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ABSTRACT 

This dissertation aims at modeling sustainability of renewable fuel supply chain systems 

against emerging challenges. In particular, the dissertation focuses on the biofuel supply 

chain system design, and manages to develop advanced modeling framework and 

corresponding solution methods in tackling challenges in sustaining biofuel supply chain 

systems. These challenges include: (1) to integrate “environmental thinking” into the 

long-term biofuel supply chain planning; (2) to adopt multimodal transportation to 

mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in 

hedging against uncertainty from conversion technology; and (4) to develop 

methodologies in long-term sequential planning of the biofuel supply chain under 

uncertainties. All models are mixed integer programs, which also involves multi-

objective programming method and two-stage/multistage stochastic programming 

methods. In particular for the long-term sequential planning under uncertainties, to 

reduce the computational challenges due to the exponential expansion of the scenario tree, 

I also developed efficient ND-Max method which is more efficient than CPLEX and 

Nested Decomposition method. Through result analysis of four independent studies, it is 

found that the proposed modeling frameworks can effectively improve the economic 

performance, enhance environmental benefits and reduce risks due to systems 

uncertainties for the biofuel supply chain systems. 
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CHAPTER 1 INTRODUCTION 

1.1. Background of Renewable Fuels 

Fossil fuels, including gasoline and diesel, have long been predominant transportation 

fuels in the United States. However, the fossil fuels are vulnerable to the fluctuation of oil 

prices, negative to the environment, and insecure with oil supply dwindling. These 

challenges have attracted wide attentions from various research disciplines and 

collectively, they are aggressively working on developing renewable fuels, as a viable 

solution, to substitute the fossil fuels. Renewable fuels are typically derived from 

renewable biomass energy sources (EPA), and there are many candidate renewable fuel 

systems, such as biofuel, nature gas, hydrogen, and electricity. Compared to fossil fuels, 

renewable fuels have similar effectiveness in powering transportation vehicles, and more 

importantly, they are attractive as they can provide better environmental performance and 

most of the fuels can be domestically produced within United States. 

In order to successfully substitute the fossil fuel systems, each renewable fuel 

path, such as the biofuel, shall provide better economic and environmental performances 

and shall be risk-neutral as well.  There are two main research directions in reaching this 

aim: (1) to improve the production technology of the renewable fuel systems, and (2) to 

provide sustainable and resilient renewable fuel supply chain systems. As a PhD 

candidate in transportation, my research focuses on the latter one. In particular, I focus on 

developing the supply chain systems for biofuel. Note that, the major contributions in the 

methodologies presented in this dissertation can also be applied to other renewable fuel 

systems with different production technologies. 
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1.2 Research Contributions 

The research focus of this dissertation is on the biofuels that are converted from cellulosic 

biomass such as biowastes and dedicated energy crops to meet the aggressive goal set by 

the Renewable Fuels Standard (RFS) with the target of annual production of 36 billion 

gallons of biofuel by 2022, out of which 16 billion gallons is from the advanced 

renewable fuels, including cellulosic biofuels (110th U.S. Congress, 2007). A sustainable 

supply chain system that ensures strong cost competiveness, environmental benefits and 

reliability is crucial to facilitate the rapid expansion of biofuel production and delivery in 

the next few decades.  

 Such sustainable biofuel supply chain relies on its infrastructure system that 

supports the movements of feedstocks and biofuels from fields to end users. Typically, 

there are four major infrastructure layers in support of the supply chain: biomass 

fields/storage, biorefineries, biofuel blending facilities, and city gates/terminals. 

Developing a cost effective and operation reliable biofuel supply chain is challenging as 

it involves interdependent decisions along the supply chain. To model the sustainability 

of the biofuel supply chain systems, I made four major research contributions: 

 

 Integration of “environmental thinking” into biofuel supply chain system 

planning and management: This study addresses a strategic multistage expansion 

(e.g., a decade) of a cellulosic biofuel supply chain system with supplements of 

corn grain biofuels. A multi-objective, multiyear optimization framework is 
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proposed and the compromise method is used to seek best-compromise solutions 

between economic competitiveness and environmental quality of the supply chain 

while satisfying evolving fuel demand, feedstock resources, and technological 

constraints. The details of this study are shown in Chapter 3. 

 Integrating “Multimodal Transport” into Cellulosic Biofuel Supply Chain Design 

under Feedstock Seasonality: Due to geographic dispersions between facilities in 

a cellulosic biofuel supply chain, multimodal transport may be attractive to 

improve the economic efficiency. A multistage, mixed integer programing model 

is developed that fully integrates multimodal transport into the cellulosic biofuel 

supply chain design under feedstock seasonality. Three transport modes are 

considered: truck, single railcar, and unit train. The goal is to minimize the total 

cost for infrastructure, feedstock harvesting, biofuel production, feedstock/biofuel 

storage, and transportation. The details of this study are shown in Chapter 4. 

 Mitigation of conversion technology uncertainty in the sustainable biofuel system 

design: The uncertainty inherent in the conversion process arises from the lack of 

complete knowledge about the production technology. Such deficiency may cause 

inadequate planning of feedstock supply and refinery configuration, and have 

adverse effects on the biomass/biofuel logistics performance. This concern 

motivates me to investigate effective ways to mitigate the impacts of the 

uncertainty on the biofuel supply chain and develop an advanced stochastic 

optimization model to tackle this issue. This study combines statistical analysis 

and stochastic modeling, which allow the integration of the uncertainty into the 
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decision making of a biofuel supply chain design. The goal is to achieve the best 

system performance measured by the economic competiveness and environmental 

quality. The details of this study are shown in Chapter 5. 

 Long-term Energy Supply Chain Sequential Planning under Uncertainties: This 

work focuses on developing a multistage stochastic programming model to handle 

the challenges inherent in the decision making for long-term multi-period biofuel 

supply chain design, which is inevitable under uncertainty from supply, demand 

or even biofuel conversion technologies. The goal is to minimize the total 

expected cost over time while satisfying biofuel demand. In this study, I solve the 

problem using both nested decomposition and decomposition with maximal non-

dominated cut. I implement both methods on hypothetical numerical examples to 

evaluate their performances compared to CPLEX. The multistage stochastic 

model and the solution method are also applied to a real world case study based 

on the South Carolina biofuel systems to demonstrate their application on large 

scale problems. The details of this study are shown in Chapter 6. 

 

These four studies provide my original contribution to the biofuel supply chain 

design, and more importantly, the general research domain of renewable fuel 

infrastructure system design and planning. In particular, these studies will help address 

the following four major questions: 
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1. How to achieve a cost and environmental friendly biofuel supply chain in the next 

few decades? 

2. Is multimodal transport crucial to the biofuel supply chain design and how to 

integrate it to mitigate the seasonality issues inherent in the supply chain 

operations? 

3. What kinds of systems strategy should be made to hedge against uncertainty from 

the conversion technology? and 

4. What system expansion strategy should be made to hedge against uncertainties 

and adapt to the demand market changes over time? 

 

1.3 Structure of this Dissertation  

The remainder of this dissertation is organized as follows. Literature review on biofuel 

supply chain design will be presented in Chapter 2. The dissertation is composed of four 

studies, which will be presented in Chapter 3 to Chapter 6 respectively. Chapter 7 will 

summarize the conclusions of this dissertation and will suggest future research 

approaches. 
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Chapter 2 LITERATURE REVIEW 

Prior research efforts on biofuel related supply chain design and planning can be 

summarized into two categories: deterministic designs and stochastic designs. The 

deterministic supply chain design assumes that all parameters are known and fixed, while 

such assumption has been relaxed in stochastic designs to take into account the 

uncertainties in the decision making. Depending on the nature of planning process, each 

of the deterministic and stochastic designs can be divided into two subcategories: snap-

shot planning and sequential planning. The snap-shot planning is a simplified view of the 

problem by assuming that all parameters given would stay unchanged and ignoring the 

effects of time dynamics. Typically, a snap-shot planning is for annual based system 

design and may incorporate seasonality to better reflect variations during the course of 

the year. On the contrary, the sequential planning is mainly from a strategic point of view 

by recognizing dynamics involved with some supply chain parameters (e.g., demand and 

technology). The study horizon is normally longer and may extend to multiple years (e.g., 

10 years). The planning decisions are made periodically to allow system expansion to 

meet the changes in the biofuel market. I will organize the literature reviews based on this 

topology.   

 

2.1. Deterministic Biofuel Supply Chain Systems Design 

Deterministic Snapshot Planning: There are numerous prior studies falling into this 

category. For example, Akgul et al. (2010) formulated a mixed integer linear 

programming model in optimizing biofuel plants locations/sizing, material flows between 
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sites, required number of transport units, feedstock cultivation and fuel production. The 

model aimed at minimizing the entire biofuel supply chain system cost. Another study 

(Bowling et al., 2011) focused on the net profit maximization of the biofuel supply chain, 

with decisions including operational strategies and configurations of refineries and 

processing hubs. The model considered nonlinear economic-of-scale behavior of the 

capital cost function, and reformulated it using disjunctive models. Aksoy et al. (2011) 

investigated four biofuel conversion technologies, and recommended corresponding 

supply chain layouts respectively. Kim et al. (2011b) proposed a mixed integer model in 

selecting fuel conversion technologies, determining biofuel supply chain infrastructure 

layout, and planning transportation logistics between feedstock sites, conversion facilities 

and consumer markets.  

It is also important to integrate the seasonality, a major characteristic of the 

biofuel systems, in the biofuel supply chain snapshot planning. . This requires the 

partition of the one-year study scope into multiple periods (e.g., seasons) to capture the 

variations in parameters over periods and to provide corresponding detailed operational 

decisions. For example, Tembo et al. (2003) considered months as the studied periods, 

and developed a multi-period mixed integer model to identify economical cellulosic 

feedstock sites, feedstock acquisition, feedstock delivery timing, inventory management, 

and system configuration. The objective is to maximize the net present value of the 

ethanol production industry. Another study (An et al., 2011) divided one year design into 

seasons, and proposed a time-staged profit maximization model for a cellulosic biofuel 

supply chain from feedstock suppliers to biofuel customers. More recently, in addition to 
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the cost/profit driven systems development, new research interests arose to integrate 

sustainability concepts into the biofuel supply chain design, and examples are 

(Gebreslassie et al., 2013; You et al., 2011; You and Wang, 2011). 

 Deterministic Sequential Planning: There are fewer studies in this category. 

Huang et al. (2010) developed a multistage mixed integer programming model in 

planning the biowaste-based cellulosic biofuel system expansion over a multi-year 

planning horizon. Giarola et al. (2011) addressed the strategic design and planning of the 

biofuel supply chain by integrating both first-second generation biofuel supply chain 

systems. A mixed integer multistage multiobjective model was developed to optimize 

both environmental and financial performances. Another study (Ebadian et al., 2013) 

focused on the detailed multi-year planning of the storage system for the biomass supply 

chain system. 

Based on existing literatures on deterministic biofuel supply chain design, most of 

studies (especially for the deterministic sequential planning) only focus on improving the 

cost efficiency and overlook the environmental impact which is a key aspect in 

promoting renewable fuel systems. To fill this research void, I will develop sustainable 

supply chain modeling framework for the deterministic sequential planning of biofuel 

supply chain in Chapter 3. In addition, all existing literatures in deterministic systems 

design only consider truck as the transport mode, and ignores the potential benefits of the 

multimodal transport systems. Therefore, Chapter 4 will initiate a research effort in using 

multimodal transport systems to further improve the efficiencies in operating the biofuel 

supply chain.  
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2.2. Stochastic Biofuel Supply Chain Design 

All aforementioned studies on biofuel supply chain systems design are based on 

deterministic modeling frameworks, which assume that all information is known and 

fixed. However, uncertainties may exist and can have dramatic impact on the entire 

supply chain operations (Subrahmanyam et al., 1994). These uncertainty parameters need 

to be addressed to reduce the impacts of risks on the biofuel supply chain (Awudu and 

Zhang, 2012). Advanced modeling techniques, two-stage stochastic programming and 

multi-stage stochastic programming methods are effective methods to deal with 

uncertainties in the systems design. 

 Stochastic Snapshot Planning: The two-stage stochastic programming method can 

be effectively applied to the snapshot biofuel supply chain design under uncertainty. Kim 

et al. (2011a) combined multiple dominant uncertainty parameters into scenarios in the 

biofuel supply chain design. They used the two-stage stochastic programming method to 

optimize the overall supply chain profit. Another snapshot design study (Awudu and 

Zhang, 2013) proposed a stochastic model for planning the biofuel supply chain under 

demand and price uncertainties, which follow normal distribution and geometric 

brownian motion respectively. The Monte Carlo simulation technique was applied to 

discretely sample the continually distributed uncertainty, and the model was then solved 

with the bender decomposition method. Chen and Fan (2012) incorporated supply and 

demand uncertainties into the one-year planning of the bioenergy supply chain systems, 

and used the progressive hedge (PH) method to solve the proposed two-stage stochastic 

model. 
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 There are also a few biofuel stochastic snapshot studies that considered 

seasonality. Such one-year, multi-period design usually involves multiple stages for 

operational decisions. However, due to the complexity of multistage stochastic 

programming method (Birge and Louveaux, 2011), in my reading scope, all studies 

simplified the problem to formulate them as two-stage stochastic programming models. 

For example, Cundiff et al. (1997) modeled impacts of uncertain weather conditions on 

the biomass production in the biofuel supply chain. The model focused on the upstream 

supply chain from the fields to the centralized refinery. You (2013) developed a multi-

objective stochastic programming model for planning the hydrocarbon bio-refinery 

supply chains under supply and demand uncertainties. The model was to achieve 

minimum system cost and downside risk on monthly basis. A multi-cut L-shaped based 

decomposition method was developed to solve the problem.  

 Stochastic Sequential Planning: Different from the snapshot design, the 

sequential planning design usually has planning decisions nested in the successive time 

stages, which normally requires the use of multistage stochastic modeling framework. 

Due to the complexity of the modeling and solutions, studies in this category is scarce 

and the study (Dal-Mas et al., 2011) is probably the only one. The study focused on a 

multiyear capacity planning of the ethanol supply chain system under feedstock and 

ethanol price uncertainties. The uncertainty realizations over time were simplified and 

aggregated to a limited number of scenarios, each of which represents a particular cost or 

price level over time, assuming that the realized cost or price level will remain unchanged 
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over time. This simplification makes the two-stage stochastic programming model 

eligible for this problem.  

Most existing studies on stochastic systems design focus on uncertainties from 

supply, demand and biofuel prices, and no study has been found to consider uncertainty 

from conversion technology. One contribution of this dissertation is to integrate 

uncertainties from the conversion technology into the supply chain design, which is 

presented in Chapter 5. 

 In addition, it is clear that the system uncertainty is mainly considered in the 

snapshot systems design, and research efforts in systematically integrating uncertainty 

mitigation into the long-term sequential decision making are seriously lacking, which 

however are essentially important to enhance the long-term supply chain resilience in 

hedging against potential risks.  The simplification of the sequential realization of 

uncertainty by an aggregated set of scenarios in (Dal-Mas et al., 2011) though reduces the 

modeling complexity, may not fully capture the nature of the uncertainty realization that 

may be independent over time. To fill this research gap, in Chapter 6, I propose to 

develop a multistage stochastic modeling framework and corresponding solution 

methodologies, to design an infrastructure system in support of biofuel supply chain 

functionality in a long run.  
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CHAPTER 3 MULTISTAGE OPTIMIZATION OF 

SUSTAINABLE SUPPLY CHAIN OF BIOFUELS 

3.1 Problem Statement 

Required by the RFS, the biofuel supply chain must not only be economically viable but 

also be environmentally sustainable. Cellulosic biofuel, produced from crop residues, 

industrial wastes, and energy dedicated crops, has been deemed as a vital alternative to 

corn grain based biofuels, for its higher energy production efficiency and better life cycle 

performances (Jenkins et al., 2007; Zhu and Pan, 2010).  This study focuses on 

characterizing the next-generation economic and environmental sustainable supply chain 

of cellulosic biofuels, with supplements of corn grain based biofuels. 

 Achieving a biofuel supply chain with improved life cycle performances requires 

the integration of the environmental consideration into a supply chain design of biofuels. 

One of the challenges would be how to maintain low negative impact on the environment 

while achieving high economic effectiveness. A common approach is to use the multi-

objective decision-making approach to seek a set of best alternatives, as the objective of 

achieving low emissions is usually conflicting with the objective of least cost. Few 

studies (Gebreslassie et al., 2013; Mele et al., 2009; You, 2013; You et al., 2012; You 

and Wang, 2011; Zamboni et al., 2009) have investigated the impact of environmental 

considerations, however, in snapshot biofuel supply chain designs. 

 To the best knowledge, this study is at first to address a multiyear supply chain 

expansion of biofuels with an integrated environmental consideration. As cellulosic 
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biofuel is still at its early stage of development with no established supply chain (EIA, 

2013), the study focuses on developing cellulosic biofuel supply chain with supplement 

of corn grain based biofuels.  A multiobjective (i.e., cost and GHG emission), multistage 

(multiyear), mixed integer programming model is formulated to create a staged expansion 

plan for cellulosic biofuel supply chain over long-term (e.g., a decade) and the 

suppplement of corn grain based biofuels. The economic objective is to minimize the 

total annualized cost of the cellulosic and corn grain based biofuels while the emission 

objective is to minimize the GHG emissions along the supply chain, including a sequence 

of feedstock acquisition and transportation, fuel production, and fuel distribution to 

demand cities as well as the use of corn grain based biofuels. The GHG emissions 

associated with each process can be quantified by using the GREET (Greenhouse gases 

Regulated Emissions and Energy use in Transportation) model developed by Argonne 

National Laboratory (Wang et al., 2005), and their potential environmental impacts were 

aggregated into an environmental performance indicator (i.e., carbon dioxide equivalent 

(CO2-eq), based on the concept of global warming potential (GWP) (BSI Group, 2011; 

Forster et al., 2007). In particular, the GHG emissions are limited to three GHG species: 

CO2, CH4, and NO2. This multistage, multi-objective model is solved by the compromise 

method (Tamiz et al., 1998) to seek a set of best compromised solutions between the cost 

and emission objectives. 

 The remainder of this Chapter is organized as follows. In Section 3.2, we will 

present the mathematical formulation of a proposed multistage, multi-objective model to 

integrate economic and environmental considerations under a single modeling framework. 
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The illustrative case study of California biofuel systems will be presented in Section 3.3, 

followed by the results in Section 3.4. I will summarize the study in Section 3.5. 

 

3.2. Methods 

A deterministic, multi-objective, multistage, mixed-integer program is developed to 

minimize the total system cost and GHG emissions across the multiple layers of biofuel 

supply chain (i.e., feedstock fields, refineries, and biofuel terminals at city gates) and 

throughout the entire expansion horizon (e.g., a decade). This problem requires effective 

spatial and temporal integration across geographically distributed facilities along with the 

supply chain. The spatial dimension considers geographic distributions of biomass 

resources, fuel demands, biorefineries, and roadway network; the temporal dimension 

relates to the multi-year planning horizon. The temporal dimension is divided into 

multiple one-year periods t T  and decisions are made for each year. The annual fuel 

demand are satisfied by both cellulosic and corn grain based biofuel. 

For cellulosic biofuel, as the feedstock yields are aggregated and on annual basis. 

The feedstock seasonality is neglected and the feedstock storage is thus not included in 

the supply chain. The infrastructure layers in the supply chain are feedstock fields 

F

l li N  ( l L , set of feedstock types), biorefineries Rj N , and biofuel terminals 

Mm N . Note that the supply chain ends at city gates and further local fuel dispensing 

to refueling stations is neglected. Both system costs and GHG emissions are dependent 

on the supply chain layout and operations. For corn grain based biofuel, the price and 
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emissions are exogenously available to the model. The model can be briefly described as 

follows:  

 

Inputs: 

 the annual yields of feedstock of each type and annual biofuel demand, 

 the geographic distances between infrastructures in the supply chain, processed by 

geographic information system (GIS), 

 cost functions associated with building infrastructures, procuring feedstock, 

producing fuel, and transporting feedstock and fuel, and 

 GHG emission inventories (outputs of the GREET model) associated with 

feedstock acquisition, fuel production, and transportation. 

 

Decisions: 

 locations and sizes of new refineries by year, 

 capacity expansions of existing refineries by year, and 

 feedstock and fuel flows in the supply chain by year. 

 

Assumptions: 

 a refinery will not shut down once it is operational; 

 truck is the only transport mode; 

 truck will travel with the shortest path between an origin and a destination; and 
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 tailpipe emissions are assumed to be offset by the biomass during growth, 

suggested by studies (Raphael et al., 2009; Wang et al., 2005). 

 

We will first introduce the cost minimization (denoted as 
1F ) and minimization of 

system GHG emissions objectives (denoted as 
2F ). A compromise model is then used to 

combine the two objectives in a multi-objective modeling framework, subject to physical, 

technological, and economic constraints. The notation used in the models is presented in 

Table 3-1. For consistency, lower-case letters are for parameters and upper-case letters 

are for decisions variables. 

 

Table 3-1 Notation 

Sets 

L : Set of feedstock types, index l  

F

lN : Set of feedstock fields of feedstock type l L , index 
li  

MN : Set of cities as demand centers, index m  
RN : Set of potential locations for biorefineries, index j  

S : Set of refinery size, index s  

T : Set of time phases, index t  

Parameters 

,li ta : Maximum available feedstock (dry ton) of type l L  at field 
F

l li N  at time 

t T   
bpc : Unit biofuel production cost ($/gallon) at refineries  
fa

lc : Average acquisition cost ($/dry ton) of harvesting feedstock of type l L   

,dd bc : Distance-dependent transportation cost ($/mile/truckload) of biofuel  
,dd fc : Distance-dependent transportation cost ($/mile/truckload) of feedstock  
,lu bc : Truck loading and unloading cost of ($/gallon) biofuels  
,lu fc : Truck loading and unloading cost ($/wet ton) of feedstock  
,td bc : Travel-time dependent transportation cost ($/hr/truckload) of biofuel  
,td fc : Travel-time dependent transportation cost ($/hr/truckload) of feedstock  
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ijd : Distance (miles) between nodes i and j  

bp

le : GHG emission rate (CO2-eq. ton/gallon) of biofuel production, l L   

fa

le : GHG emission rate (CO2-eq. ton/dry ton) of feedstock acquisition, l L   

Tre : GHG emission rate (CO2-eq. ton/mile/truckload) of transportation  
Cap

jsf : Annualized capital cost ($) of refinery at location Rj N  with size s S  

,m tk : Biofuel demand (gallons) at city 
Mm N  at time t T  

R

su : Refinery annual production capacity (MGY) by size level s S  

,Tr bu  Truck transportation capacity (gallon/truckload) for biofuel  
,Tr f

lu : Truck transportation capacity (wet ton/truckload) for feedstock, l L  

v : Average truck travel speed (mile/hr)  

 : Unit cost rate ($/gallon) of imported corn grain based biofuel  

 : GHG emission rate (CO2-eq. ton /gallon) of corn grain based biofuel  

l : Moisture content (%) of feedstock type l L   

l : Biofuel conversion rate (gallon/dry ton), l L    

Decision Variables 

mtQ : amount(gallons) of imported corn grain based biofuel at city 
Mm N  at time 

t T  
b

jmtX : amount (gallons) of biofuel transported from refinery Rj N  to city 
Mm N  at 

time t T   

,l

f

i j tX : amount (dry tons) of feedstock of type l L  transported from field 
F

l li N  to 

refinery Rj N  at time t T  

jstZ : =1 if refinery with size s is built at Rj N  at time t T ; =0 otherwise 

 

Objective #1 – Minimization of system cost over planning horizon: 

The biofuel supply chain design consists of decisions, such as feedstock acquisition, 

biofuel production, and transportation, and they are interdependent. A systems approach 

is thus utilized to achieve overall lowest system cost over time. The corn grain based 

biofuel supplements the cellulosic biofuel when it is more economical. The least-cost 

objective (
1F ) is formulated in equation (3-1).  
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   (3-1.b) 

 

The cost function (3-1) minimize the total cost of cellulosic biofuel supply chain 

and the use of corn grain based biofuel ( ). The cellulosic biofuel supply chain cost 

includes capital costs associated with the refinery (
Cap

jsf ), feedstock acquisition cost (
fa

lc ), 

biofuel production cost (
bpc ), and feedstock and biofuel distribution costs (

FSDel

tC  and 

BFDel

tC ) respectively formulated in (3-1.a) and (3-1.b). Both distribution costs are 

composed of distance- and time-dependent costs plus loading/unloading cost and are 

divided by truck capacity to convert the delivery quantity to number of truckloads. For 

feedstock transportation, the dry ton measure is converted to wet tons by moisture content 

(the ratio of water contained in the feedstock, denoted by 
l ), on which the truck 

capacity of bulk solids is based. Transportation distance is multiplied by two to represent 

a round trip.  
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Objective #2 – Minimization of System GHG Emissions over Planning Horizon: 

The least-GHG emission objective (
2F ) is formulated in equation (3-2). In particular, the 

emission rates, measured by the environmental performance indicator CO2-eq per mass or 

liquid unit, are quantified using the GREET model. The three species of GHGs (i.e., CO2, 

CH4, and SO2) associated with feedstock acquisition, biofuel production, and 

transportation are considered and their emission rates are respectively denoted by 
fa

le ,
bpe

and Tre  in the model. The emission rate associated with corn grain based biofuel is 

denoted by  . 

 

Minimize 

2 , ,l
F R R M M

l l

fa f bp b FSDel BFDel

l i j t jm t t t mt

t T l L i N j N j N m N m N

X e XF e E E Q
      

  
     

  
        

(3-2) 
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,
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R M
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e X d
E
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    (3-2.b) 

 

Similar to equation (3-1), the emission objective (3-2) minimizes the total GHG 

emissions along the supply chain of biofuels. The transportation emissions consist of two 

parts: 
FSDel

tE  being the emissions from feedstock deliveries and 
BFDel

tE being the 

emissions from biofuel distributions. 
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The Objective of Compromise Model:  

The two objectives are integrated into a multi-objective modeling framework by using the 

compromise method and the objective F is formulated in equation (3-3). This model aims 

to find best-compromise solutions between economic competiveness and environmental 

quality while satisfying the growing biofuel demands, feedstock availability, and 

technological constraints.   

 

Minimize  
2

1

1
o

i i
i ao o

i i i

F F
F D w

F F
 




  


  (3-3) 

Subject to ,   1,2
o

i i
i ao o

i i

F F
w D i

F F


 


. (3-4) 

In objective function (3-3), 
o

iF  denotes by the optimal result of the i
th

 objective 

(first or second objective in this study) and 
ao

iF  denotes by the anti-optimal result. In this 

particular study, 1

oF  denotes the optimal value of objective 
1F ; i.e., the least system cost. 

The anti-optimal result 1

aoF  is obtained in the following way. Decision variables 

corresponding to 2

oF  (i.e., the lowest emissions) are substituted in objective 
1F  and the 

attained result is called the anti-optimal result, 1

aoF , of objective
1F . Thus, 1

aoF  is greater 

than or equal to 1

oF . Note that the denominator 
ao o

i iF F  is used to normalize the two 

objectives, which enables the aggregation of objectives with different units (i.e., 
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monetary cost for 
1F  and emission measurements for 

2F ). The variable, D, is defined in 

inequality (3-4). 

The preferential weight, 
iw , is valued between 0 and 1, reflecting the relative 

importance of each objective. A common approach to determine the preferential weights 

is to use the Analytic Hierarchy Process (AHP) method (Saaty, 1980). In this study, the 

values will be adopted from existing literatures. The other weighting factor, λ, which is 

called the aggregation factor, is also valued between 0 and 1. When λ equals 1, the 

compromise model objective (3-3) becomes: 

 

Minimize 
2

1

o

i i
i ao o

i i i

F F
F w

F F





 ,  (3-5) 

 

which is essentially a weighted sum of both objectives and this solution is called 

maximum efficiency solution. On the other hand, when λ equals 0, the objective (3-3) 

becomes f D , subject to constraint (3-4), which is equivalent to 

 

Minimize 1 1 2 2
1 2

1 1 2 2

max[ , ]
o o

ao o ao o

F F F F
F w w

F F F F

 


 
. (3-6) 

 

This program seeks a perfectly balanced situation between the achievements of 

both objectives and according to (Tamiz et al., 1998), and it implies that the following 

equality holds: 
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1 1 2 2
1 2

1 1 2 2
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ao o ao o

F F F F
w w

F F F F

 


 
. (3-7) 

 

The resulting optimum is called the maximum equity or equilibrium. Other values 

of λ represent intermediate conditions between these two extreme cases. Interested 

readers are referred to (Linares and Romero, 2000) for details. In this study, both 

weighting factors w and λ will be used at the same time.  

 

Constraint Sets:  

The constraints on feedstock yields, demand, and conversion technological restrictions 

will be presented as follows.  

 

, ,l
F M

l l

f b

l i j t jm t

l L i N m N

X X
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,
M

b R

jm t s jst
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X u Z


   ,Rj N t T    (3-11) 

 

Equation (3-8) is a flow conservation constraint at refineries, which states that the 

amount of biofuel produced (right-hand-side of the equation) equals the amount of 
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converted biomass (left-hand-side of the equation) by relating them to conversion rates. 

Constraint (3-9) is logic constraint for each time period, stating that a refinery can only 

have one capacity size if the refinery is operating. Inequality (3-10) allows for refinery 

capacity expanded discretely and assumes the refinery will never shut down once opened. 

Constraint (3-11) limits the production amount within the chosen refinery capacity.  

 

, ,l l
R

f

i j t i t

j N

X a


  , ,F

l li N l L t T     (3-12) 

 

Feedstock acquisition is limited by its availability in constraint (3-12), and all 

obtained feedstocks will be delivered to refineries for biofuel production.  

  

,
R

b

jm t mt mt

j N

X Q k


   
,Mm N t T    (3-13) 

 

Equation (3-13) allows biofuel city demand to be satisfied by both the cellulosic 

biofuel and corn-grain based biofuel.  

 

3.3 Case Study 

The compromise model has been applied to an illustrative case study of developing 

cellulosic biofuel supply chain with supplement of corn ethanol in California. California 

serves as a good case study for two primary reasons. First, the government of California 

has been aggressively promoting de-carbonating the transportation sector through several 
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legislations, e.g., AB32 (Global Warming Solution Act), AB1493 and Low Carbon Fuel 

Standards (California Energy Commission, 2013). In particular, California’s Bioenergy 

Action Plan targets the in-state ethanol production at 40% of the total state’s biofuel 

consumption by 2020 and 75% by 2050, which are equivalent to 350 and 590 Million 

Gallons per Year (MGY), respectively (Jenkins et al., 2007). Second, with advanced 

biofuel conversion technologies that use lignocellulosic biomass are anticipated to be 

ready for commercialization by 2025 (Parker et al., 2007) and given that there are 

abundant biomass residues from the San Joaquin Valley, i.e., corn stover, and the 

surrounding Sierra forest, i.e., forest residues, California is in a good position to utilize its 

resources and promote the cellulosic biofuel industry.  

 The planning horizon is set between 2015 and 2025, which is consistent with the 

time frame when the adopted biomass-to-ethanol conversion technology is anticipated to 

be commercialized. In this case study, biofuel only refers to ethanol and the total demand 

is projected, based on interpolation and extrapolation, to grow linearly from 272 million 

gallons per year (MGY) in 2015 to 390 MGY in 2025 (Jenkins et al., 2007).  For 

cellulosic ethanol supply chain, there are 28 candidate refinery locations across the state. 

A set of 143 cities are considered as demand centers, which are mainly clustered in the 

populated areas, such as the San Francisco Bay area and the Los Angeles area. The 

refinery has three capacity levels to choose from at 60, 80 and 100 MGY. The geographic 

distributions of demand and biomass resources are presented in Figure 3-1. The details on 

other economic and technological data used for this study are referred to (Xie et al., 

2014). For corn ethanol, the average terminal market price of $2.6/gallon in the Los 
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Angeles area and the San Francisco area is used in the baseline case study (California 

Energy Commission, 2014). According to the historical data, the price can be fluctuating, 

and thus the impact of a range of corn ethanol prices has been analyzed and results will 

be reported in subsection 3.2. 
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(a) Corn stover locations (b) Forest residues locations (c) demand centers (city gates) 

Figure 3-1 Maps of Feedstock Supply and Ethanol Demand 
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As aforementioned, this study limits the GHG emissions to three species - CO2, 

CH4, and NO2. The emission rates associated with the cellulosic ethanol production 

pathway (including the feedstock acquisition and transportation, ethanol production, and 

transportation within California) are presented in Table 3-2. Each of 2
nd

-to-4
th

 columns of 

the table contains the emission rates of a particular GHG specie, which was quantified 

using the GREET model and the last column contains the aggregated CO2-eq, based on 

the 100-year GWP (BSI Group, 2011; Forster et al., 2007). The emissions from acquiring 

forest residues are higher than the corn stover, because more diesel fuels are consumed 

during stumpage and harvesting (Wu et al., 2006). The emissions from ethanol 

production is low, since large amount of CO2 emitted from converting biomass to 

biofuels offsets the absorbed CO2 in the biomass growing phase (Raphael et al., 2009; 

Wang et al., 2005). The emission rate of corn ethanol is equivalent to 0.0085 CO2-eq. 

ton/gallon (converted from 95.66 CO2-eq. grams/MJ), which is equivalent to the 

weighted average emission rate of corn ethanol in California (i.e., 80% is from the 

Midwest ethanol and 20% is from the California dry mill Wet distillers grains and 

solubles) (ARB, 2009).  

 

Table 3-2 GHG Emission Data 

Emission rates CO2 CH4 N2O 
CO2-eq  

Global warming potentials (GWP) 1 25 298 

Acquisition 
fa

le  

(gram/dry ton) 

Corn stover 22,037 25.4 0.27 22,753 

Forest residues 56,184 65.13 0.7 58,020 

Production 
bp

le 1
 

(gram/gallon) 

Corn stover 7 0.26 0.69 219 

Forest residues 200 0.86 0.63 410 

Transportation 
Tre  (gram/mile/truckload) 2,426 2.8 0.06 2,512 



28 

 

1. Excludes byproduct of electricity 

 

3,4 Results and Discussion 

All models were implemented in AMPL (Fourer et al., 2003) and solved using the 

commercial CPLEX 12.6 solver. All numerical experiments run on a Dell desktop with 8 

GB RAM and Intel Core Quad 3.0 GHz processor under Windows 7 environment. This 

large-scale mixed-integer problem has 924 binary variables, 69,531 continuous variables, 

and 3,899 linear constraints and the average computational time is 1,200 CPU seconds.   

 

3.4.1 Case Study Results 

In this section, we present results from the case study described above. A pay-off matrix 

of costs and emissions is obtained by optimizing each objective (i.e., F1 and F2) 

separately over the constraint set. The least-system cost (  
 

1

oF ) is $8.3billion, which is 

the total cost over entire expansion. The corresponding system-wide emission is 7.6 

million CO2-eq tons. On the other hand, if minimization of GHG emissions is the goal, 

emission is reduced to 6.8 million CO2-eq ton, a 10% reduction, while the system cost is 

substantially increased by 54% to $12.8 billion. Analysis of the pay-off matrix indicates 

that there is a remarkable degree of conflict between the two objectives; and no solution 

generated by a single objective optimization seems applicable for the problem.  These 

results justify the need of the compromise model. 

In the compromise model, the two objectives are aggregated through the 

mechanisms of preferential weight w and aggregation factor λ. The preferential weights 
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are set at w1 (cost) =0.625 and w2 (GHG) =0.375 , which are adopted from (Unsihuay-

Vila et al., 2011). The choice of aggregation factor λ reflects the preference between 

system efficiency and equity. When λ=1, the model objective stated in equation (3-5) 

aims to achieve the maximum efficiency for both cost and emissions, given the 

preferential weights w, the resulting optimal system cost is $8.5 billion and the GHG 

emission is 7.0 million CO2-eq tons, which respectively presents a 7.9% reduction in 

GHG emission and a 2.4% increase in cost, relative to the single cost objective model 

results of 7.6 million CO2-eq tons and $8.3billion. When λ=0, the model as stated in 

equations (3-6) and (3-7) aims to perfectly balance the achievements between the two 

objectives, which further reduces GHG emission to 6.9 million CO2-eq tons, or a 9.2% 

reduction, compromised with a higher system cost at $8.8 billion, a 6% increment, 

compared to the single cost objective model results. In the remainder of the section, only 

the single cost objective solution and the compromise model solution with λ=1 and 0 will 

be reported. A wide range of combinations of preferential and aggregation weights have 

also been implemented and the results will be reported in subsection of sensitivity 

analyses. 

 

System Expansion Strategies 

Table 3-3 shows the refinery system expansion strategies following different modeling 

objectives, i.e., the single cost objective and the compromise model with λ=1 and 0. The 

results indicate that by the end of planning horizon of 2025 the single-cost objective 

model yields more centralized location pattern (i.e., five refineries) than the results of 
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compromise model (i.e., eight refineries). This location pattern takes advantage of 

economics of scales of capital intense refineries, which is consistent with the objective to 

minimize the total cost while resulting in overall longer delivery distances and higher 

associated cost. Thus, when emission as another objective is considered in the 

compromise model (λ=1), the solution suggests a more dispersed refinery location pattern 

to help reduce the travel distance and consequently the emissions from transportation, 

which however requests more refineries than needed, with the total capacity up to 520 

MGY by 2025. This redundancy in total refinery capacity is mainly due to the discrete 

capacity levels (i.e., 60, 80, and 100 MGY) and less capacity redundancy would be 

expected if capacity variable is continuous. When comparing the two compromise 

solutions λ=0 and λ=1, both solutions share the same location pattern by 2025. However, 

the scheduling of building new refineries and capacity expansions varies between the two 

solutions. The λ=0 solution tends to have more distributed refinery locations than the λ=1 

solution at the earlier stages, which helps further reduce emissions, thanks to the higher 

weight on emission in the objective. 
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Table 3-3 Refinery Capacity Expansion (MGY) by Locations over Years (2015~2025) 

Models locations 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Cost 

objective 

#17 60 60 60 60 60 60 80 80 80 80 80 

#20 80 80 80 80 100 100 100 100 100 100 100 

#21 60 60 60 60 60 60 60 60 60 60 60 

#25   60 60 60 60 60 60 80 80 80 

#28 60 60 60 60 60 60 60 60 60 60 60 

λ=1 

#11           60 

#17 60 60 60 60 60 60 60 60 60 60 60 

#20 80 100 100 100 100 100 100 100 100 100 100 

#21 60 60 60 60 60 60 60 60 60 60 60 

#22    60 60 60 60 60 60 60 60 

#25 60 60 60 60 60 60 60 60 60 60 60 

#26       60 60 60 60 60 

#28 60 60 60 60 60 60 60 60 60 60 60 

λ=0 

#11 
  

60 60 60 60 60 60 60 60 60 

#17 60 60 60 60 60 60 60 60 60 60 60 

#20 80 100 100 100 100 100 100 100 100 100 100 

#21 60 60 60 60 60 60 60 60 60 60 60 

#22 60 60 60 60 60 60 60 60 60 60 60 

#25 60 60 60 60 60 60 60 60 60 60 60 

#26      60 60 60 60 60 60 

#28 60 60 60 60 60 60 60 60 60 60 60 
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(a) Year 2015 (b) Year 2020 (c) Year 2025 

Figure 3-2 Example of System Expansion Strategies (Best-Compromised Design with λ=1) 
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Figure 3-3 Annual Delivered Average Cost and Total GHG Emission in Each Gallon of Ethanol 
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For illustration purpose, the geographic representation of refinery system 

expansion is depicted in Figure 3-2(a)-(c) for the compromise solution λ=1. The figures 

only represent the snapshots of the biofuel supply chain systems in 2015, 2020 and 2025. 

The system begins with four small-sized (i.e., 60 MGY) refineries at #17, #21, #25 and 

#28, and one middle-sized (i.e., 80 MGY) refinery at #20 in 2015 and expansions 

including both opening new refineries and enlarging existing refineries will be 

undertaken. By 2020, refinery at location #20 will be expanded to 100 MGY from 80 

MGY in 2015 and a new small-sized refinery will be built at the location #22 while other 

refineries remain unchanged. By end of the planning horizon of 2025, another two small-

sized refineries will be added to the system at locations #11 and #26. Note that most of 

the refineries are located in northern part of the state to take the advantage of the 

proximity to biomass sources and one of the major consumer market in the San Francisco 

Bay Area. 

 

System Cost and Emission Outcomes 

The total system cost can be broken down to five components: feedstock acquisition cost, 

refinery capital cost, production cost, and transportation cost of cellulosic ethanol and 

corn ethanol cost. Transportation cost includes both the delivery costs of feedstock from 

fields to refineries and fuel from refineries to terminals.   

Cost breakdowns and emissions in terms of one gallon of delivered ethanol over 

time are represented by stacked bars and curves in Figure 3-3(a)-(c) respectively. The 

average delivered fuel cost is a weighted average delivered cost of both cellulosic and 
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corn ethanol, which fluctuates in a relatively small range between $2.2 and 2.4 per gallon. 

The average emission fluctuates between 1.5 and 2.2 CO2-eq kg/gallon, depending on the 

selected weights between the two objectives. In particular, the single cost objective 

solution produces higher emissions than the compromise model solutions and the 

emissions peak when the corn ethanol is used (see Figure 3-3 (a)). This is because corn 

ethanol has higher GHG emission than the cellulosic ethanol on gallon basis. The 

compromise models have factored the emission in the objective and thus the emission 

curve is relatively flat and no corn ethanol is used at all. It is also identified that 

transportation accounts for substantial portions of both cost (21% ~ 23%) and emission 

(26% ~ 28%), which justifies the use of the systems approach. From emission 

perspective, unlike fuel production and feedstock acquisition, for which emission 

reduction is highly constrained by demand and capital-intensive technology 

advancement, transportation GHG reduction can be achieved through smart system 

planning. 

 

Feedstock Portfolio and Use of Corn Ethanol  

Groups of three stacked bars in Figure 3-4 show the annual feedstock acquisition 

strategies and use of corn ethanol. Since corn stover and forest residues have different 

biomass-to-ethanol conversion rates, to be consistent, all feedstock acquisition amounts 

were converted to equivalent ethanol production amounts. For instance, following the 

solution of the single cost objective solution, within a total demand of 272MGY in 2015, 

220MGY are produced from forest residue, 40MGY are produced from corn stover, and 
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remaining is supplemented from the corn ethanol. As the refinery system is expanded 

discretely, corn ethanol is used strategically to justify the economic competiveness 

between the capacity gaps. In particular, the use of corn ethanol peaks at 9.6% of the total 

demand in 2016 and the annual average is about 2.2%.  

The optimized feedstock portfolio is a result of tradeoffs among multiple factors - 

conversion rate, acquisition cost rate, emission, moisture content, truck capacity, and 

feedstock geographic locations to refineries.  Rationally, feedstock resources with higher 

conversion rate but lower acquisition cost are likely to be picked over the others, which is 

why forest residue dominates the feedstock supply. Corn stover is used mainly due to its 

proximity to refineries. When the goal of reducing GHG emission is factored in, the use 

of corn stover increases slightly about 5% for its overall lower life-cycle emissions than 

forest residues.   
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Figure 3-4 Optimal Feedstock Procurement Portfolio and Use of Corn Ethanol 

 

3.4.2 Sensitivity Analysis 

Relationship between Cost and GHG Emission 

A series of numerical experiments were conducted to understand the tradeoffs between 

cost and GHG emission. We describe a wide range of best-compromise solutions by 

varying both preferential weight w (w1 + w2 = 1) and aggregation factor λ in the 

compromise model between 0 and 1 with an increment of 0.2. The resulting 36 Pareto-

optimal results form a pareto front as shown in Figure 3-5, which indicates a clear trade-

off between cost and GHG emissions. By using the compromise method, significant 

GHG emission reduction is achieved with a small increase of system cost. However, after 

certain point (e.g., 7.1 million CO2-eq tons), pursuing further emission reduction is cost 
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ineffective. This quantitative trade-off between costs and emissions could be insightful 

for energy and environment relevant public policies such as carbon-trade, although the 

analytical results may vary with case studies.   

 

 
Figure 3-5 Relationship between Cost and GHG 

 

The Impact of Corn Ethanol Price on System 

In the baseline, the average corn ethanol terminal market price of $2.6/gallon was used. A 

set of sensitivity analysis of a price between $1 and $5 per gallon was conducted and 

results are plotted in Figure 3-6.  When it is down to $1/gallon, no cellulosic ethanol is 

produced following the least-system cost solution. However, in the compromise solutions, 

due to the emission objective factored in, there is still substantial amount of cellulosic 

ethanol used between 10% and 40% of total demand for the sake of lower emissions, 
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depending on the objective. With a higher market price of corn ethanol, its usage 

decreases and no corn ethanol is consumed after the $3/gallon.  

 

 
Figure 3-6 Impact of Corn Ethanol Cost on Cellulosic Ethanol Production 

 

3.5 Summary  

In Chapter 3, I developed a new multi-objective, multistage optimization framework for a 

multiyear planning of supply chain of cellulosic biofuels with supplements of corn grain 

based biofuels in seeking the best compromise solutions between the economic 

effectiveness and environmental quality. The model was implemented in an illustrative 

case study of instate ethanol supply in California.  The results show the potentials of 

cellulosic ethanol as an economically and environmentally sustainable transport fuel 

alternative to corn ethanol with overall low delivered cost and emission. By using the 

developed compromise model, significant GHG emissions can be reduced at incremental 

cost. 
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CHAPTER 4 INTEGRATING MULTIMODAL TRANSPORT 

INTO CELLULOSIC BIOFUEL SUPPLY CHAIN DESIGN 

UNDER FEEDSTOCK SEASONALITY 

4.1 Problem Statement 

In most literature of cellulosic biofuel supply chain design, the importance of transport 

mode choice has been often overlooked and truck is presumably the only transport mode, 

despite the fact that geographic dispersion of demand and supply for biofuels makes the 

use of multimodal transportation very attractive (EERE, 2011). A recent study indicates 

that the choice of transportation mode, and consequently transportation distances, greatly 

impact the economic competitiveness of biofuels (Wakeley et al., 2009). Trucks, though 

flexible, may not always be cost effective, as they may be subject to potential issues such 

as worsened traffic congestion on highways (USDA, 2007). From modeling perspective, 

the transport mode choice depends on its availability and is highly correlated to the 

supply chain configuration. For example, a centralized biorefinery supply chain may 

benefit more in using a combined rail and truck transport system than a decentralized 

biorefinery supply chain. Hence, multimodal transport, defined as a utilization of at least 

two transport modes (e.g. truck and rail), will help improve the commercial viability of 

cellulosic biofuels and should be integrated into the biofuel supply chain design.  

In this study, a cost-effective and efficient multimodal transport is proposed for 

moving bulk biomass feedstock and liquid biofuels in the cellulosic biofuel supply chain. 

An integrated multistage, mixed-integer programming model is developed that integrates 
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the multimodal transport into the design of an entire cellulosic biofuel supply chain in 

hedging against feedstock seasonality. The goal of the proposed model is to minimize the 

total annualized system cost including the infrastructure capitals, feedstock harvesting, 

biofuel production, and transportation across the entire supply chain over a year. Key 

features that distinguish this study from previous studies and enrich the literature of 

multimodal transport in biofuel supply chain are at tri-fold from modeling perspective: (1) 

feedstock seasonality is factored into the cellulosic biofuel supply chain through the 

multistage modeling framework; (2) multimodal transport is integrated throughout a 

complete feedstock-to-end users supply chain design; and (3) explicit transport cost 

estimate is included and considers fixed cost, travel distance and time dependent costs for 

three transport modes (i.e., truck, single railcar, and unit train). The optimization model 

relies on realistic assumptions about the decision variables, the contribution of each 

decision variable to the objective, the relationship between decision variables, and the 

constraints. In particular, the multimodal transport system will be used to support the 

feedstock/biofuel flows in the supply chain to mitigate the effects of feedstock 

seasonality. These tools are expected to identify transportation system models that 

overcome additional key market and technical barriers for the cellulosic biofuel 

distribution system. These barriers, identified in (EERE, 2011), entail no mature 

distribution infrastructure system for transporting large volumes of biofuel and high 

delivery cost, due to the incompatibility with the petroleum fuel infrastructure. The 

proposed model will be evaluated using an illustrative case study of designing a 
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multimodal cellulosic ethanol supply chain in California and demonstrate the 

applicability of the model for potential economic improvement.  

The reminder of this Chapter is organized as follows. The methods and case study 

of California will be presented in Section 4.2 and Section 4.3 respectively. The results 

and discussion will be presented in Section 4.4. I will summarize the study in Section 3.5. 

 

4.2 Methods 

4.2.1 Description of the Cellulosic Biofuel Supply Chain 

A multimodal based cellulosic biofuel supply chain for multi-period is displayed in 

Figure 4-1. Three types of transport modes: truck, single railcar, and unit train, are 

considered and they are differentiated by costs and delivery scheduling. In particular, 

truck with the most expensive and flexible in delivery scheduling, is usually used for 

short-haul delivery, while rail (including single railcar and unit train) is normally more 

efficient for long-haul and high volume transport thanks to the better economies of scale 

(Mahmudi and Flynn, 2006). A unit train composed of a large number of single railcars 

(an average of 100) enjoys further improved cost efficiency compared to single rail cars. 

However, it cannot be scheduled between an origin and a destination until there is 

substantial volume to ship (e.g., 30 trains per year) and the facilities also have to have 

compatible equipment to load/unload the unit train (Parker et al., 2008; USDA, 2007).  
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Figure 4-1 Multistage Multimodal Cellulosic Biofuel Supply Chain Network 

 

Besides economic incentives, multimodal transport offers greater flexibility in 

handling feedstock seasonality, coupled with feedstock storage at transshipment hubs in 

the supply chain. According to (Rentizelas et al., 2009), there are three feedstock storage 

arrangements - on-field storage, intermediate storage, and storage near refineries. The on-

field storage is not considered in this study because of its significant material loss and 

difficulty in controlling the moisture content over time while the storage near refineries 

usually only has two-month worth of inventory. The intermediate storage, standing-alone 

facility neither on nor near feedstock fields and refineries, can accommodate extended 

storage, thus is considered in the study and placed at transshipment hubs in Figure 4-1 

Multistage Multimodal Cellulosic Biofuel Supply Chain Network. They are equipped 

with necessary facilities for handling multiple types of biomasses and accessible by all 
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three transport modes. Although a multimodal transport may appear redundant, it helps 

the supply chain ease the fuel production fluctuations caused by the feedstock seasonality. 

Different transport modes are employed in a coordinated manner, the greater details will 

be discussed in the results and discussion section.  

A transportation network can be represented by a directed network flow graph 

( , )G N A , where N is the set of nodes on the network and A is the set of arcs connecting 

nodes. The biofuel supply chain consists of five infrastructure layers, including feedstock 

fields F

lN ( l L , set of feedstock types), transshipment hubs 
HN , refineries

RN , 

blending terminals 
BTN , and cities 

CN . Thus, the node set N is a union of all types of 

facilities in the supply chain, i.e.,  F H R BT C

l
l L

N N N N N N


      ). Let 
f

lmA  

( m M  set of transport modes) be the set of arcs used for transporting feedstocks 

between feedstock fields, hubs, and refineries, and 
b

mA  be the set of arcs used for 

transporting biofuels. Thus, the supply chain arc set is  ( )b f

m lm
m M l L

A A A
 

    .  

 

4.2.2 Transport Cost Models 

Due to the complex transportation cost structure, an in-depth discussion on the 

transportation costs will be provided. For better discernibility, small letters are used to 

denote parameters and capitalized letters are to denote decision variables throughout the 

study. Feedstock and biofuel transportation costs, respectively are formulated in 

equations (4-1) and (4-2) and each consists of two components: transportation dependent 
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cost and loading and unloading cost. The transportation dependent cost is quantity-, 

travel distance-, and time- (only for trucks) dependent while the loading and unloading 

cost is only dependent on commodity type and quantity. Please note that the feedstock 

mass unit in dry ton needs to be converted to wet ton by moisture content factor 
l  (%), 

on which both transportation dependent cost and loading and unloading cost are based.  
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lu f f

m ijlmtFSDel f f
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( , ) , , ,f
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(4-1) 

,BFDel b b lu b b

ijmt ijm ijmt m ijmtc u I c X   

 

( , ) , ,b

mi j A m M t T   
 

(4-2) 

 

where 
f

ijlmtI and 
b

ijmtI  are the numbers of units of transport mode m M  between 

node i and j in time t T  as defined in equations (4-3) and (4-4) for feedstock and 

biofuel, respectively, and similarly 
f

ijlmu  and 
b

ijmu  are the costs per cargo by a transport 

mode m as defined in equations (4-7) and (4-8) for feedstock and biofuel. Denote by 
,lu f

mc

and 
,lu b

mc  the loading and unloading costs of feedstock ($/wet ton) and biofuel ($/gallon) 

respectively. Let 
f

ijlmtX  and 
b

ijmtX  be the shipping quantities respectively for feedstock and 

biofuel. 

 

,

1

(1 )

f

ijlmt f

ijlmtTr f
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X
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lmi j A l L m M t T    
 

(4-3) 
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(4-4) 

 

where 
,Tr f

lmw and 
,Tr b

mw  are respectively the capacities of transportation modes for 

feedstock and biofuel. For scheduling a unit train, inequality (4-5) and (4-6) enforces 

minimum warranty of shipping volumes ( ) for feedstock and biofuel respectively. 
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where 
,ut f

ijltZ and 
,ut b

ijtZ , are respectively the binary variables for feedstock and 

biofuel, which equal one if unit trains are scheduled for an arc ( , )i j A in time t T , 0 

otherwise.  

 

 

 

, ,

, ,

, ,

2 when "truck"

when "single rail car"

when "unit train"

td f tt f

ijm

f rd f rf f

ijlm ijm

rd f rf f

ijm

c c v d m

u c d c m

c d c m 

   

   

    







 ( , ) , ,
f

lm
i j A l L m M  

 
(4-7) 

 

 

, ,

, ,

, ,

2 when "truck"

when "single rail car"

when "unit train"

td b tt b

ijm

b rd b rf b

ijm ijm

rd b rf b

ijm

c c v d m

u c d c m

c d c m 

   

   

    







 ( , ) ,b

mi j A m M    (4-8) 

 



47 

 

in which the trucking cost is multiplied by two to account for round trips. The 

trucking distance- (i.e., ,td fc -feedstock and ,td bc -biofuel) and travel time- (i.e., ,tt fc -

feedstock and ,tt bc -biofuel) dependent costs are explicitly included in the definitions. The 

v  denotes the average truck travel speed. The rail costs are only distance dependent 

( ,rd fc -feedstock and ,rd bc -biofuel) which have considered labor wages, fuel and other 

operational costs (Mahmudi and Flynn, 2006) plus the fixed costs ( ,rf fc -feedstock and 

,rf bc -biofuel). The ijmd  denotes the distance (miles) from node i  to j  for mode type 

m M . In this study, unit train is comprised of a large number of railcars   (e.g., 

=100) and its cost is discounted ( 1  ) for the improved economies of scale (Parker et 

al., 2008).  

 

4.2.3 Mathematical Formulation for the Multimodal Cellulosic Biofuel 

Supply Chain  

A multistage, mixed-integer model is developed to integrate multimodal transport into a 

biofuel supply chain design under feedstock seasonality. The objective is to minimize the 

total system cost while satisfying fuel demands. In the model, two sets of decisions: 

planning decisions and operational decisions are made simultaneously. The planning 

decisions are mainly on the locations and capacities of refineries and terminals, which are 

made at the beginning of the study period while operational decisions on feedstock 

procurements, feedstock and biofuel deliveries, storage, and fuel production are time 

dependent, denoted by successive time phases t and t+1 in Figure 4-1.  



48 

 

The model is briefly described as: given (1) facility capital costs, feedstock 

procurement unit cost, storage unit cost, transportation unit cost, and biofuel production 

unit cost, (2) seasonal yields of feedstocks and seasonal ethanol demand, (3) geographic 

distributions of facilities, and (4) transport modes in different segments of the network, 

the model makes decisions on (1) locations of transshipment hubs, refineries, and 

terminals, (2) capacities of refineries and terminals, (3) seasonal feedstock procurement 

and biofuel production, and (4) seasonal feedstock/biofuel storage and transshipment. 

The assumptions are transshipment hubs have sufficient capacity and can handle all 

feedstock types and the unit costs of feedstock procurement and transportation are 

constant.  

Before describing the model, other used notations are firstly presented as follows: 

 

Supply chain parameters: 

R

ipc  Annualized capital cost ($) of refinery with capacity p P  (the set of discrete 

refinery capacity levels) at location Ri N  

BT

iqc
 

Annualized capital cost ($) of blending terminal with size q Q  (the set of 

biofuel storage sizes) at location BTi N  

fp

lc  Average feedstock procurement cost ($/dry ton) for feedstock type l L  

bpc  Biofuel production cost ($/gallon) at refineries, assuming that it is regardless of 

the locations of refineries  

fs

lc
 

Feedstock storage cost ($/dry ton) at transshipment hubs for feedstock type
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l L , assuming that the storage cost is regardless of locations  

bsc
 

Biofuel storage cost ($/gallon) at blending terminals  

R

pw
 

Refinery capacity (gallon) of the size level p P  

BT

qw
 

Biofuel storage capacity (gallon) of the size level q Q at blending terminals  

lita  Feedstock availability (dry ton) of type l L at field F

li N in time t T  

itk
 

Biofuel demand at city Ci N  in time t T  

  penalty cost of biofuel demand shortage ($/gallon) 

lt
 Feedstock deterioration rate (%) of type l L during time t T  due to storage 

at transshipment hubs 

i  Indicator of terminals that can handle unit trains (=1 if blending terminal 

BTi N can be accessed by unit trains; =0 otherwise)  

l  Biofuel conversion rate (gallon/dry ton) , measuring quantity of ethanol 

produced by one dry ton of feedstock of type l L  

 

Supply chain variables: 

R

ipZ  = 1 if a refinery is opened at 
Ri N  with capacity p P ; 0 otherwise, 

BT

iqZ
 

=1 if a terminal is opened at 
BTi N  with storage size q Q ; 0 otherwise, 

litY  The quantity (dry ton) of feedstock of type l L procured at field
F

li N in time

t T , 

itO  Biofuel production (gallon) at refinery Ri N in time t T ,  
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f

iltS
 

The quantity (dry ton) of feedstock of type l L stored at hub
Hi N at the 

beginning of time t T , 

b

it
S

 
The quantity (gallon) of biofuel stored at terminal

BTi N at the beginning of 

time t T , 

itQ  The shortage of ethanol demand (gallon) in city Ci N in time t T . 

 

The complete model is included in (4-9) – (4-21). All variables except binary 

variables are non-negative continuous. 

 

CapCost FSProcureCost RpCost StorCost DelCost PenaltyCostMinimize  F F F F F F      (4-9) 

CapCost

R B

R R BT BT

ip ip iq iq

p P q Qi N i N

F c Z c Z
  

      (4-9.a) 

FSProcureCost

F
l

t T l L i N

fp
l litF c Y

  

   (4-9.b) 

RpCost

Rt T i N

bp
itF c O

 

   (4-9.c) 

StorCost

H BT

fs f bs b

l ilt it

t T l L t Ti N i N

F c S c S
   

       (4-9.d) 

DelCost

( , )( , )
f b

mlm

FSDel BFDel

ijlmt ijmt

t T l L m M t T m M i j Ai j A

F c c
     

      (4-9.e) 

PenaltyCost

Ct T i N

itF Q
 

   (4-9.f) 

including (1)-(8) 
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The objective function (4-9) minimizes the annual total system cost, including 

refinery and terminal capital cost CapCostF , feedstock procurement cost FSProcureCostF , 

biofuel production cost RpCostF , feedstock and biofuel storage cost StorCostF , feedstock and 

biofuel delivery cost DelCostF , and penalty cost PenaltyCostF , respectively formulated in 

equations (4-9.a) to (4-9.f). In particular, equation (4-9.a) computes the costs associated 

with system planning decisions, which are invariant of seasons, while equations (4-9.b) to 

(4-9.f) compute operational cost, which are seasonal dependent.  

 

lit litY a  , ,F

ll L i N t T     (4-10) 

:( , )
f

lm

f

lit ijlmt

j i j A

Y X


   , "truck", ,ll L m i F t T      (4-11) 

 

Constraint (4-10) assures that procurement will not exceed the feedstock seasonal 

availability and the feedstock flow conservation is observed in constraint (4-11). 

 

  , 1

:( , ) :( , )

1
f f
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f f f f
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         , ,Hi N l L t T     (4-12) 

 

Equation (4-12) imposes a flow conservation constraint on hubs, which involves 

both spatial and temporal dimensions. The feedstock storage , 1

f

il tS  at the beginning of 

season t+1, equals the net feedstock flow (
:( , ) :( , )

f f
lm lm

f f

jilmt ijlmt

m M m Mj j i A k i k A

X X
  

    ) during 
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season t plus the remaining feedstock storage 
f

iltS  from last season which is discounted 

due to feedstock deterioration (1-
lt ) over time.  

 

1R

ip

p P

Z


  Ri N   (4-13) 

R R

it p ip
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Ri N   
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,Ri N t T    (4-15)     

 

Constraint (4-13) assures that maximally one capacity can be chosen at each 

potential refinery location. Constraint (4-14) is a logic constraint, stating that there is no 

biofuel production unless one is open. Equation (4-15) is a flow conservation constraint 

for refineries. Note that production variable 
itO  is redundant, and it remains in the model 

to simplify the model reading.  

 

1BT
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q Q

Z


  BTi N   (4-16)     
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:( , ) b
m

b

jimt i

t T j j i A

X M 
 

  
 

, "unit train"BTi N m    (4-20) 

 

Terminal capacity logic constraint (4-16) can be similarly explained as for 

constraint (4-13). Constraint (4-17) is a logic constraint, stating that biofuel can only be 

shipped to the operating terminals. Constraint (4-18) states that the storage cannot exceed 

the design capacity of terminals. Constraint (4-19) is the flow conservation constraint on 

terminals, which can be similarly explained as for constraint (4-15) but there is no 

deterioration over time. Constraint (4-20) specifies the terminals that can handle unit 

trains. 

 

:( , ) b
m

b

jimt it it

j j i A

X Q k


 
 

, "truck",Ci N m t T     (4-21) 

 

Equation (4-21) ensures that all demands will be satisfied, which can be 

supplemented by imported fuels (
itQ ) in case of shortage. 

 

4.3 Case Study 

The model is implemented to a case study of cellulosic ethanol production in California 

in response to the aggressive public policies in promoting the use of alternative 

transportation fuels. The whole state of California is considered and facilities in support 

of the supply chain are geographically distributed (see Figure 4-2), which provides an 

ideal test bed for the multimodal supply chain design.  
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(a) Corn stover locations 

(b) Forest residues 

locations 

(c) Candidate refinery sites 

   

(d) Feedstock hubs (e) blending terminals (f) Major ethanol markets 

Figure 4-2 Geographic Distributions of Feedstock Fields, Candidate Refineries, 

Hubs, Terminals and Major Markets 
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 Feedstock resources: Two types of feedstock resources, corn stover and forest 

residues are considered, both of which are abundant in the state of California. The 

feedstock parameters of these two feedstock types are included in Table 4-1. Feedstock 

yield varies significantly between different seasons. Corn stover is only available in fall, 

while forest residue is available in fall, spring and summer. However, compared to 

feedstock supply, the market demand is relatively stable between various seasons within 

2% according to the Energy Information Administration (EIA).  

 

Table 4-1 Feedstock Parameters
a 

Feedstock 

types 

Availabilit

y 

(thousand 

dry ton) 

# of 

sites 

Conversion 

rate (
l

 )
b
 

(gallon/dry 

ton) 

Moisture 

content 

(
l

 )
c 

(% mass) 

Seasonal 

deterioration 

rate (
lt

 )
d
 

Avg. 

procurement 

cost
fp

lc  

($/dry ton) 

Storage 

cost
fs

lc  

($/dry ton) 

Corn 

stover 
563 27 80.6 15 10% 35 8 

Forest 

residue 
4,268 47 90.2 50 12% 30 2 

a. Feedstock parameters except for seasonal deterioration rate are adapted from (Parker et al., 2008) 

b. The conversion rate measures gallons of ethanol converted from one dry ton of the feedstock. 

c. The moisture content indicates the average quantity of water contented in the feedstock. 

d. Seasonal deterioration rate represents percentage in mass loss of the feedstock over one season. 
  

Refineries: Table 4-2 summarizes the critical refinery parameters. There are 28 

candidate refinery sites with three different capital costs due to the varied land price and 

labor costs along the wide-spread geographic distributions. A variety of other mature 

biomass refining technology scenarios are also acknowledged for future research (Sims et 

al., 2010), varying with efficiency, economic, and environmental impacts. 

 

Table 4-2 Refinery Parameters 
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Low Median High 

Total # of candidate sites by 

capital cost level 
15 9 4 

Capital cost 

(
R

ipc )
a
 by 

different 

capacity (
R

pw ) 

($million) 

60 MGY 25.0 25.6 26.2 

80 MGY 31.3 31.9 32.5 

100 MGY 37.6 38.2 38.8 

Production cost (
bp

c )
b
 

($/gallon) 
0.92 

Conversion technology 

considered 

LignoCellulosics Ethanol (LCE) via hydrolysis and 

fermentation conversion technology with Dilute 

Acid pretreatment process, featuring low cellulose 

enzyme cost and reasonably high ethanol yields 

a. Refinery capital costs are adopted and converted from (Huang et al., 2010) 

b. It is mid-term projection for bioethanol production cost (Office of the Biomass Program, 2009), 

including pretreatment, production, and distillation and solid recovery costs. 

 

Transshipment hubs: There are 7 hubs that have already been used for freight 

transshipment in California as potential hub locations for feedstock storage and 

transshipment. Feedstocks can be stored at hubs over seasons, but will incur seasonal 

storage costs( fs

lc ) of $8/dry ton for corn stover  and $2/dry ton for forest residues (Huang 

et al., 2013). Feedstock mass lost occurs during the storage, with seasonal deterioration 

rates ( lt ) of 10% for corn stover and 12% for forest residues (Huang et al., 2013). 

Terminals: There are 29 candidate sites for terminals with three tank sizes
BT

qw , 

4.2, 2.1 and 1.05 million gallons, and their associated costs $450k, $765k, and $1.26m, 

respectively (Huang et al., 2013). The receiving facilities and blending systems add 

additional $310k onto the capital cost
BT

iqc  of each operating terminal (Huang et al., 2013). 

It is assumed that the operational cost is negligible (i.e., 0bsc  ). 
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Demand: Cities with a population more than 50,000 are considered as demand 

centers, and 143 such cities are chosen in the study. The total annual cellulosic ethanol 

demand from these demand centers is set to be 272 MGY, according to the California 

Energy Commission projected cellulosic ethanol demand to 2020 (Jenkins et al., 2007). 

The annual demand of each city is proportional to the population.  

Transportation data: The multimodal transport data is presented in Table 4-3.  In 

this study, two transportation networks are integrated: the highway network and the rail 

network. It is assumed that deliveries take the shortest paths between any node pairs on 

the network, prepared in ArcGIS®.  

 

Table 4-3 Transportation Parameters
a
 

Categories 
Truck Single railcars train Unit train

c 

feedstock ethanol feedstock ethanol feedstock ethanol 

Cost
b 

Loading/ 

Unloading 

(
, ,,lu f lu b

m mc c )  

$5/ wet 

ton 

$0.02/ 

gallon 

$5/ wet 

ton 

$0.015/ 

gallon 
$5/ wet ton 

$0.015/ 

gallon 

Time 

dependent  

$29/hr/ 

truckload 

(
,tt fc ) 

$32/hr/ 

truckload 

(
,tt bc ) 

N/A N/A N/A N/A 

Distance 

dependent  

$1.2/mile/ 

truckload 

(
,td fc ) 

$1.3/mile/ 

truckload 

(
,td bc ) 

$2.5/mile/ 

railcar 

(
,rd fc ) 

$2.5/mile

/ railcar 

(
,rd bc ) 

$200/mile/ 

unit train 

(
,rd fc  ) 

$200/mile/ 

unit train 

(
,rd bc  ) 

Fixed cost N/A N/A 
$2,876/ 

railcar 

$2,904/ 

railcar 

$230,000/ 

unit train 

$232,000/ 

unit train 

Capacity 

(
, ,,Tr f Tr b

lm mw w ) 

25 wet 

tons/truck

-load 

8,000 

gallons/ 

truckload 

106.5 wet 

tons/railca

r 

33,000 

gallons/ 

railcar 

10,650 

tons/unit 

train 

3.3 million 

gallons/unit 

train 

Average travel speed 

( v ) (miles/hr) 
40 N/A N/A  

a. adapted from (Parker et al., 2008) 

b. it is assumed that unit train has a 20% discount on both of the fixed cost and distance dependent cost 

(i.e.,  =20% in the model) for 100 railcars 

c. According to (USDA, 2007), the unit train utilization rate is around 30 turns per year  and the minimum 

number of unit trains shipped per season is set to be 8 for each commodity and arc (i.e.,   = 8 in the 

model) 
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4.4 Results and Discussion 

The proposed model is programmed in AMPL (Fourer et al., 2003) and solved using the 

CPLEX solver 12.4. All the numerical experiments described were run on a Dell desktop 

with 8 GB RAM and Intel Core Quad 3.0 GHz processor under Windows 7 environment. 

This large-scale problem has 3,387 binary variables, 38,532 integer variables, 33,377 

linear variables, and 40,165 constraints and it was solved in about 3,600 CPU seconds. 

This section will report the outcomes of baseline case study compared with the single-

mode system and sensitivity analysis on the effects of limits on biomass delivery 

distance.  

 

4.4.1 Baseline Case Study Results Compared With Single-Mode Transport 

The penalty cost  is set as high as $5/gallon to encourage the instate ethanol production. 

The resulting ethanol infrastructure system shown in Figure 4-3(a) contains four 

refineries at locations #4, #21, #24, and #28, 4 transshipment hubs, and 12 terminals. It is 

a result of the integrated method of facility location design and multimodal transport 

planning. Note that all four refineries are accessible by road but only three of them at #4, 

#21, and #24 are accessible by rail. All hubs and terminals are rail accessible, wherein 

only two terminals (as labeled) can handle all three modes including unit trains. The 

refinery #24 with largest capacity of 100MGY is located in the central valley area, where 

major corn stover supply is clustered, for mass ethanol production in the fall season. This 

production scheduling would help to mitigate the feedstock supply depletion in the 
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following seasons, and the refineries #21 and #28 are placed for the similar reasons. Only 

forest residues are available in spring and summer and the refinery #4 extends the 

consumptions of forest residues. The 4 hubs and 12 large-sized terminals are located 

proximately to feedstock fields and consumer markets since truck, though the most 

expensive, is the only eligible transport mode for the segments originating from fields or 

ending at markets. The geographic dispersions between refineries, hubs, and terminals are 

compensated by the use of rail wherever applicable.  

The multimodal solutions are compared with the single-mode solution by re-

running the model as if truck is the only transport mode. The single-mode system layout 

is shown in Figure 4-3(b), which indicates that fewer (two hubs) are chosen close to 

major consumer markets as hubs now only provide storage functions and the two 

solutions have identical refinery configurations. 
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(a) Multimodal system layout (b) Single-mode system layout 

Figure 4-3 Ethanol Infrastructure Systems 

 

The details on the feedstock and ethanol flows in the supply chain over seasons 

are illustrated in Figure 4-4, which shows how storage facilities are used to mitigate 

seasonal fluctuations and balance fuel production over a year. Multiple transport modes 

are used based on the travel distance and commodity quantity, which is also subject to 

facility access restrictions except for trucks. Further investigations reveal that truck is 

mainly for short-range delivery with an average travel distance of 54 miles while rail is 

for long-range delivery with a significantly larger distance of 440 miles. As 

aforementioned, different transport modes can work integrally to achieve better cost 

efficiency. For instance, to take delivery cost advantage of unit trains with a minimum 
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shipping quantity of 26.4million dry tons (minimum 8 unit trains/season × 3.3 million dry 

tons/unit train), ethanol is produced more than it needs in season 3 and the fuel in excess 

will be used in season 4. 

The delivered fuel cost is $2.16/gallon, in which the production is the major cost 

contributor accounting for 42.6%. However, the transportation is substantial, totaling 

18.2% of the delivered fuel cost. Unlike the challenge in reducing biofuel production cost, 

which may need to undertake technology breakthrough, transportation cost reduction may 

be easier to achieve through smart planning, such as using multimodal to replace single-

mode transport system in the supply chain. The transport costs by these two solutions are 

then compared.  

Two goals are of particular interest about the two transport systems: efficiency 

and cost effectiveness. In recognition of the efficiency that is a combined result of 

quantity shipped and distance traveled, a new pair of measurements were created: dry 

ton-mile for feedstock and gallon-mile for ethanol. A lower value indicates a more 

efficient transport mode. The cost effectiveness can be directly measured by the monetary 

cost. Table 4-4 provides the measures of efficiency and cost effectiveness for two 

transport systems. The results imply that the single-model (truck) is generally more 

efficient than the multimodal by 18% (=(260.07-219.85)/219.85). This is because if 

trucking is the only transport mode, trucks do not need to get off the way to send biomass 

to consolidation points. However, as trucking is more expensive, the multi-modal cuts the 

total transport cost by $12.72m= ($119.86m - $107.14m) or 10.6%. 
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Figure 4-4 The Diagram of Feedstock and Ethanol Flows over Seasons in The Supply Chain 
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Table 4-4 Measures of Efficiency and Cost for Single-Mode and Multimodal 

Transports 

Commodity type Transport modes 
Efficiency measurements

a 
Transport 

cost ($m)
 

Truck Tingle railcar Unit train Total 

Corn stover    
multimodal 30.41 0 25.83 56.24 11.82 

single-mode 27.43 NA NA 27.43 8.18 

Forest residues  
multimodal 114.21 0 0 114.21 61.30 

single-mode 126.81 NA NA 126.81 66.26 

Ethanol   
multimodal 18.92 36.76 33.94 89.62 34.02 

single-mode 65.61 NA NA 65.61 45.42 

Total 
multimodal 170.45 for feedstock, 89.62 for ethanol  107.14 

single-mode 154.24 for feedstock, 65.61 for ethanol 119.86 

    a. million dry ton-mile for feedstock; billion gallon-mile for ethanol. 

 

4.4.2 Effects Of Limits On Biomass Delivery Distance By Truck 

All aforementioned results are free on limits of biomass delivery distance. In the current 

corn-grain ethanol industry, however, a 50-mile limit on biomass delivery by trucks is 

normally expected (USDA, 2007). Although the cellulosic ethanol industry may or may 

not adopt the same limits, the analysis on the effects of the limits on the system 

operations and cost effectiveness would provide insights for policy makers and industry 

practitioners.  

A 50-mile bound was set on biomass truck delivery coupled with the presence of 

transshipment hubs in the supply chain. The optimization model was re-ran for both 

single-mode and multimodal systems and report the resulting refinery configurations, 

imported ethanol rate, and delivered fuel cost in Table 4-5. For comparison purpose, the 

baseline results are provided in the last row of the table. Note that all refineries in the 

table have the same capacity of 60 MGY. The following major observations are made: (1) 

the distance limit leads to more refineries built in the supply chain. The increased capital 
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cost makes the delivered fuel cost rise up by 25% (= ($2.71-$2.16) /$2.16); (2) the 

transshipment hubs make the multimodal supply chain more cost effective, evidenced by 

the decrease in delivered fuel cost from $2.91 to 2.71/gallon. This is because the hubs can 

balance the feedstock availability throughout a year and fewer refineries need to be built; 

and (3) the single-mode supply chain is more “vulnerable” to the distance limit compared 

to multimodal.  This is because as truck is the only transport mode, whenever the 

distances between feedstock fields and refineries exceed the limit, ethanol has to be 

imported to meet demand with penalty cost as indicated by the higher import rates. 

 

Table 4-5 Outcomes of Including Trucking Distance Limit of 50 Miles 

scenarios Outcomes 

Transport 

modes 
Hubs

a
  Selected refinery sites 

Ethanol import 

rate
b 

Delivered fuel 

cost 

Multimodal  Yes #4, #6, #11, #21, #22, #25, #28 10.30% $2.71/gallon 

Multimodal  No 
#4, #6, #7, #11, #14, #21, #22, 

#25, #28 
13.30% $2.91/gallon 

Single-mode  Yes #14, #21, #22 68.10% $4.20/gallon 

Single-mode No #14, #21, #22 68.10% $4.20/gallon 

Baseline 

(multimodal, 

no limits)
 

Yes
 

#4, #24, #28 0.00% $2.16/gallon 

a. “yes” indicates that transshipment hubs are available; “no” otherwise 

b. Ethanol import rate=Total amount of imported ethanol/Total ethanol demand 

 

As suggested in (Hess et al., 2009), larger distance limits on biomass delivery by 

truck, e.g., 200 miles, may be considered for future biomass logistics systems to reduce 

risks from local environmental disturbances, e.g., hurricane, diseases and pest infections. 

Both single-mode and multimodal systems were tested on a range of distances from 50 to 

300 miles. The “unlimited” scenario (i.e., baseline) is also included for comparison 
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purpose. The resulting delivered fuel costs are plotted in Table 4-5, which can conclude 

that multimodal system is less cost sensitive to the distance restrictions and a loosened 

restriction should make system more cost effective. 

 

 

Figure 4-5 The Effects of Distance Limits on The Delivered Fuel Cost 

 

4.5 Summary 

In Chapter 4, I created a new modeling framework on integrating multimodal transport 

(truck, single railcar and unit train) into a cellulosic ethanol supply chain design. A 

multistage, mix-integer programming model was developed to make integral and optimal 

decisions on the supply chain planning and operations. Through the case study of 

cellulosic ethanol supply chain design in California, the significance of system 

components and interactions among them were demonstrated. Compared with single-

mode solution, the multimodal solution makes the supply chain more adaptive to 
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feedstock seasonality, more cost effective, and more capable handling policies on 

distance limits for biomass truck deliveries. 
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CHAPTER 5 SUSTAINABLE BIOFUEL SUPPLY CHAIN 

PLANNING AND MANAGEMENT UNDER UNCERTAINTY 

5.1 Problem Statement 

Similar to the study shown in Chapter 3, this study also aims to model sustainability in 

biofuel supply systems design. In addition to the least-cost objective, this study also 

includes the environmental objective to reduce carbon footprints in the supply chain. The 

Argonne GREET model is also used to quantify the life-cycle GHG emissions in the 

biofuel supply chain. 

Another challenge arises from the lack of knowledge in the biofuel supply system 

planning, such as supply fluctuations, demand variations, and technology efficiency. As 

shown in Section 2.2, literatures in addressing uncertainty are mainly focused on the 

uncertainties of feedstock supply or fuel demand. No study has explicitly considered the 

uncertainty inherent in conversion processes, which can be easily caused by various 

factors, e.g., chemical composition of the biomass, enzymes, boiler efficiency, etc.  

The main contributions of this study are (1) developing a novel multi-objective 

stochastic programming model that incorporates economic and environmental 

sustainability in the biofuel supply chain system under uncertainty of conversion process, 

and (2) using a real-world case study of cellulosic biofuel production in California.  

The remainder of the study is organized as follows. Model formulations will be 

presented in Section 5.2, with a detailed discussion of compromise method. Background 

information of biomass ethanol production from biowastes in California is described in 
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Section 5.3. The case study results and discussions will be presented in Section 5.4. 

Finally, I will summarize the study in Section 3.5. 

 

5.2 Methods 

We focus on the planning and management of sustainable biofuel supply chain under 

uncertainty of conversion technology in an integrative manner. Planning decisions such 

as, locations and sizes of biorefineries and feedstock procurements are made before the 

uncertainty is revealed. On the other hand, operational decisions such as, production and 

transportation can be adjusted based on the actual realization of the uncertain conversion 

rates. This feature fits well in a stochastic programming framework (Birge and Louveaux, 

1997), which recognizes the non-anticipativity of planning decisions while allowing 

recourse for operational decisions. 

In this study, the introduced model includes two competing objectives -least cost 

and lowest GHG emission. For example, reduction in GHG emission can be achieved by 

importing more fuels with higher cost.  

As a result, a multi-objective optimization modeling framework is proposed to 

seek non-dominated solutions between the two objectives. In the rest of this section, we 

first introduce two stochastic model objectives of separate minimization of the expected 

system cost given in equation (5-1) and minimization of the expected system GHG 

emissions given in equation (5-2). Then, the two objectives are integrated in a multi-

objective model based on the compromise method, also called compromise stochastic 

model. All notation used in the study is given in Table 5-1.  
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Table 5-1 Notations 

Index 

lI  Index 
li , set of feedstock fields of feedstock type l  

L  Index l , set of feedstock types 

J  Index j , set of potential locations for biorefineries 

M  Index m , set of demand centers 

  Index , set of uncertain scenarios 

Parameters 

c  Unit ethanol production cost ($/gallon)  

lbcap  Truck bulk solids capacity for feedstock type l (wet ton) 

lqcap  Truck liquids capacity (gallon)  

L

jcapr
 

Minimum required refinery capacity (gallon) 

U

jcapr  Maximum allowable refinery capacity (gallon) 

ijd  Distance between node i and j (miles)  

mD  Ethanol demand at city m  (gallon) 

leh  GHG emission of feedstock harvest of type l (CO2 eq. ton/dry ton)  

et  GHG emission of transportation (CO2 eq. ton/mile/truckload)  

 lep   
GHG emission of ethanol production under scenario by feedstock type l

(CO2 eq. ton/gallon)  
F

jf  Annualized fixed capital cost ($) of refinery at location j   

V

jf  Annualized variable capital cost ($/gallon)  of refinery at location j   

blu  Truck loading and unloading cost of bulk solids ($/wet ton)  

lqlu  Truck loading and unloading cost of liquids ($/wet ton)  

lMC  Moisture content of feedstock type l (%) 

lp  Average procurement cost of harvesting feedstock of type l ($/dry ton)  

d

bt  
Distance dependent transportation cost ($/mile/truckload) of bulk solids, i.e., 

the cost of traveling one mile per truckload  

t

bt  
Travel time dependent transportation cost ($/hr/truckload) of bulk solids, i.e., 

the cost of traveling one hour per truckload  
d

lqt  Distance dependent transportation cost ($/mile/truckload) of ethanol  

t

lqt  Travel time dependent transportation cost ($/hr/truckload) of ethanol  

v  Average truck travel speed (mile/hr)  

li
yield  Maximum available feedstock of type l at field

li (dry ton)  

  Unit penalty cost of ethanol demand shortage ($/gallon), i.e., cost of 
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importing fuels  

 l   
Bioethanol conversion rate (gallon/dry ton) under scenario , measuring 

quantity of ethanol produced by one dry ton of feedstock of type l   

Decision Variables 

jcap  Designed refinery capacity (gallon) of refinery j  

 jpr   Ethanol production (gallon) at refinery j under scenario   

 mq   Shortage of ethanol demand (gallon) in city m under scenario  

 
li jx   

Amount (dry ton) of feedstock of type l transported from field 
li to refinery j 

under scenario  

li
Y  The quantity (dry ton) of feedstock of type l procured at field 

li   

 jmy   
Amount (gallon) of ethanol transported from refinery j to city m under 

scenario   

jz  =1 if refinery at location j is opened; =0 otherwise 

 

Objective 1: Minimization of System Cost 

The system cost consists of costs of planning and operating the biofuel system. The 

system planning cost is the total of facility capital cost and feedstock procurement cost. 

The planning decisions are non-distinguishable across all scenarios and their costs are 

deterministic. The operational decisions are scenario dependent, so are the costs involved 

in production and delivery. The least expected cost objective 
1f  is shown in (5-1). 

 

Minimize 

1 1 2( ) ( ) ( ) ( )( )
l

l l

F V

l i j j j j j m

l L i I j J j J m M

f p Y f z f cap E c pr TC TC q    
    

 
        

 
     (5-1) 

where 

1

2
( )

( )
(1 )

l

l

l l l

t
d b
b i j

i j

b

i L i I j J b l

t
t d

xv
TC l

cap MC




  

  
    

    
  
  
 


 

(5-1.a) 
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2

2

( ) ( )

t

lqd

lq jm

lq jm

j J m M lq

t
t d

v
TC lu y

cap
 

 

  
     

     
 
 
 


 

(5-1.b) 

 

The objective function (5-1) minimizes the expected system cost of the biofuel 

supply chain. The costs of feedstock logistics TC1 and fuel distribution TC2 have similar 

structures. Both of them convert the transportation quantity into truckloads, and include 

the time- and distance-dependent costs and loading/unloading costs. Transportation 

distance is doubled to account for the cost of a round-trip. For feedstock transportation, 

feedstock dry ton is converted to wet ton by moisture content MCl, on which the truck 

capacity is based. Imports are allowed with a penalty cost of  , which introduces 

flexibility in achieving cellulosic biofuel market penetrations and designing greenhouse 

gas emission regulations. 

 

Objective 2: Minimization of System GHG Emissions 

The procurement decision is made before uncertainty is known and thus, the associated 

emission is deterministic on the first stage, denoted as
leh . Emissions of production and 

transportation decisions are scenario-dependent and included on the second stage, 

denoted as  lep   and et , respectively. The objective    is to achieve the lowest 

expected GHG emissions. 

 

Minimize 
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2 1 2( ) ( ) ( ) ( ) ( )
l l

l l l l

l i l i j l

l L i I l L i I j J

f eh Y E ep x TE TE      
    

  
       

  
   (5-2) 

Where 

1

( ) 2
( )

(1 )

l l

l l l

i j i j

l L i I j J l b

et x d
TE

MC cap




  

  


 
  (5-2.a) 

2

( ) 2
( )

jm jm

j J m M lq

et y d
TE

cap




 

  
  (5-2.b) 

 

The objective function (5-2) minimizes the expected GHG emission in the system. 

Similar to the structure of transportation cost in (5-1), the transportation GHG emissions 

consist of two parts, TE1 from feedstock delivery and TE2 from biofuel distribution. 

 

Compromise Stochastic Model 

The compromise method is used to solve the multi-objective optimization problem. The 

two stochastic model objectives (5-1) and (5-2) are included in the compromise model 

given in (5-3) to find the best-compromise solutions of f= [f1, f2]. The problem is 

transformed to a single-objective, mixed-integer programming model and can be solved 

using a linear programming solver. 

 

Minimize 
2

1

o

i i
i ao o

i i i

f f
f W

f f





  (5-3) 

 

In objective function (5-3), fi denotes a specific objective function included in the 

model. 
o

if denotes the optimal result of the ith objective and 
ao

if denotes the anti-optimal 



73 

 

result. For example, the 1

of
 
is the optimal value of objective f1. The anti-optimal cost 1

aof

is obtained as follows. The decision variables corresponding to 2

of are substituted into 

objective f1, and the attainted result is the anti-optimal result of objective f1. Thus, 1

aof has 

a higher system cost than 1

of . The denominator
ao o

i if f  normalizes the two objectives 

considered, which enables the aggregation of the two objectives.   

   is the preferential weight that reflects the relative importance for each 

objective and is a reflection of the interests of different societal sectors and public 

perceptions.  The Analytic Hierarchy Process (AHP) (Saaty, 1980) is a popular method 

used to acquire the weights.   

 

Constraint set 

( ) ( ) ( )
l

l l

i j l j

l L i I

x pr   
 

   ,j J     (5-4) 

( ) ( )jm j

m M

y pr 


  ,j J     (5-5) 

j

L U

j j j jcapr z cap capr z   j J   (5-6) 

( )j jpr cap   ,j J     (5-7) 

l li iY yield  ,l li I l L    (5-8) 

( )
l li i j

j J

Y x 


  , ,l li I l L      (5-9) 

( ) ( )jm m m

j J

y q D 


   ,m M     (5-10) 



74 

 

 0,1jz   j J   (5-11) 

0
li

Y   ,l li I l L    (5-12) 

( ) 0
li jx    , , ,l li I l L j J       (5-13) 

( ) 0jmy    , ,j J m M      (5-14) 

0jcap   j J   (5-15) 

( ) 0jpr    ,j J     (5-16) 

( ) 0mq    ,m M     (5-17) 

 

Constraints (5-4) and (5-5) impose flow conservation constraints on refineries. 

Constraints (5-6) and (5-7) are refinery logic and capacity constraints. Feedstock 

procurement is limited by its availability in constraint (5-8). Inequality (5-9) requires all 

procured feedstocks to be delivered to biorefineries. Demand satisfaction is guaranteed 

by equality (5-10). Constraints (5-11)-(5-17) are integrality and non-negativity 

constraints. 

 

5.3 Case Study 

California is of our particular interest due to the leading role in striving to reduce GHG 

and promote the use of alternative clean energy.  A wide range of policies and programs 

have been launched to encourage low-carbon fuels.  This section will entail the data used 

for this study. 
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5.3.1 Technical and Economic Data 

Two types of biowaste resources – corn stover and forest residues, are considered in this 

study and both are abundant in California. A total of 28 sites were chosen as the 

candidate refinery locations based on a set of criteria considering the accessibility to 

water and transportation infrastructures and zoning requirements.  Three different cost 

levels are assumed for these sites based on their differentiable land prices and labor costs. 

A set of 143 cities are considered as demand centers and they all have a population of at 

least 50,000. A road network consisting of local, rural, urban roads and major highways 

is used.  The shortest distances between feedstock fields, refineries, and demand cities 

were calculated based on this network.  The key parameters associated with the feedstock 

are shown in Table 5-2. All data other than specifically mentioned were adopted from 

(Parker et al., 2007). 

 

Table 5-2 Technical and Economic Inputs of Biofuel Supply Chain 

Feedstock inputs 

Feedstock types Corn stover Forest residues 

Total annual yields (thousand dry ton) 562 4,268 

Number of nodes at centroid 27 47 

Conversion rate (gallon/dry ton) 80.6  90.2  

Moisture content (% weight) 15 50 

Average procurement cost ($/dry ton) 35 30 

Refinery inputs 

Categories (by fixed capital cost) Low  Median High 

Number of candidate sites 15 9 4 

Fixed capital cost ($million) 6.20  6.80  7.40  

Variable capital cost ($/gallon) 0.314 

Production cost ($/gallon)
1
  0.92 

Technology considered 
LignoCellulosics Ethanol (LCE) via hydrolysis and 

fermentation conversion technology with Dilute Acid 
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pretreatment process 

Refinery capacity range (MGY) 60~100  

Transportation inputs 

Mode Truck 

Categories (by type) Corn stover Forest residues Ethanol 

Cost 

loading/unloading  $5/wet ton $0.02/gallon 

Time dependent  $29/hr/truckload $32/h/truckload 

Distance dependent  $1.2/mile/truckload $1.3/mile/truckload 

Diesel Fuel (assumed)  $2.5/gallon 

Truck capacity 24 wet tons
2
 17 wet tons

2
 8,000 gallons 

Average travel speed (miles/hr) 40  

1. This is projected mid-term bioethanol production cost (Office of the Biomass Program, 2009)  

2. Adopted from GREET model 

 

Geographic distributions of feedstock and facilities are shown in geographic 

information system (GIS) maps in Figure 3-1 in Chapter 3. The annual feedstock yields 

and locations are aggregated at county or city levels to be integrated with transportation 

network data. The size of each dot is proportional to the feedstock quantity. Corn stover 

is mainly clustered in the central valley region. Forest residue is widely distributed across 

the state with higher concentration in the northern part.  Potential refinery locations are 

evenly distributed across the state. High-cost sites are located in metropolitan areas, while 

the low-cost sites are in remote regions (e.g., the most northern and southern parts of the 

state). Demand centers are clustered in metropolitan areas. Ethanol demand in 2020 was 

set as the demand target in this study, which is projected to be 350 million gallons per 

year (MGY) state wide, given the current blend rate at E5.7. Proportional to the 

population, the total annual demand from the selected demand centers is 272MGY. 
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5.3.2 GHG Emission Estimates 

We adopted classical, process-based LCA techniques in evaluating GHG emissions. To 

obtain satisfactory estimate, attention has been given to the choice of life stages to be 

considered. In this study, the CO2 emissions resulting from the combustion of the biofuel 

by end users are assumed to be captured by the biomass during growth. Thus, the set of 

life-cycle stages considered in evaluating emissions in the cellulosic biofuel supply chain 

include feedstock procurement, feedstock delivery, biofuel production, and biofuel 

distribution. The life-cycle inventory associated with each process were identified and 

quantified by using the Argonne GREET model. Emissions of three greenhouse gases 

(i.e., CO2, CH4, and NO2) shown in Table 5-3 are grouped together in a single indicator 

in terms of carbon dioxide equivalent emissions (CO2-eq), based on the concept of global 

warming potentials (GWP) (BSI Group, 2011). 

 

Table 5-3 GHG Emission Estimates 

Emission CO2 CH4 N2O 
CO2-eq  

Global warming potentials (GWP) 1 25 298 

Procurement 

(grams/dry ton) 

Corn stover 18,143 24.86 0.22 18,830 

Forest residues 21,655 29.67 0.26 22,475 

Production
1
 

(grams/gallon) 

Corn stover 7 0.29 0.77 243 

Forest residues 230 2.15 0.89 549 

Transportation (grams/mile/truckload) 2,437 3.34 0.06 2,537 

1. Excludes byproduct of electricity and it shows average production emissions. 

 

The low emission in biofuel production is because large amount of CO2 emitted 

from burnt biomass offsets the absorbed CO2 in the growing phase (Raphael et al., 2009). 

The emission from electricity generation as a by-product is out of the scope of the study 
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and thus omitted. Note that the production emissions in the table are default values (the 

mean value) in GREET model and they would fluctuate with conversion rates. The 

transportation emission is dependent on the distance traveled and the number of truckload. 

 

5.3.3 Uncertainty in Estimating Conversion Rates 

Most existing studies have assumed that the conversion rate is fixed, which may not be 

able to hold for general as converting biomass to biofuel involves complicated physical 

and chemical processes. This study used LignoCellulosics Ethanol (LCE) via hydrolysis 

and fermentation conversion technology with Dilute Acid pretreatment process, in which 

chemical composition of the biomass, enzymes, and boiler efficiency may cause 

uncertainties in estimating conversion rates. Variations in conversion rate affect the 

decision-making and thus incorporating the uncertainty of conversion technology in 

managing the biofuel supply chain is important. 

Brinkman et al. (2005) have suggested that the conversion rate of feedstock may 

follow a normal distribution with a deviation of 11 gallon/dry ton from the mean value at 

20 and 80 percentiles, where µ=80.6 and 90.2 gallon/dry ton for corn stover and forest 

residue and σ=13.1 gallon/dry ton. We then created a set of 10 discrete scenarios with 

equal probability to approximate the normal distribution as shown in Figure 5-1. Each 

scenario takes the same area size and the expected value is used as the conversion rate 

under that particular scenario. The scenario-dependent conversion rates are shown in 

Table 5-4. According to the GREET model (Wang et al., 2005), production emission 

varies with the conversion rate and thus the associated production emissions are scenario-
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dependent in Table 5-4.  Both the conversion rate and production GHG emission are the 

input data, which represent the conversion technology uncertainty. 

 

 
Figure 5-1 Scenario Generations For Uncertain Conversion Rates Of Corn Stover 

 

Table 5-4 Scenario-Dependent Conversion Rates and Emissions 

Scenario 

Conversion rate Production GHG emission  

Corn stover Forest residues Corn stover Forest residues 

gallon/dry ton CO2-eq gram/gallon 

#1 58 67 333 638 

#2 67 77 290 596 

#3 72 81 271 578 

#4 76 85 259 565 

#5 79 89 248 554 

#6 82 92 239 545 

#7 86 95 230 536 

#8 89 99 221 526 

#9 94 104 211 515 

#10 104 113 194 497 
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5.4 Results and Discussion 

The compromise stochastic model was programmed in AMPL (Fourer et al., 2003) and 

solved using a commercial solver CPLEX. This study tends to focus on the analysis of 

effects of uncertainty on the multi-objective modeling. 

 

Planning strategies by stochastic program vs. deterministic program 

In handling multiple possibilities of randomness, a common engineering approach is to 

examine each scenario separately. A solution generated with perfect information of the 

scenario is called wait-and-see (WS) solution and they are deterministic. In this study, 

there are ten WS solutions and they perform the best in their particular scenarios. 

However, WS solutions may vary drastically across scenarios and may not be able to find 

a representative solution.  One remedy would be aggregating all scenarios into a 

representative scenario by using the expected value and then solve the corresponding 

deterministic problem. The solution is called the expected solution. These two 

deterministic approaches are conceptually simple and easy to implement, but may not be 

reliable given uncertain decision making environment.  

 

Table 5-5 System Planning Strategies and Outcomes 

 

SP 

soln 

Wait-and-See Solutions  Exp. 

soln #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Refinery 

Size 

(MGY) 

#17 60 60 65 60 60 60 60 60 60 60 60 60 

#20 87 66 75 80 83 87 90 93 94 92 88 88 

#22 65 60 72 72 69 65 62 60 60 60 60 63 

#25 NA 60 NA NA NA NA NA NA NA NA NA NA 
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#28 60 60 60 60 60 60 60 60 60 60 64 61 

Total 

capacity 
272 306 272 272 272 272 272 273 274 272 272 272 

Feed-

stock 

proc. 

(million 

dry 

tons) 

Corn 

stover 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Forest 

Residue 
2.9 3.6 3.1 2.9 2.7 2.6 2.5 2.4 2.3 2.2 2 2.6 

Total system cost 

(billion $) 
0.63 0.69 0.64 0.62 0.61 0.60 0.59 0.58 0.58 0.57 0.55 0.59 

Total GHG 

emission (million 

tons of CO2-eq) 

0.37 0.47 0.43 0.41 0.39 0.38 0.36 0.35 0.34 0.33 0.31 0.37 

 

In this study, we compare our stochastic solution to the deterministic solutions by 

using the ten scenarios described in Table 5-4. The penalty cost is set at $5/gallon to 

mandate the required level of in-state ethanol production. The weighting factors are 

assumed to be 0.8 and 0.2 for cost and GHG objectives (i.e., W1=0.8 and W2=0.2), 

reflecting a higher preference on the cost reduction. Table 5-5 exhibits the resulted 

system planning strategies - system layout and feedstock procurement and outcomes of 

system costs and emissions. For example, the SP solution requires four biorefineries to be 

placed at locations #17, 20, 22, and 28, and their designed sizes are 60, 87, 65, 60MGY, 

respectively. The four biorefineries consume half million dry tons of corn stover and 2.9 

million dry tons of forest residues.  

As the WS based planning strategies vary with scenarios, a method that produces 

single strategy is in need. Both the stochastic and expected solutions place refineries at 

the same locations and have the same total capacity with different allocations. This is 

because the demand is fixed and the varied conversion rates only affect the amount of 

feedstocks procured for biofuel production, particularly from forest residues. Corn stover 
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is clustered in central valley area and the remotely located is abandoned for economics 

and environmental purposes.  

 

Solution performance evaluations 

The planning strategies of SP and expected solutions are evaluated agasint the same ten 

sceanrios to understand the differences in handling uncertainty. We set the second 

objective to prefixed emission inventory levels between 0.1 and 0.45 million tons of CO2 

eq, which are the lowest and highest levels across all possible sceanrios. The multi-

objective model becomes a single-objective model of minimizing cost with emission caps 

in the constraint set. The system cost of both solutions under each of the ten scenarios is 

attained and plotted in Figure 5-2. 

The horizontal axis in Figure 5-2 represents the prefixed emission levels and the 

vertical axis represents relative system cost saved by using the SP solution over the 

expected solution. The positive values indicate that the SP solution outperforms the 

expected solution, vice versa. The top and bottom bars of the box plot indicate the 

maximum and minmimum cost savings. The upper and lower edges of boxs represent the 

cost savings at 75 and 25 percentiles, respectively. For instance, when emission cap is 

0.45 million tons of CO2 eq. (the most left box in the figure), the SP solution can save up 

to 10.6% and there is a 25% of chance save at least 6.6%. 

The cost savings vary with the prefix emission levels. Although SP solution is 

more costly than the expected solution shown mainly due to the difference in feedstock 

procurement strategy as indicated in Table 5-5, in general it outpeforms the expected 
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solution when higher emission is allowed. This is because the SP solution features higher 

in-state production, which is cheaper than importing fuels but resulting higher GHG. 

When the prefixed GHG emission level decreases, the increasing stringent emission 

requirement forces the system to raise fuel imports, regardless of the in-state production 

capacity, and thus the SP solution becomes less preferable.  

 

 
Figure 5-2 Box Plots Of Relative Cost Savings By The Sp Solution 

 

5.5 Summary 

In Chapter 5, I developed an advanced model to integrate sustainability concept and 

uncertainty into biofuel supply chain management. A mixed-integer, compromise 

stochastic programming model that combines strategic and tactical system decision 

making has been developed, with a goal of achieving the best-compromise solution in 

achieving economic and environmental sustainability under the uncertainty of conversion 

technology. Through the analysis, I found that (1) uncertainty with conversion 

technology has impact on system planning and management, especially on feedstock 
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procurement strategy; (2) stochastic method over the deterministic methods provides 

more cost-effective solutions, but the effects may vary with the GHG emission 

restrictions. 
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CHAPTER 6 MULTISTAGE SEQUENTIAL PLANNING OF 

LONG-TERM BIOFUEL SUPPLY CHAIN PLANNING 

UNDER UNCERTAINTIES 

6.1 Background 

This study is focused on a long-term sequential establishment of an efficient biofuel 

supply chain system against uncertainty by integrating the planning and operations of an 

entire supply chain.  

A long-term planning of a supply chain needs to take into account the spatial 

distributions of involving infrastructures coupled with the effects of time dynamics. In 

addition, strategic supply chain planning and management needs to adapt to the 

uncertainties that could be caused by weather variations, natural or man-made disasters, 

technology improvement, or even the changes in public policy and mandates on biofuels. 

Proactive strategic decisions for hedging against uncertainty thus are crucial in mitigating 

the adverse impacts of uncertainty and achieving economic effectiveness. In the context 

of a multi-period or multistage planning, uncertainty is revealed in a sequential manner 

that is distinct from a single-stage or snapshot planning in which uncertainty is assumed 

to be revealed only once. The challenge is how to make sequential decisions under 

uncertainty that is not known a priori over time.   

Among these literatures on biofuel supply chain design shown in Chapter 2, the 

study (Dal-Mas et al., 2011), perhaps, is most relevant to our study, which is concerned 

about a strategic design of biofuel supply chain for multiple years. However, the two-
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stage stochastic programming framework that is adopted in their study comes with two 

major approximations. First, the planning decisions are made only once at the beginning 

of the entire planning horizon. This assumption is more defensible for a one-shot or 

single-period system design. In a transition state where infrastructure is built sequentially 

over time, such as biofuel supply chain, a dynamic model that captures the growth of the 

system should be adopted. Secondly, in terms of modeling evolving information, it is 

assumed that the complete information of the uncertain supply chain parameters is 

immediately revealed once the planning decisions are made at the beginning of the 

planning horizon. This simplification helps reduce the modeling complexity, but may 

cause deviation from the reality. Realistically, we should model information of the 

uncertain parameters in a sequential manner, meaning that the random parameters 

become known gradually over time. A multistage stochastic programming framework 

thus would suit better. 

Multistage stochastic supply chain design problems aim at finding the best supply 

chain planning strategies adaptive to time dynamics, including location decisions, 

procurement, production, and distribution to support efficient operations of the whole 

supply chain (Nickel et al., 2012). Readers are referred to (Melo et al., 2009) for general 

supply chain design and management problems and to (Nickel et al., 2012) in particular 

for recent progress in multistage stochastic supply chain design problems. The multistage 

stochastic programming method is not particularly new and has been used in a range of 

applications, including electricity power system (Hochreiter and Wozabal, 2010; Pereira 

and Pinto, 1991; Shiina and Birge, 2003), financial portfolio management (Consigli and 
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Dempster, 1998; Golub et al., 1995; Gulpinar et al., 2002; Kouwenberg, 2001), and water 

resource management (Archibald et al., 1999; Li et al., 2006; Li et al., 2008; Watkins et 

al., 2000; Zhou et al., 2013). 

The key feature that distinguishes this study from most existing efforts on biofuel 

supply chain is the integration of physical design and operational management as a whole 

in seeking long-term reliable strategies against uncertainty. Facility spatiality, time 

dynamics, and uncertainty are integrated into a multistage stochastic programming 

framework. Optimal strategies on refinery, feedstock procurement, biofuel production, 

and feedstock and fuel deliveries are sought simultaneously to achieve the least expected 

total cost. The problem is formulated as a mixed integer multistage stochastic 

programming problem with integer recourse based on the paths in a scenario tree. Two 

solution algorithms based on nested decomposition (ND) (Birge and Louveaux, 1997) 

and maximal non-dominated cuts (Sherali and Lunday, 2013) are developed to overcome 

the computational challenges of the problem. We justify the proposed model and evaluate 

the solution algorithms using hypothetical numerical experiments. A case study of South 

Carolina is used to demonstrate the applicability of the model in evaluating the economic 

potential and system effectiveness of converting forest residues to bioethanol and phased 

supply chain infrastructure system expansions over 15 years.  

The remainder of the study is organized as follows. The multistage stochastic 

model and the corresponding solution methods are presented and discussed in Section 6.2. 

Section 6.3 presents two case studies. The case study results are presented in Section 6.4. 

Finally, I will summarize the study in Section 3.5. 
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6.2 Methods 

In this section, I first describe the main characteristics of the studied problem, including 

the structure and dimensions of the biofuel supply chain, as well as the main features of 

the planning and operational decision variables. I will then discuss the evolvement of 

uncertainty and modeling assumptions, followed by the complete model formulation. 

Finally I will develop corresponding solution methods.  

 

6.2.1 Modeling Background 

The multi-period biofuel supply chain designs spans over both spatial and temporal 

dimensions.  The spatial dimension comes from the geographical distribution of the 

feedstock supply, facility locations, and demand sites, including the following 

infrastructure layers:  

 Feedstock fields, where biomass is collected; 

 Refineries, where biomass is converted into biofuel; and 

 City gates, where blended fuels are distributed to consumer markets. 

Note that the supply chain ends at city gates and that further fuel dispensing to 

individual refueling stations is omitted in this study. The temporal dimension is brought 

by the multi-year planning. The planning horizon is typically divided into stages, denoted 

by 0,...,t T , where zero is the beginning of the planning horizon and T is the final stage. 

Note that the length of a time stage varies, e.g., one year or multiple years. The effects of 
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feedstock seasonality and storage facilities for feedstock and biofuels are neglected as 

decisions are aggregate on an annual basis in this study.  

 Strategic planning of this supply chain includes designing the physical 

configuration of the supply chain system such as locations and the sizes of the production 

facilities, while operational decisions include procurement strategy of the feedstock, 

production amount, and transportation flows between different layers of the supply chain. 

Designing such a complex system is not trivial due to several tradeoffs in the system.  For 

example, a centralized facility takes advantage of economies of scale, but may result in 

higher transport cost. A choice of larger refinery capacity may be costly at the beginning, 

but may mitigate the risk of future fuel supply shortage. By integrating the physical 

design of supply infrastructure and the operations, this study captures the system 

interdependence and balances the tradeoffs in both temporal and spatial dimensions.  

 

6.2.2 Planning and Operational Decisions under Uncertainty 

In addition to system interdependence and time dynamics, biofuel supply chains are 

vulnerable to uncertainties. Handling uncertainty imposes another modeling challenge, 

especially for a long-term system planning. Planning decisions are usually made before 

the uncertain supply chain parameters (e.g., feedstock supply or fuel demand) become 

known. For a multistage planning problem, planning decisions are made sequentially and 

once implemented, they are not easily modified. On the other hand, operational decisions 

can be adjusted based on the actual realizations of uncertain parameters. This feature fits 

well in a multistage stochastic programming framework, which recognizes the non-
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anticipativity of planning decisions for each stage while allowing recourse for operational 

decisions in the subsequent stages (Birge and Louveaux, 1997).  In particular, the 

planning decisions are assumed to be made at the beginning of each stage 1,...,t T  or the 

end of stage 1t  and once made the decisions are not able to change during the stage t. 

The operational decisions for each stage 1,...,t T  are made during the current stage t , in 

response to the planning decisions.  

The planning decisions include: 

 locations of new refineries (integer variables), and 

 capacity expansion of existing refineries (integer or continuous variables). 

The operational decisions (all continuous variables) include: 

 fuel production, 

 feedstock procurement,  

 feedstock and fuel transportation, and 

 fuel imports at penalty if demand is not satisfied.  

 

6.2.3 Evolvement of Uncertainty 

Uncertainty is described by a set of discrete scenarios. For the entire planning horizon, a 

tree of scenarios is built, such as the scenario tree shown in Figure 6-1 for three time 

stages. Without loss of generality, biofuel demand is assumed uncertain and the exact 

demand is realized at the beginning of each stage. For illustration purpose, an uncertainty 

realization, denoted by t t  , 1,...,t T , is either high or low, which is represented by a 
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branch arc of the tree. A t-stage scenario, denoted by tk , consists of sequence of 

uncertainty realizations 1( ,..., )t  , and 1 2 ...t tk     , 1,...,t T . Thus, a scenario is 

described by a path on the tree from root (i.e., the beginning of the planning horizon) to 

stage t. For example, there are four scenarios in stage 2 represented by the four nodes. 

Node (2, 1) describes a scenario of having high demands in both the first and second 

stages. At stage 0, no uncertainty has been revealed, and the 0-stage scenario 0k , is a 

dummy scenario for the purpose of modeling formality. We denote by tK  the set of t-

stage scenarios, 1 2 ...t tK      and 1t t tK K   , 1,...,t T , assuming that uncertainty 

realizations are independent over time. Each t-stage scenario tk , 1,...,t T  has a unique 

parent (also known as ancestor) (t-1)-stage scenario, denoted as 
tka . For example, the 

scenario described by node (2, 2) has only one parent scenario described by node (1, 1). 

However, each t-stage scenario tk , 0,..., 1t T   has a set of child (also known as 

descendent) scenarios in stage t+1, denoted by set 
tkD . For example, the scenarios 

described by nodes (3, 3) and (3, 4) are both the child scenarios of the scenario described 

by node (2, 2). 

The multistage stochastic program is developed based on the paths in the scenario 

tree. In particular, the planning decisions for a time stage 1,...,t T  are made at the 

beginning of time stage t or equivalently the end of time stage t-1 when the scenario 1tk   

is fully realized. For example, the planning decision for time stage 3 will be made after 2-

stage scenario 2k  is fully revealed. Note that the planning decisions for the last stage are 
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made under the scenario 1Tk  . On the other hand, the operational decisions for each time 

stage t are assumed to be made under scenario tk . For example, the operational decisions 

for stage 3 are made under 3-stage scenario 3k .  

 

 

Figure 6-1 A Scenario Tree with Three Periods and Two Realizations for Each 

Period 
 

We denote by 
tkp  the probability of the t-stage scenario tk , 0,...,t T  and 

t
p  the 

probability of uncertainty realization t , 1,...,t T . Given that uncertainty realizations are 

independent between time stages, the probability of a t-stage scenario 
tkp  (except for 

stage 0) can be represented by 
'' 1,...,t tk t t

p p
  and 1

tt t
kk K

p


 , 0,...,t T . For example, 

if both demand realizations as shown in Figure 1 have equal probabilities, the probability 
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of each 1-stage scenario k1 (a total of two scenarios) is 0.5, i.e., 
1

0.5kp  . The 

probabilities of each 2- and 3-stage scenarios (totaling four and eight scenarios, 

respectively) are 0.25 (= 0.5
2
) and 0.125 (= 0.5

3
), respectively.  

 

6.2.4 Mathematical Formulation 

A multistage mixed-integer stochastic programming model is formulated. Here we 

present it in a general form. An exact formulation is problem specific and dependent on a 

number of factors, including network topology, uncertainty sources, and planning horizon. 

The general formulation presented in this section demonstrates the critical properties of 

the multistage stochastic program of the biofuel supply chain, which helps develop 

appropriate solution methods as discussed in Section 6.3. All parameters and decision 

variables used in the model are defined first, followed by the model presented in (6-1)-(6-

4). 

 

Parameters: 

t  
Uncertainty realization (defined in Section 6.2.3) at stage t, t t  , 1,...,t T  

tk
  

t-stage scenario (defined in Section 6.2.3), t tk K , 0,...,t T  

tkp
 Probability of the t-stage scenario t tk K , 0,...,t T  

tka
 

Parent scenario of scenario t tk K , 1,...,t T  

t

P

kc  Planning decision cost vector, given t tk K , 0,..., 1t T   
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t

O

kc  Operational decision cost vector, given t tk K , 1,...,t T   

tA  Recourse matrix for t-stage planning decisions, 0,..., 1t T    

tB  Recourse matrix for t-stage operational decisions, 1,...,t T  

tkR  Technology matrix for constraints on planning decisions, t tk K , 1,..., 1t T    

tkS  Technology matrix for constraints on operational decisions, t tk K , 1,...,t T   

tkb  Right-hand-side matrix for constraints on planning decisions, t tk K , 

0,..., 1t T    

tkd  Right-hand-side matrix for constraints on operational decisions, t tk K , 

1,...,t T   

Decisions: 

tkz  Planning decision vector made at the beginning of stage t+1, 0,..., 1t T  , 

t tk K .  

tkx  Operational decision vector made during stage t, 1,...,t T , t tk K .  

 

Multistage Stochastic Biofuel Supply Chain Problem 

   0 0 1 1 1 1 1

Minimize:

... ... ...
t t t t t T T T

P P O P O O

k k k k k k k k k k k kc z E c z c x E c z c x E c x        
  (6-1) 

Subject to: 

0 00 k kA z b   (6-2) 
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1
         

t t t tk k t k kR z A z b


    1, , 1,..., 1
tt t t kk K k a t T      (6-3) 

1
         

t t t tk k t k kS z B x d


    1, , 1,...,
tt t t kk K k a t T     (6-4) 

tkz    , 0,..., 1t tk K t T      

0
tkx   , 1,...,t tk K t T     

 

The objective (6-1) minimizes the total cost of planning and operations of biofuel 

supply chain over the entire planning horizon. As uncertainty is revealed over time, both 

planning and operational decisions of current stage are dependent on the planning 

decisions made a priori and thus nested in the objective function (6-1). In addition, 

importing biofuels is allowed to supplement unsatisfied fuel demand with a penalty cost. 

 Constraint (6-2) describes physical (e.g., candidate locations) and economic (e.g., 

budget) constraints in establishing refineries at the beginning of planning horizon. 

Constraint set (6-3) depicts relationships on planning decisions 
1tkz


 and 
tkz  in two 

consecutive time stages on new refineries or capacity expansions. Constraint set (6-4) 

describes relationships between planning decisions (
1tkz


) and operational decisions (
tkx ) 

in each time stage, e.g., the logic relationship between the existence of refineries and 

biofuel production within designed capacity. This constraint set also describes 

relationships among operational decisions themselves, mainly on feedstock and biofuel 

flow conservations at fields, refineries, and demand centers. Note that the recourse 

matrices tA  and tB  in the model are assumed to be fixed and independent of uncertainty 

scenarios while all other parameters are scenario dependent. 
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 For a discrete set of uncertainty scenarios, this multistage stochastic program can 

be solved by deriving the deterministic equivalent program (Louveaux, 1986). The 

complexity can be greatly reduced if a multistage stochastic program possess the property 

of block-separable recourse (Louveaux, 1986).  

 

Proposition 1: The multistage stochastic program presented in (6-1) - (6-4) has the 

block-separable recourse property. 

Proof: According to the definition 2.1 of the property of block-separable recourse (Shiina 

and Birge, 2003), a multistage stochastic program has block-separable recourse if the 

following two conditions are satisfied. First, for all stages, decision vectors can be 

decomposed to aggregate and detailed level decisions, which are 
tkz , t tk K , 0,..., 1t T  , 

and 
tkx , t tk K , 1,...,t T , respectively in our model. Second, the structures of objective 

function and constraint matrices at each stage satisfy the following two partitions: 

(1) For each t-stage scenario t tk K , 0,...,t T , the objective function can be written 

in the form of 
t t t t t

P O

k k k k kf c z c x  ; and 

(2) The constraint matrices conform with the (
tkz ,

tkx ) separation as: 

1

1

0 0

00

t t t t

t t t t

k k k kt

tk k k k

R z z bA

BS x x d





        
           

               

.  

 

Proposition 2 (Louveaux, 1986): A multistage stochastic program with block separable 

recourse is equivalent to a two-stage stochastic program, where the first-stage is the 
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extensive form of the aggregate level problems, and the value function of the second 

stage is the sum (weighted by the appropriate probabilities) of the detailed level recourse 

functions for all t-stage scenarios.  

 

From the proposition 2, the multistage stochastic program with the property of 

block-separable recourse can be transformed into a two-stage stochastic program with 

recourse. The problem turns out to be the one that has first stage mixed integer variables 

and continuous second stage variables. The deterministic equivalent for the multistage 

stochastic program with block-separable recourse can be written as (6-5)-(6-7). 

 

Deterministic Equivalent for the Multistage Stochastic Biofuel Supply Chain 

Problem: 

1 1

0 0

Minimize:  
t t t t

t t t t

T T
P

k k k k

t k K t k K

p c z G
 

   

    (6-5) 

Subject to: 

Including constraints (6-2)-(6-3)   

1 1

1

min
t t t

t kt

k k k

k D

G p g
 

 

   , 0,..., 1t tk K t T     (6-6) 

 
1 1 1 1 1 1 11min , 0

t t t t t t t t

O

k k k t k k k k kg c x B x d S z x
           1, , 0,..., 1

tt t t kk K k D t T      (6-7) 

tkz    , 0,..., 1t tk K t T      
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In the objective function (6-5), the first term is the total expected planning cost 

over time weighted by the corresponding probabilities and the second term is the total 

expected operational cost, which is a sum of recourse functions over all stages. The 

recourse function is written in (6-6) for each stage. The operational cost 
1tkg


, 1 tt kk D   is 

defined in (6-7) for each scenario.  

 

6.2.5 Solution Methods 

Nested decomposition (ND) can be readily applied to solve block-separable multistage 

stochastic linear programs (Louveaux, 1986). We compose the deterministic equivalent 

program into a mixed integer master problem and linear subproblems. The ND is 

presented in Section 6.2.5.1. It is integrated with strategically generated maximal non-

dominated cuts (Sherali and Lunday, 2013) for improved decomposition convergence in 

Section 6.2.5.2.  

 

6.2.5.1 Nested Decomposition (ND) 

Nested decomposition (Birge, 1985) uses an outer linearization approximation based on 

the L-shaped method for two-stage stochastic programs (Slyke and Wets, 1969). ND is to 

approximate recourse functions based on the duality theory of linear programs, which has 

been primarily used to solve quadratic multistage program (Louveaux, 1980) and linear 

multistage program (Birge, 1985) and has been improved by developing a parallel 

implementation method by Birge et al. (1996) to solve large-scale problems. The 

properties of this method are explicitly elucidated in (Birge and Louveaux, 1997). 
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Another series of algorithmic studies focuses on reducing scenario size. For example, 

Pereira and Pinto (1991) uses stochastic dual dynamic programming method to hedge 

against an exponential increase in the number of states by approximating recourse 

functions of a stochastic dynamic program with piecewise linear functions, which is 

recently enhanced by the abridged nested decomposition method (Donohue and Birge, 

2006). 

All those solutions are limited to the problems with continuous recourse and may 

not be applicable to solve a stochastic program with integer recourse, as the cuts in those 

decomposition methods are generated based on the duality theory of linear programs. 

However, if a multistage stochastic program holds the special block-separability property, 

ND can be readily applied to solve the derived two-stage stochastic program that has first 

stage mixed integer variables and continuous second stage variables such that the integer 

recourses are lifted (Louveaux, 1986). Note that the first stage still keeps a multistage 

nested structure, but it becomes more tractable due to the reduced problem size. The 

second stage consists of independent linear subproblems, which can be effectively 

handled by any off-the-shelf solvers (e.g., CPLEX). Successful applications of ND in 

solving multistage stochastic programs include a power system expansion problem 

(Shiina and Birge, 2003) and a financial portfolio management problem (Edirisinghe and 

Patterson, 2007).  

In this study, our deterministic equivalent problem (6-5)–(6-7) is decomposed into 

(i) a reduced master problem (RMP) that contains the first-stage mixed integer decision 

variables and new continuous variable vector 
tk  that approximates recourse functions 
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1 1

1

=min
t t t

t kt

k k k

k D

G p g
 

 

 , , 0,..., 1t tk K t T    in (6-6), and (ii) a series of subproblems, each 

of which contains only second-stage continuous decisions. As unsatisfied biofuel demand 

is to be fulfilled by using imported biofuels with a penalty cost, this problem has a 

relatively complete recourse and feasibility cut constraint can thus be omitted.  

 

Reduced Master Problem (RMP): 

1 1

0 0

Minimize:  
t t t t

t t t t

T T
P

k k k k

t k K t k K

p c z 
 

   

    (6-8) 

Subject to:   

0 00 k kA z b   (6-2) 

1t t t tk k t k kR z A z b


    1, , 1,..., 1
tt t t kk K k a t T      (6-3) 

 
1 1 1 1

1

,t t t t t t

t kt

k k k n k k k

k D

p d S z 
   

 

 
 

, 0,..., 1, 1,...,t tk K t T n N      (6-9) 

tkz  

 

, 0,..., 1t tk K t T      

 

In this formulation, the recourse functions are not known explicitly in advance. 

Thus, the optimality cuts (6-9) are added to approximate it, where n is the index of the 

number of optimality cuts N. The optimal solution to the master problem is obtained by 

solving the mixed integer program. Let 
tkz  and 

tk , , 0,..., 1t tk K t T    , be the optimal 

solutions to the master problem. Then each subproblem for (t+1)-stage scenario 
1 tt kk D   
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is solved at the optimal solution of the master problem. The dual subproblem is presented 

in (6-10) – (6-11), in which 
1tk 
 is dual vector associated with the constraint in (6-7). 

 

Dual subproblem (SP) for (t+1)-stage scenario, 1 , , 0,..., 1
tt k t tk D k K t T     , 

 
1 1 1 1

max 
t t t t t

D T

k k k k kg d S z
   
    (6-10) 

Subject to   

1 11 t t

T O

t k kB c
   , 

1tk 
   (6-11) 

 

Since the primal problem is feasible due to the relatively complete recourse 

property, the feasible region (6-11) is bounded and nonempty according to the duality 

theory so that there is no extreme ray in the feasible region. Let 
1tk 
 be the optimal 

solution to the SP and 
1t

D

kg


 be the attained optimal objective value 
1 tt kk D  . If 

1 1

1

t t t

t kt

D

k k k

k D

p g
 

 

  , the optimality cut (6-9) is added to the RMP and updates  N = N + 1. 

The ND for the multistage stochastic model is summarized as following: 

 

Step 0. Initialize bounds: 

 Set Lower bound (LB) =  , Upper bound (UB) =  , and tolerance error = .  

Step 1. Solve the master problem:  



102 

 

Solve the RMP problem, and update optimal solution values 
tkz  and 

tk , t tk K 

, 0,.., 1t T  ; Set LB = 
1 1

0 0
t t t t

t t t t

T T
P

k k k k

t k K t k K

p c z 
 

   

  . 

Step 2. Solve the subproblems: 

Solve the SP for (t+1)-stage scenario, 1 , , 0,..., 1
tt k t tk D k K t T     , and update 

corresponding optimal solution value 
1tk 
 and objective value 

1t

D

kg


; Set UB = 

1 1

1

1 1

0 0
t t t t t

t t t t t kt

T T
P D

k k k k k

t k K t k K k D

p c z p g
 



 

    

   . 

Step 3. Add optimality cuts: 

 If 
1 1

1

t t t

t kt

D

k k k

k D

p g
 

 

   for any t-stage scenario t tk K , 0,..., 1t T  , the optimality 

cut (6-9) is added to the RMP.  

Step 4. Convergence check: 

If (UB - LB)/UB < , then stop; otherwise go to Step 1. 

 

6.2.5.2 Nested Decomposition with Maximal Non-dominated Cuts (ND-

Max) 

To accelerate the convergence of decomposition method, Magnanti and Wong (1981); 

(1990) set forth a seminal work on generating non-dominated or Pareto optimal cuts to 

tighten the Benders cuts. Their work however possesses potential difficulties, as 

highlighted in later studies (Mercier et al., 2005; Papadakos, 2008; Santoso et al., 2005), 

which are involved in searching “core points” and solving a two-fold increase in the 
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number of linear programs for the generation of cuts. Sherali and Lunday (2013) 

proposed a new algorithmic strategy that utilizes a preemptively small perturbations to 

generate maximal non-dominated Benders cuts to improve the effectiveness of 

decomposition methods. Although the maximal non-dominated cuts is not as strict as the 

non-dominated cuts, it is expected to be more direct and computationally effective 

(Sherali and Lunday, 2013). Here we adopt the maximal non-dominated cuts to accelerate 

the convergence of the ND in section 6.2.5.1. 

Let us revisit the SP in (6-10)-(6-11). When the SP is degenerate, there may exist 

multiple optimal solutions to the SP given the first-stage decision 
tkz  from the RMP. We 

denote by 
1tk 

 , 1 , , 0,..., 1
tt k t tk D k K t T     , the set of optimal solution as:  

 
1 1 1 1 1

  
t t t t tk k k k kg g
    

    , where  
1 1 1 11 

t t t t

T O

k k t k kB c 
                   (6-12) 

Given 
1 1t tk k
 
 , the optimality cut (6-9) can be re-written as:  

1 1 1 1 1

1

,

1
t t t t t t t

t kt

m

k k k k k k j k

k D j

p d s z  
    

  

 
  

 
    (6-13) 

where 
1 ,tk js


 denotes the j
th

 1,...,j m , column of matrix 
1tkS


. 

 

Definition of a Maximal Non-dominated Cut (Sherali and Lunday, 2013): for (6-13) to 

be “non-dominated, or more distinctly, to be maximal, there must not exist any 

1 1
'

t tk k
 
  so that 

1 1 1 1
'

t t t t

T T

k k k kd d 
   

  and 
1 1 1 1, ,'

t t t t

T T

k k j k k js s 
   

 , 1,...,j m , with at least 

one of these (m+1) inequalities being strict”.  
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The generation of the maximal non-dominated cuts is considered as obtaining a 

Pareto optimal solution to a multi-objective linear program in (6-14).  

Maximize  
1 1 1 1 1 1 1 1 1 1,1 ,2 ,, , , ... , : 

t t t t t t t t t t

T T T T

k k k k k k k k m k kd s s s    
         


                

(6-14) 

The multi-objective program can be solved by using the weighted-sum method, 

Maximize 
1 1 1 1 1 1,

1

: , , 1,...,
t t t t t t

m
T T

k k k k j j k k j

j

d s j m    
     





 
     

 
              (6-15) 

where 
j  is any positive weighting vector. 

However, obtaining a complete optimal solution set 
1tk 

  to (6-15) is difficult as 

finding all optimal solution needs to identify all extreme points in the feasible region of 

the set 
1tk 

 . Instead of solving the SP first to formulate 
1tk 

  as in (6-12) and 

subsequently solving (6-13), we can combine these two steps in a preemptive priority 

multiple objective program, where we wish to first maximize 
1 1 1 1t t t t t

T T

k k k k kd s z 
   

  (i.e., to 

solve the dual SP), and among alternative optimal solutions to this problem, we wish to 

maximize 
1 1 1 1 ,

1
t t t t

m
T T

k k k k j j

j

d s  
   



 . We denote this preemptive priority multi-objective 

program as follows: 

Maximize 
1 1 1 1 1 1 1 1,

1

( ) ( ):
t t t t t t t t t

m
T T

k k k k k k k j j k k

j

d s z d s   
       



 
   

 
                   (6-16) 

As shown by Sherali and Lunday (2013), there exists a 0  small enough such 

that the following combined weighted-sum problem equivalently solves (6-16):   
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Revised Dual Subproblem (SP2) for scenario 1 , , 0,..., 1
tt k t tk D k K t T     : 

Maximize 
1 1 1 1 1 1 1 1,

1

( ) ( ) :
t t t t t t t t t

m
T T

k k k k k k k j j k k

j

d s z d s    
       



   
     

   
                            (6-17) 

An optimality cut that is formed by using the optimal solution 
1tk 
 to (6-17) is the 

maximal non-dominated cut, which replaces (6-9) in the ND solution procedure. We call 

the revised decomposition method the ND-Max. 

 

6.3 Case Study 

In this section, we consider two types of case studies. The first one is composed of a set 

of hypothetical numerical experiments to test computational performance of developed 

decomposition method. The second one is the case study of South Carolina to justify the 

implementation of the methodologies in real world large scale problems. 

 

6.3.1 Case I: Numerical Experiments 

Let (N, A) be a network where N and A are the sets of nodes and links in the network 

respectively. Here, N consists of a set of feedstock sites 
FN , a set of candidate refinery 

locations 
RN , and a set of demand centers (e.g., major cities) 

CN ; that is, 

F R CN N N N   . The arc set A represents highway network that connects nodes. A 

finite planning horizon is considered with each time stage being one year. 

Three discrete refinery capacity levels of 60, 80 and 100 million gallons per year 

(MGY) are considered for numerical experiments. A new refinery capacity can be at any 
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level and expanded over time unless it is already at its maximum capacity of 100 MGY. 

We consider demand to be uncertain. In particular, it is assumed that a demand 
t

id  at 

location i in t is increased by 
0

t id  from 1t , where 
t

  is percentage increase for 

uncertainty realization t t   and 
0

id  is the baseline (year 0) demand at location i. The 

equation 
1 0

t

t t

i i id d d
   is used to estimate the demand over time under uncertainty. For 

an illustration purpose, we assume that there are only three possible realizations - low, 

medium, and high demands, with equal probability for all time stages and that 
t

  is 0%, 

10%, and 20% respectively for low, medium, and high demand realizations, which holds 

fixed over time. A high penalty cost of $5/gallon is imposed in this model. All other 

technical and economic parameters are adopted from (Xie et al., 2014), including refinery 

capital costs, feedstock moisture content, transportation costs, and biomass-to-biofuel 

conversion rates.  

 

Numerical experiment setups: 

Three different numerical experiments are designed as follows: 

1. Varied network sizes (three different sizes), with a three-year planning horizon. 

2. Varied planning horizons (i.e., 3, 4, and 5 years), with a fixed network size. 

3. Varied number of uncertainty realizations in each year (i.e., 3, 5, and 9 

realizations), with a fixed planning horizon and a network size. 

The baseline case is the one with the smallest network size, three-year planning 

horizon, and three demand realizations each year. We randomly generated 10 instances 
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for each numerical experiment, totaling 70 instances - 10 instances for the baseline case 

and 20 instances each for the numerical experiments with different network sizes, 

planning horizons, and demand realizations. In each instance, distances between nodes on 

the network, feedstock yields, and demands are all randomly generated. In particular, the 

distances are generated as: distance rand(20,100)/rand(0.1,1) , where rand(a, b) is a 

uniform random number between a and b. The generated distances are most likely in a 

range between 20 and 100 miles. The annual feedstock yields and demands are uniformly 

distributed between 0.1 and 1 million dry tons and between 5 and 50 MGY respectively. 

Note that the randomly generated demand is the 
0

id  in the equation 
1 0

t

t t

i i id d d
   and 

demand in the subsequent time stages is t

id . A time limit of 3 CPU hours is set for all 

numerical experiments. If the problem cannot be solved to optimum by the time limit, the 

best solution found is reported.  

 

6.3.2 Case II: Waste-Based Bioethanol Production in South Carolina 

Reports and studies (Harris et al., 2004; SCRA, 2012) have shown that South Carolina, 

especially the 17 counties along I-95 highway corridor, has the great potential of 

producing cellulosic ethanol from biowaste resources and that the high-profit cellulosic 

biofuels will help boost the economic development in that region which is a traditional 

agricultural zone and less developed. We explicitly develop a multistage stochastic 

biofuel supply chain model to explore the economic potential of establishing a supply 

chain of biofuel between 2015 and 2030. This illustrative case study aims to help better 



108 

 

understand how the multistage stochastic method can help adapt planning decisions to 

evolving uncertainty. Data inputs of the case study are shown as the following. 

Feedstock resource: forest residue is abundant in the 17 counties for future for 

cellulosic biofuel production (SCRA, 2012). In this study, the annual feedstock yields 

and locations are aggregated at county levels by using Geographic Information System 

(GIS) software packages (e.g., ArcGIS).  To integrate feedstock resource data with 

transportation network data, it is assumed that feedstock produced in a county is available 

at the centroid node of that zone. The geographic distribution of forest residue is plotted 

in Figure 6-2 (a), in which the size of each dot is proportional to the feedstock quantity. 

The total annual yield is 8.26 million dry tons. The biomass-to-biofuel conversion rate of 

80.6 gallons/dry ton, the moisture content of 15% weight, and the average procurement 

cost of $35/dry ton are all adopted from our previous study (Xie et al., 2014).  

Potential biorefineries: Candidate refinery sites are subject to a number of critical 

factors, such as the accessibility to water, transportation infrastructures, and zoning 

requirements if there is any. However, without explicit information, we assume that all 17 

counties are legitimate for biorefineries and that the candidate refinery sites are located at 

the centroid nodes of counties to be integrated with transportation network data (see 

Figure 6-2 (b)). For illustration purpose, we assume that the refinery capacity is in a 

range between 60 and 100 MGY (Parker et al., 2007). The total capital cost is the sum of 

the fixed and variable capital costs. The annualized fixed capital cost is $6.157m, based 

on a 20 year return with a 10% rate of return, while the variable capital cost depends on 

the capacity of the biorefinery and is $0.314 per gallon (Parker et al., 2007). A mid-term 
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(2025-2030) projection of biofuel production cost of $0.92/gallon (Office of the Biomass 

Program, 2009) is considered, which includes pretreatment, production, distillation, and 

solid recovery costs.  

Demand centers: Cities with population greater than 10,000 in South Carolina 

(see Figure 6-2 (c)) plus Atlanta, Georgia are considered as demand centers, totaling 38 

cities. The Columbia, Charleston, and Atlanta metropolitan areas are three largest 

consumer markets. With a 10% ethanol blend wall (i.e., E10), there is a total of 95 MGY 

consumed annually (EIA, 2014). The ethanol consumption of each city is assumed 

proportional to its population, which is the baseline (year 0) demand in our model. 

 

 
(a) Locations of forest residues  
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(b) Candidate locations of refineries 

 
(c) Demand centers  

Figure 6-2 Maps of Feedstock Fields, Refineries and Demand Centers 

 

Transportation: All feedstock and fuel transportation will be completed by using 

trucks. In order to estimate the transportation costs within the supply chain, a GIS-based 

transportation network is used, which contains existing major highways. The shortest 

distances between feedstock fields, refineries, and city gates are calculated based on the 

network. Table 6-1 summaries transportation technical properties (trucking capacity and 

travel speed) and transportation costs (loading/unloading cost, time/distance dependent 

cost) required by the model. In particular, in Table 6-1, the time dependent cost consists 



111 

 

of labor and capital cost of trucks, and distance dependent cost includes fuel, insurance, 

maintenance, and permitting cost.  

 

Table 6-1 Transportation Inputs 

 Liquids Bulk solids 

Truck Capacity 8,000 gallons 25 wet tons 

Travel Speed 40 mph 40 mph 

Loading/unloading $0.02/gallon $5/wet ton 

Time dependent $32/hr/truckload $29/hr/truckload 

Distance dependent $1.30/mile/truckload $1.20/mile/truckload 
Source: (Parker et al., 2007) 

 

Planning horizon and demand uncertainties: The entire planning horizon of 15 

years is partitioned into three stages, each of which spans five years. Planning decisions 

are made at the beginning of years 1, 6, and 11 while operational decisions are made for 

every year. The ethanol demand is assumed to be uncertain with three equally distributed 

realizations 
t

 , t t  and set to be 5%, 10%, and 15% respectively for low, medium, 

and high demand realizations. During the five-year period, the annual demand increases 

linearly with an increment of 0

t id , where 
0

id  is the baseline demand at location i.  

 

6.4 Results and Discussion 

All problems were programmed in AMPL (Fourer et al., 2003) and all numerical 

implementations were conducted on a Dell desktop with 8GB RAM and Intel Core Quad 

3.0 GHz processor under Windows 7 environment. 
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6.4.1 Case I Results 

Table 6-2 ~ Table 6-4 report the average solution time, number of instances that exceeds 

the time limit, and the maximum optimality gap for the three numerical experiments. For 

CPLEX, the optimality gap is between the best bound of relaxed problem and the best 

integer. For the ND and the ND-Max, it is the convergence gap: (UB - LB)/LB with a 

predefined   = 0.01%. The rows in the table correspond to the different numerical 

experiments, where the baseline case is duplicated in the first row in each table for 

comparison purposes. For the numerical instances that are solved to optimum (i.e., zero 

optimality gap), the objective values attained by the ND and ND-Max are the same as 

CPLEX. Table 6-2 ~ Table 6-4 indicate that the solution time rises on average for all 

solutions methods when the problem size increases with network size, planning horizon, 

or number of demand realizations. Among the three solution approaches, the ND-Max 

outperforms the others for its lower solution times and smaller optimality gaps on 

average. 

 

Table 6-2 Performances of Solution Methods for Different Network Sizes 

Size of 

Network
* 

CPLEX ND ND-Max 

Avg. 

solution 

time 

(CPU 

sec) 

# of 

instances 

exceedin

g time 

limit  

Max 

opt. 

gap 

(%) 

Avg. 

solution 

time 

(CPU 

sec) 

# of 

instances 

exceedin

g time 

limit
 

Max 

opt. 

gap 

(%) 

Avg. 

solution 

time 

(CPU 

sec) 

# of 

instances 

exceedin

g time 

limit
 

Max 

opt. 

gap 

(%) 

16/7/16 406 0 0 148 0 0 106 0 0 

24/11/24 4,233 3 0.08 3,035 0 0 1,775 0 0 

32/15/32 8,992 8 0.21 5,797 3 0.31 4,607 2 0.07 

Note *: A/B/C: A is number of feedstock fields; B is number of candidate refineries; and C is number of 

cities. 
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Table 6-3 Performances of Solution Methods for Different Planning Horizons* 

Planning 

length 

(years)
 

CPLEX ND ND-Max 

Avg. 

solutio

n time 

(CPU 

sec) 

# of 

instances 

exceedin

g time 

limit  

Max 

opt. 

gap 

(%) 

Avg. 

solution 

time 

(CPU 

sec) 

# of 

instances 

exceedin

g time 

limit
 

Max 

opt. 

gap 

(%) 

Avg. 

solutio

n time 

(CPU 

sec) 

# of 

instances 

exceedin

g time 

limit
 

Max 

opt. 

gap 

(%) 

Three 406 0 0 148 0 0 106 0 0 

Four 5,609 5 0.18 1,073 0 0 834 0 0 

Five 8,401 7 0.13 2,572 0 0 1,682 0 0 

Note *: The numerical experiments were conducted with a fixed network size of 16/7/16. 

 

Table 6-4 Performances of Solution Methods for Different Number of Realizations 

Each Year* 

Number 

of 

realizatio

ns each 

year
 

CPLEX ND ND-Max 

Avg. 

solution 

time 

(CPU 

sec) 

# of 

instances 

exceeding 

time limit  

Max 

opt. 

gap 

(%) 

Avg. 

solution 

time 

(CPU 

sec) 

# of 

instances 

exceeding 

time limit  

Max 

opt. 

gap 

(%) 

Avg. 

solution 

time 

(CPU 

sec) 

# of 

instances 

exceeding 

time limit
 

Max 

opt. 

gap 

(%) 

Three 406 0 0 148 0 0 106 0 0 

Five 2,179 1 0.08 504 0 0 381 0 0 

Nine 6,321 5 0.36 2,373 0 0 1,490 0 0 

Note *: The numerical experiments were conducted with fixed the network size of 16/7/16 and a three-year 

planning horizon. 

 

All comparisons above are based on the average performances of different 

solution methods, which may neglect possible variations in performances between 

instances. Here we report the solution performance for each of the 70 instances in terms 

of the ratios of computing times. It is computed by dividing solving times of the ND and 

ND-Max by the CPLEX’s for every instance. A ratio that is less than one indicates that 

the decomposition method outperforms CPLEX, and vice versa. Note that we exclude 

three instances that cannot be solved to optimality by either the ND or the ND-Max 

within the preset time limit. We plot the ratios of the remaining 67 instances in Figure 6-3. 
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The horizontal axis denotes seven different ranges of ratios and the vertical axis is the 

corresponding cumulative probability. From the figure, there are about 82% and 74% 

probabilities respectively that the ND-Max and the ND perform better than CPLEX. 

However, when problems are relatively easy (e.g., baseline case), CPLEX can outperform 

the decompositions, resulting in the ratios that are greater than one. The results of these 

numerical experiments render us confidence of applying the ND-Max to solve the real-

world case study of South Carolina. 

 

 

Figure 6-3 Cumulative Distributions of the Ratios of Solving Times of ND and ND-

Max to the Solving Times of CPLEX 
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6.4.2 Case II Results 

The problem has 221 binary variables, 196,651 continuous variables, and 18,066 

constraints and is solved by using the ND-Max to an optimality gap of 1% for 2.7 CPU 

hours.   

 Planning decisions: the optimal planning decisions over the 15-year planning 

horizon are demonstrated in the diagram shown in Figure 6-4, in which the first number 

in the parentheses denotes the number of refinery built so far and the second number 

describes the total capacity. For example, at the beginning of the planning horizon, two 

refineries are built with a total capacity of 153 MGY to satisfy the demand the in first 

five years. The planning decisions for stage 2 (i.e., years between 6 and 10) are made 

upon the full realizations of the uncertainty in stage 1. If it is a low demand (
t

 = 5%), 

the planning decision made at the beginning of year 6 for the next five years is to build no 

new refinery but upgrade the total capacity to 177 MGY. Similarly, if a medium demand 

(i.e., 
t

 = 10%) is realized, the total capacity of the existing two refinery is expanded to 

their maximum capacities of 200 MGY. However, if a high demand (i.e., 
t

 = 15%) 

occurs, a new refinery has to be added in order to assure that the total biofuel production 

capacity can reach 225 MGY. Similarly, the planning decision for stage 3 occurs at the 

beginning of year 11and anticipates the uncertain demand for the years from 11 to 15. 

 



116 

 

Beg. of 

Year 1

Low

Median

High

Low

Low

Low

Median

Median

Median

High

High

High

(2/153 MGY)

(2/178 MGY)

(2/200 MGY)

(3/225 MGY)

(2/200 MGY)

(3/238 MGY)

(3/250 MGY)

(3/200 MGY)

(3/260 MGY)

(3/274 MGY)

(3/247 MGY)

(3/271 MGY)

(3/295 MGY)

# of refineries

Total refinery capacity

Low

Median

High

...
...

Beg. of 

Year 6

Beg. of 

Year 11

End of 

Year 15

Low

Median

High

Stage 1 Stage 2 Stage 3

 
Figure 6-4 A Diagram of Planning Decisions over Time 

 

The geographic locations of the refineries are demonstrated in Figure 6-5 for two 

specific scenarios, which are in correspondent with the low and high demands throughout 

the planning horizon as highlighted in Figure 6-4, and the capacities of the refineries are 

presented in Table 6-5. For both scenarios, locations #5 and #17 are selected to build 

refineries to take advantage of their proximities to feedstock fields and –Columbia area, 

which is one of major demand centers. For the scenario of high demand, one more 

refinery at location #11 is selected to supplement the demand from Charleston which is 

another major demand center in this case study. 
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(a) Low demand  (b) High demand   

Figure 6-5 Refinery Layouts under Two Demand Scenarios 

 

Table 6-5 Refinery Capacities by Scenarios 

Scenarios Refinery locations Year 1 Year 6 Year 11 

Low demand #5 64 MGY 89 MGY 100 MGY 

#17 89 MGY 89 MGY 100 MGY 

High demand #5 64 MGY 76 MGY 100 MGY 

#11 Not open 60 MGY 95 MGY 

#17 89 MGY 89 MGY 100 MGY 

 

Breakdown of the total cost: The total expected system cost is about $5 billion 

over 15 years and the resulting average delivered fuel cost is about $1.95 per gallon of 

ethanol. The breakdown of the total expected cost in Figure 6-6 indicates that the 

production cost accounts for almost half and that transportation cost is also substantial 

accounting for 10% the total cost, which justifies that an effective supply chain is crucial. 

The penalty cost (2% of the total cost) mainly incurs to meet the high demand scenario of 

Atlanta, which offsets the instate production and transportation costs.  
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Figure 6-6 Breakdown of the Total Systems Cost 

 

The Value of Multistage Stochastic Model 

Prior research on long-term biofuel supply chain planning presumes that sequential 

decisions are made with certainty (Ebadian et al., 2013; Giarola et al., 2011; Huang et al., 

2010). We are particularly interested in understanding how much economic value a 

stochastic modeling method can contribute to a decision making under uncertainty, 

relative to its deterministic counterpart, considering the extra modeling and 

computational efforts involved in the stochastic model.  

We base our evaluation on the Value of the Stochastic Solution (VSS) (Birge and 

Louveaux, 1997), which is defined as the difference between the expected result of using 

the expected value problem solution (EEV) and the result of here-and-now (or recourse 

problem) solution (RP); that is, VSS=EEV-RP . The EEV is the expected outcome of the 

deterministic solution that is obtained by taking the expectation of uncertainty scenarios 

as inputs while the RP is the expected outcome of using the stochastic solution under 
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uncertainty, which is the optimal objective value of the stochastic model. The VSS for a 

multistage stochastic program is calculated for each stage.  The results of VSS presented 

in Table 6-6 indicate that the stochastic solutions help reduce the cost for each stage and 

such benefit increases with higher demand over time, with a total cost saving up to $71m 

or 1.42% (= $71m/$5b).  

 

Table 6-6 The VSSs by Stages 

Stages Time Periods EEV ($m) RP ($m) VSS ($m) 

1 1
st
 ~5

th
 years 1,231 1,225 6 

2 6
th
 ~10

th
 years 1,687 1,657 30 

3 11
th
 ~ 15

th
 years 2,141 2,106 35 

Total 1
st
 ~15

th
 years 5,059 4,988 71 

 

In this case study, the benefit of stochastic solution may seem low. It may be due 

to the relatively low variations in demand realizations and the assumption of linearly 

demand growth over time. It may also be attributed by the absence of storage facilities in 

the supply chain, resulting in the lack of buffers in mitigating discrepancy caused by 

uncertainties. From modeling perspective, the choice of a specific formulation is problem 

specific and one would not know if a multistage stochastic model is worthwhile until all 

the modeling and computational efforts are made. However, how to identify the bound at 

early stage that better informs an appropriate formulation without having to completely 

solve the entire problem may be a worthy research question for the future. 
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6.5 Summary 

In Chapter 6, I presented a new research endeavor in biofuel supply chain design, which 

addresses the coupled effects of time dynamics and uncertainty, by integrating planning 

and operational decisions into a multistage stochastic programming framework. In this 

study, planning decisions are determined sequentially along with evolving uncertainty 

realizations while achieving a least-cost supply chain of biofuel for the entire planning 

horizon. I formulate a multistage stochastic mixed integer program with integer recourse. 

By utilizing the property of block separable recourse, we develop two decomposition 

methods based on nested decomposition (ND) and integrated maximal non-dominated 

cuts (ND-Max) to solve the multistage stochastic program. I justified the model and 

evaluated the performances of the decompositions using hypothetical numerical 

experiments with different network sizes, planning horizon, and number of uncertainty 

realizations. The ND-Max is identified as the most effective solution method by the 70 

randomly generated instances and is used to solve the illustrative case study of South 

Carolina. It is found that the forest residue based bioethanol system in South Carolina can 

be economically feasible with an average delivered ethanol cost of $1.95 per gallon via 

rigorous long-term system planning. Through the case study, we also demonstrate how 

planning decisions are adapted to evolving uncertainty on geographic resolution. The 

multistage stochastic solution is shown to be more cost effective than the deterministic 

counterpart through the analysis of the value of stochastic solutions. 
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CHAPTER 7 CONCLUSIONS  

7.1 Summary of Dissertation 

In the transportation energy field, this dissertation presents a couple of new research 

endeavors in planning and designing sustainable supply chains for the future renewable 

fuel systems. Taking the biofuel systems as an example, the dissertation demonstrated the 

importance of integrating “environmental thinking” into the supply chain planning, 

adopting multimodal transportation to improve the supply chain operations, providing 

strategies in mitigating uncertainty from conversion technology, and developing 

advanced modeling framework of the sequential planning of the supply chain against 

uncertainties in a long run. The integration of these novel supply chain design features is 

proved to successfully sustain the biofuel supply chain systems and is expected to 

provide guidance in designing other renewable fuel supply chain systems. 

 

7.2 Research Impacts of Dissertation 

This dissertation has innovative research impacts on both transportation systems domain 

and operations research domain.  

In the broad transportation systems domain, instead of relying on traditional 

engineering methodologies, this dissertation demonstrated the importance of using 

systems approaches in answering challenging transportation related problems. For 

example, through smart systems design, I showed that it is promising in identifying novel 

solutions such as multimodal transportation in improving the efficiency of biofuel supply 

chain operations. In particular for the transportation energy society, this dissertation 
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showed the value of supply chain systems design in promoting renewable energy systems. 

By adopting the advanced model frameworks developed in this dissertation, decision 

makers can reduce the systems cost and improve environmental quality for the renewable 

energies.   

In the operations research domain, this dissertation developed several advanced 

models and solution methods. Especially in Chapter 6, an advanced multistage stochastic 

programming model was developed with efficient algorithms. Such effort is not only 

brand new in the transportation field, but also innovative in the operations research 

domain. The methodologies can be generalized and applied to other operations research 

emphasized multistage stochastic problems.  

 

7.3 Limitations of Dissertations 

One major limitation of this dissertation is that the four studies did not provide 

methodologies in validating the proposed models. Although the mathematical correctness 

of the models has been proved during the implementation process, it is still questionable 

if or not the models can effectively represent the real world application. However, such 

effort is time consuming and hardly achieved especially for the biofuel systems, for there 

is no existing commercialized cellulosic ethanol supply chain that could validate the 

model. Given the research limitation during the PhD study, validating the models is not 

the focus of this dissertation and can be part of the future works. 

 Another major limitation arises from the lack of analysis in evaluating the 

interaction between different innovative solutions proposed in four studies. Although the 
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dissertation showed that each of the proposed models can improve the biofuel supply 

chain independently, these models shall be integrated into one complete model to design 

the supply chain systems. However, because of the computational challenges, this 

dissertation did not make this integration. 

 

7.4 Future Works 

For future work, one immediate research approach is how to integrate the novel concepts 

presented in the four studies into one complete model. For example, the environmental 

objective (presented in Chapter 3 and Chapter 5) and the multimodal transport systems 

(presented in Chapter 4) can be integrated into the sequential stochastic modeling 

framework (presented in Chapter 6). Such effort is not trivial from the modeling 

prospective, and more importantly, it contributes to additional computational challenges. 

Thus, advanced solution methods, such as local branching and approximation methods, 

may be adopted to further improve the computational performance. 

Another important future work is based on the multistage stochastic model 

developed in Chapter 6. Most existing literatures in biofuel supply chain design is either 

under deterministic environment or under stochastic environment but ignoring the time 

dynamics. The study enacts a new research approach to consider both time dynamics and 

uncertainties in the renewable fuel supply chain systems design. For future 

implementations, a natural step is to incorporate the storage facilities in the supply chain 

to handle the feedstock seasonality and allows for biofuel storage. However, the resulting 

formulation may not possess the property of block-seperability and algorithmic 
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development will be another concerted efforts. Fortunately, recent endeavor on solving 

multistage stochastic integer programs have already set path toward, such as a linear 

programming based approximation scheme to exploit the decomposable structure and 

seek a feasible solution (Ahmed et al., 2003) and a parallelizable Branch-and-Fix 

Coordination algorithm for solving multistage mixed 0-1 stochastic problems (Escudero 

et al., 2012). Another direction is to explore the effects of different optimization 

formulations on the solution quality and the relations with the types of uncertainty and 

their realizations. This research can also be enriched by incorporating more realistic 

considerations, such as considering multiple types of feedstocks, multimodal transport 

systems, and realistic trucking distances.  

Finally, a complete decision making framework shall be developed which also 

includes model validation and calibration. This effort is important for the proposed 

models to be validate and applicable at different temporal and geographical dimensions. 



125 

 

BIBLIOGRAPHY 

110th U.S. Congress, 2007. Energy Independence and Security Act of 2007, H.R.6. 

Ahmed, S., King, A., Parija, G., 2003. A Multi-Stage Stochastic Integer Programming 

Approach for Capacity Expansion under Uncertainty. Journal of Global Optimization 

26(1), 3-24. 

Akgul, O., Zamboni, A., Bezzo, F., Shah, N., Papageorgiou, L.G., 2010. Optimization-

Based Approaches for Bioethanol Supply Chains. Industrial & Engineering Chemistry 

Research 50(9), 4927-4938. 

Aksoy, B., Cullinan, H., Webster, D., Gue, K., Sukumaran, S., Eden, M., Sammons, N., 

2011. Woody biomass and mill waste utilization opportunities in Alabama: 

Transportation cost minimization, optimum facility location, economic feasibility, and 

impact. Environmental Progress & Sustainable Energy 30(4), 720-732. 

An, H., Wilhelm, W.E., Searcy, S.W., 2011. A Mathematical Model to Design A 

Lignocellulosic Biofuel Supply Chain System with A Case Study Based on A Region in 

Central Texas. Bioresource Technology 102(17), 7860-7870. 

ARB, 2009. Detailed California-Modified GREET Pathway for Corn Ethanol. Air 

Resources Board. 

Archibald, T.W., Buchanan, C.S., McKinnon, K.I.M., Thomas, L.C., 1999. Nested 

Benders Decomposition and Dynamic Programming for Reservoir Optimisation. The 

Journal of the Operational Research Society 50(5), 468-479. 



126 

 

Awudu, I., Zhang, J., 2012. Uncertainties and Sustainability Concepts in Biofuel Supply 

Chain Management: A Review. Renewable and Sustainable Energy Reviews 16(2), 1359-

1368. 

Awudu, I., Zhang, J., 2013. Stochastic Production Planning for A Biofuel Supply Chain 

under Demand and Price Uncertainties. Applied Energy 103(0), 189-196. 

Birge, J., Donohue, C., Holmes, D., Svintsitski, O., 1996. A parallel implementation of 

the nested decomposition algorithm for multistage stochastic linear programs. 

Mathematical Programming 75(2), 327-352. 

Birge, J., Louveaux, F., 1997. Introduction to Stochastic Programming. Springer. 

Birge, J.R., 1985. Decomposition and Partitioning Methods for Multistage Stochastic 

Linear Programs. Operations Research 33(5), 989-1007. 

Birge, J.R., Louveaux, F., 2011. Introduction to Stochastic Programming, 2st ed. 

Springer, New York. 

Bowling, I.M., Ponce-Ortega, J.M.a., El-Halwagi, M.M., 2011. Facility Location and 

Supply Chain Optimization for a Biorefinery. Industrial & Engineering Chemistry 

Research 50(10), 6276-6286. 

Brinkman, N., Wang, M., Weber, T., Darlington, T., 2005. Well-to-Wheels Analysis of 

Advanced Fuel/Vehicle Systems — A North American Study of Energy Use, Greenhouse 

Gas Emissions, and Criteria Pollutant Emissions. 

BSI Group, 2011. PAS 2050:2011: Specification for the Assessment of the Life Cycle 

Greenhouse Gas Emissions of Goods and Services. BSI British Standards Institution. 

California Energy Commission, 2013. http://www.energy.ca.gov/. 

http://www.energy.ca.gov/


127 

 

California Energy Commission, 2014. Fuel Ethanol Terminal Market Price - 18 Month 

History,  http://www.energyalmanac.ca.gov/transportation/ethanol_graphs/ethanol_18-

month.html. Access Date: 02/19/2014. 

Chen, C.-W., Fan, Y., 2012. Bioethanol Supply Chain System Planning under Supply and 

Demand Uncertainties. Transportation Research Part E: Logistics and Transportation 

Review 48(1), 150-164. 

Consigli, G., Dempster, M.A.H., 1998. Dynamic stochastic programmingfor asset-

liability management. Annals of Operations Research 81(0), 131-162. 

Cundiff, J.S., Dias, N., Sherali, H.D., 1997. A linear Programming Approach for 

Designing A Herbaceous Biomass Delivery System. Bioresource Technology 59(1), 47-

55. 

Dal-Mas, M., Giarola, S., Zamboni, A., Bezzo, F., 2011. Strategic design and investment 

capacity planning of the ethanol supply chain under price uncertainty. Biomass and 

Bioenergy 35(5), 2059-2071. 

Donohue, C.J., Birge, J.R., 2006. The Abridged Nested Decomposition Method for 

Multistage Stochastic Linear Programs with Relatively Complete Recourse. Algorithmic 

Operations Research 1(1). 

Ebadian, M., Sowlati, T., Sokhansanj, S., Townley-Smith, L., Stumborg, M., 2013. 

Modeling and analysing storage systems in agricultural biomass supply chain for 

cellulosic ethanol production. Applied Energy 102(0), 840-849. 

Edirisinghe, N.C.P., Patterson, E.I., 2007. Multi-period stochastic portfolio optimization: 

Block-separable decomposition. Annals of Operations Research 152(1), 367-394. 

http://www.energyalmanac.ca.gov/transportation/ethanol_graphs/ethanol_18-month.html
http://www.energyalmanac.ca.gov/transportation/ethanol_graphs/ethanol_18-month.html


128 

 

EERE, 2011. Ethanol Distribution. U.S. Department of Energy. 

EIA, 2013. Cellulosic biofuels begin to flow but in lower volumes than foreseen by 

statutory targets. 

EIA, 2014. Prices, Sales Volumes & Stocks by State 

(http://www.eia.gov/dnav/pet/pet_sum_mkt_dcu_SSC_a.htm). 

EPA, Renewable and Alternative Fuels (http://www.epa.gov/otaq/fuels/alternative-

renewablefuels/index.htm). 

Escudero, L.F., Araceli Garín, M., Merino, M., Pérez, G., 2012. An algorithmic 

framework for solving large-scale multistage stochastic mixed 0–1 problems with 

nonsymmetric scenario trees. Computers & Operations Research 39(5), 1133-1144. 

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., 

Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., Van Dorland, 

R., 2007. Changes in atmospheric constituents and in radiative forcing, Cambridge, 

United Kingdom, pp. 129-234. 

Fourer, R., Gay, D., Kernighan, B., 2003. AMPL: A Modeling Language for 

Mathematical Programming, 2nd ed. Duxbury Press, Boston. 

Gebreslassie, B.H., Slivinsky, M., Wang, B., You, F., 2013. Life Cycle Optimization for 

Sustainable Design and Operations of Hydrocarbon Biorefinery via Fast Pyrolysis, 

Hydrotreating and Hydrocracking. Computers & Chemical Engineering 50, 71-91. 

Giarola, S., Zamboni, A., Bezzo, F., 2011. Spatially explicit multi-objective optimisation 

for design and planning of hybrid first and second generation biorefineries. Computers & 

Chemical Engineering 35(9), 1782-1797. 

http://www.eia.gov/dnav/pet/pet_sum_mkt_dcu_SSC_a.htm)
http://www.epa.gov/otaq/fuels/alternative-renewablefuels/index.htm)
http://www.epa.gov/otaq/fuels/alternative-renewablefuels/index.htm)


129 

 

Golub, B., Holmer, M., McKendall, R., Pohlman, L., Zenios, S.A., 1995. A stochastic 

programming model for money management. European Journal of Operational Research 

85(2), 282-296. 

Gulpinar, N., Rustem, B., Settergren, R., 2002. Multistage Stochastic Programming in 

Computational Finance, In: Kontoghiorghes, E., Rustem, B., Siokos, S. (Eds.), 

Computational Methods in Decision-Making, Economics and Finance. Springer US, pp. 

35-47. 

Harris, R.A., Adams, T., Hiott, V., Lear, D.V., Wang, G., Tanner, T., Frederick, J., 2004. 

Potential for Biomass Energy Development in South Carolina  

Hess, J.R., Kenney, K.L., Ovard, L.P., Searcy, E.M., Wright, C.T., 2009. Commodity-

Scale Production of an Infrastructure-Compatible Bulk Solid from Herbaceous 

Lignocellulosic Biomass. Idaho National Laboratory, Idaho Falls, ID. 

Hochreiter, R., Wozabal, D., 2010. A Multi-stage Stochastic Programming Model for 

Managing Risk-optimal Electricity Portfolios, In: Rebennack, S., Pardalos, P.M., Pereira, 

M.V.F., Iliadis, N.A. (Eds.), Handbook of Power Systems II. Springer Berlin Heidelberg, 

pp. 383-404. 

Huang, Y., Chen, C.-W., Fan, Y., 2010. Multistage Optimization of The Supply Chains 

of Biofuels. Transportation Research Part E: Logistics and Transportation Review 46(6), 

820-830. 

Huang, Y., Fan, Y., Chen, C.-W., 2013. An Integrated Biofuel Supply Chain against 

Feedstock Seasonality and Uncertainty. Transportation Science (In press). 



130 

 

Jenkins, B., Dempster, P., Gildart, M., Kaffka, S., 2007. California Biomass and Biofuels 

Production Potential (Draft). California Energy Commission. 

Kim, J., Realff, M.J., Lee, J.H., 2011a. Optimal design and global sensitivity analysis of 

biomass supply chain networks for biofuels under uncertainty. Computers & Chemical 

Engineering 35(9), 1738-1751. 

Kim, J., Realff, M.J., Lee, J.H., Whittaker, C., Furtner, L., 2011b. Design of biomass 

processing network for biofuel production using an MILP model. Biomass and Bioenergy 

35(2), 853-871. 

Kouwenberg, R., 2001. Scenario generation and stochastic programming models for asset 

liability management. European Journal of Operational Research 134(2), 279-292. 

Li, Y.P., Huang, G.H., Nie, S.L., 2006. An interval-parameter multi-stage stochastic 

programming model for water resources management under uncertainty. Advances in 

Water Resources 29(5), 776-789. 

Li, Y.P., Huang, G.H., Nie, S.L., Liu, L., 2008. Inexact multistage stochastic integer 

programming for water resources management under uncertainty. Journal of 

Environmental Management 88(1), 93-107. 

Linares, P., Romero, C., 2000. A Multiple Criteria Decision Making Approach for 

Electricity Planning in Spain: Economic versus Environmental Objectives. The Journal 

of Operational Research Society 51(6), 736-743. 

Louveaux, F., 1986. Multistage stochastic programs with block-separable recourse, In: 

Prékopa, A., Wets, R.B. (Eds.), Stochastic Programming 84 Part II. Springer Berlin 

Heidelberg, pp. 48-62. 



131 

 

Louveaux, F.V., 1980. A Solution Method for Multistage Stochastic Programs with 

Recourse with Application to an Energy Investment Problem. Operations Research 28(4), 

889-902. 

Magnanti, T.L., Wong, R.T., 1981. Accelerating Benders Decomposition: Algorithmic 

Enhancement and Model Selection Criteria. Operations Research 29(3), 464-484. 

Magnanti, T.L., Wong, R.T., 1990. Decomposition methods for facility location problems, 

P. B. Mirchandani & R. L. Francis (Eds.), Discrete location theory. Hoboken: Wiley, pp. 

209–262. 

Mahmudi, H., Flynn, P., 2006. Rail vs truck transport of biomass. Applied Biochemistry 

and Biotechnology 129(1), 88-103. 

Mele, F.D., Guillén-Gosálbez, G., Jiménez, L., 2009. Optimal Planning of Supply Chains 

for Bioethanol and Sugar Production with Economic and Environmental Concerns. 

Computer Aided Chemical Engineering 26, 997-1002. 

Melo, M.T., Nickel, S., Saldanha-da-Gama, F., 2009. Facility location and supply chain 

management – A review. European Journal of Operational Research 196(2), 401-412. 

Mercier, A., Cordeau, J.-F., Soumis, F., 2005. A computational study of Benders 

decomposition for the integrated aircraft routing and crew scheduling problem. 

Computers & Operations Research 32(6), 1451-1476. 

Nickel, S., Saldanha-da-Gama, F., Ziegler, H.-P., 2012. A multi-stage stochastic supply 

network design problem with financial decisions and risk management. Omega 40(5), 

511-524. 



132 

 

Office of the Biomass Program, 2009. Biomass Multi-Year Program Plan, Enery 

Efficiency and Renewable Energy, U.S. Department of Energy. 

Papadakos, N., 2008. Practical enhancements to the Magnanti–Wong method. Operations 

Research Letters 36(4), 444-449. 

Parker, N., Tittmann, P., Hart, Q., Lay, M., Cunningham, J., Jenkins, B., 2007. Strategic 

Development of Bioenergy in the Western States Development of Supply Scenarios 

Linked to Policy Recommendations, Task 3: Spatial Analysis and Supply Curve 

Development. Western Governors’ Association. 

Parker, N., Tittmann, P., Hart, Q., Lay, M., Cunningham, J., Jenkins, B., 2008. Strategic 

assessment of bioenergy development in the west: Spatial analysis and supply curve 

development. Western Governors' Association. 

Pereira, M.V.F., Pinto, L.M.V.G., 1991. Multi-stage stochastic optimization applied to 

energy planning. Mathematical Programming 52(1-3), 359-375. 

Raphael, S., Ausilio, B., Nilay, S., 2009. The Greenhouse Gas Emissions Performance of 

Cellulosic Ethanol Supply Chains in Europe. Biotechnology for Biofuels 2(1). 

Rentizelas, A.A., Tolis, A.J., Tatsiopoulos, I.P., 2009. Logistics issues of biomass: The 

storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy 

Reviews 13(4), 887-894. 

Saaty, T.L., 1980. The Analytic Hierarchy Process: Planning, Priority Setting, Resource 

Allocation. McGraw Hill International. 



133 

 

Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A., 2005. A stochastic programming 

approach for supply chain network design under uncertainty. European Journal of 

Operational Research 167(1), 96-115. 

SCRA, 2012. I-95 Corridor, South Carolina: Resources to Support Revitalization through 

Clean Energy and Biotechnology. 

Sherali, H., Lunday, B., 2013. On generating maximal nondominated Benders cuts. 

Annals of Operations Research 210(1), 57-72. 

Shiina, T., Birge, J., 2003. Multistage stochastic programming model for electric power 

capacity expansion problem. Japan J. Indust. Appl. Math. 20(3), 379-397. 

Sims, R.E.H., Mabee, W., Saddler, J.N., Taylor, M., 2010. An overview of second 

generation biofuel technologies. Bioresource Technology 101(6), 1570-1580. 

Slyke, R.M.V., Wets, R., 1969. L-Shaped Linear Programs with Applications to Optimal 

Control and Stochastic Programming. SIAM Journal on Applied Mathematics 17(4), 638-

663. 

Subrahmanyam, S., Pekny, J.F., Reklaitis, G.V., 1994. Design of Batch Chemical Plants 

Under Market Uncertainty. Industrial & Engineering Chemistry Research 33(11), 2688-

2701. 

Tamiz, M., Jones, D., Romero, C., 1998. Goal Programming for Decision Making: An 

Overview of the Current State-of-the-Art. European Journal of Operational Research 

111(3), 569-581. 



134 

 

Tembo, G., Epplin, F.M., Huhnke, R.L., 2003. Integrative Investment Appraisal of a 

Lignocellulosic Biomass-to-Ethanol Industry. Journal of Agricultural and Resource 

Economics 28(03). 

Unsihuay-Vila, C., Marangon-Lima, J.W., Zambroni de Souza, A.C., Perez-Arriaga, I.J., 

2011. Multistage Expansion Planning of Generation and Interconnections with 

Sustainable Energy Development Criteria: A Multiobjective Model. International 

Journal of Electrical Power & Energy Systems 33(2), 258-270. 

USDA, 2007. Ethanol Transportation Backgrounder. 

Wakeley, H.L., Hendrickson, C.T., Griffin, W.M., Matthews, H.S., 2009. Economic and 

Environmental Transportation Effects of Large-Scale Ethanol Production and 

Distribution in the United States. Environmental Science & Technology 43(7), 2228-2233. 

Wang, M., Wu, Y., Elgowainy, A., 2005. Operating Manual for GREET: Version 1.7. 

Argonne National Laboratory. 

Watkins, D.W., McKinney, D.C., Lasdon, L.S., Nielsen, S.S., Martin, Q.W., 2000. A 

scenario-based stochastic programming model for water supplies from the highland lakes. 

International Transactions in Operational Research 7(3), 211-230. 

Wu, M., Wang, M., Huo, H., 2006. Fuel-Cycle Assessment of Selected Bioethanol 

Production Pathways in the United States. 

Xie, F., Huang, Y., Eksioglu, S., 2014. Integrating multimodal transport into cellulosic 

biofuel supply chain design under feedstock seasonality with a case study based on 

California. Bioresource Technology 152(0), 15-23. 



135 

 

You, F., 2013. Design of Biofuel Supply Chains under Uncertainty with Multiobjective 

Stochastic Programming Models and Decomposition Algorithm, In: Andrzej, K., Ilkka, T. 

(Eds.), Computer Aided Chemical Engineering. Elsevier, pp. 493-498. 

You, F., Tao, L., Graziano, D.J., Snyder, S.W., 2011. Optimal design of sustainable 

cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle 

assessment and input–output analysis. AIChE Journal, n/a-n/a. 

You, F., Tao, L., Graziano, D.J., Snyder, S.W., 2012. Optimal Design of Sustainable 

Cellulosic Biofuel Supply Chains: Multiobjective Optimization Coupled with Life Cycle 

Assessment and Input–Output Analysis. AIChE Journal 58(4), 1157-1180. 

You, F., Wang, B., 2011. Life Cycle Optimization of Biomass-to-Liquid Supply Chains 

with Distributed–Centralized Processing Networks. Industrial & Engineering Chemistry 

Research 50(17), 10102-10127. 

Zamboni, A., Bezzo, F., Shah, N., 2009. Spatially Explicit Static Model for the Strategic 

Design of Future Bioethanol Production Systems. 2. Multi-Objective Environmental 

Optimization. Energy & Fuels 23(10), 5134-5143. 

Zhou, Y., Huang, G.H., Yang, B., 2013. Water resources management under multi-

parameter interactions: A factorial multi-stage stochastic programming approach. Omega 

41(3), 559-573. 

Zhu, J.Y., Pan, X.J., 2010. Woody biomass pretreatment for cellulosic ethanol production: 

Technology and energy consumption evaluation. Bioresource Technology 101(13), 4992-

5002. 

 


	Clemson University
	TigerPrints
	12-2014

	MODELING SUSTAINABILITY IN RENEWABLE ENERGY SUPPLY CHAIN SYSTEMS
	Fei Xie
	Recommended Citation


	Chapter 1 INTRODUCTION

