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ABSTRACT 

 With the advent of parallel computing, a number of hardware architectures have 

become available for data parallel applications. Every architecture is unique with respect 

to characteristics such as floating point operations per second, memory bandwidth and 

synchronization costs. Data parallel applications possess inherent parallelism that needs 

to be studied and the hardware that can best exploit this parallelism can be identified and 

selected for large-scale implementation.  

 The application that I have considered for my thesis is - numerical solution of 

shallow water wave equations using finite difference method. These equations are a set of 

partial differential equations that model the propagation of disturbances in water and 

other incompressible liquids. This application fits in the category of a Synchronous 

Iterative Algorithm (SIA) and hence, the Synchronous Iterative GPGPU Execution 

(SIGE) model can be directly applied for performance modeling. 

 In the high performance computing community, Graphical Processing Units 

(GPUs) and Field Programmable Gate Arrays (FPGAs) have become highly popular 

architectures. Homogeneous clusters comprising of multiple processors and 

heterogeneous clusters that have nodes consisting of both CPU and GPU, are the 

architectures of interest for this thesis. An initial or high level comparison between the 

two architectures is performed with regards to the chosen application using a technique 

known as the Initial Application to Accelerator (A2A) mapping which ranks which 

architecture delivers the best performance with respect to execution time for large scale 

implementation. 
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 The subsequent part of the thesis will focus on a low level abstraction of the 

application of interest to accurately predict the runtime using the multi-level SIGE 

performance-modeling suite. Through this abstraction, performance modeling of the 

computation and communication portion of the application is undertaken. The behavior 

of the computation and communication portions is captured through several instrumented 

iterations of the application and regression analysis is performed on the execution times. 

The predicted run time is the sum of the computation and communication run time 

predictions and is validated by executing the application at higher data sizes. 

 The thesis concludes with the pros and cons of applying the A2A fitness model 

and the low level abstraction for run time prediction to the chosen application. A critique 

of the SIGE model is presented and a Strength, Weakness, Opportunities (SWO) analysis 

is presented.  
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CHAPTER 1 

INTRODUCTION 

 In recent times, parallel computing has become the preferred way for application 

development in the scientific community. Early microprocessors based on single core 

central processing units (CPU) made rapid advances in terms of fixed point and floating 

point operations per second and operating frequencies. Such CPUs with complex control 

logic for branch predictions and hazard prevention were highly conducive for serial 

application development. Based on Moore’s Law, for many years the CPU speeds were 

projected to increase and sequential software was predicted to perform better as the 

hardware improved, thus, preempting the need for a change in the software development 

paradigm. 

 This trend, however, changed in 2003 when the power wall was hit. As CPU 

frequencies rose, the energy consumption and heat dissipation in the processors reached 

extremely high levels and this limited the maximum operating frequencies of processors. 

This led to the evolution of many core and multicore architectures. However, traditional 

sequential software is executed primarily on single core CPUs and is incapable of 

harnessing the power of multicore processors. This called for a change in the software 

development paradigm and parallel software development became necessary. 

 Several multicore and many core hardware architectures have evolved for parallel 

computing, the prominent ones being multicore processors, Graphical Processing Units 

(GPUs) and Field Programmable Gate Arrays (FPGAs). Intel introduced the Xeon E5-

2600 series of processors [1] having up to 16 cores. GPUs used traditionally for graphics 
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software are highly conducive for parallel applications since GPU devices support 

thousands of hardware threads useful for processing massively data parallel applications. 

GPUs used this way are generally termed as General Purpose Graphical Processing Units 

(GPGPUs). FPGAs are in demand where reconfigurable hardware is necessary. Multiple 

computing nodes or processors can be coupled via fast interconnect networks to form 

cluster systems that are highly conducive to parallel computing. Homogeneous clusters 

that have nodes with many core processors and heterogeneous clusters having nodes 

equipped with several multicore processors and one or more GPGPU devices are popular 

hardware accelerators.   

 These architectures have unique processing capabilities such as floating point 

operations per second, memory access times, and inter host-device data bandwidth. These 

characteristics are important considerations when selecting a particular architecture for 

the application of interest. Characteristics of data parallel software such as the number of 

data parallel computations, memory access, and data transfers between different 

architectures become critical. These characteristics are important performance factors for 

the application because the speedup and execution time is dependent on the ability of the 

application to exploit the maximum degree of parallelism from the architecture. An 

architecture selected without such a study may not be fully utilized by the application and 

therefore, deliver sub-optimal performance. Similarly, the chosen algorithm must expose 

enough inherent data parallelism to occupy the hardware. Applications that are inherently 

serial may perform poorly if implemented on parallel architectures. The identification of 

near optimal hardware architectures and mapping of application to accelerators becomes 

a non-trivial process. Therefore, there is a need for a roadmap to guide application 
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developers in identification and ranking of architectures that would be best suited for a 

particular application. The Application to Accelerator (A2A) roadmap given in [23] has 

been studied and applied in this thesis.  

 In my thesis, the application of interest is the numerical solution of shallow water 

wave equations using finite difference method [25]. In this application, the computation 

of the shallow water surface takes place over a square grid on which each point of the 

surface is computed using finite difference over two stages. This is a highly 

computationally intensive and data parallel step that takes place over multiple iterations, 

reflecting the water surface as it evolves over time. The application can be classified as a 

Synchronous Iterative Algorithm (SIA) since several processing units compute the entire 

water surface over multiple iterations. Therefore, the Synchronous Iterative GPGPU 

Execution (SIGE) model [16] has been used for performance modeling and runtime 

prediction.  

 One significant focus of the thesis is the systematic verification of the A2A 

roadmap. A homogenous multiprocessor cluster and a heterogeneous CPU-GPGPU 

cluster are the architectures studied and the A2A roadmap is used to identify the 

accelerator that can deliver the optimal performance. Strengths, Weaknesses and 

Opportunities (SWO) of the A2A roadmap with respect to this application are discussed. 

The accelerator identified using this roadmap is selected and low-level abstraction of the 

application as per the SIGE model is carried out.  

 The verification of the performance prediction framework consisting of he low-

level abstraction described in the SIGE model is the second significant focus of the 

thesis. In this analysis, performance modeling of the computation and communication 
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parts of the application is carried out. Through several instrumented executions of the 

application, runtimes at smaller data sizes are captured. Using this data, regression 

analysis is carried out to accurately predict the runtimes at larger data sizes. For the 

regression analysis, parameters such as data bytes transferred, compute data size, number 

of floating point operations are typically used as independent predictor variables with the 

runtime as the dependent variable. The predictor variables are selected based on 

regression parameters such as high R2 (greater than 0.90) and low p-values (less than 

0.10). The overall predicted runtime is the sum of the computation and communication 

runtime predictions and this is verified by executing the application at higher data sizes. 

The experimental results were observed to be within 10 percent of the predicted runtimes. 

The ease of use of the SIGE model is also discussed.  

 An important comment should be made regarding the application choice. Since 

the finite difference method is used, at a given instant of the algorithm, data at a location 

in the water surface depends on the values of its adjacent points. For points along the grid 

borders of a particular process, the adjacent points may reside along the grid borders of a 

neighboring process and vice versa. Such points are typically called “ghost data” and 

must be exchanged between neighboring processes during each iteration. On a 

heterogeneous CPU-GPU cluster, this leads to inter CPU host – GPU device ghost data 

transfers. The combined effect over multiple iterations is that there are a large number of 

inter process and inter host-device communications, making the application highly 

communication sensitive; this is a good contrast from the four Spiking Neural Network 

(SNN) models – Hodgkin-Huxley, Izhikevich, Morris-Lecar, and Wilson and the 

Anisotropic Digital Filter (ADF) algorithms used in [31] and further studied in [32] that 
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are mostly pleasingly parallel with lesser communication complexity and higher 

computation sensitivity. The chosen application qualifies to have sufficient computation 

and communication complexity. Verification of the SIGE model on such an application 

marks a significant contribution of this thesis.  

 The cluster systems used in this research belong to the Palmetto Cluster at 

Clemson University [30]. The cluster configuration consists of up to 16 nodes Intel Xeon 

ES-2665 HP SL250s nodes with 16 cores, 64GB memory and inter-connected over 

Infiniband. Each node is coupled with NVIDIA Tesla K20 GPU cards. The configuration 

of the Palmetto Cluster is described in further chapters. 

 The remainder of the thesis is organized as follows. Chapter 2 describes the 

literature study pertaining to performance modeling studies and development of 

applications on GPGPUs, similar to the application of interest. Chapter 3 describes the 

application in depth and elucidates the available accelerators. The chapter also describes 

the Compute Unified Device Architecture (CUDA) and discusses the  NVIDIA Tesla 

K20 GPU architecture. Chapter 4 conducts the A2A fitness study and application 

mapping on the chosen accelerator is discussed. The chapter concludes with a runtime 

analysis of both accelerators and sheds light on the A2A verification. Chapter 5 details 

the low-level abstraction using the SIGE model. Chapter 6 consists of the results and 

analysis, and a verification of the SIGE model. The chapter also consists of certain 

insights concerning to execution of SIAs on parallel accelerators and are developed by 

using the prediction framework. The thesis concludes in Chapter 7 with a summary, 

conclusions, and Strengths, Weaknesses and Opportunities (SWO) analysis of the SIGE 

model and future challenges that will consolidate the application to accelerator mapping.  
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CHAPTER 2 

LITERATURE REVIEW 

 In this chapter, we bring to light the recent developments with regards to 

performance prediction and architecture selection for different data parallel applications. 

Section 2.1 discusses the advances made in the field of performance modeling and 

section 2.2 explores various SIA applications that have been implemented on GPGPUs 

and that typically use finite difference methods. The chapter closes with a summary in 

section 2.3 

2.1 Performance Modeling Studies for GPGPU systems. 

In this section, we explore the performance modeling studies that have been 

conducted in the realm of GPGPU.  

In [6], the authors have designed a Scalable HeterOgeneous Computing 

benchmark (SHOC) suite that focuses on the performance and stability of scalable 

heterogeneous computing systems such as GPUs and multicore processors. Their work 

consists of benchmarks that test the performance of low level hardware characteristics 

such as device memory, bus speed download and readback, kernel compilation, queueing 

delay, and resource contention using a set of parallel applications. Heterogeneous 

architecture comprising of devices such as the NVIDIA 8800 GTX, NVIDIA Tesla 

C1060, ATI Radeon HD5770 and multicore CPUs like Intel Gainestown and Harpertown 

are considered. The authors discuss performance of CUDA and OpenCL and contention 

for system resources observable during inter-device and inter-node communications. 

Although the SHOC suite provides results with a high degree of accuracy, it is restricted 
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to measurement of hardware parameters and cannot be used for overall performance 

prediction of the application. 

In [7], a performance analysis framework that identifies root cause of 

performance bottlenecks and an estimation of the degree of benefit of applying 

optimization strategies using static and dynamic profiling and a suite of micro-

benchmarks is discussed. The prediction framework uses inter-thread instruction-level 

parallelism, memory-level parallelism, computing efficiency and serialization effects to 

estimate the performance benefits. The authors use the NVIDIA Fermi C2050 and the 

performance model builds upon an existing MWP-CWP model by using parameters like 

cache effect and SFU instructions. The speedup resulting from optimizations such as use 

of shared memory, loop unrolling, data layout, eliminating divergent branches and 

reduction of idle threads are discussed and are within 10% of the predicted results. 

However, the framework makes use of extremely intricate hardware and software 

parameters that may not be easily available therefore, making the model highly complex 

to use.  

In [8], the authors present the Multi2C simulation framework through which 

different heterogeneous devices can be evaluated based on different performance or 

reliability criteria. The authors build upon the existing Multi2Sim framework to translate 

OpenCL and CUDA kernels to an LLVM representation. The compilation infrastructure 

models hardware and software timings based on instruction queues, divergent branches, 

and functional units. The framework provides for memory coherency modeling by 

allowing for dynamic cache block transitions between coherent and non-coherent modes 

and achieve up to 1.8x speedup on the AMD Radeon 5870 using OpenCL. The 
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framework also includes fault injection into the execution to test the architectural 

vulnerability. However, the parameters considered in this study are also difficult to access 

to rendering the model difficult for performance modeling.  

In [9], the authors identify a set of important GPU application characteristics and 

use those to predict performance of an arbitrary application by determining its most 

similar proxy benchmarks using a range of prediction suites such as the Rodinia suite, 

GPGPU-SIM and NVIDIA-SDK suite. Speedup for a particular benchmark is obtained 

by taking a weighted sum of the speedups of the proxy benchmarks. The application 

metrics considered include but are not limited to, instruction throughput, computation-to-

memory access ratio, memory efficiency and warp occupancy. The authors base their 

experiments on the NVIDIA Tesla C205 and the Kepler K20 GPUs. For applications that 

match the benchmarked applications, the prediction results have an accuracy of 13% to 

15% but the error increases for outlier applications. The framework makes use of existing 

benchmarks, but cannot be used for a novel application for which benchmarks may not 

exist along with the fact that the prediction errors are high.  

In [10], authors propose the Eiger modeling framework for automating the 

generation of performance prediction models by profiling workloads using micro 

benchmarks and regression techniques. The framework constructs performance models 

and evaluates performance sensitivity to processor configurations using Principal 

Components Analysis (PCA). The application metrics are independent of the device on 

which it is running and machine metrics describe the hardware. A wide range of 

application metrics like memory efficiency, SIMD execution, static and dynamic memory 

and machine metrics like bandwidth and streaming multiprocessors are considered. 
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Although the framework predicts the performance faithfully, the application and machine 

parameters in the PCA are not readily available. 

In [11], the authors extend an existing GROPHECY framework to project the 

overall GPU speedup from abstract CPU code and project the overhead of data transfer 

between CPU and GPU using a data usage analyzer and a PCIe bus model. The 

framework estimates the performance gained by GPU acceleration by modeling the data 

transfer overhead. The authors employ an NVIDIA Quadro FX 5600 GPU and use the 

CFD, HotSpot, SRAD and Stassuij applications as benchmarks. They achieve a 

prediction error of 8% on the data transfer overhead and 9% on the overall GPU speedup, 

but only at significantly high number of iterations. At lower iterations, the data transfer 

overhead is significant and the framework detects higher error rates, thus exposing a 

drawback of the framework. Moreover, the framework is restricted to modeling data 

transfers for pinned CPU memory rather than the more common pageable CPU memory.  

In [12], the authors extend the PMaC performance-modeling framework for 

prediction of large-scale HPC applications by profiling application and machine 

characteristics. The model identifies compute and memory access patterns for 

scatter/gather, stream, reduction, etc operations on different hardware and projects the 

obtainable speedup by optimizing the same. The architectures used are NVIDIA Fermi 

C2070 GPU and Convey FPGA co-processor and the authors could achieve an average 

accuracy for bandwidth prediction within 3.16% and 2% for the FPGA and GPUs 

respectively. Although fairly accurate, the model requires the knowledge of memory 

access patterns and projects speedup of individual patterns instead of the application as a 

whole, which can be a concern if the application is iterative in nature. Further, the model 



!

! 10

does not illustrate the effect of optimizations on multiple patterns and how the overall 

performance would be improved. 

In [13], the authors present the Boat Hull model in which performance is 

predicted for GPU and multi-core architectures by creating instances of the roofline 

model for different algorithm classes. The model doesn’t require code but uses off-chip 

memory accesses and coalesced and uncoalesced accesses, data size and number of 

threads to predict the computes and data transfer times. The NVIDIA GeForce GTX 470 

GPU was used and the performance prediction is within 8% of the measured 

performance. However, the selected SIGE model has better accuracy since better 

modeling could be accomplished through code study. 

In [14], the Bulk Synchronous Parallel (BSP) model is proposed that aims in the 

mapping and structuring of iterative parallel applications on heterogeneous architectures. 

But the model is highly theoretical and provides the performance at near optimal 

processor utilization and cannot be directly applied for performance prediction. The 

Heterogeneous BSP model [15] increases the applicability of BSP by incorporating 

parameters that reflect the relative speeds of heterogeneous computing components. 

However, these models aim to guide the design of applications for optimal performance 

on a given machine.   

In [16], the Synchronous Iterative GPGPU Execution (SIGE) model for the 

performance prediction of Synchronous Iterative Algorithms (SIA) is presented. This 

model uses a regression-based approach to predict the computation and communication 

sections of the application by collecting micro benchmarks. The model makes use of 

predictor variables like the number of floating point operations, total bytes consumed, 
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data transfer size and processor count. The authors considered four spiking neural 

network SIAs and with the NVIDIA Tesla M2070 GPU, they could achieve performance 

prediction accuracy of over 90%. 

2.2 SIA Applications on GPGPU systems 

 In this chapter we discuss the evolution regarding the implementation of 

applications that require finite difference methods on GPGPUs. Each study comprises of 

a brief description of the application, optimization strategies, experimental setup, and 

results obtained. 

 In [17], the authors use a 2D problem for computation of electric field values 

caused by the light scattering due to a transverse magnetic wave and implement it on a 

single GPGPU. In this inherently data parallel application, a finite difference time domain 

method is used, where the value of each cell depends on the previous two time steps and 

the values of its directly neighboring cells. This is an SIA with a high number of 

iterations (~100000) and ghost rows used for computing edge elements are exchanged 

with the host CPU in every iteration. The authors make use of shared memory and global 

memory is accessed in a coalesced manner. A PC with AMD Athlon 4000+ with a 

2.4GHz CPU and 2GB RAM and one NVIDIA GeForce 8800 GTX GPGPU was used to 

obtain the benchmarks. For large input data sets (4 Million data elements or 128x128 

grid) the authors observed a speedup of up to 50x. 

 In [18], the authors perform seismic modeling and reverse time migration (RTM) 

using a finite difference method on a 2D and 3D mesh. Seismic waves that are reflected 

and/or refracted at the interface of geological interfaces are used as boundary conditions. 

Asynchronous MPI communications are used to exchange ghost rows and are performed 
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at every iteration in this SIA. Shared memory is used and optimizations are performed to 

increase occupancy. Scalability and speedup comparison for constant, variable density 

and RTM is discussed. The authors used a GPGPU cluster testbed composed of 10 Xeon 

bi-socket quad-core nodes coupled with 5 NVIDIA TESLA S1070 servers. The TESLA 

server is composed of 4 T10 GPGPUs and speedups up to 10x for RTM and up to 30x for 

seismic modeling were observed. 

 In [19], the authors implement versions of scattering of acoustic waves in non-

homogeneous media on GPGPUs using shared memory and texture memory approaches. 

The application is discretized into a set of finite difference equations by replacing partial 

derivatives with central differences. The authors concluded that the shared memory 

approach performed better since the computation time was significantly lower and the 

CUDA occupancy was higher. For the texture memory approach, data is copied between 

device global memory and texture memory and saved into texture memory in every 

iteration, leading to slowing down of the kernel. The shared memory approach used 2 

kernels - one to load data into the shared memory, and other to compute values of the 

next time step. The authors conducted the experiments on a Tesla C1060 GPGPU 

composed of 30 multiprocessors; 4GB DDR3 memory 16KB shared memory per block 

and 2D Texture memory with 216 width × 215 height. 

 In [20], the authors accelerate a 3D finite difference wave propagation application 

on a single GPGPU and heterogeneous CPU-GPU cluster using CUDA-MPI. The authors 

use a 2D mesh along with a sliding computation window to account for the lack of 

sufficient memory for a 3D grid. Shared memory and register optimization techniques are 

used to hold data of the 2D grid and ghost elements. There is an effective overlap of 
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computations and communications by exchanging ghost elements with neighboring 

processes using non-blocking MPI communications and computing inner points on the 

GPGPUs. The experimental setup consists of a cluster of 48 NVIDIA Tesla S1070, each 

having four GT200 GPGPUs and two PCIe-2 buses and connected to BULL Novascale 

R422 E1 nodes. The authors could achieve a speedup of 37x for a single GPU over the 

serial version. The authors further conclude that the application has weak scalability but 

not strong scalability because of the stalls for non-blocking MPI communications. With 

different configurations of the application, the speedup was between 20x and 60x for the 

CUDA-MPI version.  

 In [21], the authors perform simulation of room acoustics with a finite-difference 

time-domain model in real-time, up to a geometry of 100m3.  With a 10% maximum 

dispersion error limit, the system could be used for real-time auralization up to 1.5kHz. 

The authors choose a low sampling rate of 7kHz since at higher frequencies the 

computational load can be excessive. 3D GPGPU grids are used to model the finite 

difference equations and ghost elements are present to compute boundary elements. The 

CPU was used to perform the required sampling rate conversions. Two GPU kernels are 

executed: one, to update the mesh points and the other, for the boundary filters. 

Computation of 1 time step requires information from the previous two time steps and 

GPU L1 and L2 caches are used. Issues such as memory coalescing and occupancy are 

addressed to obtain the maximum performance. The data for the impedance filters are 

pre-computed and stored in constant memory. The experimental setup consisted of an 

NVIDIA Quadro FX 5800 with 4GB of global DRAM and a commodity PC having Intel 

Pentium Dual CPU E2180 running at 2GHz and 2GB of RAM. The authors finally 
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perform a comparison of different schemes of the application with regards to computation 

size and performance. 

 In [22], the authors assess the performance improvement of a GPGPU-based 

implementation of elliptical or steady heat conduction. A five-point finite difference 

scheme using a Point Over Successive Relaxation (PSOR) method, which uses 

computation over two schemes in an iterative manner. The authors perform padding of 

memory so that the global memory reads and writes are aligned. Only global memory is 

used. Further, to ensure synchronization between threads, each computation kernel is 

launched iteratively. The authors use an NVIDIA GTX260 GPGPU and analyze the 

performance of the application on coarse, medium, and fine grids with the fine grid 

performing the best and having the best occupancy out of the three. The use of padded 

global memory led to 26% faster execution for the GPU kernels. The authors further 

concluded that the speedup reached a constant value at higher number of iterations.  

2.3 Summary 

In this chapter, we present the performance modeling studies for GPGPU systems 

as and applications that use finite difference methods on GPGPUs. We also discussed in 

brief, the SIGE model that targets SIAs for performance prediction. The models 

presented in section 2.1 are sufficiently accurate but consist of complex procedures to 

model the performance and require a detailed knowledge of the GPU architecture. The 

SIGE prediction framework requires easily available application and hardware 

parameters and makes the modeling task straightforward. We select this model for 

performance prediction for the SIA of our choice – shallow water wave equations and 

aim to provide a verification of this model. 
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CHAPTER 3  

APPLICATION BACKGROUND AND EXPERIMENTAL SETUP 

  In this chapter, we elucidate the application in depth. The computation and 

communication portion of the application is discussed and data parallelism and 

communication complexity is exposed. In subsequent sections, the accelerators of interest 

namely, the homogeneous multiprocessor cluster and heterogeneous CPU- GPGPU 

systems are discussed. The microarchitecture of NVIDIA GPUs and characteristics of the 

NVIDIA Tesla K20 GPU are also discussed. 

3.1 Application Description 

As introduced in previous chapters, the shallow water wave equations are a set of 

partial differential equations that model the propagation of disturbances in water and 

other incompressible fluids. The finite difference method is used to find numerical 

solutions of these partial differential equations. These equations are typically used for 

incompressible fluids with the underlying assumption being that the depth of the fluid is 

small compared to the wavelength of the disturbance. Shallow water can store and release 

energy by locally varying its height within certain limits.  

The partial differential equations are derived from Moler’s model [25] of shallow 

water that uses conservation of mass and momentum. The independent variables are time 

t, and motion in two space coordinates, x and y. The dependent variables are the fluid 

height h, and the two-dimensional fluid velocity, u and v. Here, u implies the motion in x 

direction and v in y direction. As state variables, the set of h, h.u and h.v is chosen. With 

consistent units, the conserved quantities are mass, that is proportional to h, and 
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momentum that is proportional to u.h and v.h. The force acting on the fluid is gravity, 

represented by the gravitational constant g. The partial differential equations then take the 

following form as shown in Equations 3.1, 3.2 and 3.3. 

 

             (3.1) 

 

           (3.2) 

 

                    (3.3) 

 

 Equations 3.4, 3.5 and 3.6 represent the above equations in a compact form using 

the three vectors as shown below: 
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                 (3.6) 

 

Here, F and G are intermediate vectors that are computed at half time steps and 

assist in the calculation of the position vector U at the end of a complete time step. Using 

the above notation, the shallow water wave equations become an instance of a hyperbolic 

conservation law as shown in Equation 3.7: 
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              (3.7) 

 

A square region is chosen to represent the shallow water surface or vector U. 

Boundary conditions must be considered to model a real world situation [26] therefore, 

the reflective boundary conditions, u = 0 on the vertical sides of the regions and v = 0 on 

the horizontal sides, are applied. Furthermore, at the left and right vertical edges, the 

condition u = -u and at the top and bottom horizontal edges, v = -v are applied. With these 

boundary conditions, any wave that reaches the boundary is reflected back into the 

region. 

The Lax-Wendroff method is used to compute a numerical approximation to the 

solution. For this, a regular square finite difference grid with a vector-valued solution 

centered in the grid is introduced as shown in Figure 3.1. The quantity vector: 

     !!,!!          (3.8) 

represents a three component vector at each grid cell i,j that evolves with time step n. 
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In the Lax-Wendroff method, a time step is covered over two stages. In the first 

stage, known as a half step, values of U at time step n+1/2 and the midpoints of the edges 

of the grid are defined. Equations 3.9 and 3.10 describe the first stage. 

 

   (3.9) 

 

  (3.10) 

 

 Figure 3.2 shows how the above equations are computed. In the second stage, the 

time step is completed by using the values from the first stage to compute the new values 

at the centers of the cells as shown in Equation 3.11. 

 
 (3.11) 
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3.9!and!3.10!
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The significant pieces of the overall algorithm are the computations performed in 

the first and second time steps, that is, Equations 3.9, 3.10, and 3.11. These represent the 

compute intensive and data parallel nature of the application. The three equations are 

computed iteratively and each iteration represents a smoothening of the water surface. 

This application fits the category of a Synchronous Iterative Algorithm (SIA) [16] since 

several iterations of the compute intensive parts of the application are required. 

 The initial conditions are chosen as h = 1, u = 0, v = 0 over the entire region. This 

calm water surface is disturbed by a water droplet hitting the surface, which is 

represented by adding a two dimensional Gaussian shaped peak to h. After this impulsive 

disturbance, the resulting waves propagate back and forth over the region. The initial 

conditions only affect the nature of the water surface and not the computations that use 

the finite difference method steps. Therefore, a sharper Gaussian peak would result in 

greater number of iterations being required for the water surface to eventually smooth 

out. However, the performance modeling carried out in this thesis does not depend on the 

number of iterations that are used for the application and hence, is independent of the 

initial conditions. The performance is modeled for a single iteration and is scaled with the 

number of iterations to calculate the total runtime.  

During the execution of the iterative algorithm, at regular intervals, the output 

representing the water surface is collected in a file. This file is used to plot snapshots of 

the wave behavior at regular intervals of time with a MATLAB program. In Figure 3.3, 

some of the sample outputs are shown with the propagation of disturbances visible from 

Figures 3.3a to 3.3d. 
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Figure 3.3: Evolution of the water surface at regular intervals of the application 

 
3.2 GPGPU Architecture and Memory 

In this thesis, the NVIDIA Tesla K20 GPU is considered. In this section, we 

describe the NVIDIA CUDA framework and GPGPU architecture and specific 

characteristics of the K20 GPU. 

 
3.2.1 NVIDIA CUDA framework 

The GPGPU technology is based on Compute Unified Device Architecture 

(CUDA) [2] that was introduced by NVIDIA in 2007. The CUDA architecture consists of 

thousands of floating-point processing units or CUDA cores and memories such as 

global, constant and texture memory. These GPU cores consist of processing units called 

threads and execute the parallel sections of the program called CUDA kernels. CUDA 

Fig!3.3a!
Fig!3.3b!

Fig!3.3c! Fig!3.3d!
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kernel execution takes place in a Single Program Multiple Data (SPMD) manner since all 

of the threads execute the same code.  

The GPU threads are organized into a two level hierarchy of blocks and grids. 

The threads are arranged in a 1D, 2D or 3D structure called blocks. The threadIdx 

variable specifies the number of the thread with respect to the block. The number of 

threads in each dimension in a block is specified with the blockDim variable. A CUDA 

block can have a maximum of 1024 threads. The blocks are further arranged in a 3D 

manner to form a grid, where each block has a unique index blockidx. Together with the 

blockDim, blockIdx and threadIdx variables, the global thread coordinate can be uniquely 

determined. An execution configuration containing information about the number of 

blocks and the number of threads per block, is specified when a CUDA kernel is 

launched. Figure 3.4 shows the arrangement of blocks and threads. 

 
Figure 3.4: Grid of CUDA threads and blocks 
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CUDA runtime organizes the execution resources into Streaming Multiprocessors 

(SM). During the kernel execution, threads are assigned to SMs on a block-by-block 

basis. A limited number of blocks can be assigned to each SM and the CUDA runtime 

assigns new blocks to SMs as they complete previous block executions. Each SM 

consists of multiple Streaming Processors (SPs) that share control logic and instruction 

cache. Thread blocks in SMs are divided into 32 consecutive threads called warps. 

Threads in a block are executed by groups of 16, called as half-warps and are executed in 

a Single Instruction Multiple Data (SIMD) manner. Each SM can execute a limited 

number of warps at any instant.  Accesses to global memory can be aligned or coalesced 

by the GPU hardware into a single efficient transaction per half-warp, thereby increasing 

the memory performance.  

GPU threads access data from different GPU memories. Global memory is off-

chip memory implemented with DRAM technology that is accessible to all threads in the 

device. Although it supports L1 and L2 caches, it has the highest access latencies and the 

lowest bandwidth. Registers are on-chip memories and have negligible access times. 

These are accessible to individual threads and are used to hold automatic variables. 

However, each block has a limited number of registers. Shared memory is slower than 

registers but is still accessible to all threads in a block. It is commonly used for thread 

collaboration and synchronization. The amount of shared memory per block is also 

limited. Local memory is used to hold automatic array variables. It has the same access 

latency as global memory since it resides in global memory. The scope of local memory 

is also per thread. Constant memory is used to provide read-only values to the kernel. It is 
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stored in global memory but is cached for faster access. The scope of this memory is for 

all threads in the GPU device. 

 
3.2.2 NVIDIA Tesla K20 GPU (Kepler GK110) 

The NVIDA Fermi microarchitecture [3] was a significant leap forward since the 

G80 architecture. The Fermi architecture has salient features such as 512 CUDA cores 

with 32 cores per SM, 64 KB of memory configurable for use as shared memory and L1 

cache and a total of 6 GB of GDDR5 DRAM. It supports Error Correction  Code (ECC) 

and has dual warp scheduler that simultaneously schedules and dispatches instructions 

from two independent warps. The cores are organized in 16 SMs and each core has a 

pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU). Each SM has 

16 load/store units. It is capable of performing fused multiply-add (FMA) instruction for 

single and double precision arithmetic. 

NVIDIA introduced Kepler GK110 microarchitecture [5] – a huge improvement 

over the Fermi architecture and focuses on compute performance and reduction in power 

dissipation. The Tesla K20 and K20X GPUs are derivatives of this architecture. The 

Kepler GK110 supports CUDA compute capability 3.5. Each of the Kepler GK110 

Streaming Multiprocessor (SMX) units have 192 single-precision CUDA cores and retain 

the single and double-precision arithmetic introduced in Fermi. The Kepler family can 

support up to 16 SMX per block. With 13 SMX per block, the K20 GPU supports 2496 

CUDA cores [4]. It supports a memory width of 320-bits. The global memory is up to 5 

GB. The Kepler GK110’s SMX provide up to 8x the number of SFUs of the Fermi 

GF110 SM. Like the Fermi, Kepler has a warp size of 32 threads and supports up to 64 
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warps per SMX. Each SMX of the Kepler has a quad warp scheduler each with dual 

instruction dispatch units, allowing four warps to be issued and executed concurrently. 

Each thread can access up to 255 registers for the Kepler GK110. Shuffle instruction is 

introduced that allows threads within a warp to share data.  

 

 
      Figure 3.5: SMX in Kepler GK110 [5] 
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Kepler’s memory hierarchy is similar to Fermi’s. Each SMX has 64 KB of on 

chip memory that is configurable as 48 KB of shared memory with 16 KB of L1 cache or 

vice versa. It is possible to configure a 32KB / 32KB split between the allocation of 

shared memory and L1 cache. Shared memory bandwidth for 64b and larger load 

operations is doubled to 256B per core clock. In addition to L1 cache, a 48 KB read-only 

cache is available. The dedicated L2 cache up to 1536 KB is available and supports up to 

2x the bandwidth compared to the Fermi. ECC for memory protection is present. Figure 

3.5 shows the Kepler GK110 architecture. 

The Kepler GK110 has further salient features such as Dynamic Parallelism, 

Hyper Q, and NVIDIA GPUDirect. Using dynamic parallelism, more parallel code in an 

application can be directly launched by the GPU onto itself, thus, performing load 

balancing. Using Hyper Q, up to 32 simultaneous hardware work queues between the 

host and the CUDA work distributer logic to overcome effects of serialization. 

GPUDirect aims to reduce compute latencies through DMA between NIC and GPU and 

better MPI communications between GPU and nodes in a network. 

3.3 Palmetto Cluster Configuration. 

For the purposes of this thesis, we have used the Clemson University Palmetto 

Cluster computing system [30]. The cluster provides a homogeneous CPU-only 

configuration as well as a heterogeneous CPU-GPGPU configuration. Each node used in 

the cluster node is of a HP SL250s make including up to 16 cores of Intel Xeon E5-2665 

processors and up to 64GB of RAM memory. We use the Message Passing Interface 

(MPI) standard [27] for application development on the homogeneous cluster and 

CUDA-MPI for the heterogeneous cluster. The processors are capable of performing 
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double-precision floating-point operations, even though only single precision operations 

are considered. Each node is further equipped with 2 NVIDIA Tesla K20 devices. The 

communication between the CPU and GPU device takes place over the PCI-Ex bus. The 

inter-node interconnect network is 56g Infiniband. The GPU devices are present such that 

2 CPU cores in every node are connected to 2 GPU devices in a 1:1 node packing 

fashion. Therefore, only 2 out of 16 CPU cores are used in each node by the application. 

Figure 3.6 shows an instance of the cluster node with 2 cores being used in a node. 

 
Figure 3.6: Palmetto Cluster node. 

 

 Ultimately, each node supports 2 CPU cores and 2 GPU devices. At the time of 

selecting a configuration, we reserve all 16 cores in each node (although only 2 CPU 

cores are actually used) to ensure that the traffic across that node belongs entirely to our 

application and minimize communication interference caused by other applications. We 

use the heterogeneous CPU-GPU configuration for both, the MPI-only and the CUDA-

MPI versions to maintain consistency across cluster configurations.  

3.4 Summary 

In this chapter, we described the application of interest. The CUDA framework 

used for GPGPUs and the architecture of the NVIDIA Tesla K20 GPU used in this thesis 
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was also described. We followed this up with an overview of the Palmetto cluster and the 

configurations used for executing the application. 
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CHAPTER 4 

VERIFICATION OF THE INITIAL A2A FITNESS MODEL AND SIA MAPPING 

We begin this chapter, by applying an initial A2A Fitness model [23] to the 

architectures of interest – a homogeneous multiprocessor cluster and a heterogeneous 

CPU-GPGPU cluster. In the subsequent sections, we first discuss the initial Application 

to Accelerator (A2A) fitness model and perform a careful mapping of the application 

components on the cluster systems. The chapter concludes with an experimental 

validation of the fitness model – the performance of the application on both clusters is 

compared and the results of the fitness model are verified.  

4.1 Overview of the Application to Accelerator (A2A) Fitness model 

In this section, we provide an overview of the Application to Accelerator (A2A) 

[23] fitness model and an in depth discussion for use with our application. Through the 

use of this model, we aim to establish a preliminary runtime prediction of the application 

on each accelerator by calculating a scalar product of two vectors – the application vector 

and the accelerator vector. In this fitness model, significant computation or 

communication transactions are identified and considered as directions or unit vectors. If 

i, j, k …  are identified as the unit vectors, then with a1, a2, a3… as the application 

vector coefficients and b1, b2, b3 … as the accelerator vector coefficients, we have the 

application and accelerator vectors as shown in Equations 4.1 and 4.2: 

Application vector = a1 i + a2 j + a3 k + …         (4.1) 

Accelerator vector = b1 i + b2 j + b3 k + …   (4.2) 
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The application and accelerator vectors have units of parameter and 

seconds/parameter where parameter can be bytes transferred or floating-point operations 

(FLOPs). The scalar product of these vectors has the unit of seconds and conveys the 

execution time of the application on that device. The scalar product is given by Equation 

4.3. 

Scalar Product = a1.b1 + a2.b2 + a3.b3 + …         (4.3) 

We can rank the performance of the systems based on their scalar product. The 

accelerator with the smallest execution time, i.e. scalar product, is deemed the best fit for 

that application. More information about the A2A fitness model can be found in [24]. 

4.2 Application of the A2A Fitness Model 

We apply the A2A fitness model by identifying the application and accelerator 

vector components. Each accelerator has a unique accelerator vector that consists of the 

FLOPs per second (FLOPS), the data transfer time over Infiniband or PCI-Ex bus, and 

the per byte data access time by processing cores. Each accelerator has a corresponding 

unique application vector that consists of the FLOPs count, the bytes of data transferred, 

and the data bytes consumed by processing cores. As discussed above, the application 

vectors have units of parameter and accelerator vectors are in seconds/parameter. 

Each component of the vector consists of a direction vector or a unit vector 

corresponding to either a communication component or a computation component across 

both the architectures. We identified the following 9 unit vector components. 

i  Processor or CPU FLOPs 

j  Data transferred in scatter operation 

k Data transfer from CPU host to GPGPU device over PCI-Ex bus 
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l Data transfer between CPU hosts over Infiniband 

m Data transfer from GPGPU device to CPU host over PCI-Ex bus 

n CPU global memory accesses 

o GPGPU global memory accesses 

p  GPGPU FLOPs 

q Data transferred in gather operation 

We consider the variables - x as the vertical dimension per process, Y as the 

horizontal dimension common for all processes, and G as the number of ghost rows. 

Since the application of interest is an SIA, the number of iterations executed in the 

application plays an important role in the execution time. We denote the “set” number of 

iterations as "K". However, since the application makes use of rows of ghost data, the 

“effective” number of iterations performed in the application is reduced by a factor of G 

since G rows are computed in a single iteration. Hence,  

 Effective number of iterations = K/G (4.4) 

In what follows, we elucidate the two vectors for the multiprocessor cluster and 

the GPGPU-enabled cluster.  For both clusters, the steps of scattering the initial 

waveform vector (vector j) and gathering the final waveform vector (vector q) from all 

processes are common. The steps for exchanging the ghost row data with neighboring 

processes are also common (vector l). Therefore, we conveniently eliminate these 

transactions from consideration since they will be identical on both cluster 

configurations. Nonetheless, we evaluate the application and accelerator components for 

these transactions before safely eliminating them.  
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If BWscatter, BWgather, and BWsend-recv represent the bandwidth for scatter, gather 

and send-receive operations respectively, the accelerator vector for these operations can 

be computed as shown in Equation 4.5. 

Accelerator vector = j / BWscatter + q / BWgather + l / BWsend-recv       (4.5) 

The data size transferred in bytes for both the scatter and gather operations is 

36.x.(Y+2) and that the send-receive operation is 36.G.(Y+2) per iteration. The send-

receive operation takes place for K/G iterations. Therefore, the application vector for 

these operations is shown in Equation 4.6 and the scalar product of these components is 

computed as shown in Equation 4.7: 

Application vector = 36.x.(Y+2) j + 36.x.(Y+2) q + 36.(Y+2).K l      (4.6) 

Scalar Product = 36.x.(Y+2) / BWscatter + 36.x.(Y+2)/ BWgather + 

(36.(Y+2).K)/BWsend-recv.            (4.7) 

As explained, these components are common for both clusters and are henceforth, 

excluded from consideration. 

4.2.1 Multiprocessor Cluster: 

For this architecture, all of the floating-point calculations are performed by the 

processors implying that the number of FLOPS is the accelerator parameter that has the 

highest impact. Although the processor must fetch data from memory, the memory 

bandwidth is assumed to be high enough to not incur any data access latency (vector n). 

Therefore, only the unit vector i is featured in both the vectors. With an Intel Xeon E5410 

processor, the benchmark performance is taken as 153.6 Giga FLOPS. We use the unit 

vector i and Equation 4.8 shows the accelerator vector: 

Accelerator vector = i / (153.6 * 109) second/FLOPs       (4.8) 
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For the application vector, the processors need to compute two intermediate 

vectors, each with 32 FLOPs per data element. The application performs calculations 

over G ghost rows at a time leading to a total data size of (Y+2)*(x+G+1)*G over a set of 

G ghost rows. The final vector requires 44 FLOPs per data element over the same data 

size. Equation 4.9 shows the application vector for a single iteration: 

Application vector = (32.(Y+2).(x+G+1).G + 32.(Y+2).(x+G+1).G + 

44.(Y+2).(x+G+1).G )i  FLOPs 

                      = 108.(Y+2).(x+G+1).G  FLOPs       (4.9) 

Over K/G iterations, the final application vector is shown in Equation 4.10: 

Application vector = 108.(Y+2).(x+G+1).G * K/G  FLOPs 

                      = 108.(Y+2).(x+G+1).K  FLOPs     (4.10) 

Equation 4.11 shows the scalar product of the two vectors: 

Scalar Product = (108.(Y+2).(x+G+1).K  ) / (153.6 * 109)  seconds    (4.11) 

 
4.2.2 Heterogeneous GPGPU architecture 

For this architecture, we consider the host to device transfer (vector k), device to 

host transfer (vector m), global memory accesses (vector o, vector q) and GPGPU FLOPs 

(vector p) as the contributing components. For the NVIDIA Tesla K20 GPGPU, the 

following benchmarks are considered: 

 Host to device data rate 3.28 Gigabytes / second 

 Device to host data rate 2.83 Gigabytes / second 

 Global memory bandwidth 208.11 Gigabytes / second 

 GPGPU FLOPs per second (FLOPS) 1160.5 Giga FLOPS 
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Using this data, the accelerator vector can be computed as shown in Equation 4.12: 

Accelerator vector = [k / (3.28*109) + m / (2.83*109) + o / (320*109) + q / 

(147.14*109)] second/GBytes + p / (1160.5*109) second/GFLOPs     (4.12) 

 

To compute the application vector, we construct the application vectors 

piecewise, by considering each communication and computation transaction.  

 
4.2.2.1 One Time Host-Device Data Transfers 

Each host process has to transfer its portion of the waveform vector to the 

GPGPU device before proceeding to the iterative stage (vector k). Similarly, after 

completing all iterations of the algorithm, each host process receives the final processed 

waveform vector from the GPGPU device (vector m). The data size transferred in both 

the cases is 36.(x+2.G).(Y+2) where x, Y and G are as explained above. Equation 4.13 

shows the application vector resulting from the initial and final host to device and device 

to host transfers: 

 One time Transfers: 36.(x+2.G)(Y+2).k + 36.(x+2.G)(Y+2)m bytes     (4.13) 

 
4.2.2.2 Iterative Host-Device Data Transfers 

During each iterative step, the GPGPU device first, receives top and bottom ghost 

row data from its host processor (vector k). Each process undergoes ghost row data 

exchange with its neighboring process prior to this step (vector l) but as explained above, 

we eliminate this data transaction from consideration. After receiving this data, the 

GPGPU device executes the kernel and at the end of the iteration, transfers the freshly 

computed top and bottom edge data also comprising of G rows, to the host process 
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(vector m). The host processes then exchange this data at the start of the next iteration. 

The ghost data size is a function of G and Y and is expressed as 36.G.(Y+2). Using the 

effective number of iterations, Equation 4.14 shows the application vector components 

corresponding to the iterative data transfers: 

 Iterative Transfers = ( 72.G.(Y+2).k + 72.G.(Y+2)m ) * K/G  bytes 

         = K.( 72.(Y+2).k + 72.(Y+2)m )  bytes    (4.14) 

 
4.2.2.3 Iterative Computation Component 

In the computing step, each GPGPU thread requires 98 FLOPs (vector p) to 

compute a vector element. Using a Block size of 256 threads, the total number of threads 

(Nth) are calculated as shown in Equation 4.15: 

Nth = ceil((Y+2)/16) * ceil((x+2.G)/16) * 256      (4.15) 

On computing over G ghost rows, the total number of FLOPs are (98.Nth.G) p 

where p is the corresponding unit vector 

Equation 4.16 shows this component over K/G iterations: 

 Number of FLOPs = 98.Nth.K p FLOPs      (4.16) 

Each GPGPU thread makes 32 global memory accesses (vector o) threads per G 

iterations. Over the total number of threads Nth and the effective K/G iterations, the 

global memory accesses are as shown in Equation 4.17: 

 GPGPU global memory accesses = 32.Nth.K o bytes    (4.17) 

Equation 4.18 shows the final application vector by using Equations 4.13, 4.14, 

4.16 and 4.17: 
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Application vector = [36.(x+2.G)(Y+2).k + 36.(x+2.G)(Y+2).m + K.( 72.(Y+2).k + 

72.(Y+2).m ) ] bytes + K. Nth.(98.p FLOPs + 32.o bytes)    (4.18) 

Equations 4.12 and 4.18 are used to calculate the scalar product of the two vectors 

as shown in Equation 4.19: 

Scalar product = (36.(x+2.G)(Y+2) + 72.K.(Y+2)) / (3.28*109) + (36.(x+2.G)(Y+2) 

+ 72.K.(Y+2) ) / (2.83*109) + 32.K / (320*109) + 36.K.(Y+2)(x+G+1) / 

(147.14*109) + (98. Nth. K) / (1160.5*109)    (4.19) 

 
4.2.3 Results 

The following table 4.1 shows the scalar products of both the architectures with 

the independent variables being the application dimension in one direction Y, number of 

ghost rows G, number of processes P, and the set number of iterations K. For different 

combinations of these parameters, the fitness model predicts the approximate runtime on 

the two accelerators and ranks them. The fitness model is not responsible for predicting 

the accurate runtime but is only used to rank the accelerators. From the table, it is evident 

that the GPGPU cluster is bound to perform better and is predicted to be considerable 

faster than its counterpart. Therefore, it is chosen as the best-fit architecture. 

Table 4.1: Results of using the Fitness Model on the accelerators of interest 
Parameters Execution Time (sec) Relative 

Speedup 
(TCPU/TCPU-

GPGPU) 
Dimensions 

YxY 
Processes 

P 

Ghost 
Rows 

G 

Set 
Iterations 

K 

Heterogeneous 
CPU-GPGPU 

cluster  
(TCPU-GPGPU)  

Homogeneous 
multi CPU 

cluster (TCPU)  

2000x2000 4 8 1000 0.313 7.165 22.909 
8000x8000 8 12 2000 3.936 113.991 28.965 

12000x12000 16 16 1000 2.503 64.726 25.861 
16000x16000 32 20 2000 4.889 117.240 23.987 
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4.3 SIA to Accelerator mapping 

This section describes how the computation and communication components of 

the application are mapped to the CPU and GPGPU cores in the heterogeneous cluster. 

Certain optimizations are performed in this process. We describe the application mapping 

in section 4.2.1 and the optimizations in section 4.2.2.  

4.3.1 Application Mapping 

The key computation step is the finite difference method; therefore this can be 

performed on the GPGPUs. To simulate initial conditions, the master host CPU initializes 

the u and v velocities of the entire square surface and the height is initialized to a two 

dimensional Gaussian wave that represents a water droplet. 

After this initial processing, the master process scatters the square water surface 

region, also known as the surface vector 1, to all other processes in a rectangular row 

striped fashion. Each process initializes its respective GPGPU device by allocating 

memory for the surface vector 1 and two intermediate vectors - vector 2 and vector 3 

required for the first half step shown in Equations 3.9 and 3.10. Further, for each process, 

a host to device transfer of only the surface vector takes place; the F and G vectors get 

initialized during the kernel computation step. This is a one-time host to device transfer 

step. 

As mentioned in a previous chapter, the application is designed to operate using 

ghost data. This data consists of auxiliary points that reside along all four edges of the per 

process surface vector. These points are used to calculate the values of the intermediate 

and surface vector points along the boundaries of the surface in the finite difference 

method step. Along the left and right vertical edges, there is a single column of ghost 
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points but along the top and bottom edges, there can be multiple configurable number of 

ghost rows. Since the surface vector is scattered in a row striped manner, each process 

can send the top and bottom valid surface data and receive the top and bottom ghost data 

from its neighbor. The valid data for one process acts as the ghost data for its neighbor 

and vice versa.  

The iterative step commences with each process participating in a send-receive of 

ghost data. Each process then transfers this data to the GPGPU device it is coupled with. 

Three GPGPU kernels are designed that perform the following tasks. 

 Kernel 1 is used to update the boundary conditions. For the GPGPU device 

coupled with the master process, the reflections at the topmost row is updated and the 

condition v = -v is applied. Similar is the case for bottommost row for the device coupled 

with the last process. For all other processes, the GPGPU threads along the right and left 

edges update the velocity u with the condition, u = -u. Only the surface vector U is 

updated in this kernel. No floating point operations take place. 

Kernel 2 evaluates the intermediate vectors 2 and 3 in this first half step of the 

Lax-Wendroff method. To compute vector 2, the U and F components of surface vector 1 

are loaded in shared memory. Equation 3.9 is then solved by all GPGPU threads and 

vector 2 is updated. To compute vector 3, the U and G components of surface vector 1 

are loaded in shared memory. All GPGPU threads compute equation 3.10 and update 

vector 3.  

Kernel 3 uses the intermediate vectors computed in kernel 2 in the calculation of 

the surface vector 1. The GPGPU threads compute equation 3.11 and the time step is 

completed. The F and G components of the intermediate vectors 2 and 3 respectively, are 
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loaded into shared memory since Equation 3.11 requires both these components. GPGPU 

threads work in parallel and the U, F and G components of vector 1 are updated at the 

end of this kernel. 

After the kernel computations, the freshly computed surface vector data near the 

top and bottom edges are transferred from GPGPU device to respective host processes. 

This data acts like the ghost data that the processes exchange with their neighbors at the 

start of a new iteration. The steps of exchanging ghost data with neighboring processes, 

host to device transfer of the ghost data, execution of the three kernels and a device to 

host transfer of the freshly computed edge data take place for a K/G number of iterations. 

A value of K can be specified by the SIA whereas the G value can be selected to obtain 

the best runtime.  

At the end of all iterations, the entire surface vectors present on each GPGPU 

device is transferred to its host. This is also a one-time transaction. Each process 

participates in a gather operation and the complete water surface vector is collected on to 

the master process. The application can be summarized in the following steps. 

1. Master process initializes the two dimensional Gaussian peak, vector velocities 

and scatters the surface vector 1. 

2. Each process transfers the received scattered vector to its GPGPU device. 

3. For each iteration, 

a.    Neighboring processes exchange ghost data in a send-receive operation 

b.  Each process transfers the ghost data to GPGPU device 

c.  GPGPU device executes kernels 1, 2 and 3 

d.  GPGPU device transfers fresh edge data to its host process 
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4. GPGPU device transfers the final surface vector 1 to host process 

5. The entire surface vector is gathered on to the master process  

Figure 4.1 summarizes the SIA flow on the heterogeneous CPU-GPGPU cluster. 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 Figure 4.1: SIA Mapping on Heterogeneous CPU-GPGPU Cluster  
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4.3.2 Optimizations 

Optimization techniques make the kernels highly efficient. Two such techniques 

are elaborated - the use of shared memory and data structure access by using registers: 

 
4.3.2.1 Shared Memory 

This memory is used to reduce the number of global memory accesses by threads 

since global memory incurs long access latencies. The use of shared memory 

significantly increases the Compute to Global Memory Access (CGMA) ratio. As 

discussed above, shared memory is used in kernels 2 and 3 and has dimensions of 

(TILE_WIDTH+1).(TILE_WIDTH+1). A TILE_WIDTH of 16 is used and the size of 

(TILE_WIDTH+1) is justified for border elements in the finite difference step. In kernel 

2, each thread t(i,j) requires vectors from the neighboring threads t(i,j+1) and t(i+1,j+1) 

to calculate the F vector component and from threads t(i+1,j) and t(i+1,j+1) to calculate 

the G component. In kernel 3, to calculate the final vector at the end of the half steps, 

each thread t(i+1,j+1) requires F vector component from the neighboring threads t(i+1,j) 

and t(i,j) and the G vector component from threads t(i,j+1) and t(i,j) to calculate the G 

component. Figure 4.2a, 4,2b and 4,2c show how shared memory locations are used to 

compute equations 3.9, 3.10 and 3.11 respectively. 

 
 
 

 Figure 4.2a             Figure 4.2b           Figure 4.2c 
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4.3.2.2 Data Structure Access and Use of Registers 

 The initial versions of kernel 2 and 3 had the vectors implemented as arrays. 

Since local array variables reside on the global memory, those accesses would have 

incurred long latencies. The implementation was modified such that the U, F and G 

vectors were structures of 3 elements. Local vector variables could thus, fit into registers 

that have negligible access latencies. This also allowed for loop unrolling and each 

component of the U, F or G vectors could be independently computed using registers. 

Use of structures also allowed updating a vector element in global memory in a single 

operation. After this modification, kernel 2 had occupancy of 100% whereas kernel 3 had 

occupancy of 83%. 

 
4.4 Comparison of Accelerators 

In this section, we validate the findings of the A2A mapping by comparing the 

performance of the application on both accelerators. We keep the number of iterations K 

fixed at 400 and use 8 ghost rows G. We consider performance over smaller problem 

sizes since we only need to verify the A2A mapping. Table 4.2 provides this data. 

Table 4.2: Comparison of performance to verify A2A mapping 
Parameters Execution Time (sec) 

Relative Speedup 
(TCPU/TCPU-GPGPU) Configuration Dimensions 

YxY 

Heterogeneous 
CPU-GPGPU 

cluster 
 (TCPU-GPGPU)  

Homogeneous 
multi CPU 

cluster (TCPU)  

2-Node 512x512 0.435 126.093 289.868 
4-Node 1024x1024 1.925 249.139 129.422 
8-Node 2048x2048 6.011 508.811 84.646 

16-Node 4096x4096 12.413 1035.038 83.383 
 

The relative speedup indicates that the heterogeneous CPU-GPGPU cluster 

performs far better than the homogeneous cluster. Therefore, we can ascertain that the 
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A2A mapping provides an accurate ranking of available accelerators for a particular 

application. 

4.5 Summary 

In this chapter, we described the A2A mapping process in brief and used it to rank 

the available accelerators for the selected application. The A2A mapping indicates that 

the heterogeneous CPU-GPGPU cluster is expected to outperform the homogeneous 

cluster and this is verified by the short scale implementation of the application on both 

accelerators. We also described the application mapping on the heterogeneous CPU-

GPGPU cluster and the optimizations performed. The problem dimensions and number of 

iterations specify the application whereas, the number of ghost rows and number of 

process are flexible and should be selected in order to attain the best performance of the 

application 
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CHAPTER 5  

LOW LEVEL ABSTRACTION USING THE SIGE MODEL 

In this chapter, the low level abstraction of the SIGE model [16] is used to 

perform regression analysis for runtime prediction. The chapter is organized as follows - 

an introduction to the SIGE model and low level abstraction is presented. Thereafter, the 

details of the low level abstraction are included. The runtime prediction is carried out 

independently for the computation and communication sections of the algorithm. 

5.1 Overview of the Low-Level Abstraction of the SIGE model 
 

The low-level abstraction methodology presented in the SIGE model aims to put 

forth a model for performance prediction using limited algorithm implementation details. 

The model aims to abstract the underlying system architecture by measuring the 

performance of the application under different workloads on the architecture of interest. 

The runtime prediction framework models the computation and communication sections 

of the algorithm independently. The computation section is further broken down into 

computations carried out on the CPU host and that on the GPGPU device. Similarly, the 

communication section comprises of components like the inter host-device transfers over 

PCI-Ex bus and the inter CPU host communications over Infiniband.   

The computation component is modeled using readily available algorithm 

characteristics such as the number of FLOPs (floating point operations), amount of data 

required for computations and the communication component depends on characteristics 

like amount of data transferred, bandwidth offered by the architecture, number of 

processes, etc. Since the algorithm of interest is an SIA, the total computation and 
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communication time is a function of the number of iterations that the algorithm runs for. 

The overall execution time is the sum of the individual computation and communication 

runtimes. In order to accurately carry out runtime prediction, several instrumented 

executions of the algorithm are carried out and regression analysis is performed on the 

collected data using the R tool-chain for regression analysis [29]. The parameters are 

chosen based upon their high R2 values (greater than 0.95) and low p-values (less than 

0.10) in order to yield high prediction accuracy. The samples are collected using an 

appropriate range of the problem size (up to 6000 x 6000). If x1, x2, x3 … are the 

independent variables with coefficients a1, a2, a3 … , then the dependent variable t can 

be determined by the following equation with e as the error difference as shown in 

Equation 5.1.  

 t = a1.x1 + a2.x2 + a3.x3 + ... + e          (5.1) 
 
5.2 Application of Low-Level Abstraction 

In this section, the low level abstraction of the SIGE model discussed above is 

applied to the algorithm of interest. The application is partitioned into computation and 

communication sections for this purpose. Since no computation operations take place on 

the CPU host, the computation component only depends on those carried out on the 

GPGPU device. The prediction framework uses the measured runtime data for the 

computation component runtime for a single iteration. The total computational runtime is 

calculated by scaling this prediction with the total number of iterations. The 

communication component comprises of several host-device data transfers and inter-host 

data transfers. These transfers can be classified as one-time and iterative data transfers. 

The one-time transfers include a scatter operation of the surface vector, a host-device 



!

! 45

transfer of the scattered vector, a device-host transfer of the final processed vector, and 

finally a gather operation of the processed vector. The inter CPU host transfers of the 

ghost data and host-device and device-host transfer of the ghost data constitute the 

iterative transfers. Similar to the computation component runtime, the total iterative 

communication component runtime is obtained by scaling the prediction for a single 

iteration with the total number of iterations. The following Equations 5.2 to 5.6 express 

the different runtime components. 

Texecution-time = Tcomputation + Tcommunication          (5.2) 

Tcomputation = TGPGPU-kernel * Set number of iterations        (5.3) 

Tcommunication = Tone-time-communication + Titerative-communication.       (5.4) 

Tone-time-communication = Tscatter + Tgather + Thost-device-once + Thost-device-once      (5.5) 

Titerative-communication = (Tsend-recv + Thost-device-iterative + Tdevice-host-iterative) * 

Effective number of iterations            (5.6) 

As discussed in chapter 4, the effective number of iterations is given by K/G 

where K is the set number of iterations and G is the number of ghost rows. Equations 5.7 

and 5.8 show the total computation and iterative communication timings: 

Tcomputation = TGPGPU-kernel * (K)           (5.7) 

Titerative-communication = (Tsend-recv + Thost-device-iterative + T device-host-iterative) * 

(K/G).               (5.8) 
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In what follows, the details of the computation and communication performance 

modeling is elucidated. 

5.2.1 Computation component 

As discussed, the computation component modeling only depends upon the 

computations carried out on the GPGPU device. The computation kernels perform the 

tasks of updating the reflections at the boundaries of the surface and compute the value of 

each element using finite difference method. Therefore, the data points that constitute the 

perimeter of the surface (EDGE-DATA) and the total data points used for computations 

(COMP-DATA) are considered as predictor variables. 

The number of FLOPs required for computation are also considered as predictors 

but this parameter is abstracted whilst considering the total data size. The coefficients of 

the regression equations capture the impact of FLOPs on data size and therefore, it is not 

explicitly considered. This simplifies the regression analysis and should be noted as 

strength of the SIGE model.  

The COMP-DATA and EDGE-DATA parameters are functions of the problem size 

dimensions (Y), number of ghost rows (G) and number of processes (P). Equations 5.9 to 

5.12 below represent the runtime predictions for 2, 4, 8, and 16-node configurations. Both 

the data components are in bytes. 

 T2-node = -1.43e-5*EDGE-DATA + 4.5e-6*COMP-DATA + 0.02618      (5.9) 

 T4-node = -1.76e-5*EDGE-DATA + 4.39e-6*COMP-DATA + 0.02716    (5.10) 

 T8-node = -2.05e-5*EDGE-DATA + 4.77e-6*COMP-DATA + 0.0298    (5.11) 

 T16-node = -3.28e-5*EDGE-DATA + 4.51e-6*COMP-DATA + 0.03622    (5.12) 
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The following Figures 5.1 and 5.2 show the behavior of the kernel runtime with 

respect to the predictor variables. 

 

 
Figure 5.1: Kernel Runtime (ms) vs EDGE-DATA (bytes) 
 
 

 
   Figure 5.2: Kernel Runtime (ms) vs COMP-DATA (bytes) 
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5.2.2 Communication Component. 

All the communication micro-benchmarks can be adequately represented by a 

Michaelis Menten curve [33]; therefore these components are modeled using the 

Michealis Menten kinetics. In this model, the rate of reaction (BW) is a function of the 

substrate concentration (DATA) along with the constants Vmax and Km. The general form 

of this model is described by the following Equation 5.13. 

 
   

                  (5.13) 
 
 

Here, Vmax represents the maximum rate achievable by the reacting system and 

Km is the substrate concentration when reaction rate is half of that of the maximum. In 

this case, the data bandwidth offered by the communication link can be represented by 

the reaction rate BW and the data size by DATA. The type of communication link – PCI-

Ex or Infiniband, is abstracted by this model and therefore, this model can be 

conveniently applied for all communication components. The units for data size and 

bandwidth are megabytes (MB) and megabytes per second (MB/sec) respectively. 

Equation 5.14 shows how the execution time (T) is calculated using Equation 

5.13: 

    T = (DATA + Km) / Vmax       (5.14) 
 

In this section, we model the one-time and iterative communication components 

independently.  
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5.2.2.1 One Time Communication Components 

These communication components consist of the scatter and gather of the entire 

surface vector, and host to device and device to host transfer of scattered surface vector.  

The data size for the scatter and gather operations depend on the dimensions of 

the problem size. The following Equations 5.15 to 5.18 represent the communication time 

for this operation on 2, 4, 8, and 16 nodes, respectively. 

 T2-node = (DATA + 0.0109) / 230.92           (5.15) 

 T4-node = (DATA  - 0.0331) / 156.32         (5.16) 

 T8-node = (DATA + 0.8064) / 134.38            (5.17) 

 T16-node = (DATA + 1.0986) / 125.71        (5.18) 

The scatter micro-benchmarks are displayed in the Figure 5.3 below.  

 
 

 
     Figure 5.3: Scatter Bandwidth (Megabytes/sec) vs DATA (Megabytes)  
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The following Equations 5.19 to 5.22 represent the communication time for the 

gather operation on 2, 4, 8, and 16 nodes, respectively. 

 T2-node = (DATA + 0.0769) / 230.24         (5.19) 

 T4-node = (DATA  + 48.8688) / 155.25         (5.20) 

 T8-node = (DATA + 0.1773) / 134.49         (5.21) 

 T16-node = (DATA + 155.60) / 123.26        (5.22) 

The gather micro-benchmarks are displayed in the Figure 5.4 below.  

 

 
    Figure 5.4: Gather Bandwidth (Megabytes/sec) vs DATA (Megabytes) 
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behavior for the 16-node configuration and hence, model it separately. The following 

Equation 5.23 is used for the 2-node, 4-node and 8-node configurations on account of 

similarity in the bandwidth behavior. 

 Thost-to-device = (DATA + 0.4103) / 2446.34        (5.23) 

Equation 5.24 below is used to model the 16-node configuration. 

 Thost-to-device-16-node = (DATA + 0.6698) / 1485.77       (5.24) 

The host-to-device micro-benchmarks are displayed in the Figure 5.5 below.  

 

 
     Figure 5.5: One time Host-Device transfer bandwidth (Megabytes/sec) vs 
 DATA (Megabytes) 
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 Tdevice-to-host = (DATA + 0.2423) / 2733.948       (5.25)  

Equation 5.26 below is used to model the 16-node configuration. 

 Tdevice-to-host-16-node = (DATA + 0.3924) / 1568.68      (5.26)  

The device to host micro-benchmarks are displayed in the Figure 5.6 below.  

 

 
     Figure 5.6: One time Device-Host transfer bandwidth (Megabytes/sec) vs 
DATA (Megabytes) 
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The data size for all the iterative communication components depend on the 

problem size dimension and the number of ghost rows. The data size for the send-receive 

communications is twice of that for the host-device transfers. This is because, while each 

GPGPU device transfers the top and bottom data to their respective hosts in each 

iteration, each CPU host has to send as well as receive the top and bottom ghost data 

from its neighbor. The regression coefficients, Vmax and Km abstract this notion.  

The following Equations 5.27 to 5.30 represent the communication time for the 

send-receive operation for a single iteration for 2, 4, 8, and 16 nodes, respectively. The 

total time is obtained by scaling this time with the effective number of iterations (K/G) 

 T2-node = (K/G) * (DATA + 0.0489) / 56.059       (5.27) 

 T4-node = (K/G) * (DATA  + 0.0591) / 47.851       (5.28) 

 T8-node = (K/G) * (DATA + 0.0431) / 44.676       (5.29) 

 T16-node = (K/G) * (DATA + 0.0415) / 55.705       (5.30) 

The send-receive micro-benchmarks are displayed in the Figure 5.7 below.  
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     Figure 5.7: Send-Receive Bandwidth (Megabytes/sec) vs DATA (Megabytes) 
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The host to device and device to host micro-benchmarks are displayed in the Figure 5.8 

and Figure 5.9 below.  

 
    Figure 5.8: Iterative Host-Device transfer bandwidth (Megabytes/sec) vs DATA 

(Megabytes) 
 

 
     Figure 5.9: Iterative Device-Host transfer bandwidth (Megabytes/sec) vs DATA 
(Megabytes) 
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5.3 Summary 

In this chapter, we elucidate how the low level abstraction of the SIGE model is 

carried out on the computation and communication sections of the algorithm. For the 

computation component, the FLOPs parameter is abstracted by the coefficients of the 

regression equations when the total data size is considered. For the communication 

component, we model the iterative and one-time components. The CPU host – GPGPU 

device communications are one-time as well as iterative but these are modeled separately. 

These transfers are independent of the node configuration but we model the behavior for 

the 16-node configuration independently from the other configurations on account of a 

distinct change in behavior. For all iterative communication components, the data 

transferred in the inter-CPU communication is twice that of the inter host-device 

communications and is represented in by the regression equation parameters. 
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CHAPTER 6 

 RESULTS AND ANALYSIS 

In this chapter, we present the experimental verification of the low level 

abstraction of the SIGE model that was applied on the shallow water wave application in 

the previous chapter. In section 6.1, the predicted and actual runtimes of the computation 

and communication components as well as the overall application as a whole is 

enumerated along with the errors observed. This is followed by section 6.2 in which we 

draw certain insights based on the runtime predictions provided by the low level 

abstraction. Section 6.3 consists of a Strength, Weakness, and Opportunities (SWO) 

analysis of the SIGE model. The chapter concludes with a summary in section 6.4. 

6.1 Runtime Predictions from the SIGE model. 

In this section, the runtime predictions for the computation and communication 

components are presented. The application is executed on 2, 4, 8, and 16 nodes at larger 

problem sizes, for different number of ghost rows. For each case, we consider problem 

sizes up to the maximum limit that the hardware resources can support, such as the 

amount of memory on the Tesla K20 GPGPUs. These problem sizes are significantly 

higher than those considered for benchmarking purposes. For each of the predictions, we 

have identified four independent parameters that control the application runtime – 

problem size dimension (Y), number of processes (P), set number of iterations (K), 

number of ghost rows (G). The runtimes presented in the sections below are for a single 

iteration of the computation kernels as well as the communication components. We vary 

Y, P, and G and compare the predicted and observed runtimes. 
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6.1.1 Computation Component 

Table 6.1 presents the predicted and experimental runtimes for the computational 

component for different node configurations. We predict the runtimes using Equations 

5.9, 5.10, 5.11 and 5.12. 

   Table 6.1: Observed and Predicted Values for Computation Component (ms) 

Configuration Dimensions  
Y x Y 

Ghost 
Rows  

G 

Predicted 
Tcomputation 

Observed 
Tcomputation  

Error in 
Tcomputation 

(%) 

2-Node 

8000x8000 10 29034.843 28849.719 0.63759 
10000x10000 20 45648.772 46667.927 -2.2326 
12000x12000 40 66437.66 70645.17 -6.33302 
13000x13000 80 79693.126 92164.315 -15.64901 

4-Node 

12000x12000 10 32682.005 32724.455 -0.12989 
14000x14000 20 44917.472 46295.484 -3.06787 
16000x16000 40 59667.759 63301.7 -6.09029 
18200x18200 80 79476.638 92583.812 -16.49186 

8-Node 

18000x18000 10 36665.523 36760.762 -0.25975 
20000x20000 20 45917.403 47242.27 -2.88533 
22000x22000 40 56990.84 61779.433 -8.40239 
25360x25360 80 78827.484 90824.97 -15.21993 

16-Node 

28000x28000 10 44733.22 44779.879 -0.10431 
30000x30000 20 52436.121 53750.225 -2.5061 
32000x32000 40 61774.496 64895.918 -5.05293 
35104x35104 80 78945.92 89168.992 -12.94946 

 
The observed runtimes are in good agreement with the predicted runtimes for 

medium problem sizes and have a low error rate (about 6%). The deviation increases up 

to 16% at the largest problem size. The problem dimensions are chosen with a view to 

maximize the memory usage and verify the prediction models at the highest possible 

memory usage allowed by the hardware. For each configuration, the highest problem size 

corresponds to the maximum possible memory usage of as high as 4.5 GB out of the 5GB 

global memory available on the K20 GPU. At such high memory usage, the global 

memory access times of the GPU could be larger leading to an increase in the observed 

computation time, and therefore, greater errors in the prediction. We conclude that the 
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prediction accuracy for such high problem dimensions could be improved by considering 

certain missing predictor variables as the memory usage approaches the hardware limits. 

 
6.1.2 Communication Component 

The one-time and iterative communication components are modeled and verified 

separately.  

6.1.2.1 One-Time Communication Components 

In this section, we compare the predicted and experimental runtimes for the 

scatter, gather, one time host-to-device transfers, and one time device-to-host transfers.  

6.1.2.1.1 Scatter 

Table 6.2 presents the predicted and experimental runtimes for the scatter 

operations on different processor configurations. The application is executed with 

different problem sizes Y as this is the only parameter that affects the scattered data. The 

Equations 5.15, 5.16, 5.17 and 5.18 are used to predict runtimes. We observe that the 

observed runtimes follow the predicted runtimes almost accurately with the error being 

less than 1% for most cases. 
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Table 6.2: Observed and Predicted Values for Scatter Component (ms) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.1.2.1.2 Gather 

Table 6.3 presents the predicted and experimental runtimes for the gather 

operations on different processors. Like the scatter operation, the gathered data depends 

only on problem size Y, so only this parameter is varied and the application is executed. 

We use Equations 5.19, 5.20, 5.21 and 5.22 for the predictions. The observed runtimes 

have sufficient agreement with the predicted runtimes with the maximum error rate being 

under 5%.  

          
  

Configuration Dimensions  
Y x Y 

Predicted 
Tscatter 

Observed 
Tscatter 

Error in 
Tscatter  

% 

2-Node 

8000x8000 9517.417 9528.746 -0.11903 
10000x10000 14870.209 14877.85 -0.05138 
12000x12000 21412.386 21441.354 -0.13529 
13000x13000 25129.504 25156.546 -0.10761 

4-Node 

12000x12000 31630.715 31634.236 -0.01113 
14000x14000 43051.848 43057.778 -0.01377 
16000x16000 56229.886 56246.557 -0.02965 
18200x18200 72755.032 72775.39 -0.02798 

8-Node 

18000x18000 82791.321 82671.332 0.14493 
20000x20000 102208.968 102048.402 0.1571 
22000x22000 123670.484 123499.148 0.13854 
25360x25360 164326.924 168017.512 -2.24588 

16-Node 

28000x28000 214129.864 214072.547 0.02677 
30000x30000 246072.125 245858.385 0.08686 
32000x32000 279674.636 279456.884 0.07786 
35104x35104 336559.326 336322.22 0.07045 
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Table 6.3: Observed and Predicted Values for Gather Component (ms) 

Configuration Dimensions  
Y x Y 

Predicted 
Tgather 

Observed 
Tgather 

Error in 
Tgather  

% 

2-Node 

8000x8000 9545.912 9535.996 0.10388 
10000x10000 14914.569 14908.224 0.04254 
12000x12000 21476.135 21458.582 0.08173 
13000x13000 25204.27 25183.428 0.08269 

4-Node 

12000x12000 32371.932 31644.119 2.24828 
14000x14000 43946.388 43098.333 1.92975 
16000x16000 57301.334 56281.039 1.78058 
18200x18200 74048.323 72773.282 1.7219 

8-Node 

18000x18000 82719.299 86100.994 -4.08816 
20000x20000 102121.151 103856.987 -1.69978 
22000x22000 123565.209 124105.824 -0.43751 
25360x25360 164188.578 166078.437 -1.15103 

16-Node 

28000x28000 219641.036 228493.122 -4.03025 
30000x30000 252218.437 251974.938 0.09654 
32000x32000 286489.101 287535.079 -0.3651 
35104x35104 344504.887 355330.003 -3.14222 

 
 
6.1.2.1.3 One Time Host to Device Transfer 

The predicted and experimental runtimes for the one time host to device transfers 

are given in table 6.4 below. The transferred data depends on the problem size Y, number 

of ghost rows G and number of processes P, therefore, we compare the runtimes for 

different combinations of these parameters. Equations 5.23 and 5.24 are used for the 

predictions. We observe higher error rates of up to 17% as the problem size and number 

of processes increase. However, since these are one time transfers, we do not expect this 

component to have a significant deteriorating effect on the overall runtime of the 

application. 
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 Table 6.4: Observed and Predicted Values for One Time Host to Device Transfer (ms) 

Configuration Dimensions  
Y x Y 

Ghost 
Rows  

G 

Predicted 
Thost-device-

once 

Observed 
Thost-device-

once 

Error in 
Thost-device-

once 
(%) 

2-Node 

8000x8000 10 207.204 185.44 10.50403 
10000x10000 20 325.36 350.781 -7.81303 
12000x12000 40 473.184 522.879 -10.50236 
13000x13000 80 567.426 490.962 13.4756 

4-Node 

12000x12000 10 256.161 258.577 -0.94325 
14000x14000 20 351.866 363.354 -3.26484 
16000x16000 40 467.218 460.714 1.39212 
18200x18200 80 622.102 604.008 2.90846 

8-Node 

18000x18000 10 288.892 324.188 -12.21788 
20000x20000 20 361.587 400.953 -10.88699 
22000x22000 40 448.573 518.072 -15.49315 
25360x25360 80 620.061 702.184 -13.24429 

16-Node 

28000x28000 10 579.562 571.852 1.33032 
30000x30000 20 678.824 581.565 14.32745 
32000x32000 40 799.091 660.539 17.33867 
35104x35104 80 1020.133 880.107 13.72628 

 
 
6.1.2.1.3 One Time Device to Host Transfer 

The following table 6.5 indicates the predicted and experimental runtimes for the 

one time device to host transfers. In this case too, we vary the problem size Y, number of 

ghost rows G and number of processes P while comparing the runtimes. We use 

Equations 5.25 and 5.26 for the predictions. In this case as well, we observe high error 

rates of up to 16%, but the one time nature of this transaction prohibits it from having a 

significant impact on the total runtime. 
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  Table 6.5: Observed and Predicted Values for One Time Device to Host Transfer (ms) 

Configuration Dimensions  
Y x Y 

Ghost 
Rows  

G 

Predicted 
Tdevice-host-

once 

Observed 
Tdevice-host-

once 

Error in 
Tdevice-host-

once 
(%) 

2-Node 

8000x8000 10 203.074 203.127 -0.0259 
10000x10000 20 319.119 317.471 0.51633 
12000x12000 40 464.301 524.535 -12.97298 
13000x13000 80 556.86 553.208 0.65572 

4-Node 

12000x12000 10 228.901 245.478 -7.24213 
14000x14000 20 314.452 331.902 -5.54911 
16000x16000 40 417.567 462.163 -10.67999 
18200x18200 80 556.018 624.829 -12.37562 

8-Node 

18000x18000 10 255.139 284.488 -11.5031 
20000x20000 20 319.335 330.402 -3.46582 
22000x22000 40 396.15 421.137 -6.30741 
25360x25360 80 547.588 636.844 -16.29985 

16-Node 

28000x28000 10 548.755 548.936 -0.03309 
30000x30000 20 642.77 562.293 12.52034 
32000x32000 40 756.68 677.178 10.50668 
35104x35104 80 966.041 845.629 12.46449 

 
 
6.1.2.2 Iterative Communication Components 

In this section, we compare the predicted and experimental runtimes for the 

iterative components - send-receive, and iterative host-to-device transfers and iterative 

device-to-host transfers. As discussed, all runtimes are for single communication 

iteration. 

6.1.2.2.1 Send-Receive 

Table 6.6 below consists of the predicted and experimental runtimes for the send-

receive operation between CPU hosts on different processors. The data transferred 

depends on the problem size Y and number of ghost rows G; therefore these parameters 

are varied to compare the runtimes. Equations 5.27, 5.28, 5.29 and 5.30 are used for the 
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runtime predictions. We observe higher error rates of up to 19% for the 16-node 

configuration.  

The higher errors could be because of missing predictors in the performance 

modeling process. Predictors related to the number of processes or per process data size 

or the node interconnect could be considered in the modeling process. Since this 

component is iterative, greater number of iterations introduces a greater error in the 

overall runtime. By including the missing predictors, it would be possible to consider 

higher node configurations such as 32-node or 64-node for the application. Also, we 

observed that the error rates are higher for the highest problem dimensions for some node 

configurations. This problem could be addressed by considering a wider range of 

problem dimensions in the benchmarking process. This would also allow greater problem 

dimensions to be considered for the application.   

      Table 6.6: Observed and Predicted Values for Send-Receive Component (ms) 

Configuration Dimensions  
Y x Y 

Ghost 
Rows  

G 

Predicted 
Tsend-
receive 

Observed 
Tsend-receive 

Error in 
Tsend-receive 

(%) 

2-Node 

8000x8000 10 49.929 50.102 -0.346 
10000x10000 20 123.423 126.194 -2.24458 
12000x12000 40 294.85 317.393 -7.64564 
13000x13000 80 637.881 717.44 -12.47237 

4-Node 

12000x12000 10 87.513 88.409 -1.02434 
14000x14000 20 202.475 178.493 11.84416 
16000x16000 40 461.506 441.056 4.43118 
18200x18200 80 1048.044 1060.406 -1.17952 

8-Node 

18000x18000 10 139.293 157.788 -13.27828 
20000x20000 20 308.286 292.633 5.07738 
22000x22000 40 677.384 672.84 0.67078 
25360x25360 80 1560.177 1802.143 -15.5089 

16-Node 

28000x28000 10 173.261 201.54 -16.32199 
30000x30000 20 370.729 434.511 -17.20462 
32000x32000 40 789.72 912.6 -15.55991 
35104x35104 80 1731.644 2047.974 -18.26764 



!

! 65

6.1.2.2.1 Iterative Host to Device Transfer 

The following table 6.7 consists of the predicted and experimental runtimes for 

the iterative host to device transfers for a single iteration. The transferred data depends on 

the problem size Y and number of ghost rows G, so we compare the runtimes for different 

values of these parameters. We use Equations 5.31 and 5.33 for the predictions. We 

observe that the observed runtimes are in good agreement with the predicted runtimes 

with the maximum error being under 15%. The error contributed by this component is 

also significant since it is an iterative communication and significantly impacts the 

overall communication runtime. 

     Table 6.7: Observed and Predicted Values for Iterative Host to Device Transfer (ms) 

Dimensions  
Y x Y 

Ghost Rows  
G 

Predicted 
Thost-device-

iter 

Observed 
Thost-device-

iter 

Error in 
Thost-device-

iter 
(%) 

8000x8000 10 2.554 2.265 11.31227 
10000x10000 20 6.287 6.22 1.05504 
12000x12000 40 14.983 15.248 -1.76881 
13000x13000 80 32.385 29.511 8.87549 
12000x12000 10 3.942 3.642 7.59889 
14000x14000 20 9.084 8.77 3.44735 
16000x16000 40 20.648 19.645 4.85823 
18200x18200 80 46.866 49.391 -5.38808 
18000x18000 10 5.807 6.206 -6.86924 
20000x20000 20 12.787 13.258 -3.68241 
22000x22000 40 28.013 31.196 -11.36194 
25360x25360 80 64.457 71.769 -11.34377 
28000x28000 10 16.068 14.073 12.4182 
30000x30000 20 34.2 29.417 13.98434 
32000x32000 40 72.689 62.103 14.56351 
35104x35104 80 159.216 137.821 13.43785 
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6.1.2.2.2 Iterative Device to Host Transfer 

Lastly, the table 6.8 below presents the predicted and experimental runtimes for 

the iterative device to host transfers for a single iteration. In this case too, the parameters 

Y and G are varied to compare the runtimes. We use Equations 5.32 and 5.24 for the 

predictions. The maximum error rate observed is under 12% implying that the predicted 

and observed runtimes are in tune. This parameter also affects the overall communication 

runtime due to its iterative nature. 

The iterative host to device and device to host components have a small payload. 

This makes the modeling process complex since it is difficult to predict the behavior and 

the timings for the transfers of small amounts of data. This may call for a change in the 

modeling process and include any missing predictors to improve the prediction models.  

     Table 6.8: Observed and Predicted Values for Iterative Device to Host Transfer (ms) 

Dimensions  
Y x Y 

Ghost Rows  
G 

Predicted 
Tdevice-host-

iter 

Observed 
Tdevice-host-

iter 

Error in 
Tdevice-host-

iter 
(%) 

8000x8000 10 2.359 2.26 4.23135 
10000x10000 20 5.82 5.377 7.61871 
12000x12000 40 13.882 13.326 4.00543 
13000x13000 80 30.015 30.488 -1.57386 
12000x12000 10 3.369 3.3 2.0513 
14000x14000 20 7.764 7.296 6.02654 
16000x16000 40 17.648 17.623 0.14065 
18200x18200 80 40.057 44.81 -11.86755 
18000x18000 10 5.008 4.768 4.79523 
20000x20000 20 11.033 10.789 2.21236 
22000x22000 40 24.175 25.666 -6.16758 
25360x25360 80 55.631 61.451 -10.46206 
28000x28000 10 13.73 13.383 2.53018 
30000x30000 20 29.286 25.881 11.62582 
32000x32000 40 62.307 57.695 7.40206 
35104x35104 80 136.542 139.134 -1.89849 

 



!

! 67

6.1.3 Total Application Runtime 

In this section, we carry out a comparison of the overall predicted and 

experimentally observed application runtime at large problem sizes. The set number of 

iterations K is fixed to 400. We compare the overall predicted and experimental 

computation and communication runtimes and the total application runtime is the sum of 

these components. Table 6.9 shows the total predicted and observed computation timing 

over the set number of iterations K. The overall prediction errors are good (under 8%) for 

medium problem sizes but are as high as 16% for the largest problem size.  

   Table 6.9: Observed and Predicted Values for Overall Computation Runtimes (ms) 

Configuration Dimensions  
Y x Y 

Ghost 
Rows  

G 
Predicted 

Tcomputation 
Observed 

Tcomputation  
Error in 

Tcomputation 
(%) 

2-Node 

8000x8000 10 29034.843 28849.719 0.63759 
10000x10000 20 45648.772 46667.927 -2.2326 
12000x12000 40 66437.66 70645.17 -6.33302 
13000x13000 80 79693.126 92164.315 -15.64901 

4-Node 

12000x12000 10 32682.005 32724.455 -0.12989 
14000x14000 20 44917.472 46295.484 -3.06788 
16000x16000 40 59667.759 63301.7 -6.09029 
18200x18200 80 79476.638 92583.812 -16.49186 

8-Node 

18000x18000 10 36665.523 36760.762 -0.25975 
20000x20000 20 45917.403 47242.27 -2.88533 
22000x22000 40 56990.84 61779.433 -8.40239 
25360x25360 80 78827.484 90824.97 -15.21993 

16-Node 

28000x28000 10 44733.22 44779.879 -0.10431 
30000x30000 20 52436.121 53750.225 -2.5061 
32000x32000 40 61774.496 64895.918 -5.05293 
35104x35104 80 78945.92 89168.992 -12.94946 

 
Table 6.10 consists of the total predicted and observed communication timing 

over the effective number of iterations K/G. The SIGE model is effective when the sum 

of individual components is considered to get the overall timing with the highest error 

rate being under 4%. 
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Table 6.10: Observed and Predicted Values for Overall Communication Runtimes (ms) 

Configuration Dimensions  
Y x Y 

Ghost 
Rows  

G 
Predicted 

Tcommunication 
Observed 

Tcommunication 
Error in 

Tcommunication 
(%) 

2-Node 

8000x8000 10 21667.298 21630.36 0.17048 

10000x10000 20 33139.853 33210.133 -0.21207 

12000x12000 40 47063.156 47407.022 -0.73065 

13000x13000 80 54959.467 55401.336 -0.80399 

4-Node 

12000x12000 10 68280.658 67596.47 1.00202 

14000x14000 20 92050.993 90742.555 1.42143 

16000x16000 40 119414.034 118233.719 0.98842 

18200x18200 80 153656.305 152605.544 0.68384 

8-Node 

18000x18000 10 172058.961 176131.489 -2.36694 

20000x20000 20 211653.154 212970.337 -0.62233 

22000x22000 40 255376.141 255881.206 -0.19777 

25360x25360 80 338084.472 347101.79 -2.66718 

16-Node 

28000x28000 10 443021.58 458046.292 -3.39142 

30000x30000 20 508296.447 511593.376 -0.64862 

32000x32000 40 576966.681 583107.668 -1.06436 

35104x35104 80 693187.399 709502.607 -2.35365 

 
Table 6.11 shows the overall predicted and observed application runtimes.  

We observe that even though larger errors were observed in the computational 

components, the runtimes of this component is not sufficiently large to affect the overall 

runtime. With the highest error rate being under 10%, we can say that the SIGE model 

has proved to be effective in the runtime predictions of Synchronous Iterative Algorithms 

(SIAs). 
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Table 6.11: Observed and Predicted Values for Overall Application Execution Runtimes 
(ms) 

Configuration Dimensions  
Y x Y 

Ghost 
Rows  

G 

Predicted 
Texecution-time 

Observed 
Texecution-time 

Error in 
Texecution-time 

(%) 

2-Node 

8000x8000 10 50702.14 50478.709 0.44067 
10000x10000 20 78788.625 79866.989 -1.36868 
12000x12000 40 113500.817 118056.734 -4.014 
13000x13000 80 134652.593 147538.656 -9.56986 

4-Node 

12000x12000 10 100962.664 100335.029 0.62165 
14000x14000 20 136968.465 137010.42 -0.03063 
16000x16000 40 179081.792 181493.325 -1.34661 
18200x18200 80 233132.944 245141.838 -5.15109 

8-Node 

18000x18000 10 208724.485 212937.105 -2.01827 
20000x20000 20 257570.557 260291.05 -1.05621 
22000x22000 40 312366.981 317587.063 -1.67114 
25360x25360 80 416911.957 437948.566 -5.04582 

16-Node 

28000x28000 10 487754.8 502824.433 -3.08959 
30000x30000 20 560732.568 565163.097 -0.79013 
32000x32000 40 638741.176 647816.579 -1.42083 
35104x35104 80 772133.319 798574.374 -3.42442 

 
 
6.2 Insights. 

The SIGE model can be used to draw certain insights on the characteristics of the 

application. In the following section, we present these insights based on an analysis of the 

prediction models.  

6.2.1 Performance variation   

Since the shallow water wave application is a SIA, two important parameters 

specify the quality of execution of the SIA – the problem size dimensions Y and the 

number of iterations to be executed K. The SIA might be executed on a wide range of 

problem sizes depending on the nature of the SIA and the specification of the target user. 

Similarly, the number of iterations determines the extent to which an end user would 
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desire the SIA to evolve. An application that evolves slowly might require a large number 

of iterations. On the other hand, the target user might observe the application behavior 

after a small number of iterations. With these two parameters in mind, we have the 

flexibility of choosing the number of hardware resources (or processes, P) and the 

number of ghost rows G that the application should use.  

The prediction models that we have developed allow us to determine the expected 

runtimes of the application at various problem sizes and desired number of iterations, but 

the application performance for different G and P values is undetermined. At a particular 

G and P value, the application might deliver the best performance. For a specified value 

of the problem size Y and number of iterations K, we study the predicted runtime and 

classify the application performance based on the number of processes. We also identify 

the G value at which best performance is observed. Table 6.12 shows this study that is 

carried out for different values of Y and K. We consider a sufficiently wide range for the 

problem size ranging from 112 to 16384 and the K parameter is varied from 500 to 8000. 

Each cell contains three values – the runtime predicted by the SIGE model, the identified 

G value, and a ranking of the number of hardware nodes on the basis of the performance 

delivered. The node with the smallest runtime is ranked as the best node that can be 

selected to execute the application using the G value specified.  
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Table 6.12: Execution Time of Application over different Y-dimension and K-values with 
a Ranking of Best Performing Node Configuration and Best G values. 

Y 
K-value 

500 1000 2000 4000 8000 

112 
T = 97.67 

G = 20 
2 > 8 > 4 > 16 

T =190.56 
G = 50 

2 > 8 > 4 > 16 

T = 377.56 
G = 20 

2 > 8 > 4 > 16 

T = 746.45 
G = 50 

2 > 8 > 4 > 16 

T = 1488.12 
G = 100 

2 > 8 > 4 > 16 

512 
T = 474.13 

G = 20 
8 > 2 > 4 > 16 

T =804.9 
G = 20 

8 > 2 > 4 > 16 

T = 1466.7 
G = 20 

8 > 2 > 4 > 16 

T = 2790 
G = 20 

8 > 4 > 16 > 2 

T =5437.2 
G = 20 

8 > 16 > 4 > 2 

1024 
T = 1221.1 

G = 10 
8 > 2 > 4 > 16 

T = 1895 
G = 10 

8 > 4 > 2 > 16 

T = 3244.7 
G = 10 

8 > 4 = 16 > 4 

T = 5942 
G = 10 

8 > 16 > 4 > 2 

T = 10528 
G = 10 

16 > 8 > 4 > 2 

2048 
T = 3726 

G = 8 
8 > 4 > 2 > 16 

T = 5292 
G = 8 

8 > 16 > 4 > 2 

T = 8129 
G = 8 

16 > 8 > 4 > 2 

T = 12843 
G = 8 

16 > 8 > 4 > 2 

T =22091 
G = 8 

16 > 8 > 4 > 2 

4096 
T = 13366 

G = 4 
8 > 16 > 4 > 2 

T =16176 
G = 4 

16 > 8 > 4 > 2 

T = 21797 
G = 4 

16 > 8 > 4 > 2 

T = 33038 
G = 4 

16 > 8 > 4 > 2 

T = 55520 
G = 4 

16 > 8 > 4 > 2 

8192 
T =46242 

G = 4 
16 > 8 > 4 > 2 

T = 54089 
G = 4 

16 > 8 > 4 > 2 

T =69782 
G = 4 

16 > 8 > 4 > 2 

T = 101167 
G = 4 

16 > 8 > 4 > 2 

T =163939 
G = 4 

16 > 8 > 4 > 2 

16384 
T =174699 

G = 4 
16 > 8 > 4 > 2 

T = 199651 
G = 4 

16 > 8 > 4 > 2 

T = 249555 
G = 4 

16 > 8 > 4 > 2 

T = 349362 
G = 4 

16 > 8 > 4 > 2 

T = 548978 
G = 4 

16 > 8 > 4 > 2 

 
We observe that for lowest problem size, the 2-node configuration dominates and 

G values in the range of 20 to 100 are observed. As the problem size increases, higher 

node configurations begin to dominate and for the largest problem size, the 16-node 

configurations outperform the rest for a consistent G value of 4. For the intermediate 

problem sizes, the 8-node configuration typically dominates and G values in the range 4 

to 20 are identified as best to deliver the optimum performance. In this way, table 6.12 

provides significant insights to select the number of hardware resources and configure the 

application (select a G value) so that an optimal performance can be achieved. Figure 6.1 

provides a general summary in which the number of hardware nodes that are best suited 
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to deliver the highest performance for a given problem size dimension is indicated. This 

summary is independent of the number of iterations. 

 

 
  Figure 6.1: Mapping of problem dimensions with number of hardware  
  nodes 
 
6.2.2 Prediction of G value 

Since the application has a configurable number of ghost rows G, this parameter 

could be tuned to provide the best performance for a given problem size, number of 

iterations, and number of nodes. The runtime predictions provided by the SIGE model 

can be used to make near accurate prediction regarding which G value will yield the best 

performance. We consider two such cases as shown in Figure 6.2 and Figure 6.3 with Y = 

512, K = 1000 and Y = 4096, K = 2000 respectively. In both cases, we see that for a 

particular value of G, lowest runtime is achieved. A deviation from this value results in 

increase in runtime. This is because, the G parameter affects both, the computation and 

communication components. For the communication component, an increase in G lowers 

the effective number of iterations for the iterative components, resulting in overall 

decrease in communication time. But the computation component increases considerably 
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with an increase in G and dominates the decrease in communication component. Table 

6.13 and 6.14 shows the predicted and experimental G values at which best performance 

is observed for both the cases. We observe that the SIGE model predicts the G value with 

a good degree of accuracy.  

 
 

 
6.2a: Prediction on 2 nodes   6.2b: Prediction on 4 nodes 

 
 6.2c: Prediction on 8 nodes   6.2d: Prediction on 16 nodes 
Figure 6.2: Prediction of G value with Y = 512, K = 1000 for 2, 4, 8, and 16 nodes 
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Table 6.13: Observed and Predicted Best G Value for Y = 512, K = 1000. 
Y = 512, K = 1000 

Configuration 
Runtime (ms) G value 

Predicted Observed Predicted Observed 
2-Node 878.176 845.086 8 20 
4-Node 1157.536 1288.012 20 20 
8-Node 804.914 746.054 20 20 

16-Node 1956.521 2059.164 20 20 
 

 

 
6.3a: Prediction on 2 nodes   6.3b: Prediction on 4 nodes 

 
6.3c: Prediction on 8 nodes   6.3d: Prediction on 16 nodes 
Figure 6.3: Prediction of G value with Y = 4096, K = 2000 for 2, 4, 8, and 16 nodes 
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Table 6.14: Observed and Predicted Best G Value for Y = 4096, K = 2000. 
Y = 4096, K = 2000 

Configuration 
Runtime (ms) G value 

Predicted Observed Predicted Observed 
2-Node 49035.174 48214.763 4 8 
4-Node 33867.487 33322.249 8 8 
8-Node 25472.338 25898.881 4 4 

16-Node 21349.018 20767.353 4 4 
 

6.3 Effects of Variation in Parameters. 

The SIGE model is useful in observing the effect of individual parameters on the 

runtime components. In this section, we explore the effects of the independent parameters 

on the computation and communication components. In each subsection, we study the 

effect of one parameter keeping the other parameters constant. We consider only the 

predicted runtimes for this analysis 

6.3.1 Variation in problem size Y  

On increasing the Y parameter, both, the computation and communication 

components increase. Table 6.15 shows an instance of varying Y for an 8-node 

configuration with K = 1000 and G = 20. The computation runtime has a complexity of 

O(n2), hence, doubling of the problem size causes the runtime to quadruple. This is 

confirmed by the predicted runtime. For the communication runtime, the iterative 

components are doubled as the problem size doubles. However, the scatter and gather 

components also have a complexity of O(n2), and therefore, dominate. The net 

communication component quadruples with some approximation. The predicted 

communication runtimes verify this. 
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Table 6.15: Variation in Problem Dimension Y on a 8-Node Configuration         
with K = 1000, G = 20 

K = 1000, G = 20 Runtimes (ms) 

8-Node 
configuration 

Y Tcomputation Tcommunication 
4000 5121.857 11585.937 
8000 19144.703 39492.362 

16000 73980.595 144519.041 
32000 290812.242 551312.851 

 
6.3.2 Variation in number of nodes P 

As we increase the number of hardware nodes, the computation runtime decreases 

whereas the communication runtime increases. Table 6.16 describes the scenario in 

which the number of nodes are varied for the size Y = 8000, K =1000 and G = 20. The 

computation data is halved every time the number of nodes are doubled thereby causing 

the runtime to reduce by half. The computation runtime can be approximated with the 

following Equation 6.1: 

Tcompute-2P ≈ Tcompute-P / 2           (6.1) 

Here, Tcompute-2P represents the computation time when the number of processes 

are doubled from P to 2P and is approximately half of Tcompute-P  that is the runtime for 

P processes. This can be verified by the predicted computation runtimes. For the 

communication components, the data transferred is constant for the scatter, gather and 

iterative components and an increase in number of nodes causes the communication 

overhead to increase. Hence the communication runtime increases with an increase in 

nodes. Table 6.16 confirms this observation. 
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Table 6.16: Variation in Number of Nodes P with Y = 8000, K = 1000, G = 20 
K = 1000, G = 20 Runtimes (ms) 

Y = 8000 

Configuration Tcomputation Tcomputation 
2-node 73306.668 24903.4115 
4-node 37233.148 35140.3558 
8-node 19144.773 39492.362 

16-node 10201.848 42512.2574 
 
6.3.3 Variation in number of iterations K 

The number of iterations has a direct relation to the computation and 

communication runtimes. We consider a 16-node configuration with Y = 4000, G = 20 

and vary the K parameter in table 6.17 Being an iterative component, the computation 

runtime is linearly scaled by K and hence, doubles on doubling K. For the communication 

component, the only the iterative components are scaled by the effective number of 

iterations K/G and are linearly scaled. Since, the contribution of these components is 

lesser than the one-time components, a gradual increase in the overall communication 

runtime should be expected. Table 6.16 confirms both the observations.   

 Table 6.17: Variation in Set Number of Iterations K with Y = 4000, G = 20 on a 16-Node 
Configuration 

16-node configuration, G = 20 Runtimes (ms) 

Y = 4000 

K Tcomputation Tcomputation 
500 1434.425 11603.563 

1000 2868.8473 13075.602 
2000 5737.646 16019.481 
4000 11475.3692 21907.138 

 

6.3.4 Variation in the number of ghost rows G 

The number of ghost rows determines the iterative communication data and the 

effective number of iterations. We consider a 2-node configuration with Y = 4000, K = 

800 and vary the G parameter in table 6.18. The computation data size has a very weak 
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dependence on G and therefore, the computation runtime should increase gradually with 

an increase in G. This is confirmed by the predicted computation runtimes. The iterative 

communication data size has a linear dependence on G and it doubles as G doubles, but 

the frequency of these communications is halved on doubling G. But these components 

are shadowed by the scatter and gather operations and the changes on varying G are 

insignificant, as can be seen in table 6.18 

      Table 6.18: Variation in Number of Ghost Rows G with Y = 4000, K = 800 on 
a 2-Node Configuration 

2-node configuration Runtimes (ms) 

Y = 4000 
K = 800 

G Tcomputation Tcommunication 
10 14648.302 7098.275 
20 14936.686 7067.962 
40 15511.554 7051.606 
80 16662.339 7047.641 

 
 
6.4 SWO Analysis of the SIGE model 

In this section, we perform a Strength (S), Weakness (W), and Opportunities (O) 

or SWO analysis of the SIGE model based on the results discussed in section 6.1. The 

SWO analysis is a subset of the SWOT where T stands for Threats, but the discussion of 

threats is not applicable for this model.  

Strengths – The SIGE model is used to develop equations to predict the computation and 

communication runtimes of the application. Table 6.11 shows the total application 

runtime for different configurations and problem sizes with the maximum prediction 

errors being under 10%. Tables 6.9 and 6.10 provide the overall computation and 

communication runtimes respectively. The maximum error rates for the computation 

component is 8% barring a few outlier cases and that for the communication component 
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is 4%. The SIGE model can provide sufficiently accurate runtime prediction models. An 

important strength is the ease of use of the model since it makes use of readily available 

application parameters like data bytes consumed or transferred as predictor variables. It 

should be noted that although the training data set used a maximum problem dimension 

of 6000, the results were collected by considering dimensions as large as 35104. Hence, 

the maximum possible dimensions restricted by only the hardware resources were 

considered. Therefore, it can be concluded that the SIGE model is effective and provides 

good prediction results with sufficient accuracy even at the highest problem sizes.  

Secondly, the SIGE model enables us to model the runtime for a single iteration 

of a communication or computation component. With the knowledge of the application, 

we can obtain the total runtime of any iterative component by scaling it with the number 

of iterations. This underlines the simplicity of using the SIGE model.  

Thirdly, for the computation component, the SIGE model effectively abstracts the 

number of FLOPS parameter as can be seen from equations 5.1-5.4. The A2A roadmap 

required the knowledge of the FLOPS capacity of the accelerator but the regression 

coefficients developed using the training data set doesn’t deem this parameter necessary. 

This enables the prediction mechanism to be truly architecture independent and can be 

extended to future architectures as well. The only knowledge necessary is of the 

application data size consumed in the computation. This should be considered as a 

significant strength of the SIGE model.  

Lastly, as discussed in the introduction, the application of interest has sufficient 

communication complexity because of the exchange of ghost data between CPU host and 

GPGPU devices and between neighboring CPU nodes at regular iterations. The authors in 
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[16] and [32] had considered Spiking Neural Network models that did not involve 

extensive communication operations and were pleasingly parallel. The ability of the 

SIGE model to provide sufficiently accurate prediction models validates its use for SIAs 

with sufficient communication complexity. This should also be considered as an 

important strength of the SIGE model.  

Weakness – Tables 6.4, 6.5, 6.6, 6.7 and 6.8 show the one-time and iterative 

communication runtimes. We observe that the error rates increase as the problem 

dimensions increase and are as high as 19% in some cases. We also observed a distinct 

variability in the iterative communication models for the 16-node configurations. The 

SIGE model is susceptible to parameters such as variability in network protocols and the 

error rates can be attributed to these missing predictor variables. For very low data 

transfers (the iterative host-device transfers), the SIGE model predictions show greater 

errors. Additional predictors could be considered for the send-receive component. The 

model could consider more accurate methods of modeling such communication 

transactions. Also, for the chosen application, the scatter and gather operations dominate 

and overshadow the high error rates in the iterative communication runtimes. If an SIA is 

chosen in which the iterative components dominate, high error rates in such components 

may result in higher errors in overall application runtime. The SIGE model should be 

able to address theses weaknesses.  

Opportunities – The SIGE model has potential to improve the communication runtimes 

explained above by considering additional predictor variables. By improving the 

performance models for the send-receive component, the application performance at 

higher configurations such as 32-node and 64-node could be predicted. Further, the SIGE 
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model can be applied to different SIAs with varying computation and communication 

complexities for runtime predictions. The model can also be verified on accelerators such 

as future GPGPUs from NVIDIA and AMD. 

6.5 Summary 

In this chapter, we presented the predicted and experimentally observed runtimes 

for the computation and different communication components and the application as a 

whole for different hardware and problem configurations and compared the same. 

Thereafter, we used the SIGE model to draw insights on how certain application 

parameters could be tuned to achieve the best performance. We elaborated that the SIGE 

model can also be used to predict the value for number of ghost rows to attain the best 

performance for a particular configuration. The chapter concluded with a SWO analysis 

of the SIGE model. 
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CHAPTER 7 

CONCLUSION 

We conclude the thesis by presenting a summary in section 7.1 and the 

conclusions and insights in section 7.2. Future challenges are presented in section 7.3. 

7.1 Summary 

In chapter 1, we discuss the trends in parallel computing and identify certain 

accelerators for parallel application development. We stress the importance of a roadmap 

to help map accelerators to application by considering performance parameters such as 

floating point operations per second and memory access bandwidth. We propose to use 

the Application to Accelerator (A2A) roadmap [23] to identify an accelerator that is best 

fit for the concerned application - shallow water wave equations. Secondly, we aim to 

verify the SIGE model for Synchronous Iterative Algorithms [16] by carrying out a low 

level abstraction of the chosen accelerator.  

In chapter 2, we present the background work in the realm of performance 

modeling of parallel applications on GPGPUs and discuss certain works in which 

applications using finite difference method have been implemented on GPGPUs. 

Although the performance models yield sufficiently high accuracy, most of them require 

fine knowledge of the accelerator characteristics, making it cumbersome to apply the 

models directly. Conversely, the SIGE model relies on straightforward application 

parameters such as the data bytes transferred or consumed in computations. The ease of 

use coupled with a high accuracy of the model makes it convenient to use it for 

performance modeling.  
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In chapter 3, we provide the application and accelerator background. We describe 

the shallow water wave application. The parallelism of the application lies at the core of 

the finite difference step that is carried out iteratively. We discuss the available 

accelerators - homogeneous multiprocessor and heterogeneous CPU- GPGPU clusters. 

The characteristics of the CUDA architecture and NVIDIA Tesla K20 GPGPU are also 

discussed.  

In chapter 4, we discuss the Application to Accelerator (A2A) roadmap 

extensively. The roadmap is applied to the application of interest by developing 

application and accelerator vectors. The heterogeneous CPU-GPGPU cluster is identified 

as the best-fit accelerator and the results obtained in section 4.3 validate this conclusion. 

The A2A roadmap is aims in ranking accelerators but does not provide a guarantee 

regarding relative performance of accelerators. On the recommendation of this roadmap, 

we choose the heterogeneous CPU-GPGPU cluster for performance modeling. 

In chapter 5, we describe the low level abstraction of the SIGE model. We model 

the computation and communication sections of the applications by performing 

regression analysis on micro benchmarks. For the communication section, we model the 

iterative and one-time components separately. The total runtime of the iterative 

communication components is obtained by scaling it with the effective number of 

iterations and the total computation runtime is obtained using the set number of iterations. 

In chapter 6, we present the experimental validation of the low level abstraction of 

the SIGE model. We compare the predicted and observed runtimes for the individual 

communication and computation components and the overall application as a whole. 

Parameters such as the problem size dimension (Y), number of processes (P), set number 
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of iterations (K), and number of ghost rows (G) are identified as independent parameters 

and the prediction models rely on these to obtain the total application runtime. We 

observed that the maximum error for the computation component was about 8% for the 2, 

4 and 8 node configurations. Higher error rates of up to 16% were observed for the 16 

node configurations. For the one-time communication components such as the scatter and 

gather, we achieved sufficiently high accuracy with the maximum error for the scatter 

and gather operations being under 3% and 5% respectively. The one-time download and 

read-back transfers between the CPU host-GPGPU device faced higher errors of up to 

17%. However, the latencies for these transfers are insignificant when large application 

sizes are concerned. For the iterative send-receive operations, we observe error rates of 

up to 15% for 2, 4, 8-node configurations and higher rates of up to 19% for 16-node 

configurations. For the iterative download and read-back operations, the maximum errors 

observed are 15% and 12% respectively. On comparing the overall application runtime, 

we observe that the maximum error rate is under 9%.  

We discuss certain insights obtained by the usage of the SIGE model. For the 

shallow water wave SIA, the runtime prediction model enables us to select the number of 

hardware nodes and number of ghost rows to execute the application on, for a given 

problem size dimension and given set number of iterations. This is accomplished by 

ranking the performance on different nodes and by identifying the adequate value for the 

number of ghost rows. The runtime model is also able to predict with sufficient accuracy, 

the G value at which the best performance could be obtained for a fixed problem size 

dimension and set number of iterations, over different number of nodes. We further 

discuss the impact of varying the independent parameters on the communication and 
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computation component runtimes. Chapter 6 is concluded by a discussion of the 

Strengths, Weaknesses and Opportunities of applying the SIGE model for performance 

prediction.  

7.2 Conclusions 

Based on this summary, we draw the following conclusions: 

1. The Application to Accelerator roadmap accomplishes the task of ranking 

potential accelerators and we can select the best-fit accelerators for low-level abstraction 

and performance modeling. Each accelerator entails an accelerator vector as well as an 

application vector since the application developed on each accelerator is unique. The 

A2A roadmap imposes the condition that the user should possess intricate knowledge of 

the application in order to accurately describe the application vectors. The advantage of 

this roadmap is that readily available hardware parameters could be used to construct the 

accelerator vectors.  

 2. The performance-modeling framework of the SIGE model enables us to predict 

the application runtimes at larger data configurations within a good degree of accuracy. 

For a SIA, based on the problem size and number of iterations that are required, we need 

to select application parameters and accelerators to achieve the best possible 

performance. Since our application is a SIA, we can further harness the prediction model 

to identify the application specific number of ghost rows (G value) and the number of 

hardware nodes (P value) at which the best performance would be delivered for a specific 

problem size dimension (Y value) and number of iterations (K value). It is also possible 

to rank the performance across different number of hardware nodes for a specific Y value 

and K value.  Further, the prediction model helps us to tune and identify the value of G at 
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which best performance could be attained for specific Y value and K value on different 

number of nodes. Barring a few outlier cases, the predicted G values are in good 

agreement with the observed values.  

3. The performance model enables us to observe the effects of varying each of the 

independent parameters – Y, P, K and G on the computation and communication 

runtimes, while keeping the other parameters constant. An increase or decrease in some 

parameters has different impacts on the communication and computation runtimes. Both 

runtime components show quadratic increase on increasing the problem size dimension. 

We observe that the one time communications- scatter and gather, are the most dominant 

in the communication runtimes and therefore, demand higher accuracy in their prediction 

models. The SIGE model provides this accuracy. On increasing the number of nodes P, 

the computation runtime decreases linearly whereas the communication runtime shows a 

gradual increase due to greater communication overhead. The total computation runtime 

linearly scales with the number of iterations K but the total communication runtime 

increases gradually as K is increased. Lastly we observe that the computation runtime 

increases gradually on increasing the G value due to a weak dependence on the number 

of ghost rows, whereas the iterative communication runtime decreases as the G value 

increases. The total communication runtime decreases gradually due to the weak 

contribution of the iterative components. Tables 6.15, 6.16, 6.17 and 6.17 illustrate the 

effects of varying the Y, P, K and G parameters.  

4. We also conduct a SWO analysis based on the modeling techniques of the 

SIGE model and the prediction results. Chapter 6.4 describes this analysis in depth. With 
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this approach, we explore the potential of the SIGE model and its applicability to SIAs on 

future architectures.  

7.3 Future Work.  

This thesis aims to verify the Application to Accelerator (A2A) roadmap and the 

performance prediction framework of the SIGE model on the SIA – shallow water wave 

equations using finite difference method. We can consider SIAs of varying computation 

and complexities to perform this verification. For the verification of the A2A roadmap, 

we can consider additional accelerators such as FPGAs and the Intel Xeon Phi co-

processor. We can perform a ranking of the accelerators for the chosen SIA and verify 

this by comparing small-scale implementations. Additionally, for each accelerator, we 

can undertake performance modeling using the SIGE model and verification of the same. 

With this approach, the applicability of the SIGE model can be confirmed across various 

architectures. The performance modeling could be further extended to larger clusters such 

as 32-node, 64-node, or even 128-node. However, prior to this, it is essential that the 

missing predictors discussed in the previous chapter be considered in the performance 

modeling process. An improvement in the iterative communication components could 

improve the overall performance prediction at higher node configurations. Further, it is 

possible to develop insights as described in chapters 6.2 and 6.3 for each accelerator. The 

SIGE model can also be used for performance prediction on AMD and future NVIDIA 

GPGPUs. Lastly, we observed certain drawbacks of the SIGE model for the iterative 

communication runtimes. By considering the suggestions of the SWO analysis, we can 

enhance the prediction modeling process for these components to yield more accurate 

prediction models.   
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