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ABSTRACT 
 
 

Thermotoga neapolitana can use different sources of carbon and nitrogen for growth and 

produces biological hydrogen. Sources of carbon (glucose, sucrose, xylose, xylan, 

cellulose, cellobiose, starch, corn starch, beet pulp pellet, and rice flour) and nitrogen 

(yeast extract, fish meal, cottonseed meal, canola meal, linseed meal, and soybean meal) 

were compared.  In the carbon studies, glucose, sucrose, rice flour, and xylan produced 

similar levels of hydrogen.  In the nitrogen studies, Trypticase combined with alternative 

nitrogen sources can efficiently increases the yield of hydrogen produced by Thermotoga 

neapolitana. Yeast extract with trypticase as the dual nitrogen sources produced 

significantly increased concentration of hydrogen than the other combinations tested. 

Soybean meal and canola meal were second choices as alternative nitrogen sources. 

Sucrose and rice flour were promising carbon sources to replace glucose, and soybean 

meals was a promising nitrogen source to replace yeast extract for Thermotoga 

neapolitana.  

Thermotoga neapolitana can utilize rice flour as sole carbon source, and soybean meal as 

one of nitrogen sources to produce hydrogen. Uniform design was used as experimental 

design to optimize the fermentation medium. The optimized medium was composed of 9 

g/L rice flour, 4.5 g/L soybean meal, and 4.5 g/L trypticase. The hydrogen concentration 

for this optimized medium was 0.07083±0.006198 g H2/L medium or 35.42±3.10 mmol 

H2/L medium. The increased hydrogen concentration from control medium to optimized 

medium was 21.6%. 
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Thermotoga neapolitana ferments glucose as carbon source to produce acetate, carbon 

dioxide, and hydrogen as major products. The exponential phase of the bacterial growth 

was between 2 and 10 hrs of incubation time. The maximum cell mass concentration was 

reached after 10 hrs of incubation. The stationary phase lasted for 10hrs, and the death 

phase began at 20 hrs. The pH of broth decreased during the bacterium growth, which 

may inhibit hydrogen production. The maximum hydrogen partial pressure in this study 

was 45 kPa at 77 °C, and hydrogen partial pressure might inhibit the hydrogen production 

in this batch fermentation, an estimate of the critical hydrogen partial pressure of 38 kPa 

was calculated for the batch fermentation of Thermotoga neapolitana at 77 °C. The 

maximum specific growth rate ( maxμ ) of Thermotoga neapolitana with glucose as carbon 

source was 0.94 hr-1 at 77 °C. The Monod half saturation constant (KS) was 0.57 g/L, the 

observed biomass yield from substrate was 0.25 g/g glucose or 44.59 g/mol glucose, the 

observed hydrogen yield from substrate was 0.028 g/glucose or 2.50 mol H2 /mol 

glucose, and the observed hydrogen yield from biomass was 0.114 g/g dry weight. When 

glucose concentration was 5.0 g/L, the doubling time was 0.84 hr or 49 mins.  

. 
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CHAPTER I 

 

INTRODUCTION 

 

 

“To talk about “the hydrogen economy” is to talk about a world that is 

fundamentally different from the one we know now.”  

                                                                                                   Spencer Abraham 

                                                                                                    Secretary of Energy 

                                                     National Hydrogen Energy Roadmap, USDOE 2002 

 

 

Energy plays an important role in global economic growth. The percentages of US energy 

that come from fossil fuels, nuclear, and renewable energy are 86.19%, 8.23%, and 

6.12%, respectively in 2004 (DOE, 2004). But fossil fuel, as a non-renewable, limited 

energy resource, will become depleted in the not too far future. Crude oil production will 

approach a theoretical depletion near 2060-2070, and the theoretical depletion for natural 

gas is close for crude oil (Klass, 1998; Klass, 2003). In addition, the combustion of fossil 

fuels contributes to environmental problems such as global warming, acid rain, and health 

problems (Levin et al., 2004). The intergovernmental Panel on Climate Change (IPCC) 

reported that the emission of global greenhouse gas (GHG) increased 70% between 1970 

and 2004 as the result of human activities. The increased atmospheric concentration of 
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carbon dioxide, the most important greenhouse gas, primarily comes from fossil fuels 

usage. The global warming, due to increased GHG, have made natural systems change, 

such as increasing in the temperature of global air and ocean, melting of snow, ice, and 

frozen ground , rising sea level, enlarging ice-lakes area and so on (IPCC Working Group 

I SPM, 2007; IPCC Working Group II SPM, 2007; IPCC Working Group III SPM, 

2007). Since more than 60% crude oil in US is imported from other regions, energy 

security is another important issue needed be considered due to political instability in 

some oil exporting regions (DOE, 2004). For those reasons, renewable energy sources 

have been pursued for decades. Renewable energy sources include biomass, geothermal, 

wind, solar, and hydropower. In the United States, biomass energy ranks first, with 47% 

of the energy from renewable energy sources in 2004 (DOE, 2004). 

 

Hydrogen is one of the most environmental friendly renewable energy sources, since the 

product of its combustion is water   

H2+ 1/2O2 H2O + 286 kJ                           (da Rosa, 2005) 

Hydrogen combustion has no contribution to environmental pollution and climate change 

(Levin et al., 2004). Therefore, hydrogen will play an important role in a low-carbon 

economy. Hydrogen also has the highest gravimetric energy density (122 kJ/g) among 

energy fuels, which is 2.75 times greater than hydrocarbon fuels (Han and Shin, 2004).  

 

 



 3

Currently, nine millions tons of hydrogen per year is produced in the US. Most of 

hydrogen is used in feedstock and intermediate chemical industries, such as for syntheses 

of ammonia or alcohols. Only a small portion of the hydrogen is used as an energy carrier 

today. DOE estimated that 40 million tons of hydrogen will be required to fuel about 100 

million fuel-cell powered cars, or to provide electricity to about 25 million homes if the 

US would shift towards a hydrogen-economy (DOE, 2002; DOE, 2002; DOE, 2004).  

 

Hydrogen can be produced through thermal, electrolytic, or biological methods. Steaming 

methane reforming, one of the thermal methods, produces 95 percent of the hydrogen in 

the United States today (DOE, 2002). This method is the most energy-efficient 

commercialized technology currently available, but catalyzes the reaction of steam with 

natural gas or other hydrocarbons to produce hydrogen and carbon dioxide (greenhouse 

gas). This gas mixture is then separated to produce high-purity hydrogen. Electrolysis of 

water needs a large amount of electricity and the cost of electricity accounts for 80% of 

the operating cost of hydrogen production.  

 

Hydrogen production from biological systems is called biological hydrogen or 

biohydrogen (Kovacs et al., 2000).  Today, this process is  receiving more and more 

attention, because they can use renewable substrates, including agricultural wastes (Fan 

et al., 2006), or food processing waste (Fan et al., 2006; Wang et al., 2006), to produce 

hydrogen.  
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Microbes utilize agricultural and industrial waste or residues to produce hydrogen 

through dark-fermentation or light-driven process. Biohydrogen can be produced by 

algae, archaea, or bacteria. Chlamydomonas reinhardtii (Kosourov et al., 2005),  and 

other green alga use direct biophotolysis to produce hydrogen. Cyanobacteria, such as 

Anabaena variablilis (Borodin et al., 2000; Lindblad et al., 2002), produce hydrogen 

through indirect biophotolysis. Rhodobacter spheroids (Koku et al., 2002; Zhu et al., 

1999), and other purple non-sulfur bacteria produce hydrogen through photo-

fermentation. Many researchers focus on algae and phototrophic bacteria, which utilize 

solar energy to produce hydrogen. However, light conversion efficiency, biogas (oxygen 

or hydrogen) inhibition, design of photo-bioreactors, and photoinhibation at high solar 

light intensities are limitations in photolytic biohydrogen production (Hallenbeck and 

Benemann, 2002; Levin et al., 2004; Melis, 2002). 

 

Hydrogen can also be produced by anaerobic bacteria through dark-fermentation. This 

process does not need light as an energy source, and utilize various carbohydrates as an 

energy source and carbon source. Anaerobic bacteria capable of  hydrogen production 

include species of Enterobacter (Nath et al., 2006), Bacillus (Kotay and Das, 2007), and 

Clostridium (Ferchichi et al., 2005; Zhang et al., 2006). Hydrogen production through 

dark-fermentation has benefits over other processes because it can use various renewable 

biomass materials from agriculture waste (Hussy et al., 2005; Logan et al., 2002), food 

processing waste (Van Ginkel et al., 2005), etc, and it can also use a wide range of 

microorganisms to continuously produce hydrogen.  
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Bacteria use different carbohydrates as carbon source and energy sources to grow and 

produce hydrogen, carbon dioxide, organic acid, alcohol, biomass and other products. 

The amount of hydrogen production from glucose by bacterium is affected by metabolic 

pathway and end-products.  

 

C6H12O6 +6H2O 12H2 +6CO2                                                                                                                         (1)  

                                                                                                      ΔG = -25.83 kJ/mol (Thauer, 1976)                   

C6H12O6 +2H2O 2 CH3COOH + 4H2 +2CO2                                                                                     (2) 

                                                                    ΔG = -215.69 kJ/mol  (Thauer, 1976)     

C6H12O6 +2H2O 2 CH3CH2COOH + 2H2 +2CO2                                                                           (3) 

C6H12O6 +2H2O CH3CH2OH + CH3COOH + 2H2 +2CO2                                                      (4) 

 

According to reaction (1), theoretically the stoichiometric yield of hydrogen production is 

12 mol H2 /mol glucose when glucose is decomposed completely. If this reaction were 

possible, more than 99% of the combustion energy of glucose could be conserved in 

hydrogen. But no single microorganism known has the capability to produce hydrogen 

with this efficiency, because near 15 kcal energy per mol of ATP formed is required in 

the synthesis of ATP (Thauer, 1976). In this reaction, H+ is the electron acceptor, and 

hydrogen gas is produced as the reduced form of electron acceptors.  
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The theoretical maximum yield for dark fermentation is 4 mol H2 /mol glucose when 

acetic acid is the byproduct in reaction (2). 4 mol of hydrogen contains 33% of the 

combustion energy of glucose. The theoretical yield for dark fermentation is 2 mol H2 / 

mol glucose when butyric acid is the byproduct in reaction (3) (Nandi and Sengupta, 

1998). 2 mol of hydrogen contains 16.5% of the combustion energy of glucose. If ethanol 

and acetic acid are the end-products, 2 mol H2/mol glucose is produced from reaction (4) 

(Hwang et al., 2004). If propionic acid is the end-product of dark fermentation, no 

hydrogen is produced (Hawkes et al., 2002; Ren et al., 2006). Practical biohydrogen 

production yield from dark fermentation is between 2 and 4 mol H2/mol glucose. So 

hydrogen production from dark fermentation depends on the end-products and metabolic 

pathways. Selecting microorganism having the theoretical maximum hydrogen yield or 

close to it is very important, but there is very limited information related to the 

relationship between fermentation pathways and hydrogen production ability.                                                  

 

Hydrogen-producing microbes have been found in environments with a wide range of 

temperature, including mesophiles (25-40 °C) (Kotay and Das, 2007; Shin et al., 2007), 

thermophiles (40-65 °C), extreme thermophiles (65-80 °C), or hyperthermophiles ( 

>80 °C) (van Niel et al., 2003). Among them, hyperthemophiles seem to be the promise 

for biohydrogen production in the future. Hydrogen, as the end-product of fermentation, 

inhibits the growth of hydrogen-evolving bacteria at high hydrogen partial pressure. In 

nature, hydrogen partial pressure need to be kept very low (<100 Pa or 10-3 atm) for 

many bacteria to ferment hexoses and form hydrogen as one of the end-products (Thauer, 
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1976; Thauer et al., 1977). The limit of hydrogen partial pressure for hydrogen-evolving 

bacteria growth can be increased at high temperatures although different species have 

different hydrogen partial pressure limits. The hydrogen partial pressure limit increases to 

2,000 Pa for Pyrococcus furiosus growing without S° at the temperature 98 °C 

(Parameswaran et al., 1988), and the limit of hydrogen partial pressure could be increased 

to 10,000-20,000Pa for Caldicellulosiruptor saccharolyticus growing at the temperature 

70 °C (van Groenestijn et al., 2002; van Niel et al., 2003). Hydorgenase catalyzes both 

the forward and reverse reaction of hydrogen production and consumption. The catalytic 

activity of hydrogenase is in favor of evolving hydrogen at high temperatures (Adams, 

1990).  The end products of fermentation hyperthermophiles fermentation have less 

variety. Thermotoga maritima can almost completely transfer glucose to acetate, CO2 and 

H2 (Schonheit and Schafer, 1995). So biogases produced by hypertheromophiles may be 

directly used as fuel for hydrogen fuel cells. Bacteria growing at high temperatures have 

less contamination than in low temperatures, since few bacteria can grow in the high 

temperature, and sterilization may be omitted if hyperthermophiles are used to produce 

hydrogen. As a consequence, a large amount of energy requirement for sterilization can 

be saved.  In additional, energy requirement for cooling fermentation systems could be 

small if proper insulations are used in fermentation systems, because hydrogen produced 

by these bacteria still release heat, although hyperthemophiles grow at high temperatures.  

 

The order of Thermotogales comprises a group of extremely thermophilic, Gram-

negative, rod-shaped, nonsporulating bacteria with an outer sheath-like envelope or 
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“toga”. Thermotoga belongs to a very deep branch with the bacterial phylogenetic tree 

(Jannasch et al., 1988). The genera Thermotoga, Thermosipho, Fervidobacterium, 

Geotoga, Petrotoga, Marinitoga, Thermopallium have been described within 

Thermotogales (Conners et al., 2006; Huber and Hannig, 2006). The genera Thermotoga 

currently include 9 species. Thermotoga maritima was originally isolated from a 

geothermally heated, shallow marine sediment at Vulcano, Italy (Huber et al., 1986). 

Thermotoga neapolitana was first obtained from a submarine hot spring near Lucrino, the 

bay of Naples, Italy (Belkin et al., 1986; Jannasch et al., 1988). Thermotoga elfii was 

originally isolated from an Africa oil production well (Ravot et al., 1995).  

 

Themotoga maritima completely ferments 1 mol glucose as carbon and energy sources to 

2 mol acetate, 2 mol CO2 and 4 mol H2 through the “classical” Embden-Meyerhof 

pathway (Figure 1.1). The biomass yield from glucose is 45 g cell mass/mol glucose 

(Schroder et al., 1994). Most of the glucose –fermenting anaerobes produce less than  

2 mol of acetate and 4 mol of hydrogen  from 1mol of glucose, because various 

byproducts such as lactate, ethanol, or butyrate, etc are also produced (Schonheit and 

Schafer, 1995). The maximum rate of hydrogen production by Thermotoga elfii was 2.7-

4.5 mmol H2/ (L h) (van Niel et al., 2002). Themotoga neapolitana accumulated 25-30% 

hydrogen during its incubation (Van Ooteghem et al., 2002; Van Ooteghem et al., 2004).  
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Figure 1.1. Metabolic pathway of 1 mol glucose being fermentation to 2 mol acetate, 2 
mol CO2 and 4 mol H2 by Thermotoga maritima (Schroder et al., 1994).  
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GOALS OF THIS STUDY 

 

Little research data is available on the growth and hydrogen production by Thermotoga 

neapolitana. Only van Ooteghem et al. reported the biohydrogen produced by 

Thermotoga neapolitana with glucose as carbon and energy sources, and yeast extract 

and trypticase as double nitrogen sources (Van Ooteghem et al., 2002; Van Ooteghem et 

al., 2004). Limited research on the biohydrogen produced by Thermotoga neapolitana 

with agricultural feedstocks or agricultural wastes as carbon sources and nitrogen sources 

is available. Reports on kinetics studies on the biohydrogen produced by Thermotoga 

neapolitana were also not available.  Therefore, the overall goal of this research is to find 

the kinetic parameters for this bacterium and look for the possibilities of using various 

carbon and nitrogen sources to produce hydrogen.  

 

The main objectives of this dissertation are: 

1. Establishing an efficient procedure for growing Thermotoga neapolitana and 

setting-up a basic fermentation condition for its biohydrogen production. 

2. Screening carbon sources and nitrogen sources for biohydrogen production by 

Thermotoga neapolitana. 

3. Optimizing the composite of carbon source and nitrogen sources of the medium. 

4. Establishing the kinetic parameters of Thermotoga neapolitana involved in 

hydrogen production. 
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An overview of chapter II to VI follows:  

 

Chapter II 

 

In this chapter, the techniques for medium preparation, degassing, inoculation, and 

cultivation are described. Microscopic pictures of Thermotoga neapolitana are also 

presented. 

 

Chapter III 

 

Thermotoga neapolitana can use different sources of carbon and nitrogen for growth and 

biological hydrogen production. In this study, sources of carbon (glucose, sucrose, 

xylose, xylan, cellulose, cellobiose, starch, corn starch, beet pulp pellet, and rice flour) 

and nitrogen (yeast extract, fish meal, cottonseed meal, canola meal, linseed meal, and 

soybean meal) are compared.  From these experiments, the most promising carbon 

sources and nitrogen sources for hydrogen production are determined.  

 

Chapter IV 

 

Results from the carbon and nitrogen experiments indicated that Thermotoga neapolitana 

can utilizes rice flour as carbon source, and soybean meal as one of nitrogen sources to 
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efficiently produce hydrogen. In this experiment, uniform design is used as an 

experimental set-up model to optimize the fermentation medium.  

 

Chapter V 

 

Thermotoga neapolitana utilized glucose as carbon source to produce acetate, carbon 

dioxide, and hydrogen as major fermentation products. In this chapter, growth curve of 

Themotoga neapolitana is described. The pH change with time is measured. Hydrogen 

partial pressure change with incubation time is also studied. Kinetic parameters are also 

calculated and possible equation describing this reaction is also predicated in this study.  

 

Chapter VI 

 

This chapter summarizes the conclusion of this study and offers suggestions for future 

work. 
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CHAPTER II 

 

INOCULATION TECHNIQUES 

 

 

METHOD FOR INOCULATING HYPERTHERMOPHILE THERMOTOGA 

NEAPOLITINA 

 

Important point:  Thermotoga neapolitana is an anaerobic hyperthermophile. Oxygen 

will inhibit the growth of this bacterium. 

 

This method is specifically developed for this bacterium only. 

 

Autoclave  

 

1. Make medium according to the requirements of the experiment and divide it into 

serum bottles. 

2. Wrap aluminum foil around the mouths of serum bottles. 

3. Autoclave the medium at 121 °C for 20 min. 
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Sparge  

 

4. Take off aluminum foil, and put rubber stoppers in the mouth of medium bottles 

immediately at hot temperature (70-80 °C) in autoclave chamber. 

5. Open the nitrogen valve and keep pressure at 0.5 psi.  

6. Release nitrogen for 4 min (removing air in the tube) 

7. Place one tube needle into liquid, and one into headspace of the bottle and sparge 

1 min. 

8. Apply a flange-type rubber stopper and seal it with an aluminum cap by crimper. 

 

Inoculation 

 

9. Sparge nitrogen into an empty bottle for 4 min to create a nitrogen bottle. 

10. Seal this bottle with a flange-type rubber stopper and an aluminum cap. 

11. Use needles to continuously sparge nitrogen into the nitrogen bottle 

12. Use a syringe to take 5 ml nitrogen from the nitrogen bottle. 

13. Use the syringe to inject nitrogen into seed bottle. 

14. Syringe 5 ml of seed liquid and inject into the fresh medium bottles prepared in 

sparge phase.  

15. Put inoculated bottle in shaker for incubation.  
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OXYGEN INHIBITS THE GROWTH OF THERMOTOGA NEAPOLITANA 

 

van Ooteghem et al. has reported that Thermotoga neapolitana is a microaerobic 

bacterium which means that oxygen does not inhibit the growth of Thermotoga 

neapolitana (Van Ooteghem et al., 2002; Van Ooteghem et al., 2004). Others reported 

this bacterium is a strictly anaerobic bacterium (Jannasch et al., 1988). We found that 

Thermotoga neapolitana is an anaerobic bacterium, but it can tolerant oxygen under 

certain conditions. For example, Thermotoga neapolitana could grow at low 

concentration of oxygen when glucose but not xylose is used as the sole carbon source. 

However, Thermotoga neapolitana can utilize xylose very well under anaerobic 

conditions.  
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Figure 2.1. The color of medium changed with degassing procedure. 
Left bottle- degassing procedure not used. Right bottle- degassing procedure used. Both 
bottles contained 0.1% resazurin as redox indicator. Pink or purple color indicates oxygen 
dissolved in liquid. 
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Figure 2.2. The colors of cultivated medium of Thermotoga neapolitana with degassing 
procedure.  
Three large bottles on the left side are media inoculated with Thermotoga neapolitana 
with degassing procedure. Two small bottles on the right side are degassed medium 
without inoculation. 
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Figure 2.3. The colors of cultivated medium of Thermotoga neapolitana without 
degassing procedure.  
Three large bottles on the left side are media inoculated Thermotoga neapolitana without 
degassing procedure. Two small bottles on the right side are media without inoculation 
and degassing procedure. 
 

 

From Figure 2.1, Figure 2.2, and Figure 2.3, we concluded degassing procedure is 

important to the growth of Thermotoga neapolitana. Without degassing procedure, 

Thermotoga neapolitana did not grow well, and the colors of medium became dark due 

to Mailllard reaction (Fennema, 1997) when microbes did not consume sugars.  
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MICROSCOPIC PICTURES OF THERMOTOGA NEAPOLITANA 

 

 
 

 
Figure 2.4. Pictures of Thermotoga neapolitana through phase contrast microscope. 
Top picture - 20X, Bottom picture – 100X  
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In Figure 2.4, Thermotoga neapolitana form the sheath-like envelop around the body of 

the bacterium.  
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ABSTRACT 

 

Thermotoga neapolitana can use different sources of carbon and nitrogen for growth to 

produce biological hydrogen. In this study, sources of carbon (glucose, sucrose, xylose, 

xylan, cellulose, cellobiose, starch, corn starch, beet pulp pellet, and rice flour) and 

nitrogen (yeast extract, fish meal, cottonseed meal, canola meal, linseed meal, and 

soybean meal) were compared.  In the carbon studies, glucose, sucrose, rice flour, and 
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xylan produced similar levels of hydrogen.  In the nitrogen studies, yeast extract with 

trypticase as the dual nitrogen sources produced significantly increased concentration of 

hydrogen than the other combinations tested. Soybean meal and canola meal were second 

choices as alternative nitrogen sources. Trypticase combined with alternative nitrogen 

sources can efficiently increases the yield of hydrogen produced by Thermotoga 

neapolitana. Combined with results of a complete randomized design experiments, 

sucrose and rice flour were selected as promising carbon sources to replace glucose, and 

soybean meal as a promising nitrogen source to replace yeast extract for future hydrogen 

production by Thermotoga neapolitana.  

 

 

Keywords: biohydrogen; medium; carbon sources; nitrogen sources; screening; 

Thermotoga neapolitana      

 

 

INTRODUCTION 

 

Energy plays an important role in global economic growth. The percentages of US energy 

that come from fossil fuels, nuclear, and renewable energy are 86%, 8%, and 6%, 

respectively in 2004 (DOE, 2004). But fossil fuel, as a non-renewable and limited energy 

resource, will become depleted in the not too far future. Crude oil and nature gas 

production will approach a theoretical depletion near 2060-2070 (Klass, 1998; Klass, 
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2003). In addition, the combustion of fossil fuels contributes to environmental problems 

such as global warming, acid rain, and health problems (Levin et al., 2004).   

Hydrogen is one of the most environmental friendly renewable energy sources, since the 

product of its combustion is water.   

H2+ 1/2O2 H2O + 286kJ            (da Rosa, 2005) 

Hydrogen combustion has no contribution to environmental pollution and climate change 

(Levin et al., 2004). Therefore, hydrogen will play an important role in a low-carbon 

economy. Hydrogen also has the highest gravimetric energy density (122 kJ/g) among 

energy fuels, which is 2.75 times greater than hydrocarbon fuels (Han and Shin, 2004).  

 

Hydrogen can be produced through thermal, electrolytic, or biological methods. 

Hydrogen produced by biological systems is called biohydrogen (Kovacs et al., 2000). 

Today biohydrogen production is  receiving more and more attention, because renewable 

substrates, including agricultural wastes (Fan et al., 2006), or food processing waste (Fan 

et al., 2006; Wang et al., 2006), can all be used to produce hydrogen.  

 

Microbes utilize agricultural and industrial waste or residues to produce hydrogen 

through dark-fermentation or light-driven process. Hydrogen can be produced by 

anaerobic bacteria through dark-fermentation which does not need light as energy source, 

and utilizes various carbohydrates as energy source and carbon source. Anaerobic 

bacteria capable of  hydrogen production includes species of Enterobacter (Nath et al., 

2006), Bacillus (Kotay and Das, 2007), and Clostridium (Ferchichi et al., 2005; Zhang et 
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al., 2006). Hydrogen production through dark-fermentation has benefits over other 

processes because it can use various renewable biomass materials from agriculture waste 

(Hussy et al., 2005; Logan et al., 2002), food processing waste (Van Ginkel et al., 2005), 

etc, and also, it can use a wide range of microorganisms to continuously produce 

hydrogen.  

 

Bacteria use different carbohydrates as carbon and energy sources to grow and produce 

hydrogen, carbon dioxide, organic acid, alcohol, biomass and other products. The amount 

of hydrogen production from glucose by bacterium is affected by metabolic pathway and 

end-products.  

 

C6H12O6 +6H2O 12H2 +6CO2                                                                                                                               (1) 

                                                                                  ΔG = -25.83 kcal/mol (Thauer, 1976)                   

C6H12O6 +2H2O 2 CH3COOH + 4H2 +2CO2                                                                                             (2) 

                                                                                       ΔG = -215.69 kcal/mol  (Thauer, 1976)                                                                         

C6H12O6 +2H2O 2 CH3CH2CH2COOH + 2H2 +2CO2                                                                           (3) 

C6H12O6 +2H2O CH3CH2OH + CH3COOH + 2H2 +2CO2                                                                (4) 

 

According to reaction (1), theoretically the stoichiometric yield of hydrogen production is 

12 mol H2 /mol glucose when glucose is decomposed completely. If this reaction would 

be possible, more than 99% of the combustion energy of glucose could be conserved in 
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hydrogen. But no single microorganism known has the capability to produce hydrogen 

with this efficiency, because near 15 kcal energy /mol of ATP forming is required in the 

synthesis of ATP (Thauer, 1976). In this reaction, H+ is the electron acceptor, and 

hydrogen gas is produced as the reduced form of electron acceptors.  

 

The theoretical maximum yield for dark fermentation is 4 mol H2 /mol glucose when 

acetic acid is the byproduct in reaction (2). 4 mol of hydrogen contains 33% of the 

combustion energy of glucose. The theoretical yield for dark fermentation is 2mol H2/mol 

glucose when butyric acid is the byproduct in reaction(3) (Nandi and Sengupta, 1998).  

2 mol of hydrogen contains 16.5% of the combustion energy of glucose. If ethanol and 

acetic acid are the end-products, 2 mol H2/mol glucose is produced from reaction (4) 

(Hwang et al., 2004). If propionic acid is the end-product of dark fermentation, no 

hydrogen is produced (Hawkes et al., 2002; Ren et al., 2006). Practical biohydrogen 

production yield from dark fermentation is between 2 mol H2/mol glucose and 4  

mol H2/mol glucose. Therefore, hydrogen production from dark fermentation depends on 

the end-products and metabolic pathways. Selecting microorganisms processing at or 

near the theoretical maximum hydrogen yield is important, but only limited information 

exists related to the relationship between fermentation pathways and hydrogen production 

ability.                                                                           
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Hydrogen-producing microbes have been found in environments with a wide range of 

temperatures, including mesophiles (25-40 °C) (Kotay and Das, 2007; Shin et al., 2007), 

thermophiles (40-65 °C), extreme thermophiles (65-80 °C), or hyperthermophiles ( 

>80 °C) (van Niel et al., 2003). Among them, Hyperthemophiles seem to be the promise 

for biohydrogen production in the future. Hydrogen, as the end-product of fermentation, 

inhibits the growth of hydrogen-evolving bacteria at high hydrogen partial pressure. In 

nature, hydrogen partial pressure need to be kept very low (<100 Pa or 10-3 atm) for 

many bacteria to ferment hexoses and form hydrogen as one of the end-products (Thauer, 

1976; Thauer et al., 1977). The limit of hydrogen partial pressure for hydrogen-evolving 

bacteria growth can be increased at high temperatures although different species have 

different hydrogen partial pressure limits. The hydrogen partial pressure limit increases to 

2,000 Pa for Pyrococcus furiosus growing without S° at 98 °C (Parameswaran et al., 

1988), and the limit of hydrogen partial pressure could be increased to 10,000-20,000 Pa 

for Caldicellulosiruptor saccharolyticus growing at 70 °C (van Groenestijn et al., 2002; 

van Niel et al., 2003). Hydorgenase involves the hydrogen-evolving and hydrogen-

consuming. The catalytic activity of hydrogenase is in favor of evolving hydrogen at high 

temperatures (Adams, 1990).  The end products of hyperthermophilic fermentation also 

have less variety. Thermotoga maritima can almost completely transfer glucose to 

acetate, CO2 and H2 (Schonheit and Schafer, 1995). So biogas produced by 

hypertheromophiles may be directly used as fuel for hydrogen fuel cells. In additional, 

bacteria growing at high temperatures have less contamination than at low temperatures, 

since few bacteria can grow in the high temperature, and sterilization can be omitted if 
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hyperthermophiles are being used to produce hydrogen. As consequences, a large amount 

of energy required for sterilization can be saved.  

 

Originally isolated around the bay of Naples, Italy (Belkin et al., 1986), Thermotoga 

neapolitana is a Gram-negative, rod-shaped, obligate anaerobic, fermentative extreme 

thermophile surrounded by a bag-shaped sheath-like outer structure called “toga” (Huber 

et al., 1986). The optima growth temperature of Thermotoga neapolitana is 77 °C 

(Jannasch et al., 1988). Most species of Thermotogales produce certain amount of 

hydrogen during their growth (van Niel et al., 2002; Van Ooteghem et al., 2002; Van 

Ooteghem et al., 2004; Vrijie et al., 2002). The maximum rate of hydrogen production by 

Thermotoga elfii was 2.7-4.5 mmol H2/ (L h) (van Niel et al., 2002). Themotoga 

neapolitana accumulated 25-30% hydrogen during its incubation (Van Ooteghem et al., 

2002; Van Ooteghem et al., 2004).  

 

The composition of the medium plays an important role in affecting the growth of 

bacteria, the yield of products, and other characteristics. The carbon sources have a very 

important impact on the bacterial growth and product yield. The product yields from the 

bacterium digesting different carbon sources can vary significantly.  

 

Thermotoga neapolitana  can use simple or complex carbohydrates or complex organic 

matter as carbon source or nitrogen source(Huber and Hannig, 2006). Biolog anaerobic 

microtiter plate system screened  a series of carbon sources for utilization by the 
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bacterium (Van Ooteghem et al., 2004).  A total of 57 carbon sources gave high scores 

with N2 atmosphere, while 14 carbon sources gave high score with H2 atmosphere. 

 

The objective of this study is to screen a variety of carbon and nitrogen sources and find 

the potential sources that can be used for the future biohydrogen production by 

Thermotoga neapolitana.  In the carbon studies, glucose, sucrose, xylose, xylan, 

cellulose, cellobiose, starch, corn starch, beet pulp pellet, and rice flour were investigated. 

Yeast extract and trypticase were used as nitrogen sources in these trials. In the nitrogen 

studies, yeast extract, fish meal, cottonseed meal, canola meal, linseed meal, and soybean 

meal were studied with glucose as the carbon source. Then, a three by three factorial 

design was used to find the most promising alternative carbon and nitrogen sources. 

 

 

MATERIALS AND METHODS 

 

Organism  

 

Thermotoga neapolitana was obtained from DSMZ (the German Resource Centre for 

Biological Material).  
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Materials 

 

For carbon sources, glucose, cellulose, xylose, starch, cellobiose, and sucrose were 

purchased from Fisher Scientific, xylan was purchased from TCI (Tokyo KASEI, Tokyo, 

Japan), corn starch, rice flour, and beet pulp pellet were purchased from Labuddle Group 

Incorporated (Wisconsin).   

 

For nitrogen sources, yeast extract, and trypticase were purchased from Fisher Scientific, 

while all of other alternative nitrogen resources, such as cottonseed meal, fish meal, 

canola meal, linseed meal, and soybean meal, were purchased from Labuddle Group 

Incorporated (Wisconsin). 

 

Culture Maintenance 

 

Thermotoga neapolitana was maintained on the medium described by Van Ooteghem et 

al (Van Ooteghem et al., 2002) . The composition of medium is following as: 1.0 g of 

NH4Cl, 0.3 g of K2HPO4, 0.3 g of KH2PO4, 0.2 g of MgCl2·2H2O, 0.1 g CaCl2, 10.0 g of 

NaCl, 0.1 g of KCl, 1.0 g of Cysteine HCl, 2.0 g of yeast extract, 2.0 g of Trypticase, 

10.0ml of vitamin solution (DSM media 141), 10.0 ml of trace element solution (DSM 

media 141), 0.121 g of  trizma base, 5 g of glucose,  and 1.0  L of  H2O. The initial pH of 

the medium was adjusted to 8.5 with NaOH. The organism was preserved at 4 °C. 
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Cultivation Medium and Conditions 

 

The composition of medium used for screening the carbon sources was described in 

culture maintenance, except that the carbon sources were changed. The composition of 

media used for screening the nitrogen sources was described in culture maintenance, 

except that the nitrogen sources were changed. As a first step in the screening of nitrogen 

sources, 2 g/L of the alternative nitrogen source was used to replace yeast extract. As the 

second step of screening, 4 g/L of the selected nitrogen source was used to replace both 

yeast extract and trypticase. In both sets of experiments, the third nitrogen sources 

(NH4Cl) was included at 1.0 g/L. 

 

In both the carbon and nitrogen source studies, the initial pH of medium was adjusted to 

8.5 with NaOH addition before sterilization. Serum bottles (500ml ) containing 200 ml 

medium were autoclaved in 121 °C for 20 min. The bottles were then boiled for 20 min 

and sparged with N2 for 1 minute. The culture medium was inoculated with 5 ml volume 

using a sterile syringe. The culture was incubated on an orbital shaker bed at 200 rpm and 

77 °C.   

 

Analysis Methods 

 

Hydrogen gas in the headspace was sampled using 1 ml tuberculin syringe, and 0.5 ml of 

gas was injected into a gas chromatograph (SRI 8610C, SRI Instruments, Torrance, CA 



 37

90503) with thermal conductivity detector at 100 °C and silicon column at 25 °C.  The 

pressure of argon as a carrier gas was 22 psi. 

 

The pressure of gas in the headspace of each reactor was measured with Traceable 

manometer (Fisher Scientific) after the reactor had cooled to room temperature.  The 

volume of the headspace was 365 ml. The volume of culture medium was 200 ml. 

According to ideal gas law, the hydrogen concentration was calculated through the 

following equation  

2

2

1

2

1*H
H

P V
C

RT V
= .  

Here, 
2HC is the hydrogen gas concentration (mol H2 /L medium), 

2HP is the hydrogen 

partial pressure (atm), V1 is the volume of headspace (L), T is the temperature (K), R is 

the universal gas constant (0.0821 L·atm/(mol·K)) , V2 is the volume of medium (L).  

   

The experimental results were analyzed with SAS software (SAS, SAS Institute Inc., 

Cary, NC), 0.05 level of significant was used. 
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RESULTS AND DISCUSSION 

 

Incubation Time 

 

The necessary incubation time varied with different carbon sources (Figure 3.1). When 

glucose, xylose, xylan, cellulose, beet pulp pellet or cellobiose was used as the carbon 

source, the hydrogen concentration did not differ between 20 hrs and 36 hrs of 

incubation. When sucrose, rice flour, starch and corn starch were used as carbon source, 

the hydrogen concentration increased with the incubation time from 20 to 36 hours.  

 

Hydrogen production by Thermotoga neapolitana is affected by the types of 

carbohydrates. If monosaccharides, such as glucose, xylose, or cellobiose were used as 

carbon sources, an incubation time of 20 hrs is sufficient for biohydrogen production, 

while if polysaccharides, such as starch, rice flour, or corn starch were used as carbon 

sources, 36 hrs of incubation were necessary. Biohydrogen production levels were less 

consistent for polysaccharides using 30hrs incubation time. Since hydrogen production is 

growth-associated, we can concluded that the growth rates of Thermotoga neapolitana 

with oligosaccharides, such as glucose, xylose, and cellobiose were faster than that of the 

bacterium with polysaccharides, such as starch, and rice flour. The reason might be that 

the bacterium needs to take more time to synthesize enzymes that hydrolyze 

oligosaccharides and polysaccharides. The growth rate of the bacterium with xylan as a 

carbon source was very fast. The reason for this might be that the activity of the 
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microbial enzymes involving xylan utilization is very high. Another reason may be the 

structure of xylan used was degraded already, so it was easily accessed by the enzymes. 

Hydrogen production was very low when the bacterium utilized cellulose. This is because 

crystal cellulose was used, which is difficult to be accessed by the active sites of the 

enzymes. Based on these results, the incubation time for the rest of the study was set as 

36 hrs.  
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Figure 3.1. The hydrogen concentration produced by Thermotoga neapolitana with 

different carbon sources and various incubation times.   
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Screening Carbon Source 

 

Bashed on results in Table 3.1, Thermotoga neapolitana used almost all carbon sources 

to grow and produce hydrogen. Among these carbon sources, the hydrogen concentration 

with glucose (30.36 mmol H2/L medium) was not significantly different from sucrose 

(27.42 mmol H2/L medium) or xylan (27.00 mmol H2/L medium) (p > 0.05). The 

hydrogen concentrations for sucrose or xylan were not significantly different from that of 

rice flour (25.89 mmol H2/L medium) or cellobiose (23.49 mmol H2/L medium). 

Hydrogen produced by the bacterium with beet pulp pellet as the carbon source (11.94 

mmol H2/L medium) was the second lowest among the carbon sources due to its a lower 

concentration of carbohydrates. Hydrogen produced by the bacterium with cellulose as 

the carbon source (2.41 mmol H2/L medium) was the lowest among all carbon sources 

tested, which had also been described by van Ooteghem et al (2002). However, 

cellobiose, a disaccharide subunit of cellulose, was a good carbon source for the 

bacterium. Cellulose is an unbranched linear polymer of glucoses with ß-1,4-glycoside-

linkages, and the structure of cellulose is highly ordered  and resists enzymatic 

degradation. Pretreatment  of Miscanthus produced high yield of hydrogen by 

Thermotoga elfii (Vrijie et al., 2002). So if cellulose materials are to be used as a carbon 

source, pretreatment of cellulose will be necessary.  
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Table 3.1. Hydrogen concentrations of Thermotoga neapolitana with different carbon 
sources1. 

Carbon Sources Percentage of 

hydrogen 

concentration (%) 

Absolute total 

Pressure (kPa) at 

25°C 

Hydrogen 

concentration (mmol 

H2/L medium)2 

Glucose 28.95 142 30.36a 

Sucrose 26.41 141 27.42ab 

Xylan 26.29 139 27.00ab 

Rice 25.67 137 25.89bc 

Cellobiose 24.80 128 23.49bc 

Xylose 24.42 120 21.69c 

Corn 23.40 129 22.26c 

Starch  22.70 130 22.34c 

Beet 14.96 108 11.94d 

Cellulose 3.03 108 2.41e 

1. Base medium (as described at page 35) contains 2 g/L yeast extract and 2 g/L 
trypticase, and 5 g/L alternative carbon source.  

2.   Not sharing common letters are significant difference at LSD = 0.05.  
 

 

 

 

 

 



 42

Screening Nitrogen Sources 

 

Screening Dual Nitrogen Sources 

 

Two nitrogen sources, yeast extract and trypticase, were utilized in the original medium. 

In the first experiment yeast extract were replaced with other nitrogen sources, and 

trypticase was kept as a second nitrogen source. Each nitrogen source which combined 

with trypticase was utilized by Thermotoga neapolitana to produce hydrogen (Table 3.2). 

However, the hydrogen concentration varied among nitrogen sources. Yeast extract was 

the best nitrogen source for hydrogen production by Thermotoga neapolitana. Soybean 

meal and canola meal were the second best nitrogen sources, followed by linseed meal, 

and then fish meal. Cottonseed meal was the least favorable nitrogen source for hydrogen 

production from the bacterium.  
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Table 3.2. Hydrogen concentration with different dual nitrogen sources1. 

Nitrogen Source + 

Trypticase 

Percentage of 

hydrogen 

concentration (%) 

Absolute total 

Pressure (kPa) at 

25°C 

Hydrogen 

concentration (mmol 

H2/L medium)2 

Yeast 
29.98 128 28.21a 

Soybean meal 
25.97 119 22.77b 

Canola meal 
22.47 126 20.98b 

Linseed meal 
21.00 113 17.47c 

Fish meal 
18.17 104 13.99d 

Cottonseeds meal 
3.68 110 2.95e 

1. Base medium (as described at page 35) contains 4 g/L glucose and 2 g/L 
trypticase, and 2 g/L alternative nitrogen source.  

2.   Not sharing common letters are significant difference at LSD (α= 0.05).  
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Table 3.3. Hydrogen Concentration from different single nitrogen resource1 

Nitrogen Source Hydrogen 

Percentage (%) 

Absolute total 

Pressure (kPa) 

Hydrogen 

concentration 

(mmol H2/L 

medium)2 

Yeast 0.0000 117 0.00 d 

Soybean meal 23.0060 119 20.28 a  

Canola meal 20.0351 110 16.28 b 

Linseed meal 8.2877 109 6.59 c 

Fish meal 0.0000 120 0.00d 

Cottonseeds meal 0.0000 120 0.00d 

1. Base medium (as described at page 35) contains 5 g/L glucose, and 4 g/L 
alternative nitrogen source.  

2.   Not sharing common letters are significant difference with LSD (α = 0.05).  
 

 

Screening Single Nitrogen Sources 

 

In the second experiment, five alternative nitrogen sources at 4 g/L concentration were 

used to replace both yeast extract and trypticase. The results are shown in Table 3.3. 

 

The yield of hydrogen production by Thermotoga neapolitana was affected by lack of 

trypticase (Table 3.3). The bacterium grown on soybean meal produced the highest 

amount of hydrogen among these nitrogen sources, followed by canola meal, and linseed 
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meal. Without trypticase, no hydrogen was produced by yeast extract, cottonseed meal, or 

fish meal. These results differ from the report of Schroder et al (1994), who found that 

yeast extract (0.5 g/L) was sufficient for growth and hydrogen production by Thermotoga 

maritama. 

 

From these two experiments, yeast extract combined with trypticase as nitrogen source 

worked best for hydrogen produced with Thermotoga neapolitana.  Cottonseed meal was 

not a good nitrogen source in this research. Soybean meal and canola meal appeared to be 

promising alternative nitrogen sources to replace yeast extract. Linseed meal and fish 

meal at the concentration tested were not as good as soybean meal and canola meal. 

Trypticase was essential for hydrogen production when yeast extract, cottonseed meal, 

and fish meal were used as nitrogen sources. Trypticase combined with alternative 

nitrogen sources efficiently increased the yield of hydrogen. Addition of bio-trypticase 

helped the growth of Thermotoga elfii, Thermotoga hypogea, and Thermotoga lettingae 

(Huber and Hannig, 2006). Trypticase can be supplied as a large quantity of peptides 

from pancreatic digestion of casein. Peptides or other compounds are contributed to the 

activity of trypticase for recovery of E. coli stressed by freezing (Moss and Speck, 1966). 

The activity of trypticase may also contribute to the growth of Thermotoga neapolitana, 

but the mechanism is unknown. 
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Screening both Carbon Sources and Nitrogen Sources 

 

From above experiments, glucose was the best carbon source among the carbon sources 

evaluated. Sucrose, xylan, rice flour, and cellobiose were good candidates to replace 

glucose. Sucrose and rice flour were selected for future research after economic 

evaluation. The primary focus of this research was to use agricultural feedstocks or 

agricultural waste to produce hydrogen. Yeast extract with trypticase as dual nitrogen 

sources was the best combination to provide nitrogen for hydrogen production by 

Thermotoga neapolitana. Soybean meal or canola meal, combined with trypticase, was 

also a good way to provide nitrogen, instead of using yeast extract. In order to examine 

the main and interaction effects between these carbon sources and nitrogen sources, a 

complete randomized experiment design (CRD) was carried out with glucose, sucrose, 

and rice flour as carbon sources, and yeast extract, soybean meal, and canola meal 

combined with trypticase as dual nitrogen sources. 
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Table 3.4. Hydrogen concentration from different combinations of carbon sources and 
nitrogen sources1 

carbon nitrogen 
Percentage of 
hydrogen 
concentration (%)

Absolute 
Pressure 
(kPa) 

Hydrogen  concentration 
(mmol /L medium)2 

Glucose yeast 28.76 139 29.33a 

Glucose soybean 26.36 136 26.35b 

Glucose canola 22.72 129 21.64b 

Sucrose yeast 26.69 136 26.77bc 

Sucrose soybean 26.38 128 24.91bcd 

Sucrose canola 24.24 130 23.29cde 

Rice yeast 26.61 131 25.66de 

Rice soybean 24.66 126 22.92e 

Rice canola 20.22 126 18.80f 

1. Base medium (as described at page 35) contains 5 g/L carbon source, and 2 g/L 
nitrogen source, and 2 g/L trypticase.  

2.   Not sharing common letters are significant difference with LSD (α = 0.05).  
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Figure 3.2. The concentration of hydrogen produced by Thermotoga neapolitana using                
different carbon and nitrogen sources combined with trypticase.  
1- glucose and yeast extract, 2 – glucose and soybean meal, 3 – glucose and canola meal, 
4 – sucrose and yeast extract, 5 – sucrose and soybean meal, 6 – sucrose and canola meal, 
7 – rice flour and yeast extract, 8- rice flour and soybean meal, 9- rice flour and canola 
meal  
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In Table 3.4 and Figure 3.2, the yield of hydrogen produced by Thermotoga neapolitana 

with glucose as carbon source and yeast extract- trypticase as dual nitrogen sources was 

the highest in this experiment. The bacterium using sucrose and soybean meal produced 

the second highest amount of hydrogen. At a significant level of 0.05, the amount of 

hydrogen produced by the bacterium using glucose and soybean meal, rice flour and 

yeast extract, sucrose and soybean meal was not significantly different from that using 

sucrose and yeast extract as nutrients. Canola meal is not a very good nitrogen sources for 

hydrogen production by Thermotoga neapolitana.  
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Figure 3.3. Hydrogen concentration changed with carbon sources when different nitrogen 
sources combined with trypticase were used as dual nitrogen sources. 
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Figure 3.4. Hydrogen concentration changed with nitrogen sources combined with 
trypticase as dual nitrogen sources when different carbon sources were used. 

 

 

 

 

 

 



 52

There were not interactions between carbon sources and nitrogen sources, except for 

canola meal, as shown in Figure 3.3 and Figure 3.4. If yeast extract or soybean meal was 

combined with trypticase as dual nitrogen sources, glucose was the best carbon source, 

and sucrose was second best. But if canola meal combined with trypticase as dual 

nitrogen sources was used, sucrose became best carbon source.  

 

From these experiments, sucrose and rice flour were promising carbon sources to replace 

glucose as the carbon source, soybean meal was a promising nitrogen source to replace 

yeast extract to provide nitrogen for the bacterium. Since yeast extract is more expensive 

than soybean meal, using the latter has an economic advantage.  

 

 

CONCLUSION 

 

Four conclusions can be drawn from this study. 

 

Carbon source affects the incubation time of Thermotoga neapolitana for hydrogen 

production. For most monosaccharides or oligosaccharides, 20 hrs of incubation may be a 
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good choice. But for polysaccharides or agriculture waste, 36 hrs of incubation is 

necessary. The exact incubation time for each carbon source needs to be determined 

through experimentation.  

 

Thermotoga neapolitana can utilize different carbon sources to produce hydrogen. Ten 

carbon sources, glucose, sucrose, xylan, rice flour, cellobiose, corn starch, starch, beet 

pulp pellet, and cellulose, were screened. Among those carbon sources, sucrose, rice 

flour, and xylan were almost as good as glucose as a carbon source for the bacterium to 

produce hydrogen.  

 

Trypticase is essential for hydrogen production when linseed meal, yeast extract, 

cottonseed meal, and fish meal were used as nitrogen sources. Trypticase combined with 

alternative nitrogen sources efficiently increased the yields of hydrogen produced by 

Thermotoga neapolitana. Soybean meal and canola meal are promising nitrogen sources 

to replace yeast extract.  

 

An experiment to evaluate all combination of three selected carbon sources-- glucose, 

sucrose, and rice flour, with three selected nitrogen sources-- yeast extract, soybean meal, 

and canola meal, was carried out. From this experiment, there was no interaction between 

carbon sources and nitrogen sources except for using canola- trypticase as a dual nitrogen 
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source. Sucrose and rice flour seem to be good carbon sources to replace glucose, and 

soybean meal appears to be a good nitrogen source to replace yeast extract. 
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ABSTRACT 

 

Thermotoga neapolitana can utilize rice flour as a sole carbon source, and soybean meal 

as one of nitrogen sources to produce hydrogen. In this study, uniform design was used as 

experimental design to optimize the fermentation medium. The optimized medium was 

composed of 9 g/L rice flour, 4.5 g/L soybean meal, and 4.5 g/L trypticase. The hydrogen 

concentration for this optimized medium was 0.07083 ±0.006198 g H2/L medium or 
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35.42 ±3.10 mmol H2/L medium. The increased hydrogen concentration from control 

medium to optimized medium was 21.6%. 

 

 

Keywords: biohydrogen; Thermotoga neapolitana; medium; optimization; uniform 

design    

 

 

INTRODUCTION 

 

Currently, more than 80% of US energy comes from fossil fuels (DOE, 2004). But fossil 

fuel, as a nonrenewable, limited storage energy resource, will become depleted in the 

near future. In addition, the combustion of fossil fuels contributes to environmental 

problems such as global warming and health problem.  Hydrogen, as a energy carrier,  

has been considered as a promising alternately energy since  its combustion has no 

contribution to the environmental pollution and climate change (Levin et al., 2004).  

 

Hydrogen can be produced through physical, chemical, or biological methods.  Currently, 

Steam methane reforming produce 95 percentage of hydrogen in USA (DOE, 2002), but 

this method is not environmental-friendly due to carbon dioxide as byproduct. Today 

hydrogen production from biological systems, call biohydrogen (Kovacs et al., 2000), 
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received a lot attention, because a lot of microbes can utilize agricultural and industrial 

waste or residues to produce hydrogen through dark-fermentation or light-driven process.  

 

Anaerobic bacteria can produce hydrogen through dark-fermentation (Kotay and Das, 

2007; Nath et al., 2006; Shin et al., 2007; Zhang et al., 2006). This process does not need 

light, instead, it uses carbohydrates as energy and carbon source. Thermophiles are also a 

good choice as hydrogen-producing microorganisms. Thermotoga belongs to a very deep 

branch in the bacteria phylogenetic tree (Jannasch et al., 1988). Most species of 

Thermotogales produce certain amount of hydrogen during their growth (van Niel et al., 

2002; Van Ooteghem et al., 2002; Van Ooteghem et al., 2004). Originally isolated around 

the bay of Naples, Italy (Belkin et al., 1986), Thermotoga neapolitana is a Gram-

negative, rod-shaped, obligate anaerobic, fermentative extreme thermophile surrounded 

by the bag-shaped sheath-like outer structure called “toga” (Huber et al., 1986). The 

optima growth temperature of Thermotoga neapolitana is 77 °C (Jannasch et al., 1988).  

 

The composition of the medium plays an important role in affecting the growth of 

bacteria, the yield of products, and other characteristics. Thermotoga neapolitana can 

utilize different carbon sources and nitrogen sources to produce hydrogen (Huber and 

Hannig, 2006; Van Ooteghem et al., 2004).  

 

The three common methods of experiment design are factorial design (including 

fractional factorial design and orthogonal design), D-optimal design and uniform design. 
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Factorial design generally needs many runs when the number of levels and/or the number 

of factors become large, so it is only optimal for two to three levels. D-optimal design 

need a pre-specified regression model and its search for optimal design is sometimes very 

time consuming and difficult.  

 

Uniform design, based on quasi-Monte Carlo method or number-theoretic method, was 

proposed in by Kai-Tai Fang and  Yuan Wang (Fang, 1980; Wang and Fang, 1981) in the 

early 1980s. In 1978, a Chinese industrial company proposed an experiment design 

problem which had six factors with at least 12 levels for each factor, but the total 

experimental runs could not exceed 50, which was impossible to use fractional factorial 

experiment design for this problem, so Kai-Tai Fang proposed Uniform Design and 

solved this problem with only 31 runs. Since then, it has been more and more popular in 

China, especially in agriculture, textile industry (Leung et al., 1998), science (Tang et al., 

2004), chemistry/ chemical engineering (Liang et al., 2001), and fermentation industry 

(Zhang et al., 2007; Zhang et al., 1993). This experiment design is gradually accepted by 

researchers around world (Fang et al., 2000; Xu et al., 2006; Zhang et al., 2000). The 

attractive advantage of UD is using the fewest experimental trials to solve multiple-level 

experiment problem. UD selects experiment points that are most uniformly distributed in 

the experimental space according to number-theoretic method (Fang and Wang, 1994). 

UD method has advantages such as: space filling, robustness, and multiple levels. 

Samples produced by UD table are highly representative in the studied experimental 

domain. UD does not have strong assumption for the experimental model, and it is 
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against the change of model in certain sense. UD can have the largest possible number of 

levels for each factor in all experimental designs (Liang et al., 2001). Therefore, UD can 

dramatically decrease the number of experiment trials to achieve satisfactory results with 

minimal time consumption. But similar to orthogonal design, the specific designed tables 

and user tables are required for UD. The analysis of variance in common way is difficult 

to be used for UD, and regression analysis is the main method for data analysis due to a 

small number of experiments compared with the number of levels of factors in UD 

experiment (Fang and Wang, 1994). Discrepancy is used to measure the uniformity of 

experimental points distributed in experimental space. Smallest discrepancy means best 

uniformity of experimental points distributed in experimental space (Fang, 1994; Fang 

and Wang, 1994).    

 

From previous experiments, we discovered that rice flour and soybean meal are good 

alternative agricultural carbon and nitrogen sources for hydrogen production by 

Thermotoga neapolitana (Yu and Drapcho). The objective of this study is to optimize the 

fermentation medium using UD when rice flour and soybean were the carbon and 

nitrogen source, respectively.  
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MATERIALS AND METHODS 

 

Organism  

 

Thermotoga neapolitana was obtained from DSMZ (the German Resource Centre for 

Biological Material).  

 

Materials 

 

For carbon sources, glucose was purchased from Fisher Scientific, and rice flour was 

purchased from Labuddle Group Incorporated (Wisconsin).   

 

For nitrogen sources, yeast extract and trypticase were purchased from Fisher Scientific, 

and soybean meal was obtained from Labuddle Group Incorporated (Wisconsin). 

 

Culture Maintenance 

 

Thermotoga neapolitana was maintained on the medium described by Van Ooteghem 

(Van Ooteghem et al., 2002) . The composition of medium is as following: 1.0 g NH4Cl, 

0.3g K2HPO4, 0.3 g KH2PO4, 0.2 g MgCl2·2H2O, 0.1 g CaCl2, 10.0 g NaCl, 0.1 g KCl, 

1.0 g Cysteine HCl, 2.0 g yeast extract, 2.0 g Trypticase, 10.0 ml vitamin solution (DSM 

media 141), 10.0 ml trace element solution (DSM media 141), 0.121 g trizma base, 5 g 
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glucose, and 1.0 L H2O. The initial pH of the medium was adjusted to 8.5 with NaOH. 

The organism was preserved at 4°C. 

 

Cultivation Medium and Condition 

 

The composition of medium used for fermentation was same as the medium described for 

culture maintenance, except for the carbon and nitrogen sources. Rice flour was used to 

replace glucose, and soybean meal was used to replace yeast extract. The other 

components in the medium were the same as the medium for culture maintenance.  

 

The initial pH of medium was adjusted to 8.5 with NaOH addition before sterilization. 

500 ml serum bottles containing 200 ml medium were autoclaved in 121 °C for 20 min. 

Then, the bottles were boiled for 20 min and sparged with N2 for 1 minute. The culture 

medium was inoculated with 5 ml inoculum with sterile syringe. The culture was 

incubated in an orbital shaker bed at 200 rpm and 77 °C.  Four replicates were used for 

each experiment run.  

  

Analysis Methods 

 

Hydrogen gas in the headspace was sampled by collection with 1 ml tuberculin syringe. 

0.5 ml of gas were injected into gas chromatograph (SRI 8610C, SRI Instruments, 
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Torrance, CA90503) with Thermal Conductivity Detector at 100 °C and Silicon Column 

at 25 °C.  The pressure of Argon as carrier gas was 22 psi. 

 

The pressure of the gas in the headspace of each reactor was measured with Traceable 

manometer (Fisher Scientific) after the reactor had cooled to room temperature.  The 

volume of the headspace was 365 ml.  According to the ideal gas law, the hydrogen 

concentration was calculated through this equation, 

 2

2

1

2

12 / * *H
H

P V
C g mol

RT V
= . 

 Here, 
2HC is the hydrogen gas concentration (g H2 /L medium), 

2HP is the hydrogen 

partial pressure (atm), V1 is the volume of headspace (L), T is the temperature (K), R is 

the universal gas constant (0.0821 L·atm/(mol·K)) , V2 is the volume of medium (L)..    

 

The experimental results were analyzed with SAS software (SAS, SAS Institute Inc., 

Cary, NC), 0.15 level of significant was used. 

 

 

RESULTS AND DISCUSSION 

 

Based on our previous results, rice flour was used as carbon source, combined soybean 

meal and trypticase were used as nitrogen sources in this study. Three factors were 

considered in this experiment. If second order and interactions between carbon source 
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and two nitrogen sources were considered, U*9(94) table (Table 4.1) was used in this 

study, and columns 2, 3, and 4 were used to arrange rice flour, soybean meal and 

trypticase according to U*9(94)  user table (Table 4.2) (Fang, 1994). 

 

 

Table 4.1.  U*9(94) Uniform Table  
Run X1 X2 X3 X4 

1 1 3 7 9 

2 2 6 4 8 

3 3 9 1 7 

4 4 2 8 6 

5 5 5 5 5 

6 6 8 2 4 

7 7 1 9 3 

8 8 4 6 2 

9 9 7 3 1 
 

 

Table 4.2. User Table of U*9(94) 
Factors Column D 

2 1    2 0.1574 
3 2    3     4 0.1980 

 
 

 

The ranges of rice flour, soybean meal, and trypticase used were from 1 g/L to 9 g/L, 

from 0.5 g/L to 4.5 g/L, and from 0.5 g/L to 4.5 g/L, respectively. The experimental table 

and results were listed in Table 4.3. 
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Table 4.3. The experimental arrangement and results  

Group Rice flour(g/L) Soybean (g/L)
Trypticase   

( g/L) Replicate 
Hydrogen ( 

g/L medium) 
1 3.0 3.5 4.5 1 0.05538 
1 3.0 3.5 4.5 2 0.06018 
1 3.0 3.5 4.5 3 0.06775 
1 3.0 3.5 4.5 4 0.06907 
2 6.0 2.0 4.0 1 0.06154 
2 6.0 2.0 4.0 2 0.06486 
2 6.0 2.0 4.0 3 0.06307 
2 6.0 2.0 4.0 4 0.05975 
3 9.0 0.5 3.5 1 0.05156 
3 9.0 0.5 3.5 2 0.05404 
3 9.0 0.5 3.5 3 0.05696 
3 9.0 0.5 3.5 4 0.05053 
4 2.0 4.0 3.0 1 0.05344 
4 2.0 4.0 3.0 2 0.05609 
4 2.0 4.0 3.0 3 0.05799 
4 2.0 4.0 3.0 4 0.06353 
5 5.0 2.5 2.5 1 0.06401 
5 5.0 2.5 2.5 2 0.05890 
5 5.0 2.5 2.5 3 0.06004 
5 5.0 2.5 2.5 4 0.06334 
6 8.0 1.0 2.0 1 0.05049 
6 8.0 1.0 2.0 2 0.04836 
6 8.0 1.0 2.0 3 0.05845 
6 8.0 1.0 2.0 4 0.05502 
7 1.0 4.5 1.5 1 0.05316 
7 1.0 4.5 1.5 2 0.05226 
7 1.0 4.5 1.5 3 0.05149 
7 1.0 4.5 1.5 4 0.05559 
8 4.0 3.0 1.0 1 0.05504 
8 4.0 3.0 1.0 2 0.05487 
8 4.0 3.0 1.0 3 0.05686 
8 4.0 3.0 1.0 4 0.05665 
9 7.0 1.5 0.5 1 0.05169 
9 7.0 1.5 0.5 2 0.05179 
9 7.0 1.5 0.5 3 0.04820 
9 7.0 1.5 0.5 4 0.04860 
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Table 4.4. The results of stepwise regression using SAS program 
 
Stepwise Selection: Step 5 

 

 

                Variable nitrogen12 Removed: R-Square = 0.6553 and C(p) = 4.2161 

 

 

                                      Analysis of Variance 

 

                                             Sum of           Mean 

         Source                   DF        Squares         Square    F Value    Pr > F 

 

         Model                     3     0.00068227     0.00022742      20.28    <.0001 

         Error                    32     0.00035888     0.00001121 

         Corrected Total          35        0.00104 

     

 

 

                                  The REG Procedure 

                                         Model: MODEL1 

                                 Dependent Variable: Hydrogen 

 

                                   Stepwise Selection: Step 5 

 

                               Parameter     Standard 

            Variable            Estimate        Error   Type II SS  F Value  Pr > F 

 

            Intercept            0.04532      0.00239      0.00404   359.86  <.0001 

            nitrogen2            0.00255   0.00043234   0.00038941    34.72  <.0001 

            carbonnitrogen1   0.00073497   0.00019566   0.00015825    14.11  0.0007 

            sqcarbon         -0.00005510   0.00002162   0.00007285     6.50  0.0158 

 

                           Bounds on condition number: 1.0513, 9.308 

------------------------------------------------------------------------------------------------ 

 

 

              All variables left in the model are significant at the 0.1500 level. 

 

         No other variable met the 0.1500 significance level for entry into the model. 

 

 

 

                                 Summary of Stepwise Selection 

 

       Variable         Variable         Number   Partial    Model 

 Step  Entered          Removed          Vars In  R-Square  R-Square   C(p)    F Value  Pr > F 

 

   1   nitrogen12                            1     0.3921    0.3921   24.8184    21.93  <.0001 

   2   carbonnitrogen1                       2     0.1399    0.5319   13.7466     9.86  0.0035 

   3   nitrogen2                             3     0.0950    0.6269    6.8698     8.15  0.0075 

   4   sqcarbon                              4     0.0424    0.6694    4.9030     3.98  0.0549 

   5                    nitrogen12           3     0.0140    0.6553    4.2161     1.32  0.2599 
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Stepwise regression, the most widely used variable screening procedure, established a 

regression model for this experiment through five steps. F = 20.18, and P < 0.0001.  

The regression model was 

Y = 0.04532 + 0.00255* Nitrogen2 + 0.00073497* Carbon*Nitrogen1 -0.00005510*Carbon2 

Where, Y is hydrogen concentration (g H2/L medium), Carbon is rice flour concentration 

(g/L), Nitrogen 1 is the concentration of soybean meal (g /L), Nitrogen 2 is the 

concentration of trypticase (g/L). 

 

Matlab® Optimization toolbox was used to optimize this equation. The maximum 

hydrogen concentration is 0.0821 g/L, when the concentration of rice flour, soybean 

meal, and trypticase were 9 g/L, 4.5 g/L, and 4.5 g/L, respectively.  
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The concentration of hydrogen produced by Thermotoga neapolitana for optimized and 

control groups in the verification experiments were 0.07083 g H2/L medium ( 35.42 

mmol H2/L medium) and 0.05825 g H2/L medium (29.13 mmol H2/L medium) , 

respectively. Therefore, hydrogen concentration increased from the control to optimized 

group was 21.6%.  

 

Hydrogen concentration by the bacterium with optimized medium increased significantly. 

To further increase the productivity, two aspects might be considered. One is the pH drop 

due to organic acid produced during the fermentation process, and the other is hydrogen 

partial pressure inhibition.  The limit of hydrogen partial pressure on the gas phase for 

Caldicellulosiruptor saccharolyticus was 10 to 20 kPa at 70 °C (van Niel et al., 2002). 

From our previous study, the limited hydrogen partial pressure on the gas phase for 

Thermotoga neapolitana was 38kPa at 77 °C (Yu and Drapcho).  In our experiments, the 

hydrogen partial pressure in the headspace was over the limit of hydrogen partial pressure 

calculated. So reducing hydrogen partial pressure and adding more buffer need to be 

considered in the future.  
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CONCLUSION 

 

Thermotoga neapolitana can utilize rice flour as carbon source, and soybean meal as one 

of nitrogen sources to produce hydrogen. In this experiment, uniform design was used to 

optimize the fermentation medium. The optimized medium was 9 g/L rice flour, 4.5 g/L 

soybean meal, and 4.5 g/L trypticase. The hydrogen concentration for this optimized 

medium was 0.07083 ±0.006198 g H2/L medium or 35.42 ±3.10 mmol H2/L medium . 

The increased hydrogen concentration from control medium to optimized medium was 

21.6%. Future experiment will be conducted to reduce hydrogen partial pressure for the 

and optimization of fermentation conditions. 
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ABSTRACT 

 

Thermotoga neapolitana ferments glucose as carbon source to produce acetate, carbon 

dioxide, and hydrogen as major products. The exponential phase of the bacterial growth 

was between 2 and 10 hrs of incubation time. The maximum cell mass concentration was 

reached after 10 hrs of incubation. The stationary phase lasted for 10 hrs, and the death 

phase began at 20 hrs. The pH of broth decreased during the bacterium growth. When pH 

decreased to 5.0, it may inhibit hydrogen production. The maximum hydrogen partial 
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pressure in this study was 45 kPa, and hydrogen partial pressure might inhibit the 

hydrogen production in this batch fermentation due to the limit of hydrogen partial 

pressure of 38 kPa at 77 °C. The maximum specific growth rate ( maxμ ) of Thermotoga 

neapolitana with glucose as carbon source was 0.94 hr-1 at 77 °C. The substrate constant 

(KS) was 0.57 g/L, the observed biomass yield from substrate was 0.25 g/g glucose or 

44.59 g/mol glucose, the observed hydrogen yield from substrate was 0.028 g/glucose or 

2.50 mol H2 /mol glucose, and the observed hydrogen yield from biomass was 0.114 g/g 

dry weight. When glucose concentration was 5.0 g/L, the doubling time was 0.84 hr or  

49 mins at 77 °C.  

 

 

Keywords: biohydrogen; Thermotoga neapolitana ; batch growth; kinetic study  

 

 

INTRODUCTION 

 

Most hyperthermophiles, with a optimum growth temperature between 80 °C and 110 °C, 

belong to the Archaeal domain. A few hyperthermophiles belong to two bacterial orders, 

the Thermotogales and the Aquificales (Stetter, 1996).  The order of Thermotogales 

comprises a group of extremely thermophilic, Gram-negative, rod-shaped, nonsporulating 

bacteria with an outer sheath-like envelope or “toga”. Thermotoga belongs to a very deep 
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phylogenetic branch with the bacterial phylogenetic tree (Jannasch et al., 1988). The 

genera Thermotoga, Thermosipho, Fervidobacterium, Geotoga, Petrotoga, Marinitoga, 

Thermopallium have been described within Thermotogales (Conners et al., 2006; Huber 

and Hannig, 2006). The genera Thermotoga currently include 9 species (T. maritima, T. 

neapolitana, T. thermarum, T. elfii, T. subterranea, T. hypogea, T. petrophila, T. 

naphthophila, T. lettingae). On the basis of 16S rRNA gene sequence analysis, 

Thermotoga marima and Thermotoga neapolitana are closely related (Huber and Hannig, 

2006).  

 

Members of the Thermotogales are strictly anaerobic, fermentative, hyperthermophilic 

bacteria. Thermotoga maritime was originally isolated from a geothermally heated, 

shallow marine sediment at Vulcano, Italy (Huber et al., 1986).  Thermotoga neapolitana 

was firstly obtained from a submarine hot spring near Lucrino , the bay of Naples, Italy 

(Belkin et al., 1986; Jannasch et al., 1988). And Thermotoga elfii was originally isolated 

from an Africa oil production well (Ravot et al., 1995).  The optimal pH for their growth 

is in the range of neutral pH. The optimal temperature for T. maritima and T. neapolitana 

is around 80 °C (Huber et al., 1986; Jannasch et al., 1988). The optimal temperature for 

Thermotoga elfii is 66 °C (Ravot et al., 1995). 

 

Thermotogales can use simple or complex carbohydrates or complex organic matter as a 

carbon source or nitrogen source. Thermotogales can produce lactate, acetate, ethanol,  
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L-alanine, carbon dioxide, and hydrogen when the bacteria utilize glucose as carbon 

source (Huber and Hannig, 2006).  

 

Themotoga maritima completely ferments 1 mol glucose as carbon and energy sources to 

2 mol acetate, 2 mol CO2 and 4 mol H2 through the “classical” Embden-Meyerhof 

pathway. The biomass yield from glucose is 45 g cell mass/mol glucose (Schroder et al., 

1994). Most of the glucose –fermenting anaerobes produce less than 2 mol of acetate and 

4 mol of hydrogen  from 1 mol of glucose; because a various of byproducts, such as 

lactate, ethanol, or butyrate, etc are also produced (Schonheit and Schafer, 1995).  

Thermotoga martima degrades glucose through simultaneous operation of both 

conventional Embdem-Meyerhof glycolytic pathway (85% relative contribution ) and 

conventional phosphorylated Entner-Doudoroff glycolytic pathway (15% relative 

contribution) (Selig et al., 1997). Compared to other completely sequenced microbial 

species, 24% of predicated coding sequences of Thermotoga maritima’s genome 

sequence are homologous to that of archaeal species, which indicate that 

hyperthermophilic archaea and bacteria exchange gene through lateral gene transfer and 

Thermotoga maritima is the most archaea-like bacteria (Nelson et al., 1999). 

 

Most species of Thermotogales produce a certain amount of hydrogen during their 

cultivation. The maximum rate of hydrogen production by Thermotoga elfii was 2.7-4.5 

mmol H2/ (L h) (van Niel et al., 2002).  Themotoga neapolitana accumulated 25-30% 

hydrogen during its incubation (Van Ooteghem et al., 2002; Van Ooteghem et al., 2004; 
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Yu and Drapcho). But hydrogen, as the end-product of fermentation, inhibits the growth 

of Themotogales at high hydrogen partial pressure. For example, hydrogen inhibits the 

growth of Thermotoga maritima on glucose when hydrogen concentration in gas phase is 

greater than 2% (Schroder et al., 1994). This inhibition can be overcome by adding sulfur 

or inorganic sulfur-containing compounds (“detoxification”), flushing with nitrogen, co-

cultivating with hydrogen-consuming hyperthermophiles (Huber et al., 2000; Huber et 

al., 1986). 

 

Most researches focus on the biochemistry of Thermotogales, few researches focus on the 

biohydrogen production by these bacteria (van Niel et al., 2002; Van Ooteghem et al., 

2002). Thermotoga neapolitana have a very strong ability to produce hydrogen and 

biogases produced by this bacterium have less variety (Van Ooteghem et al., 2002). The 

object of the present research is studying the kinetic parameters and physiology of this 

bacterium. Through those researches, we aim to establish an unstructured model for 

future research.  
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MATERIALS AND METHODS 

 

Organism  

 

Thermotoga neapolitana was obtained from DSMZ (the German Resource Centre for 

Biological Material).  

 

Culture Maintenance 

 

Thermotoga neapolitana was maintained on the medium described by Van Ooteghem 

(Van Ooteghem et al., 2002) . The composition of medium is as follows: 1.0 g NH4Cl, 

0.3 g K2HPO4, 0.3 g KH2PO4, 0.2 g MgCl2·2H2O, 0.1 g CaCl2, 10.0 g NaCl, 0.1 g KCl, 

1.0 g Cysteine HCl, 2.0 g yeast extract, 2.0 g Trypticase, 10.0 ml vitamin solution (DSM 

media 141), 10.0 ml trace element solution (DSM media 141), 0.121 g trizma base, 5 g 

glucose, and 1.0 L H2O. The initial pH of the medium was adjusted to 8.5 with NaOH. 

The organism was preserved at 4 °C. 

 

Cultivation Medium and Condition 

 

The initial pH of medium was adjusted to 8.5 with NaOH addition before sterilization. 

500 ml serum bottles containing 200 ml medium were autoclaved in 121 °C for 20 min. 

The bottles were then boiled for 20 min and sparged with N2 for 1 minute. The medium 
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was inoculated with 5 ml volume with sterile syringe. The culture was incubated on an 

orbital shaker bed at 200 rpm and 77 °C.   

 

Analysis Methods 

 

Hydrogen gas in the headspace was sampled by collection with 1 ml tuberculin syringe. 

0.5 ml of gas was injected into gas chromatograph (SRI 8610C, SRI Instruments, 

Torrance, CA 90503) with Thermal Conductivity Detector at 100 °C and Silicon Column 

(25 °C).  The pressure of Argon as carrier gas was 22 psi. 

 

The pressure of the gas in the headspace of each reactor was measured with Traceable 

manometer (Fisher Scientific) after the reactor had cooled to room temperature.  The 

volume of the headspace was 365 ml.  According to ideal gas law, the hydrogen 

concentration was calculated through the equation (1)  

2

2

1

2

1*H
H

P V
C

RT V
=                                                                           (1) 

Here, 
2HC is the hydrogen gas concentration (mol H2 /L medium), 

2HP is the hydrogen 

partial pressure (atm), V1 is the volume of headspace (L), T is the temperature (K), R is 

the universal gas constant (0.0821 L·atm/(mol·K)) , V2 is the volume of medium (L).  The 

Hydrogen partial pressure in 77 °C was also calculated through equation (2). 

 1 2

1 2

P P
T T

=                                                                                      (2) 
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Where, P1 is the pressure of the specific gas pressure of at temperature T1 (K), P2 is the 

press of that gas at temperature T2 (K).  

 

The optical density of the culture was measured at 600 nm with spectrophotometer 

Spectronic 20D+ (Thermo Fisher Scientific, Inc, Waltham, MA 02454).  

 

The measurement of reduced-sugar is modified methods according to the methods 

described by Miller (Miller, 1959) . 

 

Dry weight was measured as following: 30ml of cell culture was centrifuged at 25,000 g 

for 20 min, pellet was washed with 30 basal salt solution, recentrifuged, and heat at  

105 °C until reached constant weight. 

 

The experimental results were analyzed with SAS software (SAS, SAS Institute Inc., 

Cary, NC), 0.05 level of significant was used. 

 

The dissolved concentration of hydrogen was calculated according to Henry’s law,  

 kH= Ca/Pg                                                                                    (3) 

Here, kH is the Henry’s law constant, Ca is the concentration of the specific gas in the 

aqueous phase, Pg is the partial pressure of the specific gas in the gas phase. Because 

Henry’s law constant dependent on temperature, Henry’s law constant can be predicted 

by the following equation.  
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1 1*exp( ( )]solv
H H

Hk k
R T T

ϑ

ϑ

−Δ
= −   (Sander, 1999)                                                 (4) 

Where, Hk is the Henry’s constant at Temperature T ; Hkϑ  is the Henry’s constant at  

298 K, equal to 7.2*10-9  M/Pa for hydrogen;  T  is the temperature (K); Tϑ  is 298 K; and 

- solvH
R

Δ  equal to 500.  

 

A general applicable growth inhibition equation described by Han and Levenspiel can be 

used to calculate hydrogen’s inhibiting effect (Han and Levenspiel, 1988). The equation 

is  

2 2( ) ( ) *(1 / ) *
( )

n
MAX CRIT

S

Sr H r H C C
S K

= −
+

                                (5) 

Equation (5) can be simplified to  

2 2( ) ( ) *(1 / )n
MAX CRITr H r H P P= −                                                    (6) 

Where,  

2( )r H  is the hydrogen production rate,  

n is the degree of inhibition, 

2( )MAXr H  is the maximum hydrogen production rate,  

 P  is hydrogen partial pressure, and CRITP  is the limit of hydrogen partial pressure.  
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RESULTS AND DISCUSSION 

 

Batch Growth  

 

pH values changed during incubation time (Figure 5.1). pH was 7.74 at the beginning of 

incubation and then rapidly dropped during the exponential phase, until reaching 5.06 

around 20 hrs of incubation.  

 

Thermotogales form acetate, lactate, L-alanine, ethanol, carbon dioxide, and hydrogen 

gas as the products from fermentation with glucose as growth carbon sources and energy 

sources (Huber and Hannig, 2006; Ravot et al., 1995; Van Ooteghem et al., 2002; Van 

Ooteghem et al., 2004). The organic acids cause the pH to drop, and the accumulation of 

organic acids also inhibited the reaction of evolving hydrogen. Jannasch et al reported 

that the pH range for growth is between 5.5 and 9 (Jannasch et al., 1988). Van Ooteghem 

also reported that pH of medium dropped from 7.5 to 4.5 within 20 hrs; but if itaconic 

acid was added,  the pH decreased from 7.5 to 5.9 and hydrogen production reached a 

maximum plateau value after 20 hrs (Van Ooteghem et al., 2004). The proton 

concentration affects the yield and rate of hydrogen production, acid pH favors hydrogen 

production (Mu et al., 2006; Nath and Das, 2004), and the range of pH favorable to 

hydrogen production is narrow (Lay, 2000). Therefore, optimizing pH or blocking the 

formation of organic acids becomes necessary.  
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Figure 5.1. The pH value of medium, the dry weight of cell mass and the concentration of 
reduce sugar with incubation time of Thermotoga neapolitana with glucose as the sole 
carbon source.  
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In Figure 5.1, cell mass reached the maximum dry weight  of 0.22 g/L after 10 hrs 

cultivation, then cell mass gradually decreased for 10 hrs. The pH was around 5.6 at  

10 hrs, which might have inhibited the growth of the bacterium. After 20 hrs incubation, 

cell mass had a big decrease due to the rate of cell death being greater than the rate of cell 

growth. After 20 hrs, cell mass did not decline like the death phase of the typical bacterial 

growth phase. We used optical density to measure the cell mass. Optical density measure 

the total mass of cells rather than the mass of living cells. 

 

Childers reported the maximum growth was reached in 24 hrs (Childers et al., 1992). 

While van Ooteghem reported the log phase of this bacterium began at 6 hrs, and 

maximum cell density was achieved after 14 hrs at 70 °C (Van Ooteghem et al., 2004).  

From our study, lag phase lasted for 2 hrs, and exponential phase lasted for 8 hrs from 2 

to 10 hrs. The bacterium reached maximum cell mass at 10 hrs. After 10 hrs, cell growth 

entered stationary phase and lasted for 10 hrs. Death phase of cell growth began at 20 hrs. 

Temperature may be the reason for different results, since this study used optimal 

temperature of the bacterium (77 °C).  

 

In Figure 5.1, the concentration of glucose kept constant for 4 hrs in the beginning of 

incubation. After that, the concentration of glucose rapidly decreased from 5.1 to 3.8 g/L 

in 10 hrs. The concentration of glucose slowly decreased from 3.8 to 3.1 g/L during the 

incubation period from 10 to 20 hrs. Glucose concentration remained constant after  
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20 hrs incubation, which again verified the conclusion made from cell mass 

measurement. This result was also consistent the changing pH over time. The pH drop 

was an important factor to inhibit the bacterium growth, since carbon substrate was not 

depleted in this experiment. The pH value kept stable after 20 hrs of incubation due to the 

rate of cell death being larger than that of cell growth.  Alkali substrate released when 

only a few cells lyses after 20 hrs incubation, which react with organic acids produced by 

the bacterium, so pH is kept constant. 

 

Total Pressure 

 

Total pressure readings at 25 ºC and hydrogen concentration are shown in Figure 5.2. The 

total pressures of gas in the headspace of medium measured at room temperature were 

decreasing during first 6 hrs of incubation. Then, it continuously increased for 6 hrs 

before becoming constant (Figure 5.2).  A slight decrease then increase of total pressure 

occurred in all four replicate reactors.  
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Figure 5.2. Total pressure of gas and percentage of hydrogen concentration produced by 
Thermotoga neapolitana with incubation time. 
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In Figure 5.3, hydrogen partial pressure produced by Thermotoga neapolitana in the 

headspace was 0 kPa in the beginning of the incubation. It increased to the maximum 

value of 38 kPa (measured at 25 °C or equivalent to 45 kPa at 77 °C) in 12 hrs incubation 

and then kept stable afterward, while the cell mass kept constant after 10 hrs incubation 

(Figure 5.2). The effect of hydrogen inhibition lagged behind cell mass, and the 

bacterium still released biogas in that time. After 12 hrs, bacterium did not produce 

hydrogen due to hydrogen inhibition and/or a decrease in pH.  
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concentration (mmol H2/L medium) produced by Thermotoga neapolitana with glucose 
as the sole carbon source with incubation time. 
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Hydrogen partial pressure is an important factor to inhibit hydrogen production (Claassen 

et al., 1999). The limit of hydrogen partial pressure was 2,000 Pa for Pyrococcus furiosus 

at 98 °C (Parameswaran et al., 1988), and 10,000 – 20,000 Pa for Caldicellulosiruptor 

saccharolyticus at 70 °C (van Niel et al., 2003). From our study, the limit of hydrogen 

partial pressure for Thermotoga neapolitana growth at 77 °C was 38 kPa when Han and 

Levenspiel equation (equation (6)) as described by van Neil et al was used (van Niel et 

al., 2003).  In Figure 5.3, the hydrogen partial pressure passed over this limit after 10 hrs, 

and hydrogen partial pressure still increased after 10 hrs. However, the rate of hydrogen 

pressure production was decreased, and hydrogen partial pressure stopped increasing 

after 12 hrs. The reason for this is that hydrogen is the end-product of fermentation, and 

hydrogen partial pressure inhibits the evolving of hydrogen through negative feedback 

inhibition.  

 

According to Henry’s law, using Equation (3), when the Henry’s law constant is 

 6.02 X10-9 M/Pa, the concentration of hydrogen dissolved in medium was 229 µM at the 

limit hydrogen partial pressure at 77 °C, and hydrogen concentration was 271 µM at 

hydrogen partial pressure of 45 kPa. However, according to Perry’s data (Perry and 

Green, 1999), Hk increase with temperature grater than 70 °C. So, using the Hk of   

7.29 X10-9 M/Pa, the dissolved hydrogen concentration was 277 µM at the limit 

hydrogen partial pressure of 38 kPa at 77 °C, and hydrogen concentration was 327 µM at 

hydrogen partial pressure of 45 kPa at 77 °C.  
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The trend of the concentration of hydrogen production by Thermotoga neapolitana with 

glucose as carbon source was similar to of the hydrogen partial pressure by the 

bacterium, as shown in Figures 5.2 and 5.3. The maximum hydrogen concentration by the 

bacterium was 26.64 mmol/L medium or 29% at 12 hrs incubation, after 12 hrs, the 

hydrogen concentration stayed stable. The maximum rate of hydrogen production by 

Thermotoga neapolitana was 4.48 mmol H2/(L·h) at 77 °C between 6 and 8 hrs of 

incubation.  

 

Cell Mass Changed with Different Concentration of Glucose  

 

In Figure 5.4, the growth rate of Thermotoga neapolitana at the exponential phase was 

different when different concentrations of glucose. A higher concentration of glucose 

resulted in a faster growth of the bacterium. So the growth rate of the bacterium was 

     r15g/L glucose > r10g/L glucose >r7.5g/L glucose >r5g/L glucose >r2.5g/L glucose . 

But all of them had same maximum of cell mass in the end of exponential phase.  
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Kinetic Parameters 

 

Biomass yield and product yield were calculated as 0.25 g/g glucose or 44.59 g/mol 

glucose for the observed biomass yield from substrate, 0.028 g H2/glucose or 2.50 mol H2 

/mol glucose for the observed hydrogen yield from substrate, and 0.114 g H2/g dry weight 

for the observed hydrogen yield from biomass.  

 

            
max max

1 1 1*SK
Sμ μ μ

= +                                                         (7) 

Here, μ  is specific growth rate of bacterium, maxμ  is maximum specific growth rate, sK  

is the substrate constant, and S is the concentration of growth-limiting substrate.  

 

The Monod model is a classic model to describe bacterial growth with one substrate as 

growth-limiting substrate. According to the data we acquired, the parameters were 

calculated according to the Lineweaver-Burk plot (Equation (7)) from the Monod model 

with intercept equals to
max

1
μ

 , and slope equals to
max

SK
μ

(Figure 5.5).  
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Figure 5.5. Lineweaver-Burk Plot for specific growth rate vs. substrate concentration of 
Thermotoga neapolitana. 
 

 

The maximum specific growth rate ( maxμ ) of Thermotoga neapolitana growth with 

glucose as carbon source was 0.94 hr-1 at 77 °C. The substrate constant (KS) was 0.57 

g/L. When glucose concentration was 5.0 g/L, the doubling time was 0.84 hr or 49 mins.  

 

The observed biomass yield for Thermotoga maritima was 45 g /mol glucose when 

glucose is converted to acetate, CO2 and H2 as fermentation products (Schroder et al., 

1994). Therefore, the observed biomass yield from glucose in this experiment was 

parallel to the results for Thermotoga maritima.  Jannasch et al also reported the doubling 

time for Thermotoga neapolitana was 45 mins in agreement to our data (Jannasch et al., 

1988). van Niel et al reported the maximum hydrogen production rate by Thermotoga 
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maximum hydrogen production rate by Thermotoga neapolitana at 70 °C was 0.597 

mmol H2/(L·h), so 4.48 mmol H2/(L·h) of the maximum rate of hydrogen production by 

Thermotoga neapolitana matched the result from van Niel et al.  

 

   C6H12O6 +2H2O 2 CH3COOH + 4H2 +2CO2                                                                      (8) 

 

The observed hydrogen yield from substrate was 2.50 mol H2 /mol glucose in this study. 

But the theoretical maximum yield for dark fermentation is 4 mol H2/mol glucose from 

the equation (8) (Thauer, 1976). The equations (8) used so far to describe biohydrogen 

production through dark-fermentation did not include cell mass, and hydrogen is a 

growth-associated product. Therefore, it is important to include cell mass in the equation 

to precisely describe the process. Schroder et al also reported 1 mol of glucose consumed 

by Thermotoga maritima form 2 mol acetate, 2 mol CO2, and 4 mol H2 (Schroder et al., 

1994). van Ooteghem et al also reported the ratio of H2/CO2 produced by Thermotoga 

neapolitana is 2:1 (Van Ooteghem et al., 2004). The elemental composition of the cell 

mass of Themotoga neapolitana was assumed to be CH1.8O0.5N0.2 (molecular weight is 

24.6 g/mol) (Doran, 1995). When those assumptions were combined with the kinetic 

coefficients from this study, a revised equation was used as follows:  

C6H12O6 + 0.5H2O + 0.34NH3  1.72CH1.8O0.5N0.2 + 1.25CH3COOH + 

 2.50H2 +1.25CO2                                                                                                                                                        (9) 
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According to this new equation, the calculations of elemental mass weight for both side 

of equation for carbon, hydrogen, and oxygen were closely matched (9% different for 

carbon, 4% different for hydrogen, and 10% different for oxygen). 

 

 

CONCLUSION 

 

Thermotoga neapolitana, a hypertheromophilic bacterium, ferments glucose to produce 

acetate, carbon dioxide, and hydrogen as major fermentation products. The growth curve 

of this bacterium was typical bacterial growth curve. When glucose was the carbon 

source and energy source, the exponential phase was between 2 and 10 hrs of incubation, 

the maximum cell mass concentration was reached after 10 hrs of incubation, the 

stationary phase lasted for 10 hrs, and the death phase began at 20 hrs. 

  

pH and hydrogen partial pressure are two important factors that affect the hydrogen 

production and bacterial growth. The pH of broth was decreased due to acetate and/or 

other organic acid accumulated as end-products of the bacterium growth. When pH 

decreased to 5.0, it appears to inhibit hydrogen production. The maximum hydrogen 

partial pressure in this study was 45 kPa at 77 °C, which is larger than the limit of 38 kPa 

according to our estimation based on the growth inhibition equation. Therefore, hydrogen 
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partial pressure may inhibit the hydrogen production in this batch fermentation. More 

experiments will be required in the future to study hydrogen production inhibitors.   

 

The maximum specific growth rate ( maxμ ) of Thermotoga neapolitana growth with 

glucose as carbon source was 0.94 hr-1 at 77 °C. The substrate constant (KS) was 0.57 

g/L, the observed biomass yield from substrate was 0.25 g/g glucose or 44.59 g/mol 

glucose, the observed hydrogen yield from substrate was 0.028 g H2/glucose or 2.50  

mol H2 /mol glucose, and the observed hydrogen yield from biomass was 0.114 g/g dry 

weight. When glucose concentration was 5.0 g/L, the doubling time was 0.84 hr or 49 

mins at 77 °C.  

 

The equation,  

C6H12O6 + 0.5H2O + 0.34NH3  1.72CH1.8O0.5N0.2 + 1.25CH3COOH + 

2.50H2+1.25CO2, may be use to described the hydrogen production by Thermotoga 

neapolitana with glucose as the growth-limiting substrate.  

 

 

Acknowledgments 

 

This research was supported by funding of Department of Agricultural and Biological 

Engineering, Clemson University. Yu was partially supported by the Stackhouse 

fellowship of the College of Agricultural, Forest, and Life Science, Clemson University.  



 101

REFERENCES 

 

Belkin, S., Wirsen, C.O., Jannasch, H.W., 1986. A New Sulfur-Reducing, Extremely 
Thermophilic Eubacterium from a Submarine Thermal Vent. Applied and 
Environmental Microbiology, 51, 1180-1185. 

Childers, S.E., Vargas, M., Noll, K.M., 1992. Improved Methods for Cultivation of the 
Extremely Thermophilic Bacterium Thermotoga neapolitana. Appl Environ 
Microbiol, 58, 3949-3953. 

Claassen, P.A.M., van Lier, J.B., Contreras, A.M.L., van Niel, E.W.J., Sijtsma, L., Stams, 
A.J.M., de Vries, S.S., Weusthuis, R.A., 1999. Utilisation of biomass for the 
supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741-755. 

Conners, S.B., Mongodin, E.F., Johnson, M.R., Montero, C.I., Nelson, K.E., Kelly, R.M., 
2006. Microbial biochemistry, physiology, and biotechnology of 
hyperthermophilic Thermotoga species. Fems Microbiology Reviews, 30, 872-
905. 

Doran, P.M., 1995. Bioprocess Engineering Principles. Academic Press San Diego, CA. 

Han, K., Levenspiel, O., 1988. Extended Monod Kinetics for Substrate, Product, and 
Cell-Inhibition. Biotechnology and Bioengineering, 32, 430-437. 

Huber, R., Hannig, M., 2006. Thermotogales. in: M. Dworkin (Ed.) Prokaryotes. Springer 
New York, pp. 899. 

Huber, R., Huber, H., Stetter, K.O., 2000. Towards the ecology of hyperthermophiles: 
biotopes, new isolation strategies and novel metabolic properties. Fems 
Microbiology Reviews, 24, 615-623. 

Huber, R., Langworthy, T.A., Konig, H., Thomm, M., Woese, C.R., Sleytr, U.B., Stetter, 
K.O., 1986. Thermotoga-Maritima Sp-Nov Represents a New Genus of Unique 
Extremely Thermophilic Eubacteria Growing up to 90-Degrees-C. Archives of 
Microbiology, 144, 324-333. 

Jannasch, H.W., Huber, R., Belkin, S., Stetter, K.O., 1988. Thermotoga-Neapolitana Sp-
Nov of the Extremely Thermophilic, Eubacterial Genus Thermotoga. Archives of 
Microbiology, 150, 103-104. 

Jannasch, H.W., Huber, R., Belkin, S., Stetter, K.O., 1988. Thermotoga neapolitana sp. 
nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch 
Microbiol, 1988, 103-4. 



 102

Lay, J.J., 2000. Modeling and optimization of anaerobic digested sludge converting 
starch to hydrogen. Biotechnology and Bioengineering, 68, 269-278. 

Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing 
sugar. Anal. Chem., 31, 426. 

Mu, Y., Yu, H.Q., Wang, Y., 2006. The role of pH in the fermentative H-2 production 
from an acidogenic granule-based reactor. Chemosphere, 64, 350-358. 

Nath, K., Das, D., 2004. Improvement of fermentative hydrogen production: various 
approaches. Applied Microbiology and Biotechnology, 65, 520-529. 

Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, 
E.K., Peterson, L.D., Nelson, W.C., Ketchum, K.A., McDonald, L., Utterback, 
T.R., Malek, J.A., Linher, K.D., Garrett, M.M., Stewart, A.M., Cotton, M.D., 
Pratt, M.S., Phillips, C.A., Richardson, D., Heidelberg, J., Sutton, G.G., 
Fleischmann, R.D., Eisen, J.A., White, O., Salzberg, S.L., Smith, H.O., Venter, 
J.C., Fraser, C.M., 1999. Evidence for lateral gene transfer between Archaea and 
Bacteria from genome sequence of Thermotoga maritima. Nature, 399, 323-329. 

Parameswaran, A.K., Su, W.W., Schicho, R.N., Provan, C.N., Malik, B., Kelly, R.M., 
1988. Engineering Considerations for Growth of Bacteria at Temperatures around 
100-Degrees-C. Applied Biochemistry and Biotechnology, 18, 53-73. 

Perry, R.H., Green, D.W., 1999. Perry's Chemical Engineers' Handbook. seventh ed. the 
McGraw-Hill Companies, Inc. . 

Ravot, G., Magot, M., Fardeau, M.L., Patel, B.K.C., Prensier, G., Egan, A., Garcia, J.L., 
Ollivier, B., 1995. Thermotoga Elfii Sp-Nov, a Novel Thermophilic Bacterium 
from an African Oil-Producing Well. International Journal of Systematic 
Bacteriology, 45, 308-314. 

Sander, R., 1999. Compilation of Henry's Law Constants for Inorganic and Organic 
Species of Potential Importance in Environmental Chemistry. 

Schonheit, P., Schafer, T., 1995. Metabolism of Hyperthermophiles. World Journal of 
Microbiology & Biotechnology, 11, 26-57. 

Schroder, C., Selig, M., Schonheit, P., 1994. Glucose Fermentation to Acetate, Co2 and 
H-2 in the Anaerobic Hyperthermophilic Eubacterium Thermotoga-Maritima - 
Involvement of the Embden-Meyerhof Pathway. Archives of Microbiology, 161, 
460-470. 

 



 103

Selig, M., Xavier, K.B., Santos, H., Schonheit, P., 1997. Comparative analysis of 
Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in 
hyperthermophilic archaea and the bacterium Thermotoga. Archives of 
Microbiology, 167, 217-232. 

Stetter, K.O., 1996. Hyperthermophilic procaryotes. Fems Microbiology Reviews, 18, 
149-158. 

Thauer, R., 1976. Limitation of microbial H2-formation via ferementation. in: H.G. 
Schlegel, Barnea, J. (Ed.) Microbial Energy Conversion. Erich Goltze KG, 
Gottingen, pp. 201-4. 

van Niel, E.W.J., Budde, M.A.W., de Haas, G.G., van der Wal, F.J., Claasen, P.A.M., 
Stams, A.J.M., 2002. Distinctive properties of high hydrogen producing extreme 
thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. 
International Journal of Hydrogen Energy, 27, 1391-1398. 

van Niel, E.W.J., Claassen, P.A.M., Stams, A.J.M., 2003. Substrate and product 
inhibition of hydrogen production by the extreme thermophile, 
Caldicellulosiruptor saccharolyticus. Biotechnology and Bioengineering, 81, 255-
262. 

Van Ooteghem, S.A., Beer, S.K., Yue, P.C., 2002. Hydrogen production by the 
thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol, 98-
100, 177-89. 

Van Ooteghem, S.A., Beer, S.K., Yue, P.C., 2002. Hydrogen production by the 
thermophilic bacterium Thermotoga neapolitana. Applied Biochemistry and 
Biotechnology, 98, 177-189. 

Van Ooteghem, S.A., Jones, A., van der Lelie, D., Dong, B., Mahajan, D., 2004. H-2 
production and carbon utilization by Thermotoga neapolitana under anaerobic and 
microaerobic growth conditions. Biotechnology Letters, 26, 1223-1232. 

Van Ooteghem, S.A., Jones, A., Van Der Lelie, D., Dong, B., Mahajan, D., 2004. H(2) 
production and carbon utilization by Thermotoga neapolitana under anaerobic and 
microaerobic growth conditions. Biotechnol Lett, 26, 1223-32. 

Yu, X., Drapcho, C.M., Screen carbon sources and nitrogen sources for biohydrogen 
production of  hyperthemophile Thermotoga neapolitana In preparation. 

 
 
 
 

 



 104

CHAPTER VI 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

CONCLUSIONS 

 

The ultimate goal of this study was to produce hydrogen by Thermotoga neapolitana 

utilizing agricultural feedstocks. To reach this goal, difference carbon sources and 

nitrogen sources need to be screened, and physiology and fermentation characteristics of 

this hypertheromophilic bacterium should be known. 

Carbon sources affected the incubation time of Thermotoga neapolitana to produce 

hydrogen. For most monosaccharides or oligosaccharides, 20 hrs incubation could be 

selected as good choice. But for polysaccharides or agriculture waste, 36 hrs incubation 

was necessary. The exactly incubation time for each carbon sources needs to be decided 

through experiments.  

Thermotoga neapolitana can utilize different carbon sources to produce hydrogen. Ten 

carbon sources, glucose, sucrose, xylan, rice flour, cellobiose, corn starch, starch, beet 

pulp pellet, and cellulose, were screened. Among those carbon sources, sucrose, rice 

flour, and xylan were nearly as good as glucose as a carbon source for the bacterium to 

produce hydrogen.  
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Trypticase was a vital part of the nitrogen source. Trypticase combined with alternative 

nitrogen sources can efficiently increases the yield of hydrogen produced by Thermotoga 

neapolitana. Without the combination of nitrogen sources and trypticase, bacterium 

might not produce high yield of hydrogen. Soybean meal, and canola meal were 

promising nitrogen sources to replace yeast extract.  

 

A completely randomized design experiment to screen three selected carbon sources, 

glucose, sucrose, and rice flour, with three selected nitrogen sources, yeast extract, 

soybean meal, and canola meals, were completed. From this experiment, sucrose and rice 

flour were promising carbon sources to replace glucose as carbon source, soybean meals 

was promising nitrogen source to replace yeast extract as nitrogen source. 

 

Uniform design was used to attempt optimization of the fermentation medium with rice 

flour as carbon source, and soybean meal and trypticase as dual nitrogen sources. The 

optimized medium was 9 g/L rice flour, 4.5 g/L soybean meal, and 4.5 g/L trypticase. 

The hydrogen concentration for this optimized medium was 0.07083 ±0.006198 g/L. The 

increased hydrogen concentration from control medium to optimized medium was 21.6%.  

 

The growth curve of Thermotoga neapolitana was a typical bacterial growth curve. When 

glucose was carbon source and energy source, the exponential phase was between 2 and 
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10 hrs of incubation, the maximum cell mass concentration was reached after 10 hrs of 

incubation, the stationary phase lasted for 10 hrs, and the death phase began at 20 hrs.  

pH and hydrogen partial pressure are two important factors that affect the hydrogen 

production and bacterial growth. The pH of broth was decreased due to acetate and/or 

other organic acid accumulated as end-products of the bacterium growth. When pH 

decreased to 5.0, it appears to inhibit hydrogen production. The maximum hydrogen 

partial pressure in this study was 45 kPa, which is larger than the limit of 38 kPa 

according to our estimation based on growth inhibition equation. Therefore, hydrogen 

partial pressure may inhibit the hydrogen production in this batch fermentation. More 

experiments will be required in the future to study hydrogen production inhibitors.   

 

The maximum specific growth rate ( maxμ ) of Thermotoga neapolitana growth with 

glucose as carbon source was 0.94 hr-1. The substrate constant (KS) was 0.57 g/L, the 

observed biomass yield from substrate was 0.25 g/g glucose or 44.59 g/mol glucose, the 

observed hydrogen yield from substrate was 0.028 g H2/glucose or 2.50 mol H2 /mol 

glucose, and the observed hydrogen yield from biomass was 0.114 g/g dry weight. When 

glucose concentration was 5.0 g/L, the doubling time was 0.84 hr or 49 mins. The 

equation, C6H12O6 + 0.5H2O + 0.34NH3  1.72CH1.8O0.5N0.2 + 1.25CH3COOH + 

2.50H2+1.25CO2, may be use to described the hydrogen production by Thermotoga 

neapolitana with glucose as the growth-limiting substrate.  
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RECOMMENDATIONS 

 

Thermotoga neapolitana has very strong ability to utilize different carbon or nitrogen 

sources, so a wide range of agricultural feedstocks, agricultural waste, municipal waste, 

and manufacture waste need to be considered. Since Thermotoga neapolitana has low 

ability to utilize cellulose material from this study and other studies. Vrije et al reported 

Thermotoga elfii utilizes pretreated Miscanthus and produces a significant amount of 

hydrogen (Vrijie et al., 2002), so proper pretreatment will be necessary for cellulose 

material used by Thermotoga neapolitana. 

 

pH is an important inhibitor for hydrogen production by Thermotoga neapolitana. Adding 

chemicals or mixed culture with acid-consumed bacteria may be the way to solve the 

problem of pH drop. Hydrogen partial pressure is another important inhibitor for 

hydrogen production by Thermotoga neapolitana. So reducing hydrogen partial pressure 

in the headspace needs be more considered than other.  

 

Continuous cultivation of Thermotoga neapolitana need be studied in the future, because 

biohydrogen need be continuously produced by this bacterium during whole incubation. 

There are several problems need be considered during this operation, such as, insulation, 

high-temperature cultivation, anaerobic cultivation, pH drop, hydrogen partial pressure, 

etc. 
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APPENDIX A 

 

THE COMPOSITION OF CARBON SOURCES 

 

 

Rice Flour 

 

Protein           6.0-9.0% 

Fat                  0.4-1.0% 

Crude Fiber    0.3-1.0% 

Ash                 0.6-0.8% 

Moisture         8.5-13.0% 

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm 

 

 

Beet Pulp Pellets 

 

Crude Protein    7.0% 

Crude Fat           0.5-0.6% 

Crude Fiber       15.0- 20.0% 

Ash                    4.0-5.0% 
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Moisture            8.0-12.0% 

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm 

 

 

Corn Starch 

 

Carbohydrate          87.5-89.5% 

Moisture                  10.0-13.0% 

Protein                     <0.1% 

Fat                            0.2% 

Ash                           0.2% 

Crude Fiber              0.1% 

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm 
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Xylan  (Oats Spelts)  

 

Xylose                  70.2% 

Glucose                 9.1% 

Arabinose              6.2% 

From Tokyo Kasei Company. 
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APPENDIX B 

 

THE COMPOSITIONS OF NITROGEN SOURCES 

 

 

Yeast Extract  

 

Typical Analysis 

Total Solids                         95% 

Organic Solids                     84-85% 

Total Nitrogen                     10-11% 

Protein (N x 6.25)                62-68% 

Ash                                       11-12% 

Chloride (as NaCl)               2-3% 

pH (aqueous soln.)               5-5.5% 

 

Typical Amino Acid Profile (as % of Protein)  

Arginine            4.1%                                    Cystine               1.4%                

Histidine            1.9%                                    Methionine         1.1% 

Lysine                7.2%                                    Threonine           3.9% 

Tyrosine            1.9%                                    Leucine               5.7% 

Tryptophan        0.7%                                    Isoleucine           4.4% 
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Phenylalanine    3.5%                                   Valine                  5.2% 

 

http://www.mpbio.com/product_info.php?cPath=491_1_12&products_id=194027&depth

=nested&keywords=yeast%20extract 

 

 

TrypticaseTM peptone   

 

Nitrogen Content/Physical Characteristics 

Total Nitrogen (TN)                  14.2 % 

Amino Nitrogen (AN)                5.2 % 

AN/TN                                        0.37 % 

Ash                                              5.7 % 

Loss on Drying                            4.0 % 

NaCl                                             0.1 % 

pH (2% Solution)                         7.2 

 

Elemental Analysis 

Calcium                                        295 ( µg/g) 

Magnesium                                  110 ( µg/g) 

Potassium                                     588 ( µg/g) 

Sodium                                         26600 ( µg/g) 
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Chloride                                       0.09 % 

Sulfate                                          0.18 % 

Phosphate                                     2.54 % 

 

Amino Acid Analysis  

                                       Free         Total                                               Free              Total  

Arginine                         2.3 %         4.8 %        Cystine                         0.3 %              * 

Histidine                        0.6 %         4.8 %        Methionine                  1.1 %          2.5 %  

Lysine                           3.3 %        10.6 %      Threonine                      0.6 %          2.4 % 

Tyrosine                        0.4 %        1.6 %       Leucine                          5.3 %          10.4 % 

Tryptophan                    0.8 %        *               Isoleucine                      1.1 %           8.3 % 

Phenylalanine                2.7 %        7.1 %        Valine                           1.5 %           9.1 % 

Aspartic Acid                 0.2 %        7.7 %       Glutamic Acid               1.1 %         13.2 % 

Proline                            0.2 %        10.9 %     Glycine                          0.1 %          6.3 % 

Serine                              0.8 %         2.5 %       Alanine                         0.9 %           5.7 % 

 

http://www.bd.com/ds/technicalCenter/typicalAnalysis/typ-trypticase_peptone.pdf 
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Soybean Meal 

 

Dry matter                               89 % 

Crude Protein                          48.0 % 

Fat                                           1.0 % 

Crude Fiber                              3.0 % 

Neutral Detergent Fiber          7.1 % 

Acid Detergent Fiber                5.3 % 

Calcium                                     0.2 % 

Phosphorus                                0.65 % 

Total Digestible Nutrients         78.0 % 

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm 

 

 

Canola Meal 

 

 Typical Analysis 

Dry matter              91.5 % 

Crude Protein         36.0 % 

Ether Extract          3.5 % 

Crude Fiber             11.7 % 
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Ash                          6.8 % 

 

Typical Amino Acid Analysis 

Crude Protein         36.0 % 

Methionine             0.74 % 

Cystine                    0.91 % 

TSAA                      1.65 % 

Lysine                      2.10 % 

Tryptophan              0.46 % 

Threonine                1.61 % 

Arginine                  2.12 % 

Isoleucine                1.38 % 

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm 

 

 

Linseed meal  

 

Dry matter                                   94 %                

Crude Protein                              41.0 % 

Fat                                               4.5 %     

Crude Fiber                                 12.5 % 
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Neutral Detergent Fiber               26.3 % 

Acid Detergent Fiber                   18.8 % 

Calcium                                        0.15 % 

Phosphorus                                   1.10 % 

Total Digestible Nutrients            70.0 % 

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm 

 

 

Fish meal  

 

Dry matter                                   92 %                

Crude Protein                              62.0 % 

Fat                                               9.8 %     

Crude Fiber                                 1.0 % 

Neutral Detergent Fiber               0.0 % 

Acid Detergent Fiber                   0.0 % 

Calcium                                        5.0 % 

Phosphorus                                   3.0 % 

Total Digestible Nutrients            71.0 % 

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm 
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Cottonseed Meal 

 

Dry matter                                   94 %                

Crude Protein                              41.0 % 

Fat                                               4.5 %     

Crude Fiber                                 12.5 % 

Neutral Detergent Fiber               26.3 % 

Acid Detergent Fiber                   18.8 % 

Calcium                                        0.15 % 

Phosphorus                                   1.1 % 

Total Digestible Nutrients           72.0 %   

 

http://www.labudde.com/LaBudde_Group_Ingredients.htm                                  
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