDE, PCBs, and Hg 

concentrations and decreased reproduction success.  In the shell gland of birds, DDE 

inhibits the action of carbonic anhydrase which is necessary to supply the carbonate ions 

used in shell formation.  PCBs have been correlated with dead and deformed embryos of 

water birds in the upper Great Lakes.  Field and laboratory studies have also correlated 

Hg concentrations with behavioral changes, which may disrupt foraging and nesting. 

 The Michigan Department of Environmental Quality (MDEQ) implemented a 

monitoring program using the bald eagle to monitor trends of persistent chemicals under 

the Clean Michigan Initiative in 1999.  These monitored persistent chemicals included 

PCBs, organochlorine pesticides, and Hg.   
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 The state was divided into major “watershed years” with 20% of Michigan’s 

watersheds being sampled each year.  This sampling procedure allowed for the entire 

state to be sampled and analyzed every five years.  During annual banding activities, 

blood and feather samples from nestling bald eagles were collected within these 

designated watersheds.  Monitoring contaminant trends at various spatial scales allows 

for comprehensive assessment of the Great Lakes Basin ecosystem health. 

 The objectives of this research were to evaluate spatial and temporal trends of Hg, 

PCBs and pesticides in nestling bald eagles of Michigan.  For Hg, spatial and temporal 

trends were determined.  For PCBs and pesticides only spatial trends were examined 

because some data were not available at the time of writing.  As data become available 

further analysis will be conducted, including temporal trends.   

 In the first study “Using nestling bald eagles to track spatial trends of PCBs and 

pesticides in aquatic ecosystems of Michigan” we evaluated PCB and pesticide 

concentrations at three spatial scales.  In summary, our study found that concentrations of 

PCBs and pesticides were significantly higher in Great Lakes areas with Lakes Michigan 

and Huron having highest concentrations of pesticides and Lake Erie having highest 

concentrations of PCBs.   

 In the second study “Using nestling bald eagles to track spatial and temporal 

trends of mercury in aquatic ecosystems of Michigan.” we evaluated Hg concentrations at 

four spatial scales and three temporal periods.  In summary, our study found that Hg 

concentrations where significantly greater in the Upper Peninsula of Michigan and inland 
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areas and that while concentrations have decreased from those of the late 1980s they are 

currently increasing across the state.  

 Continued monitoring of bald eagle populations is suggested for several reasons.  

First, nestling blood and feather contaminate levels have been shown to be an appropriate 

method to monitor ecosystem contaminant levels.  Both blood and feather samples can be 

collected during routine nestling banding activities. Second, both PCB and pesticide 

concentrations for 37% and 40% of the nestling eagles sampled were above the no 

observable adverse effect level for bald eagles.  Thus, it is possible that once these 

nestlings reach sexual maturity, they may not be able to reproduce at a level considered 

necessary to support a healthy population due to elevated concentrations of DDE or PCB.  

Lastly, with Hg concentrations on the rise, adverse effects including decreased 

reproduction could occur in bald eagles.  The Upper Peninsula of Michigan should be 

concentrated on because of its characteristics which lead to increased bioavailability of 

Hg.  With the current concentrations of PCBs and pesticides and increasing Hg 

concentrations this ongoing research may be in a unique position to document the 

threshold at which detrimental effects from persistent xenobiotics occur in the bald eagle.   
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PREFACE 
 
 This dissertation was written in journal style and organized into two chapters, 

each with an introduction, methods, results, and discussion. Each chapter is intended for 

publication and repetition in some sections (i.e. Introduction, Methods, Results, 

Discussion, and Literature Cited) may occur. The chapters are preceded by an 

Introduction and followed by overall Conclusions. 
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INTRODUCTION 

BALD EAGLE STATUS 

 The bald eagle (Haliaeetus leucocephalus) is one of the most studied birds of 

North America.  Hundreds of scientific studies have delineated information about its life 

history, including the influence of various stressors on reproduction (Bowerman et al. 

2002).  The bald eagle is a large bird of prey and an opportunistic forager, generally 

preferring fish over a variety of avian, mammalian, and reptilian prey (Buehler 2000).  

Bald eagles are associated with aquatic habitats (coastal areas, rivers, lakes, reservoirs, 

and forested shorelines) of North America.  Estimates of territory size vary widely based 

on nesting density, food supply, and method of measurement (Buehler 2000).  Bald 

eagles typically lay one to three eggs per clutch with a mean clutch size of 1.87 

(Stalmaster 1987) and both sexes assist in incubation and rearing of young.   

 The bald eagle is a tertiary predator of the Great Lakes Basin aquatic food web.  

Due to its position at the top of the food chain, this species is susceptible to 

biomagnification of a wide array of xenobiotics; mercury (Hg), methylmercury (MeHg), 

polychlorinated biphenyls (PCBs), and pesticides including dichloro-diphenyl-

trichloroethanes (DDT) and its metabolites (DDTs), and other organochlorines (OCs).  

The bald eagle has been proposed as a biological indicator of exposure to toxic 

organochlorines and metal compounds for pisciverous wildlife and as a monitor of the 

effects of contaminant bioaccumulation and biomagnification in the Great Lakes 

(International Joint Commission 1994, State of the Lake Ecosystem Conference 1998, 

2000).  The bald eagle is ideal as a biosentinel for several reasons: it is indigenous to 
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Michigan, it interacts directly with the environment, it has a quantified niche (i.e., is a 

piscivor), it is important to humans, and it does not duplicate current indicators. 

 The bald eagle population in Michigan has recovered strongly since the 

population bottle-neck of the 1960s.  In the 1960s when Michigan’s eagle population was 

first being monitored less than 100 nests were occupied (i.e., active breeding pairs 

existed).  Today there are approximately 500 occupied nests each year (Figure 1) and 

over 700 breeding areas in the state.  Productivity within each area was determined by 

dividing the total number of young by the number of occupied breeding areas for each 

year (Postupalsky 1974).  Rates of Productivity have increased throughout Michigan.  

Productivity of the 1960s was 0.59 compared to the recent (2000-2006) productivity of 

0.95.  Success was determined by dividing the number of nests producing fledged young 

by the number of occupied breeding areas for each year (Postupalsky 1974).   Rates of 

Success (# successful nest/# occupied territories) have also increased.  Success rates of 

the 1960s were 0.41 compared to recent success rates of 0.62.  With increases in 

population size, Productivity, and Success the number of nestling bald eagle produced 

each year has also increased.  In the 1960s < 50 nestling eagles were produce, in recent 

years (2000-2006) > 400 nestling eagles have been produced each year (Figure 1).   

 Because p,p’-dichlorodiphenyltrichloroethylene (p,p’-DDE), PCBs and Hg are 

often all found in individual nestling eagles and eagle eggs it is hard to establish a 

causative effect for an individual persistent chemical.  However past data and laboratory 

studies suggest that DDE, PCBs and Hg all have detrimental effects on avian species 

(Wiemeyer and Porter 1970, Postupalsky 1971, Heath et al. 1972, McClain and Hall 
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1972, Kozie and Anderson 1991, Wiemeyer et al. 1993, Giesy et al. 1994, Bowerman et 

al. 1998).  In Michigan concentrations of Hg are low enough that it is likely that Hg was 

not a causative effect of population declines (Bowerman et al. 1995).  Concentrations of 

p,p’-DDE and PCBs in Michigan bald eagles have been great enough to have had 

detrimental effects on production (Postupalsky 1971, Bowerman et al. 1995, Bowerman 

et al. 1998).  Several other organo-chlorines are also found in Michigan bald eagles at 

very low concentrations and sporadically, they are not suspected to have caused 

reproductive failures individually (Bowerman et al. 1995).  However, the possibility of 

synergistic effects from combinations of these persistent chemicals is possible (Newton 

1979).   

 Persistent chemicals concentrations have been reported previously in Michigan 

and were considered to be sufficiently elevated in bald eagle eggs and plasma, to warrant 

a number of specific recommendations for assessing the widespread contamination 

(Bowerman et al. 1994, Bowerman et al. 1998, Bowerman et al. 2003).  A monitoring 

program using nestling eagles to track persistent chemical concentrations was 

established.  Nestling bald eagles receive prey items from within the parents’ local 

breeding territory.  Concentrations of persistent chemicals in nestling feathers reflect 

exposure to MeHg, and in nestling plasma reflect exposure to PCBs and pesticides from 

the food items those nestlings receive, further substantiating the bald eagle as an 

appropriate bioindicator of ecosystem quality (Bowerman et al. 2002).     
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DDE and OC PESTICIDES 

 Field studies have correlated the effects of p,p’-DDE on bald eagle production 

(Wiemeyer et al. 1993).  In several laboratory studies, DDE has been shown to result in 

eggshell thinning in numerous species (Wiemeyer and Porter 1970, Heath et al. 1972, 

McClain and Hall 1972, Peakall et al. 1973, Newton 1979).  In the shell gland, DDE 

inhibits the action of carbonic anhydrase which is necessary to supply the carbonate ions 

used in shell formation (Newton 1979).  However the concentrations of DDE and total 

PCBs are often significantly positively correlated and separation of the effects of DDE 

from co-occurring toxicants such as PCBs is problematic (Colborn 1991, Wiemeyer et al. 

1993).  In Michigan as concentration of DDE in bald eagle eggs decreased below the 

level thought to be necessary to cause embryo lethality due to eggshell thinning the 

strength of the negative correlation between productivity and concentrations of DDE also 

decreased, strengthening the theorized correlation.  Simultaneously the negative 

correlation between concentrations of PCBs in bald eagle eggs and productivity became 

stronger (Bowerman et al. 1995).  There is some evidence that PCBs and DDTs have 

greater effects on breeding in birds whose parents were also feed PCBs and DDTs 

(Newton 1979).   

PCBs 

 Concentrations of PCBs in the food and eggs of Great Lakes area birds have been 

suggested as the causative agent for observed declines in productivity of fish eating birds 

(Giesy et al. 1994).  Concentrations of total PCBs in the eggs of bald eagles have also 

been inversely correlated with productivity (Postupalsky 1971, Kozie and Anderson 
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1991, Wiemeyer et al. 1993, Bowerman et al. 1998).  Concentrations of a PCB congener 

found in bald eagles eggs were approximately 20 times higher than the lowest toxic 

concentration tested in American kestrels (Falco sparverius) and may have been a factor 

in the decline of some eagle populations (Hoffman et al. 1998).  In the coastal area of the 

southwestern Baltic Sea a total lack of reproduction in white-tailed sea eagles (Haliaeetus 

albicilla) in the 1960s and 1970s was associated with high concentrations of PCBs 

(Falandysz et al. 1994).  There is some evidence that PCBs have more effect, regardless 

of concentration, on breeding output with chronic exposure (Newton 1979).  While PCB 

concentrations have been shown to cause reproductive depression and failures alone, they 

are often positively correlated with DDE concentrations (Mora et al. 1993, Wiemeyer et 

al. 1993, Bowerman et al. 1995).   

Hg 

 Hg concentrations in eggs of bald eagles have been suggested to have a causative 

effect on production (Wiemeyer and Porter 1970).  However the eggs used in that study 

also had concentrations of p,p’-DDE greater than the concentration associated with a 

greater than 50% declines in productivity.   Hg can cause neuropathology resulting in 

changes in behavior, which may disrupt foraging and nesting behaviors (Jagoe et al. 

2002).  Hg concentrations in eggs have been associated with impaired hatchability and 

embryonic mortality in a number of bird species (Wiener et al. 2003, Scheuhammer et al. 

2007).  Reproductive failure and altered nesting behavior in common loons (Gavia 

immer) have been documented (Evers et al. 2008).  Laboratory feeding studies have 

shown acute lethality, neurotoxicity, and altered nesting behavior in northern goshawks 
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(Accipiter gentiles) and red-tailed hawks (Buteo jamaicensis) related to Hg 

concentrations in food (Borg et al. 1970, Fimreite and Karstad 1971, Barr 1986). 

MICHIGAN MONITORING PROGRAM 

 The Michigan Department of Environmental Quality (MDEQ) implemented a 

monitoring program using the bald eagle to monitor trends of persistent chemicals under 

the Clean Michigan Initiative in 1999 (MDEQ 1997).  These monitored persistent 

chemicals included PCBs, organochlorine pesticides (OCs), and Hg.   

 The MDEQ monitoring program was designed such that the data for watersheds 

would be available prior to the initiation of the National Pollutant Discharge Elimination 

System (NPDES) permit development and renewal process for each watershed (MDEQ 

1997).  Consequently, the Michigan bald eagle biosentinel program was on a five year 

watershed cycle that allowed watersheds to be monitored two to three years prior to the 

NPDES permit issuance year.    

 The state was divided into major “watershed years” with 20% of Michigan’s 

watersheds being sampled each year (Figure 2).  This sampling procedure allowed for the 

entire state to be sampled and analyzed every five years.  During annual banding 

activities, blood and feather samples from nestling bald eagles were collected within 

these designated watersheds.  Monitoring contaminant trends at various spatial scales 

allows for comprehensive assessment of the Great Lakes Basin ecosystem health.   

OBJECTIVES 

 An evaluation of spatial and temporal trends of Hg, PCBs and pesticides in 

nestling bald eagles of Michigan was conducted.  For Hg analysis spatial and temporal 

 7



Figure 2.  Michigan's watershed delineations and monitoring 'basin years'.  A.) 1999, 2004 
basin year watersheds (shaded); B.) 2000, 2005 basin year watersheds (shaded); C.) 2001, 
2006 basin year watersheds (shaded); D.) 2002, 2007 basin year watersheds (shaded); and E.) 
2003, 2008 basin year watersheds (shaded).

A. B. C.

D. E.
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trends were determined.  For PCBs and pesticides only spatial trends were examined 

because some data were not available at the time of writing this analysis.  As data 

become available further analysis will be conducted, including temporal trends.  

Specifically the objectives were: 

1. To use concentrations of PCBs in plasma of nestling bald eagles to determine 

spatial trends of PCBs within the state of Michigan at three spatial scales. 

2. To use concentrations of p,p’-DDE in plasma of nestling bald eagles to determine 

spatial trends of p,p’-DDE within the state of Michigan at three spatial scales. 

3. To use concentrations of DDT in plasma of nestling bald eagles to determine 

spatial trends of DDT within the state of Michigan at three spatial scales. 

4. To use concentrations of Hg in feathers of nestling bald eagles to determine 

spatial trends of Hg within the state of Michigan at four spatial scales.   

5. To use concentrations of Hg in feathers of nestling bald eagles to determine 

temporal trends of Hg within the state of Michigan at five spatial scales. 

6. To use concentrations of Hg in feathers of nestling bald eagles to determine 

statewide temporal trends of Hg among three time periods, 1987-1992, 1999-

2003, and 2004-2008 
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CHAPTER 1 

USING NESTLING BALD EAGLES TO TRACK SPATIAL TRENDS OF PCBS 

AND PESTICIDES IN AQUATIC ECOSYSTEMS OF MICHIGAN 

 
INTRODUCTION 

 The bald eagle (Haliaeetus leucocephalus) is one of the most studied birds of 

North America.  Hundreds of scientific studies have delineated information about its life 

history, including the influence of various stressors on reproduction (Bowerman et al. 

2002).  The bald eagle is a large bird of prey and an opportunistic forager, generally 

preferring fish over a variety of avian, mammalian, and reptilian prey (Buehler 2000).  

Bald eagles are associated with aquatic habitats (inland watersheds, connecting channels, 

rivers, and forested shorelines) of North America.  Estimates of territory size vary widely 

based on nesting density, food supply, and method of measurement (Buehler 2000).  Bald 

eagles typically lay one to three eggs per clutch with a mean clutch size of 1.87 

(Stalmaster 1987) and both sexes assist in incubation and rearing of young.   

 The bald eagle population in Michigan has recovered strongly since the 

population bottle-neck of the 1960s.  In the 1960s when Michigan’s eagle population was 

first being monitored less than 100 nests were occupied (i.e., active breeding pairs 

existed).  Today there are approximately 500 occupied nests each year (Figure 1) and 

over 700 breeding areas in the state.  Productivity within each area was determined by 

dividing the total number of young by the number of occupied breeding areas for each 

year (Postupalsky 1974).  Rates of Productivity have increased throughout Michigan.  

Productivity of the 1960s was 0.59 compared to the recent (2000-2006) productivity of 
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0.95.  Success was determined by dividing the number of nests producing fledged young 

by the number of occupied breeding areas for each year (Postupalsky 1974).   Rates of 

Success have also increased.  Success rates of the 1960s were 0.41 compared to recent 

success rates of 0.62.  With increases in population size, Productivity, and Success the 

number of nestling bald eagle produced each year has also increased.  In the 1960s < 50 

nestling eagles were produce each year, in recent years (2000-2006) > 400 nestling eagles 

have been produced each year (Figure 1).   

 The bald eagle is a tertiary predator of the Great Lakes Basin aquatic food web.  

Due to it position at the top of the food web, this species is susceptible to 

biomagnification of a wide array of xenobiotics, including polychlorinated biphenyls 

(PCBs) and organochlorines (OCs), including dichloro-diphenyl-trichloroethanes (DDT) 

and its metabolites (DDTs).  The bald eagle has been proposed as a biological indicator 

of exposure to toxic organochlorines and metal compounds for piscivorous wildlife and 

as a monitor of the effects of contaminant bioaccumulation and biomagnification in the 

Great Lakes (International Joint Commission 1994, State of the Lake Ecosystem 

Conference 1998, 2000).  Nestling bald eagles receive prey items from within the adult 

parents’ local breeding territory.  Concentrations of PCBs and OCs in nestling eagles’ 

blood reflect exposure to these compounds from the food items those nestlings receive, 

further substantiating the bald eagle as an appropriate bioindicator of ecosystem quality 

(Bowerman et al. 2002).  

 The only sources of these organochlorine compounds are anthropogenic.  With 

the exception of PCBs all of these compounds were developed as pesticides.  DDT, an 
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insecticide, was developed by Swiss chemist Paul Hermann Müller who was awarded the 

Nobel Prize in Physiology or Medicine for its use as a contact poison against several 

arthropods (Cope et al. 2004).  It was used extensively during World War II to combat 

malaria, lice, and typhus.  Post-World War II it was commercialized and used extensively 

as an agricultural insecticide.  DDT was banned in the United States in 1972 and 

subsequently in many other countries under the Stockholm Convention.  

Hexachlorocyclohexane (alpha and gamma), heptachlor, heptachlor epoxide, and 

chlordane (alpha and gamma) were developed as insecticides, while hexachlorobenzene 

was developed as a fungicide and used in seed treatment.  PCBs were commercially 

produced, to replace flammable mineral oil, as a cooling and insulating fluid for 

industrial transformers and capacitors.  It was also used as a stabilizing additive in 

flexible polyvinyl chloride (PVC) coatings for electrical wiring and components to 

enhance the heat and fire resistance of PVC.  The majority of these persistent chemicals 

were synthesized and developed in the 1930s-1940s, increased in usage in the 1950s-

1960s, noted as concerns for environmental persistence and biotic accumulation in the 

1970s, and banned or controlled in the 1970s throughout North America and Europe 

(Jones and Voogt 1999).   

 Persistent chemicals bioaccumulate through aquatic food webs so effectively that 

the primary exposure pathway for piscivorous wildlife to persistent chemicals is through 

fish consumption.  While persistent toxicant concentrations in many regions of the globe 

have decreased as a result of bans, several remaining concerns exist.  Among these 
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concerns are the effects on reproduction including egg shell thinning, decreased 

hatchability, brain deformities, physical deformities, and embryo-lethality.  

 There have been numerous studies on the detrimental effects of persistent 

chemicals on different avian species (Cope et al. 2004).  Associations between decreased 

reproductive success and increased concentrations of PCBs and DDTs in eggs and blood 

of bald eagles have been reported (Wiemeyer et al. 1993, Bowerman et al. 2003, Dykstra 

et al. 2005, Anthony et al. 2007).  Embryos of double-crested cormorant (Phalacrocorax 

auritus) exposed in ovo to high concentrations of environmental PCBs were 25 times 

more likely to have asymmetric brains (Henshel et al. 1997).  Ludwig et al (1996) 

documented a high frequency of dead and deformed embryos of double-crested 

cormorants and Caspian terns (Sterna caspia) in the upper Great Lakes in 1986-1991.  In 

general, PCB concentrations are higher in piscivorous avian species than in non-

piscivorous birds and higher still in fresh water piscivorous species (Scharenberg 1991b).  

Concentrations of a PCB congener found in bald eagles eggs were approximately 20 

times higher than the lowest toxic concentration tested in American kestrels (Falco 

sparverius) and may be a factor in the decline of some eagle populations (Hoffman et al. 

1998).  In the coastal area of the southwestern Baltic Sea a total lack of reproduction in 

white-tailed sea eagles (Haliaeetus albicilla) in the 1960s and 1970s was associated with 

high concentrations of PCBs (Falandysz et al. 1994).  While PCB concentrations have 

been shown to cause reproductive depression and failures alone they are sometimes also 

correlated with dichlorodiphenyldichloroethylene (DDE) concentrations (Mora et al. 

1993).   

 17



 Of all DDT congeners found in bald eagles                                                        

p,p’-dichlorodiphenyltrichloroethylene (p,p’-DDE) has received the most attention 

because of its pervasiveness and demonstrated ecological effects.  Bald eagles were 

shown to have normal young production when egg DDE concentrations were < 3.6 μg/g 

(wet weight).  When egg concentrations were between 3.6 and 6.3 μg/g production was 

halved and production was halved again when egg concentrations were > 6.3 μg/g 

(Wiemeyer et al. 1993).  In the shell gland, DDE inhibits the action of carbonic anhydrase 

which is necessary to supply the carbonate ions used in shell formation (Newton 1979).  

Egg shell thinning due to DDE has had major impacts on populations of bald eagles in 

the Great Lakes (Wiemeyer et al. 1993, Bowerman et al. 2000).  More than 90% of the 

total DDTs found in plasma of nestling eagles from Michigan is p,p’-DDE (Wierda et al. 

2003, Wierda et al. 2005).   

 Blood is a commonly used to monitor environmental exposure of birds (Olsson et 

al. 2000, Bowerman et al. 2002, Bowerman et al. 2003, Dykstra et al. 2005).  The 

concentrations of organochlorines in nestling eagles are directly related to the food they 

receive from the attending adults who hunt within their local breeding territory.  Thus, 

blood from a nestling eagle is an appropriate sample to measure the contamination of the 

habitat surrounding the nest site.  This ‘snapshot’ of the local contamination allows for 

easy comparison between different geographic regions and temporal periods.  Persistent 

toxicant concentrations in blood of bald eagles have been previously documented in the 

Great Lakes region (Bowerman et al. 1998, Bowerman et al. 2000, Dykstra et al. 2001, 

Bowerman et al. 2002, Bowerman et al. 2003, Dykstra et al. 2005, Parmentier 2006).  
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 The Michigan Department of Environmental Quality (MDEQ) implemented a 

monitoring program using the bald eagle to monitor trends of a suite of organic pollutants 

under the Clean Michigan Initiative (MDEQ 1997).  These compounds include PCBs, 

OCs, and mercury.  The state has been divided into major “watershed years” with 20% of 

Michigan’s watersheds being sampled each year (Figure 2).  During annual banding 

activities, blood and feather samples from nestling bald eagles were collected within 

these designated watersheds.  This sampling procedure allows for the entire state to be 

sampled and analyzed every five years.  We report here the results of OC and PCB 

concentrations within plasma of nestling bald eagles from Michigan 2004-2005.  The 

primary objectives of this study were: 

1. To use concentrations of PCBs in the plasma of nestling bald eagles to determine 

spatial trends of PCBs within the state of Michigan at three spatial scales. 

2. To use concentrations of p,p’-DDE in the plasma of nestling bald eagles to 

determine spatial trends of p,p’-DDE within the state of Michigan at three spatial 

scales. 

3. To use concentrations of DDT in the plasma of nestling bald eagles to determine 

spatial trends of DDT within the state of Michigan at three spatial scales. 

METHODS 

Study Area 

 Michigan’s geomorphology is classified as Central Lowland plains and is a 

combination of level to gently rolling lowland and lacustrine plains.  Dune fields extend 

out into the plains along the Great Lakes shorelines.  Elevations in the Lower Peninsula 
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Figure 2.  Michigan's watershed delineations and monitoring 'basin years'.  A.) 1999, 2004 
basin year watersheds (shaded); B.) 2000, 2005 basin year watersheds (shaded); C.) 2001, 
2006 basin year watersheds (shaded); D.) 2002, 2007 basin year watersheds (shaded); and 
E.) 2003, 2008 basin year watersheds (shaded).

A. B. C.

D. E.
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of Michigan range from 175-396 m and from 176-256 m in the Upper Peninsula of 

Michigan.  In the Upper Peninsula of Michigan low gradient streams drain into Lakes 

Superior, Michigan, and Huron.  In the Lower Peninsula of Michigan low gradient 

streams drain into Lakes Michigan, Huron and Erie except in the southern extremity 

where low gradient streams drain into the Ohio-Mississippi drainages.  Small to medium 

lakes are present but not abundant in the Lower Peninsula of Michigan while numerous 

lakes and wetlands are found in low lying areas in the Upper Peninsula of Michigan.  

Wetlands may seasonally flood in low-lying glacial lakebeds (McNab and Avers 1994). 

Spatial Analysis 

 Concentrations of organo chlorine compounds in nestling eagle plasma were 

compared at three spatial scales: Category;  Sub-populations; and Great Lakes Watershed 

(Bowerman et al. 1994, Roe 2001).  Breeding areas, which include all nests used by a 

territorial pair of eagles, were the sampling unit used for all analyses.  The breeding area 

was assigned to a single grouping at each spatial scale for comparison. 

 The Category spatial scale compared Inland (IN) and Great Lakes (GL) breeding 

areas.  At all spatial scales which are subdivided into Great Lakes and Inland breeding 

areas, Great Lakes breeding areas are defined as being within 8.0 km of Great Lakes 

shorelines and/or along tributaries open to Great Lakes fish runs and inland breeding 

areas are defined as being greater than 8.0 km from the Great Lakes shorelines and not 

along tributaries open to Great Lakes fish runs (Bowerman et al. 1994, Roe 2001, 

Bowerman et al. 2003). 
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 The Subpopulation spatial scale subdivided the Category spatial scale into four 

GL and two IN groups.  The GL subpopulations consisted of Lake Superior (LS), Lake 

Michigan (LM), Lake Huron (LH), and Lake Erie (LE).  The IN subpopulations consisted 

of Upper Peninsula (UP), and Lower Peninsula (LP).     

 At the Great Lakes Watershed spatial scale all breeding areas were sorted into 

eight groupings, based on Great Lakes Basin drainages, four GL and four IN.  The GL 

groups were Lake Superior Great Lakes (LS-GL), Lake Michigan Great Lakes (LM-GL), 

Lake Huron Great Lakes (LH-GL), and Lake Erie Great Lakes (LE-GL).  The IN groups 

were Lake Huron Inland (LH-IN), Lake Michigan Inland Upper Peninsula (LM-IN-UP), 

Lake Michigan Inland Lower Peninsula (LM-IN-LP), and Lake Superior Inland (LS-IN). 

Aerial Surveys 

 Aerial surveys were conducted by Michigan Department of Natural Resource 

(MDNR) pilots and contracted observers to establish which nest within a breeding area 

was active.  An observer on each flight made note of the nest tree species, reproductive 

status (e.g., eggs, chicks, or adult brooding behavior), and determined location (latitude 

and longitude) using Global Positioning System units (GPS).  The first survey each year 

was conducted in March or early April to establish nest occupancy.  The second aerial 

survey was conducted in early May to mid June to determine nesting success or failure.  

If successful, the number of young, stage of development, tree condition, and nest access 

from the ground were determined.  From the observer’s notes, field crews were directed 

to the nests at the appropriate time for sampling.  Nestling eagles were sampled at five to 
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nine-weeks of age, from early May to July each year.  Exact nest locations were 

determined on the ground using GPS.   

Field Methods 

Eaglet capture 

 At the nest, a trained crew member climbed the nest tree and secured the nestling 

eagle(s).  Climbers used gaffs, flip ropes, and harnesses to ascend the tree.  Once the 

climber was secure at the nest a nestling eagle was captured, placed in a restraining bag, 

and lowered to the ground.  Nestling eagles were typically captured, restrained, processed 

and returned to the nest individually.  Upon completion of sampling the climber rappelled 

from the tree. 

Sample collection 

Processing of nestlings involved collection of blood and morphometric 

measurements and banding.  Nestlings were removed from the restraining bag then 

placed on their backs with their feet restrained with elastic bandages to avoid injury to the 

bird or handler.  Sterile techniques were used to collect blood from the brachial vein of 

nestlings.  Syringes fitted with 22 gauge x 2.54 cm needles were used for the 

veinipuncture.  Up to 12 ml of blood was drawn from the brachial vein and transferred to 

heparinized vacuum tubes, and placed on ice in coolers for transfer out of the field.  

Samples of whole blood were centrifuged within 48 hours of collection and the plasma 

was decanted and transferred to another vacuum tube and frozen at approximately -20o C 

for storage.  Morphological measurements were collected to determine sex and estimate 

age of the nestling.  Morphological measurements of the culmen, hallux claw, and bill 

 23



depth were measured with calipers (Bortolotti 1984a, Bortolotti 1984b, Bortolotti 1984c).  

The eighth primary feather length and footpad length were measured with a ruler.  

Procedures developed by Bortolotti (1984b) were used to determine age and sex.  After 

sampling was completed, the nestling eagles were banded with a size 9 U.S. Fish and 

Wildlife Service (USFWS) rivet band, placed back in the restraining bag, raised, and 

released to the nest.  

 From the field, samples were transferred to pre-arranged collection points at 

various MDNR, U.S. Forest Service, or USFWS field stations.  At the end of the 

sampling effort, all samples were collected and transferred to the USFWS East Lansing 

Field Office (ELFO), entered into sample storage through a chain-of-custody tracking 

system, and stored frozen at -20° C.  Upon request to the USFWS Chain-of-Custody 

officer at ELFO, samples were transferred to the Clemson University’s Department of 

Forestry and Natural Resources (CU FNR) for analysis.  Capture and sampling methods 

were conducted according to approved Clemson University Animal Use Protocols 

(AUP).  Handling methods were also approved AUP methods and conducted under 

USFWS banding permits.   

Lab Methods 

Organochlorine pesticide extraction 

All extractions and analyses were conducted according to procedures detailed in 

Clemson Institute of Environmental Toxicology (CIET 401-78-01) standard operating 

procedures.  Plasma samples were typically extracted in sets of 19.  Chicken plasma was 

used for laboratory control samples in all analytical batches.  In addition to the nestling 
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eagle plasma samples, each analytical batch contained two chicken plasma matrix spikes, 

a reagent spike, a reagent blank, and a chicken plasma matrix blank. 

Concentrations of organochlorine compounds were quantified by capillary gas 

chromatography with an electron capture detector using the United States Environmental 

Protection Agency (EPA) approved methods.  All reported results were confirmed by 

dual column analysis.  The quantification limit (QL) for the organic compounds was 

approximately 2 μg/kg (Table 1).  Method validation studies were conducted on chicken 

plasma as a surrogate matrix to ensure that the data quality objectives of the Quality 

Assurance Project Plan (CIET 1996, 1999) were met.  Average recoveries of 70% -130% 

for matrix spikes were required under the Quality Assurance Project Plan (CIET 1996, 

1999).  Correlation coefficients (r2) for calibration curves consisting of five 

concentrations of standards were at least > 0.99 for all target analytes in all batches.  The 

average detector response for the instrumental calibration checks was within 20% of the 

initial calibration for each batch.  The average relative percent difference for the spiked 

analytes in the chicken plasma matrix spike and chicken plasma matrix spike duplicate 

were less than 30% for all batches. 

Statistical Methods 

Distributions of contaminant concentrations were tested for normality using the 

Kolmogorov-Smirnov test and found to be non-normal for both the raw and log-

transformed concentrations.  Hartley’s Fmax test also revealed significantly differing 

variances between groups.  Analyses for differences between multiple groups were 

therefore conducted using rank converted ANOVAs, a nonparametric test equivalent to 
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Organochlorine Contaminant
Analyte List (MDL) (QL)
Hexachlorobenzene 0.54 2.01
alpha -Hexachlorocyclohexane 1.94 2.01
gamma -Hexachlorocyclohexane (Lindane) 1.84 2.01
Heptachlor 1.74 2.00
Heptachlor Epoxide 0.77 2.00
alpha -Chlordane 0.75 2.01
gamma -Chlordane 0.55 2.01
Dieldrin 0.97 2.01
2,4'-Dichlorodiphenyldichloroethylene (2,4'-DD 0.86 2.01
4,4'-DDE 0.61 2.01
2,4'-Dichlorodiphenyldichloroethane (2,4'-DDD 1.55 2.01
4,4'-DDD 1.18 2.00
2,4'-Dichlorodiphenyltrichloroethane (2,4'-DDT 1.57 2.01
4,4'-DDT 1.95 2.01
PCB Congener 8 1.94 1.98
PCB Congener 18 1.21 1.98
PCB Congener 28 1.23 1.99
PCB Congener 44 1.52 1.98
PCB Congener 52 0.64 1.98
PCB Congener 66 0.87 2.00
PCB Congener 101 0.38 2.00
PCB Congener 105 1.44 1.98
PCB Congener 110 1.91 2.01
PCB Congener 118 0.58 1.99
PCB Congener 126 0.65 1.99
PCB Congener 128 0.75 1.99
PCB Congener 138 0.65 2.00
PCB Congener 153 0.57 1.99
PCB Congener 156 1.84 2.01
PCB Congener 170 1.28 1.98
PCB Congener 180 1.62 2.00
PCB Congener 187 1.12 1.98
PCB Congener 195 1.03 2.00
PCB Congener 206 1.19 1.98
PCB Congener 209 1.03 1.99

Method Detection Level Quantification Level

Table 1.  Organochlorine contaminant analytes measured in nestling bald eagle blood 
samples in 2004-2008, with parameter-specific Method Detection Levels (MDLs) and 
Quantification Levels (QLs).  
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the Kruskal-Wallis test.  Because group variances differed significantly for spatial trends 

post-hoc analyses were conducted using the rank converted Fisher’s least significant 

difference test (LSD).  This test is equivalent to the Wilcoxon rank-sum nonparametric 

analysis.  It should be noted that critical values for the Fisher’s LSD are set to control 

only pair-wise error rate and not experiment-wise error rate.  This increases the likelihood 

of detecting a difference at the cost of an increased Type I error-rate.  With monitoring as 

the project’s primary function, this was considered to be the preferable compromise 

between power and Type I error rate because it increases the ability to detect spatial 

trends of concern as soon as possible.   

Though log transformation did not successfully normalize the distribution, 

concentrations were positively skewed in a manner similar to log-normal distributions 

commonly seen in other contaminant research. For this reason and in keeping with 

conventions of environmental toxicology geometric means were included along with 

medians as indicators of central tendency in the tables provided.  Tables also report 

ranges to facilitate a better understanding of the data presented.  All analyses were 

performed using SAS 9.2 (SAS Institute 2007).  An α = 0.05 was used to determine 

statistical significance. 

RESULTS 

 In 2004 and 2005, 159 nestling eagle blood samples were analyzed for PCBs and 

pesticides.  These 159 samples represented 111 breeding areas.  Regionally, the analyzed 

samples were from inland Upper Peninsula (n = 17), inland Lower Peninsula (n = 57), 
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Lake Superior (n = 14), Lake Michigan (n = 33), Lake Huron (n = 33), and Lake Erie (n 

= 5) breeding areas.  Concentrations that were non-detects are labeled as ND. 

Total PCBs 

Category 

 Total PCB concentrations between blood samples from nestling eagles varied 

significantly at the Category spatial scale (F = 87.541, 157, p < 0.0001).  Geometric mean 

Total PCBs concentrations were ranked in the following order from highest to lowest GL 

(22.34 μg/kg) and IN (ND; Table 2). 

Subpopulation 

 Total PCB concentrations varied significantly among blood samples from nestling 

eagles at the Subpopulation spatial scale (F = 19.495, 153, P < 0.0001).  Post-hoc analysis 

showed that total PCB concentrations in blood samples of nestlings from Lake Erie and 

Lake Huron were greater than Lake Superior, Inland Lower Peninsula, and Inland Upper 

Peninsula.  Post-hoc analysis also showed that total PCB concentrations in blood samples 

of nestlings from Lake Michigan and Lake Superior were greater than Inland Upper 

Peninsula, and Inland Lower Peninsula (LSD = 26.59, d.f. = 153, p  ≤  0.05).  Geometric 

mean total PCBs concentrations were ranked in the following order from highest to 

lowest: LE (59.41 μg/kg) , LH (28.85 μg/kg), LM (24.32 μg/kg), LS (7.05 μg/kg), LP 

(ND), and UP (ND; Table 2).   

Great Lakes Watershed 

 Total PCB concentrations varied significantly among blood samples from nestling 

eagles at the Great Lakes Watersheds spatial scale (F = 13.767, 151, P < 0.001).  Post-hoc 
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analysis showed that total PCB concentrations in blood samples of nestlings from LE-GL 

were greater than concentrations from LS-GL, LH-IN, LM-IN-UP, LM-IN-LP, and LS-

IN.  Post-hoc analysis also showed that total PCB concentrations in blood samples of 

nestlings from LH-GL, LM-GL, and LS-GL were greater than LH-IN, LM-IN-UP, LM-

IN-LP, and LS-IN (LSD = 29.96, d.f. = 151, P ≤ 0.05).  Geometric mean total PCBs 

concentrations for Great Lakes watersheds were ranked in the following order from 

highest to lowest:  LE-GL (59.41 μg/kg), LH-GL (29.56 μg/kg), LM-GL (23.40 μg/kg), 

LS-GL (7.05 μg/kg), LM-IN-LP (ND), LH-IN (ND), LS-IN (ND), and LM-IN-UP (ND; 

Table 2).   

DDE 

Category 

 DDE concentrations varied significantly between blood samples from nestling 

eagles at the Category spatial scale (F = 61.391, 157, P < 0.0001).  Geometric mean DDE 

concentrations were ranked in the following order from highest to lowest: GL (7.20 

μg/kg) and IN (ND; Table 2). 

 

Subpopulation 

 DDE concentrations varied significantly among blood samples from nestling 

eagles at the Subpopulation spatial scale (F = 16.275, 153, P < 0.0001).  Post-hoc analysis 

showed that DDE concentrations in blood samples of nestlings from LM and LH were 

greater than concentrations in LE, LS, UP, and LP (LSD = 27.58, d.f. = 153, P ≤ 0.05).   

Geometric mean DDE concentrations were ranked in the following order from highest to 

 29



lowest: LH (14.14), LE (7.77 μg/kg), LM (6.65 μg/kg), UP (2.03 μg/kg), LS (ND), and 

LP (ND; Table 2).   

Great Lakes Watershed 

 DDE concentrations varied significantly among blood samples from nestling 

eagles at the Great Lakes Watersheds spatial scale (F = 12.287, 151, P < 0.001).  Post-hoc 

analysis showed DDE concentrations in blood samples of nestlings from LM-GL and 

LH-GL were greater than concentrations from LE-GL, LS-GL, LM-IN-LP, LM-IN-UP, 

LH-IN, and LS-IN.  Post-hoc analysis also showed that DDE concentrations in blood 

samples of nestlings from LE-GL and LS-GL were greater than concentrations from LS-

IN (LSD = 30.71, d.f. = 151, P ≤ 0.05).  Geometric mean DDE concentrations for Great 

Lakes watersheds were ranked in the following order from highest to lowest:  LH-GL 

(14.18 μg/kg), LE-GL (7.77 μg/kg), LM-GL (6.31 μg/kg), LM-IN-UP (3.89 μg/kg) , LS-

GL (1.00 μg/kg), LM-IN-LP (ND), LS-IN (ND), and LH-IN (ND; Table 2).   

Total DDTs 

Category 

 Total DDT concentrations varied significantly between blood samples from 

nestling eagles at the Category spatial scale (F = 67.251, 157, P < 0.0001).  Geometric 

mean total DDT concentrations were ranked in the following order from highest to 

lowest: GL (12.59 μg/kg) and IN (ND; Table 2). 

Subpopulation 

 Total DDT concentrations varied significantly among blood samples from 

nestling eagles at the Subpopulation spatial scale (F = 17.855, 153, P < 0.0001).  Post-hoc 
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analysis showed that total DDT concentrations in blood samples of nestlings from Lake 

Michigan were greater than concentrations in Lake Erie, Lake Superior, Inland Upper 

Peninsula, and Inland Lower Peninsula.  Post-hoc analysis also showed that total DDT 

concentrations in blood samples of nestlings from Lake Huron were greater than 

concentrations in Lake Superior, Inland Upper Peninsula, and Inland Lower Peninsula.  

Post-hoc analysis also showed that total DDT concentrations in blood samples of 

nestlings from Lake Erie were greater than concentrations in Inland Upper Peninsula, and 

Inland Lower Peninsula.  (LSD = 27.09, d.f.= 153, P ≤ 0.05 ).   Geometric mean total 

DDT concentrations were ranked in the following order from highest to lowest: LM 

(20.05 μg/kg), LH (18.13 μg/kg), LE (11.41 μg/kg), UP (4.11 μg/kg), LS (ND), and LP 

(ND; Table 2).   

Great Lakes Watershed 

 Total DDT concentrations varied significantly among Great Lakes Watersheds (F 

= 13.087, 151, p < 0.001).  Post-hoc analysis showed total DDT concentrations in blood 

samples of nestlings from LM-GL and LH-GL were greater than concentrations from LS-

GL, LM-IN-LP, LM-IN-UP, LH-IN, and LS-IN.  Post-hoc analysis also showed that 

concentrations in blood samples of nestlings from LE-GL were greater than 

concentrations from LM-IN-UP, LH-IN, and, LS-IN (LSD = 30.32, d.f. = 151, P ≤ 0.05).  

Geometric mean concentrations of total DDTs were ranked in the following order from 

highest to lowest: LM-GL (19.94 μg/kg), LH-GL (18.33 μg/kg), LE-GL (11.41 μg/kg),  

LM-IN-UP (4.02 μg/kg), LS-IN (3.24 μg/kg), LS-GL (ND), LM-IN-LP (ND), and LH-IN 

(ND; Table 2).   
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Other OCs 

 Neither Hepatachlor nor α-hexachlorocyclohexane were found in nestling plasma 

samples from 2004 and 2005.  Concentrations of Heptachlor-epoxide, 

hexachlorobenzene, alpha-chlordane, gama-chlrodane, gama-hexachlorocyclohexane, and 

dieldrin found in nestling plasma but were too low for reliable detection and analysis 

(Table 2) 

DISCUSSION 

 This study reports the findings of the first two sampling periods of the second 5 

year sampling period (2004-2008) of the Michigan Bald Eagle Biosentinel Program 

(MBEBP).  The MBEBP was designed to monitor spatial and temporal trends of 

persistent chemicals in Michigan’s aquatic ecosystem.  We do not discuss the temporal 

trends below because temporal comparisons are made between five year sampling 

periods.   

 For all persistent chemicals (i.e., pesticides and PCBs) a general trend was clear, 

Great Lakes concentrations where higher than inland areas.  This is possibly a result of 

several factors including; location of production of toxicants, patterns of urban, industrial, 

and agricultural usage, storage practices, and aerial deposition.  Most industrial 

production was located near water sources (e.g., General Electric Hudson Falls plant in 

Hudson Falls NY).  These water sources are often used for cooling of equipment and pre-

regulation flushing of equipment.  With urban growth there was an increased need for 

PCB filled industrial transformers and capacitors.  Transformers and capacitors can 

develop leaks through the breakdown of seals and housings, lighting strikes, and fires.  If 
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a transformer/capacitor fire occurred, PCBs could be released into the atmosphere.  

Pesticides were used extensively in agricultural and urban areas.  Michigan’s “fruit belt”, 

a highly active agriculture area, is located near Great Lake shorelines, mostly along the 

Michigan’s western shore of Lake Michigan.   

 The high DDE and total DDT concentrations in the blood of nestling eagles in the 

western and northern portions of Michigan’s Lower Peninsula are likely related to past 

agricultural and fruit producing industries.  At the Subpopulation and Great Lakes 

Watershed spatial scales Lake Michigan and Lake Michigan Great Lake nestling eagle 

DDE and total DDTs concentrations were consistently among the highest.  Lake Huron 

and Lake Huron Great Lakes were also high in contamination load concentrations.  

Michigan’s western coast, north eastern portions of the Lower Peninsula, and the 

“thumb” (i.e., the peninsula east of Saginaw Bay) areas of Michigan have been fruit 

producers since the decline of the lumber industry.  Some of the earliest evidence of the 

fruit belt in Michigan dates back to 1891 (Garret 2007).  Thus with the advance of 

effective pesticides it is logical to assume they were applied to orchards and farms.  Local 

residents of Michigan have also talked with us in the field, of the days in the 1970s when 

sprayer trucks would come through neighborhoods spraying DDTs, some people even 

talk of running in the mist.  These practices would likely have occurred in populated 

urban areas and popular tourist destinations, both of which West Michigan was and is.   

 In contrast to pesticides, total PCB concentrations were highest in the blood of 

nestling eagles in Lake Erie and Lake Erie Great Lakes areas.  While these results are 

consistent with previous studies (Bowerman et al. 1998, Bowerman et al. 2003) it is 
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important to note that the results are based on a small number of nestling blood samples 

(n = 5) coming from three breeding areas.  Because the MBEBP is a Michigan project we 

have a very small representation of persistent chemicals in Lake Erie. 

 Spatial trends of total PCBs and DDTs in nestling eagles are similar to trends in 

whole fish analyzed by the Michigan DEQ Water Quality Bureau (MDEQ-WQB).  The 

MDEQ-WQB monitors temporal trends exclusively.  However, a superficial examination 

of their data comparing total PCB and DDT concentrations of great lakes fish supports 

the findings of the MBEBP.  Average total DDT concentrations in whole fish from 

MDEQ-WQB monitoring from highest to lowest were: Lake Michigan (0.57 mg/kg), 

Lake Huron (0.41 mg/kg), Lake Erie (0.23 mg/kg) and Lake Superior (0.13 mg/kg).  

Average total PCB concentrations in whole fish from MDEQ-WQB monitoring from 

highest to lowest were: Lake Erie (2.23 mg/kg), Lake Michigan (1.75 mg/kg), Lake 

Huron (1.59 mg/kg), and Lake Superior (0.026 mg/kg; unpublished data).  In nestling 

eagles Lake Huron is greater than Lake Michigan for total PCBs however the difference 

in concentrations are small and not statistically significant.   

 Concentrations of DDE and PCBs have been negatively correlated with bald eagle 

production (Wiemeyer et al. 1993, Bowerman et al. 1995, Bowerman et al. 1998, 

Bowerman et al. 2003).  DDE has been correlated with egg shell thinning directly 

through laboratory work and indirectly through biomonitoring work (Wiemeyer and 

Porter 1970, Heath et al. 1972, McClain and Hall 1972, Bowerman et al. 1995).  PCBs 

have been suggested as the causative agent for observed declines in productivity of fish 

eating birds (Giesy et al. 1994).  Concentrations of total PCBs in the eggs of bald eagles 
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have also been inversely correlated with productivity (Postupalsky 1971, Kozie and 

Anderson 1991, Wiemeyer et al. 1993, Bowerman et al. 1998).  While p,p’-DDE 

concentrations have declined they were likely the greatest causative agent of the 

population declines of the 1960s, however, PCBs are likely the greatest causative agent 

of reproductive issues in Michigan’s eagles today (Bowerman et al. 1995).   

 The no observable adverse effect limit (NOAEL) for total PCBs in the blood of 

nestling bald eagles was determined to be 33 μg/kg and 11 μg/kg for DDE (Bowerman et 

al. 2003).  Of the 159 nestling blood samples analyzed for total PCBs 59 (59%) exceeded 

the NOAEL.  Of the 159 nestling blood samples analyzed for DDE 64 (40%) exceeded 

the NOAEL.  It is therefore possible that once these nestlings reach breeding age, they 

may not be able to reproduce at a level considered to support a healthy population due to 

elevated DDE or PCB concentrations.  The findings that some nestlings have 

concentrations of 4,4’-DDE and PCBs in their blood above the NOAEL further stresses 

the importance of the long-term monitoring program to track fluctuations in annual bald 

eagle productivity with in the state of Michigan. 
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CHAPTER 2 

USING NESTLING BALD EAGLES TO TRACK SPATIAL  

AND TEMPORAL TRENDS OF MERCURY IN  

AQUATIC ECOSYSTEMS OF MICHIGAN 

INTRODUCTION 

 The bald eagle (Haliaeetus leucocephalus) is one of the most studied birds of 

North America.  Hundreds of scientific studies have delineated its life history 

information, including the influence of various stressors on reproduction (Bowerman et 

al. 2002). The bald eagle is a large bird of prey and an opportunistic forager which 

generally prefers fish over avian, mammalian, and reptilian prey (Buehler 2000).  Bald 

eagles are associated with aquatic habitats (coastal areas, rivers, lakes, and reservoirs) 

and forested shorelines of North America.  Estimates of territory size vary widely based 

on nesting density, food supply, and method of measurement (Buehler 2000).  Bald 

eagles lay one to three eggs per clutch with a mean clutch size of 1.87 (Stalmaster 1987) 

and both sexes assist in incubation and rearing young.   

 The bald eagle population in Michigan has recovered strongly since the 

population bottle-neck of the 1960s.  In the 1960s when Michigan’s eagle population was 

first being monitored less than 100 nests were occupied (i.e., active breeding pairs 

existed).  Today there are approximately 500 occupied nests each year (Figure 1) and 

over 700 breeding areas in the state.  Productivity within each area was determined by 

dividing the total number of young by the number of occupied breeding areas for each 

year (Postupalsky 1974).  Rates of Productivity have increased throughout Michigan.  
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Productivity of the 1960s was 0.59 compared to the recent (2000-2006) productivity of 

0.95.  Success was determined by dividing the number of nests producing fledged young 

by the number of occupied breeding areas for each year (Postupalsky 1974).   Rates of 

Success have also increased.  Success rates of the 1960s were 0.41 compared to recent 

success rates of 0.62.  With increases in population size, Productivity, and Success the 

number of nestling bald eagle produced each year has also increased.  In the 1960s < 50 

nestling eagles were produce each year, in recent years (2000-2006) > 400 nestling eagles 

have been produced each year (Figure 1).   

 The bald eagle is a tertiary predator of the Great Lakes Basin aquatic food web.  

Due to its position at the top of the food chain, this species is susceptible to 

biomagnification of a wide array of xenobiotics, including methylmercury (MeHg).  The 

bald eagle has been proposed as a biological indicator of exposure and effect of aquatic 

pollutants and is used to monitor the effects of bioaccumulation and biomagnification in 

the Great Lakes regions (International Joint Commission 1994, State of the Lake 

Ecosystem Conference 1998, 2000).  Nestling bald eagles receive prey items from within 

the adults local breeding area.  Concentrations of MeHg in nestling eagle feathers reflect 

exposure to MeHg from food items they receive, further substantiating the bald eagle as 

an appropriate bioindicator of ecosystem quality (Bowerman et al. 2002).  

 There are many sources of mercury (Hg), both natural and anthropogenic.  

Natural sources include volcanoes, and mercury deposits.  Anthropogenic sources include 

Hg emissions to the atmosphere which originate from a variety of sources (Harris et al. 

2007, SETAC 2007).  Hg concentrations in many regions of the globe have increased as a 
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result of anthropogenic activities.  Most of the Hg released into the environment is 

inorganic, but a small fraction is converted by bacteria to MeHg, a toxic organic 

compound.  Hg is transformed into MeHg when the oxidized or mercuric species (Hg2+), 

gains a methyl group (CH3).  A variety of microorganisms, particularly methane-

producing and sulfate-dependant bacteria are thought to be involved in the conversion of 

Hg2+ to MeHg under anaerobic conditions.  Methylation occurs primarily in aquatic, 

acidic environments with high concentrations of organic matter (Environment Canada 

2004).  The methylation of Hg2+ is primarily a natural, biological process resulting in the 

production of highly toxic MeHg which bioaccumulates and biomagnifies (Environment 

Canada 2004).  MeHg bioaccumulates through aquatic food webs so effectively that the 

primary exposure pathway for MeHg in humans and wildlife species is through fish 

consumption (Harris et al. 2007). 

 There have been numerous studies on the detrimental effects of Hg on different 

avian species.  Hg can cause neuropathology resulting in changes in behavior, which may 

disrupt foraging and nesting behaviors (Jagoe et al. 2002).  Hg concentrations in eggs 

have been associated with impaired hatchability and embryonic mortality in a number of 

bird species (Wiener et al. 2003, Scheuhammer et al. 2007).  Reproductive failure and 

altered nesting behavior have been documented in common loons (Gavia immer; Evers et 

al. 2008).  Laboratory feeding studies have shown acute lethality, neurotoxicity, and 

altered nesting behavior in northern goshawks (Accipiter gentiles) and red-tailed hawks 

(Buteo jamaicensis) related to Hg concentrations in food (Borg et al. 1970, Fimreite and 

Karstad 1971, Barr 1986).  In a field study with common loons, adult loons in territories 
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with greater Hg concentrations left eggs unattended 14% of the time, compared with 1% 

in territories with lower Hg concentrations (Thompson 1996).  In wild birds, 

environmental MeHg exposure may be associated with a higher potential for infection by 

disease organisms and decreased growth (Scheuhammer et al. 2007, SETAC 2007).   

 Feathers are commonly used to monitor environmental exposure of birds to heavy 

metals (Westermark et al. 1975, Buhler and Norheim 1982, Bruane and Gaskin 1987, 

Bowerman et al. 1994).  Hg is excreted into growing feathers, bound to the feather 

keratin molecule, and is then relatively stable both physically and chemically (Applequist 

et al. 1984, Thompson et al. 1998). In birds, about 70% (Honda et al. 1986, Harris et al. 

2007) to 93% (Bruane and Gaskin 1987, Harris et al. 2007) of the body burden of Hg is 

in feathers, and greater than 95% of the Hg in feathers is MeHg (Thompson and Furness 

1989, Harris et al. 2007).  Hg concentrations in feathers grown after molt are strongly 

correlated with Hg concentrations in the blood (Evers et al. 2005).   

 Concentrations of Hg in feathers also reflect concentrations in other tissues.  

Concentrations of Hg in feathers have been shown to reflect 70-93% of the MeHg 

concentrations in muscle (SETAC 2007, Burgess and Meyer 2008).  Feathers are 

therefore a relevant tissue for evaluating chronic body burdens (Evers et al. 2005).  Hg 

concentrations in feathers of bald eagles have been previously documented in the Great 

Lakes region (Bowerman et al. 1994).  Atmospheric deposition is considered to be the 

primary source of Hg accumulating as MeHg in fish inhabiting lakes of the north-central 

United States (Sorensen et al. 2005).  Hg concentrations were considered to be 

sufficiently elevated in bald eagle feathers from Michigan to warrant a number of specific 
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recommendations for assessing the widespread Hg contamination problem due to aerially 

transported Hg loadings (Evans 1993).  

 The Michigan Department of Environmental Quality (MDEQ) implemented a 

monitoring program using the bald eagle to monitor trends of a suite of organic pollutants 

under the Clean Michigan Initiative (MDEQ 1997).  These compounds include 

polychlorinated biphenyls, organochlorine pesticides, and mercury.  The state has been 

divided into major “watershed years” with 20% of Michigan’s watersheds being sampled 

each year (Figure 2).  During annual banding activities, blood and feather samples from 

nestling bald eagles were collected within these designated watersheds.  This sampling 

procedure allows for the entire state to be sampled and analyzed every five years.   

  

 

 The primary objectives of this study were:  

1. To use concentrations of Hg in feathers of nestling bald eagles to determine 

spatial trends of Hg within the state of Michigan at four spatial scales.   

2. To use concentrations of Hg in feathers of nestling bald eagles to determine 

temporal trends of Hg within the state of Michigan at five spatial scales. 

3. To use concentrations of Hg in feathers of nestling bald eagles to determine 

statewide temporal trends of Hg among three time periods, 1987-1992, 1999-

2003, and 2004-2008 
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Figure 2.  Michigan's watershed delineations and monitoring 'basin years'.  A.) 1999, 2004 
basin year watersheds (shaded); B.) 2000, 2005 basin year watersheds (shaded); C.) 2001, 
2006 basin year watersheds (shaded); D.) 2002, 2007 basin year watersheds (shaded); and 
E.) 2003, 2008 basin year watersheds (shaded).

A. B. C.

D. E.
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METHODS 

Study Area 

Michigan’s geomorphology is classified as Central Lowland plains and is a combination 

of level to gently rolling lowland and lacustrine plains.  Dune fields extend out into the 

plains along the Great Lakes shorelines.  Elevations in the Lower Peninsula of Michigan 

range from 175-396 m and from 176-256 m in Upper Peninsula of Michigan.  In the 

Upper Peninsula of Michigan low gradient streams drain into Lakes Superior, Michigan, 

and Huron.  In the Lower Peninsula of Michigan low gradient streams drain into Lakes 

Michigan, Huron and Erie except in the southern extremity where low gradient streams 

drain into the Ohio-Mississippi drainages.  Small to medium lakes are present but not 

abundant in the Lower Peninsula of Michigan while numerous lakes and wetlands are 

found in low lying areas in the Upper Peninsula of Michigan.  Wetlands may seasonally 

flood in low-lying glacial lakebeds (McNab and Avers 1994). 

Spatial Analysis 

 Hg concentrations in nestling eagle feathers were compared at four spatial scales: 

Category; Sub-population; Great Lakes Watershed; and Individual Watershed 

(Bowerman et al. 1994, Roe 2001).  Breeding areas, which include all nests used by a 

territorial pair of eagles, were the sampling unit used for all analyses.  The breeding area 

was assigned to a single grouping at each spatial scale for comparison. 

 The Category spatial scale compared Inland (IN) and Great Lakes (GL) breeding 

areas.  At all spatial scales which are subdivided into Great Lakes and Inland breeding 

areas, Great Lakes breeding areas are defined as being within 8.0 km of Great Lakes 
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shorelines and/or along tributaries open to Great Lakes fish runs and inland breeding 

areas are defined as being greater than 8.0 km from the Great Lakes shorelines and not 

along tributaries open to Great Lakes fish runs (Bowerman et al. 1994, Roe 2001, 

Bowerman et al. 2003). 

 The Subpopulation spatial scale subdivided the Category spatial scale into four 

GL and two IN groups.  The GL subpopulations consisted of Lake Superior (LS), Lake 

Michigan (LM), Lake Huron (LH), and Lake Erie (LE).  The IN subpopulations consisted 

of Upper Peninsula (UP), and Lower Peninsula (LP).     

 At the Great Lakes Watershed spatial scale all breeding areas were sorted into 

eight groupings, based on Great Lakes Basin drainages, four GL and four IN.  The GL 

groups were Lake Superior Great Lakes (LS-GL), Lake Michigan Great Lakes (LM-GL), 

Lake Huron Great Lakes (LH-GL), and Lake Erie Great Lakes (LE-GL).  The IN groups 

were Lake Huron Inland (LH-IN), Lake Michigan Inland Upper Peninsula (LM-IN-UP), 

Lake Michigan Inland Lower Peninsula (LM-IN-LP), and Lake Superior Inland (LS-IN). 

 The Individual Watershed spatial scale was defined by Hydrological Unit Codes 

(HUCs) as defined by the U.S. Geological Survey (USGS).  Individual Watersheds were 

analyzed independently.  A second analysis was done by grouping individual watersheds 

into three types: Great Lakes HUCs (GL-HUCs), Inland HUCs (IN-HUCs), and Mixed 

HUCs (M-HUCs).  These are referred to hereafter as “Grouped HUCs”.  A GL-HUC was 

an individual watershed where all breeding areas were previously defined as GL.  An IN-

HUC was an individual watershed where all breeding areas were previously defined as 

IN.  M-HUCs included both GL and IN breeding areas.   
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 Temporal analyses were conducted to report changes in Hg concentrations over 

time.  Temporal analyses among the three sampling efforts: 1987-1992 (T1), 1999-2003 

(T2), and 2004-2008 (T3) were conducted at the state spatial scale.  Temporal analyses 

for Category, Subpopulation, Great Lakes Watershed, and Individual Watershed spatial 

scales were conducted between T2 and T3. 

Aerial Surveys 

Aerial surveys were conducted by Michigan Department of Natural Resource (MDNR) 

pilots and contracted observers to establish which nest within a breeding area was active.  

An observer on each flight made note of the nest tree species, reproductive status (e.g., 

eggs, chicks, or adult brooding behavior), and determined location (latitude and 

longitude) using Global Positioning System units (GPS).  The first survey each year was 

conducted in March or early April to establish nest occupancy.  The second aerial survey 

was conducted in early May to mid June to determine nesting success or failure.  If 

successful, the number of young, stage of development, tree condition, and nest access 

from the ground were determined.  From the observer’s notes, field crews were directed 

to the nests at the appropriate time for sampling.  Nestling eagles were sampled at five to 

nine-weeks of age, from early May to July each year.  Exact nest locations were 

determined on the ground using GPS.   

Field Methods 

Nestling eagle capture 

 At the nest, a trained crew member climbed the nest tree and secured the nestling 

eagle(s).  Climbers used gaffs, flip ropes, and harnesses to ascend the tree.  Once the 
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climber was secure at the nest a nestling eagle was captured, placed in a restraining bag, 

and lowered to the ground.  Nestling eagles were typically captured, restrained, processed 

and returned to the nest individually.  Upon completion of sampling the climber rappelled 

from the tree. 

Sample collection 

Processing of nestlings consisted of feather collection and morphometric measurements.  

Nestlings were removed from the restraining bag then placed on their backs with their 

feet restrained with elastic bandages to avoid injury to the bird or handler.  Three to four 

feathers were collected from each nestling eagle.  Feathers were plucked from the breast 

area and stored in a small sealed envelope at ambient temperatures.  Morphological 

measurements were collected to determine sex and estimate age of the nestling.  

Morphological measurements of the culmen, hallux claw, and bill depth were measured 

with calipers (Bortolotti 1984a, Bortolotti 1984b, Bortolotti 1984c).  The eighth primary 

feather length and footpad length were measured with a ruler.  Procedures developed by 

Bortolotti (1984b) were used to determine age and sex.  After sampling was completed, 

the nestling eagles were banded with a size 9 U.S. Fish and Wildlife Service (USFWS) 

rivet band, placed back in the restraining bag, raised, and released to the nest.  Capture 

and sampling methods were conducted according to approved Clemson University 

Animal Use Protocols (AUP).  Handling methods were also approved AUP methods and 

conducted under UWFWS banding permits.   

 From the field, samples were transferred to pre-arranged collection points at 

various MDNR, U.S. Forest Service, or USFWS field stations.  At the end of the 
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sampling effort, all samples were collected and transferred to the USFWS East Lansing 

Field Office (ELFO), entered into sample storage through a chain-of-custody tracking 

system, and stored at ambient temperature.  Upon request to the USFWS Chain-of-

Custody officer at ELFO, samples were transferred to Clemson University, Department 

of Forestry and Natural Resources (CU FNR) for analysis.   

Lab Methods 

Feather Preparation 

 Feathers were washed, rinsed, dried, and digested in preparation for Hg analysis.  

Feathers were placed in a labeled Ziploc® bag containing the detergent Citranox®, 

agitated, and then rinsed 2 times with nanopure water.  Washed feathers were placed in a 

freezer for 1h and then in a freeze-dryer overnight to remove moisture. The feathers were 

then weighed and transferred into glass digestion tubes.  If the sample was not at least 

0.05 g, the sample was not used for Hg analysis.  Ten ml of concentrated nitric acid 

(HNO3) and sulfuric acid (H2SO4; 70:30 v/v) was added to each glass tube which was 

then covered with a glass marble.  Feathers were digested in the tube in a block heater at 

80oC for 30 min or until fully digested.  The tube was then removed from the block heater 

to cool for at least 30 minutes; the digestion solution was then transferred to a sealable jar 

and diluted to 1:20 v/v by adding 190 ml of deionized water.  Samples were covered with 

parafilm, sealed with a cap and stored at room temperature until instrumental analysis.  

Mercury Analysis 

 Mercury analysis followed U.S. EPA Method 245.7 for total Hg by cold vapor 

Atomic Fluorescence Spectrometer (AFS, Aurora AI 3200).  The AFS detector was set at 
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a wavelength of 237.7 nm and detection limit was reported at less than 1.0 ng/L (Aurora 

operation manual).  The samples were analyzed at the following conditions: gas flow rate 

= 400ml/min, pump speed = 60 rpm, atomized temperature = 200°C, rinse time = at least 

60 sec, uptake time = 60 sec, integration time = 20 sec, 3 duplicates, and reductant = 10% 

(w/v SnCl2 in 10% (v/v) HCl. 

 Hg concentrations were estimated and quality assurance and quality control 

(QA/QC) were maintained with standards and regular equipment detection checks.  Hg 

standards were made using a 1,000 parts per million (mg/kg) +/- 1% Hg standard.  Five 

standards (1, 2, 5, 10, and 20 mg/kg) were made from appropriate ratios of a 100 mg/kg 

Hg solution and a 10% HCl solution.  A standard curve was established from the above 

standards and after every 5 samples a detection check was performed with either the 5 

mg/kg or 10 mg/kg standard.  If the detection check was not within 85–115% of the 

original Hg standard curve, a new standard curve was made and the samples were rerun.  

Statistical Methods 

Distributions of contaminant concentrations were tested for normality using the 

Kolmogorov-Smirnov test and found to be non-normal for both the raw and log-

transformed concentrations.  Hartley’s Fmax test also revealed significantly differing 

variances between groups.  Analyses for differences between multiple groups were 

therefore conducted using rank converted ANOVAs, a nonparametric test equivalent to 

the Kruskal-Wallis test. Because examinations of temporal trends found that simple linear 

relationships could not satisfactorily describe the changes in contaminant levels through 

time and because group variances differed significantly for spatial trends, post-hoc 
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analyses were conducted using the rank converted Fisher’s least significant difference 

test (LSD).  This test is equivalent to the Wilcoxon rank-sum nonparametric analysis.  It 

should be noted that critical values for the Fisher’s LSD are set to control only pair-wise 

error rate and not experiment-wise error rate.  This increases the likelihood of detecting a 

difference at the cost of increasing Type I error-rate as the number of post-hoc 

comparisons increases.  With monitoring as the project’s primary function, Fisher's LSD 

was the preferable compromise between power and Type I error rate for all comparisons 

except the individual watershed analysis because the number of comparisons was 

relatively small at these spatial scales and LSD increased the ability to detect spatial and 

temporal trends of concern.  Individual Watershed analysis involved comparisons 

between 42 watersheds, thus, the more conservative Tukey’s test (rank-converted) was 

used because it includes a correction to control for experiment-wise Type I error rate. 

Though log transformation did not successfully normalize the distribution, 

concentrations were positively skewed in a manner similar to log-normal distributions 

commonly seen in other contaminant research. For this reason and in keeping with 

conventions of environmental toxicology geometric means were included along with 

medians as indicators of central tendency in the tables provided.  Tables also report 

ranges to facilitate a better understanding of the data presented.  All analyses were 

performed using SAS 9.2 (SAS Institute 2007).  An a = 0.05 was used to determine 

statistical significance. 
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RESULTS 

Spatial Trends 

 A total of 424 nestling eagle feather samples, collected from individual nestling 

eagles from 2004-2008, were analyzed for Hg.  These 424 samples represented 226 

breeding areas.  Comparisons in concentrations of Hg in nestling feathers were made at 

the Category, Subpopulation, Great Lakes Watershed, and Individual Watershed spatial 

scales. 

Category 

 Slight differences in Hg concentrations were observed at the Category spatial 

scale.  No significant differences in Hg concentrations were found between Great Lakes 

and inland breeding areas (F = 1.711, 422, P > 0.19).  Geometric mean Hg concentrations 

were ranked in the following order from highest to lowest: GL (4.65 mg/kg) and IN (4.45 

mg/kg; Table 1). 

Subpopulation 

 Hg concentrations varied significantly among feathers from nestling eagles at the 

Subpopulation spatial scale (F = 2.535, 418, P = 0.04).  However, post-hoc analysis did not 

show any significant differences.  Geometric mean Hg concentrations were ranked in the 

following order from highest to lowest: UP (5.85 mg/kg), LS (5.60 mg/kg), LM (4.55 

mg/kg), LE (4.21 mg/kg), LH (4.09 mg/kg), and LP (3.71 mg/kg; Table 1).   

Great Lakes Watershed 

 Hg concentrations varied significantly among Great Lakes Watersheds (F = 2.197, 

421, p = 0.03).  Post-hoc analysis showed LS-IN breeding areas were greater than LE-GL 
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Comparison N g-mean median range

Great Lakes 220 4.65 5.93 ND-11.04
Inland 204 4.45 6.15 ND-12.15

Inland Upper Peninsula 81 5.85 6.34 ND-10.48
Lake Superior 63 5.60 6.19 ND-11.04
Lake Michigan 77 4.55 5.88 ND-8.85
Lake Erie 6 4.21 5.23 ND-6.88
Lake Huron 74 4.09 5.91 ND-10.83
Inland Lower Peninsula 123 3.71 6.04 ND-12.16

Lake Superior Inland 29 6.09 6.43 ND-10.48
Lake Michigan Inland Upper 48 5.99 6.14 1.00-10.34
Lake Superior Great Lakes 63 5.60 6.16 ND-11.04
Lake Huron Inland 81 4.68 5.89 ND-12.15
Lake Michigan Great Lakes 75 4.55 5.88 ND-8.85
Lake Erie Great Lakes. 6 4.21 5.23 ND-6.88
Lake Huron Great Lakes 76 4.10 5.91 ND-10.83
Lake Michigan Inland Lower 44 2.34 6.17 ND-8.80

Table 1.  Geometric mean (g-mean), median, and range concentration (mg/kg) 
of mercury in feathers of nestling bald eagle feathers collected within 
Michigan, 2004-2008.  Comparisons were made at 3 geographic scales; 
Category, Subpopulation, and Great Lakes Watersheds.  

Great Lakes Watershed

Category

Subpopulation
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breeding areas (LSD = 65.38, d.f.=414, p ≤ 0.05).  Geometric mean concentrations of Hg 

were ranked in the following order from highest to lowest: LS-IN (6.09 mg/kg), LM-IN-

UP (5.99 mg/kg), LS-GL (5.60 mg/kg), LH-IN (4.68 mg/kg), LM-GL (4.55 mg/kg), LE-

GL (4.21 mg/kg), LH-GL (4.10 mg/kg), and LM-IN-LP (2.34 mg/kg; Table 1).   

Individual Watersheds 

 Hg concentrations varied significantly among Individual Watersheds (F = 1.4342, 

381, P < 0.05).  However, post-hoc analysis (Tukey’s) did show any significant 

differences.  Hg concentrations for Individual Watersheds ranged from 7.16 mg/kg to 

2.25 μg/kg. 

 Hg concentrations did not vary among Grouped HUCs (F = 2.302, 822, P > 0.10).  

Geometric mean concentrations of Hg for Grouped HUCs were ranked in the following 

order from highest to lowest:  I-HUC (6.11 mg/kg), M-HUC (4.23 mg/kg), and G-HUC 

(3.95 mg/kg; Table 2). 

Temporal Trends 

State wide 1987-1992 (T1) vs. 1999-2003 (T2) vs. 2004-2008 (T3) 

 Hg concentrations varied among T1, T2, and T3 (F = 28.782, 957, P < 0.0001).  

Post-hoc analysis found there were significant differences between all time periods.  T1 

was significantly greater than T2 and T3.  T3 was significantly greater than T2 (t ≥ 1.96, 

d.f. = 955, P ≤ 0.05).  Geometric mean Hg concentrations from highest to lowest were T1 

(7.44 mg/kg), T3 (4.81 mg/kg), and T2 (3.46 mg/kg; Table 3).  
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Comparison N g-mean median range
I-HUCs 94 6.11 6.26 1.00-10.48

M-HUCs 257 4.23 5.96 1.00-12.16
G-HUCs 65 3.95 5.90 ND-8.93

Table 2.  Geometric mean (g-mean), median, and range concentration (mg/kg) of 
mercury in feathers of nestling bald eagles in Michigan 2004-2008 among the 
Grouped HUCs spatial scale.  
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Comparison N g-mean median range
1987-1992 112 7.44 7.90 1.5-18.00
1998-2003 422 3.46 5.05 ND-41.86
2004-2008 424 4.81 6.04 ND-12.16

Table 3.  Geometric mean (g-mean), median, and range 
concentration (mg/kg) of Hg in feathers of bald eagle 
nestlings in Michigan, 1987-1992, 1999-2003, and 2004-
2008. 
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Analysis of temporal changes T2 vs. T3 

 The Michigan Bald Eagle Biosentinel Program has now completed two five year 

cycles (T2 and T3), so comparison of Hg concentrations between these two time periods 

is important for assessing the utility of the program.  While most comparisons within 

defined subunits within each spatial scale were not significantly different, some 

differences were observed.  

Differences were noted at four spatial scales as well as the Grouped HUC 

analyses.  At the Category spatial scale Hg concentrations were significantly different 

within GL breeding areas between T2 (geometric mean (g x ) = 3.28 mg/kg) and T3 (g x = 

4.65 mg/kg; t = -2.05, d.f. = 309.58, p = 0.04; Figure 3).  At the Subpopulation spatial 

scale Hg concentrations were significantly different within UP breeding areas between 

T2 (g x = 2.62 mg/kg) and T3 (g x = 5.85 mg/kg; t = -3.39, d.f. = 193.17 P = 0.0008; 

Figure 3).   At the Great Lakes Watershed spatial scale Hg concentrations were 

significantly different within LM-IN-UP (g x = 2.32 and 5.99 mg/kg, t = -2.94, d.f. 

=127.43, P = 0.0039) and LS-IN (3.21 and 6.09 mg/kg, t = -2.23, d.f. 127.43, P = 0.0304) 

breeding areas between T2 and T3 (Figure 4).  At the Individual Watershed spatial scale 

Hg concentrations significantly increased within the Keweenaw Peninsula (g x = 2.71 and 

6.18 mg/kg t = -3.36, d.f. 14, P = 0.0047), Brule (g x = 1.10 and 6.32 mg/kg, t = -2.86, d.f. 

= 28.892, P = 0.0072), Menominee (g x = 1.40 and 6.66 mg/kg, t = -2.45, d.f. = 33.246, P 

= 0.0196), and Shiawassee (g x = 0.39 and 4.05 mg/kg, t = -3.36, d.f. = 5.0164, P = 

0.0146) watershed breeding areas between T2 and T3 (Table 4, Figure 5).  Also, at the 
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Watershed
N 1999-2003 N 2004-2008

Black-Presque Isle 11 2.17 1 6.38
Ontonagon 20 3.62 6 6.53
Keweenaw Peninsula * 11 2.71 5 6.18
Sturgeon 4 6.86 10 7.16
Dead-Kelsey 20 4.33 24 6.58
Chocolay/Betsy-Two-Hearted 16 5.38 15 5.32
Tahquamenon 2 6.46 8 4.46
Lake Superior Islands 4 2.93 19 5.28
Brule * 21 1.10 12 6.32
Michigamme 12 3.59 3 6.66
Menominee * 24 1.40 19 6.34
Cedar-Ford 10 8.29 5 6.50
Escanaba 8 4.07 1 5.27
Tacoosh-Whitefish 2 11.64 4 3.82
Fishdam-Sturgeon 9 3.87 1 1.29
Kalamazoo 3 5.46 3 0.0022
Lower Grand/Rogue-Flat 1 0.50 5 6.32
Pere Marquette-Pentwater/White 7 2.91 17 6.07
Muskegon 27 3.79 34 2.90
Manistee * 14 8.02 23 3.87
Betsie-Platte 2 4.58 1 6.38
Boardman-Charlevoix 9 2.78 19 5.85
Manistique 17 4.06 11 4.90
Lake Michigan Islands 5 2.35 7 5.97
St. Marys 14 3.30 20 4.76
Carp-Pine 7 4.01 1 1.23
Long Lake-Ocqueoc/Devils Lake-Black 12 3.05 14 6.45
Cheboygan 2 7.70 7 6.29
Black 8 8.71 12 6.16
Thunder Bay 14 5.24 12 6.16
AuSable 36 3.68 30 3.70
AuGres-Rifle/East AuGres 15 3.34 20 4.02
Kawkawlin-Pine 1 4.33 3 5.80
Wiscoggin/Pigeon 7 0.77 3 0.50
Tittabawassee 9 3.03 10 4.68
Shiawassee * 3 0.50 6 4.05

Table 4.  Geometric mean concentrations (mg/kg) of mercury in feathers of nestling 
eagles and sample size for Individual Watersheds in Michigan, 1999-2003 and 2004-
2008.  Significant differences between time periods are indicated by " * ".
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Table 4. cont.
Watershed
Cass 6 2.80 6 4.40
Saginaw 1 2.10 3 1.91
Lake Huron Islands 8 5.59 1 5.86
Ottawa-Stony 4 3.15 3 2.89
Upper Wisconsin 5 4.68 2 6.05

Geometric Mean [Hg] ppm (N)
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individual watershed spatial scale Hg concentrations significantly decreased within the 

Manistee watershed breeding areas between T2 (g x = 8.02 mg/kg) and T3 (g x = 

3.87mg/kg; t = 3.48, d.f. = 35, P = 0.00, Table 4, Figure 5).  Grouped HUCs Hg 

concentrations were significantly different within IN-HUC breeding areas between T2 

(g x = 2.75 mg/kg) and T3 (g x = 6.11 mg/kg; t = -2.87, d.f. = 155.96, P < 0.0046; Figure 

4).   

DISCUSSION 

 This study reports the finding of the first two sampling periods of the Michigan 

Bald Eagle Biosentinel Program (MBEBP).  The MBEBP was designed to monitor 

spatial and temporal trends of Hg in Michigan’s aquatic ecosystem.  While not part of the 

MBEBP, an affiliated study using nestling eagles to monitor these trends in the lakes of 

Voyagers National Park (VNP) in Minnesota is discussed.  In addition to trends analysis, 

the sensitivity of eagles to Hg and their utility as a biosentinel species are discussed. 

Spatial Trends 

Hg concentrations were highest in the Upper Peninsula of Michigan.  At both 

Subpopulation and Great Lakes Watershed spatial scales the highest concentrations were 

from the Upper Peninsula.  Also, at the grouped individual watersheds spatial scale IN-

HUCs (which included UP nests) showed significantly greater Hg concentrations.  

Elevated Hg concentrations in the feathers of nestling bald eagles from Upper Peninsul of 

Michigan could be the result of many factors. 
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 Atmospheric deposition of Hg in the Upper Peninsula of Michigan could be 

heightened as a result of numerous factors.  Possible factors include upwind coal 

consumption in Canada and the north-western United States, and increased consumption 

in developing countries (e.g., Asia).  The open topography of Lake Superior, prevailing 

winds, and the relief of the western Upper Peninsula may also facilitate the 

transportations and release of atmospheric Hg.   

 Locally, large scale environmental changes or environmental characteristics like 

acid deposition, land use, or climate changes can lead to increased Hg concentrations also 

local watershed and site conditions can cause large changes in Hg concentration and the 

ratios of  total Hg (tHg) to MeHg.  Freshwater aquatic systems associated with wetlands, 

periodic dry down, and acidic environments are also at greater risk of methylation of 

mercury (Harris et al. 2007).  Blood Hg concentrations in common loons in northern 

Wisconsin, USA decreased with lake pH (Burgess and Meyer 2008).   

 At VNP, lakes with dams (Rainy Lake and Crane Lake/Sandpoint) had higher 

concentration of Hg in fish than lakes without a dam (Kabetogama Lake) (Sorensen et al. 

1990).  Our results support this where nestling bald eagles had Hg concentrations of 15.1 

mg/kg, 13.3 mg/kg and 5.10 mg/kg on Rainy Lake, Crane Lake/Sandpoint, and 

Kabetogama Lake, respectively.  Watershed drainage and flow rates, and water level 

fluctuations affect Hg transport and residence times, and nutrient and sulfate loading 

which, in turn, influences Hg methylation and biomagnification potential (Thomsen 

2007).  The stabilization of water levels by the International Joint Commission resulted in 

similar decreases in mercury in fish and nestling eagles at VNP (Thomsen 2007). 
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Temporal Trends 

 While Hg concentrations are below historic levels they are currently increasing.  

Slemr et al. (2003) attempted to reconstruct global trends of atmospheric Hg, they 

reported that Hg concentrations increased in the late 1970s, peaked in the 1980s, and then 

decreased into the mid 1990s.  Mercury concentrations in feathers of nestling eagles in 

Michigan support this reconstructed trends with a decrease from T1 to T2.  This decrease 

was possibly related to decreased non-point source pollution through the use of cleaner 

coal and more advanced pollution removal devices (i.e., smoke stack scrubbers).  

Mercury emissions were also reduced in North America and the European Union between 

1990 and 1995.   

 The current trend of increasing Hg concentrations throughout the state may be a 

result of increased global consumption of coal, specifically, conspicuous consumption in 

industrially developing countries (e.g., Asia).  Increases in Hg concentrations were seen 

at several spatial scales when T2 and T3 were compared.  The greatest increases were 

concentrated around the Upper Peninsula and inland breeding areas. As of 1995 the USA 

produced only 10% of the global mercury emissions and Asia produced greater than 50% 

(SETAC 2007).   

 Increases of Hg in nestling bald eagles state-wide coincide with other vertebrate 

monitoring programs.  Increases in Hg concentrations throughout the state of Michigan in 
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the same time period were observed in fish sampled from 265 lakes and impoundments 

by the Michigan DEQ Water Quality Bureau (Bohr and VanDusen 2008).   

 Climate changes could lead to changes in Hg concentrations in Michigan nestling 

bald eagles.  Climate change has been shown to be affecting nesting chronology of bald 

eagles in Michigan (Bowerman, unpublished data).  These changes include earlier laying 

dates and potential prey base changes.  The effects of climate change could alter the 

bioavailability of Hg to bald eagles and other top-predators due to trophic level changes.  

These changes could come from shifts in available prey base or environmental changes 

such as increased frequency and intensity of periodic droughts.   

Sensitivity to Hg 

 No threshold for adverse effects of Hg has been established for bald eagles.  

Laboratory studies indicated adverse effects including decreased reproduction with Hg 

levels of 1.5 mg/kg in eggs and 5-40 mg/kg in feathers of multiple species including 

game birds, waterfowl, and a raptor (Burger and Gochfeld 1997).  Burger and Gochfeld 

(1997) showed that in sparrow hawks (Accipiter nisus) feather concentrations of 40 

mg/kg resulted in sterility.  In common loons, adverse effects levels of 3.0 mg/kg in 

blood and 40.0 mg/kg in feathers were shown to be correlated with significant decline in 

reproductive success (Evers et al. 2008).   

 In our study no breast feathers sampled were greater than 13 mg/kg, much less 

than the 40.0 mg/kg feather Hg threshold for adverse affects in common loons and 

sparrow hawks.  However, because we were working with nestling eagles who were 

actively growing feathers our Hg concentrations are more representative of blood levels 
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(Evers et al. 2005).  Thus 88% of the nestling bald eagles sampled would exceed the 3.0 

mg/kg blood mercury threshold for common loons (Evers et al. 2005) associated with 

reproductive impairment or long term effects in loons.  Hg concentrations in adult loons 

can also be up to 10 times greater compared to nestling loons (Evers et al. 2005).   

In previous studies which compared adult and nestling feather  Hg concentrations 

from Michigan and Minnesota, adult eagles feathers have been up to 10 times higher than 

feathers of nestling eagles (Thomsen 2007).  If nestling feather concentrations were 

converted to adult Hg concentrations using a factor of 10 to represent adult exposure, 

83% of adults in breeding areas sampled would be above the 40 mg/kg threshold for 

other avian species.  However, no relationships have been observed between Hg 

concentrations and productivity or success in bald eagles in either study area (Bowerman 

et al. 1994, Thomsen 2007).   It was previously theorized that the life history of adult 

eagles may have been protective from mercury effects.  Since eagles can depurate of up 

to 90% of their body burden to feathers while they are being replaced, and 

molting/feather replacement occurs at the same time period as maximum mercury 

exposure, this may be a protective mechanism for eagles. 

Bald eagles may also have a physiological mechanism that allows them to be able 

to handle a greater insult of Hg by complexing MeHg and Selenium (Se).  Bald eagles 

have been shown to display a greater ability to demethylate MeHg in the brain than 

common loons (Scheuhammer et al. 2008b).  MeHg can be demethylated when 

complexed with Se.  Eagles were shown to have a molar excess of Se while loons had a 

molar excess of Hg in the brain (Scheuhammer et al. 2008b).  This ability to demethylate 
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MeHg may be why eagles in Michigan can have elevated levels of Hg and have not 

suffered reproductive declines.  Further research may help to understand why eagles 

appear to not be as sensitive as other avian species. 

Utility as a Biosentinel 

The MBEBP has now been in effect for two five-year cycles and it is apparent 

from these results that concentrations of Hg in feathers of nestling eagles is an 

appropriate measure of Hg exposure in aquatic ecosystems.  The Michigan Department of 

Environmental Quality and Mercury Strategy Staff Report listed the western Upper 

Peninsula of Michigan as a hot spot (i.e., area of high concentrations) and the Lower 

Peninsula as having low Hg levels (Kohlhepp 2006).  These results are also supported by 

the MBEBP.  The fact that the MBEBP has picked up trends similar to trends reported for 

fish concentrations, atmospheric deposition, and water quality monitoring speaks to the 

utility of the project.  These 10 years of data in combination with previously collected 

data from 1987-1992 represents 3 sampling periods of the entire state of Michigan.  The 

trends of decreasing then increasing Hg concentrations over time among many different 

monitoring programs shows the utility of using bald eagles to monitor the environment.  

These changes have been observed both spatially and temporally, and therefore, show the 

utility of the program.  With our current knowledge and data base we can now start to 

focus in on hotspots and monitor these areas more intensively for the effects of Hg.  
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Recommendations 

 Based on the results of this analysis of temporal and spatial trends of Hg in 

aquatic ecosystems by measuring concentrations of Hg in nesting bald eagles, we 

recommend: 

• A more intensive monitoring program for inland and Upper Peninsula breeding 

areas, and in areas shown to have greater bioavailability of Hg be utilized to 

investigate the long term effects of Hg on Bald eagle reproductive success. 

• Continued monitoring of bald eagle productivity and reproductive success is 

advisable; if Hg concentrations continue to increase, this project may be in a 

unique position to observe the threshold at which Hg concentrations start to have 

detrimental effects on bald eagles. 

• Climate change may result in shifts in prey and changing environmental factors, 

both of which could greatly alter aquatic bioavailability of Hg, therefore it is 

important that we continue to monitor eagles throughout the state of Michigan to 

document these impacts.   
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 In the second study “Using nestling bald eagles to track spatial and temporal 

trends of mercury in aquatic ecosystems of Michigan.” we evaluated Hg concentrations at 

four spatial scales and three temporal periods.  In summary, our study found: 

 

1. Concentrations of Hg in the feathers of nestling eagles were significantly higher 

in Inland areas with the Upper Peninsula having the highest concentrations 

2. At all spatial scales (Category, Subpopulation, Great Lakes Watersheds, and 

Individual Watersheds) Hg concentrations in the feathers of nestling eagles are 

increasing.    

3. Concentrations of Hg in the feathers of nestling eagles decreased from 1987-1992 

to 1999-2003 however, concentrations increased significantly from 1999-2003 to 

2004-2008. 

 

 The bald eagle has been shown to be an appropriate monitor of Great Lakes 

environmental quality.  Because of its position as a tertiary predator in the Great Lakes 

aquatic food web it is prone to bioaccumulation of organo chlorines and heavy metals.  

Furthermore, using nestling bald eagles as biosentinels reduces the possibility of 

contaminated wintering grounds influencing results.  Nestling blood and feather 

contaminate levels have been shown to be an appropriate method to monitor ecosystem 

contaminant levels.  Both blood and feather samples can be collected during routine 

nestling banding activities. 
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 In conclusion, measuring the concentrations of both Hg in feathers and 

organochlorine compounds in plasma of nestling eagles can be used to determine the 

trends and effects of xenobiotics in aquatic systems in Michigan.  With Hg concentrations 

on the rise, adverse effects including decreased reproduction could occur in bald eagles.  

The Upper Peninsula of Michigan should be concentrated on because of its characteristics 

which lead to methylation of Hg.  Both PCB and pesticide concentrations for 37% and 

40% of the nestling eagles sampled were above the no observable adverse effect level for 

bald eagles.  Thus, it is possible that once these nestlings reach breeding age, they may 

not be able to reproduce at a level considered to support a healthy population due to 

elevated concentrations of DDE or PCBs.   
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