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ABSTRACT 
 
 

     Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic compounds 

consisting of two or more fused benzene rings.  PAHs derive from many different sources 

including petroleum refining, wood treatment, and coal coking industries.  Because of 

their structural stability and water insolubility, PAHs are extremely resistant to 

degradation.  These compounds are also believed to have mutagenic, carcinogenic, and 

teratogenic effects.  Therefore, there are currently 16 PAH compounds on the EPA’s list 

of priority pollutants.   

     Many species of bacteria have the ability to breakdown these persistent pollutants.  

However, bioremediation strategies using these organisms have many unresolved issues.  

While laboratory experiments can easily demonstrate the ability of these organisms to 

breakdown pollutants, environmental factors may reduce degradation abilities in situ.    

     Within the prokaryotes, members of the genus Sphingomonas have demonstrated a 

greater ability to breakdown PAHs.  Spingomonas paucimobilis EPA505, for example, 

was shown to degrade a wide range of PAHs including the high molecular weight PAH 

fluoranthene, which it could also use as a sole carbon source.  Because of its potential as 

a bioremediation tool, it is important to study the molecular basis of PAH catabolism in 

EPA505.   

     A genomic library of EPA505 was constructed and probed for genes involved in PAH 

degradation.  Complete gene sequences were obtained for four subunits which are 

involved in the first step of the PAH catabolism.  This step is catalyzed by a dioxygenase 

enzyme and yields a dihydrodiol intermediate.  Two of the gene sequences encode an 
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alpha and beta subunit of the dioxygenase.  The third gene encodes a ferredoxin subunit 

and the fourth gene codes for a ferredoxin reductase subunit.   

     The four genes were cloned for expression.  Expression host cells were induced to test 

the activity of the four recombinant proteins on various PAHs.  When cells expressing all 

four subunits were incubated with naphthalene and phenanthrene, the corresponding 

dihydrodiol product was detected using GC-MS.  No dihydrodiol product was detected 

when fluoranthene was tested.  In addition, no dihydrodiol products were detected for any 

substrate when cells lacking the two ferredoxin subunits were tested.   

    This study identified and showed functional analysis of one enzyme, a PAH degrading 

dioxygenase in the PAH catabolic pathway of Sphingomonas paucimobilis EPA505.  

There is still much to learn in order to fully appreciate and take advantage of this 

organism as an efficient tool for bioremediation.   
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LITERATURE REVIEW 

 

1.1 Polycyclic Aromatic Hydrocarbons 

     Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic compounds 

consisting of two or more fused benzene rings.  Ring arrangement can be linear, angular 

or clustered.  These compounds are generally classified into two categories based on size: 

1) low molecular weight (LMW) PAHs which contain two or three benzene rings and   2) 

high molecular weight (HMW) PAHs which contain four or more rings.  For example, 

naphthalene, phenanthrene and anthracene would be considered LMW PAHs whereas, 

fluoranthene, pyrene and chrysene would be considered HMW PAHs.   

     PAHs derive from many different sources including petroleum refining, wood 

treatment, and coal coking industries.  Other sources of PAHs can include gasoline and 

diesel fuel combustion, and tobacco smoke (1).  PAHs are ubiquitous pollutants which 

can contaminate water, vegetation and food.  These compounds and their derivatives can 

be found in the air, soil, surface water, groundwater and runoff.  Pollutant concentration 

varies widely throughout the environment ranging from 1µg/kg to over 300g/kg.  Factors 

that determine the amount of contamination include distance from the source, level of 

industrial development, and mode of transport for the pollutant (39). 

     The aromatic structures of PAHs make them chemically stable molecules.  They are 

water insoluble and form hydrophobic interactions with soil particles.  Because of their 

structural stability and water insolubility, PAHs are extremely resistant to degradation.  

They sorb strongly to soil particles and become inaccessible for degradation.  Larger 



 2

PAH molecules are more hydrophobic, and more resistant to degradation and therefore 

have a higher prevalence in the environment.  For example, phenanthrene, a three-ringed 

PAH, may have a half life of 16 to 126 days.  The half life of the five ringed PAH 

benzo[a]pyrene (Ba P), however, can range from 229 to 1,400 days (3).   

 

1.2 Health Risks 

     Health risks associated with PAHs have been well documented.  These compounds are 

thought to have mutagenic, carcinogenic, and teratogenic effects.  Because of these 

concerns, there are currently 16 PAH compounds on the EPA’s list of priority pollutants 

(Table 1.1) (4).   

     Kusk et al. (5) found a significant decrease in the photosynthetic activity of green 

algae that were exposed to PAHs.  PAHs have also caused digestive cell death in mussels 

(6), decreased reproductive rates in rainbow trout (7), and increased mortality rates in 

crustaceans (8).   

     With regard to mammalian studies, mice that were fed high levels of one PAH during 

pregnancy had difficulty reproducing as did their offspring. The offspring also had higher 

rates of birth defects and lower body weights (4). PAHs have caused lung cancer in 

laboratory animals that were exposed to contaminated air, stomach cancer when fed 

contaminated food, and skin cancer when PAHs were applied directly to the skin (4). 

     PAHs can contaminate vegetation through the soil and through runoff.  They can then 

be taken up by mammals through the digestive tract when contaminated food is ingested 

(9).  PAHs can even be transferred to humans through the consumption of seafood that 
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was caught in contaminated waters (10).   Because of the chemical nature of these 

compounds, they might associate with lipid components in biological tissues and interact 

with DNA to cause mutations in both prokaryotic and eukaryotic cells (11). 

     An example of the toxic effects of PAHs can be shown with naphthalene.  

Naphthalene binds to molecules in the liver, kidney and lung tissues and is known to 

inhibit mitochondrial respiration (12).  Phenanthrene, is known to be a photosensitizer of 

human skin and is also mutagenic to bacteria (13).  These are examples of some of the 

effects of LMW PAHs and it is thought that larger PAHs pose more serious health 

hazards (14).  

     It is true that these pollutants do undergo degradation in the environment over time.  

The rate at which this occurs, however, is much slower than the rate at which new PAHs 

are released into the environment.  The Exxon Valdez oil spill of 1989, for instance, 

affected the fate of many organisms.  The pink salmon community in particular showed a 

reduction in egg survival rates for many years.  Contaminants were also transferred by 

tidal cycling and hydraulic gradients to reach developing embryos.  In recent years, 

significant changes in the spawning habitats were seen, which indicated the salmon were 

recovering from the spill (15).  Although this is good news, it is evidence of the 

persistence of PAHs in our environment.  After more than a decade, the effects of this 

major environmental incident have still not completely disappeared.   

     Old PAH contamination is not the only problem to solve.  There are much more recent 

examples of large scale PAH pollution.  The September 11th attacks gave rise to the 

release of 100-1000 tons of PAHs throughout lower Manhattan and beyond.  The highest 
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PAH concentrations were found at the sites closest to the fires.  Those involved in the 

cleanup have been affected greatly.  There have been numerous reports of PAH related 

respiratory illness including, persistent coughs, bronchitis, and new cases of asthma.  It is 

said that these people and others who were exposed have a real risk for lung cancer in the 

future (16).   

      

1.3 Bioremediation  

     Many bioremediation strategies have been developed to clean up PAH contamination.  

Some species of bacteria, fungi and even plants have the ability to degrade these 

pollutants.   

     Although it was believed that eukaryotic organisms could not cleave the fused rings of 

PAHs, Hammel et al. showed the mineralization of phenanthrene by the lignolytic fungus 

Phanerochaete chrysosporium (17).  The white rot fungus Pleurotus ostreatus also 

demonstrated the ability to metabolize phenanthrene (18).   

     Phytoremediation, another bioremediation strategy, involves the use of plants to clean 

up contaminated soil.  Levels of acenaphthalene, anthracene, phenanthrene, naphthalene, 

and fluoranthene all decreased significantly in soils planted with green ash and hybrid 

poplar trees compared to unplanted soils.  There was also an increase in the population of 

microbial degraders in the planted soil versus the unplanted soil (3).  The authors 

suggested the trees increased the rates of PAH degradation through microbial activity in 

the rhizosphere.        
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     Although bacteria in the rhizosphere might assist plants in effectively degrading 

PAHs, they can certainly clean up contaminated soils independently.  Bacteria are well 

known for their adaptation abilities and diverse characteristics.  Many species of bacteria 

are known to degrade PAHs.  Heitkamp and Cerniglia found Mycobacterium PYR-1 can 

degrade fluoranthene, naphthalene and phenanthrene but cannot use these compounds as 

a sole carbon source (19).  Analysis of contaminated soil samples led to the identification 

of three strains of PAH degrading Burkholderia cepacia.  All three isolates degraded 

fluorene, phenanthrene, pyrene, fluoranthene, benz[a,h]anthracene, 

dibenz[a,h]anthracene and benzo[a]pyrene (20).   Krivobok et al. (2) showed  

14C-pyrene mineralization by Mycobacterium sp. strain 6PYI.  An increase in catabolic 

activity and the expression of two ring-cleavage proteins was observed in cells grown on 

pyrene compared to those grown on acetate (2).  Alcaligenes denitrificans strain WW1 

was isolated by Weissenfels et al. (21) and was found to degrade fluoranthene at a rate of 

0.3 mg/ml a day.  Other PAHs, including pyrene and benz[a]anthracene were also 

degraded by strain WW1 via cometabolic processes (21).  Cycloclasticus, an organism 

isolated from marine sediments was able to partially degrade 1 ppm pyrene and 1 ppm 

fluoranthene when 10 ppm phenanthrene was provided in culture (10).  While these 

findings are important, few organisms have been found which can degrade compounds 

with more than three fused benzene rings and additionally can use these compounds as 

sole sources of carbon and energy.     
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1.4 Problems with Bioremediation  

     Although bacteria can breakdown PAHs, this does not mean the PAH pollution 

problem is solved.  In fact, bioremediation through the use of PAH degrading bacteria 

like EPA505 has great potential for PAH cleanup, but there are many unresolved 

problems.  While laboratory experiments can easily demonstrate the ability of these 

organisms to breakdown pollutants, environmental factors may reduce degradation 

abilities in situ.   Some of the factors that affect the efficiency of in situ degradation 

include targeting microbes to the pollutants, soil moisture, oxygen, temperature, pH, 

microbial predation, availability of nutrients, and the production of inhibiting 

metabolites.   

     One major problem with bioremediation has to do with the chemical nature of PAHs.  

Because of hydrophobic interactions, PAHs are sometimes inaccessible to microbial 

degraders in the environment.  Whereas smaller organic compounds might be degraded, 

large PAH molecules are tightly bound to soil particles and as a result accumulate (22).   

     Another problem with bioremediation of PAHs is partial degradation.  Some 

organisms can begin to breakdown the initial compound, but environmental factors may 

inhibit the complete breakdown process.  Partial degradation of PAHs can pose a bigger 

threat as metabolites may be more toxic than parent compounds.  Bouchez et al. (4) 

studied the co-metabolic activity of six bacterial strains grown on several different PAHs.  

Synergistic activity as well as inhibition was noted.  Furthermore, the production of water 

soluble metabolites was found consistently throughout the experiment (4).                       
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If inhibition leads to the accumulation of water soluble intermediate metabolites, the 

result might be contaminated water sources.   

     Some PAHs are partially broken down through abiotic processes such as 

photooxidation.  While this may seem helpful, it can actually lead to a bigger problem.  

Phenanthrene for example, can be converted by sunlight to the more polar product  

9,10-phenanthrenequinone (PheQ).  PheQ can react with biomolecules and, therefore, is 

much more toxic than its parent compound phenanthrene.  The increased toxicity of PheQ 

compared to phenanthrene was demonstrated in bacteria (23) and plants (24).  PheQ was 

also shown to inhibit naphthalene degradation by Burkholderia.  There was a 20% 

degradation of naphthalene in the presence of PheQ as compared to a 75% degradation 

with no PheQ.  The same study showed that a Sphingomonas species could degrade 

PheQ, but only in the presence of phenanthrene (25).   

     Bioremediation problems also exist with S. paucimobilis EPA505.  For example, 

fluoranthene degradation by EPA505 is sometimes inhibited by creosote constitutents.  

An experiment was done to determine which creosote components were actually 

inhibiting the breakdown process.  Creosote compounds were categorized into three 

groups: acidic (phenolics), basic (N-heterocyclics), and neutral (PAHs).  Results 

indicated the inhibitory effects were mostly a result of the basic components in creosote 

(26).  Although the authors found the chemical source of the problem, they did not know 

why there was inhibition.  More information on gene expression and regulation might 

lead to solutions to these types of problems.   
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1.5 Sphingomonads 

     The Sphingomonads refer to organisms belonging to one of four genera including: 

Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium.  Members of this 

group are widespread in the environment.  They have been isolated from both aqueous 

and terrestrial habitats as well as clinical specimens and other sources (27).   

     First described by Yabuuchi et al. (1990), the Sphingomonads are Gram-negative, 

chemoheterotrophic, non-spore forming rod-shaped bacteria.  These organisms typically 

produce yellow pigmented colonies.  Some cells may contain a single polar flagellum, 

but others may be non-motile.  One distinctive characteristic of these organisms is that 

they have glycosphingolipids in their cell envelopes instead of the more typical 

lipopolysaccharides (27).  Although there is no evidence to date, it has been suggested 

that these glycosphingolipids may play a role in the successful uptake of PAHs for 

biodegradation (28).   

     Representatives of the genus Sphingomonas seem to have a wider range of substrates 

than other organisms.  For example, Novosphingobium aromaticivorans strain F199 can 

grown on toluene, xylene, p-cresol, biphenyl, naphthalene, dibenzothiophene, fluorene, 

salicylate and benzoate (29,30).  S. yanoikuyae B1 can grown on 1,2,3- trimethylbenzene, 

toluene, p-xylene, biphenyl, naphthalene, phenanthrene and anthracene (31).   

     In addition to a wider range of substrates, certain Sphingomonad species can utilize 

PAHs as a sole carbon and energy source.  For example, whereas many other organisms 

have been shown to degrade two and three-ringed PAHs such as naphthalene, 
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phenanthrene and anthracene, the Sphingomonads can also break down HMW PAHs with 

four and five-rings such as fluoranthene, pyrene, and benzopyrene (32).    

     Sphingomonas  paucimobilis EPA505 was isolated from a seven member community 

from a creosote waste site (33).  It was one of the first organisms reported to degrade and 

use a HMW PAH (fluoranthene) as a sole carbon and energy source (34).  Fluoranthene 

utilization was shown by an increase in cell biomass, disappearance of the HMW PAH, 

and by the production of metabolites.  Additionally, EPA505 cells grown on fluoranthene 

could degrade other compounds such as benzo[b]fluorene, benz[a]anthracene, chrysene, 

and pyrene (34).  Ye et al. (1) studied the degradation activity of fluoranthene grown 

EPA505 cells on other HMW PAHs.  After 16 hours of incubation with 10 ppm of the 

specific compound, S. paucimobilis degraded 80% of pyrene, 72.9% benz[a]anthracene, 

31.5% chrysene, 33.3% benzo[a]pyrene, 12.5% benzo[b]fluoranthene, and 7.8% 

dibenz[a,h]anthracene.  They also found an increase in degradation activity with 

increased cell density.  In addition, cells that were incubated with [7-14C] labeled 

benzo[a]pyrene, and [5, 6, 11, 12-14C] labeled chrysene for 48 hours, degraded 28% of 

the former and 42% of the latter to 14CO2 (1).   

 

1.6 PAH Catabolic Pathway 

     Naphthalene is commonly used as a model compound for PAH degradation studies.  

Although there are some exceptions, the primary pathway for naphthalene degradation is 

divided into an upper and lower catabolic pathway.  For the upper catabolic pathway, 

(Fig. 1.1) the first step occurs when a ring hydroxylating dioxygenase introduces two 
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molecules of oxygen to initiate cleavage of the aromatic ring and form naphthalene cis-

dihydrodiol.  The dihydrodiol product is then dehydrogenated to 1,2-

dihydroxynaphthalene by a cis-naphthalene dihydrodiol dehydrogenase.  The next step 

involves another dioxygenase, namely 1,2-dihydroxynaphthalene dioxygenase which 

yields the product 2-hydroxy-2H-chromene-2-carboxylic acid.  The next two reactions 

are catalyzed by a carboxylate isomerase and a hydratase-aldolase to give 

salicylaldehyde.  This product is converted to salicylate by a dehydrogenase.  In the lower 

catabolic pathway (Fig. 1.2) salicylate is further degraded to TCA cycle intermediates 

either through the catechol or gentisate pathways.  Similar catabolic steps are involved 

for the degradation of phenanthrene, anthracene and other aromatic hydrocarbons.   

 

1.7 Genetics of PAH Degradation in Sphingomonads  

     The genetics of PAH degradation have been studied in some Sphingomonas species.  

The genes involved in aromatic hydrocarbon degradation in this group seem to be highly 

conserved and have been shown to be different from those described in other genera (28).   

     The sequence of a 40kb region from Sphingobium yanoikuyae B1 revealed over 35 

genes on 6 different operons involved in aromatic hydrocarbon degradation.  While at 

least five sets of ring-hydroxylating dioxygenases were found, only one ferredoxin 

reductase (bphA4) and ferredoxin (bphA3) was found among all the genes identified.  

However, these two proteins were found to be associated with multiple dioxygenase 

components (35).  Analysis of the genes in B1 also revealed that the first three enzymes 

in the pathway work on a broad range of substrates and can metabolize naphthalene, 
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phenanthrene and biphenyl.  The nahD gene of B1 encoding the 2-hydroxychromene-2-

carboxylate isomerase, however, was only involved in the degradation of naphthalene 

(35).  Sphingobium yanoikuyae B1 is unusual in that the genes required for the 

degradation of a compound are not arranged on the same operon (28).  

     The complete sequence of a 184-kb catabolic plasmid, pNL1, from Novosphingobium 

aromaticivorans strain F199 has been ascertained (36).   Romine et al. found 79 genes on 

the plasmid that are associated with breakdown or transport of PAHs.  Of the genes 

identified, those that are involved in PAH degradation are in the same order and 

transcriptional direction as the same genes on strain B1.  In addition to the five 

dioxygenase components found in B1, a sixth terminal oxygenase component was 

identified on pNL1 (36).  Genes xylB, nahF, bphD, bphE and bphF were also identified 

on pNL1, but functional analysis has not yet been done (28).   

     In Sphingobium strain P1, transposon mutagenesis interrupted the ferredoxin subunit 

(ahdA4) of a dioxygenase, impairing the ability of the organism to degrade phenanthrene.  

As with strain B1, five sets of terminal oxygenase components were also identified, but 

only one ferredoxin and one ferredoxin reductase were identified.  Additionally, two 

meta-cleavage enzymes bphC and xylE were identified which had 100% identity with 

those genes of strain B1 (37).    

     Recently, the sequence of an aromatic ring-hydroxylating dioxygenases of 

Sphingomonas strain CHY-1 were identified and tested for enzymatic activity.  

Demaneche et al. found the sequence of two genes coding for the alpha and beta subunits 

of a terminal oxygenase, phnA1a and phnA2a (38).  The product of these two genes was 
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collectively called PhnI.  Genes encoding a ferredoxin component (phnA3) and 

ferredoxin reductase component (phnA4) were also identified on separate loci.  All four 

genes were highly similar to genes found in strain F199.  When incubated with several 

different substrates, recombinant PhnI converted PAHs to the respective dihydrodiol 

products.  Furthermore, enzyme activity increased greatly with the co-expression of the 

ferredoxin and ferredoxin reductase subunits (38).   

      Limited work has been done on the genetics of PAH degradation in Sphingomonas 

paucimobilis EPA505.  Tn5 mutants were used to delineate the catabolic pathway of 

EPA505.  Story et al. also found that while a common hydroxylase is involved in the 

pathways for the different substrates studied, EPA505 possesses two distinct hydratase-

aldolase genes.  One is involved in the degradation of naphthalene, phenanthrene and 

anthracene, and the other involved in fluoranthene degradation (40).  It was suggested 

that the genes involved in PAH degradation in strain EPA505 are located on several 

different operons as seen in the other members of this group.   

     Partial gene sequences were obtained for some of the genes involved in the PAH 

catabolic pathway of EPA505 when the regions flanking Tn5 inserts were sequenced.  

Because of its wide range of substrates and ability to grow on some compounds as a sole 

source of carbon, S. paucimobilis EPA505 has great potential for bioremediation.  It is 

therefore necessary to study the genetic basis of degradation in this organism in more 

detail.        
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1.8 Ring-Cleaving Dioxygenases 

     As mentioned earlier, there are several enzymes involved in the PAH upper catabolic 

pathway (Fig 1.1).  The first enzyme in the pathway is a ring-hydroxylating dioxygenase.  

This enzyme initiates the breakdown of the PAH substrate by introducing two oxygen 

molecules into the aromatic ring structure to form a dihydrodiol product.   

     These enzymes are all soluble, multi-component systems that are usually made up of 

two or three separate proteins including: a ferredoxin, a ferredoxin reductase and an iron-

sulfur protein.  The iron-sulfur protein is made up of an alpha and beta subunit and is the 

catalytic oxygenase component (41). The proteins are arranged in a short electron-

transport chain where electrons are moved to the catalytic terminal oxygenase (Fig. 1.3) 

(28). 

     For naphthalene dioxygenase, the reductase component is the first component in the 

electron-transport chain.  Transport is initiated by a single two-electron transfer from 

NAD(P)H to FAD in the ferredoxin reductase which gives the reduced form of FAD.  

The reduced FAD then provides electrons to the ferredoxin.  These electrons are then 

transferred to the iron-sulfur protein or terminal oxygenase which uses the electrons in its 

active site to introduce an oxygen molecule into the aromatic ring (28).  The terminal 

oxygenase component of the chain consists of three alpha and three beta subunits.  These 

subunits come together to form a mushroom like shape with the three alpha subunits 

forming the cap and the three beta subunits forming the stem (52).   

     The substrate specificity of naphthalene dioxygenase has also been investigated.  

Parales et al. showed that the Asp-205 residue in the catalytic domain of naphthalene 
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dioxygenase is necessary for activity.  When site-directed mutagenesis was employed to 

change this residue to either, alanine, glutamate, asparagine or glutamine, mutant proteins 

were not able to transform naphthalene to the dihydrodiol product.  In addition, oxygen 

uptake by the mutant protein was decrease when compared to the wild-type (42).  This 

study confirmed that aspartate was responsible for the successful transfer of electrons to 

the active site.   

     Although S. paucimobilis EPA505 has the ability to break down a wide range of 

substrates and exhibits greater PAH degrading capabilities when compared to other 

organisms, there is limited information on the catabolic enzymes in this organism.  The 

purpose of this work was to identify complete gene sequences encoding PAH degrading 

dioxygenases in EPA505, compare the sequences identified to those in related organisms, 

and carry out functional analysis of the enzymes.  Fundamental knowledge of PAH-

catabolic genes and gene products in this strain may ultimately give way to more efficient 

bioremediation strategies.   
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Table 1.1 US EPA’s 16 priority-pollutant PAHs and selected physical–chemical properties. 

PAH Chemical Structure Molecular weight 
g/mole 

Solubility 
mg/L 

Naphthalene 
 

128.17 31 

Anthracene 
 

178.23 0.045 

Phenanthrene 
 

178.23 1.1 

Pyrene 
 

202.26 0.132 

Acenaphthene 
 

154.21 3.8 

Acenaphthylene 
 

152.20 16.1 

Flourene 
 

166.22 1.9 

Fluoranthene 
 

202.26 0.26 

Chrysene 
 

228.29 0.0015 

Benzo (a) pyrene 
 

252.32 0.0038 

Benz (a) anthracene 
 

228.29 0.011 

Benzo (k) fluoranthene 
 

252.32 0.0008 

Indeno (1,2,3- cd) pyrene 
 

276.34 0.062 

Benzo (b) fluoranthene 
 

252.32 0.0015 

Dibenzo (a,h) anthracene 

 
278.35 0.0005 

Benzo (g,h,i) perylene 
 

276.34 0.00026 
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Figure 1.1 Upper catabolic pathway of naphthalene degradation (60). Enzymes: (A) naphthalene 
dioxygenase, (B) cis-naphthalene dihydrodiol dehydrogenase, (C) 1,2-dihydroxynaphthalene dioxygenase, 
(D) 2-hydroxychromene-2-carboxylate isomerase, (E) trans-o-hydroxybenzylidenepyruvate hydratase-
aldolase, (F) salicylaldehyde dehydrogenase. 
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Figure 1.2 Naphthalene lower catabolic pathway.  Salicylic acid created in the upper pathway is further 
metabolized either through the catechol or gentisic acid pathways to TCA cycle intermediates (60).   
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MATERIALS AND METHODS 

 

2.1 Reagents 

     All PAHs, solvents, antibiotics, and derivatizing agents were purchased from Sigma-

Aldrich (St. Louis, MO).  Primers and oligonucleotides were purchased from Integrated 

DNA Technologies (San Diego, CA).  Unless otherwise stated, restriction endonucleases 

and other DNA modification enzymes were purchased from Promega (Madison, WI).   

 

2.2 Bacterial Strains, Plasmids and Growth Conditions 

     Sphingomonas paucimobilis EPA505 was isolated from a creosote waste site (34).  

One colony of S. paucimobilis EPA505 was inoculated into 10 ml of Luria Bertani (LB) 

broth and incubated at 37°C with shaking.  When the culture reached late log phase, 

chloramphenicol was added to a final concentration of 200 µg/ml and the culture was 

incubated further at 37°C with shaking for one hour.  Chloramphenicol was added to 

ensure the genomic DNA collected was from cells in late log phase.  After treatment with 

chloramphenicol, cells were harvested and prepared for library construction.   

     E. coli strains and plasmids used are listed in Table 2.1.  All organisms for 

recombinant DNA experiments were grown in LB media supplemented with the 

appropriate antibiotics.   
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2.3 BAC Library Construction 

     Genomic library construction was carried out at the Clemson University Genomics 

Institute (CUGI).  To construct a BAC (Bacterial Artificial Chromosome) library, high 

molecular weight (HMW) bacterial DNA was first embedded into agarose plugs.  S. 

paucimobilis EPA505 cells were harvested from a late exponential phase culture and 

washed once with 2 ml of NaCl/Tris(pH7.2)/EDTA (200mM NaCl, 10 mM Tris-Cl, 

100mM EDTA)and then resuspended in 0.5 ml of the same buffer.  The cell suspension 

was then placed in a 37°C water bath for 5 minutes.  A solution of 2% (w/v) SeaPlaque 

GTG agarose (FMC BioProducts, Rockland, ME) in water was prepared and equilibrated 

to 40°C in a water bath.  One volume of the agarose solution was mixed with the cell 

suspension, mixed and the solution was poured into plug molds.  After setting, the  plugs 

were removed and placed in a 15 ml screwcap tube and 2-3 volumes of bacterial cell lysis 

solution for HMW DNA (10 mM Tris-Cl, 50 mM NaCl, 100 mM EDTA, 0.2% sodium 

deoxycholate, 0.5% N-lauroylsarcosine, 1mg/ml lysozyme) was added and the mixture 

incubated at 37°C for 2-16 hours.  All BAC library construction procedures after 

preparation of genomic DNA were carried out as previously described (53). 

      

2.4 Overgo Probing of High-Density BAC Membranes 

     Following BAC library construction, high density membranes were made in order to 

probe the library for genes of interest.  Overgo probes were designed from partial PAH 

gene sequences previously obtained from EPA505 (40).  To carry out hybridization, 50 

ml of warm hybridization solution (1% BSA, 1 mM EDTA, 7% SDS, 0.5 M sodium 
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phosphate) was added to a hybridization bottle.  Membranes were pre-moistened with 

warmed 2X SSC and then rolled into a hybridization bottle for a 4-hour prehybridization.  

After prehybridization, about 10 ml of hybridization buffer was removed from the bottle.  

After denaturing the labeled overgos at 90°C for 10 minutes, the probes were added to the 

10ml of buffer and mixed.  The 10 ml was then added back to the bottle with the 

membrane.  Probes were allowed to hybridize overnight in a hybridization oven set at 

60°C with rotation.   

     After hybridization, the buffer was removed and the membrane was washed three 

times.  The membrane was washed first with 1x SSC, 0.1% SDS, second with 1.5x SSC, 

0.1% SDS and once more with 0.75X SSC, 0.1% SDS.  All three washes were carried out 

at 58°C for 30 minutes.  For autoradiography, the filter was sealed in a plastic zip top bag 

and exposed to XAR5 film at 70°C.   

 

2.5 Southern Analysis 

     BAC clones containing genes of interest were digested and analyzed by Southern 

blot/hybridization.  BAC DNA was purified by maxi-prep (43).  Purified DNA was then 

digested at 37°C overnight with HindIII and BamHI (Promega, Madison, WI) and size 

fractionated in a 0.8% (w/v) SeaKem LE agarose gel (BioWhittaker Molecular 

Applications, Rockland, ME) using 1× TAE (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) 

as a running buffer.                                                                                                         

     After separation was completed, the gel was depurinated by incubation in 0.125 N 

HCl followed by a 30 minute incubation in denaturing buffer (1.5 M NaCl, 0.5 M 
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NaOH), and finally a 30 minute incubation in neutralization buffer (1.5 M NaCl, 0.5 M 

Tris pH 7.5).  DNA was transferred to Hybond-XL membrane (Amersham Pharmacia 

Biotech, Little Chalfort, Buckinghamshire, England) by capillary blot using 10× SSC (pH 

7) as a transfer buffer.  Following transfer, DNA was fixed to the membrane by baking at 

80°C for 2 hours.  

     The membrane was prehybridized at 65°C with a 0.5 M sodium phosphate, 7% 

sodium dodecylsulfate (SDS) hybridization buffer for a minimum of 30 minutes. 

Radioactively labeled and denatured DNA probe was added directly to the 

prehybridization solution, and the membrane was hybridized with the probe overnight at 

65°C.  The hybridized membrane was washed at 65°C twice with 2× SSC (pH 7.0), 1% 

(w/v) SDS for 30 minutes, and twice with 1× SSC, 0.1% (w/v) SDS for 30 minutes. The 

membrane was then exposed to autoradiographic film (Kodak X-Omat Blue XB-1, 

Perkin-Elmer Life Sciences, Inc., Boston, MA) overnight.  

   

2.6 Shotgun Library Construction 

     To construct a shotgun library, BAC DNA was purified by maxi-prep (43) and 

subjected to random fragmentation by hydroshearing (Gene Machines, San Carlo, CA). 

 Fragments between 3-5 kb were selected by agarose gel electrophoresis, subjected to 

end-repair/phosphorylation using the End-it end repair kit (Epicentre, Madison, WI), and 

was then cloned into the high copy plasmid pBlueskriptIIKSII+.  Plasmids were then 

electroporated into E. coli DH10B cells. Transformants were selected on LB plates 

containing carbenicillin, X-Gal and IPTG.  White recombinant colonies were picked 
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robotically using the Genetix Q-bot (Genetix, San Jose, CA) and stored as individual 

clones in Genetix 96-well microtiter plates as glycerol stocks at -80°C.  

 

2.7 Primer Design 

     Primer3 software (47) was used to design primers (http://frodo.wi.mit.edu/primer3).  

Genes phnA1a, phnA2a, and phnA3 were found on contigs assembled from high 

throughput sequencing.  To clone these genes, primers were designed to include the 

appropriate restriction sites before and after the start and stop codons of the gene 

sequences.  To locate phnA4, a series of primers were designed based on conserved 

regions of this gene.  Several consecutive rounds of PCR using primer walking and 

04N04 BAC DNA as a template were carried out to eventually obtain the entire phnA4 

gene.   

 

2.8 Sequencing and Analysis 

     Sequencing was carried out at CUGI.  Shotgun clones were sequenced using the 

universal priming sites on the vector.  The data was collected on an ABI 3730xl DNA 

Analyzer (Applied Biosystems, Carlsbad, CA).  For sequencing, 10 ng of DNA for every 

1 kb of sequence and 0.3 µl of 2 µM primer were used.   

     DNA sequence and assembly was carried out using Phred, Phrap, and Consed (44).  

Sequence data was also assembled using Sequencher DNA assembly software (Gene 

Codes Corp, Ann Arbor, MI) and the free BioEdit sequence alignment editor program 

(mbio.ncsu.edu/BioEdit/bioedit.html).  The GenBank tool BLAST at the NCBI server 
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was used to perform similarity searches for genes and proteins (48).  GeneMark free gene 

prediction software (49) was used to search for open reading frames 

(exon.biology.gatech.edu). The ProtParam tool at the Expasy Proteomics Server 

(expasy.org/sprot) was used to determine the size, amino acid sequence and other 

properties of recombinant proteins.  Phylogenetic trees were constructed using MEGA 

software version 4.0 (50) and multiple sequence alignments were carried out with 

ClustalW (51).   

 

2.9 Cloning for Protein Expression 

     For protein expression, genes were cloned into the petDUET-1 and pACYCduet-1 

vectors (Novagen, Madison, WI).  Genes of interest were amplified using 04NO4 BAC 

DNA as a template and KOD Hot Start Polymerase according to the manufacturer’s 

cycling recommendations (Novagen, Madison, WI).  All PCR and gel purification steps 

were carried out using the Wizard SV Gel and PCR Clean-Up System (Promega 

Madison, WI).  

     Compatible Duet expression vectors were kindly provided by Dr. Michael Sehorn of 

Clemson University, Department of Genetics and Biochemistry (Fig. 2.1 and 2.2).  Both 

Duet vectors were provided on agar plates within cultures of E.coli DH5α.  Cells were 

grown overnight in LB broth supplemented with either ampicilin for pETDuet-1 

(50µg/ml) or chloramphenicol for pACYCDuet-1 (34µg/ml).  Plasmid extraction was 

carried out with Qiagen tip-100 and the midi-prep protocol (Qiagen, Valencia, CA).   
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     PCR products were then digested as follows: phnA1a and phnA3 PCR products were 

digested with BamHI and HindIII and were subsequently cloned into the BamHI and 

HindIII sites of petDUET-1 and pACYCduet-1, respectively.  The phnA2a and phnA4 

PCR products were digested with BglII and KpnI and cloned into the second multiple 

cloning sites of petDUET-1 and pACYCduet-1, respectively.  Digested vector was 

dephosphorylated with Thermosensitive Alkaline Phosphatase (Promega, Madison, WI).  

Ligation was carried out with the Ligafast Rapid DNA ligation system (Promega, 

Madison, WI).  Genes phnA1a and phnA2a encoding two oxygenase components were 

cloned into pETDuet-1 to give pD12.  Genes phnA3 and phnA4 encoding the ferredoxin 

and ferredoxin reductase components were cloned into pACYCDuet-1 to yield the 

plasmid pACD34.   

     Transformation was carried out according to the manufacturer’s instructions into 

either E. coli Novablue host cells (Novagen, Madison, WI) for maintenance stocks, or 

into E.coli BL21(DE3) cells for expression of target proteins.  Successful transformation 

and cloning were confirmed with colony PCR using vector specific primers.  

 

2.10 Protein Expression/ SDS-PAGE 

     To express target proteins, BL21(DE3) cells were transformed with either pD12 or 

pACD34 or co-transformed with both plasmids to express all four proteins.  Controls 

were also analyzed in which BL21(DE3) cells were transformed with the original vectors 

pETDuet-1 and/or pACYCDuet-1 containing no insert.  LB broth plus the appropriate 

antibiotic was inoculated with one colony from the BL21(DE3) transformation and 
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incubated overnight at 37°C with shaking.  The overnight culture was used to inoculate a 

secondary culture which was incubated at 37°C with shaking until the OD600 > 0.5.  At 

this point the culture was split in half and IPTG was added to one half at a final 

concentration of 1 mM.  The other half was not induced for comparison.  The induced 

and uninduced cultures were returned to a 37°C incubator with shaking for up to 8 hours 

to analyze protein expression.     

     For SDS-PAGE analysis, cells were harvested and resuspended in phosphate buffered 

saline and 2x SDS loading dye (1:1).  The suspension was then boiled for 5 minutes and 

centrifuged for 1 minute.  Samples were then loaded onto tris-glycine precast gels 

(Biorad, Hercules, CA) with Smart Protein Middle-Range Standard protein marker 

(Genscript, Piscataway, NJ), and run at 120V until the dye front reached the bottom of 

the gel. Gels were visualized with Commassie blue staining (43). 

 

2.11 Assay for Recombinant Protein Activity 

     BL21(DE3)(pD12) expressing the two oxygenase components and 

BL21(DE3)(pD12)(pACD34) expressing two oxygenase and two ferredoxin components 

were tested for enzyme activity.  BL21(DE3)(pETDUET-1) and BL21(DE3)(pETDuet-

1(pACYCDuet-1) harboring the plasmids without inserts were used as controls.  Cells 

were grown in LB broth with appropriate antibiotics to an OD600 > 0.5.                                           

IPTG was then added to a final concentration of 1mM and the culture was incubated at 

25°C overnight with shaking.  Cells were harvested and resuspended in M9 minimal 

medium plus 0.2% glucose at half the original volume so as to double the density of cells 
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in suspension.  In addition, 100 µg of either: naphthalene, phenanthrene or fluoranthene 

dissolved in acetone was added to the cells.  The culture was again incubated at 25°C 

with shaking overnight.  After exposure to the PAHs, cells were harvested and the 

supernatant collected.  The supernatant was extracted twice with ethyl acetate (1:1) and 

dried over sodium sulfate.  Extracts were evaporated using a rotary evaporator and the 

residue was resuspended in 500 µl acetonitrile.  Derivatization was carried out by 

combining 100 µl of the final acetonitrile suspension with 50 µl BSTFA:TMS (99:1) and 

incubated at 65°C for one hour to yield trimethylsilylated products.  Samples were then 

analyzed by GC-MS.  All experiments were done in triplicate.  PAH standards dissolved 

in acetone were run for all substrates tested.   

 

2.12 GC-MS analysis 

      Gas chromatography-mass spectrometry (GC-MS) was performed on an Agilent 7890 

GC and an Agilent 5975 mass spectrometer with triple axis detector (Agilent, Santa 

Clara, CA ).  A J&W DB-5ms capillary column (30m by 0.25mm, 0.25µm film 

thickness) was used for separation of metabolites.  GC-MS analyses were performed as 

follows: the initial oven temperature was set at 80°C and held for two minutes, the 

temperature was then increased at a rate of 8°C per minute until 300°C where it was held 

for 5 minutes.  Electron ionization was achieved at 70eV electron energy and 150°C ion 

source temperature.  Sample injection volumes were 2 µl splitless.  Samples were run in 

scanning mode and the total run time was 34.5 minutes.  Products were identified by 
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comparing the data collected to published mass spectra of specific dihydrodiol 

intermediates. 
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Table 2.1 List of bacterial strains and plasmids used in this study. 
 
Bacterial strain or plasmid Relevance/Properties Source/Reference 

 
Strains 
Sphingomonas paucimobilis EPA505 
Escherichia coli DH10B 
Escherichia coli Novablue 
Escherichia coli BL21(DE3) 
 

Plasmids 
pCUGIBAC1 
pBlueskriptIIKSII+ 
pETDuet-1 
pACYCDuet-1 
pD12 
pACD3 
pACD34 

 
 
PAH degrading strain 
genomic library host  
maintenance host for cloned genes  
expression host 
 
 
BAC library vector, Camr 
shotgun library vector, Ampr 
protein expression vector, Ampr 
protein expression vector, Camr 
pETDuet-1 with phnA1a, phnA2a 
pACYCDuet-1 with phnA3 
pACYCDuet-1 with phnA3, phnA4 

 
 
Mueller et al., 1990 
CUGI 
Novagen 
Novagen 
 
 
CUGI 
CUGI 
Novagen 
Novagen 
This study 
This study 
This study 
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Figure 2.1 Vector map of pETDuet-1 plasmid used to clone phnA1a and phnA2a.  Image 
retrieved from www.merck-chemicals.com/life-science-research, September 10th, 2010. 
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Figure 2.2 Vector map of the pACYCDuet-1 plasmid used to clone phnA3 and phnA4.  
Image retrieved from www.merck-chemicals.com/life-science-research, September 10th, 
2010. 
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RESULTS 

 

3.1 BAC Library/Overgo Probing of High Density Filters   

     A BAC library of Sphingomonas paucimobilis EPA505 was constructed at the 

Clemson University Genomics Institute.  Hybridization was carried out using 

oligonucleotide probes designed from partial sequences obtained in previous experiments 

(40).  Following hybridization with the probe designed from a partial dioxygenase, 

numerous positive spots were identified (Fig. 3.1).  A few positive clones were randomly 

picked from the library for further analysis.  

 

Figure 3.1 Overgo probing of high density BAC filters.  Dark dots indicate positive hybridization to 
dioxygenase probe.  Dot pattern indicates the location of the clone in the library.   
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3.2 Southern Analysis of BACs 

     DNA from the selected clones was extracted (Fig. 3.2) and subjected to restriction 

digestion with BamHI and HindIII (Fig. 3.3).  Southern blot analysis revealed potential 

dioxygenase genes in some of the BAC clones.  Because of the strong signal, BAC clone 

#04NO4 was chosen to make a shotgun library (Fig. 3.5).  After this selection process, a 

shotgun library was constructed for high-throughput sequencing.     

 
Figure 3.2 Agarose gel electrophoresis of DNA purified from selected BAC clones.   

 

 
Figure 3.3 Agarose gel electrophoresis of digested BAC clones.  After the marker in the first lane, every 

two lanes represent one BAC clone digested with BamH1 in the first and HindIII in the second lane.   
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Figure 3.4 Southern analysis of digested BAC clones.  Membrane was probed with overgos designed from 

partial dioxygenase gene sequences.  Based on the strong signal, BAC #04N04 was chosen for shotgun 
cloning. 

 
 
3.3 Sequencing Analysis                                                                                                     

     A shotgun library was constructed from one BAC clone which revealed dioxygenase 

genes following Southern analysis.  After construction, the shotgun clones were subjected 

to high throughput sequencing using universal priming sites on the cloning vector.  After 

all sequence data was collected, a total of 15 contigs were assembled.  The results of 

BLAST similarity searches for contigs which revealed putative genes are listed in Table 

3.1.  Several different dioxygenases were identified.  However, only three putative genes 

were selected for further analysis.   

     The first two genes were located on the same contig and showed 99% similarity to the 

phnA1a and phnA2a genes of Sphingomonas CHY-1 (Fig. 3.5).  These two genes encode 

the alpha and beta subunits of an oxygenase.  This contig also contained the aryl alcohol 

dehydrogenase phnB.  A third gene was found on another contig and was 99% similar to 

the bphA3 of Sphingomonas CHY-1.  This gene encodes a ferredoxin and will be referred 

04N04 
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to as phnA3.  The phnA3 gene was found on a contig containing other dioxygenase genes 

which were not selected for further analysis (Fig. 3.6 and Table 3.1).    

 
Figure 3.5 Schematic diagram of the contig containing phnA1a and phnA2a.  The two oxygenase 

components are adjacent to one another and are followed by the aryl alcohol dehydrogenase gene, phnB. 
 
 
 
 
 
 
 

Figure 3.6 Schematic diagram of the contig containing phnA3.  The gene encoding the ferredoxin 
component is preceded by two dioxygenase genes xylX and bph and is followed by genes encoding the 

small (ahdA2c) and large (ahdA1c) subunits of an oxygenase. 
 
 
     According to the literature (38), a fourth gene encoding a ferredoxin reductase subunit 

is necessary to complete the electron transport chain of the ring-hydroxylating 

dioxygenase enzyme.  However, this gene was not identified in the sequencing results of 

the shotgun library.  In order to find this gene, multiple rounds of PCR and sequencing 

were carried out using primers designed from conserved regions of bacterial ferredoxin 

reductase genes and using 04N04 BAC DNA as a template.   After primer walking the 

complete sequence of a fourth subunit was positively identified as it was found to be 

100% similar to the ahdA4 gene of Sphingomonas sp. P2, which encodes a ferredoxin 

reductase.  The ferredoxin reductase subunit of EPA505 found here will be referred to as 

phnA4.  These four genes, i.e. phnA1a, phnA2a, phnA3 and phnA4 encode protein 

products which are components that make up a complete ring-cleaving dioxygenase 

enzyme shown to degrade both high and low molecular weight PAHs (38).   

   xylX           bphC                   bphA3      ahdA2c           ahdA1c 
                                                          (phnA3) 
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      The ProtParam tool at the Expasy Proteomics server was used to determine the 

protein product size for each gene of interest.  The gene encoding the alpha oxygenase 

component, phnA1a, is 1365bp long and was predicted to encode a protein consisting of 

454 amino acids with a molecular weight of approximately 50 kD in size.  PhnA1a 

contains more negatively charged residues than positively charged residues and is 

considered a stable protein with an instability index of 28.12.  The gene encoding the beta 

subunit, phnA2a, is 525bp long.  The protein product for this gene was predicted to be 

174 amino acids long and approximately 21 kD in size.  The amino acid composition for 

PhnA2a shows this protein as having more negatively charged residues.  It also estimates 

an instability index of 47.35, classifying this protein as unstable.  With regard to phnA3, a 

327bp gene, the protein product was estimated to be 11.5 kD and 108 amino acids in 

length.  The amino acid composition shows more negative than positive residues and an 

instability index of 41.16, classifying this protein as unstable.  Lastly, the 1227bp gene 

phnA4 encoding the ferredoxin reductase subunit, was estimated to be 408 amino acids in 

length and 44 kD in size.  The protein product for this gene was estimated to have more 

negatively charged residues and an instability index of 31.05 making this protein stable.   

     Phylogenetic analysis revealed that the PhnA1a and PhnA2a subunits of EPA505 are 

most closely related to the alpha and beta terminal oxygenase components of 

Sphingomonas CHY-1 as was consistent with the BLAST results (Fig 3.18 and 3.19).  

Other closely related terminal oxygenase components include the PhnA1f and PhnA2f of 

Sphingomonas sp. LH128, the ArhA1 and ArhA2 subunits of Sphingomonas sp. A4, and 

the BphA1f and BphA2f subunits of Sphingomonas yanoikuyae B1 (54-56).   
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     A multiple sequence alignment was done to compare the amino acid sequences of the 

alpha and beta subunits of EPA505 to those of related organisms.  When the beta subunit 

PhnA2a was compared to the small subunit of the terminal oxygenase in six other 

organisms, the alignment revealed that some but not most amino acids were conserved 

(Fig. 3.21).  When a multiple sequence alignment was done for PhnA1a, however, many 

residues were conserved among the sequences compared (Fig. 3.20).  Conserved residues 

of significance include the six histidines and two cysteines which are thought to play a 

role in the [2Fe-S] cluster of the alpha subunit (41) and the Asp205 which is believed to 

connect the active site iron center of one alpha subunit to another (57, 58).   

 

3.4 Cloning and protein expression   

     After the complete sequences of these four genes were identified, each gene was 

amplified separately to include appropriate restriction sites for cloning.  Genes phnA1a 

and phnA2a encoding the oxygenase components were cloned into pETDueT-1 to give 

pD12.  Genes phnA3 and phnA4 encoding the ferredoxin components were cloned into 

pACYCDuet-1 to yield the plasmid pACD34.  In addition to these plasmids, expression 

host cells were also transformed with the original vectors containing no insert to yield 

BL21(DE3)(pETDuet-1) and BL21(DE3)(pETDuet-1)(pACYCDuet-1).  These 

transformants were used as controls.   

     BL21(DE3) cells harboring either or both pD12 and pACD34 were grown and 

induced for expression.  When BL21(DE3)(pD12) expressing only the two oxygenase 

components was induced and the cell lysate was analyzed by SDS-PAGE, a 53 kD band 
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and a 21 kD band was seen in the induced culture as compared to the uninduced cells.  

These two bands represent the recombinant phnA1a and phnA2a gene products, 

respectively (Fig3.7).  Following induction of BL21(DE3)(pD12)(pACD34) expected to 

express all four subunits, SDS-PAGE analysis revealed two prominent bands at the 

expected sizes of the phnA1a and phnA2a products (Fig3.8).  However, no representative 

bands were seen for the ferredoxin or ferredoxin reductase components.   

 

 

 

Figure 3.7 SDS-PAGE analysis of induced BL21(DE3) cells harboring pD12.  A protein ladder is loaded 
in lane 1.  Odd numbered lanes are induced samples at the various time points following induction with 
IPTG.  Even numbered lanes are the corresponding uninduced samples.    
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Figure 3.8 SDS-PAGE analysis of induced BL21(DE3) cells harboring both pD12 and pACD34.  Protein 
ladder is loaded in lane 1.  Samples in odd numbered lanes are induced and the corresponding uninduced 
samples are loaded in the even numbered lanes.  Two prominent bands can be seen for PhnA1a and 
PhnA2a.  No appropriately sized bands are present for PhnA3 and PhnA4.   
 

Since no bands indicated the expression of the two ferredoxin subunits, pACD3 and 

pACD34 were introduced into the expression host to check expression levels in the 

absence of pD12.  When BL21(DE3)(pACD3) cells carrying the plasmid with the phnA3 

gene only was induced for expression, a band of about 15 kD representing the cloned 

phnA3 gene product was detected by SDS-PAGE.  When BL21(DE3)(pACD34) carrying 

both phnA3 and phnA4 was induced, a 15 kD band indicative of the phnA3 product was 

again seen. However, it was present in a lower concentration than when this gene was 

expressed alone.  Additionally, there was a band below the 50 kD mark.  This was 

presumed to be the 45 kD product of phnA4 (Fig. 3.9).  
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Figure 3.9  SDS-PAGE analysis of BL21(DE3) cells harboring only pACD3 (samples on the left) to 
express phnA3 only, and pACD34  (samples on the right) expressing phnA3 and phnA4.  A protein ladder is 
loaded in lane 1.  Uninduced samples are in lanes 2,4, 7 and 9.  Induced samples are in lanes 3,5,8 and 10.   
 

 

3.5 Assay for Recombinant Protein Activity 

     To test the enzyme activity of the recombinant proteins, all four dioxygenase 

components were expressed by inducing BL21(DE3)(pD12)(pACD34) with IPTG.  The 

induced cells were then incubated with either naphthalene, phenanthrene, or fluoranthene.  

The results of the recombinant protein activity assay are summarized in Table 3.2.   

     When grown in the presence of naphthalene, a product was detected through GC-MS 

with a retention time of 15.73 minutes (Fig. 3.10).  The EI mass spectrum (molecular ion 

at m/z 306) of this product was similar to the mass spectrum found previously for a 

trimethylsilylated naphthalene dihydrodiol production (45) (Fig. 3.11).  In addition, no 

dihydrodiol product was found in the control.   
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     When incubated with phenanthrene, GC-MS also detected a product indicating 

biotransformation of phenanthrene by the dioxygenase with a retention time of 21.67 

minutes (Fig. 3.12).  This product was identified as a phenanthrene dihydrodiol since it 

had the same fragmentation pattern (molecular ion at m/z 356) as the trimethylsilylated 

phenanthrene dihydrodiol previously described (45) (Fig. 3.13).   

      When cells expressing all four components of the dioxygenase were incubated with 

fluoranthene, no breakdown products were detected.  However, unlike with naphthalene 

and phenanthrene, after several hours of incubation, fluoranthene was still detected in the 

supernatant of all cultures including the controls.  This might indicate a problem with 

uptake of fluoranthene. 

     A second assay for fluoranthene was carried out using the cell lysate.  Cells expressing 

all four proteins were induced overnight, harvested, resuspended in Tris buffer (pH 7.5) 

and lysed.  Fluoranthene was then added to the cell lysate.  GC-MS did not detect any 

fluoranthene dihydrodiol products in the lysate samples.                               

     The activity of BL21(DE3)(pD12) expressing only the PhnA1a and PhnA2a 

oxygenase components was also tested.  When these cells were incubated with 

naphthalene, phenanthrene, and fluoranthene, no breakdown products were detected by 

GC-MS.  No fragments were detected to indicate the presence of dihydrodiols for any of 

the substrates tested.    
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Table 3.2 Summarized results of the recombinant protein activity assay for 
BL21(DE3)(pD12)(pACD34) induced cells expressing all four subunits of the          
multi-component dioxygnease.  
 

Expressed 

Proteins 
Compound 

Product 

Identified 

RT 

(min) 
Ionization fragments 

Control Naphthalene ------ 15.73 ----- 

A1aA2aA3A4 Naphthalene 
Naphthalene 

dihydrodiol 
15.73 

73, 147, 191, 203, 275, 

306 

     
Control Phenanthrene ------- 21.67 ----- 

A1aA2aA3A4 Phenanthrene 
Phenanthrene 

dihydrodiol 
21.67 

73, 147, 165,178, 251, 

266, 309, 325, 341, 356 

     

Control Fluoranthene -------- ---- ----- 

A1aA2aA3A4 Fluoranthene -------- ---- ----- 
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Figure 3.10 Extracted ion chromatograms of BL21(DE3)(pD12)(pACD34) and control cultures incubated 
with naphthalene.  (A) A breakdown product was identified with a retention time of 15.73 minutes in cells 
expressing genes for all dioxygenase components.  (B)  No compound was identified in the control at the 
same retention time.  Mass spec data confirmed the compound as a naphthalene dihydrodiol (see Fig 3.11).   
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Kim et al., (2005) 
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Figure 3.11 (A) EI mass spectrum of naphthalene dihydrodiol as described by Kim et al., (2005).    
(B) EI mass spectrum of compound identified at 15.73 minutes in BL21(DE3)(pD12)(pACD34) culture 
incubated with naphthalene.  Similar fragmentation patterns positively identified this compound as a 
naphthalene dihydrodiol.   
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Figure 3.12 Extracted ion chromatograms of cultures incubated with phenanthrene.  (A) A compound 
identified at 21.67 minutes in cells expressing all four genes. (B) No compound was identified in the 
control at the same retention time.   
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   Kim et al., 2005. 
 
 
 
 
 
 
 

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

m/z-->

Abundance

Scan 3219 (21.678 min): 3401006.D\data.ms
73.0

191.1

147.0

253.1 356.1
103.0

47.0 325.1223.0

 
 

Figure 3.13 (A) EI mass spectrum of phenanthrene dihydrodiol (Kim et al., 2005).  (B) EI mass spectrum 
of the compound identified in BL21(DE3)(pD12)(pACD34) phenanthrene culture with a retention time of 
21.67 minutes.  The similar fragmentation pattern confirms this compound as a phenanthrene dihydrodiol.   
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atgagcggcgacaccacactcgtagacactgtcaatgctagccagtcccgtcaggtgttc 
 M  S  G  D  T  T  L  V  D  T  V  N  A  S  Q  S  R  Q  V  F  
tgggacagagacgtttatgatcttgaaatagagcggattttttcccgggcatggttgatg 
 W  D  R  D  V  Y  D  L  E  I  E  R  I  F  S  R  A  W  L  M  
ctcggccacaaatcgcttctcccgaagccgggcgacttcatcacgacttatatggccgag 
 L  G  H  K  S  L  L  P  K  P  G  D  F  I  T  T  Y  M  A  E  
gacaagatcatcctttcgcaccagagcgacgggaccttccgcgcctttatcaattcgtgc 
 D  K  I  I  L  S  H  Q  S  D  G  T  F  R  A  F  I  N  S  C  
acgcaccgcggcaaccagatttgccacgccgacagcggtaacgccaaggcgttcgtctgc 
 T  H  R  G  N  Q  I  C  H  A  D  S  G  N  A  K  A  F  V  C  
aattatcacggctgggtgtacgggcaggatggatcgttggtcgatgtcccactcgagtcg 
 N  Y  H  G  W  V  Y  G  Q  D  G  S  L  V  D  V  P  L  E  S  
cgctgttaccacaacaaactcgataagcaagagctggcggcgaagtctgttcgggtcgaa 
 R  C  Y  H  N  K  L  D  K  Q  E  L  A  A  K  S  V  R  V  E  
acctacaagggtttcattttcggttgccatgatcccgaagcgccaagccttgaagactac 
 T  Y  K  G  F  I  F  G  C  H  D  P  E  A  P  S  L  E  D  Y  
ctgggcgaattccgtttttatctcgacaccatctgggaaggagggggcgctgggctggaa 
 L  G  E  F  R  F  Y  L  D  T  I  W  E  G  G  G  A  G  L  E  
ctgctcggtccgccgatgaagagcctgcttcactgcaactggaaagtgccggtcgaaaat 
 L  L  G  P  P  M  K  S  L  L  H  C  N  W  K  V  P  V  E  N  
tttgtcggcgacggatatcatgtcggatggacccatgcggcggcgcttggtcagatcggt 
 F  V  G  D  G  Y  H  V  G  W  T  H  A  A  A  L  G  Q  I  G  
ggtctgtttgcgggactggccggcaaccgcgcggacattcccttcgacgatcttggattg 
 G  L  F  A  G  L  A  G  N  R  A  D  I  P  F  D  D  L  G  L  
cagttcacgacccggcatggtcatggctttgggttggtcgacaacgcggcggctgcgatc 
 Q  F  T  T  R  H  G  H  G  F  G  L  V  D  N  A  A  A  A  I  
caccgaaagggcgacggctggaacaaatatcttgaggacacccgcggcgaggtgcgccgc 
 H  R  K  G  D  G  W  N  K  Y  L  E  D  T  R  G  E  V  R  R  
aagtttggcgcggatcgcgaacggctttatgtcgggcactggaacggcgcgatcttcccc 
 K  F  G  A  D  R  E  R  L  Y  V  G  H  W  N  G  A  I  F  P  
aattgctcgttcctgtatggcaccaacaccttcaaaatctggcatccacgcgggccgcac 
 N  C  S  F  L  Y  G  T  N  T  F  K  I  W  H  P  R  G  P  H  
gagattgaagtatggacctataccatggtgccgagcgatgccgatcccgctaccaagagt 
 E  I  E  V  W  T  Y  T  M  V  P  S  D  A  D  P  A  T  K  S  
gcgatacagcgcgaagcgacgagaacattcggaaccgccgggacgctggaaagcgacgac 
 A  I  Q  R  E  A  T  R  T  F  G  T  A  G  T  L  E  S  D  D  
ggcgaaaacatgtcttcggcaacctacgtgaaccgtggcgtgatcacgcgtgacggcatg 
 G  E  N  M  S  S  A  T  Y  V  N  R  G  V  I  T  R  D  G  M  
atgaattcgaccatgggcgtcggctacgaaggaccgcatccggtttatcccggaatcgtc 
 M  N  S  T  M  G  V  G  Y  E  G  P  H  P  V  Y  P  G  I  V  
ggcatcagcttcattggcgagacatcctaccggggcttctaccggttctggaaggaaatg 
 G  I  S  F  I  G  E  T  S  Y  R  G  F  Y  R  F  W  K  E  M  
atcgatgcccccgattgggcgagcgtgaaggcaaacgacgacaattgggattcggtcttc 
 I  D  A  P  D  W  A  S  V  K  A  N  D  D  N  W  D  S  V  F  
acgaatcgcaatttctggaacgaaaagctcaacgcggccgaatga 
 T  N  R  N  F  W  N  E  K  L  N  A  A  E  -   

 
Fig. 3.14 Complete phnA1a nucleotide and amino acid sequence 
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atgtcgaccgaacaagttccggtgacgccggatgtgcactacgccgtcgaagcgcactat 
 M  S  T  E  Q  V  P  V  T  P  D  V  H  Y  A  V  E  A  H  Y  
cgtgccgaggtcagactgttgcagaccgggcagtaccgggaatggctgcacggaatggtc 
 R  A  E  V  R  L  L  Q  T  G  Q  Y  R  E  W  L  H  G  M  V  
gccgaagacatccattactggatgccgatttacgaacagcgcttcgtgagagaccggcgc 
 A  E  D  I  H  Y  W  M  P  I  Y  E  Q  R  F  V  R  D  R  R  
ccggacccaacgccagacgatgcggcaatttacaacgacgacttcgaagagctcaagcag 
 P  D  P  T  P  D  D  A  A  I  Y  N  D  D  F  E  E  L  K  Q  
cgtgtcgaacggctttattcaggtcaggtctggatggaggatccgccatccaaaatccgg 
 R  V  E  R  L  Y  S  G  Q  V  W  M  E  D  P  P  S  K  I  R  
tacttcgtgtcgaatgtcgaagcctttgaagccgaaaacggcgaattggacgtcctgtcg 
 Y  F  V  S  N  V  E  A  F  E  A  E  N  G  E  L  D  V  L  S  
aacatccttgtctaccgcaaccgccgccagactgaagtcacggtgcatacattggggcgt 
 N  I  L  V  Y  R  N  R  R  Q  T  E  V  T  V  H  T  L  G  R  
gaagacaagttgcgccaggacggcaatggtttcaaggtcttccggcgaaaacttatcctc 
 E  D  K  L  R  Q  D  G  N  G  F  K  V  F  R  R  K  L  I  L  
gatgcgagagtcacgcaagacaagaatctgtatttcttttgttag 
 D  A  R  V  T  Q  D  K  N  L  Y  F  F  C  -   

 
Fig. 3.15 Complete phnA2a nucleotide and amino acid sequence 
 
 
 
atgtcgaacaaactgcgcctttgccaagtagcggacgttaaggatggtgaacctgtcgcg 
 M  S  N  K  L  R  L  C  Q  V  A  D  V  K  D  G  E  P  V  A  
gtttaccaggagcaaatgcctgcgcttgccgtctacaacgtcgatggcgatgtattcgtc 
 V  Y  Q  E  Q  M  P  A  L  A  V  Y  N  V  D  G  D  V  F  V  
accgacaatatgtgcacccatggcaatgccatgctgaccgatggctaccaggacggcgga 
 T  D  N  M  C  T  H  G  N  A  M  L  T  D  G  Y  Q  D  G  G  
atcatcgaatgcccgttccatggtggttccttcgacatcgccaccggagcagccaaagcc 
 I  I  E  C  P  F  H  G  G  S  F  D  I  A  T  G  A  A  K  A  
tttccctgccaggttccgatcaagacctactcagtcacgatcgacgacggctgggtgtgc 
 F  P  C  Q  V  P  I  K  T  Y  S  V  T  I  D  D  G  W  V  C  
atcgatcagccggaagggagcgcctga 
 I  D  Q  P  E  G  S  A  -   
 
Fig. 3.16 Complete phnA3 nucleotide and amino acid sequence 
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gtgcgctcgattgctatagttggtgcaaacctggccggtgggcgcgcagtcgaagccctg 
 V  R  S  I  A  I  V  G  A  N  L  A  G  G  R  A  V  E  A  L 
cggcaggcagggttcgacgggcggatcaccttgatcggcgaagaaccgtggcgtccttat 
 R  Q  A  G  F  D  G  R  I  T  L  I  G  E  E  P  W  R  P  Y  
gaacggccgccgctctccaaggaagtgctgtgggaaccggcaaatgttccggacaatttc 
 E  R  P  P  L  S  K  E  V  L  W  E  P  A  N  V  P  D  N  F  
ttcctgcaggacgaggcctggtacgacgataaccgtatcgacatgcgcctgggcacccga 
 F  L  Q  D  E  A  W  Y  D  D  N  R  I  D  M  R  L  G  T  R  
gccgaagcaatcgaccttgcgagcggcggggtccgcctgtcagggggcgagctggttcag 
 A  E  A  I  D  L  A  S  G  G  V  R  L  S  G  G  E  L  V  Q  
gcggaccggatcctgctcgccacgggcggtcacgcccgcaagctcaaccttgccggggcc 
 A  D  R  I  L  L  A  T  G  G  H  A  R  K  L  N  L  A  G  A  
gattgcgagaacgtccattatctgcgcacacgagacgatgcgacccgcatggcgctcgac 
 D  C  E  N  V  H  Y  L  R  T  R  D  D  A  T  R  M  A  L  D  
ctgcgcgaaggtgccagcatcgtgatcgtcggcatgggcgtaatcggcgccgaagtcgcc 
 L  R  E  G  A  S  I  V  I  V  G  M  G  V  I  G  A  E  V  A  
gccagtgcggtaaaactcggctgcaaggtcaccgtcgtcgagccgatgccagtgccgatg 
 A  S  A  V  K  L  G  C  K  V  T  V  V  E  P  M  P  V  P  M  
gaaagagcgctcggccggcgctttgggcaatggctgggcgaggagcatcgcaggcgggga 
 E  R  A  L  G  R  R  F  G  Q  W  L  G  E  E  H  R  R  R  G  
gtagcgacccatttcaactgcggcgtgaccggcttcaggtttgccggcaaccgtgtcagc 
 V  A  T  H  F  N  C  G  V  T  G  F  R  F  A  G  N  R  V  S  
gcggtcgtggcagacgatggcaccgtgattccgtgcgatgccgtgatcgtgggggtgggg 
 A  V  V  A  D  D  G  T  V  I  P  C  D  A  V  I  V  G  V  G  
atcgtgccggccacctcgctggcccgcgatgccgggatcgaggtcaacaacgggatcatc 
 I  V  P  A  T  S  L  A  R  D  A  G  I  E  V  N  N  G  I  I  
gtcgaccgtcgatgccagaccagcaacccggcggtattcgcggcgggcgacgtggccgag 
 V  D  R  R  C  Q  T  S  N  P  A  V  F  A  A  G  D  V  A  E  
caggacgggtttttcggcggacggttcaggcaggaaacctaccagaacgctgccgaccag 
 Q  D  G  F  F  G  G  R  F  R  Q  E  T  Y  Q  N  A  A  D  Q  
gcgcaggcgggcgccctggcgatgctggggcaggaggtctcctactgcaagccgatgtgg 
 A  Q  A  G  A  L  A  M  L  G  Q  E  V  S  Y  C  K  P  M  W  
tactggagcgatcagttcgatctcaacatccagttctgcgggcaaattcccgtagaagcc 
 Y  W  S  D  Q  F  D  L  N  I  Q  F  C  G  Q  I  P  V  E  A  
gatatcgcaattcgcggcgagatggacagcaacaccttcgtcgccttcttcctggccggt 
 D  I  A  I  R  G  E  M  D  S  N  T  F  V  A  F  F  L  A  G  
gaaacgatcgaaggcgtactgacggtcaaccgcgcgcccgacatgggggtgggcaagcgg 
 E  T  I  E  G  V  L  T  V  N  R  A  P  D  M  G  V  G  K  R  
ctcgtcgaaaggcgagcccgcgccagcgccgcaagcctggcagacgccaatgtttccttg 
 L  V  E  R  R  A  R  A  S  A  A  S  L  A  D  A  N  V  S  L  
cgggacttgctcaagcaggcgggctga 
 R  D  L  L  K  Q  A  G  - 

 
Fig 3.17 Complete phnA4 nucleotide and corresponding amino acid sequence. Unlike the other subunits, 
PhnA4 starts with a valine. 
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Table 3.1 Significant BLAST search results of contigs assembled after sequencing shotgun clones.     
 

Contig # Database match Organism % Identity Accession no. 
#1 
  1-756bp 
  805-1518bp 
#3 
  1465-2193bp 
#4 
  1-405bp 
  416-970bp 
#5 
  310-1014bp 
#6 
  4-1035bp 
#7 
  320-1288bp 
#8 
  3-407bp 
  469-1152bp 
#9 
  2-862bp 
  1062-1538bp 
  1591-2190bp 
#10 
  71-1324bp 
#11 
  1-1035bp 
#12 
  1079-2444bp 
 
  2488-3013bp 
 
  3059-3083bp 
#13 
  2-550bp 
  550-1044bp 
  1114-2115bp 
  2614-3618bp 
 
#14 
  219-865bp 
 
  1154-2054bp 
 
  2104-2430bp 
 
  2431-2919bp 
  2942-3742bp 
 
#15 
  2667-4349bp 
 

 
Tni-B like transposition protein 
hypothetical protein pCAR_219 
 
plasmid stabilization protein 
 
hydroxythreonine-4-phosphate dehydrogenase  
toluene/benzoate dioxygenase small subunit 
 
putative transposase  
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 AAF72976 Commomonas testosterone

 AAD12610.1 Ralstonia U2

 AAB09766 Burkholderia sp. RASC

 AAD09872 Burkholderia sp.RP007

 BAD34447 Sphingomonas A4

 AAK62353 Burkholderia DBT1

 ACG70971 Acidovorax NA3

 BAC81541 Cycloclasticus A5

 ABW37061 Sphingomonas LH128

 BAB55875 Porphyrobacter sanguineus

 ABM91740 Sphingomonas yanoikuyae B1

 Sphingomonas paucimobilis EPA505

 CAG17576 Sphingomonas CHY-1

 BAG80733 Rhodococcus sp.YK2

 BAA25623.1 Rhodococcus erythropolis

 AAB07750 Rhodococcus sp. M5

 CAA56346 Rhodococcus globerulus

 AAX45786 Pseudomonas putida

 AAC43632 Pseudomonas sp.

 AAC46390 Burkholderia sp.TecA199
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Fig 3.18 Phylogenetic tree showing the relationship of the alpha subunit PhnA1a and related alpha subunits 
of various organisms. Tree was constructed with MEGA version 4.0. 
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 YP 001268195.1 Pseudomonas putida F1

 CAA06971.1 Ralstonia sp. JS705

 AAC46391.1 Burkholderia sp.

 NP 898769.1 Rhodococcus erythropolis
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Fig. 3.19 Phylogenetic tree showing the relationship of the beta subunit PhnA2a to other known terminal 
oxygenase small subunits.  Tree was constructed using MEGA 4.0.  
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EPA505  MSGDTTLVDTVNASQSRQVFW-DRDVYDLEIERIFSRAWLMLGHKSLLPKPGDFITTYMA 59 
CHY-1   MSGDTTLVDTVNASQSRQVFW-DRDVYDLEIERIFSRAWLMLGHKSLLPKPGDFITTYMA 59 
S.y B1  MSSDATLVDTVNASQSRQVFW-DEDVYALEIERIFSRAWLMLGHESLVPKPGDFITTYMA 59 
S.LH128 MNGSSALVDNAGASQSRRVFW-DQDVYQLELERIFSRCWLMLGHDSLVPKPGDFITTYMA 59 
C.A5    MVDINKLVDTKASTQSKEVFW-DQEVYDREIKNIFGRSWLFLTHECMLEKKGDFITTKMA 59 
S.A4    ---MDDLIDTKRGLQSASMFI-DPHLYEVEMEKIFGRCWLFLTHESAIPNYGDFVTAKMG 56 
P.NDO   MNYNNKILVSESGLSQKHLIHGDEELFQHELKTIFARNWLFLTHDSLIPAPGDYVTAKMG 60 
              :: .  . ..  ::  * .::  *:: **.* **:* *.. :   **::*: *. 
 
EPA505 EDKIILSHQSDGTFRAFINSCTHRGNQICHADSGNAKAFVCNYHGWVYGQDGSLVDVPLE 119 
CHY-1  EDKIILSHQSDGTFRAFINSCTHRGNQICHADSGNAKAFVCNYHGWVYGQDGSLVDVPLE 119 
S.y B1 EDKVILSHQSDGTFRAFINSCSHRGNQICHADSGNAKAFVCNYHGWVFGQDGSLVDVPLE 119 
S.LH128EDRVILSRQPDGSLKAFINSCTHRGNQICHADSGSAKAFVCNYHGWVFGQDGSLVDVPME 119 
C.A5   EDSVIVTRHTDGSLKAFVNSCTHRGNSICSADSGNTKSFVCNYHGWVFSTDGKLVDVPLR 119 
S.A4   EDEVLVVRQEDGTVKAFLNVCRHRGARVCPVEAGNRRAFVCNYHGWSYAADGSLAAIPFE 116 
P.NDO  IDEVIVSRQNDGSIRAFLNVCRHRGKTLVSVEAGNAKGFVCSYHGWGFGSNGELQSVPFE 120 
        * ::: :: **:.:**:* * ***  :  .::*. :.***.**** :. :*.*  :*:. 
 
EPA505 SRCYHNKLDKQELAAKSVR-VETYKGFIFGCHDPEAPSLEDYLGEFRFYLDTIWEGGGAG 178 
CHY-1  SRCYHNKLDKQELAAKSVR-VETYKGFIFGCHDPEAPSLEDYLGEFRFYLDTIWEGGGAG 178 
S.y B1 SRCYHNSLDKQKLAAKSVR-VETYKGFIFGCHDPEAPSLEDYLGEFRYYLDTIWEGAGGG 178 
S.LH128ERCYHSDLDKSKLGLAPIR-VETYKGFIFGCHDPEAPSLEDYLGDFCWYLDTIWDGPDGG 178 
C.A5   EKCYHDELDRDSLSLKTIR-VESYRGFVFGCFDETAPSLEDFLGDWGWYLDTWMVGAGEG 178 
S.A4   KELYGGKIDRCAHGLKEVAKVDSYRGFLFGNFDPGAISLEDYLGDVRWYLDIWMEASG-G 175 
P.NDO  KDLYGESLNKKCLGLKEVARVESFHGFIYGCFDQEAPPLMDYLGDAAWYLEPMFKHSG-G 179 
       .  *  .:::   .   :  *::::**::* .*  * .* *:**:  :**:      . *  
 
EPA505 LELLGPPMKSLLHCNWKVPVENFVGDGYHVGWTHAAALGQIGGLFAGLAGNRADIPFDDL 238 
CHY-1  LELLGPPMKSLLHCNWKVPVENFVGDGYHVGWTHAAALGQIGGPLAGLAGNRADIPFDDL 238 
S.y B1 MELLGPPMKSLLQCNWKVPAENFIGDGYHVGWTHAAALSQIGGELAGLAGNRADIPFDDL 238 
S.LH128LELVGPPLKSTLACNWKVPTENFVGDGYHVGWTHAAALQMIGGELAGLSGNRADMPFDDL 238 
C.A5   AELVGPPMKSILKCNWKVPTENFVGDGYHVGWTHASALHVLGGELGGLAGNQAEMPFDEL 238 
S.A4   VELIGPPARSIVHCNWKAPTENFVGDAYHIGWTHASSLAASRSIFAPMSGN-QMLPPAGA 234 
P.NDO  LELVGPPGKVVIKANWKAPAENFVGDAYHVGWTHASSLRSGESIFSSLAGN-AALPPEGA 238 
        **:*** :  : .***.*.***:**.**:*****::*    . :. ::**   :*     
 
EPA505 GLQFTTRHGHGFGLVDNAAAAIHRKG--DGWNKYLEDTRGEVRRKFGADRERLYVGHWNG 296 
CHY-1  GLQFTTRHGHGFGVIDNAAAAIHRKG--DGWNKYLEDTRGEVRRKFGADRERLYVGHWNG 296 
S.y B1 GLQFTTRHGHGFGVIDNAAAGLHIKR--EGWTKFLEDTRGEVRRKFGPERERLYLGHWNC 296 
S.LH128GLQFTMRHGHGFGLIDNAATAIHVKR--DGYVKYLEQTRGGIREKFGPERERLYVGHWNT 296 
C.A5   GIQVTTRHGHGFGVIDNAAIAIHAKR--DEYAKYMEETIPKVAENLGEPRAKLFNGHWNC 296 
S.A4   GAQIATRFGHGLGILYDVNPGVHTAQTAEKILAWQATKKDKIAEKYGELKARFYGSHLNG 294 
P.NDO  GLQMTSKYGSGMGVLWDGYSGVHSADLVPELMAFGGAKQERLNKEIGDVRARIYRSHLNC 298 
       * *.: :.* *:*:: :   .:*          :   .   : .: *  : ::: .* *  
 
EPA505 AIFPNCSFLYGTNTFKIWHPRGPHEIEVWTYTMVPSDADPATKSAIQREATRTFGTAGTL 356 
CHY-1  AIFPNCSFLYGTNTFKIWHPRGPHEIEVWTYTMVPSDADPATKSAIQREATRTFGTAGTL 356 
S.y B1 SIFPNCSFLYGTNTFKIWHPRGPHEIEVWTYTIVPRDADPATKSMIQREAIRTFGTAGTL 356 
S.LH128SIFPNCSFLYGTNTFKIWHPRGPHEIEVWTYTMVPKNADTETKRSIQREAIRSFGTAGTL 356 
C.A5   STFPNCSFLYGTNIFKVWHPRGPHEIEVWSWVIVHKDMSDEGKREVVKQAVRSFGTAGTL 356 
S.A4   SLFPNVSYLWGTNTLKIWQPRGPSETEVWTWAMAEKDMPEDLKRDIYNGLHGGFGTAGYW 354 
P.NDO  TVFPNNSMLTCSGVFKVWNPIDANTTEVWTYAIVEKDMPEDLKRRLADSVQRTFGPAGFW 358 
       : *** * *  :. :*:*:* ..   ***::.:.  :     *  :       **.**   
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EPA505 ESDDGENMSSATYVNRGVITRDGMMNSTMGVGYEGP-HPVYPGIVGISFIGETSYRGFYR 415 
CHY-1  ESDDGENMSSATYVNRGVITRDGMMNSTMGVGYEGP-HPVYPGIVGISFIGETSYRGFYR 415 
S.y B1 ESDDGENMSSATYINRGVITRNGRMNSTMGVGYEGP-HPVYPGIVGISFIGETSYRGFYR 415 
S.LH128ESDDGENMSSATYNNNGIITRKGRMNSSMGKDREGP-HPVYPGIVGVSFIGETSYRGFYR 415 
C.A5   ESDDGDNMVQSTQVNRGSYTREGEMNSTMGQGYEGE-HPDYPGIVGSSFIGETSYRGFYR 415 
S.A4   EADDNDNMESASLLPTGWQSRKLRLNAQMGIGNDTVMDEM-PGVIGQAAIGETSYRGYYR 413 
P.NDO  ESDDNDNMETASQNGKKYQSRDSDLLSNLGFGEDVYGDAVYPGVVGKSAIGETSYRGFYR 418 
       *:**.:**  ::       :*.  : : :* . :   .   **::* : ********:** 
 
EPA505    FWKEMIDAPDWASVKANDDNWDSVFTNRNFWNEKLNAAE------ 454 
CHY-1     FWKEMIDAPDWASVKANDDNWDSVFTNRNFWNEKLNAAE------ 454 
S.y B1    FWKEMIDAPDWASVKANDDTWDSVFPNRNFWNEKLNAAE------ 454 
S.LH128   FWQEILDAPDWAAIRANDDTWDAMWTNRNFWPERLSAKQAEPQD- 459 
C.A5      FYQEMMSADSWDDIRANDEHWADCFPNKNYWkDRIAAKAAEAEGE 460 
S.A4      FYDEILKLPSWDAFDLNDEGWKQQLID----ADR----------- 443 
P.NDO     AYQAHVSSSNWAEFEHASSTWHTELTKT---TDR----------- 449 
           :.  :.  .*  .   .. *     .     ::        
 
Fig 3.20 Multiple sequence alignment of PhnA1a (alpha subunit of the terminal oxygenase component) 
with the alpha subunits of Sphingomonas sp. CHY-1 (CHY-1), Sphingobium yanoikuyae B1 (S. y B1), 
Sphingomonas sp. LH128 (S.LH128), Cycloclasticus sp. A4, Sphingomonas sp. A4, and the naphthalene 
dioxygenase alpha subunit of Pseudomonas .  Fully conserved amino acid residues are indicated by an 
asterisk.  Five conserved histidines and two conserved cysteines are highlighted in yellow. The conserved 
Asp205 is highlighted in gray.  Regions highlighted in red are hypothesized to be responsible for the ability 
to breakdown large substrates (Leu223, Leu226, Ile253 and Ile260 of CHY-1) (52).  Alignment was 
constructed with ClustalW.   
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EPA     ----------------MSTEQVPVTPDVHYAVEAHYRAEVRLLQTGQYREWLHGMVAEDI 44 
CHY-1   ----------------MSTEQVPVTPDVHYAVEAHYRAEVRLLQTGQYREWLHGMVAEDI 44 
S.y B1  ----------------MSSEQIPVTPDVHYDIEAHYRAEVRMFQTGQYREWLQGMVAEDI 44 
S.LH12  ----------------MTETRKPVGMELHHAIVSHYSAEVRMLQNQQYRQWFDTVIAEDI 44 
C.A5    --------------MHNTEAKERVSSELHYELSQHYYQEATLLQNGEFNTWIETFVAKDL 46 
Psuedo  -------MTSADLTKPIEWPEMPVSLELQNAVEQFYYREAQLLDYQNYEAWLA-LLTQDI 52 
S.A     MENANQIVKTMGADVWDGDPELIADHDLLHRVQAFTNREARLLDTGRVREWLDEMIHPDI 60 
                            .  .  ::   :  .   *. :::  . . *:  .:  *: 
 
EPA    HYWMPIYEQRFVRDRRPDPTP-DDAAIYNDDFEELKQRVERLYSGQVWMEDPPSKIRYFV 103 
CH     HYWMPIYEQRFVRDRRPDPTP-DDAAIYNDDFEELKQRVERLYSGQVWMEDPPSKIRYFV 103 
S.y B1 HYWMPIYEQRLTRDRRPDPTP-DDAAIYNDDFGELKQRVERLYSGQVWMEDPPSKIRYFV 103 
S.LH128HYRMPVYEQRFARDRRPDPTP-GDAAIYNDDYAELQQRVDRLLTGQVWMEDPPSRIRYFV 103 
C.A5   HYWMPVTERRYAKDKRPEPTP-YDMAIYNDDYDEVKDRVARLLTGAVWMEDPRSTVRYLI 105 
Pseudo QYWMPIRTTHTSRNKAMEYVPPGGNAHFDETYESMRARIRARVSGLNWTEDPPSRSRHIV 112 
S.A4   RYVIISRQLRYIEERR--YLPPDSVFIYDDDHGVLNARVEQQLHPQNWRINPREAYVRIG 118 
       :* :     :  .::     *  .   ::: .  :. *:        *  :* .    :  
 
EPA    SNVEAFEAE-NGELDVLSNILVYRNRRQTEVTVHTLGREDKLRQDGN--GFKVFRRKLIL 160 
CHY-1  SNVEAFEAE-NGELDVLSNILVYRNRRQTEVTVHTLGREDKLRQDGN--GFKVFRRKLIL 160 
S.y B1 SNVEAFEAG-NGELDVLSNILVYRNRRQTEVTVHTLGREDKLRRDGN--GFKVFRRKLIL 160 
S.LH128TNVEAFEIA-PFEFEVFSNVLVHRNRRQSEVYVHTLGREDKLRKTDS--GFKVFSRKLNI 160 
C.A5   TNIEAFHTDKDDEFVVRSNFVVYRHRGQLEHSEHVGCRQDLIRKVGN--GFQLARRKVSL 163 
Pseudo SNVIVRETESAGTLEVSSAFLCYRNRLERMTDIYVGERRDILLRVSDGLGFKIAKRTILL 172 
S.A4   TNLEVTKGSAKDRLFVRTNWHLRRMRRQYQIDDFIYSRHDELVITPDQ-GFKFVKRFIAF 177 
       :*: . .      : * :     * * :     .   *.* :    .  **:.  * : : 
 
EPA    DARVTQDKNLYFFC 174 
CHY-1  DARVTQDKNLYFFC 174 
S.y B1 DARVTQDKNLYFFC 174 
S.LH128DARVVQDKNLYFFA 174 
C.A5   DARVTEDKNLYIFF 177 
Pseudo DQSTITANNLSQFF 186 
S.A4   AERGVQGRNMTLFL 191 
              .*:  *  
 
Fig 3.21 Multiple sequence alignment of PhnA2 (beta subunit of the terminal oxygenase component) with 
the beta subunit of Sphingomonas sp. CHY-1 (CHY-1), Sphingobium yanoikuyae B1, Sphingomonas sp. 
LH128 (S.LH128), Cycloclasticus sp. A5 (C.A5), Pseudomonas fluorescens(Pseudo), and Sphingomonas 
sp. A4 (S.A4).  Conserved residues are indicated by asterisks.   
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DISCUSSION 

      

     Members of the genus Sphingomonas are known for their abilities to breakdown a 

wider range of PAH substrates compared to other PAH degrading bacteria (40).  Because 

of their potential for bioremediation, it is necessary to study these organisms in more 

detail to understand the breakdown process at the molecular level.  Many enzymes are 

involved in the PAH breakdown process.  The first enzyme in the pathway is always a 

ring-hydroxylating dioxygenase (28).  Dioxygenases are of particular importance since 

they initiate the pathway by breaking the aromatic ring of the hydrocarbon.  

Dioxygenases are multi-component enzymes usually consisting of oxygenase 

components and a ferredoxin and/or a ferredoxin reductase (41). 

     Sphingomonas paucimobilis EPA505 was isolated from a seven member community 

at a creosote waste site (34).  This organism was able to degrade high molecular weight 

PAHs and even demonstrated an ability to use one PAH as a sole carbon source.  After 

constructing a BAC library, oligonucleotide probes were designed specifically to target 

dioxygenase genes.  After selecting BAC clones that hybridized to the probe, a shotgun 

library was constructed to carry out high throughput sequencing.   

     Sequencing shotgun clones revealed many putative genes (Table 3.1).  From the 

sequencing data assembled, S. paucimobilis EPA505 appears to have many different 

dioxygenases.  This is not surprising as other Sphingomonads have been shown to have 

genes encoding more than one dioxygenase.   
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     Multiple dioxygenase genes were identified and phnA1a, phnA2a, and phnA3 were 

chosen for further analysis.  These three genes encode three subunits of a dioxygenase.  

All together these proteins were expected to form a dioxygenase complex which could 

breakdown both high and low molecular weight PAHs.  The three genes encode an alpha 

and beta oxygenase component, and a ferredoxin component respectively.  According to 

Demaneche et al. (38), a fourth gene encoding a ferredoxin reductase subunit was also 

necessary for optimal activity.  However this gene was not identified in the assembled 

sequences of this study.  Multiple rounds of PCR and sequencing were carried out to 

eventually obtain the entire sequence of a gene which was 100% similar to the ahdA4 

gene of Spingomonas sp. P2.  This gene encodes a ferredoxin reductase and was named 

phnA4 for this study.     

     Phylogenetic analysis of the PhnA1a and PhnA2a subunits showed similarity of these 

terminal oxygenase components to many other naphthalene dioxygenase like enzymes in 

various organisms (Fig. 3.18 and 3.19).  A multiple sequence alignment revealed some 

amino acid conservation in the beta subunit, but much more conservation among the 

alpha subunits (Fig. 3.20 and 3.21).  All alpha subunits aligned showed five conserved 

histidine and two conserved cysteine residues which are believed to be critical for protein 

function.  The Asp205 residue was also conserved among all enzymes.  This amino acid 

is thought to directly connect the active iron center of one alpha subunit to the 

neighboring unit as the main route for electron transfer (58).   

     All four genes were cloned for expression.  BL21(DE3) host cells expressing the 

oxygenase components only as well as cells expressing all four components were 
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induced.  When BL21(DE3)(pD12) cells harboring the plasmid to express PhnA1a and 

PhnA2a oxgenase subunits were induced with IPTG, a 53 kD and 21 kD protein was 

detected by SDS-PAGE (Fig 3.7).  These two bands indicated the successful expression 

of the phnA1a and phnA2a genes since they were present only in the induced samples.   

     When BL21(DE3) cells harboring the plasmids pD12 and pACD34 were induced for 

expression, the only bands detected by SDS-PAGE were representative of the phnA1a 

and phnA2a genes of pD12 (Fig 3.9).  No expression was seen for either ferredoxin 

component (phnA3, phnA4) cloned on the pACD34 plasmid.  Unsuccessful expression 

could be attributed the plasmid copy number.  Plasmid pD12 carrying the genes phnA1a 

and phnA2a, was derived from pETDuet-1.  This vector has an estimated copy number of 

40.  Plasmid pACD34 carrying the two genes encoding the ferredoxin components, 

namely phnA3 and phnA4, was derived from pACYCDuet-1.  This vector has an 

estimated copy number of 10.  Because the latter has a much lower copy number, and 

because copy number probably decreases as genes are cloned into the vector, the amount 

of expression subsequently decreased.  This might explain why expression of the genes 

cloned into the vector with the higher copy number was only visible with SDS-PAGE.   

     Another explanation could be that there was a problem in the construction of the 

plasmids for expression.  Sequencing was carried out to confirm genes were in frame 

after cloning.  However, to be sure that the lack of expression was not an issue with the 

vector, pACD34 was introduced into BL21(DE3) cells to check for expression in the 

absence of pD12.  BL21(DE3) cells were also transformed with pACD3 which only 

harbored the phnA3 gene.  After induction of BL21(DE3)(pACD3), an appropriately 
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sized band of 15 kD was observed with SDS-PAGE indicating successful expression of 

PhnA3.  After inducing BL21(DE3)(pACD34), a 15 kD band and another band below the 

50 kD mark were observed.  The band below the 50 kD mark was assumed to be the 45 

kD ferredoxin reductase component as it was only present in the induced samples.  In 

addition, the 15 kD size band representing the phnA3 gene product was lower in 

concentration compared to when this gene was expressed alone.  This was another 

indication that both genes were being expressed.   

     The successful expression of the phnA3 and phnA4 genes in the absence of pD12 

confirmed that there was no problem with the expression vector or the construct.  The 

lack of expression seen was probably due to the low copy number.  When cells harboring 

both plasmids are induced to express all four subunits, the ferredoxin components were 

most likely being expressed.  However, expression was at such a low level that these 

proteins were not being detected by SDS-PAGE.   

     Enzyme activity of the recombinant proteins was examined.  To look for dioxygenase 

activity, BL21(DE3)(pACD34)  and BL21(DE3)(pD12) cells were both tested for the 

ability to transform PAHs into their corresponding dihydrodiol products.      

     Demaneche et al. observed enzyme activity, albeit minimal, when the oxygenase 

components of Sphingomonas CHY-1 were expressed in the presence of PAHs.  When 

cells expressing only the PhnA1a and PhnA2a proteins of CHY-1 were incubated with 

various PAHs, dihydrodiol products were detected (38).  Although the activity was much 

lower than the activity observed by cells carrying all four subunits, the two oxygenase 

components were able to transform the PAHs without the ferredoxin components.  To test 
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this for EPA505’s dioxygenase, BL21(DE3)(pD12) cells harboring the plasmid to 

express only the PhnA1a and PhnA2a products were grown in the presence of PAHs.  

However, unlike experiments with CHY-1, no dihydrodiol product was detected by    

GC-MS.        

     When BL21(DE3)(pD12)(pACD34) was incubated with naphthalene, a product with 

the GC-MS characteristics of a naphthalene dihydrodiol was detected.  The EI mass 

spectrum of this product was compared to the previously described mass spectra of 

naphthalene dihydrodiol formed by Mycobacterium vanbaalenii (45).  The similarities 

between the mass spectra obtained in this study and that of Kim et al. (45) confirmed the 

presence of naphthalene dihydrodiol.   

     When cells expressing the complete dioxygenase were incubated with phenanthrene, 

the presence of a phenanthrene dihydrodiol was confirmed by comparing the mass 

spectra obtained to that of Kim et al. (45).  The fragmentation patterns observed for the 

products detected confirm the presence of dihydrodiols.  These dihydrodiols are evidence 

of dioxygenase activity and show the ability of these recombinant proteins to work 

together to transform the PAH substrates into corresponding breakdown products.         

     BL21(DE3)(pD12)(pACD34) cells expressing all four subunits of the dioxygenase 

were able to break down naphthalene and phenanthrene into corresponding dihydrodiols, 

whereas cells expressing only the oxygenase components showed no dioxygenase 

activity.  The difference in activity supports the idea that the ferredoxin components were 

being expressed even though they were not detected by SDS-PAGE.   
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     It appears that in EPA505, all four components are necessary for dioxygenase activity.  

However, the enzyme activity is being analyzed with recombinant proteins.  This might 

have an effect on the stability of the proteins in the cell, as compared to when they are 

produced naturally by EPA505.  Considering the similarity between the phnA1a and 

phnA2a genes of EPA505 and those in Sphingomonas CHY-1, it is difficult to believe 

that their protein products do not have some ability to transform PAHs without the 

ferredoxin components.  It is also possible that some of the other dioxygenases identified 

may show PAH degrading activity without the ferredoxin components.  Until all factors 

are taken into account, and all assay conditions are tested, it cannot be said with certainty 

that all four components are absolutely required for activity.   

     When the enzyme was exposed to the HMW PAH, fluoranthene, no breakdown 

products were observed in the whole cell assay or the assay using cell lysate.  The lack of 

activity with the whole cell assay could be attributed to an inability of the BL21(DE3) 

cells to take up the fluoranthene.  This host does not secrete overexpressed proteins into 

the media.  Therefore, the only way for the proteins and the substrate to interact would be 

for the substrate to enter the cell.  When the whole cell assay was carried out for 

naphthalene and phenanthrene, dihydrodiol products were identified.  More importantly, 

there was little or none of the original substrate in the supernatant of the cells expressing 

the enzyme as well as the control cells.  The lack of the original substrate, even in the 

control cells where no breakdown products were detected, is probably an indication that 

the PAH is entering the cell where it can come in contact with the enzyme.  With the 

fluoranthene experiments, however, no dihydrodiol products were identified and unlike 
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the other substrates, fluoranthene remained in the supernatant.  Since fluoranthene is a 

larger compound than naphthalene and phenanthrene, it is possible that this substrate is 

not entering the cell as easily and is not coming in contact with the enzyme.  This may be 

one reason why fluoranthene was not broken down as expected.   

     To ensure contact between the enzyme and fluoranthene, another activity assay was 

carried out using the cell lysate.  Once again, no dihydrodiol products were identified.  

However, the lack of activity against fluoranthene does not rule out the ability of this 

enzyme to break down HMW PAHs.  Even though fluoranthene was not broken down, 

this could be due to instability on the part of the enzyme.  After induction, cells were 

resuspended in a simple Tris buffer and lysed.  This lysate was then used to test activity 

against fluoranthene.  It is possible that the buffering conditions were not optimal and the 

recombinant proteins were not stable after cell lysis.  If this assay is repeated, the cell 

lysate should also be tested against naphthalene and phenanthrene as controls since the 

enzyme was shown to degrade these compounds.     

     There is a possibility that the substrate range of the PhnI protein in EPA505 is just not 

the same as other dioxygenases.  BLAST similarity search results indicate the terminal 

oxygenase components of EPA505 are 99% similar to those of Sphingomonas CHY-1.  

However, CHY-1 was shown to have great versatility in breaking down both low and 

high molecular weight PAHs.  When the crystal structure of the PAH degrading 

dioxygenase of CHY-1 was determined by Jakoncic et al. (52), the authors found that the 

catalytic pocket of the enzyme from CHY-1 is at least 2Å longer, wider and higher at the 

entrance when compared to other ring-hydroxylating dioxygenases.  This larger pocket 
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was attributed to the amino acids Leu223, Leu226, Ile253, and Ile260.  The multiple sequence 

alignment indicates that EPA505’s alpha subunit only contains the Leu226 and the Ile260.  

This may be a reason why EPA505 was unable to breakdown fluoranthene.  Although 

PhnA1a of EPA505 shares such high similarity with the PhnA1 of CHY-1, the 

differences in these amino acid residues may account for EPA505’s inability to 

breakdown larger substrates.   

     Sphingomonas paucimobilis EPA505 has great potential as a tool for bioremediation.  

In this study, a multi-component dioxygenase was identified and tested for activity 

against different PAHs.  To our knowledge this is the first report of functional analysis of 

dioxygenase from EPA505. Future studies will include a more detailed analysis of this 

enzyme as well as the other dioxygenases identified.  Testing enzyme activity in different 

environments in order to find out optimal activity conditions as well as conditions which 

inhibit activity may eventually lead to better bioremediation strategies.   
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