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ABSTRACT 

The bald eagle (Haliaeetus leucocephalus) is an extensively researched tertiary 

predator. Its life history and the impact of various stressors on its reproductive outcomes 

have been documented in many studies, and over many years. Furthermore, the bald 

eagle population recovery in Michigan has been closely monitored since the 1960s, as it 

has continued to recover from a contaminant-induced bottleneck. Because of its position 

at the top of the aquatic food web and the large body of ethological knowledge, the bald 

eagle has become a sentinel species for the Michigan aquatic ecosystem. In April 1999, 

the Michigan Department of Environmental Qualtity, Water Division, began monitoring 

environmentally persistent and toxic contaminants in bald eagles. 

 Continued monitoring of bald eagle population dynamics and contaminant levels 

in the environment are important to understanding the fate of sentinel species and 

ecosystems after exposure to environmental contaminants.  It is therefore essential to 

develop sound methods of analysis to apply in reporting observations and in assessing 

trends based on these data.  Specifically, this study assesses the Michigan Bald Eagle 

Biosentinel Program’s (1) power to detect regionally elevated contaminant concentrations 

or assure remediation success; (2) various techniques for reporting central tendency in 

left-censored data using PCB and p,p'DDE contaminant concentrations; and the effects of 

model specification on inferential conclusions in regarding reproductive outcome as a 

function of site classification.  
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PREFACE 

 This dissertation was written in journal style and organized into three chapters, 

each with an introduction, methods, results, and discussion. Each chapter is intended for 

publication and repetition in some sections (i.e. Introduction, Methods, Results, 

Discussion, and Literature Cited) may occur. The chapters are preceded by a General 

introduction and followed by overall Conclusions.  
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General Introduction 

Bald Eagles and Biosentinels 

The bald eagle (Haliaeetus leucocephalus) is notable both for its position in the 

ecosystem and in the public eye.  It is a large bird of prey, considered to be piscivorous, 

but which also opportunistically forages on an array of avian, mammalian, and reptilian 

prey (Buehler, 2000).  Territory size is difficult to estimate because methods of 

measurement are not consistent and nesting densities vary widely based on habitat and 

food supply (Buehler, 2000).  Mean productivity has been estimated at 1.87 eggs per 

clutch and clutches usually range from one to three eggs (Stalmaster, 1987). Bald eagles 

are associated with aquatic habitats throughout North America including coastal areas, 

rivers, lakes, reservoirs, and forested shorelines (Buehler, 2000). Because it is a tertiary 

predator in these ecosystems, it is susceptible to biomagnification of a wide array of 

xenobiotics.  Extensive research has been conducted on this high-profile raptor 

addressing life history characteristics and the influences of various stressors on 

reproduction.   

 The bald eagle was selected as a biosentinel species for monitoring contaminants 

in Michigan’s surface waters for the following reasons:   

1. As a top-level predator, the bald eagle has a significant reliance on the 

aquatic food web and feeds primarily on fish and waterbirds.  Specific 

dietary preferences of bald eagles include species of northern pike (Esox 

lucius), suckers (Catostomus spp.), bullheads (Ameiurus spp.), carp 
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(Hypopthalmichthys spp.), bowfin (Amia calva), ducks (family: Anatidae), 

gulls (family: Laridae), and white-tailed deer (Odocoileus virginianus), as 

winter carrion and road-kill.   

2. Past monitoring has shown that eagles accumulate organic and inorganic 

environmental contaminants and those contaminants may be quantified in 

blood, feather, egg, and tissue samples. 

3. There is a expanding population of bald eagles that provides sufficient 

sampling opportunities for a long-term monitoring program.   

4. The large body size of nestling eagles (eaglets) allows monitoring to be 

conducted by sampling blood and sufficient sample volumes are available 

to attain low quantification levels.  

5. Mature bald eagles display great fidelity to their nesting territory and often 

return to the same nest tree year after year.  Some wintering eagles may 

move away from their nesting territories, however many reside within the 

state’s waters throughout the year.  Once nesting and breeding has been 

initiated in spring and the breeding pair has returned to a breeding area, 

they defend and hunt within their territory.   
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These attributes of bald eagle ecology in Michigan, in addition to the fact that our 

samples are from pre-fledged eagles, support the conclusion that contaminants found in 

nestling bald eagles will represent the uptake of available contaminants within a 

particular territory.  For all of these reasons the bald eagle is an excellent biosentinel 

species. 

Long Term Monitoring 

 The bald eagle endured several threats to its population through the 20
th

 century.  

In the early 1900s, many eagles were shot and as the country grew, industrialized human 

encroachment on habitat became a limiting factor in their distribution.  After World War 

II, the use of pesticides was fairly widespread, though the damage they caused to the 

ecosystem was not yet fully understood.  Experimental evidence was published in the 

1950’s showing that the reproductive success of birds can be affected by steady intake of 

DDT (Dewitt, 1956, 1955; Genelly & Rudd, 1956).  By the 1960’s, both citizens and the 

scientific community had become aware of the precipitous drop in bald eagle numbers in 

the Great Lakes region.  This large charismatic raptor, which had once maintained active 

breeding territories every 8 to 16 km along the coasts in Michigan, had been reduced to 

just 82 occupied territories in 1972 (Postupalsky, 1989).  With the publication of Rachel 

Carson’s Silent Spring in 1962, the decline in bird populations was presented to the 

general public as a consequence of pesticide use.  In 1966, The Journal of Applied 

Ecology published a special supplemental issue entitled “Pesticides in the Environment 

and Their Effect on Wildlife,” which included explorations of DDT residues in birds, the 
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effect of pesticides on Lake Michigan’s ecosystem, and the importance of developing a 

pesticide monitoring program (Bernard, 1966; Hickey et al., 1966; Keith, 1966; Moore, 

1966). Largely because of the public awareness created by Silent Spring, DDT use was 

declining even before it was banned in 1972 and the positive effects could be seen in 

Michigan’s bald eagle population.  Though many of the organochlorine compounds were 

banned in the early 1970s, they are extremely persistent in the environment (Grier, 1982).  

Monitoring of contaminant levels, both through time and at various spatial scales, 

provides important insight into the health of the Great Lakes Basin ecosystem. 

 There have been numerous studies on the detrimental effects of persistent 

chemicals on different avian species (Cope, 2004).  By 1990, work had been published 

exploring the relationship between observed contaminant residues in bald eagle eggs and 

shell thinning and reproduction (Grubb et al., 1990; Wiemeyer et al., 1993, 1984).  In 

1993, a review of both ecological and toxicological factors regulating bald eagle 

productivity in the Great Lakes Basin highlighted the primary factors influencing bald 

eagle populations: habitat availability, contaminant concentration, and degree of human 

disturbance (Bowerman, 1993).  It could be shown that bald eagles were limited by 

habitat availability and food abundance, as well as that in the presence of plentiful food, 

eagles would occupy suboptimal habitat (Hansen, 1987; Newton, 1979; Stalmaster, 

1987).  Concentrations of PCB 126 (3,3',4,4',5-pentachlorobiphenyl) found in bald eagles 

eggs were approximately 20 times higher than the lowest toxic concentration tested in 

American kestrels (Falco sparverius) and may be a factor in the decline of some eagle 

populations (Hoffman et al., 1996).  Bald eagles were shown to have normal young 
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production when egg DDE concentrations were < 3.6 μg/g (wet weight). When egg 

concentrations were between 3.6 and 6.3 μg/g production was halved and production was 

halved again when egg concentrations were > 6.3 μg/g (Wiemeyer et al., 1993).  It has 

now been well established that high contaminant concentrations are associated with low 

rates of productivity in bald eagles (Bowerman, 1993; Bowerman et al., 2003, 1995, 

1994, 1993; Dykstra et al., 2001; Grubb et al., 1992, 1990; Grubb & King, 1991; 

Wiemeyer et al., 1984).       

 Careful observation by ornithologists revealed more complexity to the recovery 

trends.  It appeared that nesting pairs along the Great Lakes coast were rebounding less 

successfully than inland populations (Postupalsky, 1985).  This suspicion was later 

confirmed as studies of contaminant concentrations from collected eggs, and later from 

nestlings, showed higher contaminant concentrations in areas with a Great Lakes centered 

prey base when compared to inland areas (Best et al., 1994; Bowerman et al., 2003, 1995; 

Wiemeyer et al., 1993, 1984).  This phenomenon set the stage for a source sink dynamic 

in the Great Lakes basin in which the less contaminated inland regions of the state supply 

sufficient young to keep the Great Lakes coastal populations growing in spite of 

reproductive productivity rates which still demonstrate impairment (Bowerman et al., 

2003; Simon, 2013). 

 The State of Michigan has maintained a count of occupied bald eagle breeding 

areas and their reproductive outcomes that extends back to 1961. Terminology used in this 

dissertation regarding bald eagle productivity and territories follows that of Postupalsky 
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(1974) .  These records, initially collected during bald eagle nestling banding efforts, 

document the growth in the number of active and successful breeding areas.    As nest 

numbers grew, accurate nest and outcome assessments could no longer be conducted by 

visiting every nest within the state during the breeding period and in 1977 the U.S. Fish 

and Wildlife Service began flights for nest and nestling enumeration.  Arial enumeration 

continues on a yearly basis, though it is now carried out through the Michigan 

Departments of Natural Resources and Environmental Quality.  In spite of the fact that 

Michigan is home to roughly 600 occupied breeding areas each season, outcomes are still 

obtained for every known occupied breeding area and 100-200 nests are visited by ground 

crews, which serves to verify the flight based assessments of outcome.  The longevity and 

thorough nature of the data collection effort in Michigan have made it an extremely 

powerful information source. 

 Nesting eagles are found along the shorelines and on islands of each of the four 

Great Lakes surrounding Michigan.  Further, the distribution of breeding eagles across 

much of Michigan’s interior provides monitoring coverage for many of the major river 

systems (Figure 1).  Currently, active bald eagle breeding areas are well distributed 

across the Upper Peninsula and northern Lower Peninsula of Michigan.  While the 

breeding areas there has also continued to increase as eagles either establish new 

establishment of breeding areas in southern Michigan took longer, the number of active 

breeding areas there has also continued to increase as eagles either establish new 

breeding areas or re-occupy historical territories. 
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Figure 1. Locations of bald eagle breeding territories throughout the state of  

Michigan, 2009. 
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In April 1999, the Michigan Department of Environmental Qualtity (MDEQ), 

Water Division, began monitoring environmentally persistent and toxic contaminants in 

bald eagles.  This study is part of the wildlife contaminant monitoring project component 

of the MDEQ’s Nonpoint Source Environmental Monitoring Strategy (MDEQ, 2004).  

The November 1998 passage of the Clean Michigan Initiative-Clean Water Fund (CMI-

CWF) bond proposal resulted in a substantial increase in annual funding for a statewide 

surface water quality monitoring program beginning in 1999.  The CMI-CWF offers 

reliable funding for the monitoring of surface water quality over a period of 

approximately 15 years.  This is important because one of the goals of the Strategy is to 

measure temporal and spatial trends in contaminant levels in Michigan’s surface waters.  

 Annually a subset of the active territories is sampled and eagle plasma and 

feathers are analyzed for mercury, PCBs, and chlorinated pesticides including DDT. 

Also, efforts are being made to expand the analyte list to include emerging contaminants 

such as brominated or fluorinated compounds. Watersheds with eagle nests and 

successful reproduction are assessed once every five years consistent with the National 

Pollutant Discharge Elimination System NPDES five-year basin cycle (Figure 2).  This 

sampling procedure is consistent with that of other monitoring projects conducted within 

the designated watersheds under the NPDES permitting process (MDEQ, 1997).  Nests 

associated with the Great Lakes and connecting channels are sampled annually because 

of the uncertainty of nesting success from year to year. An annual report is prepared that 

describes spatial and temporal trends in productivity and contaminant levels.  In 

accordance with one of the key principles of the CMI-CWF, the bald eagle monitoring 
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protocol was planned and conducted in partnership with outside organizations.  In 1999, 

this partnership included Lake Superior State University and Clemson University, from 

2000 to 2008 this partnership included Michigan State University and Clemson 

University, from 2009 to 2012 this was conducted solely by Clemson University, and 

since 2013 it has been conducted by the University of Maryland.   

Complications of Data Management 

Continued monitoring of contaminant levels in the environment is an important 

part of understanding the fate of ecosystems after contamination.  It is therefore essential 

to develop sound methods of analysis to detect meaningful changes in contaminant 

levels. 

As levels decrease over time, limitations in analytical equipment create a lower 

bound below which contaminant levels cannot be accurately reported.  This results in 

datasets with observations below the detection limit (DL) that are reported only as ‘non-

detect’ or ‘< DL’ and no value is provided.  This type of distribution is called ‘left-

censored’, as the low-end  observations that are unknown generally occur near the origin 

of the x-axis in figures.  

Several options for the analysis of these datasets have been investigated leading to 

the conclusion that methods replacing all non-detects with a single value (substitution 

methods) are frequently inferior (Antweiler & Taylor, 2008; Baccarelli et al., 2005; 

Eastoe et al., 2006; Helsel, 2006, 2005b, 2005a; Liu et al., 1997; Needham et al., 2007; 

Singh & Nocerino, 2002).      
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Specifically, it has been shown that the bias caused by substitution increases dramatically 

as the percent of observations censored increases (Eastoe et al., 2006). In spite of this, 

various substitution methods continue to be used in research, frequently with little regard 

for the proportion of observations censored. 

 In addition to censored observations, another complication when analyzing 

environmental contaminant data is the possibility that datasets display a right skew.  This 

distribution is common in environmental data and can frequently be accommodated by 

log-transformation.  A final complexity is added by the fact that lognormal data are 

frequently summarized using the geometric mean, which is particularly sensitive to the 

choice of substitution value.  Current statistical methods include tests of significant 

differences between regions at several geographic scales, and calculating descriptive 

statistics in the form of geometric means.  Substitution is currently used in cases of non-

detect, or left-censored, observations.   

 This choice of methods for addressing the non-detects does not affect testing of 

significant differences among regions.  The monitoring program uses nonparametric 

Kruskal-Wallis and Wilcoxon tests which are rank-based and make no assumptions about 

distribution and so, are not sensitive to the problems of substitution (Helsel, 2005b).  

However, summary statistics are reported as geometric means, which are affected by the 

choice of substituted value.  The desire to summarize data more accurately has fueled 

recent comparisons of proposed analytical alternatives to substitution or simple median 

reporting (Helsel, 2005a).    
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Complications of Reproductive Trend Assessment 

It is common practice in environmental monitoring to use summary statistics, 

such as means, in modeling trends. The underlying data are often not normally distributed 

(for example: counts, presence/absence), but a normal distribution is used under the 

assumption that sample sizes will sufficiently normalize the summary data being 

modeled. For large samples this is likely the case, but what constitutes sufficiently ‘large’ 

may vary based on the underlying complexities of the data source. While the Central 

Limit Theorem suggests that as sample size approaches 30 distributions of statistics 

approach normality, monitoring data often consist of correlated (clustered) observations, 

such as repeated measurements made on the same site. This violates the assumption of 

independence of observations that is fundamental to parametric inferential analysis. 

When analyzing summary data, no adjustment can be made for this underlying 

correlation structure. Violating either or both of these assumptions of normality and 

independence can undermine the validity of significance tests.  

Objectives 

This dissertation is organized into a general introductory chapter, three chapters 

consisting of stand-alone manuscripts, and a summary chapter.  The objectives of each 

chapter were as follows: 

Chapter 1: Assessment of Michigan Bald Eagle Biosentinel Program’s power to detect 

regionally elevated contaminant concentrations or assure remediation success.  
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The objectives were to:  

(1) Assess the fit of lognormal distribution to the data;  

(2) Determine a reasonable estimate for standard deviation based on existing 

observations; 

(3) Estimate sample sizes necessary to produce analyze data with a power of 0.80, 

0.85, 0.90, and 0.95 based on changes of 10%, 15%, 20%, and 25% in observed 

concentration; and 

(4) Provide reference tables of recommended sample sizes based on those results. 

 

Chapter 2: A comparison of techniques for assessing central tendency in left-censored 

data using PCB and p,p'DDE contaminant concentrations from Michigan's Bald 

Eagle Biosentinel Program. 

The objectives were to:  

(1) Assess the fit of lognormal distribution to the data;  

(2) Compare and contrast the performance of the four methods of non-detect handling 

in terms of estimated geometric mean, comparison to the median, and standard 

error; and 

(3) Make recommendations based on those results. 
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Chapter 3: Assessment of the effects of model specification on inferential conclusions in 

regarding reproductive outcome as a function of site classification. 

The objectives were to:  

(1) Determine appropriate levels of analysis for regional comparison of reproductive 

trends based on the needs and interests of the ongoing monitoring effort; 

(2) Assess the fit of normal distribution to the summary statistics derived from raw 

data;  

(3) Fit models to the raw data accounting for source distribution for reproductive 

outcomes, and correlated measures do to repeated sampling within sites; and 

(4) Assess potential impact of model specification to inferences made regarding 

regional differences in trends for reproductive outcomes as compared to 

inferences that would result from such comparisons made based on summarized 

data. 
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Chapter 1: Assessment of Michigan Bald Eagle Biosentinel Program’s power to 

detect regionally elevated contaminant concentrations or assure remediation 

success. 

Introduction 

 The bald eagle (Haliaeetus leucocephalus) is notable both for its position in the 

ecosystem and in the public eye.  It is a large bird of prey, considered to be piscivorous, 

but which also opportunistically forages on an array of avian, mammalian, and reptilian 

prey (Buehler, 2000).  Territory size is difficult to estimate because methods of 

measurement are not consistent and nesting densities vary widely based on habitat and 

food supply  (Buehler, 2000).  Bald eagles are associated with aquatic habitats throughout 

North America including coastal areas, rivers, lakes, reservoirs, and forested shorelines  

(Buehler, 2000). Because it is a tertiary predator in these ecosystems, it is susceptible to 

biomagnification of a wide array of xenobiotics.   

 The bald eagle has been shown to be an appropriate model to monitor ecosystem 

contaminant concentrations.  Great Lakes nestling bald eagles receive prey items from 

within the adult’s local breeding territory.  Concentrations of Bioaccumulative 

Contaminants of Concern (BCC) in nestling eagle feathers and blood plasma reflect 

exposure to BCCs from the food items they receive.  The eagle is therefore an appropriate 

indicator of ecosystem quality ( Bowerman et al., 1998; Roe, 2004).  In addition, the fact 

that our samples are from pre-fledged eagles, support the conclusion that contaminants 

found in nestling bald eagles will represent the uptake of available contaminants within a 



22 
 

particular territory.  For all of these reasons, the bald eagle was selected as a biosentinel 

species for monitoring contaminants in Michigan’s surface waters (MDEQ, 1997). 

 There have been numerous studies on the detrimental effects of persistent 

chemicals on different avian species (Cope, 2004).  The relationship between observed 

contaminant residues in bald eagle eggs collected across the U.S. and shell thinning and 

reproduction was studied at the Patuxant Wildlife Research Center (Grubb et al., 1990; 

Wiemeyer et al., 1993; Wiemeyer et al., 1984). Concentrations of total PCBs found in 

bald eagles eggs were approximately 20 times higher than the lowest toxic concentration 

tested in American kestrels (Falco sparverius) for PCB 126 (3,3',4,4',5-

pentachlorobiphenyl) and may be a factor in the decline of some eagle populations 

(Hoffman et al., 1996).  Bald eagles were shown to have normal young productivity 

(defined as number of fledged young per occupied nest) when egg DDE concentrations 

were < 3.6 μg/g (wet weight). When egg concentrations were between 3.6 and 6.3 μg/g 

productivity was halved and productivity was halved again when egg concentrations were 

> 6.3 μg/g (Wiemeyer et al., 1993).  It has now been well established that high 

contaminant concentrations are associated with low rates of productivity in bald eagles ( 

Bowerman, 1993; Bowerman et al., 2003, 1995, 1994; Dykstra et al., 2001; Grubb et al., 

1990; Wiemeyer et al., 1984).       

 There is also evidence for spatial differences in contaminant concentrations.  

Studies of contaminant concentrations from collected eggs, and later from nestlings, 

showed higher contaminant concentrations in areas with a Great Lakes centered prey base 
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when compared to inland areas (Bowerman et al., 2003, 1995; Giesy et al., 1995).  This 

phenomenon set the stage for a source sink dynamic in the Great Lakes basin in which 

the less contaminated inland regions of the state supply sufficient young to keep the Great 

Lakes coastal populations growing in spite of reproductive productivity rates which still 

demonstrate impairment (Bowerman et al., 2003). 

  In April 1999, the Michigan Department of Environmental Qualtity (MDEQ), 

Water Division, began monitoring environmentally persistent and toxic contaminants in 

bald eagles.  This study is part of the wildlife contaminant monitoring project component 

of the MDEQ’s Nonpoint Source Environmental Monitoring Strategy (MDEQ, 1997).  

The November 1998 passage of the Clean Michigan Initiative-Clean Water Fund (CMI-

CWF) bond proposal resulted in a substantial increase in annual funding for a statewide 

surface water quality monitoring program beginning in 1999.  The CMI-CWF offers 

reliable funding for the monitoring of surface water quality over a period of 

approximately 15 years.  This is important because one of the goals of the Strategy is to 

measure temporal and spatial trends in contaminant levels in Michigan’s surface waters.   

Nesting eagles are found along the shorelines and on islands of each of the four 

Great Lakes surrounding Michigan.  Further, the distribution of breeding eagles across 

much of Michigan’s interior provides monitoring coverage for many of the major river 

systems (Figure 1).      
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Figure 2. Locations of bald eagle breeding territories throughout the state of  

Michigan, 2009. 
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 Annually a subset of the active territories is sampled and eagle plasma and 

feathers are analyzed for mercury, PCBs, and chlorinated pesticides including DDT. 

Watersheds with eagle nests and successful reproduction are assessed once every five 

years consistent with the National Pollutant Discharge Elimination System NPDES five-

year basin cycle (Figure 2).  In accordance with one of the key principles of the CMI-

CWF, the bald eagle monitoring protocol was planned and conducted in partnership with 

outside organizations.  In 1999, this partnership included Lake Superior State University 

and Clemson University, from 2000 to 2008 this partnership included Michigan State 

University and Clemson University, from 2009 to 2012 this was conducted solely by 

Clemson University, and since 2013 it has been conducted by the University of 

Maryland.   

 The five-year watershed monitoring cycle allows for only a portion of the 

watersheds within the state of Michigan to be sampled every year.  A complete cycle of 

five years of sampling data should be representative of the concentrations of 

contaminants and of productivity and success rates for the entire state.  This 

comprehensive data set will be useful for making human health and wildlife management 

recommendations and decisions.  

 The overall objective of this study was to use Bald Eagle Biosentinel Program 

(BEBP) data to determine the sample sizes that would be necessary to detect regionally 

elevated contaminant concentrations when compared to reference site concentrations.  
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Specifically, the objectives of this investigation were: 

(1) Assess the fit of lognormal distribution to the data;  

(2) Determine a reasonable estimate of standard deviation on existing log-

transformed observations; 

(3) Estimate sample sizes necessary to analyze data with a power of 0.80, 0.85, 0.90, 

and 0.95 based on changes of 10%, 15%, 20%, and 25% in log concentration for 

balanced and unbalanced experimental designs; and 

(4) Provide reference tables of recommended sample sizes based on those results. 
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Methods 

Summary of Field and Analytical Methods 

 Nestling bald eagles were sampled from the Upper and Lower Peninsulas of 

Michigan and from the surrounding Michigan Islands.  Blood was collected during 

normal banding activities from mid-May through late June from 1999-2003.  Nestlings 

were between 5 and 10 weeks of age.  Aseptic techniques were used to collect 10-13 cc 

of blood from the brachial vein with heparinized syringes fitted with 22 or 25 gauge 

needles.  Morphometric measurements were used at this time to determine sex and age of 

the nestlings (Bartolotti 1984a, b).  A total of 398 nestling eagles from 227 breeding areas 

were sampled and analyzed from 1999 to 2003.  Samples of whole blood were transferred 

to heparinized vacuum tubes, stored on ice in coolers, and centrifuged within 48 hours of 

collection.  Blood plasma was decanted, transferred to new heparinized vacuum tubes, 

sealed, and then frozen.  All samples were shipped and stored at the U. S. Fish and 

Wildlife Service East Lansing Field Office until analysis at Clemson University (Roe, 

2004). 

 All extractions and analyses were conducted according to procedures detailed in 

Clemson Institute of Environmental Toxicology (CIET 401-78-01) standard operating 

procedures. In brief, concentrations of organochlorine compounds were quantified by 

capillary gas chromatography with an electron capture detector using the United States 

Environmental Protection Agency approved methods. Chicken plasma was used for 

laboratory control samples in all analytical batches.  All reported results were confirmed 
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by dual column analysis. Method validation studies were conducted on chicken plasma as 

a surrogate matrix to ensure that the data quality objectives of the Quality Assurance 

Project Plan (CIET 1996, 1999) were met (Wierda, 2009). 

Statistical Methods 

 Total PCBs and total p,p'DDE log scale concentrations from 1999 through 2003 

were utilized in estimating the parameters necessary for this sample size analysis. 

Concentrations of total PCBs and  p,p'DDE less than the method detection limits were 

reported as non-detects and represented 6.41% and 10.26% of the 234 observations, 

respectively.  Concentrations below the  detection limit were set at ½ the detection limit 

based on the rates of censorship and the recommendations of Leith, et al. (2010).   

  The data analysis for this paper was generated using SAS® software, Version 

9.1.2 of the SAS system for Windows (Copyright 2000-2004 SAS Institute Inc.  SAS and 

all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc., Cary, NC, USA). 

 Data were analyzed for significant departure from the lognormal distribution 

using the UNIVARIATE PROCEDURE with the options ‘normal’ and ‘plot’ activated 

(SAS Institute Inc., 2000-2004).  This procedure produces several fit statistics.  The 

Kolomogorov-Smirnov statistic was used to assess the assumption of fit to the lognormal 

distribution.  The fit was classified as ‘good’ with p-values ≥ 0.05, ‘marginal’ with p-

values between 0.01 and 0.05, and fit was rejected for p-values<0.01. In keeping with 

‘best practice’ recommendations plots of the log-scale data were also inspected for 



30 
 

worrisome deviation from the assumed normal distribution (Farrell & Rogers-Stewart, 

2006; Noughabi & Arghami, 2010; Razali & Wah, 2011; Romão et al., 2009; Seier, 

2002). 

Sample size analysis was performed using the POWER PROCEDURE (SAS Institute 

Inc., 2000-2004) to estimate sample sizes necessary to detect  regionally elevated 

contaminant concentrations assuming the availability of a reference site, based on 

changes of 10%, 15%, 20%, and 25% in log concentration.  Sample size estimates were 

generated for the above effect sizes with a power of 0.80, 0.85, 0.90, and 0.95 and for 

scenarios with unbalanced sampling ratios of experimental:reference sites from group 

weights of 1:1, 1:2, 1:3, and 1:4.  This created a 4 by 4 by 4  matrix (64 different 

scenarios) of results for each of the two contaminants analyzed.  Results were organized 

by contaminant and effect size. All estimates are based on an alpha of 0.05. 

Results 

 Kolmogorov-Smirnov (KS) tests suggested that the lognormal distribution did not 

fit the PCB data and the p,p'DDE data equally well.  The PCB distribution was marginal 

(P=0.0206) and the p,p'DDE distribution significantly differed from lognormal (P<0.01).  

This was likely due to the presence of six outliers in the upper tail of the p,p'DDE 

distribution.  When these outliers were removed, the KS test resulted in no evidence for 

significant departure from lognormality (P=0.1338).  Though log transformation did not 

successfully normalize the distribution, concentrations were positively skewed in a 

manner similar to log-normal distribution commonly seen in other contaminant research.  
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Furthermore, Figures 3 and 4, which show the log-scale data plotted against the normal 

distribution, do not suggest worrisome deviation from the assumed normal distribution, 

particularly in light of the known effect of substitution using ½ the detection limit for 

observations below the detection limit. For these reasons, and in keeping with 

environmental toxicology's convention of reporting geometric means, log scale 

concentrations were used in this analysis. 

 

 

Figure 3. Distribution of log-scale p,p’DDE concentrations (ldde) and the normal 

distribution, for comparison.  
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Figure 4. Distribution of log-scale PCB concentrations (lpcb) and the normal distribution, 

for comparison. 

 

 Standard deviation was calculated for the entire data set and for regional subsets 

since this investigation is intended to inform regional analysis.  Estimates were largely in 

agreement for both contaminants and all regional scales, ranging from (log-scale) 

approximately 0.67 ppb at the low end to approximately 4.19 ppb at the high end.  Since 

most of the estimates of standard deviation for regional subsets were close to the estimate 

based data from the entire state, the state-wide estimates of standard deviation were used.  
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The log-scale standard deviation for PCB concentrations was 1.23 ppb and the log-scale 

standard deviation estimate for p,p’DDE concentrations was 1.07. 

 For power analysis regarding p,p'DDE detection, results are summarized in 

Tables 1 through 4. Estimates of required sample sizes for p,p'DDE analysis are provided 

in Table 1 for balanced sampling structures. Table 2 provides estimates assuming twice 

the available number of reference sites to sites of suspected elevated contaminant 

concentration. Table 3 provides estimates assuming three times the available number of 

reference sites to sites of suspected elevated contaminant concentration. Table 4 provides 

estimates assuming four times the available number of reference sites to sites of 

suspected elevated contaminant concentration. 

 For power analysis regarding PCB detection, results are summarized in Tables 5 

through 8. Estimates of required sample sizes for PCB analysis are provided in Table 5 

for balanced sampling structures. Table 6 provides estimates assuming twice the available 

number of reference sites to sites of suspected elevated contaminant concentration. Table 

7 provides estimates assuming three times the available number of reference sites to sites 

of suspected elevated contaminant concentration. Table 8 provides estimates assuming 

four times the available number of reference sites to sites of suspected elevated 

contaminant concentration. 
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Table 1. Sample sizes required for detecting differences in log PCB 

concentrations between a site of suspected exposure and a reference site 

provided a balanced sampling structure. 

% Difference Power Total N Exposed Site N 

10 

0.80 430 215 

0.85 492 246 

0.90 576 288 

0.95 710 355 

15 

0.80 198 99 

0.85 226 113 

0.90 264 132 

0.95 324 162 

20 

0.80 114 57 

0.85 130 65 

0.90 152 76 

0.95 186 93 

25 

0.80 74 37 

0.85 84 42 

0.90 98 49 

0.95 122 61 
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Table 2. Sample sizes required for detecting differences in log PCB 

concentrations between a site of suspected exposure and a reference site 

provided an unbalanced sampling structure with twice as many reference 

site samples. 

% Difference Power Total N Exposed Site N 

10 

0.80 483 161 

0.85 552 184 

0.90 648 216 

0.95 798 266 

15 

0.80 222 74 

0.85 255 85 

0.90 297 99 

0.95 366 122 

20 

0.80 129 43 

0.85 147 49 

0.90 171 57 

0.95 210 70 

25 

0.80 84 28 

0.85 96 32 

0.90 111 37 

0.95 135 45 
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Table 3. Sample sizes required for detecting differences in log PCB 

concentrations between a site of suspected exposure and a reference site 

provided an unbalanced sampling structure with three times as many reference 

site samples. 

% Difference Power Total N Exposed Site N 

10 

0.80 572 143 

0.85 656 164 

0.90 768 192 

0.95 948 237 

15 

0.80 264 66 

0.85 300 75 

0.90 352 88 

0.95 432 108 

20 

0.80 152 38 

0.85 172 43 

0.90 200 50 

0.95 248 62 

25 

0.80 100 25 

0.85 112 28 

0.90 132 33 

0.95 160 40 
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Table 4. Sample sizes required for detecting differences in log PCB 

concentrations between a site of suspected exposure and a reference site 

provided an unbalanced sampling structure with four times as many 

reference site samples. 

% Difference Power Total N Exposed Site N 

10 

0.80 670 134 

0.85 770 154 

0.90 900 180 

0.95 1110 222 

15 

0.80 310 62 

0.85 350 70 

0.90 410 82 

0.95 505 101 

20 

0.80 175 35 

0.85 200 40 

0.90 235 47 

0.95 290 58 

25 

0.80 115 23 

0.85 130 26 

0.90 155 31 

0.95 190 38 
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Table 5. Sample sizes required for detecting differences in log p,p'DDE 

concentrations between a site of suspected exposure and a reference site 

provided a balanced sampling structure. 

% Difference Power Total N Exposed Site N 

10 

0.80 272 136 

0.85 310 155 

0.90 364 182 

0.95 448 224 

15 

0.80 122 61 

0.85 140 70 

0.90 164 82 

0.95 202 101 

20 

0.80 70 35 

0.85 80 40 

0.90 94 47 

0.95 114 57 

25 

0.80 46 23 

0.85 52 26 

0.90 60 30 

0.95 74 37 

  



39 
 

Table 6. Sample sizes required for detecting differences in log p,p'DDE 

concentrations between a site of suspected exposure and a reference site 

provided an unbalanced sampling structure with twice as many reference 

site samples. 

% Difference Power Total N Exposed Site N 

10 

0.80 306 102 

0.85 351 117 

0.90 408 136 

0.95 504 168 

15 

0.80 138 46 

0.85 156 52 

0.90 183 61 

0.95 225 75 

20 

0.80 78 26 

0.85 90 30 

0.90 105 35 

0.95 129 43 

25 

0.80 51 17 

0.85 60 20 

0.90 69 23 

0.95 84 28 
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Table 7. Sample sizes required for detecting differences in log p,p'DDE 

concentrations between a site of suspected exposure and a reference site 

provided an unbalanced sampling structure with three times as many reference 

site samples. 

% Difference Power Total N Exposed Site N 

10 

0.80 364 91 

0.85 416 104 

0.90 484 121 

0.95 600 150 

15 

0.80 164 41 

0.85 188 47 

0.90 216 54 

0.95 268 67 

20 

0.80 92 23 

0.85 108 27 

0.90 124 31 

0.95 152 38 

25 

0.80 60 15 

0.85 68 17 

0.90 80 20 

0.95 100 25 
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Table 8. Sample sizes required for detecting differences in log p,p'DDE 

concentrations between a site of suspected exposure and a reference site 

provided an unbalanced sampling structure with four times as many 

reference site samples. 

% Difference Power Total N Exposed Site N 

10 

0.80 425 85 

0.85 485 97 

0.90 570 114 

0.95 700 140 

15 

0.80 190 38 

0.85 220 44 

0.90 255 51 

0.95 315 63 

20 

0.80 110 22 

0.85 125 25 

0.90 145 29 

0.95 180 36 

25 

0.80 70 14 

0.85 80 16 

0.90 95 19 

0.95 115 23 
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Discussion 

 The purpose of this investigation was to determine the sample sizes that would be 

necessary to detect regionally elevated contaminant concentrations when compared to 

reference site concentrations. This highlights one of the benefits of maintaining an 

ongoing contaminant monitoring program. Having extensive records of background 

contaminant concentrations can provide an invaluable reference for identifying new areas 

of concern.  The contaminants discussed here are persistent and move through the aquatic 

food web. This makes individual watersheds (HUCs) a logical fine scale focus of trend 

investigation. In addition, humans share a place at the top of that food web with bald 

eagles, which makes monitoring bald eagle exposure a useful indicator of safety for 

humans.  It is important to keep power in mind when collecting and analyzing data.  

Especially in the environmental sciences, questions of compromise between Type I and 

Type II error must be weighed against the cost and consequences of each (Buhl-

Mortensen, 1996; Fairweather, 1991).  

 The sample sizes necessary to meet the power objectives for 10% or 15% changes 

in contaminant concentration would be difficult to achieve within a single year for a 

single watershed.  Many HUCs in the state have only a limited number of samples taken 

each year.  Roe (2004), however, showed that neighboring HUCs could be combined in 

order to achieve a sufficiently large sample size. Furthermore, if no samples are available 

for adjacent HUCs within a sampling year, they may be grouped with adjacent HUCs 

from different sampling years.  In the case of the kind of monitoring described here, 
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caution should be taken not to use data from outside the area of suspected exposure. 

While grouping adjacent HUCs from different sampling years may allow for greater 

sample sizes, it may also obfuscate locally elevated contaminant concentrations that were 

the intended focus of detection. The sample sizes necessary to meet power objectives for 

the detection of 20% or 25% elevation in contaminant concentration are not prohibitively 

large, and could likely be met within the normal sampling structure of the Michigan 

BEBP.  

 Sample sizes necessary for detection at every level are smaller for p,p’DDE 

concentrations than for PCB concentrations. This is a natural consequence of  the 

observed lower variance in measured concentrations for p,p’DDE. Our estimates of 

variance represent the ‘noise’ in the data that must be overcome to detect a statistically 

significant signal. The log-scale standard deviation for PCB concentrations was 1.23 ppb, 

while the log-scale standard deviation estimate for p,p’DDE was 1.07, which suggests 

more variability exists in the distribution of PCBs and therefore, a greater sampling effort 

is required to provide standard errors sufficiently small to result in statistical significance. 

 A key part of Michigan’s environmental quality monitoring program was the 

timing of sample collection, analyses, and reporting of the monitoring data for each HUC 

watershed. The strategy was intended to provided data concerning contaminant levels for 

the HUCs prior to the initiation of the National Pollutant Discharge Elimination System 

permit development and renewal process (MDEQ, 1997).  The BEBP was therefore 

developed on a five-year watershed cycle that allows for the HUCs to be monitored two 
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to three years prior to the actual permit issuance year. For this reason, it is also important 

to exhibit caution when combining neighboring HUCs, to ensure that all data collected 

for a HUC will be analyzed and available before that HUCs sampling year. This must be 

done to make sure that in cases of suspected elevated exposure for a locale, the permit 

process is not conducted before data are reported.   

 In conclusion, this analysis has shown that data from the Michigan BEBP could 

provide a valuable resource for documenting areas of concern in the state.  With 

sufficient sample sizes to detect 20% and 25% increases in contaminant concentration 

with a power of 0.80 or 0.85 easily obtainable and a large available pool of reference site 

samples for comparison, these data could help identify watersheds with emerging 

contaminant problems. If the area of suspected elevated contaminant concentrations was 

large enough that the combining of neighboring watersheds is appropriate, then greater 

power or smaller shifts in contaminant concentration could be detected. 
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Chapter 2: A comparison of techniques for assessing central tendency in left-

censored data using PCB and p,p'DDE contaminant concentrations from 

Michigan's Bald Eagle Biosentinel Program. 

 

Introduction 

 Monitoring contaminant levels in the environment is an important part of 

understanding the fate of ecosystems after a chemical insult.  As levels decrease over 

time, limitations in analytical equipment create a lower bound below which contaminant 

levels cannot be accurately reported.  This results in datasets with observations below the 

detection limit (DL) that are reported only as ‘non-detect’ or ‘< DL’ and no value is 

provided.  This type of distribution is called ‘left-censored’, as the low-end observations 

that are unknown generally occur near the origin of the x-axis in figures.  Several options 

for the analysis of these datasets have been investigated leading to the conclusion that 

methods replacing all non-detects with a single value (substitution  methods) are 

frequently inferior (Antweiler & Taylor, 2008; Baccarelli et al., 2005; Eastoe et al., 2006; 

Helsel, 2006, 2005b, 2005a; Liu et al., 1997; Needham et al., 2007; Singh & Nocerino, 

2002).  Specifically, it has been shown that the bias caused by substitution increases 

dramatically as the percent of observations censored  increases (Eastoe et al., 2006). In 

spite of this, various substitution methods continue to be used in research, frequently with 

little regard for the proportion of observations censored. 

 In addition to censored observations, another complication when analyzing 

environmental contaminant data is the possibility that datasets display a right skew.  This 
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occurs when a few samples show very high concentrations while the general tendency is 

for concentrations to be lower.  This distribution is common in environmental data and 

can frequently be accommodated by log-transformation.  The median has traditionally 

been an accepted measure of central tendency for data which do not fit a normal 

distribution well, and this approach has been used in almost every field of scientific 

inquiry.  Focus has shifted to newer approaches as more complex methods have been 

developed and computing power has grown to make them feasible for the average 

researcher.  While the median is still useful in that it is not based on indefensible 

assumptions about the shape of the distribution, it does not make use of all the 

information contained in a dataset.  A final complexity is added by the fact that 

lognormal data are frequently summarized using the geometric mean, which is 

particularly sensitive to the choice of substitution value.   

 In 1997, the Michigan Department of Environmental Quality (MDEQ) 

implemented a Bald Eagle Biosentinel Program (BEBP) to monitor trends of a suite of 

organic pollutants under the Clean Michigan Initiative (MDEQ, 1997).  The data 

analyzed here are 234 observations of polychlorinated biphenol (PCB) and p,p'-

Dichlorodiphenyldichloro-ethylene (p,p’DDE) concentrations found in nestling bald 

eagle plasma samples from throughout the State of Michigan.  Current statistical methods 

include tests of significant differences between regions at several geographic scales, and 

calculating descriptive statistics in the form of geometric means.  Substitution is currently 

used in cases of non-detect, or left-censored, observations.   
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 This choice of methods for addressing the non-detects does not affect testing of 

significant differences between regions.  The monitoring program uses nonparametric 

Kruskal-Wallis and Wilcoxon tests which are rank-based and make no assumptions about 

distribution and so, are not sensitive to the problems of substitution (Helsel, 2005).  

However, summary statistics are reported as geometric means, which are affected by the 

choice of substituted value.  The BEBP program currently substitutes the near-zero value 

of ‘0.0001’ for concentrations at non-detectable levels.  This near-zero value might 

appear to have little influence on the resulting calculations to those accustomed to 

arithmetic mean calculation because the arithmetic mean is a function of addition, for 

which ‘0’ is the identity value.  Geometric means on the other hand are a function of 

multiplication, for which the identity value is ‘1’, while near-zero values (like ‘0.0001) 

have a drastic impact on the product.   

 The desire to summarize data more accurately has fueled recent comparisons of 

proposed analytical alternatives to substitution or simple median reporting (Helsel, 2005).  

One alternative, maximum-likelihood estimation (MLE), forces the researcher to assume 

the shape of the underlying distribution, but is powerful if this assumption is correct.  

These MLE methods have been explored in a variety of environmental applications 

(Helsel, 2006, 2005b; Antweiler & Taylor, 2008; Jain et al., 2008; Singh & Nocerino 

2002).  Kaplan-Meier (KM) estimators have also been proposed.  This estimator began as 

a nonparametric method of estimating the central tendency in right-censored survival 

data, but is gaining popularity for left-censored datasets.  Among those who have 

explored the application of KM calculations in left-censored environmental data are 
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Antweiler and Taylor (2008), Eastoe et al. (2006), and Helsel, (Helsel, 2005b; 2005a).  

Multiple imputation (MI) has been proposed as a ‘fill-in’ technique that can be used to 

first estimate an appropriate distribution shape based on uncensored values, then samples 

from the values that would be found in the censored tail.  This technique has been 

addressed in comparison studies by Antweiler & Taylor (2008), Baccarelli et al. (2005), 

Eastoe et al. (2006), Helsel (Helsel, 2005b; 2005a), Krishnamoorthy et al. (2009), and 

Singh & Nocerino (2002).   Right-skewed, left-censored data were the focus of Singh & 

Nocerino (2002), who applied many analysis techniques common for left-censored data 

and assessed their performance when the observations also displayed a right skew. They 

found that left-censored datasets were more difficult to accurately summarize in the 

presence of a right skew.   

 Few case studies have been published and substitution is still in wide use 

(Baccarelli et al., 2005; Eastoe et al., 2006).  This study explored the effects of non-detect 

data and their treatment on summary statistics. The data analyzed in this paper represent 

both large (N=234) and moderate (n=12 to n=64) sample sizes with both good and 

marginal fit with a log transformation.  Summary statistics were calculated using the 

current method of substitution with ‘0.0001’, the common method of substitution with 

‘½*DL’, MI, and KM estimation.  The median was also calculated for comparison with 

all four methods.  The objectives were to (1) assess the fit of lognormal distribution to the 

data, (2) compare and contrast the performance of the four methods of non-detect 

handling in terms of estimated geometric mean, comparison to the median, and standard 

error, and (3) make recommendations based on those results. 
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Methods 

 Concentrations of total PCBs and p,p’DDE (
µg

/kg  ww) in plasma collected from 

nestling bald eagles across Michigan from 1999 to 2003 were used in these analyses.  In 

addition to analysis as a single dataset representing the whole State of Michigan, data 

were also classified geographically by subpopulation, based on the classifications used in 

the BEBP.  Subpopulations were defined by first subdividing the state spatially into the 

categories of Great Lakes and Inland breeding areas.  Great Lakes breeding areas are 

defined as being within 8.0 km of Great Lakes shorelines and/or along tributaries open to 

Great Lakes fish runs and inland breeding areas are defined as being greater than 8.0 km 

from the Great Lakes shorelines and not along tributaries open to Great Lakes fish runs.  

These categories are then further subdivided into four Great Lakes and two Inland 

groups. The Great Lakes subpopulations consisted of Lake Superior (LS), Lake Michigan 

(LM), Lake Huron (LH), and Lake Erie (LE). The Inland subpopulations consisted of 

Upper Peninsula (UP), and Lower Peninsula (LP) (Wierda, 2009).  The data analysis for 

this paper was generated using SAS® software, Version 9.1.2 of the SAS system for 

Windows.  Copyright 2000-2004 SAS Institute Inc.  SAS and all other SAS Institute Inc. 

product or service names are registered trademarks or trademarks of SAS Institute Inc., 

Cary, NC, USA. 

Assessment of Fit 

 Data were analyzed for significant departure from the lognormal distribution 

using the UNIVARIATE PROCEDURE with the options ‘normal’ and ‘plot’ activated 

(SAS Institute Inc., 2000-2004).  This procedure produces several fit statistics.  The 
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Kolomogorov-Smirnov statistic was used to assess the assumption of fit to the lognormal 

distribution.  The fit was classified as ‘good’ with p-values ≥ 0.05, ‘marginal’ with p-

values between 0.01 and 0.05, and fit was rejected for p-values<0.01. 

Geometric Means and Standard Error Calculation 

 Geometric means and standard errors were calculated for all of the proposed 

methods.  The median was used for comparison and obtained from the univariate analysis 

discussed above.  For substitution methods, geometric means and standard errors were 

calculated by log-converting observations, calculating the mean and standard error of the 

transformed data using the MEANS PROCEDURE (SAS Institute Inc., 2000-2004), and 

then converting back to the original scale.  Monte Carlo simulations were run in order to 

test the significance of the divergence of the geometric mean (using each method of 

substitution) from the median.  Each of these simulations resulted in a ‘p-value’ 

representing the probability of the observed divergence occurring due to sampling error 

alone.  Simulation resulting in p-values of 0.05 or less were considered evidence of a 

significant substitution method effect.  

 Geometric means and errors were calculated using the multiple imputation 

methods based on those described in Krishnamoorthy et al. (2009) and the MI 

PROCEDURE(SAS Institute Inc., 2000-2004).  Ten imputations were used on the 

recommendation of Jain, et al. (2008).  The option ‘EM’ was used to implement the 

maximum likelihood method of adjusting the approximated distribution from which 

imputed values were drawn.  Bounds were set to ensure that no negative values were 

imputed. 
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 Kaplan-Meier estimates of geometric mean and standard error were calculated 

using the LIFETEST PROCEDURE (SAS Institute Inc., 2000-2004) on log-transformed 

data.  This procedure is designed to perform survival analysis for right censored data, so 

data were transformed to reflect a right censored distribution.  The transformation was 

conducted by subtracting all log-transformed observations from a number larger than the 

largest observation.  This was done for PCBs by subtracting all observations from 12, and 

for p,p’DDE by subtracting all observations from 10.  Results were then transformed 

back to reflect geometric means and standard errors in the original units.     

 

Results 

Fit of Data to Lognormal Distribution 

 Kolmogorov-Smirnov (KS) tests did not force us to reject the assumption of 

lognormal distribution in all cases, but did suggest significant non-normality in others.  

Tests conducted for PCBs and p,p’DDEs at both the whole state and subpopulation level 

resulted in different conclusions.     

 At the state level, the PCB distribution was classified as marginal (P=0.0206) and 

p,p’DDE distribution was classified as significantly differing from lognormal (P<0.01).  

This was likely due to the presence of six moderate outliers in the upper tail of the 

p,p’DDE distribution.  When the outliers were removed, the KS test resulted in no 

evidence for significant departure from lognormality (P=0.1338), suggesting a good fit. 

 When broken down into the geographical units of subpopulation, KS analysis of 

PCB concentrations suggested that Lake Erie and Michigan coastal regions exhibited 
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marginal evidence for departure from the lognormal distribution.   Lake Huron and 

Superior coastal regions and both Upper and Lower Peninsula inland regions showed no 

significant departure from the lognormal distribution for PCB concentrations, suggesting 

a good fit of the data.  For p,p’DDE concentrations, the Lake Erie coastal region showed 

significant departure from normality (P<0.01), but all other regions showed good fit and 

the assumption of a lognormal distribution was considered sound. 

Geometric Means, Medians, and Standard Errors 

 For comparisons made at the whole state level, measures of central tendency in 

PCBs ranged from 33 
µg

/kg for the current method, to 78 
µg

/kg using MI.  The median PCB 

concentration was 77 
µg

/kg.  For p,p’DDE, central tendency measures ranged from 6 
µg

/kg 

using the current method to 20 
µg

/kg using MI, with a median concentration of 17 
µg

/kg.  In 

both cases the MI method produced the highest estimate of geometric mean, but was near 

the median and KM estimate, which was 69 
µg

/kg for PCBs and 18 
µg

/kg for p,p’DDE.  

Comparisons for both contaminants also resulted in the lowest estimate of geometric 

mean using the current method, as would be expected based on the mathematical 

underpinnings of geometric mean calculation.  The method of substitution using half the 

detection limit was consistently lower than the MI, K-M, and median, but much closer 

than the current substitution method.  Geometric means for each of the methods discussed 

as well as the median are shown for PCBs and p,p’DDE in Figure 1.  In addition to 

summary statistics, the figure shows error bars representing one standard error above and 

below the geometric mean for each method and each contaminant.   
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Figure 1.  Geometric means +/-  1 SE resulting from four methods of 

calculation for PCB and p,p’DDE levels within the state of Michigan.  

Median is included for comparison.  These 234 observations 

represent samples collected from 1999-2003. 

 

 

 The standard errors of the geometric mean at the state level for all of the methods 

discussed were similar.  Table 1 displays the standard errors, number of observations (N) 

and the rate of censorship for each contaminant.  For PCB concentrations, measures of 

standard error ranged from 1.1 using Kaplan-Meier, MI and half the DL methods to 1.3 

using the current 0.0001 substitution value.  For p,p’DDE concentrations, measures of 

standard error also ranged from 1.1 to 1.3.  Again, the current method of substitution was 

higher, with the remaining three methods lower and in agreement. 
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Table 1. Shows the standard error of the geometric mean resulting from four methods of calculation and the 

rate of censorship for the entire state of Michigan for PCBs and p,p’DDE.  The 234 observations represent 
samples collected from 1999-2003. 

Error Method 

PCB  
(µgkg-1) 

DDE  
(µgkg-1) 

 
6.41% Censored 10.26% Censored 

Kaplan-Meier 1.1 1.1 

MI-MLE 1.1 1.1 

0.0001 1.3 1.3 

Half the DL 1.1 1.1 

 

 

 Results at the subpopulation level follow the same trend as the whole state, with 

the current substitution method producing depressed geometric mean estimates and 

elevated standard errors.  The results of the geometric mean analysis and the medians for 

PCB and p,p’DDE concentrations are summarized in Table 2.  The standard errors for 

PCB and p,p’DDE concentrations are provided in Table 3.  Tables 2 and 3 also display 

the number of observations (n) and rate of censorship for each subpopulation.  

Subpopulations that were omitted in these tables were those that had no censored values.  

In all cases with no censored values the KM method resulted in the same estimate as both 

substitution methods.  Because these were instances in which no observations were 

missing and so, no substitutions were made, they were omitted to prevent them from 

being inappropriately interpreted as an instance of agreement between KM and 

substitution methods.   
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 Table 2.  Medians and geometric means of total PCBs and p’p,DDE concentrations for each subpopulation and each method of calculation.  Also included are the 

number of observations and rate of censorship for each subpopulation.  

 

 

PCB (µgkg-1) 

 

 

p,p'DDE (µgkg-1) 

 

   

   

 

   

Subpopulation 

 

Median 

Kaplan

-Meier 

MI-

MLE 

Current 

0.0001 

Half 

the DL n 

Censorshi

p (%) 

 

 

Median 

Kaplan-

Meier 

MI-

MLE 

Current 

0.0001 

Half 

the DL n 

Censorship 

(%) 

Lake Huron 135 121 124 430.0224 105 12 8 

 

36 29 29 110.0001 250.0182 12 8 

Lake Superior - - - - - - - 

 

32 29 33 8* 25 45 11 

Lower Peninsula 33 33 35 16* 31 49 6 

 

12 11 12 2* 100.0218 49 14 

Upper Peninsula 36 290.0077 36 4* 260.0004 64 17 

 

13 12 14 2* 110.0306 64 17 

Superscript P-values are provided for estimates that showed a significant substitution method effect based on Monte Carlo simulations. 
*P-value was less than 0.0001. 
There were no left-censored observations for PCB in the Lake Superior subpopulation. 
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 Table 3.  Standard errors of the geometric means of total PCBs and p’p,DDE concentrations for each subpopulation and each method of calculation.  Also included are 

the number of observations and rate of censorship for each subpopulation.  

 

PCB (µgkg-1) 

 

p,p'DDE (µgkg-1) 

 
  

      

Subpopulation 

Kaplan-

Meier 

MI-

MLE 

Current 

0.0001 

Half the 

DL n 

Censorship 

(%) 

 

Kaplan-

Meier 

MI-

MLE 

Current 

0.0001 

Half the 

DL n 

Censorship 

(%) 

Lake Huron 1.4 1.4 3.4 1.5 12 8 

 

1.2 1.2 2.9 1.3 12 8 

Lake Superior * * * * * * 

 

1.2 1.1 1.8 1.2 45 11 

Lower Peninsula 1.1 1.1 1.6 1.1 49 6 

 

1.1 1.1 1.8 1.1 49 14 

Upper Peninsula 1.1 1.1 1.9 1.1 64 17 

 

1.1 1.1 1.8 1.1 64 17 

*There were no left-censored observations for PCB in the Lake Superior subpopulation. 
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 Discussion 

Fit of Data to Lognormal Distribution 

 While not all of the datasets analyzed conformed well to the lognormal 

distribution, most were either a marginal or good fit.  The lognormal distribution is 

common when handling environmental data, so it is not surprising that many of these 

contaminant distributions are well approximated by it.  Singh and Nocerino (2002) have 

cautioned that parametric methods of calculating central tendency measures in left-

censored datasets can be less reliable when observations do not fit the assumed 

distribution.  In this analysis, the MI method would have been vulnerable to such 

problems.  In all cases, however, the MI geometric mean estimate was very close to the 

KM estimate, which is not vulnerable to such parametric assumptions.  Likewise, in the 

calculation of standard errors, MI performed almost identically to the KM method.  This 

suggests that MI is robust to at least minor deviations from an assumed distribution. 

Geometric Means, Medians, & Standard Errors 

 This study shows that the current method of near-zero substitution for calculating 

geometric means with left-censored data and a right skew performs poorly relative to the 

methods used for comparison in this study.  It resulted in the lowest estimated central 

tendency, which was farthest from the median, and resulted in the highest estimated 

standard error when compared to other methods.  Several investigations have provided 

evidence that methods replacing all non-detects with a single value (substitution 

methods) can introduce bias (Antweiler & Taylor, 2008; Baccarelli et al., 2005; Eastoe et 

al., 2006; D. R. Helsel, 2005; Dennis R. Helsel, 2005; Helsel, 2006; Liu et al., 1997; 



62 
 

Needham et al., 2007; Singh & Nocerino, 2002).  This is especially true for datasets with 

a large proportion of censored observations because bias caused by substitution increases 

dramatically as the percent of observations censored increases (Eastoe et al., 2006). 

While several of the alternatives are analytically intensive, many statistical packages now 

recognize the need and are designed to conduct such analyses.  As more programs 

accommodate this need the programming skill required will no longer be a prohibitive 

factor.  The problems of substitution in general, are compounded by the use of geometric 

means and especially the choice of substituted value (Helsel, 2006; 2005b).  While it may 

seem appropriate to choose a near-zero value such as ‘0.0001’, this inference is based on 

the mathematical underpinnings of the arithmetic mean, which differ from those of 

geometric mean calculation.  Arithmetic mean calculation is governed by the properties 

of addition, for which ‘0’ is the identity value.  This means that ‘0’ is the number which 

can be added to a series without changing the sum.  In calculating the arithmetic mean, a 

‘0’ allows the sum to remain unchanged while increasing N, which is the divisor.  In this 

regard, the purpose of substitution is to serve as a place holder that lets N increase 

without changing the numerator, thereby allowing the non-detects to affect the quotient 

only by inflating N.  Geometric mean calculation, however, is governed by the properties 

of multiplication, for which ‘1’ is the identity value.  In multiplication, in contrast to 

addition, near-zero values have a dramatic effect, while values near one are of the lowest 

impact.   
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Imagine the difference in this simple example, between the effects of: 

 

(1)  10,000 + 0.0001  = 10,000.0001 

(2)  10,000 * 0.0001  = 1 

When adding in (1), the result is very near the number with which we began.  When 

multiplying in (2) though, the result is 1, which is a drastic decrease from 10,000. 

 Estimates of geometric mean and standard errors for all methods except the 

current substitution method were largely in agreement.  This includes the other 

substitution method tested here of ‘½*DL’, which is common practice for contaminant 

monitoring programs.  In addition, these estimates were in close agreement with the 

median, which suggests that they are capturing the central tendency of contaminant 

concentrations and not overly sensitive to the censorship or skew in the dataset.  The 

maximum likelihood based MI estimates of geometric mean were consistently highest 

when accommodating these datasets, which suggests that they are the most vulnerable to 

right skew of the methods considered here.  Indeed, in Singh and Nocerino’s (2002) 

discussion of handling censored data in the presence of a right skew, they warned that 

such distribution based methods were “particularly susceptible to problems caused by 

outliers.”  They concluded that for large sample sizes and only when distributions could 

be satisfactorily fit, MLE-based analyses were good alternatives.  As stated above, some 

of our data were shown to be a poor fit to the assumed distribution.  However, MI 

provides an advantage over strict maximum likelihood estimators in that when it is used 

to ‘fill-in’ missing observations, sampling is done multiple times.  This provides the 
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distinct advantage of estimating the variance resulting from the procedure itself versus 

the variability in the actual contaminant concentrations.  Mutiple imputation estimators 

have also been previously found to produce unbiased estimates when the proportion of 

uncensored values was less than 50% (Jain et al., 2008).  Multiple-imputation estimates 

of standard error were similar to estimates produced by all but the current substitution 

method.     

 Kaplan-Meier estimates were first derived as a way of determining mean survival 

in datasets in which not all members of the sample died at the end of the experiment.  

This resulted in right censored distributions, which are common in engineering and 

medical trials (Helsel, 2005).  Increasingly, the common problems in analyzing right and 

left censored data have drawn researchers in the environmental field to apply these 

techniques.  Originally, left-censored data were simply transformed to make a right-

censored distribution by subtracting them from an arbitrary value larger than the largest 

observation.  As this method grows in acceptance, programs have begun to accommodate 

left-censored data without such transformations.   

 In this study, KM estimates did not seem as sensitive to the effects of right-

skewed data, which is a major benefit of using a nonparametric analysis technique.  The 

KM estimates of both geometric mean and standard error were overall quite similar to 

those produced by all but the current substitution method, though the geometric means 

estimates were consistently lower than the MI estimates, where differences occurred.  In 

other comparisons of data handling methods for left censored datasets, KM was 

determined to perform best in the determination of summary statistics (Antweiler & 
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Taylor, 2008).  As a testament to its robustness, it has been used as the standard of 

comparison in other studies of left censored data (Eastoe et al., 2006).   

Recommendations 

 Based on the findings here, KM statistics provide the best estimates of geometric 

means in data with both left hand censorship and a right skew, like those generated by the 

Michigan BEBP.  Differences between KM estimates and MI estimates were minor, 

which may tempt the conclusion that they are equally valid for these data.  However, 

based on the subtle trend here of MI to be pulled upward, and published evidence of the 

tendency of parametric analyses like MI to be biased by skewed data (Eastoe et al., 

2006), KM seems the best option.  Use of the nonparametric KM also provides 

theoretical consistency in that significant difference testing is already performed using 

nonparametric techniques. 

 For the dataset in this study, the common practice of substitution with ‘½*DL’ 

resulted in estimates of both geometric means and standard errors that did not differ 

greatly from other methods compared.  This must be interpreted with caution, however, 

since these data had low rates of censorship (6.41% for PCBs and 10.26% for p,p’DDE, 

at the state level).  It has been shown that the bias caused by substitution increases 

dramatically as the percent of observations censored increases (Eastoe et al., 2006). The 

agreement between this substitution method and more complex methods is likely a 

reflection of the low levels of substitution in these data; it should not be interpreted as 

evidence of equivalence between the ‘½*DL’ substitution method and MI or KM 

methods.  It may be concluded that substitution of ‘½*DL’ would be an acceptable 
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treatment of censored values only for studies with low levels of censorship.  Substitution 

is still common practice in toxicological studies, which makes it tempting to employ for 

the purpose of consistency.  However, substitution will become an increasingly 

problematic solution as monitored contaminants become less prevalent and a larger 

proportion of samples contain contaminant levels in the nondetectable range.  This is 

evident when comparing the data presented here to historical data.  For example, in the 

years from 1987-1993 Lake Huron nestlings provided no samples with non-detectable 

PCB concentrations compared with 8% of samples with non-detectable PCB 

concentrations in these data.  Only 4% of samples from Lower Peninsula nestlings and 

only 9% of samples from the Upper Peninsula had non-detectable PCB concentrations in 

the 1987-1993 dataset, compared with 6% and 17%, respectively here (Bowerman, 

1993).    We believe that as more studies of this nature are published and software 

increasingly accommodates left censored data, substitution methods will become less 

prevalent. 
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Chapter 3: Assessment of the effects of model specification on inferential 

conclusions regarding reproductive outcome as a function of site classification. 

 

Introduction 

Background 

The bald eagle (Haliaeetus leucocephalus) is considered to be primarily 

piscivorous, but also opportunistically forages on an array of avian, mammalian, and 

reptilian prey. They are associated with aquatic habitats throughout North America 

including coastal areas, rivers, lakes, reservoirs, and forested shorelines (Buehler, 2000). 

Mean clutch size has been estimated at 1.87 eggs per clutch and clutches usually range 

from one to three eggs (Stalmaster, 1987). Extensive research has been conducted on this 

high-profile raptor addressing life history characteristics and the influences of various 

stressors on reproduction. For this reason, tracking reproductive outcomes is useful both 

as an indicator of the health of the population itself, and as broad scale indicator of 

ecosystem changes.   

 It has also been shown through careful observation by ornithologists, that there is 

regional variation of recovery within eagle populations.  It appeared that nesting pairs 

along the Great Lakes coast were rebounding less successfully than inland populations 

(Best et al., 1994).  This suspicion was later confirmed as studies of contaminant 

concentrations from collected eggs, and later from nestlings, showed higher contaminant 

concentrations in areas with a Great Lakes centered prey base when compared to inland 
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areas (Wiemeyer et al., 1984; Bowerman et al., 2003, 1995).  This phenomenon set the 

stage for a source sink dynamic in the Great Lakes basin in which the less contaminated 

inland regions of the state supply sufficient young to keep the Great Lakes coastal 

populations growing in spite of reproductive productivity rates which still demonstrate 

impairment (Bowerman et al., 2003). 

 The State of Michigan has maintained a count of occupied bald eagle breeding 

areas and their reproductive outcomes that extends back to 1961. These records, initially 

collected during bald eagle nestling banding efforts, document the growth in the number 

of active and successful breeding areas. As nest numbers grew, accurate nest and outcome 

assessments could no longer be conducted by visiting every nest within the state during 

the breeding period and in 1977 U.S. Fish and Wildlife Service began flights for aerial 

nest and nestling enumeration.  Arial enumeration has continued on a yearly basis, though 

it is now carried out through the Michigan Departments of Natural Resources and 

Environmental Quality.  While the number of active territories has increased from 72 to 

over 600, outcomes are still obtained for every known occupied breeding area and 100-

200 nests are visited by ground crews, which serves to verify the flight based assessments 

of outcome.  The longevity and thorough nature of the data collection effort in Michigan 

have made it an extremely powerful information source. 

Problem Statement 

It is common practice in environmental monitoring to use summary statistics, 

such as means, in modeling trends, often referred to as 2-stage or derived data analysis.  
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Note: In keeping with established terminology, we will refer to summary 

statistics here as derived data, and to the method of analyzing derived data 

as 2-stage analysis. Likewise, we will refer to analyses conducted on raw 

data as 1-stage analysis.  

The raw data are often not normally distributed (for example: counts, presence/absence), 

but 2-stage analyses use methods that assume a normal distribution under the assumption 

that sample sizes used will sufficiently normalize the derived data being modeled. While 

the Central Limit Theorem suggests that for large samples (>30, generally), what 

constitutes sufficiently ‘large’ may vary based on the underlying complexities of the data 

source.  

When derived data are not used, there are additional complexities. For 1-stage 

analyses, data often consist of correlated (clustered) observations, such as repeated 

measurements made on the same site. This violates the assumption of independence of 

observations that is fundamental to parametric inferential analysis. In 2-stage analysis, 

this assumption is ignored by circumnavigation, and in 1-stage analysis, no adjustment 

can be made for this underlying correlation structure with ordinary linear regression 

techniques. Violating either or both of these assumptions of normality and independence 

can undermine the validity of significance tests.  

It is the goal of this study to investigate the differences in inference that would be 

drawn from 2-stage and 1-stage analysis. These comparisons will allow us to assess the 

impacts of specifying the underlying distribution of outcome measures and accounting 

for correlation amongst clustered observations. It is the further hope of this assessment to 
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inform best practices in analysis of such data with examples of analysis from real data, at 

several scales. 

Objectives 

Here, we present a retrospective analysis of bald eagle outcome data collected as part of 

the efforts of the Bald Eagle Biosentinel Program (BEBP). This regional trend analysis 

was conducted for two outcome metrics: Productivity and Success Rate, and at several 

levels, detailed below. The p-values resulting from statistical tests conducted using the 2-

stage vs. 1-stage methods, at each level of analysis are provided.  

Levels of Analysis 

Within the inland Upper Peninsula (UP), it was of interest to determine whether the trend 

shown by the new sampling areas of Ottawa National Forest (ONF) and Hiawatha 

National Forest (HNF) together, differed from the trend shown by inland UP sampling 

areas outside of the ONF and HNF. Within the inland Lower Peninsula (LP), it was of 

interest to determine whether the trend shown by the newer Manistee, Muskegon, Au 

Sable Rivers Area (MMA) differed from the trend shown by inland LP sampling areas 

outside of the MMA. These regional trends in Productivity and Success were assessed 

over the 20 year period from 1994 to 2013. 

Lastly, within each of the new inland sampling areas (ONF, HNF, MMA), we sought to 

determine if newly established nests provided redundant information regarding outcome 

estimates, which would suggest yearly flights for the purposes of identifying newly 

established nests are not necessary. To this end, we modeled trends in Productivity and 

Success based on the information from sites established prior to 2006 compared to the 
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same trends based on information from newly established nests. This comparison of 

trends in Productivity and Success was assessed over the 8 year period from 2006 to 2013 

for the UP and the ten year period from 2004 to 2013 for the LP. This difference was due 

to lack of newly established sites in the UP in the first 2 years of the planned comparison 

period beginning in 2004. 

 

Methods 

Outcome Metrics: 

Terminology used in this dissertation regarding bald eagle productivity and territories is 

that of Postupalsky (1974).  

Productivity (Prod) has been defined as the number of fledged young per active nest:  

              
∑   
 
   

 
 

where, 

 n = Number of active nests, and  

Pi  =  Number of young fledged from the i
th
 of n active nests. 

Because Productivity estimates represent counts, in source-method analysis they 

were modeled using a Poisson. 

 

Success rate (Succ) has been defined as the proportion of active nests Producing 

at least one fledgling: 

         
∑   
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where,  

n = Number of active nests, and  

Si = Indicator for Success for the i
th

 of n active nests,  

= 1, if Pi   1,  

= 0, otherwise. 

 Because Success estimates represent a binary indicator variable derived from 

counts, in source-method analysis they were modeled using a Binomial distribution.  

Distribution and Trend Analysis 

Retrospective analysis of bald eagle reproductive outcome data was performed on 

data collected as part of the efforts of the BEBP. This regional trend analysis was 

conducted for two outcome metrics: Productivity and Success rate, and at several levels. 

At each level of analysis, we provide a summary of the fit of the summary statistics to the 

normal distribution. The fit of the summary statistics to the normal distribution will be 

assessed using the Shapiro-Wilk test. While power is low for all tests of normality in 

samples as small as seen here (n=20, n=10, n=8), the Shapiro-Wilk test was used to 

assess the fit of the summary statistics to the normal distribution due to its tendency to 

maintain better power in small sample sizes (Razali & Wah, 2011; Zeger et al., 1988). 

Because of this, it is best not to rely on significance tests alone and plots of data were 

visually inspected. 

We also provide for comparison of detection of trends of interest, the p-values 

resulting from statistical tests conducted using the 2-stage vs. 1-stage analysis methods, at 

each level of analysis. Models for trends using summarized data were built and 
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hypothesis testing was conducted using the GLM procedure in SAS software version 9.3 

(SAS Institute Inc., 2011), and significance was tested based on the F statistic associated 

with the interaction between classification and year. Models for trends using raw data 

were built and hypotheses were tested using the GENMOD procedure in SAS software 

version 9.3  (SAS Institute Inc., 2011), and significance was tested based on the Z 

statistic associated with the interaction between classification and year in the Generalized 

Estimating Equation (GEE) models. This procedure allows for marginal models with the 

specification of non-normal distributions for the outcome variables, which gave us the 

ability to model Productivity as a Poisson-distributed variable, and Success as a 

Binomial-distributed variable. This also allowed for GEE models to include estimation of 

intra-site correlations at the site level that perform like conventional auto regressive 

correlation, but limit the correlation to m steps. For regional trends, 5-time step 

autocorrelation structure was specified based on the best fit to the whole state data, and 

chosen by comparing QIC for a set of ecologically based candidate structures, as 

recommended by Hardin and Hilbe (2003). Analyses for both modeling methods included 

year as a direct continuous independent variable and region and newness variables 

included as classifications. Interaction terms in the models, (classification*year) provided 

appropriate tests of significance for differences in population-averaged Productivity and 

population-averaged Success trends over time, as a function of region or newness of nest 

site.  

Tests of statistical significance were conducted with α=0.05. 
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Results 

Distribution Fit Tests 

For distribution tests, Shapiro-Wilk tests on their own provided little evidence that the 

assumption of normality was violated when analyzing derived productivity data or 

derived success data. Table 1 displays p-values for Shapiro-Wilk tests of normality for 

both mean productivity and mean success data at all levels of analysis. Only the derived 

success data for newly established and long-standing, inland LP sites displayed 

statistically significant deviations from normality, as assessed by the Shapiro-Wilk test. 

However, plots of the distributions suggested that many of the sets of derived data were 

substantially non-normal. Plotted data show evidence of a tendency to deviate from the 

normal distribution. Figures 1 through 4 show horizontal bar charts of binned values and 

observed data plotted against the expectation for normal quantiles. As an example of 

reasonably good fit to the normal distribution Figure 1, provides a visual representation 

of the derived productivity data at the whole state level. An example of evidence of 

skewness is shown in Figure 2. An Example of evidence of leptokurtosis is shown in 

Figure 3. Finally, an example of evidence of platykurtosis is shown in Figure 4. 
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Table 1. Shows p-values for Shapiro-Wilk tests of normality for summarized productivity and success data, at several levels of analysis. 

Distributions Analyzed, Organized by Comparison Level 

P-values for Shapiro-Wilk Tests of Normality 

Productivity Data Success Data 

Whole State 0.9769 0.2268 

 

New Established New Established 

Inland UP: New (HNF/ONF) vs. Old 0.4688 0.1393 0.2593 0.8573 

Inland UP: HNF vs. ONF 0.0733 0.6687 0.8457 0.7814 

HNF/ONF: Gogebic vs. Iron Counties 0.9689 0.5301 0.8115 0.9317 

Inland LP: New (MMA) vs. Old 0.5727 0.9464 0.7220 0.7115 

Inland UP (2006-2013): Newly Established vs. Long-standing  0.3651 0.3440 0.8253 0.9099 

Inland LP (2004-2013): Newly Established vs. Long-standing 0.8488 0.0107* 0.8002 0.0175* 

* Signifies statistical significance at the α=0.05 level 
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Figure 1. Distribution and fit plots for the normal distribution and derived productivity 

data at the whole state level, showing good conformation to the normal distribution. 
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Figure 2. Distribution and fit plots for the normal distribution and derived success data 

for the new inland UP sites, showing evidence of skewness. 
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Figure 3. Distribution and fit plots for the normal distribution and derived Productivity 

data for the old inland UP sites, showing evidence of leptokurtosis. 
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Figure 4. Distribution and fit plots for the normal distribution and derived Productivity 

data for the long-standing UP sites, 2006-2013, showing evidence of platykurtosis. 
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Trend Analysis  

Analysis of bald eagle reproductive outcome data was performed on data collected as part 

of the efforts of the BEBP. Trends in reproductive outcome over time are of interest to 

the BEBP, and the goal of this analysis was to compare conclusions that would be drawn 

from summarized versus raw data. Analysis was conducted for two outcome metrics: 

Productivity and Success rate, and at several levels. Table 2 provides levels of analysis 

and associated p-values for significance of temporal trends in productivity from statistical 

tests conducted using the 2-stage vs. 1-stage analysis methods, at each level of analysis. 

Table 3 provides levels of analysis and associated p-values for significance of temporal 

trends in success from statistical tests conducted using the 2-stage vs. 1-stage analysis 

methods, at each level of analysis.
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Table 2. Displays p-values for significant difference in productivity trends by region or degree of establishment. For 

comparison, p-values from the summarized data and raw data based models are shown, with levels showing instances of 

disagreement indicated with (
§
). 

Comparison Level P-values for Statistical Significance of Productivity Trend by Model Type 

  Summarized Data (Normal Dist)   

Raw Data (Poisson Dist, 

Clustering) 

Inland UP: New (HNF/ONF) vs. Old 0.1680 

 

0.1543 

Inland UP: HNF vs. ONF
§
 0.0832   0.0121 

HNF/ONF: Gogebic vs. Iron Counties
§
 0.0122   0.0626 

Inland LP: New (MMA) vs. Old 0.1026 

 

0.0618 

Inland UP: Long-standing vs. Newly 

Established
§
 0.0024   0.1726 

Inland LP: Long-standing vs. Newly 

Established 0.2726   0.9408 
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Table 3. Displays p-values for significant difference in productivity trends by region or degree of establishment. For 

comparison, p-values from the summarized data and  raw data based models are shown, with levels showing instances of 

disagreement indicated with (
§
). 

Comparison Level P-values for Statistical Significance of Success Trend by Model Type 

  Summarized Data (Normal Dist)   

Raw Data (Binomial Dist, 

Clustering) 

Inland UP: New (HNF/ONF) vs. Old 0.1328 

 

0.1981 

Inland UP: HNF vs. ONF 0.2286 

 

0.0890 

HNF/ONF: Gogebic vs. Iron Counties 0.0022 

 

0.0238 

Inland LP: New (MMA) vs. Old 0.4333 

 

0.3607 

Inland UP: Long-standing vs. Newly 

Established
§
 0.0058   0.1437 

Inland LP: Long-standing vs. Newly 

Established 0.5164   0.4259 
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Discussion 

Distribution fit tests 

The good fit of the summarized data at the whole state level is not surprising, 

given that the sample sizes contributing to the calculated means are large (n=266-710 per 

year). This fit of data at this broad level to the normal distribution was supported not only 

by statistical tests for fit, but also by visual inspection of plotted data. This suggests that, 

at the whole state level, trend monitoring can be reasonably conducted using summarized 

data. If trends at the whole state level are relevant for monitoring purposes, then, the 

simpler method of using summary statistics appears sufficiently robust to violation of 

distribution assumptions to provide valid overall estimates. It should be noted, however, 

that confidence intervals on such estimates would be affected. 

At finer scales of analysis, however, it seems likely that the data are not 

sufficiently normalized by the process of calculating means. While Shapiro-Wilk tests 

rarely reflected statistically significant deviation from the normal distribution for 

summarized data, it is important to recall the well documented low power of normal 

distribution fit tests in data sets with n≤20. It has been shown that while the Shapiro-Wilk 

test tends to perform best in smaller sample sizes, it’s power can drop as low as <10%, 

depending on the type of non-normality in the distribution, and plots should be also 

inspected when assessing distribution assumptions (Farrell & Rogers-Stewart, 2006; 

Noughabi & Arghami, 2010; Razali & Wah, 2011; Romão et al., 2009; Seier, 2002). 

Plots of data suggested that, at various levels of analysis, there are likely issues of both 

skewness and kurtosis, both large and small. While parametric analysis is often 
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considered to be relatively robust minor violations of normality, the trends of interest 

here involve regional comparisons that quickly limit the size of samples contributing to 

summary statistics used, which make violations of this assumption riskier.  

Trend Analysis 

In addition to distribution specification, correlation structures were accounted for 

in modeling trends based on the raw data. Model comparisons were not conducted at the 

whole state level, as no inference was conducted.  

It has been shown that differences occur in productivity as a function of the nature 

of the watershed that serves as the primary food source. Region-related influencing 

factors can include human encroachment, contaminant concentration, prey base, 

susceptibility to climate variation, and others (Bowerman et al., 1995; Buehler, 2000; 

Garrison, 2010; Hansen, 1987; Stalmaster, 1987; Wiemeyer et al., 1993, 1984). It is 

therefore of interest for the BEBP to detect regional differences in reproductive outcomes 

as both an indicator of the population trends for the bald eagle, and a potential indicator 

of ecological events. 

This investigation concerned differences in average outcome trends as a function 

of region, and site level estimates were not of interest. For this reason, the marginal 

models applied using GEE were suited to our needs. In cases where inferences are being 

made, it is important that relevant characteristics of the data are accounted for. 

Distribution specification and correlation structure can substantially impact estimates of 

standard error. Depending on the distribution, marginal means can be incorrectly 
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estimated. If there is a correlation between observations, such as repeated measurements 

taken at the same site over several years, estimates of standard error can be over or under 

estimated depending on the relationship between time and classification level (Dunlop, 

1994). Fortunately, when the data contain many clusters, GEE based inference is 

relatively robust to mis-specification of the underlying correlation matrix (Hardin & 

Hilbe, 2003; Stroup, 2013; Zeger et al., 1988). 

There were four cases in which the conclusions of inferential analysis differed for 

the two model types. Three of these differences were for trends in productivity. This was 

for the comparison of inland UP comparing trends in the HNF and ONF, within the new 

inland UP areas comparing trends in Gogebic and Iron counties, and for the new inland 

UP areas comparing trends for newly established versus long-standing sites. For the later 

of these two, the 2-stage analysis model suggested significant difference in productivity 

trends, while the 1-stage analysis model did not. For analysis of productivity trends in the 

inland UP comparing the HNF to the ONF, 2-stage analysis models suggested a 

significant difference while 1-stage analysis did not reflect statistically significant 

differences. This shows that use of the raw data and full specification of the data structure 

leads to differences in the conclusions that might be drawn about regional trends. 

The fourth observed difference was in the analysis of trend differences for 

success. This difference was observed for comparisons between newly established versus 

long-standing inland UP nests. Two-stage analysis analysis suggested that success was 

significantly different, while 1-stage analysis accounting for correlation within site 

suggested no significant differences as a function of establishment.  
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In the cases where differences were found, two potential complications to the 1-

stage analysis existed. For the analysis of productivity trends comparing inland UP sites 

in the HNF and ONF and analysis of HNF/ONF sites comparing trends for Gogebic and 

Iron counties, the regional restrictions limited the number of clusters in the analysis 

drastically. This means that sensitivity to misspecification of correlation structure may 

have been a problem. Sensitivity to this was assessed by conducting the same analysis 

with the correlation specified m-step dependent, with m=1 to 4 [mdep(1)-mdep(4)], for 

comparison to the initially applied m=5 model. Table 3 shows that in none of the cases 

did the change in correlation structure result in a change in statistical significance of the 

interaction term. This provides confidence in the robustness of our conclusion of no 

statistically significant difference in trends for regional comparisons of HNF vs. ONF, as 

well as for the observed statistical significance of regional trend differences comparing 

Gogebic County to Iron County. 

For the analyses of productivity and success trends based on degree of 

establishment and additional complication is apparent. As with the comparisons 

discussed above, the number of clusters was limited at this level of analysis, so a similar 

exploration of sensitivity to correlation structure specified was conducted. However, 

there is also a more complex relationship between time and reproductive outcome when 

newly established nests are analyzed. There is reason to believe that attempts at mating 

tend to fail more often for newly established sites than for long-standing sites, possibly 

due to a learning curve for the breeding pair as newly established sites are often the result 

of newly paired eagles, early in maturity (Best et al., 1994). 
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Table 4. Statistical significance with varying specifications of the correlation matrix. As 

initially modeled, the p-value was 0.0121 for HNF versus ONF, and 0.0626 for Gogebic vs. 

Iron County. 

Comparison 

Correlation Structure 

mdep(4) mdep(3) mdep(2) mdep(1) 

HNF vs. ONF 0.0126 0.0103 0.0095 0.0125 

Gogebic vs. Iron County 0.0591 0.0613 0.0662 0.0521 

 

 

This means that trends over time for newly established nests are more likely to 

show an increasing trend for reproductive outcomes due to unstable initial attempts 

resolving to stable levels, rather than steady improvement from a stable starting level of 

productivity. Dunlop (1994) cautioned that time dependent correlations can bias 

estimates of significance in GEE models. For this reason, in addition to assessing the 

statistical significance of trend by establishment interactions with different correlation 

structures, it was also of interest to investigate the statistical significance of this 

interaction with the time series truncated to eliminate the potential influence of the 

learning curve.  

Three of the 32 variations in specified correlation structure resulted in a change of 

inference where trends in productivity and success as a function of establishment were 

concerned. Table 4 displays the p-values for the assessment of establishment trend 
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interactions under three truncated models and different m-dependent correlation 

structures, with m=1-4. This table also makes evident the greater sensitivity to inclusion 

of first years of establishment, reflected by differences in p-values within the column, 

than to specification of correlation structure, reflected by the similarity of p-values within 

rows. In 2006, there was only one newly established site, so the standard error was 

inestimable. This, along with the addition of a second newly established site in 2007 so 

that the error was then estimable, are likely the driving factors behind the significance 

trends from ‘Earliest Year: 2006’ model to the ‘Earliest Year: 2007’ model. It further 

follows that as the earliest year included moves later and the significance dissipates, as 

you’d expect with the early reproductive attempts eliminated, thereby removing the data 

reflecting the observed ‘learning curve’ effect. Though not seen here consistently, Stroup 

(2013) discusses issues of ‘over-modeling’ compromising power, which one might 

expect to result in higher p-values in shorter time-series analyses with higher m-

dependent structures.  

 If estimation is the goal, derived data are an efficient and reliable method of 

calculating point estimates and trends. In this analysis, no changes in inference were seen 

where sample sizes contributing to summary statistics were greater than 35. This suggests  

that, where sample sizes are large, it may be safe to make inferences based on 

summarized data. It was unclear from this comparison if differences in inference 

regarding the bald eagle reproductive outcome regional trends would be consistently over 

or under estimated, but differences in inferential conclusions were evident. Due to this, 

and the fact that regional comparisons quickly reduce per-group sample sizes, it would be 
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good practice to use models with raw data distribution and underlying correlation 

specified.  

The analyses presented here were conducted using generalized estimating 

equations, but other options are available. Site level inference would not be possible with 

this method, as intra-panel variation is treated as a nuisance parameter and standard errors 

are not estimated. Assumptions regarding missing data are stronger for GEE than for 

other mixed model estimation methods. These methods are frequently applied in health 

care setting where this is a difficult requirement to meet. This is less of a worry here, 

though worth considering, as there is a possibility that the same factors that result in an 

Table 5. Statistical significance with varying specifications of the correlation matrix, with cases of 

changed inference indicated by (
§
). As initially modeled, the p-value for differences in productivity trends 

was 0.1726 and the p-value for differences in success trends was 0.1437. 

Reproductive Outcome Earliest Year 

Correlation Structure 

mdep(4) mdep(3) mdep(2) mdep(1)   

Productivity 

2006 0.1696 0.1280 0.1352 0.1490 

 

2007 0.0611 0.0428
§
 0.0278

§
 0.0368

§
 

 

2008 0.6959 0.7394 0.7370 0.7668 

 

2009 0.9077 0.9612 0.9537 0.9657 

 

 

            

 

Success 

2006 0.1439 0.1459 0.1459 0.1704 

 

2007 0.0806 0.0822 0.0698 0.0947 

 

2008 0.8617 0.9080 0.8911 0.9691 

 

2009 0.7659 0.7915 0.7953 0.7991   
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inactive site would have resulted in poor reproductive outcomes. Analysis using 

generalized linear mixed models would be worthy of exploration, though their 

performance in data sets with small sample sizes has not been well explored and current 

functionality does not allow for autocorrelation of repeated measurements beyond 

standard autoregression (SAS Institute Inc., 2011; Stroup, 2013). While many have 

cautioned against inference based on small samples in GEE, Hubbard, et al. (2010) did 

not find substantial bias in estimates of standard error when simulating small sample 

sizes. This suggests at least, that more work is needed in this area and further 

comparisons between the results here and other candidate models would be informative.  
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Conclusions 

 

 This collection of three studies addressed statistical concerns encountered in 

evaluating data from the Michigan Bald Eagle Biosentinel Program. Power to detect 

areas of concern, handling of data with censored values, and the impacts of model 

specification in analyzing correlated Poisson and binomial data were investigated. 

 Power analysis has shown that data from the Michigan Bald Eagle Biosentinel 

Program (BEBP) could provide a valuable resource for documenting areas of concern in 

the state.  Log-transformed data were determined to deviate from the normal distribution 

to different degrees for measured PCB and p,p’DDE concentrations. Estimated standard 

deviations for PCB and p,p’DDE concentrations within each regional subset analyzed 

were close to the estimate based data from the entire state. Analysis was conducted based 

on state-wide standard deviation estimates of 1.23 ppb for PCB concentrations and 1.07 

ppb for p,p’DDE.  Necessary total sample sizes were estimated for scenarios with power 

of 0.80, 0.85, 0.90, and 0.95 based on changes of 10%, 15%, 20%, and 25% in observed 

concentration, and ranged from 74 to 1110 for p,p’DDE and 46 to 700 for PCB 

concentrations.  

 In analysis of methods of estimating central tendency, log-transformed data were 

determined to deviate from the normal distribution to different degrees for measured PCB 

and p,p’DDE concentrations, and differently for regional subgroups. Several methods of 

central tendency estimation were compared, both in application to the BEBP data, and in 

simulation studies. Based on the findings here, Kaplan-Meier (KM) statistics provide the 



98 
 

best estimates of geometric means in data with both left hand censorship and a right 

skew, like those generated by the Michigan BEBP. It may also be concluded that 

substitution of ‘½*DL’ would be an acceptable treatment of censored values only for 

studies with low levels of censorship (<11% based on this analysis). 

 Finally, the ability to detect regional differences in trends of reproductive 

outcome was assessed. Regional comparisons of interest were defined based on the needs 

of the BEBP. Summary statistics showed varying fit to the normal distribution, and while 

Shapiro-Wilk tests rarely reflected statistically significant deviation from the normal 

distribution plots indicated that at several levels evidence of non-normality was present. 

Models were fit to the raw data, specifying the discrete distributions from which 

reproductive outcomes arise, as well as correlation structures for repeated measures. No 

changes in inference were seen where sample sizes contributing to summary statistics 

were greater than 35. Because regional comparisons quickly reduce per-group sample 

sizes, however, it would be good practice to use models with source data distribution and 

underlying correlation specified. 

In summary, this collection of studies suggests that: 

1.  sufficient sample sizes to detect 20% and 25% increases in contaminant 

concentration with a power of 0.80 or 0.85 are easily obtainable and these data 

could help identify watersheds with emerging contaminant problems. If the 

area of suspected elevated contaminant concentrations was large enough that 

the combining of neighboring watersheds is appropriate, then greater power or 

smaller shifts in contaminant concentration could be detected.  



99 
 

2. Improved estimates of central tendency could be obtained by careful handling 

of data with observations that fall below the limit of detection. This is 

particularly important for data with levels of censorship above 11%. 

3. If estimation is the goal, summarized data are an efficient and reliable method 

of calculating point estimates and trends. Where sample sizes are large, it may 

be safe to make inferences based on summarized data, but differences in 

inferential conclusions were evident in some cases and, it would be good 

practice to use models with source data distribution and underlying correlation 

specified. 
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