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ABSTRACT 

 

 

This study tested enumeration techniques for high fat food matrices and 

determined thermal death times in rendering animal products. Standard Class O 

phosphate/magnesium chloride dilution buffer series (Dilution Series A) and a modified 

(pre-warmed to 32ºC) lecithin phosphate dilution buffer series (Dilution Series B) were 

used to enumerate a Salmonella cocktail from both poultry and beef rendering materials. 

Results of this study indicate use of a modified lecithin buffer did not improve 

Salmonella enumeration accuracy from rendering materials. Instead, the results suggested 

use of xylose lysine deoxycholate agar (XLD) with either buffer system accurately 

enumerated Salmonella from rendering materials. 

The thermal death of four pathogenic strains of Salmonella recognized by the 

FDA as hazardous in animal feeds (Salmonella Choleraesuis (SC), Salmonella Enteriditis 

(SE), Salmonella Newport (SN), and Salmonella Dublin (SD)) was not a straight line 

decrease. After periods of appearing to be destroyed, some cultures reappeared at later 

treatment times. In thermal treatments up to 420 s at 240ºF (115.6ºC), SC was last 

detected at 120 s, SE at 120 s, SN at 300 s and SD at 360 s in inoculated beef rendering 

materials. In thermal treatments up to 420 s at 240ºF (115.6ºC), SC, SE, SN, and SD were 

last detected at 360 s, respectively, in inoculated poultry rendering materials. Controls 

indicated thermally resistant strains in the background of both beef and poultry rendering 

materials which when tested using standard FDA Bacteriological Analytical Manual 

(BAM) techniques indicated Salmonella. Hypotheses to explain the results of this study 

include: 1) thermally resistant sub-particles such as bone or tissue protected bacteria from 
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thermal treatment; 2) presence of thermally resistant species in the background of 

rendering samples caused false positive results on BAM procedures; or 3) presence of 

thermally resistant Salmonella. Further research will need to be conducted at 240ºF 

(115.6ºC) for longer time intervals to ensure that SC, SE, SN and SD are destroyed and to 

identify the impact of particles on thermal conductivity through the rendering matrices. 

Additionally, future experimentation will be needed to verify that the microorganisms 

identified are indeed Salmonella or other another microorganism(s) cross-reacting as 

Salmonella. 
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CHAPTER 1 

 

LITERATURE REVIEW 

Introduction 

Rendering is the recycling of residual animal tissue from food animals into stable, 

value-added materials for animal feeds, chemical feedstocks, and fertilizers. 

Approximately 50% of a food animal is considered edible; the remainder of the animal 

tissue is rendered into animal co-products (Meeker and Hamilton 2006). Non-utilization 

of animal co-products would create major aesthetic and potentially disastrous public 

health problems since these organic materials are highly perishable and laden with 

microorganisms, many of which can cause disease in both humans and animals (Meeker 

and Hamilton 2006). 

Approximately 8 billion chickens, 1.6 billion turkeys, 100 million hogs, and 35 

million cattle are slaughtered and processed each year in the United States (Meeker and 

Hamilton 2006; Richardson 2006). However, on average, only 51% of the live weight of 

cattle, 56% of the live weight of hogs, 63% of the live weight of broilers, and 43% of the 

live weight of most fish species can be considered edible by Americans and Canadians 

(Meeker and Hamilton 2006). Due to various dietary practices and taste preferences 

around the world, the term “edible” may be construed in different ways depending on the 

region or country. However, non-carcass materials such as liver, tongue, heart, kidney, 

thymus, stomach, cheeks, head trimmings, blood, lungs, fat, and bones are a source of 

nutrients and can be consumed by animals if properly processed by the rendering industry 

(Ockerman and Hansen 2000; Dos Santos 2013). In addition to non-carcass material, 
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increasing amounts of waste ready-to-eat (RTE) and/or heat-and-eat packaged foods are 

processed by the rendering industry (Kinley 2009). The rendering industry also processes 

waste cooking fats and oils from restaurants. The United States and Canadian rendering 

industry annually recycles over 61 billion pounds of residual products into animal feeds, 

fats and proteins to prevent waste of these materials and the overfilling of landfills. The 

rendering facilities predominantly produce meat and bone meal, poultry meal, hydrolyzed 

feather meal, blood meal, fish meal, and animal fats. In the United States, the rendering 

industry annually produces approximately 11.2 billion pounds of protein and 10.9 billion 

pounds of fats. Approximately 85% of rendered products are used as animal feed 

ingredients for livestock and pets (Meeker and Hamilton 2006). However, the National 

Renderers Association has reported over 3000 rendering product industrial applications 

identified in many areas including personal care, biofuel, and chemical industries 

(Meeker and Hamilton 2006).  

Certain provisions are necessary for animal co-products to be effectively used. 

These requirements include a sufficient volume of animal co-products in a centralized 

location, a method to commercially process animal co-products into marketable goods, an 

efficient market to sell products produced from animal co-products, and storage systems 

for finished animal co-products. Not meeting these requirements leads to under-

utilization of animal co-products (Ockerman and Hansen 2000; Clemen 1927). 

The Rendering Process 

Rendering is a process that involves heat and other procedures to separate water, 

fat, and protein contained in animal tissues. The temperature and length of time of the 



3 

 

cooking process can impact the quality of the finished product. Despite the type of raw 

material being processed, the rendering process is comprised of several universal phases 

(ICMSF 2000; Kinley 2009). Initially all raw material is transported to an area in the 

rendering plant where, if necessary, it is pre-crushed to reduce size prior to being fed onto 

a conveyer that transfers it into the cooker. The basic process involves collecting and 

sizing raw material as needed, heating to remove the water, removing the fat by draining 

and/or pressing, cooling, milling, and storing. Many variations of these operations have 

been developed according to the type of raw material, machinery, and the facility 

(ICMSF 2000). Raw animal materials vary but these materials typically contain 

approximately 60% water, 20% protein and mineral, and 20% fat before the rendering 

process (Meeker and Hamilton 2006).  

Without barriers and other protections, the aerosols generated during raw material 

crushing have the potential to spread contaminating microbes in the rendering facility 

including areas where the finished product is handled (ICMSF 2000; Swingler 1982). The 

rendering cooking process is reported to be 40 to 90 min at 240 to 290ºF (115.6 to 

143.3ºC) (Meeker and Hamilton 2006). Process control is performed and monitored via 

computers so that time/temperature processes for appropriate moisture loss is achieved. 

However, the exact time and temperature relationship for thermal death of specific 

microorganisms has not been established in rendering matrices. It has been demonstrated 

that the high fat and low water environment of batch dry rendered material will protect 

bacterial spores against thermal inactivation (Lowry et al. 1979; ICMSF 2000). 
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Therefore, some marginal processing conditions could result in finished products 

containing bacterial spores or other heat-resistant biological materials.  

In North America, most of the rendering facilities utilize continuous-flow, dry 

rendering units. Only large animals such as cattle and hogs are crushed or chopped prior 

to processing, whereas smaller animals such as poultry are not ground prior to cooking. 

Once in the continuous cooker, steam is utilized to heat the internal metal components of 

the rendering cooker. In this type of dry continuous cooker unit, the steam transfers heat 

across metal heating surfaces to the rendering materials. The steam is condensed in a 

closed loop system so the water will never come in contact with the rendering materials. 

The condensed water is transported out of the cooker back to the steam generator 

(Ockerman and Hansen 2000; Kinley 2009).  

In order to thermally process in a rendering cooker, raw materials are deposited 

into hot rendered fat and during the cooking process, moisture is removed by 

evaporation. After the cooking process, the protein/bone material and molten fat are 

initially separated by a screen drainer and an auger conveyor that moves the materials to 

the screw press. The screw press removes additional fat content from solid material 

(Ockerman and Hansen 2000; Anderson 2006; Kinley 2009). The remaining material 

known as “cracklings” or “crax” is ground (Ockerman and Hansen 2000). Both the 

ground processed protein meal and fat are transferred to a storage facility or transported 

to a consumer (Meeker and Hamilton, 2006). The processed protein meal is either stored 

in feed bin structures or enclosed silos. Fat is centrifuged to remove residual particulate 

and stored in insulated and/or heated silos. The renderers maintain the fat at elevated 
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temperatures to keep it in a liquid form in order to easily pump the fat from the silos. 

Despite the elevated temperatures utilized during the rendering process, the finished 

products are susceptible to recontamination from raw materials and the rendering facility 

environment. In 2000, microbial levels in finished rendered products were reportedly 

high (ICMSF 2000) but the rendering industry is continuing to make major improvements 

to reduce microbial levels in finished products. Educational programs such as the Code of 

Practice Seminar initiated in 2004, use of HAACP, and certification are offered through 

the American Protein Producers Industry (APPI) audit program to improve 

microbiological quality of rendered products (Meeker and Hamilton, 2006).  

Wet and batch rendering units are used in North American rendering plants in 

addition to continuous flow dry rendering units (Ockerman and Hansen 2000; Anderson 

2006). In a wet rendering facility, steam is injected directly in contact with the product by 

vertical digesters through perforated plates, which can produce high quality tallow. These 

inefficient systems are labor intensive, require long cooking times, lose large volumes of 

meal during processing, and produce high moisture products (Ockerman and Hansen 

2000). Batch rendering systems have expensive operation costs and are unable to quickly 

process large volumes of materials continuously (Ockerman and Hansen 2000). 

Continuous slurry systems such as the Carver-Greenfield system are utilized in some 

rendering facilities. These systems produce a more digestible meal and high quality fat. 

Continuous slurry systems are energy efficient, however, they process at temperatures 

close to 240ºF (115.6ºC) (Meeker and Hamilton, 2006) thereby possibly not effective at 

destroying some bacterial species.  
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Thermal Processing Principles 

When microbial populations in food or rendering materials are exposed to 

elevated temperatures, the microbial population reduction typically occurs in a 

logarithmic (log10) manner with increasing time at a given constant elevated temperature. 

Several parameters are utilized to quantify the influence of elevated temperatures on 

microbial populations. Thermal death time (TDT) or F value is a factor of time, 

temperature, material matrix and organism (Heldman and Hartel 1998). TDT is defined 

as the time needed to kill or reduce a given number of organisms at a specific temperature 

(Jay 2005; Teixeira 2006). TDT can be utilized as a measure of product safety to reduce a 

microbial population in a product to decrease spoilage microbes and increase shelf-life. 

Decimal reduction time or D value indicates the time required for a one log10 cycle 

reduction of a particular organism at a specific temperature. Essentially, a large D value 

at a given temperature indicates an increased thermal resistance of a microbial population 

in a product (Heldman and Hartel 1998). The 12-D concept is used as a lethality time 

required for the canning industry and is defined as the time required for destroying 12 

log10 of Clostridium botulinum spores (Jay 2005; Teixeira 2006). The thermal resistance 

constant or Z value is the parameter used to indicate the temperature increase needed to 

cause a one log10 reduction as shown as the slope on the thermal destruction curve. In 

most situations, a large Z value would indicate that a microbial culture contains heat 

resistant vegetative cells or microbial spores (Heldman and Hartel 1998). 

Numerous research studies have been conducted in the food industry regarding 

different factors such as cooking methods, food composition, packaging type and product 
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type and their impact on the thermal lethality of pathogens. Blackburn et al. (1997) 

developed and validated thermal inactivation models for Salmonella Enteriditis and 

Escherichia coli O157:H7 describing the effect of temperature, pH and sodium chloride 

concentration on each microbe in whole egg, egg albumen, egg yolk, beef, poultry, apple 

juice and milk. Orta-Ramirez et al. (1997) demonstrated the temperature dependence of 

the enzyme triose phosphate isomerase from E. coli O157:H7 and Salmonella senftenberg 

indicating this enzyme could potentially be used as a surrogate time-temperature 

indicator in ground beef products. Juneja et al. (2000) determined beef samples 

containing between 7 and 24% fat content and inoculated with a Salmonella cocktail had 

varying D and Z values. Murphy et al. (2002) and Murphy et al. (2004) reported 

Salmonella and Listeria innocua had significantly different thermal inactivation D and Z 

values among several different commercial products such as chicken breast meat, chicken 

patties, chicken tenders, franks, beef patties, blended beef and turkey patties.  

Although human food products and their processing systems provide the nearest 

similarities for studying microbiological population dynamics inherent in rendered 

animal products, there is not an ideal model found in the food industry to duplicate 

rendered materials. Procedures used for food microbiological testing are unproven in 

rendered animal product testing. For instance, after attempting to quantify microbial 

loads in raw poultry rendering materials, Glenn (2006) discovered difficulties in 

enumerating bacteria by traditional aqueous buffer dilution methods due to the high fat 

content of the rendering material. Rendered animal co-products are a combination of 

various offal tissues, bones and fat (Meeker and Hamilton, 2006), and these materials 
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have unique compositions not found in any known food product. Therefore, the high fat, 

bone and protein content of rendering materials leaves the industry with no comparable 

thermal death time values from the human food industry or any other industry. Since 

thermal death time is a factor of matrix, temperature and organism, it will be necessary to 

conduct validation in the actual rendering material matrices. The high fat content of 

rendered products also complicates traditional bacterial enumeration methodology. It is 

imperative that accurate test methods are developed to detect these pathogens in high fat 

rendered materials to prevent false positive and false negative results.  

Salmonella 

Salmonella is a genus of Gram-negative, facultative anaerobic, motile, non-spore-

forming bacilli which are classified as members of the Enterobacteriaceae family (Wray 

and Wray 2000). Certain species of Salmonella are associated with foodborne disease 

(Jay 2005). Typically, Salmonella are characterized by their ability to ferment glucose 

into gas and acid on triple sugar iron (TSI) media and will not utilize sucrose or lactose in 

differential media (Andrews et al. 2011; D’Aoust et al. 1998). However, in some cases, 

Salmonella have demonstrated ability to ferment sucrose and lactose through the use of 

plasmids (Le Minor et al. 1973; Le Minor et al. 1974).  

The optimal growth temperature for Salmonella is 37ºC and growth is faster in 

moist conditions (Franco 1997). These organisms are able to multiply over a wide variety 

of conditions including extreme temperatures (high and low) and low water activity 

levels (Franco 1997). Some strains of Salmonella have been able to grow in environments 

as high as 54ºC and some as low as 2ºC (D’Aoust et al. 1975). Salmonella can develop 
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heat resistance by exposure of the cells to temperatures greater than 50ºC between 15 and 

30 min resulting in production of heat shock proteins (Humphrey et al. 1993; Mackey and 

Derrick 1986; Mackey and Derrick 1990).  

Rasmussen et al. (1964) reported wet Salmonella cells added to dry meat and 

bone meal were reduced by 8 log10 after the meal was heated for 15 min at 68ºC; 

however, heating for 1 h at 82ºC was required to kill Salmonella cells in naturally 

contaminated meal. The water activity was not reported in this study. Mossel et al. (1965) 

observed a rapid 5 log10 reduction immediately after inoculation of a viable Salmonella 

culture containing 10 to 12 log10 concentration of cells. The broth culture was pre-chilled 

at 4ºC and mixed into dry meat and bone meal which also was pre-chilled at 4ºC. The 

water activity level of the meat and bone meal was reported as 0.46. Mossel et al. (1965) 

theorized that the initial rapid decline of the Salmonella concentration was due to osmotic 

shock. After additional storage for 5 days under refrigeration temperatures, a 1 log10 

reduction of the Salmonella culture occurred. Mossel et al. (1965) noted that once 

bacterial cells are within protein protected by lipids, increased resistance seemed to 

occur. Reinman (1968) indicated a drastic reduction in viable Salmonella after meat and 

bone meal (water activity of 0.9) was heated to 90ºC for a relatively short time.  

Genetic mutations in strains of Salmonella also can increase heat resistance. 

Droffner and Yamamoto (1992) determined Salmonella Typhimurium was capable of 

surviving prolonged exposure at 54ºC. The results of this study indicated genetic 

mutations occurred in the ttl gene or the mth gene which gives increased heat resistance 

at temperatures as high as 48ºC and 54ºC, respectively. In addition to these genes, other 
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environmental factors play a role in the level of heat resistance including the nutrients 

available in the growth environment, the growth phase of the cells, and the moisture level 

of the environment from which it was isolated (Goepfert et al. 1970; Kirby and Davies 

1990; Ng et al. 1969). 

Salmonella and Rendering Co-Products 

In the United States, approximately 2 to 4 million cases of human salmonellosis 

occur annually (FDA 2012). Often these Salmonella outbreaks are associated with 

consumption of animal products (Shacher and Yaron 2006). Crump et al. (2002) claimed 

that animal feeds were a source of contamination and could lead to transmission of 

Salmonella to humans. Although there are over 2,500 serovars of Salmonella, there are 

very few pathogenic strains which may be found across rendered feed ingredients, farm 

animals and humans. Knox et al. (1963) established a connection between a Salmonella 

Heidelberg outbreak from contaminated milk and the meat and bone meal used in the 

feed supplied to the milk-producing cattle. In 2010, an egg recall due to Salmonella 

Enteriditis contamination was initially blamed on rendering materials by the farmer 

implicated but a thorough investigation proved that rendering products were not the 

source for this outbreak (Caparella 2010).  

In 2010, FDA identified eight Salmonella serotypes as pathogenic to animals and 

listed those serotypes as of concern for potential transmission through animal feeds 

(FDA, 2010). The organisms of concern associated with poultry are Salmonella 

Pullorum, Salmonella Gallinarum, and Salmonella Enteritidis. The organism(s) of 

concern for swine is Salmonella Choleraesuis, for sheep is Salmonella Abortusovis, for 
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horses is Salmonella Abortusequi and for cattle are Salmonella Newport and Salmonella 

Dublin (FDA 2010). 

The rendering industry created the Animal Protein Producers Industry (APPI) in 

1984 to promote biosecurity in rendered animal feeds and reduce incidence of Salmonella 

(Meeker and Hamilton, 2006). In 2004, the APPI Code of Practice certification program 

for rendering plants was developed and currently more than 100 rendering plants are 

certified. The APPI Code of Practice Seminar is an educational series of training courses 

which teaches rendering plant workers handling and processing procedures to produce 

safe feed ingredients (Meeker and Hamilton, 2006).  

 In 1993 and 1994, FDA conducted two separate studies to examine rendered 

animal feed products for the presence of Salmonella enterica and determined 56% and 

25% of the samples, respectively, were positive (McChesney et al. 1995; Crump et al. 

2002). Troutt et al. (2001) examined 17 rendering facilities located in seven midwestern 

states of the United States. This study also reported that a majority of raw tissue samples 

entering rendering facilities were positive for Clostridium, Listeria, and Salmonella 

species. No Salmonella was found in crax samples or in the rendering processing 

environment. The finished rendered products contained 12 serovars of Salmonella. 

Franco (2005) analyzed approximately 200 rendered animal protein meal samples over a 

12 mo period for the presence of Salmonella species, and reported that Salmonella cells 

were present in low numbers in animal feed at a median level of 0.09 MPN/g. Kinley et 

al. (2009) examined products from 12 rendering facilities in the United States and 

detected 13 Salmonella serotypes. Kinley et al. (2010) conducted a research survey to 
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determine the prevalence of Salmonella and Enterococcus species in rendering products 

from 12 rendering companies. Enterococcus species were detected in 81.3% of the 

samples. Salmonella was detected in 8.7% of the samples. However, 13 serotypes of 

Salmonella including Senftenberg, Oranienburg, Idikan, Johannesburg, IIIa. 42:z4,z23, 

Banana, Demerara, Putten, Molade, Montevideo, Mbandaka, Livingstone, and 

Amsterdam were characterized by 16 pulsed-field gel electrophoresis patterns. Each set 

of pulsed-field gel electrophoresis patterns was compared between product type and 

rendering plant to demonstrate there was not one particular serotype present in a 

particular rendering facility over a seven mo period. This study suggested the presence of 

Salmonella in the finished products may be due to post-processing contamination. The 

results from Franco (2005) and Kinley et al. (2010) indicated the efforts taken by the 

rendering industry have microbiologically improved its products since the studies 

conducted by FDA in the 1990s. 

Contamination with Salmonella species in a rendering facility may be due to 

cross-contamination from the raw animal tissue during processing (Ockerman and 

Hansen 2000). Incoming raw rendering materials from animals serve as a reservoir for 

many pathogenic bacterial species including Staphylococcus species, Listeria species, 

Bacillus species, Clostridium species, Mycobacterium species, Enterobacteriaceae, 

Pseudomonas species, Aeromonas species, Plesiomonas shigelloides, and Vibrio species 

which can survive and exist in animals, particularly in their digestive tracts (Jay 2005). 

Depending on carcass size, raw materials may be ground to reduce particle size prior to 

the cooking process. Aerosols generated during the grinding process have the potential to 
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spread contaminating bacteria such as Salmonella throughout the rendering plant, 

including areas where the finished product is handled (ICMSF 2000; Swingler 1982). 

Jones and Bradshaw (1996) observed the strain Salmonella Enteriditis and its capability 

of producing biofilms on environmental surfaces which could serve as a reservoir for 

future contamination.  

Emulsifiers 

Emulsifiers are chemical additives that prevent the separation of two immiscible 

liquids such as oil and water. Emulsifiers consist of molecules which have hydrophilic or 

hydrophobic and lipophilic or lipophobic portions. Lecithin consists primarily of 

phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidyl-

inositol and phosphatidic acid in oil (Bueschelberger 2004). According to the FDA 

Guidance for Industry (2006), lecithins are considered generally recognized as safe 

(GRAS). They are a class of chemicals that are present in both plant and animal tissue. 

The main sources of lecithins are soybean and sunflower oils (Szuhaj and List 1985; 

Bueschelberger 2004). Weete et al. (1994) demonstrated lecithin had improved water/oil 

emulsification after preheating to 180ºC for 90 min and subsequently mixed with a 60ºC 

pre-heated water/oil phase. Zhang (2011) observed the effect of various levels of lecithin 

used to emulsify high fat rendering samples in an aqueous buffer to assist in accurate 

serial dilution of bacterial populations as well as the impact on the bacteria Geobacillus 

stearothermophilus. Zhang (2011) determined the use of lecithin as an emulsifier in 

dilution buffers appeared to be a promising method to enumerate high fat samples with 

Geobacillus stearothermophilus. 
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Conclusion 

On January 4, 2011, the Food Safety Modernization Act was signed into law by 

President Barack Obama. This act expanded the power of the FDA to include regulation 

of any aspect of food production in order to provide a safe food supply (FDA 2013). In 

July 2013, the FDA released a compliance guide to inform the rendering industry of 

current recommendations for pet and animal feed products. Contaminated feed products 

have the potential to serve as a vehicle which can introduce pathogenic bacteria into the 

food chain. Currently, the FDA can enforce regulatory actions if pet foods products are 

contaminated with any serotype of Salmonella. Animal feeds contaminated with specific 

infectious Salmonella serotypes can be seized and detained by the FDA. However, animal 

feed contaminated with non-infectious serotypes of Salmonella will be evaluated on a 

case by case basis by the FDA (FDA 2013). Therefore, conclusive data regarding the 

validation of thermal lethality of rendering processes is vital to the livestock and pet food 

industry and to the FDA to ensure thermal destruction of bacterial pathogens in products. 

A disease outbreak in the animal livestock industry could have serious negative 

consequences to the rendering industry, to the entire food animal chain, to consumers of 

animal products, and to pets and their owners.  

The specific objectives of this study are to 1) validate methodology for 

enumerating Salmonella in high fat matrices and 2) determine the minimum thermal 

requirements needed to destroy four pathogenic Salmonella serotypes (Salmonella 

Choleraesuis, Salmonella Enteritidis, Salmonella Newport, and Salmonella Dublin) in 

typical rendering material matrices.   
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CHAPTER 2 

 

METHOD VALIDATION FOR ENUMERATING BACTERIA IN HIGH FAT 

MATRICES 

 

Abstract 

The high fat content of rendered animal co-products has complicated traditional 

bacterial enumeration methodology. Therefore, it is vital that the rendering industry has 

accurate enumeration methodologies for pathogenic bacteria in finished products. An 

objective of this study was to examine the use of the standard Class O phosphate/ 

magnesium chloride dilution series (Dilution Series A) and a modified (pre-warmed to 

32ºC) lecithin phosphate dilution buffer series (Dilution Series B) by comparing mean 

bacterial counts of a Salmonella cocktail in poultry and beef rendering materials. The 

results of this study did not indicate that the use of a modified buffer to improve 

enumeration of Salmonella from poultry and beef rendering materials. Instead, the results 

suggested that the use of xylose lysine deoxycholate agar (XLD) with either buffer 

system would produce accurate enumeration data of Salmonella from poultry and beef 

rendering materials. 
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Introduction 

 

Rendering is the process of converting inedible animal tissue from food animals 

into granular meals and liquid fats that are used in numerous co-products, including 

animal feeds, chemical feedstocks, and fertilizers (Meeker and Hamilton 2006). The 

continuous cooking process used by the rendering industry is reported to be 40 to 90 min 

at 240 to 290ºF (115.6 to 143.3ºC) (Meeker and Hamilton, 2006). The high temperatures 

used in the rendering cooking process reduce the number of microorganisms in raw 

perishable animal tissues. Marginal processing conditions could result in the presence of 

residual microorganisms in finished products (Crump et al., 2002). Crump et al. (2002) 

indicated that animal feeds can be a source of contamination of Salmonella to humans. 

Therefore, it is vital to develop accurate enumeration methods for high fat rendering 

materials.  

The high fat content of rendered animal co-products has complicated traditional 

bacterial enumeration methodology, making it difficult to accurately determine the 

presence or absence of Salmonella in rendering co-products (Glenn 2006). It is 

hypothesized that this fat content could also entrap the bacterial cells in rendering 

materials. Therefore, upon serial dilution, the fat globules may not be evenly dispersed 

throughout dilutions and subsequently not be transferred evenly to plates for 

enumeration. Inaccurate transference to the microbial media would yield either higher or 

lower bacterial counts and overall a less accurate method of enumeration. Zhang (2011) 

determined that the use of lecithin as an emulsifier in dilution buffers appeared to be a 

promising method to enumerate high fat samples with Geobacillus stearothermophilus. 
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Lecithin consists of complex combinations of phospholipids and is a common emulsifier 

in the food industry (Bueschelberger 2004).  

An objective of the study was to examine the use of the standard Class O 

phosphate/magnesium chloride dilution buffer series and a modified (pre-warmed to 

32ºC) lecithin phosphate dilution buffer series by comparing mean bacterial counts of a 

Salmonella cocktail in each poultry and beef rendering materials, adjusted to 50% fat 

content.  

Materials and Methods 

Rendering Sample Preparation 

  Samples of poultry and beef rendering fat and crax materials were collected on 

three separate days from rendering plants in the midwestern and southeastern U.S. Crax 

is a solid material composed of protein, minerals, and residual fat that is discharged from 

the screw press during the rendering process and is typically further ground into meat and 

bone meal (Meeker and Hamilton, 2006). Crax samples were submitted in duplicate to 

the Clemson University Agricultural Services Laboratory for ash, fat, and moisture 

content analysis. The crax and fat samples were re-mixed to produce 50% fat samples. A 

food processor was disinfected by rinsing in Antibac B™ (Diversey Corporation, 

Cincinnatti, OH) dissolved in distilled deionized water (ddH2O) (0.6 g per L) for 

approximately 2 min, followed by rinsing 5 times with sterile ddH2O. Particle size was 

reduced by processing for approximately 10 min on the pulse setting in a disinfected food 

processor (Robot Coupe Model R2 Ultra, Ridgeland, MS) prior to conducting the 

experiments. A sterile stainless steel spatula was used to scrape material from the sides 
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during pauses in processing. All samples were stored under refrigeration until needed for 

experimentation. 

Salmonella Preparation 

Four pathogenic Salmonella recognized by FDA as hazardous for animal feeds 

(Salmonella Choleraesuis (FDA 8326) (SC), Salmonella Enteritidis (USDA H4386) (SE), 

Salmonella Newport (USDA H1073) (SN) and Salmonella Dublin (FDA 23742) (SD)) 

were obtained for this study (FDA 2010; FDA 2013). SE and SN were obtained from Dr. 

Vijay Jejuna of the USDA Agricultural Research Service, Microbial Food Safety 

Research Unit, 600 East Mermaid Lane, Room 2129, Wyndmoor, PA 19038. SC and SD 

were obtained from the food microbiology culture collection of collaborator Dr. Xiuping 

Jiang at Clemson University. 

  A preliminary study was conducted to determine the optimal media conditions for 

Salmonella growth. Trypticase soy broth (TSB) (90000-050, VWR Scientific Products, 

Suwanee, GA), TSB with the addition of 0.1% (wt/vol) yeast extract (MP Biomedicals, 

LLC, Solon, Ohio), and brain heart infusion broth (BHI) (211059, VWR Scientific 

Products, Suwanee, GA) were tested. TSB with the addition of 0.1% (wt/vol) yeast 

extract was chosen as the best media. The media choice was based on highest cell 

densities determined from optical density measurements (µQuant Universal Microplate 

Spectrophotometer, Bio-Tek Instruments, Winooski, VT) at 600 nm and dilution plating 

in duplicate onto bismuth sulfite agar (90003-904, VWR Scientific Products, Suwanee, 

GA), Hektoen enteric agar (9004-054, VWR Scientific Products), xylose lysine 

deoxycholate (XLD) (90003-996, VWR Scientific Products), and trypticase soy agar 
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(TSA) (90000-050, VWR Scientific Products). Bismuth sulfite agar, Hektoen enteric agar 

and XLD are selective media used for the detection of Salmonella in food products 

(Andrews et al. 2011). 

  An additional preliminary study was conducted to determine if any combination 

of SC, SE, SN or SD promoted or inhibited growth. Overnight cultures were adjusted to 

0.5 OD at 600 nm. Flasks of sterile TSB with 0.1% yeast extract were inoculated with 

equal volumes of each Salmonella serotype or combinations of the four serotypes. 

Cultures were incubated overnight at 35ºC and the OD was measured again to determine 

if growth had increased or stayed the same. The results indicated that no combination of 

SC, SE, SN, and SD appeared to enhance or inhibit growth.  

For the study, each serotype was grown individually in 1 L TSB (90000-050, 

VWR Scientific Products, Suwanee, GA). Each overnight culture was washed twice by 

centrifugation at 7,000 x g for 7 min (GSA rotor, DuPont RC5C Sorvall Instruments 

Centrifuge, DuPont Company, Newtown, CT) and resuspended in sterile physiological 

(0.85%) saline. Optical density was adjusted to 0.7 (ca. 10
8
 cfu/mL) at 600 nm and equal 

volumes of the four cultures were combined in a sterile flask.  

Salmonella Enumeration in Rendering Materials 

  The standard Class O phosphate/magnesium chloride (Wehr and Frank 2004) 

dilution buffer system (Dilution Series A using diluent a) was compared to a modified 

dilution system (Dilution Series B) (Fig. 2.1). Dilution Series B was comprised of two 

modified phosphate/magnesium chloride dilution buffers containing lecithin (AA36486-

A1, Alfa Aesar, Ward Hill, MA) at the rate of 2 g per 99 mL (diluent b) and 0.5 g per 99 
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mL (diluent c), respectively, for dilution of high fat materials followed by use of standard 

Class O phosphate/magnesium chloride buffer (diluent a) (Fig. 2.1). Dilution Series A 

and Dilution Series B were prepared, dispensed in 99 mL aliquots into dilution bottles, 

and autoclaved (Fig. 2.1). Prior to experimentation, Dilution Series A was stored and 

used at room temperature (Fig. 2.1). Dilution Series B was pre-warmed to 32ºC (Fig. 

2.1). 

  A preliminary experiment was conducted to validate the use of 1 mL of a 

Salmonella cocktail in 20 g of each poultry and beef rendering (50% fat) sample. One mL 

of crystal violet dye (90008-894, VWR Scientific Products, Suwanee, GA) was added to 

20 g of each poultry and beef rendering (50% fat) sample in a sterile Whirl-Pak™ sample 

bag (11216-409, VWR Scientific Products, Suwanee, GA). Crystal violet dye was used to 

represent the culture. The mixtures were stomached (Laboratory Blender, Stomacher 400, 

A.J. Seward and Co. Ltd., London, England) for 2 min on the high setting. Subsamples 

were observed for color uniformity using a microscope (Carl Zeiss, Photomicroscope III, 

Oberkochen, West Germany) at 10x and 40x magnification. Results indicated that a 1:20 

ratio of culture to sample would allow for even distribution of culture throughout each of 

the poultry and beef rendering samples.  

  One mL (ca. 10
8 

cfu./mL) of a Salmonella cocktail was added to each 20 g poultry 

and beef rendering sample (50% fat content) in a sterile Whirl-Pak™ sample bag. The 

mixtures were stomached for 2 min on the high setting. Subsamples of the mixture were 

diluted using each Dilution Series A and Dilution Series B. Dilutions were carried out to 

the 10
-9 

dilution (Fig. 2.1) and plated in duplicate onto bismuth sulfite agar, Hektoen 
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enteric agar, XLD, and TSA. Controls included media and diluent sterility controls as 

well as uninoculated rendering samples (50% fat). Plates were incubated overnight at 

35ºC and enumerated.  

Statistical Analysis 

  The mean bacterial counts of the Salmonella cocktail obtained from the culture 

controls and inoculated samples were converted to log10 cfu/g values ± standard error. 

The mean bacterial counts of the culture controls diluted in the standard Dilution Series A 

and the mean bacterial counts of the inoculated samples plated onto the same media were 

compared using a two-tailed, paired Student's t tests in Microsoft Excel
® 

(Microsoft
®

, 

2010) to determine statistical significance at alpha=0.05. 

Results 

 

The analysis of the beef rendering materials (n=6) indicated the average fat 

content ranged from 9.9% to 13.8%, average ash content ranged from 20.6% to 33.5%, 

and average moisture content ranged from 2.1% to 3.3%. Averaged analysis data for each 

pair of duplicate samples (Day 1, Day 2, Day 3) were used to prepare 50% fat materials for 

this study. 

Despite the type of media, the mean bacterial counts obtained from Salmonella 

cocktail culture controls diluted in Dilution Series A were not significantly different 

(P<0.05) from the mean bacterial counts of the Salmonella cocktail culture controls 

diluted in the standard Dilution Series B (Table 2.1). The mean bacterial counts of 

6.01±0.28 and 5.77±0.30 log10 cfu/g were obtained from the inoculated poultry rendering 

samples diluted with each Dilution Series A and Dilution Series B, respectively, and 
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plated onto bismuth sulfite agar. However, the mean bacterial counts in poultry rendering 

materials were statistically different than the Salmonella culture control when it was 

diluted with the standard Dilution Series A and plated onto bismuth sulfite agar (P<0.05) 

(Table 2.1).  

Enumeration data revealed mean bacterial counts of 7.46±0.99 and 6.48±1.00 

log10 cfu/g from the inoculated poultry rendering samples diluted with each Dilution 

Series A and Dilution Series B, accordingly, and plated onto Hektoen Enteric agar. These 

mean bacterial counts were not statistically different than the Salmonella culture control 

diluted with the standard Dilution Series A and plated onto Hektoen Enteric agar 

(P<0.05) (Table 2.1).  

The mean bacterial counts of 8.14±1.76 and 7.81±1.45 log10 cfu/g obtained from 

the inoculated poultry rendering samples diluted with each Dilution Series A and Dilution 

Series B, respectively, and plated onto XLD. These mean bacterial counts were not 

statistically different than the Salmonella culture control diluted with the standard 

Dilution Series A and plated onto XLD (P<0.05) (Table 2.1).  

Enumeration of inoculated poultry rendering samples diluted with each Dilution 

Series A and Dilution Series B revealed the mean bacterial counts of 6.80±0.88 and 

7.10±0.85 log10 cfu/g, accordingly, on TSA. These mean bacterial counts were not 

statistically different than the Salmonella culture control diluted with the standard 

Dilution Series A and plated onto TSA (P<0.05) (Table 2.1). 

The mean bacterial counts of 7.45±0.99 and 6.47 ±0.99 log10 cfu/g obtained from 

the inoculated beef rendering samples diluted with each Dilution Series A and Dilution 
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Series B, respectively, were not statistically different than the Salmonella culture control 

on bismuth sulfite agar (P<0.05) (Table 2.1).  

Enumeration data revealed the mean bacterial counts of 5.53±0.03 and 5.53 ±0.03 

log10 cfu/g from the inoculated beef rendering samples diluted with each Dilution Series 

A and Dilution Series B, accordingly, and plated on Hektoen Enteric agar. These mean 

bacterial counts were statistically different than the Salmonella culture control on 

Hektoen Enteric agar (P<0.05) (Table 2.1).  

Enumeration of inoculated beef rendering samples diluted with each Dilution 

Series A and Dilution Series B revealed the mean bacterial counts of 7.14±1.67 and 

7.14±1.67 log10 cfu/g, respectively, on XLD. These mean bacterial counts were not 

statistically different than the Salmonella culture control on XLD (P<0.05) (Table 2.1).  

The mean bacterial counts of 5.55±0.06 and 5.51±0.03 log10 cfu/g enumerated 

from the inoculated beef rendering samples diluted with each Dilution Series A and 

Dilution Series B, accordingly, on TSA. These mean bacterial counts were statistically 

different than the Salmonella culture control on TSA (P<0.05) (Table 2.1). 

Discussion 

  In this study, Dilution Series A and Dilution Series B were used to enumerate the 

Salmonella cocktail. The mean bacterial counts obtained from the culture controls 

enumerated with each dilution series were not statistically different despite the media 

used (P<0.05) (Table 2.1). There results indicated that the addition of the emulsifier 

lecithin to the dilution buffer did not inhibit or promote the growth of the Salmonella 

cocktail. The Salmonella cocktail enumeration data were compared for Dilution Series A 



30 

 

and Dilution Series B in each poultry and beef rendering materials. The mean bacterial 

counts enumerated from the inoculated poultry rendering samples, serially diluted in each 

Dilution Series A and Dilution Series B and plated onto bismuth sulfite agar were 

significantly lower than the mean bacterial counts obtained from the Salmonella cocktail 

culture on bismuth sulfite agar (P<0.05) (Table 2.1). An explanation for the lower 

bacterial counts from the poultry rendering samples is not known, but could include 

dilution error, presence of free fatty acids, entrapment of the bacteria in bones particles or 

coating of the bacteria by fat. In previous studies on raw poultry rendering materials, 

Glenn (2006) determined standard phosphate buffer serial dilutions produced irregular 

microbial enumeration results. Due to the high fat content of the rendering materials, it 

was revealed that the immiscibility of fat in the aqueous buffer caused the erroneous 

results. Glenn (2006) indicated that the fat may have entrapped the bacteria in the 

rendering materials. Additionally, the fat globules may not have dispersed evenly 

throughout dilutions due to the use of aqueous buffers and subsequently not transferred 

accurately to plates for enumeration (Glenn 2006). The 50% fat content in the poultry 

rendering materials used in this study may have entrapped the bacterial cells leading to 

lower bacterial counts.  

The mean bacterial counts enumerated from the inoculated beef samples diluted 

with each Dilution Series A and Dilution Series B were significantly lower (P<0.05) than 

Salmonella cocktail controls on Hektoen Enteric agar and TSA (Table 2.1). Possible 

reasons for the lower bacterial counts from the beef rendering samples would be the same 

as above. Despite the dilution series used, these results suggested that the Salmonella 
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cocktail was accurately enumerated from beef and poultry rendering materials containing 

50% fat content on XLD agar. XLD is a selective media used for the detection of 

Salmonella. In this study, XLD appeared to be a better selective media for the SC, SE, 

SN and SD than Hektoen Enteric or bismuth sulfite. It should also be noted that the black 

Salmonella colonies on the red XLD were easier to distinguish than the black colonies on 

the light green-yellow bismuth sulfite agar or the green colonies with black centers on the 

dark green Hektoen enteric agar. 

The results of this study did not suggest the use of a modified buffer to improve 

enumeration of Salmonella from poultry and beef rendering materials. Instead, the results 

suggested that the use of XLD with either buffer system would produce accurate 

enumeration data of Salmonella from poultry and beef rendering materials. This research 

was a preliminary step toward improving enumeration methods for the detection of 

pathogenic bacterial species in high fat products. 
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Dilution Series A: Standard phosphate magnesium chloride buffer system (all bottles at 

room temperature). 

 

 

 

 

 

Dilution Series B: Modified lecithin buffer system (all bottles pre-warmed to 32ºC)  

 

 

 

 

 

Figure 2.1. Diagram of two buffer systems used for serially diluting rendering materials. 

Diluent a represents a 99 mL of phosphate/ magnesium chloride buffer. Diluent b 

represents a 2 g lecithin/99 mL of phosphate/ magnesium chloride buffer. Diluent c 

represents a 0.5 g lecithin/100 mL of phosphate/ magnesium chloride buffer. 

1 mL 1 mL 

1 mL 1 mL 

1 mL 1 mL 

1 g of 

Sample 

a a a a a 

1 mL 

1 g of 

Sample 

c a a a b 

1 mL 
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Table 2.1. Comparison of mean bacterial counts from each poultry and beef rendering 

material using each dilution series to a standard culture control (n=6). 

Sample Dilution Series Media Mean Bacterial Count
1 

log10 cfu/g ± standard error
 

P-Value
2
 

Salmonella  A Bismuth Sulfite 7.71±0.10
 aefmn

 -
 

Salmonella A Hektoen Enteric 7.69±0.49
 bghop

 - 

Salmonella A XLD 8.85±0.89
 cijqr

 - 

Salmonella A TSA 8.21±0.27
 dklst

 - 

Salmonella  B Bismuth Sulfite 7.45±0.18
 a
 0.45

 

Salmonella B Hektoen Enteric 7.10±0.31
 b
 0.54 

Salmonella B XLD 9.19±0.64
 c
 0.45 

Salmonella B TSA 7.91±0.35
 d
 0.33 

Poultry A Bismuth Sulfite 6.01±0.28
 e
 0.02

*
 

Poultry B Bismuth Sulfite 5.77±0.30
 f
 0.03

*
 

Poultry A Hektoen Enteric 7.46±0.99
 g
 0.81 

Poultry B Hektoen Enteric 6.48±1.00
 h
 0.14 

Poultry A XLD 8.14±1.76
 i
 0.50 

Poultry B XLD 7.81±1.45
 j
 0.20 

Poultry A TSA 6.80±0.88
 k
 0.15 

Poultry B TSA 7.10±0.85
 l
 0.28 

Beef A Bismuth Sulfite 7.45±0.99
 m

 0.84 

Beef B Bismuth Sulfite 6.47±0.99
 n
 0.30 

Beef A Hektoen Enteric 5.53±0.03
 o
 0.05

*
 

Beef B Hektoen Enteric 5.53±0.03
 p
 0.05

*
 

Beef A XLD 7.14±1.67
 q
 0.21 

Beef B XLD 7.14±1.67
 r
 0.21 

Beef A TSA 5.55±0.06
 s
 0.01

* 

Beef B TSA 5.51±0.03
 t
 0.01

* 

1 
Values with the same superscripts (a-t) indicate the mean bacterial counts compared 

using two-tailed, paired Student's t tests. 

 
2
indicates statistical difference at P<0.05. 
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CHAPTER 3 

 

VALIDATION OF THERMAL DESTRUCTION OF SALMONELLA IN RENDERED 

BEEF PRODUCTS 

 

Abstract 

Animal rendering is a process that converts inedible animal tissue into stable, 

value-added materials. The North American rendering industry annually recycles over 61 

billion pounds of residual animal by-products. Approximately 85% of rendered products 

are used as animal feed ingredients. Therefore, it is vital that the rendering industry has 

conclusive validation data on the thermal lethality of rendering thermal processing to 

destroy animal disease pathogens in finished products. The high fat, bone and protein 

content of rendering materials leaves the industry with no comparable thermal death time 

values from the human food industry or any other industry. The objective of this study 

was to determine thermal death time values for beef rendering materials containing 50% 

fat content for four pathogenic Salmonella recognized by FDA as hazardous for animal 

feeds (Salmonella Choleraesuis (SC), Salmonella Enteritidis (SE), Salmonella Newport 

(SN) and Salmonella Dublin (SD)). In the study, each serotype appeared to have unique 

thermal death time characteristics. With increasing thermal treatment time, reduction in 

the population of each serotype of Salmonella was not a straight line decrease. In fact, on 

most of the cultures, after failing to detect the cultures after certain time treatments, the 

culture were later detected after longer thermal treatments. In thermal treatments up to 

420 s at 240ºF (115.6ºC), SC was last detected at 120 s, SE at 120 s, SN at 300 s and SD 

at 360 s. However, uninoculated controls indicated thermally resistant strains in the 
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background which testing indicated were Salmonella. The presence of Salmonella or 

organisms detected as Salmonella was noted up to 360 s of treatment in the uninoculated 

samples. Further research will be needed to verify that these organisms are Salmonella or 

some other organism that is cross-reacting. In rendering materials, bone and tissue 

fragments can vary greatly across samples. In this study, a large range of particle sizes 

was present in the beef rendering materials.  
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Introduction 

The United States and Canadian rendering industry annually recycles over 61 

billion pounds of residual animal by-products into animal feeds, fats and proteins to 

prevent waste of these materials (Meeker and Hamilton, 2006). Validating thermal 

lethality of rendering processes is crucial to the livestock and pet food industry and to the 

FDA to ensure destruction of bacterial pathogens in products. A disease outbreak in the 

animal livestock industry could have serious negative consequences to the rendering 

industry and to the entire food animal chain, including consumers.  

The high temperatures used in the rendering cooking process reduce the number 

of microorganisms in raw perishable animal tissues. The continuous cooking process is 

reported to be 40 to 90 min at 240 to 290ºF (115.6 to 143.3ºC) (Meeker and Hamilton, 

2006). Crax is a solid material composed of protein, minerals, and residual fat that is 

discharged from the screw press during the rendering process and is typically further 

ground into meat and bone meal (Meeker and Hamilton, 2006). Meat and bone meal is 

frequently used in animal feeds and pet foods. Marginal processing conditions could 

result in survival of residual microorganisms in this protein rich product (Crump et al., 

2002). 

Thermal death time (TDT) is a factor of time, temperature, material matrix and 

organism (Heldman and Hartel, 1998). TDT is defined as the time needed to reduce a 

given number of organisms at a specific temperature in a specific matrix (Jay, 2005; 

Teixeira, 2006). Decimal reduction time (D value) specifies the time required for a one 

log10 reduction of a particular organism at a specific temperature. The larger the D value 
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at a given temperature, the higher the thermal resistance of the microbial population 

(Heldman and Hartel, 1998). The high fat, bone and protein content of rendering 

materials leaves the rendering industry with no comparable thermal death time values 

from the human food industry or any other industry. The objective of this study was to 

determine the TDT and D values for beef rendering materials containing 50% fat content 

for four pathogenic Salmonella recognized by FDA as hazardous for animal feeds 

(Salmonella Choleraesuis, Salmonella Enteritidis, Salmonella Newport, and Salmonella 

Dublin) (FDA, 2010; FDA, 2013) at 240ºF (115.6ºC). 

Materials and Methods 

Rendering Sample Preparation 

  Samples of beef crax and beef tallow were obtained from a midwestern rendering 

company on three separate days. The crax samples were submitted in duplicate to the 

Clemson University Agricultural Service Laboratory for ash, fat, and moisture content 

analysis. The crax and tallow samples were re-mixed to produce 50% fat samples. A food 

processor bowl, blade and lid were disinfected by rinsing in Antibac B™ (Diversey 

Corporation, Cincinnatti, OH) dissolved in distilled deionized water (ddH2O) (0.6 g per 

L) for approximately 2 min, followed by rinsing 5 times with sterile ddH2O. Particle size 

was reduced by processing for approximately 10 min on the pulse setting in the 

disinfected food processor (Robot Coupe Model R2 Ultra, Ridgeland, MS) prior to 

conducting the experiments. A sterile stainless steel spatula was used to scrape material 

from the sides during pauses in processing. All samples were stored under refrigeration 

until needed for experimentation. 
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Salmonella Preparation 

 Four pathogenic Salmonella serotypes recognized by FDA as hazardous for 

animal feeds (Salmonella Choleraesuis (FDA 8326) (SC), Salmonella Enteritidis (USDA 

H4386) (SE), Salmonella Newport (USDA H1073) (SN) and Salmonella Dublin (FDA 

23742) (SD)) were obtained for this study (FDA, 2010; FDA, 2013). SE and SN were 

obtained from Dr. Vijay Jejuna of the USDA Agricultural Research Service, Microbial 

Food Safety Research Unit, 600 East Mermaid Lane, Room 2129, Wyndmoor, PA 19038. 

SC and SD were obtained from the food microbiology culture collection from 

collaborator Dr. Xiuping Jiang at Clemson University. 

  A preliminary study was conducted to determine the optimal media conditions for 

Salmonella growth. Trypticase soy broth (TSB) (90000-050, VWR Scientific Products, 

Suwanee, GA), TSB with the addition of 0.1% (wt/vol) yeast extract (MP Biomedicals, 

LLC, Solon, Ohio), and brain heart infusion broth (BHI) (211059, VWR Scientific 

Products, Suwanee, GA) were tested. TSB with the addition of 0.1% (wt/vol) yeast 

extract was chosen as the best media based highest cell densities determined from optical 

density measurements (µQuant Universal Microplate Spectrophotometer, Bio-Tek 

Instruments, Winooski, VT) at 600 nm and dilution plating in duplicate onto onto 

bismuth sulfite agar (90003-904, VWR Scientific Products, Suwanee, GA), Hektoen 

enteric agar (9004-054, VWR Scientific Products), xylose lysine deoxycholate (XLD) 

(90003-996, VWR Scientific Products), and trypticase soy agar (TSA) (90000-050, VWR 

Scientific Products). 
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  As a preliminary study, each individual Salmonella serotype was plated onto 

bismuth sulfite agar, Hektoen enteric agar, XLD, and TSA. Enumeration data indicated 

use of XLD and TSA as the preferred agar media for enumerating SC, SE, SN, and SD. 

  A preliminary goal of this experiment was to obtain concentrated bacterial slurry 

of each serotype to use in inoculating beef rendering materials for thermal processing. 

The average concentrations of Salmonella cultures in broth for SC, SE, SN, and SD after 

24 h incubation at 35ºC were 8.66±0.02, 8.56±0.03, 8.80±0.06, and 8.65±0.03 log10 

cfu/g, respectively. Preliminary experiments were conducted to determine the volume of 

culture as well as concentration rate necessary. Enumeration on XLD and TSA verified 

that 5 L of a 24 h Salmonella culture grown in TSB with 0.1% (wt/vol) yeast extract and 

then concentrated by centrifugation was optimal. Centrifugation was conducted at 7,000 

x g for 7 min (GSA rotor, DuPont RC5C Sorvall Instruments Centrifuge, DuPont 

Company, Newtown, CT) at 4ºC in sterile centrifuge bottles (47735-696, VWR Scientific 

Products, Suwanee, GA) and the supernatant was discarded after autoclaving. The pellet 

was resuspended in 5 mL sterile TSB. In preliminary studies conducted 3 times in 

duplicate (n=6), the average bacterial concentrations after centrifugation and 

resuspension for SC, SE, SN, and SD were determined. This procedure was used to 

prepare the bacterial cultures used throughout the experiment.  

Each slurry of Salmonella, prepared as above, was inoculated into beef rendering 

material at the rate of 100 µL culture per 1 g sample. In a preliminary study, two methods 

were conducted. The mean bacterial counts of each concentrated bacterial slurry and the 

inoculated samples were determined. Method 1 was the serial dilution of each bacterial 
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slurry and each inoculated sample to 10
-14

 utilizing the standard Class O 

phosphate/magnesium chloride dilution buffer (Wehr and Frank, 2004). Method 2 was 

the serial dilution of each bacterial slurry and sample to 10
-14

 using pre-warmed (32ºC) 

modified Class O phosphate/magnesium chloride diluent. Controls included media and 

uninoculated beef rendering samples. Each experiment was conducted 3 times in 

duplicate (n=6). 

Thermal Death Time Trials 

Stainless steel sample tubes (8.5 cm length, 1.6 cm outer diameter, 1.3 cm inner 

diameter) were custom manufactured by a local company by boring 304 stainless steel 

rods. The tubes were capped (60825-801, VWR International, Suwanee, GA) and 

autoclaved. Beef rendering samples (50% fat) were aseptically transferred (1 g) into 

sixteen sterile tubes. The tubes were placed in an analog dry block heater (Model 

#12621-108, VWR International, Suwanee, GA) equipped with Model #13259-162 

heating blocks (VWR International, Suwanee, GA) set to 115.6ºC. Four of the tubes were 

randomly selected as temperature controls using dial thermometers (61159-409, VWR 

Scientific Products, Suwanee, GA). The tubes were heated to an internal treatment 

temperature of 115.6ºC prior to addition of the cultures. Each individual culture (100 µL) 

was directly pipetted into 1 g of the heated rendering samples. After culture inoculation, 

the sample was pipetted up and down approximately four times to thoroughly mix. Upon 

inoculation and mixing, time measurements (0, 15, 30, 60, 90, 120, 180, 240, and 300 s) 

were started on the thermal treatment. After preliminary experiments on SN and SD 

indicated longer thermal treatment was needed, additional trials were included for the 



42 

 

time treatments of 0, 90, 240, 300, 360 and 420 s for these cultures. Samples were placed 

on ice immediately after thermal treatment. Additional sample tubes containing beef 

rendering used for unheated controls were placed on ice until used for plating. All 

samples were processed for microbial content immediately after conclusion of heat 

treatments. 

A preliminary experiment was conducted to validate the use of 1 g of sample pre-

enriched in 5 mL of sterile universal pre-enrichment broth (UPB) (95021-036, VWR 

Scientific Products, Suwanee, GA) in comparison to 1 g of sample pre-enriched in 9 mL 

of UPB as recommended by the FDA Bacteriological Analytical Manual (BAM) 

(Andrews et al., 2011). The stainless steel tubes used in this experiment would not hold 

the 1 g of sample pre-enriched plus 9 mL of UPB. Results indicated that the 1:5 ratio of 

sample to pre-enrichment broth was as effective as the 1:9 ratio of sample to pre-

enrichment broth. Therefore, this procedure was used throughout the experiment. 

Once 5 mL of sterile UPB was aseptically pipetted into each tube, the wooden 

shaft of a sterile cotton-tipped applicator (89133-814, VWR Scientific Products, 

Suwanee, GA) was used to thoroughly mix the sample for 30 s. Each UPB diluted sample 

(0.1 mL) was directly pipetted onto XLD and TSA plates and spread using an alcohol-

flamed bent glass rod. As a control, each Salmonella slurry was serially diluted to 10
-12 

in 

the standard Class O phosphate/magnesium chloride dilution buffer and either 1.0 mL or 

0.1 mL was spread plated onto XLD and TSA. Media and dilution buffer controls also 

were conducted. All plates were incubated overnight at 35ºC. In this experimental design, 

XLD selected for Salmonella spp. while TSA measured total aerobic, mesophilic 
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bacterial counts. This included any background bacteria and, in the test samples, 

background bacteria plus inoculated Salmonella. For each inoculated or uninoculated 

beef rendering sample, dilutions were carried out such that the direct plating on XLD and 

TSA had a lower detection limit of 1.4 log10 cfu/g.  

Because the direct plate counting method had a lower detection limit of 1.4 log10 

cfu/g, an additional experiment was conducted in accordance with the FDA BAM 

procedures to detect as low as 1 cfu/g (Andrews et al., 2011). The remaining UPB diluted 

sample in the stainless steel tube was incubated overnight at 35ºC and then vortexed 

(Super Mixer, 1290, Labline Instruments, Inc., Melrose Park, IL) on the fast setting for 

approximately 30 s. The sample was aseptically pipetted (0.1 mL) to Rappaport-

Vassiliadis (RV) pre-enrichment broth (10 mL) (95039-382, VWR Scientific Products, 

Suwanee, GA). The same sample was aseptically pipetted (1 mL) to tetrathionate broth 

(TT) (10 mL) (90000-008, VWR Scientific Products, Suwanee, GA). Controls included 

the concentrated bacterial slurry and sterile media. The samples and control broth were 

incubated overnight at 42ºC. A 3 mm inoculation loop of each pre-enriched sample and 

control was streaked onto XLD. All plates were incubated overnight at 35ºC. Results 

indicated the presence or absence of Salmonella in the samples. As per FDA BAM, 

positive samples obtained from the RV and TT pre-enrichments were validated using two 

confirmation tests (Feng, 2001). Latex agglutination tests (FT0203, Thermo Fisher 

Scientific, Waltham, MA 02454) and ChromAgar™ (90006-158, VWR Scientific 

Products, Suwanee, GA) were conducted using each Salmonella culture as a control (BD 

Diagnostics, 2008; Oxoid Limited, 2013). In order to analyze the data, when duplicate 
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results from the pre-enriched samples were both negative the data was reported as 0.0 

(Fig. 3.1). If one duplicate was positive and one was negative, it was reported as 0.5. If 

both duplicates were positive, it was reported as 1.0 (Fig. 3.1).  

Bone Particle Size Determination 

To determine the variation in bone particle size in the processed 50% fat 

rendering material used, 10 g of the rendering sample was sized through a series of sieves 

(57333-965, VWR Scientific Products, Suwanee, GA) equipped with eight different 

standard mesh sizes (25, 35, 45, 60, 80, 120, 170 and 230 µm). Samples were measured 

into the upper sieve and processed using 100 mL of hexane (AAAL13233-AU, VWR 

Scientific Products, Suwanee, GA) to dissolve fat and assist in particle separation. The 

hexane fraction was washed through the sieve column 10 times. Each fraction of particle 

size was reported as a percentage of the total weight of the rendering sample. Each trial 

was repeated 10 times per day for 3 days (n=30). 

Determination of Estimated D Values 

  The direct plate count of each concentrated Salmonella slurry and the time at 

which each culture was destroyed were compared on graphs. In a preliminary experiment, 

percent recoveries of Salmonella from inoculated beef samples were calculated for each 

recoverable Salmonella population density. Due to the experimental design, the actual 

population count from beef rendering material was not conducted. However, the total 

count in each bacterial slurry was measured. This population count was used in estimated 

D value calculations. The final time the population was no longer detected in each RV 

and TT pre-enrichment as validated by the two confirmation tests was used as the thermal 
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death time. These data were graphed and the slope of the line was used to calculate the 

estimated D value.  

Results 

Analysis of beef rendering materials indicated fat content ranged from 9.9% to 

13.8%, ash content was 20.6% to 33.5% and moisture content was 2.1% to 3.35%. 

Averaged analysis data for each pair of duplicate samples (Day 1, Day 2, Day 3) were used to 

prepare 50% fat materials for use in this study. 

Preliminary results indicated that the average concentrations of the culture slurries 

of SC, SE, SN, and SD (n=6 for each culture) ± standard error were 12.60±0.15, 

12.12±0.01, 12.28±0.03, and 12.16±0.15 log10 cfu/g, respectively. Average bacterial 

counts ± standard error on XLD from inoculated beef rendering samples were 

10.60±0.269, 10.67±0.08, 10.76±0.04, and 10.65±0.08 log10 cfu/g, respectively (Table 

3.1).  

All Salmonella counts were conducted in a two-step process. Enumeration on 

XLD had a lower detection limit of 1.4 log10 cfu/g. With the exception of SD, under all 

treatment conditions, SC, SE, and SN were reduced to below the lower detection limit 

across all thermal treatment times in inoculated beef samples. SD was detected until 60 s 

(Fig. 3.2). To check for experimental error, day 1, day 2 and 3 rendering samples were re-

tested to add additional data points. Data shown in Fig. 3.2 represent n=42 for SD. The 

presence of Salmonella noted at 0 and 30 s represented only 1 out of 24 samples and 1 

out of 42 samples, respectively.  
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In uninoculated beef samples, SC, SE, and SN were reduced to or below the lower 

detection limit across all thermal treatments. However, SD was detected at 60 s in the 

uninoculated beef samples (Fig. 3.3). To check for experimental error, day1, day 2 and 3 

rendering samples were re-tested to add additional data points. Data shown in Fig. 3.3 

represents n=24, except at 0, 90, 240, 300, 360 and 420 s for SD. Two out of the 24 

samples were determined to be positive in uninoculated beef at 60 s. A similar result was 

noted at 0 s with 1 positive out of 42 samples. The uninoculated SD control sample had 

Salmonella present for longer thermal treatment than the inoculated sample indicating the 

presence of a background culture of either thermally resistant Salmonella or a thermally 

resistant microorganism(s) that is detected as Salmonella using current methodology.  

Enumeration on TSA had an upper detection limit of 4.3 log10 cfu/g. Under all 

treatment conditions, bacterial plate counts on TSA for SC, SE, SN, and SD inoculated 

beef samples were above the upper detection limit after all thermal treatments (Fig. 3.4). 

In uninoculated beef samples used as controls for the SC, SE, SN, and SD experiments, 

plate counts on TSA were above the upper detection limit after all thermal treatments in 

uninoculated beef samples (Fig. 3.5). 

Pre-enrichment results on RV and TT were confirmed using both latex 

agglutination and ChromAgar™; the following results are reported as confirmed findings. 

The unheated, inoculated controls plated on XLD after pre-enrichment in RV and TT 

were significantly higher (P<0.05) than the heated, inoculated samples (this control is 

indicated as unheated on Fig. 3.6, 3.7, 3.8 and 3.9). In general, Salmonella serotypes in 

heated, inoculated samples declined with longer thermal treatment (Fig. 3.6 and 3.8). The 
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number of positive samples for Salmonella for each inoculated and uninoculated samples 

in either RV or TT validated by the two confirmation tests are shown in Tables 3.4 and 

3.5. Some samples that were reported as present had high standard errors.  

In the SC samples, Salmonella was reduced to 0 at all time intervals after 0 s in 

RV and TT with the exception of reappearing at 120 s in TT (Fig. 3.8). Populations of 

Salmonella in the SE inoculated samples were reduced but not completely eliminated at 0 

s in both RV and TT pre-enrichments (Fig. 3.6 and 3.8). For SE samples pre-enriched in 

RV, Salmonella levels were reduced to 0 at 30, 60, 180, 360, and 420 s but were noted at 

all other times (Fig. 3.6). Salmonella was present in SE inoculated samples at every time 

interval until eliminated at 180 s and afterwards in TT pre-enrichments (Fig. 3.8). 

Although populations were reduced, Salmonella was not eliminated until 360 s on SN 

inoculated samples in RV pre-enrichments and until 300 s on TT pre-enrichments (Fig 

3.6 and 3.8). In the SN and SD experiments, a population of Salmonella appeared to be 

present in both inoculated and uninoculated samples and appeared to be more thermally 

resistant than Salmonella detected on the SC and SE experiments (Fig. 3.6, 3.7, 3.8, and 

3.9). In the heated, inoculated samples, SD was reduced to 0 at 30 s and 60 s, was present 

at 90 s, was killed at 120 s and 180 s, and was present at 240 s in both RV and TT pre-

enrichments (Fig. 3.6 and 3.8). At 360 and 420 s, SD was reduced to 0 in RV pre-

enrichments (Fig. 3.6). At 360 s SD was present but at 420 s was reduced to 0 in TT pre-

enrichments (Fig. 3.8). Since 420 s was the maximum time tested, future studies should 

include longer treatment times (Fig. 3.6 and 3.8).  

Variations were noted in Salmonella populations in heated uninoculated samples 
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(Fig. 3.7 and 3.9). Salmonella was not detected at any thermal treatment time in the SC 

experiments using RV enrichment but was detected at 90 s only in TT pre-enrichments 

(Fig. 3.7 and 3.9). Salmonella was not detected in the SE experiments at 0, 15, 30, 60, 

240, 300, 360, and 420 s in RV pre-enrichments but was detected at 90, 120, and 180 s 

(Fig. 3.7). In TT, Salmonella was present in the SE experiments in all thermal treatment 

times up to 180 s and was absent at 240 and 300 s (Fig. 3.9). In the SN experiments, 

Salmonella was reported as in heated, uninoculated samples until 300 s in RV (Fig 3.7). 

Also in the SN experiments, Salmonella was present in heated uninoculated samples until 

240 s in TT (Fig. 3.9). In the SD experiments in RV, Salmonella was not detected at 0, 

15, 120, 360, and 420 s in the heated, uninoculated samples (Fig. 3.7). In TT during the 

SD study, Salmonella was not detected at 15, 30, 120, and 420 s (Fig. 3.9).  

The estimated D values for Salmonella in beef rendering samples containing 50% 

fat at 115.6ºC pre-enriched in RV and validated by two confirmation tests were 

calculated. SC and SE had D values of 0.01 and 0.29 min, respectively, while SN and SD 

had longer D values of 0.58 and 0.60 min (Table 3.2). The estimated D values for 

Salmonella serotypes in beef rendering samples containing 50% fat at 115.6ºC pre-

enriched in TT and validated by two confirmation tests also were determined. SC and SE 

had D values of 0.30 and 0.29 min, respectively, while SN and SD had D values of 0.49 

and 0.70 min, respectively (Table. 3.3).  

In the sieve separation experiment, each particle size fraction was indicated as a 

percentage of the total weight of the rendering sample. The largest fraction of particles 

collected was collected on the 25 µm mesh sieve and represented 56.6 ± 1.5% of the 
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original sample. Sieves 35, 45, 60, 80, 120, 170 and 230 µm collected 3.7± 0.3%, 4.5± 

0.1%, 4.2 ± 0.3%, 3.7± 0.2%, 3.9 ± 0.8%, 4.70 ± 0.81% and 5.4 ± 0.5%, respectively 

(Fig. 3.10). 

Discussion 

Due to the large number of samples plated per day, a preliminary experiment was 

conducted to determine the percent recoveries ± standard error for each Salmonella 

culture from beef rendering. The purpose of the preliminary study was to reduce plating 

of each inoculated, unheated sample through extended dilutions during the study. 

However, more accurate data would be obtained if plating of each inoculated, unheated 

sample had been conducted. In future experiments, this control should be included. 

Enumeration on XLD indicated that SC, SE and SN were reduced to below the 

detection limit after the initial thermal treatment in inoculated rendering samples. 

Similarly, in the uninoculated samples, SC, SE, and SN were reduced to below the 

detection limit after the initial thermal treatment. SD, however, was detected at 30 s in the 

inoculated samples and at 60 s in the uninoculated samples indicating the presence of a 

thermally resistant bacterial strain in the background of the samples. Salmonella was 

detected as present in both inoculated and uninoculated SD samples after thermal 

treatment (Fig. 3.2 and 3.3). It should be noted that a positive Salmonella result from 

current methodology on either inoculated or uninoculated was not validated by genetic 

analysis or serotyping which would be necessary for confirmation in this study. Other 

explanations for differences in recovery of Salmonella could be due to variation in 

particle size distribution in the sample. SD or background organisms appearing to be 



50 

 

Salmonella in the samples may have been entrapped in a bone particle or in fat. A particle 

size distribution test was conducted and showed great variability among sizes of bone 

fragments. Due to the nature of rendering material collection, Salmonella could be 

present in the porous structure of bone. Additionally, Salmonella could have been coated 

in fat or tissue allowing for a protective effect due to slower thermal conductivity of 

particles, fat and tissue. The samples in this study were randomly placed in the heating 

block and, therefore, sampling error was not considered a cause for the observed 

variability. 

Enumeration on TSA for both inoculated and uninoculated samples indicated the 

presence of the bacteria in the background of the rendering samples. The mean bacterial 

counts of all samples, under all thermal treatments, were above the detection limit of 4.3 

log10 cfu/g. Glenn (2006) conducted a study on the bacterial loads in raw rendering 

materials, but the current study was focused on the bacterial loads in finished rendered 

materials. A wide variety of heat resistant or post-process contaminating bacteria could 

be present in the rendering materials; therefore, the presence of 4.3 log10 cfu/g in the 

rendering samples is not unexpected.  

From the preliminary study, it was determined approximately 10 log10 cfu/g of 

each Salmonella culture could be recovered from inoculated rendering samples. This 

concentration exceeds the detection limit of the direct plating method utilized to 

enumerate on TSA. The presence of bacteria after 420 s of thermal treatment at 115.6ºC 

on TSA indicated the presence of heat resistant bacteria in the background of the 

rendering samples. Autoclaving requires exposure to 121ºC at 15 psi of pressure for a 
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minimum of 15 min to kill most bacteria (Laroussi and Leipold 2004). Bacterial 

endospores are very heat resistant and there have been cases where endospores have not 

been killed under autoclave conditions (Tuominen et al. 1994). Therefore, the thermally-

resistant bacteria in the background of rendering materials could potentially be spore-

forming bacteria. The design of this experiment did not allow for further analysis of these 

heat-resistant bacteria. However, future experiments will isolate and identify these 

bacterial species through genetic analysis or serotyping.  

Results of RV and TT pre-enrichments indicated variation in recovery amongst 

cultures identifying as Salmonella in the SC, SE, SN, and SD inoculated and 

uninoculated samples. In inoculated and uninoculated samples pre-enriched in RV, the 

presence of SC or organisms appearing to be Salmonella declined after the application of 

heat. In TT, the presence of SC or microbes appearing to be Salmonella followed a 

similar trend as the RV pre-enriched samples. However, Salmonella were detected in 

both inoculated and uninoculated samples at 90 and 120 s in TT. In RV, SE or bacteria 

detected as Salmonella were present in both inoculated and uninoculated samples at 90 

and 120 s. However, in TT, SE or organisms presenting as Salmonella were detected in 

both inoculated and uninoculated samples at 0, 15, 30, 60, 90, and 120 s. The presence of 

Salmonella or organisms detected as Salmonella at 90 s and 120 s may be background 

bacteria. The presence of SN or organisms detected as Salmonella were present at 0, 15, 

30, 60, 90, 120, 180, 240 s in both RV pre-enriched inoculated and uninoculated samples. 

SN or Salmonella-like bacterial species were detected in TT until 300 s in inoculated and 

uninoculated samples. Positive results in inoculated samples may be due to background 
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organisms. SD or organisms detected as Salmonella were present in both inoculated and 

uninoculated samples pre-enriched in RV at 60, 90, 240 and 300 s. In TT, SD or 

organism detected as Salmonella were present at 0, 90, 240, 300 and 360 s in inoculated 

and uninoculated samples. Again, positive results in inoculated samples may be due to 

background organisms. Another explanation for the results of this study could be that 

Salmonella species may have been entrapped in bone particles or in fat. In comparing the 

presence of Salmonella in inoculated samples pre-enriched in either RV or TT, the 

presence of Salmonella or a Salmonella-like organism appeared to follow similar trends 

across all experiments.  

The presence of a thermally resistant organism reacting as Salmonella has been 

well-noted in the rendering samples in this study. The rendering process recycles inedible 

animal tissue to produce products that can be used in animal feed. Therefore, it is 

hypothesized that an unknown bacterial strain(s) may have acquired thermal resistance 

and/or Salmonella-like characteristics through repetitive cycles of animal feed, animals 

and rendering. Inedible animal tissues including the gastrointestinal tract and its inherent 

microorganisms would be rendered and the cycle through animal feed to animal to 

slaughter to rendering could hypothetically repeat. Potentially these conditions could 

select for thermally resistant microorganisms. Since this hypothesis has not been tested, it 

is vital that this unknown strain or strains is isolated in future experimentation to 

determine its identity and characteristics. 

Preliminary estimated D values were calculated. SN and SD appeared to have 

longer D values than SC and SE. As a general rule of thumb, with increase in 
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temperature, the thermal lethality increases (Earle and Earle 1983). Liu et al. (1969) 

reported D values for Salmonella senftenberg 775 W were highly variable between 10 to 

115 min at 70ºC in meat and bone meal. Lui et al. (1969) conducted their study in meal 

and the current study was conducted in cooked beef rendered products containing 50% 

fat content. Similar to the Lui et al. (1969) study, the D values of this study were variable 

and high which could potentially be due to the thermally resistant background 

organism(s).  

Further research needs to be conducted at 240ºF (115.6ºC) for longer time 

intervals to ensure that SC, SE, SN and SD are destroyed. It should be noted the results of 

this study were obtained from the lower end of the cooking temperatures utilized in the 

rendering industry. Many rendering facilities process materials at higher temperatures 

close to 280ºF (137.8ºC) to 290ºF (143.3ºC) for 40 to 90 min in order to produce 

microbiologically safe products (Meeker and Hamilton 2006). However, the industry also 

employs a different type of cooker known as a Carver-Greenfield unit. These units 

operate at lower temperatures, typically closer to 240ºF (115.6ºC). Carver-Greenfield 

units operate under vacuum to process the materials at this lower temperature (Meeker 

and Hamilton 2006). 

It was necessary to grind rendering materials for transfer into stainless steel tubes. 

Factors for comparing data to typical bone particle sizes will necessary for future 

experiments. Thermal conductivity studies on larger bone particles could provide further 

understanding of thermal lethality in rendering materials.  
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Figure 3.1. Method utilized to report RV and TT pre-enrichments results on XLD 

validated by two confirmation tests at each thermal treatment. If both plates were 

negative, the result was assigned a 0 (A). If one was positive and one was negative, the 

result was assigned a 0.5 (B). If both were positive, the result was assigned a 1.0 (C). 
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Figure 3.2. Enumeration of Salmonella on XLD from beef rendering samples (50% fat) 

inoculated with Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella 

Newport (SN), and Salmonella Dublin (SD).
1
  

 

 

1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24, except for SN and 

SD n=42 at 0, 90, 240, 300, 360 and 420 s).
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Figure 3.3. Enumeration of Salmonella on XLD from uninoculated beef rendering 

samples (50% fat) for Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN), and Salmonella Dublin (SD).
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1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24, except for SN and 

SD n=42 at 0, 90, 240, 300, 360 and 420 s). 
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Figure 3.4. Enumeration of total bacteria on TSA from beef rendering samples (50% fat) 

inoculated with Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella 

Newport (SN), and Salmonella Dublin (SD).
1 

 

 

1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24, except for SN and 

SD n=42 at 0, 90, 240, 300, 360 and 420 s). 
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Figure 3.5. Enumeration of total bacteria on TSA from uninoculated beef rendering 

samples (50% fat) for Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN), and Salmonella Dublin (SD).
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1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24, except for SN and 

SD n=42 at 0, 90, 240, 300, 360 and 420 s). 
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Figure 3.6. Presence or absence ± standard deviation of Salmonella for each Salmonella 

Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and 

Salmonella Dublin (SD) inoculated, RV pre-enriched beef rendering samples (50% fat).
1 

 

 

1
A count of 0 represent the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24, except for SN and SD n=42 at 0, 90, 240, 300, 360 and 

420 s).  
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Figure 3.7. Presence or absence ± standard deviation of Salmonella for each RV pre-

enriched, uninoculated beef rendering samples (50% fat) for Salmonella Choleraesuis 

(SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and Salmonella Dublin 

(SD).
1 

 

1
A count of 0 represent the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24, except for SN and SD n=42 at 0, 90, 240, 300, 360 and 

420 s) 
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Figure 3.8. Presence or absence ± standard deviation of Salmonella for each Salmonella 

Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and 

Salmonella Dublin (SD) inoculated, TT pre-enriched beef rendering samples (50% fat).
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1
A count of 0 represent the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24, except for SN and SD n=42 at 0, 90, 240, 300, 360 and 

420 s). 
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Figure 3.9. Presence or absence ± standard deviation of Salmonella for each TT pre-

enriched, uninoculated beef rendering samples (50% fat) for Salmonella Choleraesuis 

(SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and Salmonella Dublin 

(SD).
1 

 

1
A count of 0 represent the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24, except for SN and SD n=42 at 0, 90, 240, 300, 360 and 

420 s). 
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Figure 3.10. Mean percent particle size distribution ± standard error of beef rendering 

samples collected from a rendering plant on three different days (n=30). Each fraction of 

particle size was indicated as a percentage of the total weight of the rendering sample. 

The error bars indicate standard error for each data point. 
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Table 3.1. Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella 

Newport (SN) and Salmonella Dublin (SD) after inoculation into beef rendering materials 

and plated onto XLD (n=6). 

Serotype 

 

Average Broth Culture, 

log10 cfu/g ± standard error 

Average in Beef Samples, 

log10 cfu/g ± standard error 

SC 12.60±0.15 10.60±0.29 

SE 12.12±0.01 10.67±0.08 

SN 12.28±0.03 10.76±0.04 

SD 12.16±0.15 10.65±0.08 
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Table 3.2. Estimated D values for Salmonella Choleraesuis (SC), Salmonella Enteriditis 

(SE), Salmonella Newport (SN), and Salmonella Dublin (SD) in beef rendering samples 

(50% fat) at 115.6ºC pre-enriched in RV and validated by two confirmation tests. 

Serotype Estimated D Value, min 

SC 0.01 

SE 0.29 

SN 0.58 

SD 0.60 
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Table 3.3. Estimated D values for Salmonella Choleraesuis (SC), Salmonella Enteriditis 

(SE), Salmonella Newport (SN), and Salmonella Dublin (SD) in beef rendering samples 

(50% fat) at 115.6ºC pre-enriched in TT and validated by two confirmation tests. 

Serotype Estimated D Value, min 

SC 0.30 

SE 0.29 

SN 0.49 

SD 0.70 
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Table 3.4. Number of samples positive for Salmonella in Salmonella Choleraesuis (SC), 

Salmonella Enteriditis (SE), Salmonella Newport (SN) and Salmonella Dublin (SD) 

inoculated beef rendering samples (50% fat) after pre-enrichment in RV or TT broth 

(n=24, except for SN and SD n=42 at 0, 90, 240, 300, 360 and 420 s). 

  RV TT 

Serotypes Thermal 

Treatment 

Time, s 

Number of Positive Samples Number of Positive Samples 

SC Unheated 24 out of 24 samples 24 out of 24 samples 

 0 0 out of 24 samples 0 out of 24 samples 

 15 0 out of 24 samples 0 out of 24 samples 

 30 0 out of 24 samples 0 out of 24 samples 

 60 0 out of 24 samples 0 out of 24 samples 

 90 0 out of 24 samples 0 out of 24 samples 

 120 0 out of 24 samples 2 out of 24 samples 

 180 0 out of 24 samples 0 out of 24 samples 

 240 0 out of 24 samples 0 out of 24 samples 

 300 0 out of 24 samples 0 out of 24 samples 

SE Unheated 24 out of 24 samples 24 out of 24 samples 

 0 2 out of 24 samples 4 out of 24 samples 

 15 4 out of 24 samples 6 out of 24 samples 

 30 0 out of 24 samples 4 out of 24 samples 

 60 0 out of 24 samples 5 out of 24 samples 

 90 4 out of 24 samples 3 out of 24 samples  

 120 1 out of 24 samples 1 out of 24 samples 

 180 0 out of 24 samples 0 out of 24 samples 

 240 0 out of 24 samples 0 out of 24 samples 

 300 0 out of 24 samples 0 out of 24 samples 

SN Unheated 42 out of 42 samples 42 out of 42 samples 

 0 16 out of 42 samples 14 out of 42 samples  

 15 8 out of 24 samples 6 out of 24 samples 

 30 4 out of 24 samples 2 out of 24 samples 

 60 2 out of 24 samples 2 out of 24 samples 

 90 8 out of 42 samples 9 out of 42 samples  

 120 8 out of 24 samples 4 out of 24 samples 

 180 5 out of 24 samples 5 out of 24 samples 

 240 12 out of 42 samples 10 out of 42 samples 

 300 3 out of 42 samples 0 out of 42 samples 

 360 0 out of 42 samples 0 out of 42 samples 

 420 0 out of 42 samples 0 out of 42 samples 

SD Unheated 42 out of 42 samples 42 out of 42 samples 

 0 9 out of 42 samples 6 out of 42 samples 
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 15 12 out of 24 samples 4 out of 24 samples 

 30 0 out of 24 samples 2 out of 24 samples 

 60 3 out of 24 samples 0 out of 42 samples 

 90 6 out of 42 samples 10 out of 42 samples 

 120 0 out of 24 samples 0 out of 24 samples 

 180 0 out of 24 samples 0 out of 24 samples 

 240 7 out of 42 samples 8 out of 42 samples 

 300 3 out of 42 samples 4 out of 42 samples 

 360 0 out of 42 samples 21 out of 42 samples 

 420 0 out of 42 samples 0 out of 42 samples 
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Table 3.5. Number of samples positive for Salmonella in uninoculated beef rendering 

samples (50% fat) for Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN) and Salmonella Dublin (SD) after pre-enrichment in RV or TT 

broth (n=24, except for SN and SD n=42 at 0, 90, 240, 300, 360 and 420 s).
 
 

  RV TT 

Serotype Thermal 

Treatment 

Time, s 

Number of Positive Samples Number of Positive Samples 

SC Unheated 0 out of 24 samples 0 out of 24 samples 

 0 0 out of 24 samples 0 out of 24 samples 

 15 0 out of 24 samples 0 out of 24 samples 

 30 0 out of 24 samples 0 out of 24 samples 

 60 0 out of 24 samples 0 out of 24 samples 

 90 0 out of 24 samples 2 out of 24 samples 

 120 0 out of 24 samples 0 out of 24 samples 

 180 0 out of 24 samples 0 out of 24 samples 

 240 0 out of 24 samples 0 out of 24 samples 

 300 0 out of 24 samples 0 out of 24 samples 

SE Unheated 3 out of 24 samples 4 out of 24 samples 

 0 0 out of 24 samples 5 out of 24 samples 

 15 0 out of 24 samples 2 out of 24 samples 

 30 0 out of 24 samples 2 out of 24 samples 

 60 0 out of 24 samples 8 out of 24 samples 

 90 1 out of 24 samples 2 out of 24 samples 

 120 4 out of 24 samples 1 out of 24 samples 

 180 5 out of 24 samples 4 out of 24 samples 

 240 0 out of 24 samples 0 out of 24 samples 

 300 0 out of 24 samples  0 out of 24 samples 

SN Unheated 12 out of 42 samples  3 out of 42 samples 

 0 9 out of 42 samples  5 out of 42 samples 

 15 4 out of 24 samples  3 out of 24 samples 

 30 4 out of 24 samples 2 out of 24 samples 

 60 7 out of 24 samples 6 out of 24 samples 

 90 9 out of 42 samples 11 out of 42 samples 

 120 5 out of 24 samples 4 out of 24 samples 

 180 4 out of 24 samples 5 out of 24 samples 

 240 7 out of 42 samples 8 out of 42 samples 

 300 0 out of 42 samples 0 out of 42 samples 

 360 0 out of 42 samples 0 out of 42 samples 

 420 0 out of 42 samples 0 out of 42 samples 
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SD Unheated 12 out of 42 samples 0 out of 42 samples 

 0 0 out of 42 samples 8 out of 42 samples 

 15 0 out of 24 samples 0 out of 24 samples 

 30 2 out of 24 samples 0 out of 24 samples  

 60 1 out of 24 samples 2 out of 24 samples 

 90 1 out of 42 samples 4 out of 42 samples 

 120 0 out of 24 samples 0 out of 42 samples 

 180 2 out of 24 samples 2 out of 24 samples  

 240 5 out of 42 samples 5 out of 42 samples  

 300 2 out of 42 samples 9 out of 42 samples  

 360 0 out of 42 samples 21 out of 42 samples  

 420 0 out of 42 samples 0 out of 42 samples 
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CHAPTER 4 

VALIDATION OF THERMAL DESTRUCTION OF SALMONELLA IN RENDERED 

POULTRY PRODUCTS 

 

Abstract 

 

Only a portion of a food animal is considered edible by humans. The remainder of 

the animal tissue is considered inedible and typically rendered into animal co-products. 

Rendering recycles the residual animal tissue from food animals into stable, value-added 

materials for use primarily in animal feeds. Therefore, the rendering industry must have 

validation data on the thermal lethality of rendering thermal process to ensure the 

destruction of animal disease pathogens in finished products. The unique high fat, bone 

and protein content of rendering materials leaves the industry with no comparable 

thermal death time values from the human food industry or any other industry. The 

objective of this study is to determine thermal death time values for poultry rendering 

materials containing 50% fat content for four pathogenic Salmonella recognized by FDA 

as hazardous for animal feeds (Salmonella Choleraesuis (SC), Salmonella Enteritidis 

(SE), Salmonella Newport (SN) and Salmonella Dublin (SD)). Recoverability of 

Salmonella varied after pre-enrichment in either RV or TT broth. Levels of Salmonella in 

the samples did not exhibit a straight line decrease with increasing thermal treatment 

times. In thermal treatment trials extended up to 420 s at 240ºF (115.6ºC), Salmonella 

were detected in the SC, SE, SN and SD samples at 360 s. Thermally resistant Salmonella 

or Salmonella-like strains in the background were detected up to 360 s of treatment in 

uninoculated controls. Future experiments will be needed to validate whether these 

organisms are Salmonella. 
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Introduction 

Rendered animal products can potentially be contaminated with Salmonella spp. 

Approximately 85% of rendered products are used as animal feed ingredients which can 

potentially transmit Salmonella to humans through the food chain (Crump et al. 2002). 

Loken et al. (1968) tested 1,395 rendered products from seven different plants and 

detected the presence of Salmonella in 241 (17%) of the samples. The study also tested 

the plant via environmental swabs, and Salmonella was isolated from 359 out of 1901 

(19%) of the swabs. In a study conducted in 1977, Salmonella was detected in 81% of the 

meat meal and 40% of the feather meal produced over a four mo period in Ontario feed 

mills (Hacking et al. 1977). In 1993 and 1994, FDA conducted two separate studies 

examining rendered animal feed products for the presence of Salmonella enterica and 

determined 56% and 25% of the samples, respectively, were positive (McChesney et al., 

1995; Crump et al., 2002). Troutt et al. (2001) examined 17 rendering facilities located in 

seven midwestern states of the United States. No Salmonella was found in crax samples 

or in the rendering processing environment. However, the finished rendered products 

contained 12 serovars of Salmonella. Franco (2005) reported Salmonella cells were 

present in low numbers in animal feed after analyzing approximately 200 rendered 

animal protein meal samples over a 12 mo period. Kinley et al. (2009) examined products 

from 12 rendering facilities in the United States and detected 13 Salmonella serovars. In 

2010, Kinley et al. determined the prevalence of Salmonella and Enterococcus spp. in 

poultry meal or feather meal from 12 United States rendering companies. Enterococcus 



75 

 

spp. were detected in 81.3% of the samples and accounted for up to 54% of the total 

bacterial counts in some samples. Salmonella was only detected in 8.7% of the samples.  

To ensure the microbiological safety of rendering products, rendering facilities 

utilize thermal processing for 40 to 90 min at 240 to 290ºF (115.6 to 143.3ºC) (Meeker 

and Hamilton, 2006). Marginal processing conditions potentially could result in microbial 

survival (Crump et al., 2002). Thermal death time (TDT) is a factor of time, temperature, 

material matrix and organism (Heldman and Hartel, 1998). Decimal reduction time (D 

value) indicates the time required for a one log10 reduction of a particular organism at a 

specific temperature (Heldman and Hartel, 1998). TDT of Salmonella has been 

investigated in food products (Murphy et al., 2000; D’Aoust, 2001; Murphy et al., 2004; 

Bucher et al., 2008), but few studies have been conducted in rendered animal products. 

Franco (1997 and 2005) conducted surveys of Salmonella in rendered animal co-products 

and suggested rendering processes destroy Salmonella. Ramirez-Lopez (2006) studied 

TDT of a single unknown isolate from animal co-products. However, data has never been 

generated on TDT of Salmonella in rendered poultry materials. Since this factor must 

consider the parameters of matrix, temperature and organism, it was necessary to conduct 

validation in the actual rendering material matrices. The objective of this study was to 

determine the TDT and D values for four pathogenic Salmonella recognized by FDA as 

hazardous for animal feeds (Salmonella Choleraesuis, Salmonella Enteritidis, Salmonella 

Newport and Salmonella Dublin) in poultry rendering materials containing 50% fat 

content (FDA, 2010; FDA, 2013) at 240ºF (115.6ºC). 
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Materials and Methods 

Rendering Sample Preparation 

  Samples of poultry crax and poultry fat were obtained from a southeastern 

rendering company on three separate days. Crax is a solid material composed of protein, 

minerals, and residual fat that is discharged from the screw press during the rendering 

process and is typically further ground into meat and bone meal (Meeker and Hamilton, 

2006). The crax samples were submitted in duplicate to Clemson University Agricultural 

Service Laboratory for ash, fat, and moisture content analysis. The fat and crax samples 

were mixed to produce 50% fat samples. A food processor bowl, blade and lid were 

disinfected by rinsing in Antibac B™ (Diversey Corporation, Cincinnatti, OH) dissolved 

in distilled deionized water (ddH2O) (0.6 g per L) for approximately 2 min, followed by 

rinsing 5 times with sterile ddH2O. Particle size was reduced by processing for 

approximately 10 min on the pulse setting in the disinfected food processor (Robot 

Coupe Model R2 Ultra, Ridgeland, MS) prior to conducting the experiments. A sterile 

stainless steel spatula was used to scrape material from the sides during pauses in 

processing. All samples were stored under refrigeration until needed for experimentation. 

Salmonella Preparation 

 Four pathogenic Salmonella serotypes recognized by FDA as hazardous for 

animal feeds (Salmonella Choleraesuis (FDA 8326) (SC), Salmonella Enteritidis (USDA 

H4386) (SE), Salmonella Newport (USDA H1073) (SN) and Salmonella Dublin (FDA 

23742) (SD)) were obtained for this study (FDA, 2010; FDA, 2013). SE and SN were 

obtained from Dr. Vijay Jejuna of the USDA Agricultural Research Service, Microbial 
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Food Safety Research Unit, 600 East Mermaid Lane, Room 2129, Wyndmoor, PA 19038. 

SC and SD were obtained from the food microbiology culture collection from 

collaborator Dr. Xiuping Jiang at Clemson University. 

  A preliminary study was conducted to determine the optimal media conditions for 

Salmonella growth. Trypticase soy broth (TSB) (90000-050, VWR Scientific Products, 

Suwanee, GA), TSB with the addition of 0.1% (wt/vol) yeast extract (MP Biomedicals, 

LLC, Solon, Ohio), and brain heart infusion broth (BHI) (211059, VWR Scientific 

Products, Suwanee, GA) were tested. TSB with the addition of 0.1% (wt/vol) yeast 

extract was chosen as the best media based highest cell densities determined from optical 

density measurements (µQuant Universal Microplate Spectrophotometer, Bio-Tek 

Instruments, Winooski, VT) at 600 nm and dilution plating in duplicate onto onto 

bismuth sulfite agar (90003-904, VWR Scientific Products, Suwanee, GA), Hektoen 

enteric agar (9004-054, VWR Scientific Products), xylose lysine deoxycholate (XLD) 

(90003-996, VWR Scientific Products), and trypticase soy agar (TSA) (90000-050, VWR 

Scientific Products). 

  As a preliminary study, each individual Salmonella serotype was plated onto 

bismuth sulfite agar, Hektoen enteric agar, XLD, and TSA. Enumeration data indicated 

use of XLD and TSA as the preferred agar media for enumerating SC, SE, SN, and SD. 

  A preliminary goal of this experiment was to obtain concentrated bacterial slurry 

to use in inoculating poultry rendering materials for thermal processing. The average 

concentrations of cells in broth for SC, SE, SN, and SD after 24 h incubation at 35ºC 

were 8.66±0.02, 8.56±0.03, 8.80±0.06, and 8.65±0.03 log10 cfu/g, respectively. 
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Preliminary experiments were conducted to determine the volume of culture as well as 

concentration rate necessary. Enumeration on XLD and TSA verified that 5 L of a 24 h 

Salmonella culture grown in TSB with 0.1% (wt/vol) yeast extract and then concentrated 

by centrifugation was optimal. Centrifugation was conducted at 7,000 x g for 7 min (GSA 

rotor, DuPont RC5C Sorvall Instruments Centrifuge, DuPont Company, Newtown, CT) 

at 4ºC in sterile centrifuge bottles (47735-696, VWR Scientific Products, Suwanee, GA) 

and the supernatant was discarded after autoclaving. The pellet was resuspended in 5 mL 

sterile TSB. In preliminary studies conducted 3 times in duplicate (n=6), the average 

bacterial slurry concentrations for SC, SE, SN, and SD were 12.60±0.15, 12.12±0.01, 

12.28±0.03, and 12.16±0.15 log10 cfu/g, respectively. This procedure was used to prepare 

the bacterial cultures used throughout the experiment.  

Each Salmonella slurry, prepared as above, was inoculated into poultry rendering 

material at the rate of 100 µL culture per 1 g sample. A preliminary study was conducted 

to determine the difference in mean bacterial counts of the inoculated samples versus the 

bacterial slurry in TSB with 0.1% (wt/vol) yeast extract using two different methods. 

Method 1 was the serial dilution of each broth culture as well as each inoculated sample 

to 10
-14

 utilizing the standard Class O phosphate/magnesium chloride dilution buffer 

(Wehr and Frank, 2004). Method 2 was the serial dilution of each broth culture and 

sample to 10
-14

 using pre-warmed (32ºC) modified Class O phosphate/magnesium 

chloride diluent. Controls included media and uninoculated poultry rendering samples. 

Each experiment was conducted 3 times in duplicate (n=6).  
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Thermal Death Time Trials 

Stainless steel sample tubes (8.5 cm length, 1.6 cm outer diameter, 1.3 cm inner 

diameter) were custom manufactured by a local company by boring 304 stainless steel 

rods. These tubes were capped (60825-801, VWR International, Suwanee, GA) and 

autoclaved. Poultry rendering samples (50% fat) were aseptically transferred (1 g) into 

sixteen sterile tubes. The tubes were placed in an analog dry block heater (Model#12621-

108, VWR International, Suwanee, GA) equipped with Model#13259-162 heating blocks 

(VWR International, Suwanee, GA) set to 115.6ºC. Four of the tubes were randomly 

selected as temperature controls using dial thermometers (61159-409, VWR Scientific 

Products, Suwanee, GA). The tubes were heated to an internal treatment temperature of 

115.6ºC prior to addition of the cultures. Each individual culture (100 µL) was directly 

pipetted into 1 g of the heated rendering samples. After culture inoculation, the sample 

was pipetted up and down approximately 4 times to thoroughly mix. Upon inoculation 

and mixing, time measurements (0, 15, 30, 60, 90, 120, 180, 240, 300, 360, and 420 s) 

began on the thermal treatment. Samples were placed on ice immediately after thermal 

treatment. Additional sample tubes containing poultry rendering used for unheated 

controls were placed on ice until utilized for plating. All samples were processed for 

microbial content immediately after conclusion of heat treatments. 

A preliminary experiment was conducted to validate the use of 1 g of sample pre-

enriched in 5 mL of sterile universal pre-enrichment broth (UPB) (95021-036, VWR 

Scientific Products, Suwanee, GA) in comparison to 1 g of sample pre-enriched in 9 mL I 

of UPB as per recommendations in the FDA Bacteriological Analytical Manual (BAM) 
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(Andrews et al., 2011). The stainless steel tubes used in this experiment would not hold 1 

g of sample pre-enriched in 9 mL of UPB. Results indicated that the 1:5 ratio of sample 

to pre-enrichment broth was as effective as the 1:9 ratio of sample to pre-enrichment 

broth. Therefore, this procedure was used throughout the experiment. 

Once 5 mL of sterile UPB was aseptically pipetted into each tube, the wooden 

shaft of a sterile cotton-tipped applicator (89133-814, VWR Scientific Products, 

Suwanee, GA) was used to thoroughly mix the sample for 30 s. Each UPB diluted sample 

(0.1 mL) was directly pipetted onto XLD and TSA plates and spread using an alcohol-

flamed bent glass rod. As a control, each Salmonella slurry was serially diluted to 10
-12 

in 

the standard Class O phosphate/magnesium chloride dilution buffer and either 1.0 mL or 

0.1 mL was spread plated onto XLD and TSA. Media and dilution buffer controls also 

were conducted. All plates were incubated overnight at 35ºC. In this experimental design, 

XLD selected for Salmonella spp. while TSA measured total bacterial counts (aerobic, 

mesophilic), which included any background bacteria and in test samples background 

bacteria plus inoculated Salmonella. For each inoculate or uninoculated poultry rendering 

sample, dilutions were carried out such that the direct plating on XLD and TSA had a 

lower detection limit of 1.4 log10 cfu/g. 

Because the direct plate counting method had a lower detection limit of 1.4 log10 

cfu/g, an additional experiment was conducted in accordance with FDA Bacteriological 

Analytical Manual (BAM) procedures; this second experiment had a detection limit of 1 

cfu/g (Andrews et al., 2011). The remaining UPB diluted sample in the stainless steel 

tube was incubated overnight at 35ºC and then vortexed (Super Mixer, 1290, Labline 
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Instruments, Inc., Melrose Park, IL) on the fast setting for approximately 30 s. The 

sample (0.1 mL) was aseptically pipetted to Rappaport-Vassiliadis (RV) pre-enrichment 

broth (10 mL) (95039-382, VWR Scientific Products, Suwanee, GA). The same sample 

(1 mL) was aseptically pipetted to tetrathionate broth (TT) (10 mL) (90000-008, VWR 

Scientific Products, Suwanee, GA). Controls included bacterial slurry and sterile media. 

The samples and controls were incubated overnight at 42ºC. A 3 mm inoculation loop of 

each pre-enriched sample and control was streaked onto XLD. All plates were incubated 

overnight at 35ºC. Results indicated the presence or absence of Salmonella in the 

samples. 

As per FDA BAM recommendations to validate positive samples obtained from 

the RV and TT pre-enrichments, two confirmation tests were conducted (Feng, 2001). 

Latex agglutination tests (FT0203, Thermo Fisher Scientific, Waltham, MA 02454) and 

ChromAgar™ (90006-158, VWR Scientific Products, Suwanee, GA) were conducted 

using the each Salmonella culture as a control (BD Diagnostics, 2008; Oxoid Limited, 

2013). In order to analyze the data, when duplicate results from the pre-enriched samples 

were both negative the data was reported as 0.0 (Figure 4.1). If one duplicate was positive 

and one was negative, it was reported as 0.5. If both duplicates were positive, it was 

reported as 1.0 (Figure 4.1).  

Determination of Estimated D Values 

  The direct plate count of each concentrated Salmonella slurry and the time at 

which each culture was destroyed were compared on a graph. In a preliminary 

experiment, percent recoveries of Salmonella from inoculated poultry samples were 
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calculated for each recoverable Salmonella population density. Due to the experimental 

design, the actual population count from poultry rendering material was not conducted. 

However, the total count in each bacterial slurry was measured. This population count 

was used in estimated D value calculations. The final time the population was no longer 

detected was used as the thermal death time. These data were graphed and the slope of 

the line was used to calculate the estimated the D value.  

Results 

Analysis of poultry rendering materials indicated mean fat content was 

15.97±1.13%, mean ash content was 10.55±1.14% and mean moisture content was 

3.73±0.33%. Averaged analysis data for each pair of duplicate samples (Day 1, Day 2, Day 

3) were used to prepare 50% fat materials for use in this study. 

Preliminary results indicated that the average concentration of the culture slurries 

of SC, SE, SN, and SD were 12.60±0.15, 12.12±0.01, 12.28±0.03 and 12.16±0.15 log10 

cfu/g, respectively. The mean bacteria counts ± standard error on XLD from inoculated 

poultry rendering materials were 10.47±0.20 15, 10.59±0.23, 10.43±0.22 and 10.40±0.13 

log10 cfu/g, respectively (Table 4.1). 

All Salmonella counts were conducted in a two-step process. Enumeration on 

XLD had a lower detection limit of 1.4 log10 cfu/g. Under all treatment conditions, SC, 

SE, SN and SD were reduced to or below the lower detection limit after initial thermal 

treatment (0 s) in inoculated poultry samples (Figure 4.2). Salmonella levels were 

reduced to or below lower detection limit during after initial thermal treatment (0 s) in 

uninoculated poultry control samples (Figure 4.3). 
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Enumeration on TSA had an upper detection limit of 4.3 log10 cfu/g. Under all 

treatment conditions, total bacterial counts in the SC, SE, SN, and SD trials were above 

the upper detection limit after all thermal treatments in inoculated poultry samples 

(Figure 4.4). Total bacterial counts were above the upper detection limit after all thermal 

treatments in all uninoculated poultry samples (Figure 4.5). 

Pre-enrichment results on RV and TT were confirmed using both latex 

agglutination and ChromAgar™; the following results are reported as confirmed findings. 

In general, Salmonella serotypes in heated inoculated samples declined with longer 

thermal treatment (Figure 4.6 and 4.8). The positive counts for Salmonella in each 

inoculated and uninoculated sample in either RV or TT validated by the two confirmation 

tests are shown in Tables 4.4 and 4.5. Populations of Salmonella in the SC inoculated 

samples were reduced, but did not appear to be eliminated until 360 s in RV pre-

enrichments. Although populations were reduced, Salmonella levels did not appear to be 

destroyed until 420 s in TT pre-enriched, SC inoculated samples (Figure 4.6 and 4.8). In 

RV, Salmonella in the SE inoculated samples was present at every time interval until it 

appeared to be eliminated at 420 s (Figure 4.6). Populations of Salmonella in the SE 

inoculated samples in TT were reduced to 0 at 90 s, were present at 120, 180, 240, 300 

and 360 s, and appeared to be killed at 420 s (Figure 4.8). Levels of Salmonella in the SN 

inoculated samples were reduced to 0 at 120 s, were present at 180 s, but were eliminated 

at 240 s in RV (Figure 4.6). In TT, Salmonella populations were reduced to 0 at 120 s, 

but were present again until 420 s in SN inoculated samples (Figure 4.8). For SD samples 

pre-enriched in RV, Salmonella levels decreased until reaching 0 at 90, 120, 180 and 240 
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s, but Salmonella was present at 300 s on RV pre-enrichments. Salmonella appeared to be 

eliminated at 360 s and thereafter (Figure 4.6). In TT, Salmonella was reduced to 0 at 300 

s, was present at 360 s and appeared to be killed at 420 s in SD inoculated samples 

(Figure 4.8). Since 420 s was the maximum time tested, future studies should include 

longer treatment times (Figure 4.6 and 4.8). 

Variations were noted in Salmonella populations in heated uninoculated samples 

(Figure 4.7 and 4.9). Salmonella was detected at 0, 60, 90, 120, 180, 240 and 360 s in RV 

pre-enrichments for SC uninoculated samples but was not detected at 15, 30, 300, and 

420 s (Figure 4.7). In TT, Salmonella levels in the uninoculated controls for SC were not 

reduced to 0 until 420 s (Figure 4.9). In RV and TT pre-enrichments for the uninoculated 

SE samples, populations of Salmonella were present in all thermal treatment times up to 

420 s (Figure 4.7 and 4.9). For the uninoculated SN samples, Salmonella was present at 

15, 30, 60, 90, 180, 240, and 300 s in RV (Figure 4.7). In TT, Salmonella was not 

detected in uninoculated SN controls at 0, 120, 360, and 420 s (Figure 4.9). Levels of 

Salmonella in uninoculated SD samples were not detected at 60, 90, 120, 180, 360 and 

420 s in RV (Figure 4.7). In TT, Salmonella was not detected at 0 s and 420 s but was 

present at all other thermal treatment times in the uninoculated SD samples (Figure 4.9).  

The estimated D values for Salmonella in poultry rendering samples containing 

50% fat at 115.6ºC pre-enriched in RV and validated by two confirmation tests were 

calculated. SC, SE, SN, and SD had D values of 0.60, 0.67, 0.39, and 0.58 min, 

respectively (Table 4.2). The estimated D values for Salmonella serotypes in poultry 

rendering samples containing 50% fat at 115.6ºC pre-enriched in TT and validated by 
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two confirmation tests also were determined. SC, SE, SN, and SD had D values of 0.70, 

0.67, 0.67, and 0.67 min, respectively (Table 4.3).  

Discussion 

Since large numbers of samples were plated per day, a preliminary experiment 

was conducted to determine the percent recoveries ± standard error for each Salmonella 

culture from poultry rendering instead of conducting a full dilution series on each day of 

plating. The preliminary study allowed for the reduction of plating of each inoculated, 

unheated sample through extended dilutions during the study. However, future 

experiments should be designed to conduct the plating of each inoculated, unheated 

sample to obtain more accurate data. 

Enumeration on XLD indicated that SC, SE, SN, and SD were reduced to below 

the detection limit after the initial thermal treatment in inoculated and uninoculated 

rendering samples (Figures 4.2 and 4.3). The presence of the bacteria in the background 

of the rendering samples was indicated through enumeration on TSA for both inoculated 

and uninoculated samples (Figures 4.4 and 4.5). The mean bacterial counts of all 

samples, under all thermal treatments, were above the detection limit of 4.3 log10 cfu/g. 

The current study enumerated total bacterial content in finished rendered materials. 

However, Glenn (2006) conducted a study on the bacterial loads in raw rendering 

materials and detected high levels of microbial content. Diverse populations of non-

pathogenic and pathogenic heat-resistant bacteria could be contaminants in rendering 

materials due to either survival of the rendering cooking process or post-process 

contamination. Therefore, the presence of 4.3 log10 cfu/g in the rendering samples is not 
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unexpected. After thermal treatments of 420 s at 115.6ºC, bacterial populations were still 

present as measured on TSA indicating the presence of heat resistant bacteria in the 

background of the rendering samples. Autoclaving requires exposure to 121ºC at 15 psi 

of pressure for a minimum of 15 min to kill most bacteria (Laroussi and Leipold 2004). 

Bacterial endospores are very heat resistant and in certain cases are not killed under 

autoclave conditions (Tuominen et al. 1994). Therefore, the thermally-resistant bacteria 

in the background of rendering materials could potentially be spore-forming bacteria. The 

design of this experiment did not allow for further analysis of these heat-resistant 

bacteria. However, future experiments are needed to isolate and identify these bacterial 

species through genetic analysis or serotyping. 

Results of RV and TT pre-enrichments indicated variation in recovery of 

Salmonella amongst SC, SE, SN, and SD inoculated and uninoculated samples. SC or 

organisms detected as Salmonella were present in both inoculated and uninoculated 

samples pre-enriched in RV and TT but it appeared more frequently in TT pre-enriched 

samples. In RV and TT, SE or bacteria detected as Salmonella were present in both 

inoculated and uninoculated samples at all thermal treatment times up to 420 s, except in 

inoculated samples pre-enriched in TT at 90 s. The presence of SN or organisms detected 

as Salmonella peaked at 90 s, decreased to 0 at 120 s, and re-emerged at 180 s in both RV 

and TT pre-enriched inoculated samples. SN or a Salmonella-like bacterial species was 

detected in uninoculated samples pre-enriched in TT at 90 s, not detected at 120 s, and 

detected again at 180 s. This trend was also observed in uninoculated samples pre-

enriched in RV. SD or organisms detected as Salmonella were present in both inoculated 
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and uninoculated samples pre-enriched in RV and TT but it appeared more frequently in 

TT pre-enriched samples. Positive results in inoculated samples may be due to 

background organisms. It should be noted that a positive Salmonella result from current 

methodology on either inoculated or uninoculated was not validated by genetic analysis 

or serotyping which would be necessary for confirmation in this study. 

 Due to the nature of rendering material collection, Salmonella could be present in 

the porous structure of bone. Additionally, Salmonella could have been coated in fat or 

tissue allowing for a protective effect due to slower thermal conductivity of bone 

particles, fat and/or tissue. The samples in this study were randomly placed in the heating 

block and therefore, this factor was not considered a cause for the observed variability. 

The presence of a thermally resistant organism reacting as Salmonella has been 

well-noted in the rendering samples in this study. The rendering process recycles inedible 

animal tissue to produce products that can be used in animal feed. Therefore, it can be 

hypothesized that an unknown bacterial strain(s) may have acquired thermal resistance 

and/or Salmonella-like characteristics through repetitive cycles of rendered animal feed 

to animals to rendering. In this hypothesis, inedible animal tissues including the 

gastrointestinal tract and its inherent microbes would be rendered and the cycle through 

animal feed to animal to slaughter to rendering would repeat. These conditions 

potentially could select for thermally resistant microbes. Since this hypothesis has not 

been tested, it is vital that this unknown strain(s) is isolated in future experimentation to 

determine its identity and characteristics. 
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Preliminary estimated D values were calculated. In general, with increase in 

temperature, thermal lethality increases (Earle and Earle 1983). Liu et al. (1969) reported 

D values for Salmonella senftenberg 775 W were highly variable between 10 to 115 min 

at 70ºC in meat and bone meal. Lui et al. (1969) conducted their study in meal and the 

current study was conducted in cooked poultry rendered products containing 50% fat 

content. Similar to the Lui et al. (1969) study, the D values of this study were variable 

and high which could potentially be due to the thermally resistant background 

organism(s).  

Further research needs to be conducted at 115.6ºC for longer time intervals to 

ensure that SC, SE, SN and SD are destroyed. It should be noted the results of this study 

were obtained from the lower end of the cooking temperatures utilized in the rendering 

industry. Many rendering facilities process materials at higher temperatures closes to 

280ºF (137.8ºC) to 290ºF (143.3ºC) for 40 to 90 min in order to produce 

microbiologically safe products (Meeker and Hamilton 2006). However, the industry also 

employs a different type of cooker known as a Carver-Greenfield unit. These units 

operate under vacuum at lower temperatures, typically closer to 240ºF (115.6ºC) to 

process the materials (Meeker and Hamilton 2006). 

It was necessary to grind rendering materials for transfer into stainless steel tubes. 

Factors for comparing data to typical bone particle sizes will be necessary for future 

experiments. Thermal conductivity studies on large bone particles could provide further 

understanding of thermal lethality in rendering materials.  
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Figure 4.1. Method utilized to report RV and TT pre-enrichments results on XLD 

confirmed by two confirmation tests at each thermal treatment. The result was assigned a 

0 if both plates were negative (A). The result was assigned a 0.5 if one was positive and 

one was negative (B). The result was assigned a 1.0 if both were positive (C).  
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Figure 4.2. Enumeration of Salmonella on XLD from poultry rendering samples (50% 

fat) inoculated with Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN), and Salmonella Dublin (SD).
1 

 

 

1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24). 
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Figure 4.3. Enumeration of Salmonella on XLD from uninoculated poultry rendering 

samples (50% fat) for Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN), and Salmonella Dublin (SD).
1 

 

 

 

 

1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24). 
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Figure 4.4. Enumeration of total bacteria on TSA from poultry rendering samples (50% 

fat) inoculated with Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN), and Salmonella Dublin (SD).
1 

 

 

 

 

1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24). 
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Figure 4.5. Enumeration of total bacteria on TSA from uninoculated poultry rendering 

samples (50% fat) for Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN), and Salmonella Dublin (SD).
1
 

 

 

 

 

1
The lower limit of detection is 1.4 log10 cfu/g of Salmonella (n=24). 
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Figure 4.6. Presence or absence ± standard deviation of Salmonella for each Salmonella 

Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and 

Salmonella Dublin (SD) inoculated, RV pre-enriched poultry rendering samples (50% 

fat).
1
 

 

1
A count of 0 represents the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24). 
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Figure 4.7. Presence or absence ± standard deviation of Salmonella for each RV pre-

enriched, uninoculated poultry rendering samples (50% fat) for Salmonella Choleraesuis 

(SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and Salmonella Dublin 

(SD).
1 

 

1
A count of 0 represents the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24). 
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Figure 4.8. Presence or absence ± standard deviation of Salmonella for each Salmonella 

Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and 

Salmonella Dublin (SD) inoculated, TT pre-enriched poultry rendering samples (50% 

fat).
1
 

 

1
A count of 0 represents the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24).  
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Figure 4.9. Presence or absence ± standard deviation of Salmonella for each TT pre-

enriched, uninoculated poultry rendering samples (50% fat) for Salmonella Choleraesuis 

(SC), Salmonella Enteriditis (SE), Salmonella Newport (SN), and Salmonella Dublin 

(SD).
1 

 

1
A count of 0 represents the absence of Salmonella, while a count of 1 represents the 

presence of Salmonella (n=24). 
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Table 4.1. Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), Salmonella 

Newport (SN) and Salmonella Dublin (SD) after inoculation into poultry rendering 

materials and plated onto XLD (n=6).  

Serotype 
Average Broth Culture, 

log10 cfu/g ± standard error
 

Average in Poultry Samples, 

log10 cfu/g ± standard error 

SC 12.60±0.15 10.47±0.20 

SE 12.12±0.01 10.59±0.23 

SN 12.28±0.03 10.43±0.22 

SD 12.16±0.15 10.40±0.13 
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Table 4.2. Estimated D values for Salmonella Choleraesuis (SC), Salmonella Enteriditis 

(SE), Salmonella Newport (SN), and Salmonella Dublin (SD) in poultry rendering 

samples (50% fat) at 115.6ºC pre-enriched in RV and validated by two confirmation tests.  

Serotype Estimated D Value, min 

SC 0.60 

SE 0.67 

SN 0.39 

SD 0.58 
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Table 4.3. Estimated D values for Salmonella Choleraesuis (SC), Salmonella Enteriditis 

(SE), Salmonella Newport (SN), and Salmonella Dublin (SD) in poultry rendering 

samples (50% fat) at 115.6ºC pre-enriched in TT and validated by two confirmation tests.  

Serotype Estimated D Value, min 

SC 0.70 

SE 0.67 

SN 0.67 

SD 0.67 
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Table 4.4. Number of samples positive for Salmonella in Salmonella Choleraesuis (SC), 

Salmonella Enteriditis (SE), Salmonella Newport (SN) and Salmonella Dublin (SD) 

inoculated poultry rendering samples (50% fat) after pre-enrichment in RV or TT broth 

(n=24). 

  RV TT 

Serotype Thermal 

Treatment 

Time, s 

Number of Positive 

Samples 

Number of Positive 

Samples 

SC Unheated 18 out of 24 samples  24 out of 24 samples  

 0 4 out of 24 samples  4 out of 24 samples  

 15 2 out of 24 samples  6 out of 24 samples  

 30 4 out of 24 samples  6 out of 24 samples  

 60 8 out of 24 samples  13 out of 24 samples  

 90 2 out of 24 samples  10 out of 24 samples  

 120 8 out of 24 samples  17 out of 24 samples  

 180 4 out of 24 samples  14 out of 24 samples  

 240 6 out of 24 samples  4 out of 24 samples  

 300 2 out of 24 samples  3 out of 24 samples  

 360 0 out of 24 samples  6 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  

SE Unheated 14 out of 24 samples  24 out of 24 samples  

 0 10 out of 24 samples  15 out of 24 samples  

 15 5 out of 24 samples  4 out of 24 samples  

 30 2 out of 24 samples  4 out of 24 samples  

 60 3 out of 24 samples  4 out of 24 samples  

 90 12 out of 24 samples  0 out of 24 samples  

 120 8 out of 24 samples  8 out of 24 samples  

 180 4 out of 24 samples  10 out of 24 samples  

 240 9 out of 24 samples  4 out of 24 samples  

 300 8 out of 24 samples  6 out of 24 samples  

 360 2 out of 24 samples  2 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  

SN Unheated 24 out of 24 samples  24 out of 24 samples  

 0 12 out of 24 samples  14 out of 24 samples  

 15 10 out of 24 samples  14 out of 24 samples  

 30 6 out of 24 samples  12 out of 24 samples  

 60 6 out of 24 samples  6 out of 24 samples  

 90 10 out of 24 samples  14 out of 24 samples  

 120 0 out of 24 samples  0 out of 24 samples  

 180 2 out of 24 samples  2 out of 24 samples  
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 240 0 out of 24 samples  6 out of 24 samples  

 300 0 out of 24 samples  4 out of 24 samples  

 360 0 out of 24 samples  2 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  

SD Unheated 24 out of 24 samples  24 out of 24 samples  

 0 8 out of 24 samples  12 out of 24 samples  

 15 4 out of 24 samples  8 out of 24 samples  

 30 2 out of 24 samples  6 out of 24 samples  

 60 2 out of 24 samples  2 out of 24 samples  

 90 0 out of 24 samples  4 out of 24 samples  

 120 0 out of 24 samples  8 out of 24 samples  

 180 0 out of 24 samples  10 out of 24 samples  

 240 0 out of 24 samples  8 out of 24 samples  

 300 2 out of 24 samples  0 out of 24 samples  

 360 0 out of 24 samples  2 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  
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Table 4.5. Number of samples positive for Salmonella in uninoculated poultry rendering 

samples (50% fat) for Salmonella Choleraesuis (SC), Salmonella Enteriditis (SE), 

Salmonella Newport (SN) and Salmonella Dublin (SD) after pre-enrichment in RV or TT 

broth (n=24). 

  RV TT 

Serotype Thermal 

Treatment 

Time, s 

Number of Positive 

Samples 

Number of Positive 

Samples 

SC Unheated 8 out of 24 samples  8 out of 24 samples  

 0 4 out of 24 samples  8 out of 24 samples  

 15 0 out of 24 samples  4 out of 24 samples  

 30 0 out of 24 samples  2 out of 24 samples  

 60 6 out of 24 samples  5 out of 24 samples  

 90 4 out of 24 samples  12 out of 24 samples  

 120 8 out of 24 samples  4 out of 24 samples  

 180 4 out of 24 samples  4 out of 24 samples  

 240 5 out of 24 samples  4 out of 24 samples  

 300 0 out of 24 samples  9 out of 24 samples  

 360 4 out of 24 samples  2 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  

SE Unheated 12 out of 24 samples  16 out of 24 samples  

 0 6 out of 24 samples  4 out of 24 samples  

 15 6 out of 24 samples  10 out of 24 samples  

 30 4 out of 24 samples  10 out of 24 samples  

 60 5 out of 24 samples  8 out of 24 samples 9 

 90 14 out of 24 samples  8 out of 24 samples  

 120 10 out of 24 samples  4 out of 24 samples  

 180 6 out of 24 samples  8 out of 24 samples  

 240 6 out of 24 samples  1 out of 24 samples  

 300 8 out of 24 samples  4 out of 24 samples  

 360 2 out of 24 samples  7 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  

SN Unheated 7 out of 24 samples  14 out of 24 samples  

 0 0 out of 24 samples  0 out of 24 samples  

 15 6 out of 24 samples  6 out of 24 samples  

 30 4 out of 24 samples  5 out of 24 samples  

 60 2 out of 24 samples  10 out of 24 samples  

 90 10 out of 24 samples  10 out of 24 samples  

 120 0 out of 24 samples  0 out of 24 samples  
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 180 6 out of 24 samples  2 out of 24 samples  

 240 12 out of 24 samples  4 out of 24 samples  

 300 4 out of 24 samples  4 out of 24 samples  

 360 0 out of 24 samples  0 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  

SD Unheated 8 out of 24 samples  6 out of 24 samples  

 0 2 out of 24 samples  0 out of 24 samples  

 15 6 out of 24 samples  14 out of 24 samples  

 30 2 out of 24 samples  8 out of 24 samples  

 60 0 out of 24 samples  2 out of 24 samples  

 90 0 out of 24 samples  6 out of 24 samples  

 120 0 out of 24 samples  7 out of 24 samples  

 180 0 out of 24 samples  6 out of 24 samples  

 240 2 out of 24 samples  16 out of 24 samples  

 300 6 out of 24 samples  6 out of 24 samples  

 360 0 out of 24 samples  2 out of 24 samples  

 420 0 out of 24 samples  0 out of 24 samples  
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