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Abstract

Factoring polynomials is a central problem in computational algebra and number

theory and is a basic routine in most computer algebra systems (e.g. Maple, Mathematica,

Magma, etc). It has been extensively studied in the last few decades by many mathemati-

cians and computer scientists. The main approaches include Berlekamp’s method (1967)

based on the kernel of Frobenius map, Niederreiter’s method (1993) via an ordinary dif-

ferential equation, Zassenhaus’s modular approach (1969), Lenstra, Lenstra and Lovasz’s

lattice reduction (1982), and Gao’s method via a partial differential equation (2003). These

methods and their recent improvements due to van Hoeij (2002) and Lecerf et al (2006–

2007) provide efficient algorithms that are widely used in practice today.

This thesis studies two issues on polynomial factorization. One is to improve the

efficiency of modular approach for factoring bivariate polynomials over finite fields. The

usual modular approach first solves a modular linear equation (from Berlekamp’s equation

or Niederreiter’s differential equation), then performs Hensel lifting of modular factors,

and finally finds right combinations. An alternative method is presented in this thesis that

performs Hensel lifting at the linear algebra stage instead of lifting modular factors. In this

way, there is no need to find the right combinations of modular factors, and it finds instead

the right linear space from which the irreducible factors can be computed via gcd. The

main advantage of this method is that extra solutions can be eliminated at the early stage of

computation, so improving on previous Hensel lifting methods.

ii



Another issue is about whether random numbers are essential in designing efficient

algorithms for factoring polynomials. Although polynomials can be quickly factored by

randomized polynomial time algorithms in practice, it is still an open problem whether

there exists any deterministic polynomial time algorithm, even if generalized Riemann hy-

pothesis (GRH) is assumed. The deterministic complexity of factoring polynomials is stud-

ied here from a different point of view that is more geometric and combinatorial in nature.

Tools used include Gröbner basis structure theory and graphs, with connections to com-

binatorial designs. It is shown how to compute deterministically new Gröbner bases from

given Göbner bases when new polynomials are added, with running time polynomial in

the degree of the original ideals. Also, a new upper bound is given on the number of ring

extensions needed for finding proper factors, improving on previous results of Evdokimov

(1994) and Ivanyos, Karpinski and Saxena (2008).
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Chapter 1

Introduction

1.1 Factoring polynomials

Factoring polynomials is a central problem in computer algebra with applications

in mathematics and engineerings. For univariate polynomial factorization, we have proba-

bilistic methods by Berlekamp (1967) and Neiderreiter (1993). Hensel lifting method was

first presented by Zassenhaus (1969) for factoring in Q[x]. A.K. Lenstra, H.W. Lenstra and

Lovász (1982) introduced lattice reduction and gave the first polynomial time algorithm for

factoring in Q[x]. Then Chistov (1984), A. K. Lenstra (1984) and Kaltofen (1982) showed

that multivariate polynomials over fintie fields can be factored in polynomial time. Gao

and Lauder (2002) proved that Hensel lifting method for polynomial time in Fq[x, y] is fast

on average (almost linear). Van Hoeij (2002) improved the LLL lattice reduction method

for factoring in Q[x] whose key idea is to recombine the logarithmic derivatives of lifted

factors and use a small lattice. And Belabas, von Hoeij and Kluners (2002) generalized

Hoeij’s method from Q to more general global fields including K(y)[x]. Gao (2003) gave

a PDE approach to factor f ∈ K[x, y] requiring that p > 2n2 − 1, where char = p and

n is the total degree of f and also works for absolute factorization and mumerical factor-
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ing over R or C (coefficients of f are approximate). Lecerf (2006) presented, when the

field characterisitc is zero or sufficiently large, recombination algorithms which only cost

subquadratic time in term of the total degree, and Lecerf (2007) gave a new recombination

algorithm that works for fields of any characteristic and lifts only to the total degree.

We are interested in two aspects, efficient bivariate polynomial factorization and

deterministic algorithms for univariate polynomial factorization over finite fields.

Suppose K is a commutative field containing Fq with characteristic p. Let f ∈

K[x, y] be square free. Suppose

f = f1f2 · · · fr, (1.1)

where fi ∈ K[x, y] are irreducible and distinct. We want to find these irreducible factors.

The basic idea of current approaches can be summarized by the following diagram:

f ∈ K[x, y]

↓ modφ(y)

f ∈ K[y]/(φ(y))[x]

↓ factoring

f ≡ f
(1)
1 f

(1)
2 · · · f

(1)
s mod φ(y)

↓ Hensel lifting

f ≡ f
(m)
1 f

(m)
2 · · · f (m)

s mod φ(y)m

↓ Combination

f1, f2, · · · , fr

It is possible that f is irreducible but f (mod φ(y)) has many factors for all φ(y).

Thus the combination stage could have exponential running time. For example, the follow-
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ing polynomial is irreducible

f(x, y) =
n∏
i=1

(x− i) + y · g(x, y).

But, if φ(y) = y, we have

f(x, y) ≡
n∏
i=1

(x− i) (mod φ(y)).

For another example, the following polynomial is irreducible

f(x, y) =
∏

(x±√y ±
√
y + 1± · · · ±

√
y + t− 1) ∈ Fq[x, y],

where the product is over all choices of + and −. However, for every irreducible φ(y) ∈

Fq[y], the irreducible factors of f mod φ(y) all have degrees ≤ 2.

In the worst case, it needs to try 2n combinations. In practice, however most poly-

nomials have only a small number of modular irreducible factors. So the above approach

is efficient for most polynomials.

In our approach, we want to use a solution basis for modified Berlekamp equation

(1.4) or Neiderreiter equation (1.5) to find factors. The question is how to find a solution

space (1.8) for any of these two equations. When K = Fq, each of the equations is a linear

system over Fq, with the coefficients of h as unknowns. The system can be solved by any

fast algorithms in the literature. In the case when K is a function field, say K = Fq(x). We

show how to find the solutions via Hensel lifting. The details will be presented in chapter

2.

We are also interested in the deterministic complexity of factoring polynomials over

finite fields. Given any polynomial f ∈ Fq[x] of degree n, we want to find a proper fac-

tor of f . There exist several randomized algorithms to factor f over Fq with complexity

3



in polynomial time (log q, deg f)O(1), see for examples, Berlekamp (1970), Cantor and

Zassenhaus (1981), von zur Gathen and Shoup (1992), Kaltofen and Shoup (1998). Never-

theless, it is still an open problem whether there exist any deterministic algorithm running

in polynomial time in n and log p.

It is a major open problem in computer science whether P = RP . Recall that P

is the collection of problems that can be solved by deterministic algorithms in polynomial

time, RP is the collection of problems that can be solved by randomized algorithms in

polynomial time. The main issue is whether random numbers are necessary in efficient

computing. For a simple example, consider the following problem. Given a prime p, find

a quadratic nonresidue a ∈ Fp (a 6= b2 (mod p) for all b ∈ Fp). This can be solved by the

following algorithm.

Randomized algorithm: Find a quadratic nonresidue

Input: p a prime

Output: "Failure" or a ∈ Fp a quadratic nonresidue

Step1: Pick a ∈ Fp\{0} at random

Step2: Compute b := a
p−1
2 (mod p)

Step3: If b = 1 then output "Failure", otherwise output a

The algorithm outputs a quadratic nonresidue a ∈ Fp with probability 1/2. Run the algo-

rithm 100 times to get a quadratic nonresidue in Fp with probability 1− 2−100.

However, we don’t know any deterministic algorithm for this problem. A simple

approach is to test a = 1, 2, 3, · · · until a quadratic nonresidue is found. The problem is to

find a good bound for the smallest quadratic nonresidue mod p. Under extended Riemann

Hypothesis (ERH), N.C. Ankeny (1952), Y. Wang (1959), E. Bach (1990) gave a upper

bound 2 log2 p. Hence, under GRH, there exists a deterministic polynomial time algorithm

to find a quadratic nonresidue.

Berlekamp algorithm reduces general polynomials in Fq[x] deterministically to poly-
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nomials that are separable and split completely. It can be shown that factoring quadratic

polynomials is equivalent to finding a quadratic nonresidue in Fp. We do not know any

deterministic polynomial time algorithm for factoring quadratic polynomials without as-

suming GRH. Bach, von zur Gathen and Lenstra (2001) proved that it is polynomial time

if φK(p) is smooth for some k where φk(x) is the k-th cyclotomic polynomial. Ronyai

[Ronyai92] proved that under GRH f can be factord in polynomial time modulo p in de-

terniminstic polynomial time except for finitely many primes p if Q[x]/f is a Galois exten-

sion. This result extends previous work of Huang (1991), Evdokimov (1989) and Adleman,

Manders and Miller (1977). Evdokimov (1994) gave a subexponential-time algorithms in

nlogn and log q under GRH. Gao (1996) showed that hard-to-factor polynomials must be

square balanced. Recently, Ivanyos, Karpinski and Saxena (2008) demonstrate the level r

in Evdokimov’s algorithm (1994) can be reduced to logn
1.5

and gave the first deterministic

polynomial time algorithm to find a nontrivial factor of a polynomial of prime degree n

where (n− 1) is a smooth number.

Evdokimov (1992) gave an exponential deterministic polynomial time algorithm

with complexity (nlog2 n log q)O(1) to factor f into irreducible factors over k, assuming GRH

(generalized Riemann Hypothesis) and f of degree n over an explicitly given finite field

k of cardinality q. Ivanyos, Karpinski and Saxena (2008) showed it only needs to extend

log2 n
log4 8

levels instead of log2 n in Evdokimov (1992). We continue this line of research for

deterministic polynomial time algorithms under GRH and reduce the levels by a constant

as stated in the following theorem 3.5.13 in Chapter 3.

Theorem 1.1.1. Let `(n) be the extension needed to find a factor of polynomial of degree

n, then `(n) ≤ log2 n
log4 12

.
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1.2 Basic theory for factoring univariate polynomials

In this section, we give a brief survey of results that are essential for factoring

univariate polynomials. In chapter 2, we shall show how to use these results for factoring

bivariate polynomials.

Let K be a commutative field containing Fq with characteristic p. Let f ∈ K[x] be

squarefree and suppose it factors as

f = f1f2 · · · fr, (1.2)

where fi ∈ K[x] are irreducible and distinct, which we want to find. There are several

methods to do this, each of them reduces the problem to a linear algebra problem. More

precisely, Berlekamp’s method finds all g ∈ K[x] satisfying deg(g) ≤ deg(f),

gq ≡ g (mod f), (1.3)

which is equivalent to

hq ≡ (f ′)q−1h (mod f). (1.4)

Note that (1.3) and (1.4) are equivalent only if f is squarefree, in fact

h = g · f ′ (mod f).

Niederreiter’s method considers the differential equation

H(q−1)

(
h

f

)
=

(
h

f

)q
, (1.5)
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where H(q−1) is the (q − 1)-th Hasse derivative on Fq[x] defined by

H(q−1)(xi) =

(
i

q − 1

)
xi−(q−1).

Also, Wan considers the equation

ψq(f
q−1xh) = (xh)[q], (1.6)

where

g[q] =
∑

aqix
i,

if g =
∑
aix

i ∈ K((x)), and ψq is the K-linear operator on K((x)) defined by

ψq(x
u) =

 xu/q, if q|u,

0, otherwise.

Theorem 1.2.1 (Niederreiter 1993). Let f ∈ K[x] be squarefree with r distinct irreducible

factors as in (1.2). Then dimFq(Nf ) = r, and every h to (1.5) is of the form:

h =
r∑
i=1

λiEi,

where λi ∈ Fq and Ei = f
fi
f ′i for 1 ≤ i ≤ r.

Proof. Each irreducible factors fi can be written as

fi =
∏̀
j=1

(x− βij), βij ∈ K, 1 ≤ i ≤ r.

We order the elements βij’s as (β1, β2, · · · , βn). Then β1, β2, . . . , βn are distinct and are all

7



the roots of f in the algebraic closure of K. Hence

f = c

n∏
i=1

(x− βi),

where c ∈ K is the leading coefficient of f . Since degx(h) < degx(f), we have

h

f
=

n∑
i=1

bi
x− βi

, (1.7)

where bi = h(βi)
f ′(βi)

∈ K, 1 ≤ i ≤ n. Hence

H(q−1)

(
h

f

)
=

n∑
i=1

H(q−1)

(
bi

x− βi

)
=

n∑
i=1

−bi
xq − βqi

,

So (1.4) becomes
n∑
i=1

−bi
xq − βqi

+
n∑
i=1

bqi
xq − βqi

= 0 ,

which implies that bi = bqi , i.e. bi ∈ Fq for 1 ≤ i ≤ n.

If βi and βj are conjugates over K, i.e. if they are roots of the same irreducible

factor of f ∈ K[x], then there exists an σ ∈ Gal(K/K) such that σ(βi) = βj . Hence

bi = σ(bi) = σ

(
h(βi)

f ′(βi)

)
=
h(σ(βi))

f ′(σ(βi))
=
h(βi)

f ′(βi)
= bj ,

Thus bi = bj whenever βi and βj are roots of the same irreducible factor of f .

For each irreducible factor fi of f , we group the terms in (1.7) where βj is a root of

fi and let λi be the common value of these bj . Then

h

f
=

r∑
i=1

λi
∑

β: root of fi

1

x− β
=

r∑
i=1

λi
1

fi

∂fi
∂x

.

8



Therefore

h =
r∑
i=1

λi
f

fi

∂fi
∂x

as claimed by the theorem.

Since fi’s are distinct, we see thatEi’s are linearly independent over Fq. This proves

that E1, E2, · · · , Er form a basis over Fq for the solution space.

Theorem 1.2.2. Let f ∈ K[x] be squarefree with r distinct irreducible factors. Then (1.4),

(1.5) and (1.6) have the same solution space.

H = {h ∈ K[x] : h satisfies (1.4)}. (1.8)

1.3 Geometric structure of Gröbner bases

We assume f is squarefree that splits completely over finite fields. Let S be the set

of roots of f . We construct ideals extended from 〈f(x)〉 and varieties extended from S. We

show how to use Gröbner bases structure theorem to decompose these ideals and varieties,

and how those might lead to proper factors of f which is to be factored.

In the following, we describe a correspondence between the geometric structure

of the variety of a zero-dimensional radical ideal and its Gröbner basis under elimination

order . This will be one of the main tools to split polynomial system.

Let F be any field. For any ideal I ⊂ F[x1, x2, · · · , xn], let V (I) be the set of

common solutions of I in F̄n. We call V (I) the variety of I . For an ideal I , we are

interested in the structure of its variety V (I). In particular, we want to know the number of

extensions of particular solutions.

For a set of points V ∈ F̄n, we say (a1, a2, · · · , ai−1) is a partial point of V , for any

2 ≤ i ≤ n, if there exist ai, · · · , an such that (a1, a2, · · · , ai−1, ai, · · · , an) is a point in V .

9



Definition 1.3.1. Let V ⊂ F̄n and (a1, a2, · · · , ai−1) is a partial point in V . We define the

fiber size of above (a1, a2, · · · , ai−1) to be

#
{
b ∈ F̄ : (a1, · · · , ai−1, b) is a partial point in V

}
.

We say fibre sizes of V at level i to be the fibre sizes above all partial points (a1, a2, · · · , ai−1)

of V .

We define a projection map π as follows. Let a set of points V ⊂ F̄n.

π : V → F̄n−1

(a1, a2, · · · , an−1, an) 7→ (a1, a2, · · · , an−1)

Let W = π(V ). Given first n− 1 coordinates of a point from V , we denote

π−1(a1, · · · , an−1) =
{
b ∈ F̄ : (a1, · · · , an−1, b) ∈ V

}
.

According to distinct fibre sizes above n − 1 level, V can be partitioned by one to

one correspondence as

V = P1 ∪ · · · ∪ Pr,

where any two points u, v ∈ Pi have the property that π(u) and π(v) share a common fibre

size mi, 1 ≤ i ≤ r.

Example 1.3.2. Suppose we have the following points: P = {(0, 0, 1), (0, 0, 4), (0, 0, 2)

, (0, 4, 0), (2, 2, 3), (2, 3, 1), (3, 1, 2), (3, 1, 3)}. The fiber sizes are (0, 0), |π−1(0, 0)| = 3,

π−1(3, 1) = 2, π−1(0, 4) = 1, π−1(2, 2) = 1, π−1(2, 3) = 1. So P2 = π(P ) = {(0, 0)} ∪

{(3, 1)} ∪ {(0, 4), (2, 2), (2, 3)}.

10
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Figure 1.1: Points Structure

Definition 1.3.3. (Uniform).

We say that the set V is uniform at level i or above level i − 1, if the fibre size of

any partial point (a1, · · · , ai−1) in V is a constant.

If it is uniform for each level to the next, we say the points are totally uniform.

Now we give an example that all fiber sizes are the same as follows.

Example 1.3.4. Points are {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 1), (4, 5), (5, 1), (5, 2)}.

All fiber sizes of π(s), s ∈ P2 are 2. We say that it is uniform from level 1 to level 2 in this

case.

1

2

3

4

5

2 3 3 4 4 5 1 5 1 2

1 2 3 4 5

Figure 1.2: Regular graph

The variety of a radical zero-dimensional ideal I , V (I) has an partition according

to fiber sizes. Can we tell about Gröbner basis of I from the information of fibre sizes of

V (I), or vice verse? The main theorem of Gao, Rodrigues, and Stroomer (2003) answered

this question.
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Theorem 1.3.5 (Gao, Rodrigues, and Stroomer 2003). Let F be a perfect field, I a zero-

dimensional radical ideal in F[x1, x2, · · · , xn], and Pn the set of points of V (I) in F̄n.

Assume the fibre sizes in Pn are 0 < m1 < m2 < · · · < mr. Let G be any minimal

Gröbner basis for I under an elimination order for xn, i.e. xn > x1, x2, · · · , xn−1. View

the elements of G as polynomials in xn with coefficients in F[x1, x2, . . . , xn−1], and group

polynomials in G by their degrees in xn as follows.

G = G0 ∪G1 ∪G2 · · · ∪Gt,

where Gi denotes all polynomials in G with a common degree in xn. Then

(1). t = r, and the degree of xn in Gi is mi, 1 ≤ i ≤ r.

(2). For 1 ≤ i ≤ r, let Lc<mi
(G) ⊂ F[x1, x2, . . . , xn−1] denote the leading coefficients of

the polynomials in

G0 ∪Gm1 ∪Gm2 · · · ∪Gmi−1
.

Let Pn−1 = π(Pn), Pn−1,i = {A ∈ Pn−1| |π−1(A) = mi}, and

Pn−1,≥i = Pn−1,i ∪ Pn−1,i+1 · · · ∪ Pn−1,r.

Then Lc<mi
(G) is a Gröbner basis for I s.t. V (I) = Pn−1,≥mi

for 1 ≤ i ≤ r.

Remark 1: One simple conclusion made from the theorem is that points projected

with fibre size ≥ mi vanish all of those leading coefficients of terms with degxn
< mi in

the Groeber Basis G. The coefficient of the polynomial in G with highest degree in xn is 1.

Remark 2: Under the elimination order on xn, the degree in xn of the items in the

minimal Gröbner basis are exactly the fibre sizes of π(V (I)).

Example 1.3.6. Let P = {(1, 3, 1), (1, 3, 2), (1, 1, 1), (2, 1, 3), (2, 1, 2), (2, 4, 1)}.

12



1 2 1 3 2 1
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1 2

z

y
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Figure 1.3: An example

P2 = π3(P ) = {(1, 3), (1, 1), (2, 1), (2, 4)}. Then P2 = S1∪S2. S1 = {(1, 3), (2, 1)},

m1=2; S2 = {(1, 1), (2, 4)}, m2 = 1. So fiber sizes from 2-level to 3-level of P are 1 and

2. Let I = I(P ). Under elimination order x1 < x2 < x3, the Gröbner Basis consists of the

following polynomials:

g0 = x2 − 3x+ 2

g1 = y2 − xy − 3y + x+ 2

g2 = (2x+ y − 5)z − y − 2x+ 5

g3 = 3z2 − 6xz − 3z − 2xy + 2y + 14x− 8

So the leading terms are {x2, y2, z, z2}. z and z2 ’s degree are 1 and 2, exactly the fiber

sizes of P2. And I0 = {g0, g1} is a Gröbner basis for P2, I1 = {g0, g1, 2x+ y − 5} is a

Gröbner basis for I(S1) according to the theorem 1.3.5. By using quotient operation, we

can compute a Gröbner basis for The ideal generated by S2, since I(S2) = I0 : I1.

Example 1.3.7. Suppose I has the following Gröbner basis {(x − 1)(x − 2), (x − 2)y +

1, y2 − 1} under lex order x < y. And fibre sizes of x are 1 and 2 because the degree of y

is 1 and 2.

Given an ideal I , let P = V (I). If under elimination order on xn, it is uniform

from πn(P ) to P , then I has a minimal Gröbner basis of the form, G = G0 ∪ g, where

LT (g) = xmn ,m is a constant. If P is totally uniform under lex order x1 ≺ x2 ≺ · · · ,≺ xn,

then G = {g1(x1), x
m2
2 + g2(x1, x2), · · · , xmn

n + gn(x1, x2, · · · , xn)} where xmi
i ’s is the

13



leading term of i-th polynomial.

Example 1.3.8. Let P = {(1, 4, 1), (1, 4, 2), (1, 4, 4), (1, 2, 1), (1, 2, 2), (1, 2, 5),

(2, 3, 1), (2, 3, 4), (2, 3, 3), (2, 2, 7), (2, 2, 2), (2, 2, 3)}.

1 2 4 1 2 5 1 4 3 7 2 3

4 2 3 2

1 2

z

y

x

Figure 1.4: An uniform case

Using lex order with x ≤ y ≤ z, the reduced Gröbner basis G of I(P ) is given by

the polynomials below:

g0 = x2 − 3x+ 2

g1 = y2 − xy − 2x− 7y + 10

g2 = 2z3 + (7xy − 6y − 22x+ 4)z2 + (−41xy + 38y + 130x− 90)z + 58xy − 56y − 180x+ 156

As stated in theorem 1.3.5 , Lc<mi
(G) is a Gröbner basis for Pn−1,≥mi

for 1 ≤ i ≤

r. I(Lc<mi
(G)) ⊂ I(Lc<mi+1

(G)). So, we can use quotient to compute the ideal vanished

at points with fibre size exactly mi.

If I is not uniform, by the structure theorem, then not all leading coefficients are

constants. In this case, we can refine the ideal. For example, in example 1.3.6 G0 =

{x2 − 3x+ 2, y2 − xy − 3y + x+ 2}. G1 = {g0, g1, 2x+ y − 5} = {x2 − 3x+ 2, 2x+ y − 5}

is a Gröbner basis for I(S1) with fibre sizes bigger than 1.Variety ofG1 is S1 = {(1, 3), (2, 1)} .

J1 = I0 : I(S1) = I(x2− 3x+ 2, y− 3x+ 2), which is exactly the ideal vanishes on points

set S2 = {(1, 1), (2, 4)} with fibre size exactly 1. We can write I as an intersection

I = I(x2− 3x+ 2, y− 3x+ 2, z− 1)∩ I(x2− 3x+ 2, 2x+ y− 5, z2− 2xz− z+ 4x− 2).
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Theorem 1.3.9. For each 1 ≤ i ≤ r, Ji is a Gröbner Basis for the points in S = π(P ) that

are projections of fibres of size exactly mi. Then

Ji =< Gi−1 >:< Gi > .

We will show this can be computed in deterministic polynomial time in Section 3.2.

Example 1.3.10. Let’s consider the example 1.3.6. G0 = {x2 − 3x+ 2, y2 − xy − 3y + x+ 2}.

Let I0 = I(G0) with V (I0) = V (P2) = {(1, 3), (1, 1), (2, 1), (2, 4)}.

And G1 = {g0, g1, 2x+ y − 5} = {x2 − 3x+ 2, 2x+ y − 5} is a Gröbner basis for

I(S1) with fibre sizes bigger than 1.Variety of G1 is S1 = {(1, 3), (2, 1)} . J1 = I0 :

I(S1) = I(x2 − 3x + 2, y − 3x + 2), which is exactly the ideal vanishes on points set

S2 = {(1, 1), (2, 4)} with fibre size exactly 1.
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Chapter 2

Factoring bivariate polynomials via
lifting linear spaces

We present a new modular approach that does not need any recombination of fac-

tors. Instead of lifting modular factors we lift the linear space of solutions and get complete

factorization directly from lifted solutions.

2.1 Lifting Berlekamp’s linear spaces

From now on, we assume f ∈ Fq[y][x]. To solve (1.4), let φ(y) ∈ Fq[y] be irre-

ducible, we consider

hq ≡ (f ′)q−1h (mod f, φ(y)),

where

h =
n−1∑
i=0

ai(y)xi, degy ai(y) < degy φ(y).

This is a linear system over Fq with N unknowns and N equations respectively, where

N = n degy φ(y).

Theorem 2.1.1. let φ(y) ∈ Fq[y] be irreducible such that f (mod φ)(y) is square free. Let

16



m ≥ 1 and h0 ∈ Fq[x, y] such that

hq0 ≡ (f ′)q−1h0 (mod f(x, y), φm(y)).

Then there exists a unique g ∈ Fq[y][x] such that degy(g) < deg(φ), degx(g) < n, and

(h0 + gφm)q ≡ (f ′)q−1(h0 + gφm) (mod f(x, y), φm+1(y)).

In fact

g ≡ hq0 − (f ′)q−1h0

φm
1

(f ′)q−1
(mod f, φ(y)).

Remark: Since hq0 ≡ (f ′)q−1h0 (mod f, φm(y)), hq0 − (f ′)q−1h0 mod (f, φm+1)is

divisible by φm. So it is hq0 ≡ (f ′)q−1h0 is computed (mod f, φm+1(y)) first, then divided

by φm. The quotient is then multiplied with the other term modulo (f, φ(y)). Also (f ′)q−1

only needs to be computed mod (f, φ(y)) once.

2.2 Lifting Niederreiter’s linear spaces

Lifting via Niederreiter’s equation is much more complicated, we will show how

this can be done in polynomial time.. We consider Niederreiter’ differential equation (1.5)

Let

h =
n−1∑
i=0

aix
i, f q−1 =

(q−1)n∑
j=0

bjx
j,

where ai, bj ∈ Fq[y]. We can rewrite (1.5) as

n−1∑
i=0

blq+q−1−i · ai = aql , 0 ≤ l ≤ n− 1,

17



or equivalently,



bq−1 bq−2 · · · bq−n

b2q−1 b2q−2 · · · b2q−n
...

...
...

...

b(n−1)q−1 b(n−1)q−2 · · · b(n−1)q−n

bnq−1 bnq−2 · · · bnq−n





a0

a1

...

an−2

an−1


=



aq0

aq1
...

aqn−2

aqn−1


.

We show how to compute this matrix in the appendix.

Lemma 2.2.1. Let K be any field containing Fq and g ∈ K[x] such that gcd(g, g′) = 1.

Then, for any w ∈ K[x] with degw < deg g = n, there exists a unique h ∈ K[x] with

deg h < n such that

H(q−1)

(
h

g

)
=

(
w

g

)q
. (2.1)

Proof. Since gcd(g, g′) = 1, g is separable. Let Kg be the splitting field of g over K. Let

β1, · · · , βn be the n distinct roots of g in Kg. Then

w

g
=

n∑
i=1

wi
x− βi

,

where wi = w(βi)
g′(βi)

. So (
w

g

)q
=

n∑
i=1

wqi
xq − βqi

.

By interpolation, there is an h ∈ Kg[x] such that deg h < n and h(βi) = wqi g
′(βi), 1 ≤ i ≤

n. Then
h

g
=

n∑
i=1

hi
x− βi

, where hi =
h(βi)

g′(βi)
= wqi 1 ≤ i ≤ n.
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Note that

H(q−1)

(
h

g

)
=

n∑
i=1

H(q−1)

(
hi

x− βi

)
=

n∑
i=1

wqi
(x− βi)q

=

(
w

g

)q
.

i.e. h satisfies (2.1).

We need to show that h ∈ K[x]. Since gcd(g, g′) = 1, Kg is Galois over K.

Hence, for any β ∈ Kg, we have β ∈ K iff σ(β) = β for all σ ∈ Gal(Kg/K). Now each

σ ∈ Gal(Kg/K) extends to a unique a ring isomorphism ofKg[x] that fixes all polynomials

inK[x]. Applying σ to (2.1), we see that σ(h) is another solution inKg[x]. The uniqueness

argument below shows that σ(h) = h for all σ ∈ Gal(Kg/K), hence h ∈ K[x].

It remains to prove the uniqueness of h. In fact, we prove the uniqueness for h ∈

Kg[x]. Let u, v ∈ Kg[x] be any two solutions to (2.1) with deg(u) < n and deg(v) < n.

Then

H(q−1)

(
u

g

)
= H(q−1)

(
v

g

)
.

Expanding u/g and v/g into partial fractions (similar to h/g above), we see that u(βi) =

v(βi) for 1 ≤ i ≤ n. Since both u and v have degrees less than n, it follows that u = v.

This completes the proof.

Theorem 2.2.2. For any m ≥ 1, and h0 ∈ Fq[y][x] such that

H(q−1)

(
h0

f

)
≡
(
h0

f

)q
(mod φm). (2.2)

There exists a unique h1 ∈ Fq[y][x] such that degy(h1) < deg(φ), degx(h1) < n, and

H(q−1)

(
h0 + h1φ

m

f

)
≡
(
h0 + h1φ

m

f

)q
(mod φm+1). (2.3)
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Furthermore, let

u(x) =
1

φm
(hq0 −H(q−1)(h0f

q−1)) ∈ Fq[y][xq]. (2.4)

Then

h1(x) =
u(x)

f ′(x)q−1
(mod f(x), φ(y)). (2.5)

Proof. Expanding (2.3), gives

H(q−1)

(
h0

f

)
+ φmH(q−1)

(
h1

f

)
≡
(
h0

f

)q
+ φqm

(
h1

f

)q
(mod φm+1).

So
1

φm

((
h0

f

)q
−H(q−1)

(
h0

f

))
≡ H(q−1)

(
h1

f

)
(mod φ),

which we write as
u

f q
≡ H(q−1)

(
h1

f

)
(mod φ), (2.6)

where

u(x) =
1

φm
(hq0 −H(q−1)(h0f

q−1)) ∈ Fq[y][xq]. (2.7)

Now there exists unique w ∈ Fq[y]/(φ(y))[x] such that wq ≡ u (mod φ), hence (2.6) is

equivalent to

H(q−1)

(
h1

f

)
≡
(
w

f

)q
(mod φ).

By Lemma 2.2.1 where K = Fq[y]/(φ(y)), there exists a unique h1 ∈ Fq[y]/(φ(y))[x] that

satisfying (2.3). In fact h = h1 is the unique polynomial such that

h

f
=

n∑
i=1

hi
x− βi

,
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where hi = h(βi)
f ′(βi)

= wqi and wi = w(βi)
f ′(βi)

. This means that

h(βi) =
w(βi)

q

f ′(βi)q−1
=

u(βi)

f ′(βi)q−1
.

Therefore, we have

h1(x) =
u(x)

f ′(x)q−1
(mod f(x), φ(y)).

Theorem 2.2.3. For any m ≥ 1, and h0 ∈ Fq[y][x] such that

H(q−1)

(
h0

f

)
≡
(
h0

f

)q
(mod φm). (2.8)

There exists a unique gm ∈ Fq[y][x] such that degy(gm) < deg(φ), degx(gm) < n,

and

H(q−1)

(
h0 + gmφ

m

f

)
≡
(
h0 + gmφ

m

f

)q
(mod φm+1).

Furthermore, let

u(x) =
1

φm
(hq0 −H(q−1)(h0f

q−1)) ∈ Fq[y][xq]. (2.9)

Then

gm(x) =
u(x)

f ′(x)q−1
(mod f(x), φ(y)). (2.10)
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2.3 Lifting bound

In [Lecerf, 2007], Lecerf proved that it only needs to lift the solutions to degree at

most dy + 1 in y, where dy is the degree of y, with differentiation with respect to x. Let

h

f
=

n∑
i=1

ρi
x− φi

,

where φi are the distinct roots of f in F̄q[[y]]. If h is a solution, then

∂

∂y
ρi = 0, ∀i.

It is equivalent with the condition that h satisfies D(h) = 0, i.e. h ∈ ker(D), where D is

defined as
D : K[y, x]dy ,dx−1 −→ K[y, x]3dy ,3dx−3

g 7→
(
∂g
∂y

∂f
∂x
− ∂g

∂x
∂f
∂y

)
∂f
∂x
−
(
∂2f
∂xy

∂f
∂x
− ∂2f

∂x2
∂f
∂y

)
g.

And if h ∈ kerD, then Nf (h) ∈ K[xp, yp]dx−1,dy , where Nf is defined as follows.

Nf : K[x, y]dx−1,dy −→ K[xp, y]dx−1,pdx ,

g 7→ gp −H(p−1) (fp−1g) .

For h ∈ Fq[x, y] with degx h < dx, degy h ≤ dy and h ∈ kerD. If

hp −H(p−1)
(
f q−1h

)
≡ 0 (mod ψ(y)),

where ψ(y) is any polynomial have dy + 1 distinct roots in K, then h is a true solution.

Theorem 2.3.1 (Lecerf 2007). Let the characteristic of K be p > 0 and g ∈ ker(D). Let S
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be an arbitrary set of size dy + 1. For all a ∈ S, if Resx(f, ∂f∂x) 6= 0 and Nf (g)(x, a) = 0,

then g is a solution to (1.5).

2.4 The algorithm of finding a solution basis

Define Berlekamp map as:

Bf : K[x, y]dx−1,dy −→ K(x)[y]/(f)

h 7→ hq − (f ′)q−1h,

that is, for h ∈ K[x, y]dx−1,dy ,

Bf (h) = hq − (f ′)q−1h (mod f).
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In the following algorithm, we mean bad solutions by those with total degree higher than

f .
Algorithm 1: Find a solution basis

Input: f ∈ K[x][y], φ(y) ∈ K[y] such that (Resx(f, ∂f∂x)(x, a) 6= 0

(mod φ(y)), and m s.t. deg(φm) ≥ dy + 1

Output: A solution basis for Nf

1. Find a basis of solutions of g of Bf (g) = 0 (mod f, φ(y)), say

G = {g1, · · · , gr} ;

2. For i = 1, 2 · · · ,m− 1 do

2.1. Lift each gi in G to a solution ĝ in K[x, y]/ < f, φi+1 >;

2.2. Use total degree to get rid of bad solutions via Gauss elimination ;

2.3. Update G, suppose G = {ĝ1, · · · , ĝt} ;

End do ;

3. Check D(g) = 0, ∀g ∈ G. Get rid of bad solutions via Gauss elimination ;

Suppose a good basis is H = {h1, · · · , hr} ;

4. Find a squarefree polynomial ψ(y) of degree dy + 1 in y satisfying

Resx(f, f
′) 6= 0 (mod ψ(y)) ;

5. Check Bf (g) ≡ 0 (mod f, ψ), g ∈ H . Get rid of bad solutions via Gauss

elimination and find a basis as output.

Proposition 2.4.1. The algorithm (1) gives correct solution space N.

Proof. After we lift to (ydy+1) and check with the map D, we have solutions of Nf , also

belong to K[xp, yp]. Then we choose dy + 1 many value for y to check the solutions. By

theorem 2.3.1, g s a true solution.

Since solutions modulo φm+1 can be obtained uniquely by lifting solutions modulo

φm for each m ≥ 1. And we don’t need to lift each solution, but instead lifting any basis
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of solutions to high powers of φ. In each level of lifting, if there are some elements in the

basis whose total degree is greater than that of f, we eliminate them and update the basis

by getting rid of those ones with high degree. We lift m many times and obtain a basis

{b1, b2, · · · , bs}. Compute for each i ∈ {1, 2, · · · , s},

ti = bqi −H(q−1)(bif
q−1) (mod f(x), φ1(y)). (2.11)

If bi is a solution for (1.5), then (2.11) should be 0. Thus we eliminate {t1, t2, · · · , ts} by

linear combination to find a set of coefficients li = {li1, · · · , lis} such that
∑s

k=1 liktk = 0.

Then from the proposition, we claim that

{
s∑

k=1

l1kbk, · · · ,
s∑

k=1

lrkbk

}

is the right basis for (1.5).

Remark: Lecerf’s method uses the map D to do recombination and Nf or Bf to

check. When characteristic is not high enough or zero, he uses Nf to do more combi-

nation. Our way is to use modified berlekamp’s equation to solve solution space without

recombination and lift the solution basis, but use the map D to check solutions.

2.5 Finding factors from a solution basis

Let h(x, y) be any solution of (1.5), then

f =
∏
λ∈Fq

gcd(f, h− λf ′).
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Use all h from a solution basis for (1.5), we can find all factors of f .
Algorithm 2: Find factors

Input: f ∈ K[x][y], solutions h1, · · · , hr and φ(y),

Output: factors of f .

Let S = {f};1

foreach 1 ≤ i ≤ r do2

Solve λ from Resx(f, hi − λf ′) ≡ 0 (mod φ), for each hi ;3

foreach root λ of hi and each g ∈ S do4

compute gcd(g, hi − λf ′);5

Update S by replace g by g’s factors from gcd(g, hi − λf ′);6

end7

end8

Let f =
∏r

i=1 si, for all si ∈ S;9

Suppose degx φ
m > dx + 1;10

Lift the factorization f ≡
∏

si∈S si, to degree of φm ;11

2.6 An example

We consider the following polynomials

f = xp − x+ yp−1 ∈ Fp[x, y]

with total degree d = p. This polynomial, also can be written as yp−1 − x(x− 1) · · · (x−

p+ 1), is irreducible, but splits completely mod y.

Our example below shows that we only need to lift up to yd+1 to get the right linear space.
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Let p = 5.

f = x5 − x+ y4 ∈ Fp[x, y].

The solutions basis mod ym, 1 ≤ m ≤ 6, are as follows:

mod y mod y2 mod y3 mod y4 mod y5 mod y6

−x −x −x −x y4 − x y4 − x

2x2 2x2 2x2 2x2 y4x+ 2x2 y4x+ 2x2

3x3 3x3 3x3 3x3 y4x2 + 3x3 y4x2 + 3x3

x4 x4 x4 x4 y4x3 + x4 y4x3 + x4

1 1 1 1 1 1

The last row indicates that h = 1 is a true solution, and we can get rid of {y4x+ 2x2, y4x2 + 3x3, y4x3 + x4}

because their total degree is bigger than that of f . Next we check with maps D and Bf .

Consider the basis mod y6, H5 = {y4 − x, y4x+ 2x2, y4x2 + 3x3, y4x3 + x4, 1} .

h51 = y4 − x ⇒ D(h51) = 0,

h52 = y4x+ 2x2 ⇒ D(h52) = −y7,

h53 = y4x2 + 3x3 ⇒ D(h53) = −2xy7,

h54 = y4x3 + x4 ⇒ D(h54) = −3x2y7,

h55 = 1 ⇒ D(h55) = 0,

So the new basis is {y4 − x, 1} . B(y4 − x) = (y4 − x)5 − (y4 − x) = y40 = y4·5 6= 0. So

1 is the only factor, hence f is irreducible.
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2.7 Appendix: Computing coefficient matrix

The Niederreiter equation (1.5) is equivalent with

H(q−1)
(
f q−1h

)
= hq.

Since

H(q−1)(xi) =

 xi−q+1 if i ≡ q − 1 (mod q)

0 otherwise.

(1.5) and (1.6) turn out to be the same linear system over Fq, so they are equivalent.

To write the equation (1.6) into a matrix form, suppose

h =
n−1∑
i=0

aix
i, f q−1 =

(q−1)n∑
j=0

bjx
j,

where ai, bj ∈ Fq[y]. Then for 0 ≤ k ≤ n− 1, since h[q] =
∑n−1

i=0 a
q
ix

i, we have

ψq
(
f q−1xh

)
= ψq

n(q−1)∑
i=0

bix
i · x ·

n−1∑
k=0

akx
k

 =
n−1∑
l=0

ψq

(
n−1∑
i=0

blq+q−1−ix
lq+q−1−i · x · aixi

)
.

Since

ψq
(
f q−1xh

)
= xh(x),

ψq

(
n−1∑
i=0

blq+q−1−ix
lq+q−1−i · x · aixi

)
=

n−1∑
i=0

blq+q−1−i · ai · xl+1 = x · aql x
l,

which we can write as:

n−1∑
i=0

blq+q−1−i · ai = aql , 0 ≤ l ≤ n− 1.
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bq−1 bq−2 · · · bq−n

b2q−1 b2q−2 · · · b2q−n
...

...
...

...

b(n−1)q−1 b(n−1)q−2 · · · b(n−1)q−n

bnq−1 bnq−2 · · · bnq−n





a0

a1

...

an−2

an−1


=



aq0

aq1
...

aqn−2

aqn−1


(2.12)

We will show how to solve this system in the implementation section.

Note that, for any g ∈ K[x], we have (g/fp)′ = g′/fp. By induction, it follows that

(
h

f

)(p−1)

=

(
hfp−1

fp

)(p−1)

=
(hfp−1)

(p−1)

fp
. (2.13)

Then the equation (1.5) is equivalent to

(hfp−1)(p−1) + hp = 0 . (2.14)

To write the equation (2.14) into a matrix form, suppose

h =
n−1∑
i=0

aix
i, fp−1 =

(p−1)n∑
j=0

bjx
j,

where ai, bj ∈ F. Then

g = hfp−1 =
m∑
k=0

ckx
k ∈ F[x]

where

ck =
∑
i+j=k

aibj .

For any k, (
xk
)(p−1)

= k(k − 1) · · · (k − (p− 1) + 1)xk−(p−1).
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If k 6≡ −1 (mod p) , then
(
xk
)(p−1)

= 0 in F[x]. Otherwise when k ≡ −1 (mod p),

(
xk
)(p−1)

= −xk−(p−1) = −xdp, where d = (k − (p− 1))/p .

So

g(p−1) =

(
m∑
k=0

ckx
k

)(p−1)

=

bm−(p−1)
p

c∑
`=0

−c`p+p−1x
`p.

Therefore the equation (2.14) is equivalent to the following system of equations:

ckp+p−1 = apk, 0 ≤ k ≤ n− 1,

namely,
n−1∑
i=0

aibkp+p−1−i = apk, 0 ≤ k ≤ n− 1

where bi = 0, if i > n(p− 1), or i < 0. Then the above equation can be written as :



bq−1 bq−2 · · · bq−n

b2q−1 b2q−2 · · · b2q−n
...

...
...

...

b(n−1)q−1 b(n−1)q−2 · · · b(n−1)q−n

bnq−1 bnq−2 · · · bnq−n





an−1

an−2

...

a1

a0


=



ap0

ap1
...

apn−2

apn−1


For a given f ∈ K[x], one can expand f q−1 to get the coefficients bi in (2.12).

This is fine for small q, but too expensive for large q. We now show a faster algorithm for

computing the required n2 coefficients for the matrix without computing all the n(q−1)+1

coefficients of f q−1.

We first introduce a convolution product of vectors. Let u = (un−1, un−2, · · · , u0),
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v = (v0, v1, · · · , vn−1). We define

u ∗ vT = (un−1, un−2, · · · , u0) ∗



v0

v1

...

vn−1


=



c0

c1
...

cn−1


= cT , (∗)

where

ci = uiv0 + ui−1v1 + · · ·+ u0vi. 0 ≤ i ≤ n− 1.

Equivalently, if we denote u(x) =
∑n−1

i=0 uix
i, v(x) =

∑n−1
j=0 vjx

j , and c(x) =
∑∞

i=0 cix
i,

then (∗) is equivalent to

c(x) ≡ u(x)v(x) (mod xn).

This means that the convolution u ∗ vT is equivalent to one polynomial multiplication.

Suppose f = f0 +f1x+ · · ·+fnx
n ∈ F[x].We compute the b′is by using the inverse

of f . Suppose
1

f
=
∞∑
i=0

wi · xi, wi ∈ K.

We assume wi = 0, if i < 0. Then

f q−1 = f q · 1

f
=

(
n∑
i=0

f qi x
iq

)(
∞∑
i=0

wi · xi
)

=

n(q−1)∑
i=0

 b i
q
c∑

t=0

f qt · wi−tq

 · xi.
So, the coefficient bkq−j of xkq−j in f q−1 can be written as:

bkq−j = wkq−j · f q0 + w(k−1)q−j · f q1 + · · ·+ wq−j · f qk−1, 1 ≤ k ≤ n, 1 ≤ j ≤ n,

that is,
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bq−j

b2q−j
...

bnq−j


= (f qn−1, f

q
n−2, · · · , f

q
0 ) ∗



wq−j

w2q−j

...

wnq−j


.

Denote V (f q) by (f qn−1, f
q
n−2, · · · , f

q
0 ), and

B =



bq−1 bq−2 · · · bq−n

b2q−1 b2q−2 · · · b2q−n
...

...
...

...

b(n−1)q−1 b(n−1)q−2 · · · b(n−1)q−n

bnq−1 bnq−2 · · · bnq−n


,

and let

W =



wq−1 wq−2 · · · wq−n

w2q−1 w2q−2 · · · w2q−n

...
...

...
...

w(n−1)q−1 w(n−1)q−2 · · · w(n−1)q−n

wnq−1 wnq−2 · · · wnq−n


.

Then

B = V (f q) ∗W. (2.15)
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We next show how to compute the matrix

W ? =



wq−n wq−n+1 · · · wq−1

w2q−n w2q−n+1 · · · w2q−1

...
... . . . ...

wnq−n wnq−n+1 · · · wnq−1


.

Since 1
f

=
∑∞

i=0wi · xi, f ·
∑∞

i=0wi · xi = 1. We can set f0 = 1. The coefficient of xk of

1, (k > 0), is zero, so
min(n,k)∑
i=0

wk−ifi = 0,

equivalently

wk = −
k−1∑

i=max(0,k−n)

wifk−i.

When k ≥ n,

wk = −
k−1∑
i=k−n

wifk−i. (2.16)

For k ≥ 0, let Wk = (wk, wk+1, · · · , wk+n−1). and let

M =



0 0 0 0 · · · −fn

1 0 0 0 · · · −fn−1

0 1 0 · · · 0 −fn−2

...
... . . . . . . . . . ...

0 0 · · · 1 0 −f2

0 0 0 · · · 1 −f1


Then (2.16) gives us a recursion relation:

Wk+1 = Wk ·M, k ≥ 0.
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By induction, we see that

Wk+q = Wk ·M q, k ≥ 0.

It remains to show how to compute M q. Let f ∗ be the reciprocal of f , i.e. f ∗(x) =∑n
i=0 fn−ix

i. Define a map ψ : F[x] → Fn as follows. For any h(x) ∈ F[x], suppose

h(x) ≡ h0 + h1x+ · · ·+ hn−1x
n−1 (mod f ∗). Then

ρ(h(x)) = (h0, h1, · · · , hn−1)
T .

Theorem 2.7.1.

M j =
(
ρ(xj), ρ(xj+1), · · · , ρ(xj+n−1)

)
.

Proof. For any h(x) ∈ F[x] and suppose ρ(h(x)) = (h0, h1, · · · , hn−1)
T . We first show

that

ρ(h(x) · x) = M · ρ(h(x)).

Let X = (1, x, · · · , xn−1). Note that

h(x) · x =
n−1∑
i=0

hi · xi+1

≡
n−2∑
i=0

hi · xi+1 − hn−1 ·
n−1∑
i=0

fn−ix
i (mod f ∗(x))

≡ [(0, h0, · · · , hn−3, hn−2)− hn−1(fn, fn−1, · · · , f1)] ·XT

≡ X ·M · h (mod f ∗(x)).

That is, for any h ∈ F[x],

ρ(h(x) · x) = M · h = M · ρ(h(x)).
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By induction,

ρ(h(x) · xj) = M jρ(h(x)), ∀j ≥ 1. (2.17)

Particularly, for h(x) = xi, 0 ≤ i ≤ n− 1, then ρ(h(x)) = (0, · · · , 0, 1, 0, · · · ).

ρ(xi+j) = M j · ρ(xi) = M j · (0, 0, · · · , 1, 0, · · · )T ,

which means ρ(xi+j) is the (i+ j + 1)st row of M j , 0 ≤ i+ j ≤ n− 1.

Remark: Let j = q, then

M q =
(
ρ(xq), ρ(xq+1), · · · , ρ(xq+n−1)

)
.

Consider the matrix W ∗. First compute the first row of W ∗,

(wq−n, wq−n+1, · · · , wq−1)

by the equation

(wq−n, wq−n+1, · · · , wq−1) = (w0, w1, · · · , wn−1)M
q−n.

Each row of W can be obtained by multiplying the previous row in W by M q. The com-

plexity for computing xq (mod f ∗) is Õ(n log q), for xi · xq (mod f ∗) is O(n2). So the

complexity for M q is Õ(n log q + n2).

After W ∗ is obtained, we can compute B by (2.15) in polynomial time.
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Chapter 3

Deterministic factoring via Gröbner
bases

3.1 Introduction

In this chapter, we concentrate on the deterministic complexity of factoring univari-

ate polynomials over finite fields with help of Gröbner bases and combinatorics. In Chapter

1, we have defined fibre size which measures the geometric structure of point sets, and we

described the structure theorem of Gröbner bases. This gives us a deterministic algorithm

to decompose ideals when fibre sizes are not constant. In the following sections, we use

Gröbner basis structure theorem to design deterministic algorithms for factoring univariate

polynomials.

The chapter is organized as follows. In Section 3.2, we show how to compute

Göbner bases of certain ideals in deterministic polynomial time. More precisely, suppose

we are given a Göbner basis of a zero-dimensional ideal I in Fq[x1, x2, · · · , xm]. For

any polynomial h, we show that there is a deterministic polynomial time algorithm for

computing Göbner bases for 〈I, h〉 and (I : h) in deterministic polynomial time. We will

use this algorithm to compute Göbner bases for all the ideals rising in our method. This

result is interesting as it might be useful for general Göbner basis computation.
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In Section 3.3, we describe an algorithm to compute r-th roots of elements in ex-

tension rings of Fq, provided we are given an r-th nonresidue η in Fq which can be found

in deterministic polynomial time under ERH.

In Section 3.4, we use this deterministic algorithm for computing square roots to

introduce a tool called square selector and show how it splits ideals.

In Section 3.5, we describe how to use square selectors to decompose various ideals.

More precisely, let f ∈ Fp[x] be a squarefree polynomial of degree n with all roots lying

in Fp. Let S ⊂ Fp be the set of roots of f . Define

S[m] = {(a1, · · · , am) : ai ∈ S, ai 6= aj, if i 6= j} .

We asocciate a tournament graph to each point in S[m] and partition Sm according tour-

nament graphs. We study the symmetry of this partition and show how it is related to

combinatorial designs and the factorization of f . In particular, when m = 2, we can de-

compose f if S is not square balanced, and for when m = 3, we show how a connection

with Hadamard designs. As a consequence, we obtain a bound on the number of extensions

needed to get a proper factor of f , thus improve a previous result of Ivanyos, karpinski and

Saxena (2008).

3.2 Computing Gröbner bases

Let I be a 0-dimensional radical ideal in R = F[x1, · · · , xm]. Suppose we know a

Gröbner basis for I with respect to some term order. If we join a polynomial h ∈ R to I ,

then the Gröbner basis of the new ideal 〈I, h〉 may be dramatically different. Is it possible

to take advantage of this extra information (i.e. the Gröbner basis of I) to get a polynomial
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time algorithm for the new ideal? Also, how to compute a Gröbner basis for the colon ideal

(I : h) = {g ∈ R : gh ∈ I}.

We show below that the Gröbner bases for both ideals can indeed be computed efficiently.

More precisely, we prove the following theorem and the desired algorithms will be clear

from the proof.

Theorem 3.2.1. Let I ⊂ R = F[x1, · · · , xm] be a 0-dimensional ideal with a Gröbner

basis G = {g1, g2, · · · , gt} under some term order. For any h ∈ R, we have

(1). dimFR/I = dimFR/ 〈I, h〉+ dimFR/ (I : h); and

(2). if h is given reduced modulo G, then Gröbner bases for 〈I, h〉 and (I : h) can be

computed deterministically in time polynomial in mN where N = dimFR/I is the

degree of I .

Proof. Since we know a Gröbner basis for I , we can find the standard monomial basis for

R/I:

B(I) = {Xα1 , Xα2 , · · · , XαN = 1}

where we assume the monomials are in decreasing order (under the given term order). Then

B(I) is a linear basis for R/I over F. Suppose

h ·Xαi ≡
N∑
j=1

aijX
αj (mod G), (3.1)
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where aij ∈ F, that is,

h ·



Xα1

Xα2

· · ·

XαN


≡ A



Xα1

Xα2

· · ·

XαN


(mod G),

where A = (aij)N×N over F. It is important to note that, in the congruence equations

above and below as well, when we say “a ≡ b (mod G)” we mean a can be reduced to b

by long division under the given term order. We know from Gröbner basis theory that G is

a Gröbner basis for I iff every polynomial in I can be reduced to 0 by G.

Apply Gauss elimination to rows of A with elimination in order starting from the

last column to the first column. Then we get an N × N matrix M such that MA is of the

following row echelon form

MA =



0 u1n1 ∗ ∗ · · · u1N

0 0 u2n2 ∗ · · · u2N

...
...

...
...

...
...

0 0 0 u`n`
· · · u`N

0 0 0 0 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · 0



,

where ` is the rank of A and 1 ≤ n1 < n2 < · · · < n` ≤ N . Let M1 be the first ` rows of
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M and let

M1



h1

h2

· · ·

hN


= M1A



Xα1

Xα2

· · ·

XαN


=



u1(x)

u2(x)

· · ·

u`(x)


,

where ui(x) =
∑N

j=ni
uijX

αj . We claim that

G1 = G ∪ {u1(x), · · · , u`(x)}

form a Gröbner basis for 〈I, h〉 and dimF(R/ 〈G1〉) = N − `. In fact, for any g ∈ 〈I, h〉,

we have

g = g0 + g1h, for some g0 ∈ I, g1 ∈ F[x1, · · · , xm].

By using G to reduce g, we may assume that

g ≡ V · h (mod G),

where V =
∑N

i=1 viX
αi for some vi ∈ F. Then

g ≡ (v1, v2, · · · , vN)h(Xα1 , · · · , XαN )T (mod G)

≡ (v1, v2, · · · , vN)A(Xα1 , · · · , XαN )T

≡ (v1, v2, · · · , vN)M−1 ·MA(Xα1 , · · · , XαN )T

≡ (v1, v2, · · · , vN)M−1 · (u1, · · · , u`, 0, · · · , 0)T

Let (v1, v2, · · · , vN)M−1 = (c1, c2, · · · , c`, · · · , cN) ∈ FN . Then

g ≡
∑̀
i=1

ciui(x) (mod G). (3.2)
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This shows that every g ∈ 〈I, h〉 can be reduced to zero by G1. Therefore G1 is a Gröbner

basis for 〈I, h〉.

Next we prove that dimF(R/ 〈I, h〉) = N − `. Since G1 is a Gröbner basis for

〈I, h〉, we have

dimF(R/ 〈I, h〉) = #B(G1),

where B(G1) denotes the set of monomials not divisible by any leading term of poly-

nomials in G1. Note that the leading term of ui is Xαni , which belongs to B(I) =

{Xα1 , · · · , XαN}. It suffices to prove that, for each j ∈ {1, 2, · · · , N} \ {n1, · · · , n`},

the term Xαj is not the leading term of any polynomial g ∈ 〈I, h〉. Suppose otherwise,

that is, there is a polynomial g ∈ 〈I, h〉 with lt(g) = Xαj . By reducing g modulo G, we

may assume that g is linear combination of terms in B(I). However, by (3.2), g should be

a linear combination of u1, . . . , u`. This is impossible, as the leading term of g is different

from those of ui’s and the ui’s are in echelon form.

It remains to show how to get a Gröbner basis for (I : h). Let M2 be the last

t = N − ` rows of M and let

M2


Xα1

· · ·

XαN

 =


w1(x)

· · ·

wt(x)

 .

We claim that

G2 = G ∪ {w1(x), · · · , wt(x)}

generates (I : h). In fact, we know from the row echelon from of MA that M2A = 0`×N .
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Hence

h


w1(x)

· · ·

wt(x)

 ≡M2h


Xα1

· · ·

XαN

 ≡M2A


Xα1

· · ·

XαN

 = 0 (mod G).

We see that G2 ⊂ (I : h). To show G2 is a generating set for (I : h), we only need to show

that, for any g ∈ R such that gh ∈ I , we have g ∈ 〈G2〉 . Suppose

g ≡ g1X
α1 + g2X

α2 + · · ·+ gNX
αN (mod G).

Let (b1, · · · , bN) = (g1, · · · , gN)M−1. Then

gh ≡ (b1, · · · , bN)MXαh ≡ (b1, · · · , bN)MAXα = (b1, · · · , bN) (u1, · · · , u`, 01×t)
T (mod G).

Since gh ∈ I , we have gh ≡ 0 (mod G), that is,
∑`

i=1 biui ≡ 0 (mod G). As u1, · · · , u`

are linearly independent mod G, we see that b1 = · · · = b` = 0. Hence

g ≡ (g1, · · · , gN)Xα

≡ (b1, · · · , bN)MXα

≡ (b`+1, · · · , bN)M2X
α

≡
∑t

i=1 b`+iwi(x) (mod G).

Therefore, eachg ∈ (I : h) is congruent to a linear combination of wi(x)’s modulo G. We

can use row operations to reduce M2 to a row echelon form M∗
2 such that M∗

2X
α has m

distinct leading terms in B(I). So {G,M∗
2X

α} is a Gröbner basis for (I : h). Also, we

have dimFR/ (I : h) = `, since it is impossible that a polynomial g ∈ (I : h) is linear

combination of M∗
2X

α and at the same time have leading term different from those of

M∗
2X

α.
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Finally, note that the matrix A = (aij) in (3.1) can be computed deterministically

in time polynomial in m and N , using border basis. As Gauss eliminations can done in

polynomial time in N , (2) follows.

3.3 Computing η-square roots

In this section, we introduce an algorithm in [Gao 2001] how to compute an r-th

root of an arbitrary element, say A, in R for any prime r. If r is coprime to q− 1 then As is

an r-th root of A where sr ≡ 1 (mod q − 1). So it is suffices to show that r is prime and

can divide q − 1. Suppose q − 1 = rew where r - w. Let η be a given re-th root of unity in

Fq. And under GRH, we can compute η in polynomial time, see in [wang 1959] and [Bach

1997]. Note that r-th root of A exists only if A = 0 or A
(q−1)

r = 1. We write A = ηuB for

some u ≤ re and B ∈ Fq. Suppose Bw = 1. Then A1/r exists iff r | u.

We want to find an r-th root of A. If A is not invertible in R, we can decompose R

to be two parts, one of them is RA = {CA : C ∈ R}. Let I be the identity element of R1,

then Aİ is invertible in R1. An r-th root of Aİ in R1 is an r-th root of A in R. Thus we can

assume that A is invertible in R.

Find t and s such that sre + tw = 1. Then

A = AtwAsr
e

.

We only need to find an r-th root of Atw. Denote Atw = A1. Since Are

1 = 1, we can use

Pohlig and Hellman’s algorithm to find k, u such that

Ar
k

1 = ηu.
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If k = 0, then ηu/r is an r-th root of A1. Otherwise, we can find a zero divisor of R and

decompose R as follows. Since Ark−1

1 η−u/r /∈ Fq but (Ar
k−1

1 η−u/r)r = 1, Ark−1

1 η−u/r is an

r-th root of unity. So there are r + 1 distinct r-th roots of unity in R, i.e. 1, ζ, · · · , ζr−1,

where ζ = ηr
e−1 . So there exists some 1 ≤ i ≤ r such that Ark−1

1 η−u/r−ζ i is a zero divisor

in R. We find this i by checking. Let D = Ar
k−1

1 η−u/r − ζ i, and R can be decomposed to

the direct sum of two subrings

R1 = RD = {DC : C ∈ R}, R2 = {C ∈ R : DC = 0}.

Then A1 = A11 + A12, where A11 ∈ R1 and A12 ∈ R2. And proceed recursively in R1

and R2 to compute r-th roots of A11 and A12. The whole process can be done in time

polynomial in r, nand log q.

We denote this algorithm as σr. Then σr has properties as belows.

Proposition 3.3.1 (Gao 2001). Given a primitive rl-th root η of unity in Fq where q − 1 =

rlQ, l ≥ 1 and gcd(r,Q) = 1, the algorithm σr runs in polynomial time in r, log q and

n = dimR. Furthermore, σr has the following properties:

(a) σr(aA) = σr(a)A, if A ∈ R is idempotent, i.e. A2 = A.

(b) σr(A+B) = σr(A) + σr(B), if A,B ∈ R are orthogonal, i.e. AB = 0.

(c) Let µ1, · · · , µn be primitive idempotents in R and A =
∑n

i=1 aiµi, where ai ∈ Fq,

then

σr(A) =
n∑
i=1

σr(ai)µi.

(d) Let a = ηcθ where θ ∈ Fq with θQ = 1 and 1 ≤ c < rl. Then σr(ar) = a iff c < rl−1.

An element a ∈ Fq is called an η-square if σ2(a
2) = a.
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Lemma 3.3.2. Let η ∈ Fq of order 2l where 2l is the highest power of 2 dividing q − 1.

Then, for any a ∈ Fq,

σ2(a
2) =

 a, if a is a η-square

−a, otherwise.

Proof. Suppose a = ηma1, where a1 has odd order and m < 2l has binary representation

as

m = 2l−1ml−1 + 2l−2ml−2 + · · ·+ 2m1 +m0,

where mi ∈ {0, 1}, 0 ≤ i ≤ l − 1. Then

a2 = η2ma2
1 = η2l−1ml−2+···+22m1+2m0a2

1,

thus

σ2(a
2) = η2l−2ml−2+···+2m1+m0a1 =

 a, if ml−1 = 0,

−a, if ml−1 = 1.

where we used the fact that η2l−1
= −1.

Example 3.3.3. In R = Fp where p ≡ 3 (mod 4), we have σ2(b) = b
p+1
4 , if b ∈ Fp is a

square. Here the nonresidue η is −1. One can check that

σ2(a
2) =

 a, if a is a square inFp,

−a, otherwise.

Lemma 3.3.4. Let f =
∏n

i=1(x− ai) where ai ∈ Fp are distinct. Let

ξi =
f(x)

(x− ai)f ′(ai)
∈ Fp[x], 1 ≤ i ≤ n.
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Let R1 = Fp[x, y]/ < f(x), f(y) >. Then

σ((x− y)2) ≡
∑

1≤i,j≤n

σ((ai − aj)2)ξi(x)ξj(y) (mod 〈f(x), f(y)〉).

Proof. Note that

ξi(aj) =

 0, if i 6= j,

1, if i = j.

We see that ξi are primitive idempotents modulo f(x), and

x ≡ a1ξ1 + · · ·+ anξn (mod f(x)).

Then R1 has a basis consists of {ξi(x)ξj(y) : 1 ≤ i, j ≤ n} and

x ≡ a1ξ1(x) + · · ·+ anξn(x) =
∑

1≤i,j≤n

aiξi(x)ξj(y) (mod 〈f(x), f(y)〉),

y ≡ a1ξ1(y) + · · ·+ anξn(y) =
∑

1≤i,j≤n

aiξi(x)ξj(y) (mod 〈f(x), f(y)〉).

By using the property of primitive idempotent, we can write in R1,

x− y =
∑

1≤i,j≤n

(ai − aj)ξi(x)ξj(y).

So

σ((x− y)2) =
∑

1≤i,j≤n

σ((ai − aj)2)ξi(x)ξj(y).

The coefficients σ((ai − aj)2) are computed implicitly without knowing the basis

ξi(x), ξj(y).
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3.4 The square selector

We now introduce a useful tool for splitting ideals. In the following proof, we shall

use the following property: For any radical ideal I and any f, g ∈ Fp[x1, x2, · · · , xm], we

have

f ≡ g (mod I) iff f(A) = g(A),∀A ∈ V (I).

Lemma 3.4.1. Let I ⊆ Fp[x1, x2, · · · , xm] be a 0-dimensional radical ideal with all solu-

tions lying in Fmp . Fix any 1 ≤ i 6= j ≤ m. Let

h(xi, xj) =
1

2
(xi + xj + σ((xi − xj)2)) ∈ R = Fp[x1, x2, · · · , xm]/I, (3.3)

where σ is the deterministic algorithm described in the previous section for computing

square root in R, with a given quadratic nonresidue η ∈ Fp. Let J = 〈I, xi − h〉 . Then

V (J) = {(a1, · · · , am) ∈ V (I)| ai − aj is η-square} .

That is, V (J) is the subset of pointsA = (a1, · · · , am) ∈ V (I) such that ai−aj is η-square

in Fp.

Proof. Let V (I) = {A1, · · · , At} ⊂ Fmp . There exist polynomials ξ1, · · · , ξt ∈ Fp[x1, · · · , xn]

such that

ξi(Aj) =

 1, if i = j,

0, if i 6= j.

Then ξi’s are the primitive idempotents in R satisfying the properties:

ξiξj =

 ξi, if i = j,

0, if i 6= j.
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Let Ai = (ai1, ai2, · · · , aim) ∈ Fmp , 1 ≤ i ≤ t. By the condition for two polynomials to be

congruent modulo I , we have

xj ≡
t∑

k=1

akjξk (mod I), 1 ≤ j ≤ m.

By Proposition 3.3.1, we have

h(xi, xj) ≡
t∑

k=1

h(aki, akj)ξk (mod I).

So

xi − h(xi, xj) ≡
t∑

k=1

(aki − h(aki, akj))ξk (mod I).

Note that, for any η-square c in Fp, we have (σ(c))2 = c. Hence, for a, bFp,

h(a, b) =

 a, if a− b is an η-square,

b, if b− a is an η-square.

It follows that the value of xi − h(xi, xj) at Ak is

(xi−h(xi, xj))(Ak) = aki−h(aki, akj) =

 0, if aki − akj is an η − square,

aki − akj 6= 0, otherwise.

That is, Ak ∈ V (J) iff aki − akj is an η-square.

Corollary 3.4.2. With the same assumption as in Lemma 3.4.1. Let J1 =< I, xi−h > and

J2 =< I, xj − h > Then I = J1 ∩ J2.

The above corollary does not give a proper decomposition of I only when either all

aki − akj are η-squares or all aki − akj are not η-squares. We call the polynomial h(xi, xj)

in the equation (3.3) a square selector. Note that such a square selector can be computed
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deterministically in time polynomial in the dimension of the ring R over Fp (provided a

quadratic nonresidue η ∈ Fp is given). Also, by Theorem 3.2.1, when a Gröbner basis for I

is known, Gröbner bases for J1 and J2 can be computed in deterministic polynomial time.

3.5 Geometric structure and factoring

3.5.1 Partition and tournament graphs of points

For any pointA = (a1, · · · , am) ∈ Fmp , where ai’s are distinct, we associate it with a

directed graphGA as follows: The vertex set is {1, 2, · · · ,m} and, for each 1 ≤ i 6= j ≤ m,

there is an edge from i to j iff ai − aj is an η-square. GA is called the squareness graph

of A. Since ai − aj is an η-square iff aj − ai is not an η-square, the squareness graph of a

point is a tournament graph, that is, there is exactly one directed edge between each pair i

and j.

In the following, we represent the squareness graph of a point by a binary string.

For a ∈ Fp, define

δ(a) =

 0, if a is an η-square,

1, otherwise.

Then, for any point A = (a1, · · · , am) ∈ Fmp , define

δ(A) = (δ(a1 − a2)δ(a1 − a3)δ(a2 − a3) · · · δ(a1 − am)δ(a2 − am) · · · δ(am−1 − am)),

which has length ` =
(
m
2

)
.

Let f(x) =
∏

a∈S(x−a)where S ⊂ Fp is a subset of cardinality n. For each a ∈ S,

define

Ba(S) = {b ∈ S : a− b is an η-square and b 6= a},
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and

B̄a(S) = {b ∈ S : a− b is not an η-square}.

Example 3.5.1. Let A = (a, b, c, d) satisfy

a ∈ S, b ∈ Ba, c ∈ Ba ∩Bb, d ∈ Ba ∩Bb ∩Bc.

Then its squareness graph is depicted as Figure 3.1

Figure 3.1: δ(A) = (000000)

Example 3.5.2. Let A = (a, b, c, d) satisfy

a ∈ S, b ∈ Ba, c ∈ B̄a ∩Bb, d ∈ Ba ∩Bb ∩ B̄c.

Then its squareness graph is depicted as Figure 3.2

a b

c d

Figure 3.2: δ(A) = (010001)

Define

S[m] = {(a1, · · · , am) : ai ∈ S, ai 6= aj if i 6= j} .

We partition S[m] into subsets according to their squareness graphs. More precisely, for any
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τ ∈ {0, 1}`, where ` =
(
m
2

)
, define

Pτ =
{
A ∈ S[m] : δ(A) = τ

}
.

Then

S[m] =
⋃
τ

Pτ .

Let Iτ ⊆ Fp[x1, · · · , xn] the vanishing ideal of Pτ . The next lemma shows that we can get

a Gröbner basis for Iτ polynomial time.

Lemma 3.5.3. Given f(x) =
∏

a∈S(x− a), where S ⊆ Fp has size n, and any tournament

graph τ on {1, 2, · · · ,m}, a Gröbner basis for the vanishing ideal of Pτ can be computed

deterministically in time polynomial in log p and nm.

Proof. let I = 〈f(x1), · · · , f(xm)〉 with dimension nm. Then {f(x1), · · · , f(xm)} is

Gröbner basis for I under any order. By lemma 3.2.1, we can compute I : (xi − xj)

for each pair xi and xj in polynomial time in nm log p. So we can compute

I :
∏

1≤i 6=j≤m

(xi − xj),

iteratively. Also, we can compute h(xi, xj) ∈ Fp[x1, · · · , xn]/I in polynomial time by

σ-algorithm. For every pair xi, xj , if there is an edge from xi to xj in τ , we compute

I := 〈I, xi − h(xi, xj)〉 ,

else

I := 〈I, xj − h(xi, xj)〉 .

Thus we get a vanishing ideal of Pτ in deterministic polynomial time in {log p, nm}.
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If Pτ is not uniform, we can decompose it by the structure theorem 1.3.5. In the

following, we discuss when all the Pτ can be uniform for small m. Then we talk about the

symmetry properties among different Pτ ’s.

3.5.2 Uniformness and Hadamard design

In this section, we discuss when Pτ are uniform and a connection to combinatorial

designs.

3.5.2.1 m = 2: Square balanced sets

For m = 2, we have τ = 0 or 1. Then

S[2] = P0 ∪ P1, (3.4)

where

P0 = {(a, b) : a ∈ S, b ∈ Ba} and P1 =
{

(a, b) : a ∈ S, b ∈ B̄a

}
.

Note that the set S[2] corresponds to the ring

R = Fp[x, y]/

〈
f(x),

f(y)− f(x)

y − x

〉
.

The vanishing ideals of P0 and P1 are

J0 =

〈
f(x),

f(y)− f(x)

y − x
, x− h(x, y)

〉
, J1 =

〈
f(x),

f(y)− f(x)

y − x
, y − h(x, y)

〉
.

We call S square balanced if P0 is uniform, that is, |Ba| is the same for all a ∈ S.

Lemma 3.5.4. (a). If S is square balanced, then |Ba|=n−1
2

for all a ∈ S; and
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(b). P0 is uniform iff P1 is uniform.

Proof. (a). For any a, b ∈ S, either a ∈ Bb or b ∈ Ba. Since a ∈ Bb is equivalent to

b ∈ B̄a, that is, either (a − b) or (b − a) is η-square but not both. There are
(
n
2

)
square

relations of the form b ∈ Ba. So

n∑
a∈S

|Ba| = n(n− 1)/2.

If |Ba| = λ, for all a, then |Ba| = n−1
2
.

(b). Note that

S = {Ba} ∪
{
B̄a

}
∪ {a} .

If P0 is uniform, then |Ba|=n−1
2

for all a, so |B̄a|=n−1
2

. That is, P1 is uniform. Similarly for

the reverse direction.

Corollary 3.5.5. If the size of S is even, then S can not be square balanced. So a factor of

f can be found in deterministic polynomial time.

Now assume S is square balanced. The Gröbner basis of I0 = 〈I, x− h(x, y)〉

under elimination order x ≺ y is of the form 〈f(x), g0(x, y)〉, where the leading term of

g0(x, y) is y(n−1)/2. The Gröbner basis of I1 = 〈I, y − h(x, y)〉 under elimination order

x ≺ y is of the form 〈f(x), g1(x, y)〉, where the leading term of g1(x, y) is y(n−1)/2 by

lemma (3.5.4) as well. Then

I = 〈f(x), g0(x, y)〉 ∩ 〈f(x), g1(x, y)〉 . (3.5)
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3.5.2.2 m = 3: Hadamard designs

S[3] can be partitioned into the following union according to the squareness graphs:

S3 =
⋃

τ∈{0,1}3
Pτ ,

where

P000 = {(a ∈ S, b ∈ Ba, c ∈ Ba ∩Bb)}, P001 = {(a ∈ S, b ∈ Ba, c ∈ Ba ∩ B̄b)},

P010 = {(a ∈ S, b ∈ Ba, c ∈ B̄a ∩Bb)}, P011 = {(a ∈ S, b ∈ Ba, c ∈ B̄a ∩ B̄b)},

P100 = {(a ∈ S, b ∈ B̄a, c ∈ Ba ∩Bb)}, P101 = {(a ∈ S, b ∈ B̄a, c ∈ Ba ∩ B̄b)},

P110 = {(a ∈ S, b ∈ B̄a, c ∈ B̄a ∩Bb)}, P111 = {(a ∈ S, b ∈ B̄a, c ∈ B̄a ∩ B̄b)}.

We discuss below possible symmetry properties of this partition.

Lemma 3.5.6. Suppose P000 is uniform. Then |Ba∩Bb| = (n−3)/4 for a ∈ S and b ∈ Ba.

Proof. P000 is uniform means that S and Ba are all square balanced for all a ∈ S. By

lemma 3.5.4, |Ba|=n−1
2

, thus

|Ba ∩Bb| =
|Ba| − 1

2
=
n− 3

4
,

for every a ∈ S, b ∈ Ba.

Lemma 3.5.7. If P000 is uniform, then Pτ is uniform for all τ ∈ {0, 1}3.

Proof. Suppose P000 is uniform and λ = n−3
4
. First we show that P100 is uniform. Since

P000 is uniform, we have

|Ba ∩Bb| = λ,∀a ∈ S, b ∈ Ba,
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which is the same as

|Bb ∩Ba| = λ,∀b ∈ S, a ∈ B̄b.

By renaming the variables, we have

|Ba ∩Bb| = λ,∀a ∈ S, b ∈ B̄a,

which means that P100 is uniform. Now we show that P001 is uniform. For any b ∈ Ba,

|Ba| = |Ba ∩Bb|+ |Ba ∩ B̄b|+ |{b}| =
n− 1

2
.

Since |Ba ∩ Bb| = n−3
4

by lemma 3.5.6, we have |Ba ∩ B̄b| = n−3
4
. So P001 is uniform. It

is similar to show P011, P101, P111 are uniform. Next we show P010 = n+1
4

. Since a /∈ Bb,

we have

|Bb| = |Ba ∩Bb|+ |B̄a ∩Bb| =
n− 1

2
,

but |Ba ∩Bb| = n−3
4

, thus

|B̄a ∩Bb| =
n+ 1

4
.

It is similar to show P110 is uniform.
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The correspondence of Pτ and its fibre sizes at each level are listed as follows:

a b c

P000 = {(a ∈ S, b ∈ Ba, c ∈ Ba ∩Bb)} : n n−1
2

n−3
4

P001 = {(a ∈ S, b ∈ Ba, c ∈ Ba ∩ B̄b)} : n n−1
2

n−3
4

P010 = {(a ∈ S, b ∈ Ba, c ∈ B̄a ∩Bb)} : n n−1
2

n+1
4

P011 = {(a ∈ S, b ∈ Ba, c ∈ B̄a ∩ B̄b)} : n n−1
2

n−3
4

P100 = {(a ∈ S, b ∈ B̄a, c ∈ Ba ∩Bb)} : n n−1
2

n−3
4

P101 = {(a ∈ S, b ∈ B̄a, c ∈ Ba ∩ B̄b)} : n n−1
2

n+1
4

P110 = {(a ∈ S, b ∈ B̄a, c ∈ B̄a ∩Bb)} : n n−1
2

n−3
4

P111 = {(a ∈ S, b ∈ B̄a, c ∈ B̄a ∩ B̄b)} : n n−1
2

n−3
4

In combinatorial design theory, a system of subsets Bi, 1 ≤ i ≤ n, of a set S with

cardinality n is called a Hadamard design of order n, if

|Bi| =
n− 1

2
, 1 ≤ i ≤ n,

and

|Bi ∩Bj| =
n− 3

4
, 1 ≤ i < j ≤ n.

For many values of n, there exist Hadamard design of order n. We give two examples.

Example 3.5.8. Let n be a prime with m ≡ 3 (mod 4), and S = Z/(n). For 0 ≤ a ≤

n− 1, define

Ba = {b ∈ S : a− b is square in Fn}.

Then Ba’s form an Hadamard design of order n.

Example 3.5.9. Let n = 2` − 1 and S = F`2\{(0, 0, · · · , 0)}. For each a = (a1, · · · , a`) ∈
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S, define

Ba = {b = (b1, · · · , b`) ∈ S : a1b1 + · · ·+ a`b` = 0}.

Then one can check that

|Ba| =
n− 1

2
, and |Ba ∩Bb| =

n− 3

4
for all a 6= b.

Since Hadamard designs exist, it is possible that all the eight Pτ are uniform. Here’s

a concrete example.

Example 3.5.10. Let

P = {[1, 2, 3], [1, 3, 4], [1, 4, 2], [2, 3, 6], [2, 5, 3], [2, 6, 5], [3, 4, 7],

[3, 6, 4], [3, 7, 6], [4, 2, 5], [4, 5, 7], [4, 7, 2], [5, 1, 3], [5, 3, 7],

[5, 7, 1], [6, 1, 4], [6, 4, 5], [6, 5, 1], [7, 2, 6], [7, 1, 2], [7, 6, 1]}.

Then

B1 = {2, 3, 4}, B2 = {3, 5, 6}, B3 = {4, 6, 7}, B4 = {2, 5, 7},

B5 = {1, 3, 7}, B6 = {1, 4, 5}, B7 = {1, 2, 6},

and

B1 ∩B2 = {3} B1 ∩B3 = {4} B1 ∩B4 = {2}

B2 ∩B3 = {6} B2 ∩B5 = {3} B2 ∩B6 = {5}

B3 ∩B4 = {7} B3 ∩B6 = {4} B3 ∩B7 = {6}

B4 ∩B2 = {5} B4 ∩B5 = {7} B4 ∩B7 = {2}

B5 ∩B1 = {3} B5 ∩B3 = {7} B5 ∩B7 = {1}

B6 ∩B1 = {4} B6 ∩B5 = {1} B6 ∩B5 = {2}

B7 ∩B1 = {2} B7 ∩B2 = {6} B7 ∩B6 = {1}

Now we show that it is possible to further partition some of the Pτ via another
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symmetry property. Note that P010 and P101 have an automorphism σ3 mapping (x, y, z) to

(y, z, x). By Ronyai lemma as follows, P010 and P101 can be decomposed. Consider P010.

The squareness graph of P010 is a 3-cycle. This means P010 is invariant under the map:

(a, b, c) 7→ (b, c, a). This induces an automorphism in Fp[x, y, z]/I3. We will show P010

can be decomposed to at least 3 disjoint parts. First of all, P010 can not be empty, otherwise

by

|Bb| = |Ba ∩Bb|+ |B̄a ∩Bb| =
n− 1

2
,

if |B̄a ∩Bb| = 0, that means

|Ba ∩Bb| = |Bb|.

But a ∈ Bb, a is not in Ba, Ba ∩Bb ( Bb, contradiction.

Lemma 3.5.11 (Ronyai 1992). Let A be an algebra over Fp with dimension t. Given a

nontrivial automorphism of A, we can find in deterministic time (t + log p)o(1) an ideal

I ( A.

Since P010 has an automorphsim, we apply Ronyai lemma to decompose the van-

ishing ideal of P010 to subideals until each corresponding split variety doesn’t have an

automorphism on itself .

Lemma 3.5.12. Suppose S is square balanced and P010 has a finest partition by applying

Ronyai’s lemma as

P010 = Q1 ∪Q2 ∪ · · · ∪Qt.

Then 3|t.

Proof. If ∃i such that σ3(Qi)∩Qi 6= ∅, then we can decompose Qi, contradicts. So for any

Qi, there exist Q` and Qk such that

σ3(Qi) = Q`, and σ
2
3(Qi) = Qk.
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So 3|t.

Suppose P010 can be partitioned to at least 3 parts as

P010 = P21 ∪ P22 ∪ P23.

For each point (a, b, c) ∈ P21, (b, c, a) ∈ P22 and (c, a, b) ∈ P23. So three parts have the

same size. We consider 4 cases of the structure of P2i’s, 1 ≤ i ≤ 3.

1, P2i is not uniform at first level, we can factor f .

2, P2i is not uniform at second level or can be decomposed at second level, then we can

reduce n−1
2

to n−1
4

.

3, If P2i remains uniform at first and second levels but not in the third level, for some

i. And the fibre sizes at first and second levels are n, n−1
2

respectively. Then we can

also reduce n−1
2

to n−1
4

.

4, If P2i remains uniform at all levels but not in the third level, for some i. And the fibre

sizes are n, n−1
2

respectively. Then let the third level fibre size be k such that:

n
n− 1

2

n+ 1

4
= 3n

n− 1

2
k.

So k = n+1
12
.

To conclude, in all four cases, we can either decompose f , or reduce n to n−1
4

by

doing one extension, or reduce n to n+1
12

by doing two extension. So we can reduce the

levels needed to find a factor of f from log n to logn
log4 12

.

Compared to the extension needed in Evdokimov (1992), we reduce the levels of

extension as follows.
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Theorem 3.5.13. Let `(n) be the extension needed to find a factor of polynomial of degree

n, then `(n) ≤ log2 n
log4 12

.

Proof. By previous argument, that `(n) = 1 + `(n/4) or `(n) = 2 + `(n/12). So `(n) ≤

2 + `(n/12).

This result reduces the number of extensions log2 n
log4 8

in [Ivanyos, karpinski, and Sax-

ena, 2008].

3.5.2.3 m = 4: transitive patterns

For every τ and σ ∈ Sm, where Sm is the permutation group on m many elements,

define σ(τ) to be a new graph with vertices {1, 2, · · · ,m} and edges defined as follows.

For two vertices i, j in σ(τ), there is an edge from i to j iff there is an edge from σ−1(i)

to σ−1(j) in τ. σ(τ)=τ(σ(x1, x2, · · · , xm)) is a new square relation generated from τ . We

call the whole class as Trans(τ).

Example 3.5.14. For σ ∈ Sm, and any pointA = (a1, · · · , am), σ(A) = (aσ(1), · · · , aσ(m)).

Example 3.5.15. Consider S4. Let τ1 = (000000). Then Trans(τ1)=



(000000) (000001) (000011) (000111)

(001000) (001010) (001011) (001111)

(110000) (110100) (110101) (110111)

(111000) (011010) (111110) (111111)

(011000) (100001) (011110) (011111)

(100000) (111100) (100101) (100111)
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Figure 3.3: Graph all τ ’s from Trans(τ1) which doesn’t have cycle

Let τ2 = (010001). Then Trans(τ2)=



(010001) (010011) (000100) (000110)

(101010) (101011) (001100) (001101)

(010100) (010101) (110010) (110011)

(101100) (101110) (111001) (111011)

(010010) (010110) (011001) (011101)

(101001) (101101) (100010) (100110)



Figure 3.4: Graph for all τ from Trans(τ2) which have two cycles
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Let τ3=(000010). Then Trans(τ2)=



(000010)

(001001)

(110001)

(111010)

(011100)

(100100)

(010111)

(101111)



Figure 3.5: Graph for all τ ’s from Trans(τ3) which have one cycle

Let τ4=(010000). Then Trans(τ4)=



(010000)

(000101)

(001110)

(110110)

(111101)

(011011)

(100011)

(101000)
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Figure 3.6: Graph for all τ ’s from Trans(τ4) which have one cycle

Then S4 an be decomposed into 26 components. That is

S4 =
⋃

τ∈Trans(τi),1≤i≤4

Pτ ,

where Pτ={p ∈ S4 : p satisfies square relation τ} .

Lemma 3.5.16. Let G be a tournament graph on n vertices. If Auto(G) = {1}, then we

can get n! graphs by permuting vertices of G.

We say a point set Pτ is uniform, if it is uniform from i-th coordinator to i + 1-th

coordinator, 1 ≤ i ≤ m− 1.

Lemma 3.5.17. If P000000 is uniform, then P100000 is uniform.

Proof. We just show the first one. Let τ be uniform. That is, there is a constant C such that

|Ba ∩Bb ∩Bc| = C, ∀a ∈ S, b ∈ Ba, c ∈ Ba ∩Bb.

By exchanging and rename a and b in {b ∈ S, a ∈ B̄b, c ∈ Bb ∩Ba} to be

a ∈ S, b ∈ B̄a, c ∈ Ba ∩Bb.

Then we proved ((0 or 1)00000) is uniform.
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Lemma 3.5.18. Pσ(τ) = σ(Pτ ) = {σ(p) : A ∈ Pτ} . Let σ be a permutation fixing m, i.e

σ(1, 2, · · · ,m− 1,m) = (σ(1), · · · , σ(m− 1),m).

Then Pτ is uniform at level m iff Pσ(τ) is uniform at level m.

Proof. By definition, σ(A) = (aσ(1), · · · , aσ(m−1), am), for any A ∈ Pτ . Then

(a1, · · · , am−1, am) ∈ Pτ iff (aσ(1), · · · , aσ(m−1), am) ∈ Pσ(τ).

This implies that

am ∈ π−1(a1, · · · , am−1) iff am ∈ π−1(aσ(1), · · · , aσ(m−1)).

So

π−1(a1, · · · , am−1) = π−1(aσ(1), · · · , aσ(m−1)).

Hence the same fibre size.

Lemma 3.5.19. If P000000 is uniform, then Pτ is uniform for all τ ’s∈ Trans(τ1) are uniform.

Proof. By lemma 3.5.18, we know all Pτ ’s where τ ’s are in the same column in Trans(τ1)

are equivalent to be uniform. So we only need to show that Pτ ’s, where τ ’s from the first

row, are uniform. They are P000001, P000011,P000111 are uniform. We first show that if P000000

is uniform, then P000001 is uniform. Since c ∈ Ba ∩Bb,

Ba ∩Bb ∩Bc +Ba ∩Bb ∩ B̄c + {c} = Ba ∩Bb,

64



for all a ∈ S, b ∈ Ba, and c ∈ Ba ∩Bb. P000000 is uniform implies that

|Ba ∩Bb| =
n− 3

4
, |Ba ∩Bb ∩Bc| =

n− 7

8
.

Thus

|Ba ∩Bb ∩ B̄c| =
n− 7

8
,

for all a ∈ S, b ∈ Ba, and c ∈ Ba ∩Bb. Then

|Ba ∩Bb ∩ B̄d| =
n− 7

8
,

for all a ∈ S, b ∈ Ba, and d ∈ Ba ∩Bb. Since (a, b, d, c) ∈ P000001, P000001 is uniform.

Next we show that P000011 is uniform. (a, c, d, b) ∈ P000011, we need to show that

|Ba ∩ B̄c ∩ B̄d| = n−7
8

.

Ba ∩ B̄c ∩Bd +Ba ∩Bc ∩Bd = Ba ∩Bd,

since c is not in Ba ∩Bd. So

Ba ∩ B̄c ∩Bd =
n+ 1

8
,

where d ∈ Ba ∩ B̄c. We apply this to the next equation,

Ba ∩ B̄c ∩Bd +Ba ∩ B̄c ∩ B̄d = Ba ∩ B̄c,

since d not in Ba ∩ B̄c, we get

|Ba ∩ B̄c ∩ B̄d| =
n− 7

8
,
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for all c ∈ Ba, d ∈ Ba∩Bc. Thus we get P000011 is uniform andBa∩B̄d is square balanced,

for d ∈ Ba.

Finally, we show that P000111 is uniform. (b, c, d, a) ∈ P000111. Similarly, we have

an equation,

B̄b ∩ B̄c ∩ B̄d +Bb ∩ B̄c ∩ B̄d = B̄c ∩ B̄d,

since b ∈ B̄c ∩ B̄d. By previous result,

|Bb ∩ B̄c ∩ B̄d| =
n− 7

8
,

we have

|B̄b ∩ B̄c ∩ B̄d| =
n− 7

8
,

for all c ∈ Bb, d ∈ Bb ∩Bc. So we proved P000111 is uniform.

Remark: From this proof, we notice that Ba ∩ Bb is square balanced implies that

Ba ∩ B̄b and B̄a ∩ B̄b are both square balanced for all b ∈ Ba.

Remark: It is worth noting that if at second level, all components are uniform, then

λ1 = Ba ∩ Bb = n−3
4

, λ2 = B̄a ∩ Bb = n+1
4

, we have λ2 = λ1 + 1. Then one of them

must be even number. By Roanyai lemma, either Ba ∩ Bb ∩ Bc or B̄a ∩ Bb ∩ Bc, where

a ∈ S, b ∈ Ba, c ∈ Ba ∩B)b, can not be uniform, so can be further decomposed.

In Cheng, Huang (2000), it is pointed out that Ba ∩Bb ∩Bc can not be uniform for

all a ∈ S, b ∈ Ba, c ∈ Ba ∩ Bb based on a result in Muller, Pelant (1974). But the result is

without the restricted condition b ∈ Ba, c ∈ Ba ∩Bb, so the number of levels to proceed in

Cheng, Huang (2000) n
log n+O(1)

3 is not right.
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3.5.3 Super square balanced schemes

In Section, we have already get a decomposition of S[m] as

S[m] =
⋃
τ

Pτ .

In this section, we introduce several splitting tools to further refine this decomposition.

More precisely, we have

• Tool A: Use Ronyai lemma to decompose if there is an automorphism.

• Tool B: Change lex order in Gröbner bases.

• Tool C: Self extension.

• Tool D: Cross extension.

Tool A. is based on the following lemma.

Lemma 3.5.20 (Ronyai 1992). Let A be an algebra over Fp with dimension t. Given a

nontrivial automorphism of A, we can find a nontrivial ideal of A in deterministic time

(t+ log p)o(1) an ideal I ( A.

To factor f , we may be able to make different fibre sizes among the points of f . So

we need to find ways to change the ideal to be not uniform.

Tool B. uses the fact that an ideal is not necessary to be strong uniform to split ideal. Given

a variety in uniform under certain order, say x1 < x2 < · · · < xn. If we change the order to

be a new one, say xi1 < xi2 < · · · < xin , it is with high possibility that it won’t be uniform.

Example 3.5.21. Consider the example 1.3.8. If we change the term order to be z < y < x,

then it is not uniform as more as showed as follows.
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1 2 1 1 2 1 2 2 1 2 1 2

2 3 4 2 4 2 3 4 3 2 2

1 2 3 4 5 7
z

x

y

Figure 3.7: An example which is not uniform

And the Gröbner basis is

g0 = z6 − 22z5 + 190z4 − 820z3 + 1849z2 − 2038z + 840

g1 = (z − 1)(z − 2)(z − 3)(z − 4)y − 2(z − 1)(z − 2)(z − 3)(z − 4)

g2 = (z − 1)(y2 − 3/2yz2 + 17/2yz − 17y + 1/3z4 − 17/3z3 + 110/3/3z2 − 248/3z + 100

g3 = (y − 2)(y − 3)(y − 4)

g4 = (z − 2)x− y2 + yz3 − 13/2yz2 + 25/2yz − y − 5/18z5 + 59/12z4 − 605/18z3+

417/4z2 − 2585/18z + 184/3

g5 = (y − 2)(x+ y − 5)

g6 = (x− 1)(x− 2) = x2 − 3x+ 2

The leading terms are {z6, yz4, y2z, y3, xz, xy, x2}. The LC(g1) is (z − 1)(z − 2)(z −

3)(z − 4), it is a factor of g0 as well as LC(g2) = (z − 1).

But there may be cases that changing order can not help.

Definition 3.5.22. (Strong uniform). We say an ideal I or its variety is strong uniform, if

the points of the ideal is uniform under all lex order xi1 < xi2 < · · · < xin .

Example 3.5.23. Let

P = {[1, 2, 3], [1, 3, 4], [1, 4, 2], [2, 3, 6], [2, 5, 3], [2, 6, 5], [3, 4, 7],

[3, 6, 4], [3, 7, 6], [4, 2, 5], [4, 5, 7], [4, 7, 2], [5, 1, 3], [5, 3, 7],

[5, 7, 1], [6, 1, 4], [6, 4, 5], [6, 5, 1], [7, 2, 6], [7, 1, 2], [7, 6, 1]}.
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Computing in Z103 and using lex order z < y < x, the reduced Gröbner basis is

g0 = z7 − 28z6 + 13z5 − 3z4 − 29z3 − 51z2 − 13z + 7

g1 = y3 − 14y2z6 − 34y2z5 + 7y2z4 + y2z3 − 15y2z2 + 21y2z + 16y2 − 49yz6 + 48yz5

−19yz4 + 38yz3 − 13yz2 + 44yz − 45y + 51z6 − 36z5 − 5z4 + 13z3 + 8z2 + 2z − 37

g2 = x− 41y2z6 + y2z5 + 14y2z3 + 18y2z2 + 29y2z + 32y2 + 22yz6 − 23yz5 − 43yz4+

30yz3 − 23yz2 − 44yz + 12y − 2z6 − 36z5 − 45z4 − 33z3 + 51z2 − 17z + 23

And the structure of P is as follows:

3 4 2 6 3 5 7 4 6 5 7 2 3 7 1 4 1 5 2 6 1

2 3 4 3 5 6 4 6 7 2 5 7 1 3 7 1 5 4 1 2 6

1 2 3 4 5 6 7

Figure 3.8: A strong uniform case

It is obvious that under different lex order the Gröbner basis remains the same

under permutation of variables.

Tool C. is described as follows.

Lemma 3.5.24 (Self-extension). Let I(X,y) be any radical ideal in Fp[X, y] where X =

(x1, · · · , xt). Define

Î =< I(X,y), I(X,z), y − h(y, z) >: (y − z) ⊂ Fp[X, y, z].

Then

V (Î) = {(α, b, c) : (α, b) ∈ V (I(X,y)), (α, c) ∈ V (I(X,z)), and c ∈ Bb}.

Hence V (Î) is uniform from (X, y) to z iff π−1
y (α) is square balanced for each α.
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We describe tool D in the following lemma.

Lemma 3.5.25 (Cross-extension). Let I1(X, y) and I2(X, y) be two radical ideals in Fp[X, y],

where X = (x1, · · · , xt), that are coprime and

I1 ∩ Fp[X] = I2 ∩ Fp[X].

Define

Î =< I1((X, y), I2(X, z), y − h(y, z) > Fp[X, y, z].

Then

V (Î) = {(α, b, c) : (α, b) ∈ V (I1)), (α, c) ∈ V (I2), and c ∈ Bb}.

If V (Î) is not uniform at level z, we can decompose V (I1(X, y)) (equivalently I1(X, y)).

For any partition

S[m] = P1

⋃
P2 · · ·

⋃
Pt,

we say I(Pi) =
〈
f
′
(x), g(x, y), · · ·

〉
( as a generic position )is homogeneous if f ′(x) =

f(x). we apply tools A to D to each component or pair of components. We will stop if we

find a factor of f(x), that is ∃Pi is not homogeneous.

Definition 3.5.26. Super square balanced scheme is defined to be any partition

S[m] = P1

⋃
P2 · · ·

⋃
Pt

that can not be split further by any of the tools A to D, while all Pi’s are homogeneous.

Conjecture 3.5.27. Super square balanced schemes do not exist for some constantmwhich

implies that we can get a factor of f(x) in deterministic polynomial time.
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Chapter 4

Future work

In this short section, we mention a few major open problems that are related to the

topics of the thesis and deserve future studies.

As a bivariate polynomial factorization is a special case for primary decomposi-

tion, we are wondering is there any advantage to use Hensel lifting technique on primary

decomposition. We have the first problem as follows.

Research problem 1. Can our lifting technique be used for algorithms for primary decom-

position?

Jean-Charles Faugére (1999), (2002) (F4, F5) provided efficient algorithms for

computing Gröbner bases. Compared to methods used in their algorithms, We can use

our method described in the proof of theorem 3.2.1 of computing Gröbner basis for 〈I, h〉

from Gröbner basis of I by adding one polynomial to speed up algorithms in Jean-Charles

Faugére (2002). that is our

Research problem 2. Use our result on 〈I, h〉 to speed up algorithms for computing Gröb-

ner bases for general ideals (say F4, F5)?

As discussed in Section 3.5.2.3, we are interested in the geometry properties of

tournament graphs for m = 4, 5, · · · , which may help to reduce the levels needed to find a

proper factor of f(x), even for some constant m. That is the following problem.

Research problem 3. Existence of super square balanced schemes
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