
Clemson University
TigerPrints

All Theses Theses

8-2014

Verifying a Systematic Application to Accelerator
Roadmap using Shallow Water Wave Equations
RANAJEET ANAND
Clemson University, rj.anand@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
ANAND, RANAJEET, "Verifying a Systematic Application to Accelerator Roadmap using Shallow Water Wave Equations" (2014). All
Theses. 1904.
https://tigerprints.clemson.edu/all_theses/1904

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1904?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

!

!

VERIFYING A SYSTEMATIC APPLICATION TO ACCELERATOR ROADMAP
USING SHALLOW WATER WAVE EQUATIONS

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Engineering

by
Ranajeet Pankaj Anand

August 2014

Accepted by:
Dr. Melissa Crawley Smith, Committee Chair

Dr. Walter B. Ligon
Dr. Richard R. Brooks

!

! ii

ABSTRACT

 With the advent of parallel computing, a number of hardware architectures have

become available for data parallel applications. Every architecture is unique with respect

to characteristics such as floating point operations per second, memory bandwidth and

synchronization costs. Data parallel applications possess inherent parallelism that needs

to be studied and the hardware that can best exploit this parallelism can be identified and

selected for large-scale implementation.

 The application that I have considered for my thesis is - numerical solution of

shallow water wave equations using finite difference method. These equations are a set of

partial differential equations that model the propagation of disturbances in water and

other incompressible liquids. This application fits in the category of a Synchronous

Iterative Algorithm (SIA) and hence, the Synchronous Iterative GPGPU Execution

(SIGE) model can be directly applied for performance modeling.

 In the high performance computing community, Graphical Processing Units

(GPUs) and Field Programmable Gate Arrays (FPGAs) have become highly popular

architectures. Homogeneous clusters comprising of multiple processors and

heterogeneous clusters that have nodes consisting of both CPU and GPU, are the

architectures of interest for this thesis. An initial or high level comparison between the

two architectures is performed with regards to the chosen application using a technique

known as the Initial Application to Accelerator (A2A) mapping which ranks which

architecture delivers the best performance with respect to execution time for large scale

implementation.

!

! iii

 The subsequent part of the thesis will focus on a low level abstraction of the

application of interest to accurately predict the runtime using the multi-level SIGE

performance-modeling suite. Through this abstraction, performance modeling of the

computation and communication portion of the application is undertaken. The behavior

of the computation and communication portions is captured through several instrumented

iterations of the application and regression analysis is performed on the execution times.

The predicted run time is the sum of the computation and communication run time

predictions and is validated by executing the application at higher data sizes.

 The thesis concludes with the pros and cons of applying the A2A fitness model

and the low level abstraction for run time prediction to the chosen application. A critique

of the SIGE model is presented and a Strength, Weakness, Opportunities (SWO) analysis

is presented.

!

! iv

DEDICATION

 I dedicate this thesis to my family and close relatives and friends for their

immense support and encouragement.

!

! v

ACKNOWLEDGEMENTS

 First of all, I would like to express my sincere gratitude to my advisor, Dr.

Melissa C. Smith for her invaluable guidance and support throughout this thesis. I am

grateful for her advice and her inspiring excellence and knowledge, which have shown

me the path to excel.

 I would like to thank Dr. Walter B. Ligon and Dr. Richard R. Brooks for being on

my thesis committee.

 I would like to extend a special thanks to Vivek Pallipuram for providing me

valuable guidance and for showing me the right direction in the course of this research.

 I am grateful to my family and close relatives who have stood by me like pillars

throughout this research. My friends - Nikhil, Nilim, and Kanak, and my sisters - Chaitali

and Prajakta have been the moral support for me and have played an important role in my

life.

 Lastly, I am immensely indebted to Clemson University that has provided me

with the tools, access to the Palmetto Cluster, and a platform to showcase my work and

helped me enrich my knowledge in the field of computer engineering.

!

! vi

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES ... x

CHAPTER

I. INTRODUCTION .. 1

II. LITERATURE REVIEW ... 6

 Performance Modeling Studies for GPGPU systems 6
 SIA Applications on GPGPU systems ... 11
 Summary .. 14

III. APPLICATION BACKGROUND AND
 EXPERIMENTAL SETUP .. 15

 Application Description ... 15
 GPGPU Architecture and Memory .. 20
 Palmetto Cluster Configuration ... 25
 Summary .. 26

IV. VERIFICATION OF THE INITIAL
 A2A FITNESS MODEL AND SIA MAPPING .. 28

 Overview of the Application to Accelerator
 (A2A) Fitness Model ... 28
 Application of the A2A Fitness Model .. 29
 SIA to Accelerator Mapping .. 36
 Comparison of Accelerators .. 41
 Summary .. 42

!

! vii

TABLE OF CONTENTS (continued)

Page

V. LOW LEVEL ABSTRACTION USING
 THE SIGE MODEL ... 43

 Overview of the Low Level Abstraction of the SIGE Model 43
 Application of Low Level Abstraction .. 44
 Summary .. 56

VI. RESULTS AND ANALYSIS ... 57

 Runtime Predictions from the SIGE Model ... 57
 Insights ... 69
 Effects of Variation in Parameters ... 75
 SWO Analysis of the SIGE Model .. 78
 Summary .. 81

VII. CONCLUSION ... 82
 Summary .. 82
 Conclusions .. 85
 Future Work ... 87

REFERENCES .. 85

!

! viii

LIST OF TABLES

Table Page

4.1 Results of A2A Fitness Model on accelerators of interest 34

4.2 Comparison of Performance to verify A2A mapping 40

6.1 Observed and Predicted Values for Computation Component (ms) 56

6.2 Observed and Predicted Values for Scatter Component (ms) 57

6.3 Observed and Predicted Values for Gather Component (ms) 58

6.4 Observed and Predicted Values for One Time Host to Device

Transfer (ms) .. 59

6.5 Observed and Predicted Values for One Time Device to Host

Transfer (ms) .. 60

6.6 Observed and Predicted Values for Send-Receive Component (ms) 61

6.7 Observed and Predicted Values for Iterative Host to Device

Transfer (ms) .. 62

6.8 Observed and Predicted Values for Iterative Host to Device

Transfer (ms) .. 63

6.9 Observed and Predicted Values for Overall Computation Runtimes (ms) 64

6.10 Observed and Predicted Values for Overall Communication Runtimes

(ms) ... 65

6.11 Observed and Predicted Values for Overall Application Execution

Runtimes (ms) .. 66

6.12 Execution Time of Application over different Y-dimension and

K-values with a Ranking of Best Performing Node Configuration
and Best G values ... 68

6.13 Observed and Predicted Best G Value for Y = 512, K = 1000 71

6.14 Observed and Predicted Best G Value for Y = 4096, K = 2000 71

!

! ix

LIST OF TABLES (continued)

Page

6.15 Variation in Problem Dimension Y on a 8-Node Configuration

with K = 1000, G = 20 .. 72

6.16 Variation in Number of Nodes P with Y = 8000, K = 1000, G =20 73

6.17 Variation in Set Number of Iterations K with Y = 4000, G = 20

on a 16-Node Configuration ... 74

6.18 Variation in Number of Ghost Rows G with Y = 4000, K = 800

on a 2-Node Configuration ... 74

!

! x

LIST OF FIGURES

Figure Page

3.1 Grid with vector valued solution at center ... 18

3.2 Grid with nodes to represent Equation 3.9 and 3.10 .. 18

3.3 Evolution of Water Surface at regular intervals .. 20

3.4 Grid of CUDA Threads and Blocks ... 21

3.5 SMX in Kepler GK110 .. 24

3.6 Palmetto Cluster Node ... 26

4.1 SIA mapping on Heterogeneous CPU-GPGPU cluster 38

4.2 Shared Memory Usage for Equations 3.9, 3.10, 3.11 .. 39

5.1 Kernel Runtime (ms) vs EDGE-DATA (bytes) .. 46

5.2 Kernel Runtime (ms) vs COMP-DATA (bytes ... 46

5.3 Scatter Bandwidth (Megabytes/sec) vs DATA (Megabytes) 48

5.4 Gather Bandwidth (Megabytes/sec) vs DATA (Megabytes) 49

5.5 One time Host-Device transfer bandwidth (Megabytes/sec)

vs DATA (Megabytes) .. 50

5.6 One time Device-Host transfer bandwidth (Megabytes/sec)

vs DATA (Megabytes) .. 51

5.7 Send-Receive Bandwidth (Megabytes/sec) vs DATA (Megabytes) 52

5.8 Iterative Host-Device transfer bandwidth (Megabytes/sec)

vs DATA (Megabytes) .. 53

5.9 Iterative Device-Host transfer bandwidth (Megabytes/sec)

vs DATA (Megabytes) .. 54

LIST OF FIGURES (continued)

!

! xi

Figure Page

6.1 Mapping of problem dimensions with number of hardware
nodes .. 69

6.2 Prediction of G value with Y = 512, K = 1000 for 2, 4, 8

and 16 nodes .. 70

6.3 Prediction of G value with Y = 4096, K = 2000 for 2, 4, 8

and 16 nodes .. 71

!

! 1

CHAPTER 1

INTRODUCTION

 In recent times, parallel computing has become the preferred way for application

development in the scientific community. Early microprocessors based on single core

central processing units (CPU) made rapid advances in terms of fixed point and floating

point operations per second and operating frequencies. Such CPUs with complex control

logic for branch predictions and hazard prevention were highly conducive for serial

application development. Based on Moore’s Law, for many years the CPU speeds were

projected to increase and sequential software was predicted to perform better as the

hardware improved, thus, preempting the need for a change in the software development

paradigm.

 This trend, however, changed in 2003 when the power wall was hit. As CPU

frequencies rose, the energy consumption and heat dissipation in the processors reached

extremely high levels and this limited the maximum operating frequencies of processors.

This led to the evolution of many core and multicore architectures. However, traditional

sequential software is executed primarily on single core CPUs and is incapable of

harnessing the power of multicore processors. This called for a change in the software

development paradigm and parallel software development became necessary.

 Several multicore and many core hardware architectures have evolved for parallel

computing, the prominent ones being multicore processors, Graphical Processing Units

(GPUs) and Field Programmable Gate Arrays (FPGAs). Intel introduced the Xeon E5-

2600 series of processors [1] having up to 16 cores. GPUs used traditionally for graphics

!

! 2

software are highly conducive for parallel applications since GPU devices support

thousands of hardware threads useful for processing massively data parallel applications.

GPUs used this way are generally termed as General Purpose Graphical Processing Units

(GPGPUs). FPGAs are in demand where reconfigurable hardware is necessary. Multiple

computing nodes or processors can be coupled via fast interconnect networks to form

cluster systems that are highly conducive to parallel computing. Homogeneous clusters

that have nodes with many core processors and heterogeneous clusters having nodes

equipped with several multicore processors and one or more GPGPU devices are popular

hardware accelerators.

 These architectures have unique processing capabilities such as floating point

operations per second, memory access times, and inter host-device data bandwidth. These

characteristics are important considerations when selecting a particular architecture for

the application of interest. Characteristics of data parallel software such as the number of

data parallel computations, memory access, and data transfers between different

architectures become critical. These characteristics are important performance factors for

the application because the speedup and execution time is dependent on the ability of the

application to exploit the maximum degree of parallelism from the architecture. An

architecture selected without such a study may not be fully utilized by the application and

therefore, deliver sub-optimal performance. Similarly, the chosen algorithm must expose

enough inherent data parallelism to occupy the hardware. Applications that are inherently

serial may perform poorly if implemented on parallel architectures. The identification of

near optimal hardware architectures and mapping of application to accelerators becomes

a non-trivial process. Therefore, there is a need for a roadmap to guide application

!

! 3

developers in identification and ranking of architectures that would be best suited for a

particular application. The Application to Accelerator (A2A) roadmap given in [23] has

been studied and applied in this thesis.

 In my thesis, the application of interest is the numerical solution of shallow water

wave equations using finite difference method [25]. In this application, the computation

of the shallow water surface takes place over a square grid on which each point of the

surface is computed using finite difference over two stages. This is a highly

computationally intensive and data parallel step that takes place over multiple iterations,

reflecting the water surface as it evolves over time. The application can be classified as a

Synchronous Iterative Algorithm (SIA) since several processing units compute the entire

water surface over multiple iterations. Therefore, the Synchronous Iterative GPGPU

Execution (SIGE) model [16] has been used for performance modeling and runtime

prediction.

 One significant focus of the thesis is the systematic verification of the A2A

roadmap. A homogenous multiprocessor cluster and a heterogeneous CPU-GPGPU

cluster are the architectures studied and the A2A roadmap is used to identify the

accelerator that can deliver the optimal performance. Strengths, Weaknesses and

Opportunities (SWO) of the A2A roadmap with respect to this application are discussed.

The accelerator identified using this roadmap is selected and low-level abstraction of the

application as per the SIGE model is carried out.

 The verification of the performance prediction framework consisting of he low-

level abstraction described in the SIGE model is the second significant focus of the

thesis. In this analysis, performance modeling of the computation and communication

!

! 4

parts of the application is carried out. Through several instrumented executions of the

application, runtimes at smaller data sizes are captured. Using this data, regression

analysis is carried out to accurately predict the runtimes at larger data sizes. For the

regression analysis, parameters such as data bytes transferred, compute data size, number

of floating point operations are typically used as independent predictor variables with the

runtime as the dependent variable. The predictor variables are selected based on

regression parameters such as high R2 (greater than 0.90) and low p-values (less than

0.10). The overall predicted runtime is the sum of the computation and communication

runtime predictions and this is verified by executing the application at higher data sizes.

The experimental results were observed to be within 10 percent of the predicted runtimes.

The ease of use of the SIGE model is also discussed.

 An important comment should be made regarding the application choice. Since

the finite difference method is used, at a given instant of the algorithm, data at a location

in the water surface depends on the values of its adjacent points. For points along the grid

borders of a particular process, the adjacent points may reside along the grid borders of a

neighboring process and vice versa. Such points are typically called “ghost data” and

must be exchanged between neighboring processes during each iteration. On a

heterogeneous CPU-GPU cluster, this leads to inter CPU host – GPU device ghost data

transfers. The combined effect over multiple iterations is that there are a large number of

inter process and inter host-device communications, making the application highly

communication sensitive; this is a good contrast from the four Spiking Neural Network

(SNN) models – Hodgkin-Huxley, Izhikevich, Morris-Lecar, and Wilson and the

Anisotropic Digital Filter (ADF) algorithms used in [31] and further studied in [32] that

!

! 5

are mostly pleasingly parallel with lesser communication complexity and higher

computation sensitivity. The chosen application qualifies to have sufficient computation

and communication complexity. Verification of the SIGE model on such an application

marks a significant contribution of this thesis.

 The cluster systems used in this research belong to the Palmetto Cluster at

Clemson University [30]. The cluster configuration consists of up to 16 nodes Intel Xeon

ES-2665 HP SL250s nodes with 16 cores, 64GB memory and inter-connected over

Infiniband. Each node is coupled with NVIDIA Tesla K20 GPU cards. The configuration

of the Palmetto Cluster is described in further chapters.

 The remainder of the thesis is organized as follows. Chapter 2 describes the

literature study pertaining to performance modeling studies and development of

applications on GPGPUs, similar to the application of interest. Chapter 3 describes the

application in depth and elucidates the available accelerators. The chapter also describes

the Compute Unified Device Architecture (CUDA) and discusses the NVIDIA Tesla

K20 GPU architecture. Chapter 4 conducts the A2A fitness study and application

mapping on the chosen accelerator is discussed. The chapter concludes with a runtime

analysis of both accelerators and sheds light on the A2A verification. Chapter 5 details

the low-level abstraction using the SIGE model. Chapter 6 consists of the results and

analysis, and a verification of the SIGE model. The chapter also consists of certain

insights concerning to execution of SIAs on parallel accelerators and are developed by

using the prediction framework. The thesis concludes in Chapter 7 with a summary,

conclusions, and Strengths, Weaknesses and Opportunities (SWO) analysis of the SIGE

model and future challenges that will consolidate the application to accelerator mapping.

!

! 6

CHAPTER 2

LITERATURE REVIEW

 In this chapter, we bring to light the recent developments with regards to

performance prediction and architecture selection for different data parallel applications.

Section 2.1 discusses the advances made in the field of performance modeling and

section 2.2 explores various SIA applications that have been implemented on GPGPUs

and that typically use finite difference methods. The chapter closes with a summary in

section 2.3

2.1 Performance Modeling Studies for GPGPU systems.

In this section, we explore the performance modeling studies that have been

conducted in the realm of GPGPU.

In [6], the authors have designed a Scalable HeterOgeneous Computing

benchmark (SHOC) suite that focuses on the performance and stability of scalable

heterogeneous computing systems such as GPUs and multicore processors. Their work

consists of benchmarks that test the performance of low level hardware characteristics

such as device memory, bus speed download and readback, kernel compilation, queueing

delay, and resource contention using a set of parallel applications. Heterogeneous

architecture comprising of devices such as the NVIDIA 8800 GTX, NVIDIA Tesla

C1060, ATI Radeon HD5770 and multicore CPUs like Intel Gainestown and Harpertown

are considered. The authors discuss performance of CUDA and OpenCL and contention

for system resources observable during inter-device and inter-node communications.

Although the SHOC suite provides results with a high degree of accuracy, it is restricted

!

! 7

to measurement of hardware parameters and cannot be used for overall performance

prediction of the application.

In [7], a performance analysis framework that identifies root cause of

performance bottlenecks and an estimation of the degree of benefit of applying

optimization strategies using static and dynamic profiling and a suite of micro-

benchmarks is discussed. The prediction framework uses inter-thread instruction-level

parallelism, memory-level parallelism, computing efficiency and serialization effects to

estimate the performance benefits. The authors use the NVIDIA Fermi C2050 and the

performance model builds upon an existing MWP-CWP model by using parameters like

cache effect and SFU instructions. The speedup resulting from optimizations such as use

of shared memory, loop unrolling, data layout, eliminating divergent branches and

reduction of idle threads are discussed and are within 10% of the predicted results.

However, the framework makes use of extremely intricate hardware and software

parameters that may not be easily available therefore, making the model highly complex

to use.

In [8], the authors present the Multi2C simulation framework through which

different heterogeneous devices can be evaluated based on different performance or

reliability criteria. The authors build upon the existing Multi2Sim framework to translate

OpenCL and CUDA kernels to an LLVM representation. The compilation infrastructure

models hardware and software timings based on instruction queues, divergent branches,

and functional units. The framework provides for memory coherency modeling by

allowing for dynamic cache block transitions between coherent and non-coherent modes

and achieve up to 1.8x speedup on the AMD Radeon 5870 using OpenCL. The

!

! 8

framework also includes fault injection into the execution to test the architectural

vulnerability. However, the parameters considered in this study are also difficult to access

to rendering the model difficult for performance modeling.

In [9], the authors identify a set of important GPU application characteristics and

use those to predict performance of an arbitrary application by determining its most

similar proxy benchmarks using a range of prediction suites such as the Rodinia suite,

GPGPU-SIM and NVIDIA-SDK suite. Speedup for a particular benchmark is obtained

by taking a weighted sum of the speedups of the proxy benchmarks. The application

metrics considered include but are not limited to, instruction throughput, computation-to-

memory access ratio, memory efficiency and warp occupancy. The authors base their

experiments on the NVIDIA Tesla C205 and the Kepler K20 GPUs. For applications that

match the benchmarked applications, the prediction results have an accuracy of 13% to

15% but the error increases for outlier applications. The framework makes use of existing

benchmarks, but cannot be used for a novel application for which benchmarks may not

exist along with the fact that the prediction errors are high.

In [10], authors propose the Eiger modeling framework for automating the

generation of performance prediction models by profiling workloads using micro

benchmarks and regression techniques. The framework constructs performance models

and evaluates performance sensitivity to processor configurations using Principal

Components Analysis (PCA). The application metrics are independent of the device on

which it is running and machine metrics describe the hardware. A wide range of

application metrics like memory efficiency, SIMD execution, static and dynamic memory

and machine metrics like bandwidth and streaming multiprocessors are considered.

!

! 9

Although the framework predicts the performance faithfully, the application and machine

parameters in the PCA are not readily available.

In [11], the authors extend an existing GROPHECY framework to project the

overall GPU speedup from abstract CPU code and project the overhead of data transfer

between CPU and GPU using a data usage analyzer and a PCIe bus model. The

framework estimates the performance gained by GPU acceleration by modeling the data

transfer overhead. The authors employ an NVIDIA Quadro FX 5600 GPU and use the

CFD, HotSpot, SRAD and Stassuij applications as benchmarks. They achieve a

prediction error of 8% on the data transfer overhead and 9% on the overall GPU speedup,

but only at significantly high number of iterations. At lower iterations, the data transfer

overhead is significant and the framework detects higher error rates, thus exposing a

drawback of the framework. Moreover, the framework is restricted to modeling data

transfers for pinned CPU memory rather than the more common pageable CPU memory.

In [12], the authors extend the PMaC performance-modeling framework for

prediction of large-scale HPC applications by profiling application and machine

characteristics. The model identifies compute and memory access patterns for

scatter/gather, stream, reduction, etc operations on different hardware and projects the

obtainable speedup by optimizing the same. The architectures used are NVIDIA Fermi

C2070 GPU and Convey FPGA co-processor and the authors could achieve an average

accuracy for bandwidth prediction within 3.16% and 2% for the FPGA and GPUs

respectively. Although fairly accurate, the model requires the knowledge of memory

access patterns and projects speedup of individual patterns instead of the application as a

whole, which can be a concern if the application is iterative in nature. Further, the model

!

! 10

does not illustrate the effect of optimizations on multiple patterns and how the overall

performance would be improved.

In [13], the authors present the Boat Hull model in which performance is

predicted for GPU and multi-core architectures by creating instances of the roofline

model for different algorithm classes. The model doesn’t require code but uses off-chip

memory accesses and coalesced and uncoalesced accesses, data size and number of

threads to predict the computes and data transfer times. The NVIDIA GeForce GTX 470

GPU was used and the performance prediction is within 8% of the measured

performance. However, the selected SIGE model has better accuracy since better

modeling could be accomplished through code study.

In [14], the Bulk Synchronous Parallel (BSP) model is proposed that aims in the

mapping and structuring of iterative parallel applications on heterogeneous architectures.

But the model is highly theoretical and provides the performance at near optimal

processor utilization and cannot be directly applied for performance prediction. The

Heterogeneous BSP model [15] increases the applicability of BSP by incorporating

parameters that reflect the relative speeds of heterogeneous computing components.

However, these models aim to guide the design of applications for optimal performance

on a given machine.

In [16], the Synchronous Iterative GPGPU Execution (SIGE) model for the

performance prediction of Synchronous Iterative Algorithms (SIA) is presented. This

model uses a regression-based approach to predict the computation and communication

sections of the application by collecting micro benchmarks. The model makes use of

predictor variables like the number of floating point operations, total bytes consumed,

!

! 11

data transfer size and processor count. The authors considered four spiking neural

network SIAs and with the NVIDIA Tesla M2070 GPU, they could achieve performance

prediction accuracy of over 90%.

2.2 SIA Applications on GPGPU systems

 In this chapter we discuss the evolution regarding the implementation of

applications that require finite difference methods on GPGPUs. Each study comprises of

a brief description of the application, optimization strategies, experimental setup, and

results obtained.

 In [17], the authors use a 2D problem for computation of electric field values

caused by the light scattering due to a transverse magnetic wave and implement it on a

single GPGPU. In this inherently data parallel application, a finite difference time domain

method is used, where the value of each cell depends on the previous two time steps and

the values of its directly neighboring cells. This is an SIA with a high number of

iterations (~100000) and ghost rows used for computing edge elements are exchanged

with the host CPU in every iteration. The authors make use of shared memory and global

memory is accessed in a coalesced manner. A PC with AMD Athlon 4000+ with a

2.4GHz CPU and 2GB RAM and one NVIDIA GeForce 8800 GTX GPGPU was used to

obtain the benchmarks. For large input data sets (4 Million data elements or 128x128

grid) the authors observed a speedup of up to 50x.

 In [18], the authors perform seismic modeling and reverse time migration (RTM)

using a finite difference method on a 2D and 3D mesh. Seismic waves that are reflected

and/or refracted at the interface of geological interfaces are used as boundary conditions.

Asynchronous MPI communications are used to exchange ghost rows and are performed

!

! 12

at every iteration in this SIA. Shared memory is used and optimizations are performed to

increase occupancy. Scalability and speedup comparison for constant, variable density

and RTM is discussed. The authors used a GPGPU cluster testbed composed of 10 Xeon

bi-socket quad-core nodes coupled with 5 NVIDIA TESLA S1070 servers. The TESLA

server is composed of 4 T10 GPGPUs and speedups up to 10x for RTM and up to 30x for

seismic modeling were observed.

 In [19], the authors implement versions of scattering of acoustic waves in non-

homogeneous media on GPGPUs using shared memory and texture memory approaches.

The application is discretized into a set of finite difference equations by replacing partial

derivatives with central differences. The authors concluded that the shared memory

approach performed better since the computation time was significantly lower and the

CUDA occupancy was higher. For the texture memory approach, data is copied between

device global memory and texture memory and saved into texture memory in every

iteration, leading to slowing down of the kernel. The shared memory approach used 2

kernels - one to load data into the shared memory, and other to compute values of the

next time step. The authors conducted the experiments on a Tesla C1060 GPGPU

composed of 30 multiprocessors; 4GB DDR3 memory 16KB shared memory per block

and 2D Texture memory with 216 width × 215 height.

 In [20], the authors accelerate a 3D finite difference wave propagation application

on a single GPGPU and heterogeneous CPU-GPU cluster using CUDA-MPI. The authors

use a 2D mesh along with a sliding computation window to account for the lack of

sufficient memory for a 3D grid. Shared memory and register optimization techniques are

used to hold data of the 2D grid and ghost elements. There is an effective overlap of

!

! 13

computations and communications by exchanging ghost elements with neighboring

processes using non-blocking MPI communications and computing inner points on the

GPGPUs. The experimental setup consists of a cluster of 48 NVIDIA Tesla S1070, each

having four GT200 GPGPUs and two PCIe-2 buses and connected to BULL Novascale

R422 E1 nodes. The authors could achieve a speedup of 37x for a single GPU over the

serial version. The authors further conclude that the application has weak scalability but

not strong scalability because of the stalls for non-blocking MPI communications. With

different configurations of the application, the speedup was between 20x and 60x for the

CUDA-MPI version.

 In [21], the authors perform simulation of room acoustics with a finite-difference

time-domain model in real-time, up to a geometry of 100m3. With a 10% maximum

dispersion error limit, the system could be used for real-time auralization up to 1.5kHz.

The authors choose a low sampling rate of 7kHz since at higher frequencies the

computational load can be excessive. 3D GPGPU grids are used to model the finite

difference equations and ghost elements are present to compute boundary elements. The

CPU was used to perform the required sampling rate conversions. Two GPU kernels are

executed: one, to update the mesh points and the other, for the boundary filters.

Computation of 1 time step requires information from the previous two time steps and

GPU L1 and L2 caches are used. Issues such as memory coalescing and occupancy are

addressed to obtain the maximum performance. The data for the impedance filters are

pre-computed and stored in constant memory. The experimental setup consisted of an

NVIDIA Quadro FX 5800 with 4GB of global DRAM and a commodity PC having Intel

Pentium Dual CPU E2180 running at 2GHz and 2GB of RAM. The authors finally

!

! 14

perform a comparison of different schemes of the application with regards to computation

size and performance.

 In [22], the authors assess the performance improvement of a GPGPU-based

implementation of elliptical or steady heat conduction. A five-point finite difference

scheme using a Point Over Successive Relaxation (PSOR) method, which uses

computation over two schemes in an iterative manner. The authors perform padding of

memory so that the global memory reads and writes are aligned. Only global memory is

used. Further, to ensure synchronization between threads, each computation kernel is

launched iteratively. The authors use an NVIDIA GTX260 GPGPU and analyze the

performance of the application on coarse, medium, and fine grids with the fine grid

performing the best and having the best occupancy out of the three. The use of padded

global memory led to 26% faster execution for the GPU kernels. The authors further

concluded that the speedup reached a constant value at higher number of iterations.

2.3 Summary

In this chapter, we present the performance modeling studies for GPGPU systems

as and applications that use finite difference methods on GPGPUs. We also discussed in

brief, the SIGE model that targets SIAs for performance prediction. The models

presented in section 2.1 are sufficiently accurate but consist of complex procedures to

model the performance and require a detailed knowledge of the GPU architecture. The

SIGE prediction framework requires easily available application and hardware

parameters and makes the modeling task straightforward. We select this model for

performance prediction for the SIA of our choice – shallow water wave equations and

aim to provide a verification of this model.

!

! 15

CHAPTER 3

APPLICATION BACKGROUND AND EXPERIMENTAL SETUP

 In this chapter, we elucidate the application in depth. The computation and

communication portion of the application is discussed and data parallelism and

communication complexity is exposed. In subsequent sections, the accelerators of interest

namely, the homogeneous multiprocessor cluster and heterogeneous CPU- GPGPU

systems are discussed. The microarchitecture of NVIDIA GPUs and characteristics of the

NVIDIA Tesla K20 GPU are also discussed.

3.1 Application Description

As introduced in previous chapters, the shallow water wave equations are a set of

partial differential equations that model the propagation of disturbances in water and

other incompressible fluids. The finite difference method is used to find numerical

solutions of these partial differential equations. These equations are typically used for

incompressible fluids with the underlying assumption being that the depth of the fluid is

small compared to the wavelength of the disturbance. Shallow water can store and release

energy by locally varying its height within certain limits.

The partial differential equations are derived from Moler’s model [25] of shallow

water that uses conservation of mass and momentum. The independent variables are time

t, and motion in two space coordinates, x and y. The dependent variables are the fluid

height h, and the two-dimensional fluid velocity, u and v. Here, u implies the motion in x

direction and v in y direction. As state variables, the set of h, h.u and h.v is chosen. With

consistent units, the conserved quantities are mass, that is proportional to h, and

!

! 16

momentum that is proportional to u.h and v.h. The force acting on the fluid is gravity,

represented by the gravitational constant g. The partial differential equations then take the

following form as shown in Equations 3.1, 3.2 and 3.3.

 (3.1)

 (3.2)

 (3.3)

 Equations 3.4, 3.5 and 3.6 represent the above equations in a compact form using

the three vectors as shown below:

 (3.4)

 (3.5)

 (3.6)

Here, F and G are intermediate vectors that are computed at half time steps and

assist in the calculation of the position vector U at the end of a complete time step. Using

the above notation, the shallow water wave equations become an instance of a hyperbolic

conservation law as shown in Equation 3.7:

!ℎ
!" +

!(!ℎ)
!" + !(!ℎ)!" = 0!

!(!ℎ)
!" + !(!

!ℎ + !
!!ℎ!)

!" + !(!"ℎ)!" = 0!
!

!(!ℎ)
!" + !(!"ℎ)!" + !(!

!ℎ + !
!!ℎ!)

!" = 0!
!

U=!!
ℎ
!ℎ
!ℎ
!!

!

F(U)!=!!
!ℎ

!!ℎ + !
!!ℎ!

!"ℎ
!!

!

G(U)!=!!
!ℎ
!"ℎ

!!ℎ + !
!!ℎ!

!!

!

!

! 17

 (3.7)

A square region is chosen to represent the shallow water surface or vector U.

Boundary conditions must be considered to model a real world situation [26] therefore,

the reflective boundary conditions, u = 0 on the vertical sides of the regions and v = 0 on

the horizontal sides, are applied. Furthermore, at the left and right vertical edges, the

condition u = -u and at the top and bottom horizontal edges, v = -v are applied. With these

boundary conditions, any wave that reaches the boundary is reflected back into the

region.

The Lax-Wendroff method is used to compute a numerical approximation to the

solution. For this, a regular square finite difference grid with a vector-valued solution

centered in the grid is introduced as shown in Figure 3.1. The quantity vector:

 !!,!! (3.8)

represents a three component vector at each grid cell i,j that evolves with time step n.

!"
!" +

!"(!)
!" + !"(!)!"

= 0!

!

! 18

In the Lax-Wendroff method, a time step is covered over two stages. In the first

stage, known as a half step, values of U at time step n+1/2 and the midpoints of the edges

of the grid are defined. Equations 3.9 and 3.10 describe the first stage.

 (3.9)

 (3.10)

 Figure 3.2 shows how the above equations are computed. In the second stage, the

time step is completed by using the values from the first stage to compute the new values

at the centers of the cells as shown in Equation 3.11.

 (3.11)

Figure3.1:!Grid!with!vector!valued!solution!
at!the!center.!Light!blue!points!handle!
boundary!conditions!

Figure!3.2:!Green!nodes!represent!
calculations!resulting!from!Equations!
3.9!and!3.10!

!!!!!,!
!!!! = !12 (!!!!,!

! + !!,!!)−
∆!
2∆! (!!!!,!

! −!!,!!)!
!

!!,!!!!
!!!! = !12 (!!,!!!

! + !!,!!)−
∆!
2∆! (!!,!!!

! −!!,!!)!
!

!!,!!!! = !!!,!! − ! ∆!∆! !!!!!!,!
!!!! − !!!!!,!

!!!!! − ! ∆!∆! !!!,!!!!
!!!! − !!,!!!!

!!!! !!!

!

! 19

The significant pieces of the overall algorithm are the computations performed in

the first and second time steps, that is, Equations 3.9, 3.10, and 3.11. These represent the

compute intensive and data parallel nature of the application. The three equations are

computed iteratively and each iteration represents a smoothening of the water surface.

This application fits the category of a Synchronous Iterative Algorithm (SIA) [16] since

several iterations of the compute intensive parts of the application are required.

 The initial conditions are chosen as h = 1, u = 0, v = 0 over the entire region. This

calm water surface is disturbed by a water droplet hitting the surface, which is

represented by adding a two dimensional Gaussian shaped peak to h. After this impulsive

disturbance, the resulting waves propagate back and forth over the region. The initial

conditions only affect the nature of the water surface and not the computations that use

the finite difference method steps. Therefore, a sharper Gaussian peak would result in

greater number of iterations being required for the water surface to eventually smooth

out. However, the performance modeling carried out in this thesis does not depend on the

number of iterations that are used for the application and hence, is independent of the

initial conditions. The performance is modeled for a single iteration and is scaled with the

number of iterations to calculate the total runtime.

During the execution of the iterative algorithm, at regular intervals, the output

representing the water surface is collected in a file. This file is used to plot snapshots of

the wave behavior at regular intervals of time with a MATLAB program. In Figure 3.3,

some of the sample outputs are shown with the propagation of disturbances visible from

Figures 3.3a to 3.3d.

!

! 20

Figure 3.3: Evolution of the water surface at regular intervals of the application

3.2 GPGPU Architecture and Memory

In this thesis, the NVIDIA Tesla K20 GPU is considered. In this section, we

describe the NVIDIA CUDA framework and GPGPU architecture and specific

characteristics of the K20 GPU.

3.2.1 NVIDIA CUDA framework

The GPGPU technology is based on Compute Unified Device Architecture

(CUDA) [2] that was introduced by NVIDIA in 2007. The CUDA architecture consists of

thousands of floating-point processing units or CUDA cores and memories such as

global, constant and texture memory. These GPU cores consist of processing units called

threads and execute the parallel sections of the program called CUDA kernels. CUDA

Fig!3.3a!
Fig!3.3b!

Fig!3.3c! Fig!3.3d!

!

! 21

kernel execution takes place in a Single Program Multiple Data (SPMD) manner since all

of the threads execute the same code.

The GPU threads are organized into a two level hierarchy of blocks and grids.

The threads are arranged in a 1D, 2D or 3D structure called blocks. The threadIdx

variable specifies the number of the thread with respect to the block. The number of

threads in each dimension in a block is specified with the blockDim variable. A CUDA

block can have a maximum of 1024 threads. The blocks are further arranged in a 3D

manner to form a grid, where each block has a unique index blockidx. Together with the

blockDim, blockIdx and threadIdx variables, the global thread coordinate can be uniquely

determined. An execution configuration containing information about the number of

blocks and the number of threads per block, is specified when a CUDA kernel is

launched. Figure 3.4 shows the arrangement of blocks and threads.

Figure 3.4: Grid of CUDA threads and blocks

!

! 22

CUDA runtime organizes the execution resources into Streaming Multiprocessors

(SM). During the kernel execution, threads are assigned to SMs on a block-by-block

basis. A limited number of blocks can be assigned to each SM and the CUDA runtime

assigns new blocks to SMs as they complete previous block executions. Each SM

consists of multiple Streaming Processors (SPs) that share control logic and instruction

cache. Thread blocks in SMs are divided into 32 consecutive threads called warps.

Threads in a block are executed by groups of 16, called as half-warps and are executed in

a Single Instruction Multiple Data (SIMD) manner. Each SM can execute a limited

number of warps at any instant. Accesses to global memory can be aligned or coalesced

by the GPU hardware into a single efficient transaction per half-warp, thereby increasing

the memory performance.

GPU threads access data from different GPU memories. Global memory is off-

chip memory implemented with DRAM technology that is accessible to all threads in the

device. Although it supports L1 and L2 caches, it has the highest access latencies and the

lowest bandwidth. Registers are on-chip memories and have negligible access times.

These are accessible to individual threads and are used to hold automatic variables.

However, each block has a limited number of registers. Shared memory is slower than

registers but is still accessible to all threads in a block. It is commonly used for thread

collaboration and synchronization. The amount of shared memory per block is also

limited. Local memory is used to hold automatic array variables. It has the same access

latency as global memory since it resides in global memory. The scope of local memory

is also per thread. Constant memory is used to provide read-only values to the kernel. It is

!

! 23

stored in global memory but is cached for faster access. The scope of this memory is for

all threads in the GPU device.

3.2.2 NVIDIA Tesla K20 GPU (Kepler GK110)

The NVIDA Fermi microarchitecture [3] was a significant leap forward since the

G80 architecture. The Fermi architecture has salient features such as 512 CUDA cores

with 32 cores per SM, 64 KB of memory configurable for use as shared memory and L1

cache and a total of 6 GB of GDDR5 DRAM. It supports Error Correction Code (ECC)

and has dual warp scheduler that simultaneously schedules and dispatches instructions

from two independent warps. The cores are organized in 16 SMs and each core has a

pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU). Each SM has

16 load/store units. It is capable of performing fused multiply-add (FMA) instruction for

single and double precision arithmetic.

NVIDIA introduced Kepler GK110 microarchitecture [5] – a huge improvement

over the Fermi architecture and focuses on compute performance and reduction in power

dissipation. The Tesla K20 and K20X GPUs are derivatives of this architecture. The

Kepler GK110 supports CUDA compute capability 3.5. Each of the Kepler GK110

Streaming Multiprocessor (SMX) units have 192 single-precision CUDA cores and retain

the single and double-precision arithmetic introduced in Fermi. The Kepler family can

support up to 16 SMX per block. With 13 SMX per block, the K20 GPU supports 2496

CUDA cores [4]. It supports a memory width of 320-bits. The global memory is up to 5

GB. The Kepler GK110’s SMX provide up to 8x the number of SFUs of the Fermi

GF110 SM. Like the Fermi, Kepler has a warp size of 32 threads and supports up to 64

!

! 24

warps per SMX. Each SMX of the Kepler has a quad warp scheduler each with dual

instruction dispatch units, allowing four warps to be issued and executed concurrently.

Each thread can access up to 255 registers for the Kepler GK110. Shuffle instruction is

introduced that allows threads within a warp to share data.

 Figure 3.5: SMX in Kepler GK110 [5]

!

! 25

Kepler’s memory hierarchy is similar to Fermi’s. Each SMX has 64 KB of on

chip memory that is configurable as 48 KB of shared memory with 16 KB of L1 cache or

vice versa. It is possible to configure a 32KB / 32KB split between the allocation of

shared memory and L1 cache. Shared memory bandwidth for 64b and larger load

operations is doubled to 256B per core clock. In addition to L1 cache, a 48 KB read-only

cache is available. The dedicated L2 cache up to 1536 KB is available and supports up to

2x the bandwidth compared to the Fermi. ECC for memory protection is present. Figure

3.5 shows the Kepler GK110 architecture.

The Kepler GK110 has further salient features such as Dynamic Parallelism,

Hyper Q, and NVIDIA GPUDirect. Using dynamic parallelism, more parallel code in an

application can be directly launched by the GPU onto itself, thus, performing load

balancing. Using Hyper Q, up to 32 simultaneous hardware work queues between the

host and the CUDA work distributer logic to overcome effects of serialization.

GPUDirect aims to reduce compute latencies through DMA between NIC and GPU and

better MPI communications between GPU and nodes in a network.

3.3 Palmetto Cluster Configuration.

For the purposes of this thesis, we have used the Clemson University Palmetto

Cluster computing system [30]. The cluster provides a homogeneous CPU-only

configuration as well as a heterogeneous CPU-GPGPU configuration. Each node used in

the cluster node is of a HP SL250s make including up to 16 cores of Intel Xeon E5-2665

processors and up to 64GB of RAM memory. We use the Message Passing Interface

(MPI) standard [27] for application development on the homogeneous cluster and

CUDA-MPI for the heterogeneous cluster. The processors are capable of performing

!

! 26

double-precision floating-point operations, even though only single precision operations

are considered. Each node is further equipped with 2 NVIDIA Tesla K20 devices. The

communication between the CPU and GPU device takes place over the PCI-Ex bus. The

inter-node interconnect network is 56g Infiniband. The GPU devices are present such that

2 CPU cores in every node are connected to 2 GPU devices in a 1:1 node packing

fashion. Therefore, only 2 out of 16 CPU cores are used in each node by the application.

Figure 3.6 shows an instance of the cluster node with 2 cores being used in a node.

Figure 3.6: Palmetto Cluster node.

 Ultimately, each node supports 2 CPU cores and 2 GPU devices. At the time of

selecting a configuration, we reserve all 16 cores in each node (although only 2 CPU

cores are actually used) to ensure that the traffic across that node belongs entirely to our

application and minimize communication interference caused by other applications. We

use the heterogeneous CPU-GPU configuration for both, the MPI-only and the CUDA-

MPI versions to maintain consistency across cluster configurations.

3.4 Summary

In this chapter, we described the application of interest. The CUDA framework

used for GPGPUs and the architecture of the NVIDIA Tesla K20 GPU used in this thesis

!

! 27

was also described. We followed this up with an overview of the Palmetto cluster and the

configurations used for executing the application.

!

! 28

CHAPTER 4

VERIFICATION OF THE INITIAL A2A FITNESS MODEL AND SIA MAPPING

We begin this chapter, by applying an initial A2A Fitness model [23] to the

architectures of interest – a homogeneous multiprocessor cluster and a heterogeneous

CPU-GPGPU cluster. In the subsequent sections, we first discuss the initial Application

to Accelerator (A2A) fitness model and perform a careful mapping of the application

components on the cluster systems. The chapter concludes with an experimental

validation of the fitness model – the performance of the application on both clusters is

compared and the results of the fitness model are verified.

4.1 Overview of the Application to Accelerator (A2A) Fitness model

In this section, we provide an overview of the Application to Accelerator (A2A)

[23] fitness model and an in depth discussion for use with our application. Through the

use of this model, we aim to establish a preliminary runtime prediction of the application

on each accelerator by calculating a scalar product of two vectors – the application vector

and the accelerator vector. In this fitness model, significant computation or

communication transactions are identified and considered as directions or unit vectors. If

i, j, k … are identified as the unit vectors, then with a1, a2, a3… as the application

vector coefficients and b1, b2, b3 … as the accelerator vector coefficients, we have the

application and accelerator vectors as shown in Equations 4.1 and 4.2:

Application vector = a1 i + a2 j + a3 k + … (4.1)

Accelerator vector = b1 i + b2 j + b3 k + … (4.2)

!

! 29

The application and accelerator vectors have units of parameter and

seconds/parameter where parameter can be bytes transferred or floating-point operations

(FLOPs). The scalar product of these vectors has the unit of seconds and conveys the

execution time of the application on that device. The scalar product is given by Equation

4.3.

Scalar Product = a1.b1 + a2.b2 + a3.b3 + … (4.3)

We can rank the performance of the systems based on their scalar product. The

accelerator with the smallest execution time, i.e. scalar product, is deemed the best fit for

that application. More information about the A2A fitness model can be found in [24].

4.2 Application of the A2A Fitness Model

We apply the A2A fitness model by identifying the application and accelerator

vector components. Each accelerator has a unique accelerator vector that consists of the

FLOPs per second (FLOPS), the data transfer time over Infiniband or PCI-Ex bus, and

the per byte data access time by processing cores. Each accelerator has a corresponding

unique application vector that consists of the FLOPs count, the bytes of data transferred,

and the data bytes consumed by processing cores. As discussed above, the application

vectors have units of parameter and accelerator vectors are in seconds/parameter.

Each component of the vector consists of a direction vector or a unit vector

corresponding to either a communication component or a computation component across

both the architectures. We identified the following 9 unit vector components.

i Processor or CPU FLOPs

j Data transferred in scatter operation

k Data transfer from CPU host to GPGPU device over PCI-Ex bus

!

! 30

l Data transfer between CPU hosts over Infiniband

m Data transfer from GPGPU device to CPU host over PCI-Ex bus

n CPU global memory accesses

o GPGPU global memory accesses

p GPGPU FLOPs

q Data transferred in gather operation

We consider the variables - x as the vertical dimension per process, Y as the

horizontal dimension common for all processes, and G as the number of ghost rows.

Since the application of interest is an SIA, the number of iterations executed in the

application plays an important role in the execution time. We denote the “set” number of

iterations as "K". However, since the application makes use of rows of ghost data, the

“effective” number of iterations performed in the application is reduced by a factor of G

since G rows are computed in a single iteration. Hence,

 Effective number of iterations = K/G (4.4)

In what follows, we elucidate the two vectors for the multiprocessor cluster and

the GPGPU-enabled cluster. For both clusters, the steps of scattering the initial

waveform vector (vector j) and gathering the final waveform vector (vector q) from all

processes are common. The steps for exchanging the ghost row data with neighboring

processes are also common (vector l). Therefore, we conveniently eliminate these

transactions from consideration since they will be identical on both cluster

configurations. Nonetheless, we evaluate the application and accelerator components for

these transactions before safely eliminating them.

!

! 31

If BWscatter, BWgather, and BWsend-recv represent the bandwidth for scatter, gather

and send-receive operations respectively, the accelerator vector for these operations can

be computed as shown in Equation 4.5.

Accelerator vector = j / BWscatter + q / BWgather + l / BWsend-recv (4.5)

The data size transferred in bytes for both the scatter and gather operations is

36.x.(Y+2) and that the send-receive operation is 36.G.(Y+2) per iteration. The send-

receive operation takes place for K/G iterations. Therefore, the application vector for

these operations is shown in Equation 4.6 and the scalar product of these components is

computed as shown in Equation 4.7:

Application vector = 36.x.(Y+2) j + 36.x.(Y+2) q + 36.(Y+2).K l (4.6)

Scalar Product = 36.x.(Y+2) / BWscatter + 36.x.(Y+2)/ BWgather +

(36.(Y+2).K)/BWsend-recv. (4.7)

As explained, these components are common for both clusters and are henceforth,

excluded from consideration.

4.2.1 Multiprocessor Cluster:

For this architecture, all of the floating-point calculations are performed by the

processors implying that the number of FLOPS is the accelerator parameter that has the

highest impact. Although the processor must fetch data from memory, the memory

bandwidth is assumed to be high enough to not incur any data access latency (vector n).

Therefore, only the unit vector i is featured in both the vectors. With an Intel Xeon E5410

processor, the benchmark performance is taken as 153.6 Giga FLOPS. We use the unit

vector i and Equation 4.8 shows the accelerator vector:

Accelerator vector = i / (153.6 * 109) second/FLOPs (4.8)

!

! 32

For the application vector, the processors need to compute two intermediate

vectors, each with 32 FLOPs per data element. The application performs calculations

over G ghost rows at a time leading to a total data size of (Y+2)*(x+G+1)*G over a set of

G ghost rows. The final vector requires 44 FLOPs per data element over the same data

size. Equation 4.9 shows the application vector for a single iteration:

Application vector = (32.(Y+2).(x+G+1).G + 32.(Y+2).(x+G+1).G +

44.(Y+2).(x+G+1).G)i FLOPs

 = 108.(Y+2).(x+G+1).G FLOPs (4.9)

Over K/G iterations, the final application vector is shown in Equation 4.10:

Application vector = 108.(Y+2).(x+G+1).G * K/G FLOPs

 = 108.(Y+2).(x+G+1).K FLOPs (4.10)

Equation 4.11 shows the scalar product of the two vectors:

Scalar Product = (108.(Y+2).(x+G+1).K) / (153.6 * 109) seconds (4.11)

4.2.2 Heterogeneous GPGPU architecture

For this architecture, we consider the host to device transfer (vector k), device to

host transfer (vector m), global memory accesses (vector o, vector q) and GPGPU FLOPs

(vector p) as the contributing components. For the NVIDIA Tesla K20 GPGPU, the

following benchmarks are considered:

 Host to device data rate 3.28 Gigabytes / second

 Device to host data rate 2.83 Gigabytes / second

 Global memory bandwidth 208.11 Gigabytes / second

 GPGPU FLOPs per second (FLOPS) 1160.5 Giga FLOPS

!

! 33

Using this data, the accelerator vector can be computed as shown in Equation 4.12:

Accelerator vector = [k / (3.28*109) + m / (2.83*109) + o / (320*109) + q /

(147.14*109)] second/GBytes + p / (1160.5*109) second/GFLOPs (4.12)

To compute the application vector, we construct the application vectors

piecewise, by considering each communication and computation transaction.

4.2.2.1 One Time Host-Device Data Transfers

Each host process has to transfer its portion of the waveform vector to the

GPGPU device before proceeding to the iterative stage (vector k). Similarly, after

completing all iterations of the algorithm, each host process receives the final processed

waveform vector from the GPGPU device (vector m). The data size transferred in both

the cases is 36.(x+2.G).(Y+2) where x, Y and G are as explained above. Equation 4.13

shows the application vector resulting from the initial and final host to device and device

to host transfers:

 One time Transfers: 36.(x+2.G)(Y+2).k + 36.(x+2.G)(Y+2)m bytes (4.13)

4.2.2.2 Iterative Host-Device Data Transfers

During each iterative step, the GPGPU device first, receives top and bottom ghost

row data from its host processor (vector k). Each process undergoes ghost row data

exchange with its neighboring process prior to this step (vector l) but as explained above,

we eliminate this data transaction from consideration. After receiving this data, the

GPGPU device executes the kernel and at the end of the iteration, transfers the freshly

computed top and bottom edge data also comprising of G rows, to the host process

!

! 34

(vector m). The host processes then exchange this data at the start of the next iteration.

The ghost data size is a function of G and Y and is expressed as 36.G.(Y+2). Using the

effective number of iterations, Equation 4.14 shows the application vector components

corresponding to the iterative data transfers:

 Iterative Transfers = (72.G.(Y+2).k + 72.G.(Y+2)m) * K/G bytes

 = K.(72.(Y+2).k + 72.(Y+2)m) bytes (4.14)

4.2.2.3 Iterative Computation Component

In the computing step, each GPGPU thread requires 98 FLOPs (vector p) to

compute a vector element. Using a Block size of 256 threads, the total number of threads

(Nth) are calculated as shown in Equation 4.15:

Nth = ceil((Y+2)/16) * ceil((x+2.G)/16) * 256 (4.15)

On computing over G ghost rows, the total number of FLOPs are (98.Nth.G) p

where p is the corresponding unit vector

Equation 4.16 shows this component over K/G iterations:

 Number of FLOPs = 98.Nth.K p FLOPs (4.16)

Each GPGPU thread makes 32 global memory accesses (vector o) threads per G

iterations. Over the total number of threads Nth and the effective K/G iterations, the

global memory accesses are as shown in Equation 4.17:

 GPGPU global memory accesses = 32.Nth.K o bytes (4.17)

Equation 4.18 shows the final application vector by using Equations 4.13, 4.14,

4.16 and 4.17:

!

! 35

Application vector = [36.(x+2.G)(Y+2).k + 36.(x+2.G)(Y+2).m + K.(72.(Y+2).k +

72.(Y+2).m)] bytes + K. Nth.(98.p FLOPs + 32.o bytes) (4.18)

Equations 4.12 and 4.18 are used to calculate the scalar product of the two vectors

as shown in Equation 4.19:

Scalar product = (36.(x+2.G)(Y+2) + 72.K.(Y+2)) / (3.28*109) + (36.(x+2.G)(Y+2)

+ 72.K.(Y+2)) / (2.83*109) + 32.K / (320*109) + 36.K.(Y+2)(x+G+1) /

(147.14*109) + (98. Nth. K) / (1160.5*109) (4.19)

4.2.3 Results

The following table 4.1 shows the scalar products of both the architectures with

the independent variables being the application dimension in one direction Y, number of

ghost rows G, number of processes P, and the set number of iterations K. For different

combinations of these parameters, the fitness model predicts the approximate runtime on

the two accelerators and ranks them. The fitness model is not responsible for predicting

the accurate runtime but is only used to rank the accelerators. From the table, it is evident

that the GPGPU cluster is bound to perform better and is predicted to be considerable

faster than its counterpart. Therefore, it is chosen as the best-fit architecture.

Table 4.1: Results of using the Fitness Model on the accelerators of interest
Parameters Execution Time (sec) Relative

Speedup
(TCPU/TCPU-

GPGPU)
Dimensions

YxY
Processes

P

Ghost
Rows

G

Set
Iterations

K

Heterogeneous
CPU-GPGPU

cluster
(TCPU-GPGPU)

Homogeneous
multi CPU

cluster (TCPU)

2000x2000 4 8 1000 0.313 7.165 22.909
8000x8000 8 12 2000 3.936 113.991 28.965

12000x12000 16 16 1000 2.503 64.726 25.861
16000x16000 32 20 2000 4.889 117.240 23.987

!

! 36

4.3 SIA to Accelerator mapping

This section describes how the computation and communication components of

the application are mapped to the CPU and GPGPU cores in the heterogeneous cluster.

Certain optimizations are performed in this process. We describe the application mapping

in section 4.2.1 and the optimizations in section 4.2.2.

4.3.1 Application Mapping

The key computation step is the finite difference method; therefore this can be

performed on the GPGPUs. To simulate initial conditions, the master host CPU initializes

the u and v velocities of the entire square surface and the height is initialized to a two

dimensional Gaussian wave that represents a water droplet.

After this initial processing, the master process scatters the square water surface

region, also known as the surface vector 1, to all other processes in a rectangular row

striped fashion. Each process initializes its respective GPGPU device by allocating

memory for the surface vector 1 and two intermediate vectors - vector 2 and vector 3

required for the first half step shown in Equations 3.9 and 3.10. Further, for each process,

a host to device transfer of only the surface vector takes place; the F and G vectors get

initialized during the kernel computation step. This is a one-time host to device transfer

step.

As mentioned in a previous chapter, the application is designed to operate using

ghost data. This data consists of auxiliary points that reside along all four edges of the per

process surface vector. These points are used to calculate the values of the intermediate

and surface vector points along the boundaries of the surface in the finite difference

method step. Along the left and right vertical edges, there is a single column of ghost

!

! 37

points but along the top and bottom edges, there can be multiple configurable number of

ghost rows. Since the surface vector is scattered in a row striped manner, each process

can send the top and bottom valid surface data and receive the top and bottom ghost data

from its neighbor. The valid data for one process acts as the ghost data for its neighbor

and vice versa.

The iterative step commences with each process participating in a send-receive of

ghost data. Each process then transfers this data to the GPGPU device it is coupled with.

Three GPGPU kernels are designed that perform the following tasks.

 Kernel 1 is used to update the boundary conditions. For the GPGPU device

coupled with the master process, the reflections at the topmost row is updated and the

condition v = -v is applied. Similar is the case for bottommost row for the device coupled

with the last process. For all other processes, the GPGPU threads along the right and left

edges update the velocity u with the condition, u = -u. Only the surface vector U is

updated in this kernel. No floating point operations take place.

Kernel 2 evaluates the intermediate vectors 2 and 3 in this first half step of the

Lax-Wendroff method. To compute vector 2, the U and F components of surface vector 1

are loaded in shared memory. Equation 3.9 is then solved by all GPGPU threads and

vector 2 is updated. To compute vector 3, the U and G components of surface vector 1

are loaded in shared memory. All GPGPU threads compute equation 3.10 and update

vector 3.

Kernel 3 uses the intermediate vectors computed in kernel 2 in the calculation of

the surface vector 1. The GPGPU threads compute equation 3.11 and the time step is

completed. The F and G components of the intermediate vectors 2 and 3 respectively, are

!

! 38

loaded into shared memory since Equation 3.11 requires both these components. GPGPU

threads work in parallel and the U, F and G components of vector 1 are updated at the

end of this kernel.

After the kernel computations, the freshly computed surface vector data near the

top and bottom edges are transferred from GPGPU device to respective host processes.

This data acts like the ghost data that the processes exchange with their neighbors at the

start of a new iteration. The steps of exchanging ghost data with neighboring processes,

host to device transfer of the ghost data, execution of the three kernels and a device to

host transfer of the freshly computed edge data take place for a K/G number of iterations.

A value of K can be specified by the SIA whereas the G value can be selected to obtain

the best runtime.

At the end of all iterations, the entire surface vectors present on each GPGPU

device is transferred to its host. This is also a one-time transaction. Each process

participates in a gather operation and the complete water surface vector is collected on to

the master process. The application can be summarized in the following steps.

1. Master process initializes the two dimensional Gaussian peak, vector velocities

and scatters the surface vector 1.

2. Each process transfers the received scattered vector to its GPGPU device.

3. For each iteration,

a. Neighboring processes exchange ghost data in a send-receive operation

b. Each process transfers the ghost data to GPGPU device

c. GPGPU device executes kernels 1, 2 and 3

d. GPGPU device transfers fresh edge data to its host process

!

! 39

4. GPGPU device transfers the final surface vector 1 to host process

5. The entire surface vector is gathered on to the master process

Figure 4.1 summarizes the SIA flow on the heterogeneous CPU-GPGPU cluster.

 Figure 4.1: SIA Mapping on Heterogeneous CPU-GPGPU Cluster

CPU Realm GPGPU Realm

Initialization!

Scatter from
Master rank 0

Transfer
scattered vector

Inter CPU
send-receive

Receive
computed vector

Transfer
computed vector

Gather on
Master rank 0

Transfer ghost
data

Receive ghost
data

Kernel
Execution

Transfer fresh
ghost data

Receive fresh
ghost data

Receive
scattered vector

Multiple
Iterations
take place

!

! 40

4.3.2 Optimizations

Optimization techniques make the kernels highly efficient. Two such techniques

are elaborated - the use of shared memory and data structure access by using registers:

4.3.2.1 Shared Memory

This memory is used to reduce the number of global memory accesses by threads

since global memory incurs long access latencies. The use of shared memory

significantly increases the Compute to Global Memory Access (CGMA) ratio. As

discussed above, shared memory is used in kernels 2 and 3 and has dimensions of

(TILE_WIDTH+1).(TILE_WIDTH+1). A TILE_WIDTH of 16 is used and the size of

(TILE_WIDTH+1) is justified for border elements in the finite difference step. In kernel

2, each thread t(i,j) requires vectors from the neighboring threads t(i,j+1) and t(i+1,j+1)

to calculate the F vector component and from threads t(i+1,j) and t(i+1,j+1) to calculate

the G component. In kernel 3, to calculate the final vector at the end of the half steps,

each thread t(i+1,j+1) requires F vector component from the neighboring threads t(i+1,j)

and t(i,j) and the G vector component from threads t(i,j+1) and t(i,j) to calculate the G

component. Figure 4.2a, 4,2b and 4,2c show how shared memory locations are used to

compute equations 3.9, 3.10 and 3.11 respectively.

 Figure 4.2a Figure 4.2b Figure 4.2c

ti,j(ti,j+1

ti+1,j ti+1,j+1

ti,j(ti,j+1

ti+1,j ti+1,j+1

ti,j(ti,j+1

ti+1,j ti+1,j+1

!

! 41

4.3.2.2 Data Structure Access and Use of Registers

 The initial versions of kernel 2 and 3 had the vectors implemented as arrays.

Since local array variables reside on the global memory, those accesses would have

incurred long latencies. The implementation was modified such that the U, F and G

vectors were structures of 3 elements. Local vector variables could thus, fit into registers

that have negligible access latencies. This also allowed for loop unrolling and each

component of the U, F or G vectors could be independently computed using registers.

Use of structures also allowed updating a vector element in global memory in a single

operation. After this modification, kernel 2 had occupancy of 100% whereas kernel 3 had

occupancy of 83%.

4.4 Comparison of Accelerators

In this section, we validate the findings of the A2A mapping by comparing the

performance of the application on both accelerators. We keep the number of iterations K

fixed at 400 and use 8 ghost rows G. We consider performance over smaller problem

sizes since we only need to verify the A2A mapping. Table 4.2 provides this data.

Table 4.2: Comparison of performance to verify A2A mapping
Parameters Execution Time (sec)

Relative Speedup
(TCPU/TCPU-GPGPU) Configuration Dimensions

YxY

Heterogeneous
CPU-GPGPU

cluster
 (TCPU-GPGPU)

Homogeneous
multi CPU

cluster (TCPU)

2-Node 512x512 0.435 126.093 289.868
4-Node 1024x1024 1.925 249.139 129.422
8-Node 2048x2048 6.011 508.811 84.646

16-Node 4096x4096 12.413 1035.038 83.383

The relative speedup indicates that the heterogeneous CPU-GPGPU cluster

performs far better than the homogeneous cluster. Therefore, we can ascertain that the

!

! 42

A2A mapping provides an accurate ranking of available accelerators for a particular

application.

4.5 Summary

In this chapter, we described the A2A mapping process in brief and used it to rank

the available accelerators for the selected application. The A2A mapping indicates that

the heterogeneous CPU-GPGPU cluster is expected to outperform the homogeneous

cluster and this is verified by the short scale implementation of the application on both

accelerators. We also described the application mapping on the heterogeneous CPU-

GPGPU cluster and the optimizations performed. The problem dimensions and number of

iterations specify the application whereas, the number of ghost rows and number of

process are flexible and should be selected in order to attain the best performance of the

application

!

! 43

CHAPTER 5

LOW LEVEL ABSTRACTION USING THE SIGE MODEL

In this chapter, the low level abstraction of the SIGE model [16] is used to

perform regression analysis for runtime prediction. The chapter is organized as follows -

an introduction to the SIGE model and low level abstraction is presented. Thereafter, the

details of the low level abstraction are included. The runtime prediction is carried out

independently for the computation and communication sections of the algorithm.

5.1 Overview of the Low-Level Abstraction of the SIGE model

The low-level abstraction methodology presented in the SIGE model aims to put

forth a model for performance prediction using limited algorithm implementation details.

The model aims to abstract the underlying system architecture by measuring the

performance of the application under different workloads on the architecture of interest.

The runtime prediction framework models the computation and communication sections

of the algorithm independently. The computation section is further broken down into

computations carried out on the CPU host and that on the GPGPU device. Similarly, the

communication section comprises of components like the inter host-device transfers over

PCI-Ex bus and the inter CPU host communications over Infiniband.

The computation component is modeled using readily available algorithm

characteristics such as the number of FLOPs (floating point operations), amount of data

required for computations and the communication component depends on characteristics

like amount of data transferred, bandwidth offered by the architecture, number of

processes, etc. Since the algorithm of interest is an SIA, the total computation and

!

! 44

communication time is a function of the number of iterations that the algorithm runs for.

The overall execution time is the sum of the individual computation and communication

runtimes. In order to accurately carry out runtime prediction, several instrumented

executions of the algorithm are carried out and regression analysis is performed on the

collected data using the R tool-chain for regression analysis [29]. The parameters are

chosen based upon their high R2 values (greater than 0.95) and low p-values (less than

0.10) in order to yield high prediction accuracy. The samples are collected using an

appropriate range of the problem size (up to 6000 x 6000). If x1, x2, x3 … are the

independent variables with coefficients a1, a2, a3 … , then the dependent variable t can

be determined by the following equation with e as the error difference as shown in

Equation 5.1.

 t = a1.x1 + a2.x2 + a3.x3 + ... + e (5.1)

5.2 Application of Low-Level Abstraction

In this section, the low level abstraction of the SIGE model discussed above is

applied to the algorithm of interest. The application is partitioned into computation and

communication sections for this purpose. Since no computation operations take place on

the CPU host, the computation component only depends on those carried out on the

GPGPU device. The prediction framework uses the measured runtime data for the

computation component runtime for a single iteration. The total computational runtime is

calculated by scaling this prediction with the total number of iterations. The

communication component comprises of several host-device data transfers and inter-host

data transfers. These transfers can be classified as one-time and iterative data transfers.

The one-time transfers include a scatter operation of the surface vector, a host-device

!

! 45

transfer of the scattered vector, a device-host transfer of the final processed vector, and

finally a gather operation of the processed vector. The inter CPU host transfers of the

ghost data and host-device and device-host transfer of the ghost data constitute the

iterative transfers. Similar to the computation component runtime, the total iterative

communication component runtime is obtained by scaling the prediction for a single

iteration with the total number of iterations. The following Equations 5.2 to 5.6 express

the different runtime components.

Texecution-time = Tcomputation + Tcommunication (5.2)

Tcomputation = TGPGPU-kernel * Set number of iterations (5.3)

Tcommunication = Tone-time-communication + Titerative-communication. (5.4)

Tone-time-communication = Tscatter + Tgather + Thost-device-once + Thost-device-once (5.5)

Titerative-communication = (Tsend-recv + Thost-device-iterative + Tdevice-host-iterative) *

Effective number of iterations (5.6)

As discussed in chapter 4, the effective number of iterations is given by K/G

where K is the set number of iterations and G is the number of ghost rows. Equations 5.7

and 5.8 show the total computation and iterative communication timings:

Tcomputation = TGPGPU-kernel * (K) (5.7)

Titerative-communication = (Tsend-recv + Thost-device-iterative + T device-host-iterative) *

(K/G). (5.8)

!

! 46

In what follows, the details of the computation and communication performance

modeling is elucidated.

5.2.1 Computation component

As discussed, the computation component modeling only depends upon the

computations carried out on the GPGPU device. The computation kernels perform the

tasks of updating the reflections at the boundaries of the surface and compute the value of

each element using finite difference method. Therefore, the data points that constitute the

perimeter of the surface (EDGE-DATA) and the total data points used for computations

(COMP-DATA) are considered as predictor variables.

The number of FLOPs required for computation are also considered as predictors

but this parameter is abstracted whilst considering the total data size. The coefficients of

the regression equations capture the impact of FLOPs on data size and therefore, it is not

explicitly considered. This simplifies the regression analysis and should be noted as

strength of the SIGE model.

The COMP-DATA and EDGE-DATA parameters are functions of the problem size

dimensions (Y), number of ghost rows (G) and number of processes (P). Equations 5.9 to

5.12 below represent the runtime predictions for 2, 4, 8, and 16-node configurations. Both

the data components are in bytes.

 T2-node = -1.43e-5*EDGE-DATA + 4.5e-6*COMP-DATA + 0.02618 (5.9)

 T4-node = -1.76e-5*EDGE-DATA + 4.39e-6*COMP-DATA + 0.02716 (5.10)

 T8-node = -2.05e-5*EDGE-DATA + 4.77e-6*COMP-DATA + 0.0298 (5.11)

 T16-node = -3.28e-5*EDGE-DATA + 4.51e-6*COMP-DATA + 0.03622 (5.12)

!

! 47

The following Figures 5.1 and 5.2 show the behavior of the kernel runtime with

respect to the predictor variables.

Figure 5.1: Kernel Runtime (ms) vs EDGE-DATA (bytes)

 Figure 5.2: Kernel Runtime (ms) vs COMP-DATA (bytes)

0!

5!

10!

15!

20!

25!

30!

35!

40!

45!

0! 2000! 4000! 6000! 8000! 10000! 12000!

Ti
m
e%
(m
s)
%

DATA%(Bytes)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

0!

5!

10!

15!

20!

25!

30!

35!

40!

45!

0! 2000000! 4000000! 6000000! 8000000! 10000000!

Ti
m
e%
(m
s)
%

DATA%(Bytes)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

!

! 48

5.2.2 Communication Component.

All the communication micro-benchmarks can be adequately represented by a

Michaelis Menten curve [33]; therefore these components are modeled using the

Michealis Menten kinetics. In this model, the rate of reaction (BW) is a function of the

substrate concentration (DATA) along with the constants Vmax and Km. The general form

of this model is described by the following Equation 5.13.

 (5.13)

Here, Vmax represents the maximum rate achievable by the reacting system and

Km is the substrate concentration when reaction rate is half of that of the maximum. In

this case, the data bandwidth offered by the communication link can be represented by

the reaction rate BW and the data size by DATA. The type of communication link – PCI-

Ex or Infiniband, is abstracted by this model and therefore, this model can be

conveniently applied for all communication components. The units for data size and

bandwidth are megabytes (MB) and megabytes per second (MB/sec) respectively.

Equation 5.14 shows how the execution time (T) is calculated using Equation

5.13:

 T = (DATA + Km) / Vmax (5.14)

In this section, we model the one-time and iterative communication components

independently.

! = !!"#![!]
!! + [!](
(

!

! 49

5.2.2.1 One Time Communication Components

These communication components consist of the scatter and gather of the entire

surface vector, and host to device and device to host transfer of scattered surface vector.

The data size for the scatter and gather operations depend on the dimensions of

the problem size. The following Equations 5.15 to 5.18 represent the communication time

for this operation on 2, 4, 8, and 16 nodes, respectively.

 T2-node = (DATA + 0.0109) / 230.92 (5.15)

 T4-node = (DATA - 0.0331) / 156.32 (5.16)

 T8-node = (DATA + 0.8064) / 134.38 (5.17)

 T16-node = (DATA + 1.0986) / 125.71 (5.18)

The scatter micro-benchmarks are displayed in the Figure 5.3 below.

 Figure 5.3: Scatter Bandwidth (Megabytes/sec) vs DATA (Megabytes)

0!

50!

100!

150!

200!

250!

0! 500! 1000! 1500! 2000! 2500! 3000!

Ba
nd
w
id
th
%(M

B/
se
c)
%

DATA%(MB)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

!

! 50

The following Equations 5.19 to 5.22 represent the communication time for the

gather operation on 2, 4, 8, and 16 nodes, respectively.

 T2-node = (DATA + 0.0769) / 230.24 (5.19)

 T4-node = (DATA + 48.8688) / 155.25 (5.20)

 T8-node = (DATA + 0.1773) / 134.49 (5.21)

 T16-node = (DATA + 155.60) / 123.26 (5.22)

The gather micro-benchmarks are displayed in the Figure 5.4 below.

 Figure 5.4: Gather Bandwidth (Megabytes/sec) vs DATA (Megabytes)

The data size parameter DATA for the host to device and device to host operations

depend on the problem size dimensions, number of processes, as well as the number

ghost rows employed by the algorithm. Since each node constitute two CPU host -

GPGPU device pairs, a single equation is sufficient to represent the communication time

for the CPU host to GPGPU device communication. However, we observed a distinct

J50!

0!

50!

100!

150!

200!

250!

0! 500! 1000! 1500! 2000! 2500! 3000!

Ba
nd
w
id
th
%(M

B/
se
c)
%

DATA%(MB)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

!

! 51

behavior for the 16-node configuration and hence, model it separately. The following

Equation 5.23 is used for the 2-node, 4-node and 8-node configurations on account of

similarity in the bandwidth behavior.

 Thost-to-device = (DATA + 0.4103) / 2446.34 (5.23)

Equation 5.24 below is used to model the 16-node configuration.

 Thost-to-device-16-node = (DATA + 0.6698) / 1485.77 (5.24)

The host-to-device micro-benchmarks are displayed in the Figure 5.5 below.

 Figure 5.5: One time Host-Device transfer bandwidth (Megabytes/sec) vs
 DATA (Megabytes)

For the GPGPU device to CPU host communication, a similar behavior is

observed with the bandwidth for the 16-node configuration being different from the other

configurations. The following Equation 5.25 represents the behavior for 2-node, 4-node

and 8-node configurations.

0!

500!

1000!

1500!

2000!

2500!

3000!

3500!

0! 50! 100! 150! 200! 250! 300! 350!

Ba
nd
w
id
th
%(M

B/
se
c)
%

DATA%(MB)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

!

! 52

 Tdevice-to-host = (DATA + 0.2423) / 2733.948 (5.25)

Equation 5.26 below is used to model the 16-node configuration.

 Tdevice-to-host-16-node = (DATA + 0.3924) / 1568.68 (5.26)

The device to host micro-benchmarks are displayed in the Figure 5.6 below.

 Figure 5.6: One time Device-Host transfer bandwidth (Megabytes/sec) vs
DATA (Megabytes)

5.2.2.2 Iterative Communication Components

These communication components consist of the host to device, device to host,

and the inter CPU host transfer of the ghost data. The number of nodes and the number of

ghost rows decide the payload and therefore, the latencies for the iterative

communication components. Similar to the computation component, the total

communication time of each component is directly proportional to the number of

iterations of the algorithm.

0!

500!

1000!

1500!

2000!

2500!

3000!

0! 50! 100! 150! 200! 250! 300! 350!

Ba
nd
w
id
th
%(M

B/
se
c)
%

DATA%(MB)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

!

! 53

The data size for all the iterative communication components depend on the

problem size dimension and the number of ghost rows. The data size for the send-receive

communications is twice of that for the host-device transfers. This is because, while each

GPGPU device transfers the top and bottom data to their respective hosts in each

iteration, each CPU host has to send as well as receive the top and bottom ghost data

from its neighbor. The regression coefficients, Vmax and Km abstract this notion.

The following Equations 5.27 to 5.30 represent the communication time for the

send-receive operation for a single iteration for 2, 4, 8, and 16 nodes, respectively. The

total time is obtained by scaling this time with the effective number of iterations (K/G)

 T2-node = (K/G) * (DATA + 0.0489) / 56.059 (5.27)

 T4-node = (K/G) * (DATA + 0.0591) / 47.851 (5.28)

 T8-node = (K/G) * (DATA + 0.0431) / 44.676 (5.29)

 T16-node = (K/G) * (DATA + 0.0415) / 55.705 (5.30)

The send-receive micro-benchmarks are displayed in the Figure 5.7 below.

!

! 54

 Figure 5.7: Send-Receive Bandwidth (Megabytes/sec) vs DATA (Megabytes)

The following Equations 5.31 to 5.34 represent the communication time for the

host to device and device to host transfer for a single iteration for 2, 4, 8, and 16 nodes.

The total time is obtained by scaling this time with the effective number of iterations

(K/G). For the iterative cases too, we model the 16-node and other configuration

separately. The following Equations 5.31 and 5.32 represent behavior for the 2-node, 4-

node and 8-node configurations.

 Thost-to-device = (K/G) * (DATA + 0.1861) / 2137.511 (5.31)

 Tdevice-to-host = (K/G) * (DATA + 0.1853) / 2500.843 (5.32)

The following equations 5.33 and 5.34 are used to model the 16-node

configuration.

 Thost-to-device-16-node = (K/G) * (DATA + 0.2577) / 1212.814 (5.33)

 Tdevice-to-host-16-node = (K/G) * (DATA + 0.1789) / 1413.621 (5.34)

0!

10!

20!

30!

40!

50!

60!

0! 0.5! 1! 1.5! 2! 2.5!

Ba
nd
w
id
th
%(M

B/
se
c)
%

DATA%(MB)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

!

! 55

The host to device and device to host micro-benchmarks are displayed in the Figure 5.8

and Figure 5.9 below.

 Figure 5.8: Iterative Host-Device transfer bandwidth (Megabytes/sec) vs DATA

(Megabytes)

 Figure 5.9: Iterative Device-Host transfer bandwidth (Megabytes/sec) vs DATA
(Megabytes)

0!

500!

1000!

1500!

2000!

2500!

3000!

0! 1! 2! 3! 4! 5! 6! 7!

Ba
nd
w
id
th
%(M

B/
se
c)
%

DATA%(MB)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

0!

500!

1000!

1500!

2000!

2500!

3000!

0! 1! 2! 3! 4! 5! 6! 7!

Ba
nd
w
id
th
%(M

B/
se
c)
%

DATA%(MB)%

4Jproc!

8Jproc!

16Jproc!

32Jproc!

!

! 56

5.3 Summary

In this chapter, we elucidate how the low level abstraction of the SIGE model is

carried out on the computation and communication sections of the algorithm. For the

computation component, the FLOPs parameter is abstracted by the coefficients of the

regression equations when the total data size is considered. For the communication

component, we model the iterative and one-time components. The CPU host – GPGPU

device communications are one-time as well as iterative but these are modeled separately.

These transfers are independent of the node configuration but we model the behavior for

the 16-node configuration independently from the other configurations on account of a

distinct change in behavior. For all iterative communication components, the data

transferred in the inter-CPU communication is twice that of the inter host-device

communications and is represented in by the regression equation parameters.

!

! 57

CHAPTER 6

 RESULTS AND ANALYSIS

In this chapter, we present the experimental verification of the low level

abstraction of the SIGE model that was applied on the shallow water wave application in

the previous chapter. In section 6.1, the predicted and actual runtimes of the computation

and communication components as well as the overall application as a whole is

enumerated along with the errors observed. This is followed by section 6.2 in which we

draw certain insights based on the runtime predictions provided by the low level

abstraction. Section 6.3 consists of a Strength, Weakness, and Opportunities (SWO)

analysis of the SIGE model. The chapter concludes with a summary in section 6.4.

6.1 Runtime Predictions from the SIGE model.

In this section, the runtime predictions for the computation and communication

components are presented. The application is executed on 2, 4, 8, and 16 nodes at larger

problem sizes, for different number of ghost rows. For each case, we consider problem

sizes up to the maximum limit that the hardware resources can support, such as the

amount of memory on the Tesla K20 GPGPUs. These problem sizes are significantly

higher than those considered for benchmarking purposes. For each of the predictions, we

have identified four independent parameters that control the application runtime –

problem size dimension (Y), number of processes (P), set number of iterations (K),

number of ghost rows (G). The runtimes presented in the sections below are for a single

iteration of the computation kernels as well as the communication components. We vary

Y, P, and G and compare the predicted and observed runtimes.

!

! 58

6.1.1 Computation Component

Table 6.1 presents the predicted and experimental runtimes for the computational

component for different node configurations. We predict the runtimes using Equations

5.9, 5.10, 5.11 and 5.12.

 Table 6.1: Observed and Predicted Values for Computation Component (ms)

Configuration Dimensions
Y x Y

Ghost
Rows

G

Predicted
Tcomputation

Observed
Tcomputation

Error in
Tcomputation

(%)

2-Node

8000x8000 10 29034.843 28849.719 0.63759
10000x10000 20 45648.772 46667.927 -2.2326
12000x12000 40 66437.66 70645.17 -6.33302
13000x13000 80 79693.126 92164.315 -15.64901

4-Node

12000x12000 10 32682.005 32724.455 -0.12989
14000x14000 20 44917.472 46295.484 -3.06787
16000x16000 40 59667.759 63301.7 -6.09029
18200x18200 80 79476.638 92583.812 -16.49186

8-Node

18000x18000 10 36665.523 36760.762 -0.25975
20000x20000 20 45917.403 47242.27 -2.88533
22000x22000 40 56990.84 61779.433 -8.40239
25360x25360 80 78827.484 90824.97 -15.21993

16-Node

28000x28000 10 44733.22 44779.879 -0.10431
30000x30000 20 52436.121 53750.225 -2.5061
32000x32000 40 61774.496 64895.918 -5.05293
35104x35104 80 78945.92 89168.992 -12.94946

The observed runtimes are in good agreement with the predicted runtimes for

medium problem sizes and have a low error rate (about 6%). The deviation increases up

to 16% at the largest problem size. The problem dimensions are chosen with a view to

maximize the memory usage and verify the prediction models at the highest possible

memory usage allowed by the hardware. For each configuration, the highest problem size

corresponds to the maximum possible memory usage of as high as 4.5 GB out of the 5GB

global memory available on the K20 GPU. At such high memory usage, the global

memory access times of the GPU could be larger leading to an increase in the observed

computation time, and therefore, greater errors in the prediction. We conclude that the

!

! 59

prediction accuracy for such high problem dimensions could be improved by considering

certain missing predictor variables as the memory usage approaches the hardware limits.

6.1.2 Communication Component

The one-time and iterative communication components are modeled and verified

separately.

6.1.2.1 One-Time Communication Components

In this section, we compare the predicted and experimental runtimes for the

scatter, gather, one time host-to-device transfers, and one time device-to-host transfers.

6.1.2.1.1 Scatter

Table 6.2 presents the predicted and experimental runtimes for the scatter

operations on different processor configurations. The application is executed with

different problem sizes Y as this is the only parameter that affects the scattered data. The

Equations 5.15, 5.16, 5.17 and 5.18 are used to predict runtimes. We observe that the

observed runtimes follow the predicted runtimes almost accurately with the error being

less than 1% for most cases.

!

! 60

Table 6.2: Observed and Predicted Values for Scatter Component (ms)

6.1.2.1.2 Gather

Table 6.3 presents the predicted and experimental runtimes for the gather

operations on different processors. Like the scatter operation, the gathered data depends

only on problem size Y, so only this parameter is varied and the application is executed.

We use Equations 5.19, 5.20, 5.21 and 5.22 for the predictions. The observed runtimes

have sufficient agreement with the predicted runtimes with the maximum error rate being

under 5%.

Configuration Dimensions
Y x Y

Predicted
Tscatter

Observed
Tscatter

Error in
Tscatter

%

2-Node

8000x8000 9517.417 9528.746 -0.11903
10000x10000 14870.209 14877.85 -0.05138
12000x12000 21412.386 21441.354 -0.13529
13000x13000 25129.504 25156.546 -0.10761

4-Node

12000x12000 31630.715 31634.236 -0.01113
14000x14000 43051.848 43057.778 -0.01377
16000x16000 56229.886 56246.557 -0.02965
18200x18200 72755.032 72775.39 -0.02798

8-Node

18000x18000 82791.321 82671.332 0.14493
20000x20000 102208.968 102048.402 0.1571
22000x22000 123670.484 123499.148 0.13854
25360x25360 164326.924 168017.512 -2.24588

16-Node

28000x28000 214129.864 214072.547 0.02677
30000x30000 246072.125 245858.385 0.08686
32000x32000 279674.636 279456.884 0.07786
35104x35104 336559.326 336322.22 0.07045

!

! 61

Table 6.3: Observed and Predicted Values for Gather Component (ms)

Configuration Dimensions
Y x Y

Predicted
Tgather

Observed
Tgather

Error in
Tgather

%

2-Node

8000x8000 9545.912 9535.996 0.10388
10000x10000 14914.569 14908.224 0.04254
12000x12000 21476.135 21458.582 0.08173
13000x13000 25204.27 25183.428 0.08269

4-Node

12000x12000 32371.932 31644.119 2.24828
14000x14000 43946.388 43098.333 1.92975
16000x16000 57301.334 56281.039 1.78058
18200x18200 74048.323 72773.282 1.7219

8-Node

18000x18000 82719.299 86100.994 -4.08816
20000x20000 102121.151 103856.987 -1.69978
22000x22000 123565.209 124105.824 -0.43751
25360x25360 164188.578 166078.437 -1.15103

16-Node

28000x28000 219641.036 228493.122 -4.03025
30000x30000 252218.437 251974.938 0.09654
32000x32000 286489.101 287535.079 -0.3651
35104x35104 344504.887 355330.003 -3.14222

6.1.2.1.3 One Time Host to Device Transfer

The predicted and experimental runtimes for the one time host to device transfers

are given in table 6.4 below. The transferred data depends on the problem size Y, number

of ghost rows G and number of processes P, therefore, we compare the runtimes for

different combinations of these parameters. Equations 5.23 and 5.24 are used for the

predictions. We observe higher error rates of up to 17% as the problem size and number

of processes increase. However, since these are one time transfers, we do not expect this

component to have a significant deteriorating effect on the overall runtime of the

application.

!

! 62

 Table 6.4: Observed and Predicted Values for One Time Host to Device Transfer (ms)

Configuration Dimensions
Y x Y

Ghost
Rows

G

Predicted
Thost-device-

once

Observed
Thost-device-

once

Error in
Thost-device-

once
(%)

2-Node

8000x8000 10 207.204 185.44 10.50403
10000x10000 20 325.36 350.781 -7.81303
12000x12000 40 473.184 522.879 -10.50236
13000x13000 80 567.426 490.962 13.4756

4-Node

12000x12000 10 256.161 258.577 -0.94325
14000x14000 20 351.866 363.354 -3.26484
16000x16000 40 467.218 460.714 1.39212
18200x18200 80 622.102 604.008 2.90846

8-Node

18000x18000 10 288.892 324.188 -12.21788
20000x20000 20 361.587 400.953 -10.88699
22000x22000 40 448.573 518.072 -15.49315
25360x25360 80 620.061 702.184 -13.24429

16-Node

28000x28000 10 579.562 571.852 1.33032
30000x30000 20 678.824 581.565 14.32745
32000x32000 40 799.091 660.539 17.33867
35104x35104 80 1020.133 880.107 13.72628

6.1.2.1.3 One Time Device to Host Transfer

The following table 6.5 indicates the predicted and experimental runtimes for the

one time device to host transfers. In this case too, we vary the problem size Y, number of

ghost rows G and number of processes P while comparing the runtimes. We use

Equations 5.25 and 5.26 for the predictions. In this case as well, we observe high error

rates of up to 16%, but the one time nature of this transaction prohibits it from having a

significant impact on the total runtime.

!

! 63

 Table 6.5: Observed and Predicted Values for One Time Device to Host Transfer (ms)

Configuration Dimensions
Y x Y

Ghost
Rows

G

Predicted
Tdevice-host-

once

Observed
Tdevice-host-

once

Error in
Tdevice-host-

once
(%)

2-Node

8000x8000 10 203.074 203.127 -0.0259
10000x10000 20 319.119 317.471 0.51633
12000x12000 40 464.301 524.535 -12.97298
13000x13000 80 556.86 553.208 0.65572

4-Node

12000x12000 10 228.901 245.478 -7.24213
14000x14000 20 314.452 331.902 -5.54911
16000x16000 40 417.567 462.163 -10.67999
18200x18200 80 556.018 624.829 -12.37562

8-Node

18000x18000 10 255.139 284.488 -11.5031
20000x20000 20 319.335 330.402 -3.46582
22000x22000 40 396.15 421.137 -6.30741
25360x25360 80 547.588 636.844 -16.29985

16-Node

28000x28000 10 548.755 548.936 -0.03309
30000x30000 20 642.77 562.293 12.52034
32000x32000 40 756.68 677.178 10.50668
35104x35104 80 966.041 845.629 12.46449

6.1.2.2 Iterative Communication Components

In this section, we compare the predicted and experimental runtimes for the

iterative components - send-receive, and iterative host-to-device transfers and iterative

device-to-host transfers. As discussed, all runtimes are for single communication

iteration.

6.1.2.2.1 Send-Receive

Table 6.6 below consists of the predicted and experimental runtimes for the send-

receive operation between CPU hosts on different processors. The data transferred

depends on the problem size Y and number of ghost rows G; therefore these parameters

are varied to compare the runtimes. Equations 5.27, 5.28, 5.29 and 5.30 are used for the

!

! 64

runtime predictions. We observe higher error rates of up to 19% for the 16-node

configuration.

The higher errors could be because of missing predictors in the performance

modeling process. Predictors related to the number of processes or per process data size

or the node interconnect could be considered in the modeling process. Since this

component is iterative, greater number of iterations introduces a greater error in the

overall runtime. By including the missing predictors, it would be possible to consider

higher node configurations such as 32-node or 64-node for the application. Also, we

observed that the error rates are higher for the highest problem dimensions for some node

configurations. This problem could be addressed by considering a wider range of

problem dimensions in the benchmarking process. This would also allow greater problem

dimensions to be considered for the application.

 Table 6.6: Observed and Predicted Values for Send-Receive Component (ms)

Configuration Dimensions
Y x Y

Ghost
Rows

G

Predicted
Tsend-
receive

Observed
Tsend-receive

Error in
Tsend-receive

(%)

2-Node

8000x8000 10 49.929 50.102 -0.346
10000x10000 20 123.423 126.194 -2.24458
12000x12000 40 294.85 317.393 -7.64564
13000x13000 80 637.881 717.44 -12.47237

4-Node

12000x12000 10 87.513 88.409 -1.02434
14000x14000 20 202.475 178.493 11.84416
16000x16000 40 461.506 441.056 4.43118
18200x18200 80 1048.044 1060.406 -1.17952

8-Node

18000x18000 10 139.293 157.788 -13.27828
20000x20000 20 308.286 292.633 5.07738
22000x22000 40 677.384 672.84 0.67078
25360x25360 80 1560.177 1802.143 -15.5089

16-Node

28000x28000 10 173.261 201.54 -16.32199
30000x30000 20 370.729 434.511 -17.20462
32000x32000 40 789.72 912.6 -15.55991
35104x35104 80 1731.644 2047.974 -18.26764

!

! 65

6.1.2.2.1 Iterative Host to Device Transfer

The following table 6.7 consists of the predicted and experimental runtimes for

the iterative host to device transfers for a single iteration. The transferred data depends on

the problem size Y and number of ghost rows G, so we compare the runtimes for different

values of these parameters. We use Equations 5.31 and 5.33 for the predictions. We

observe that the observed runtimes are in good agreement with the predicted runtimes

with the maximum error being under 15%. The error contributed by this component is

also significant since it is an iterative communication and significantly impacts the

overall communication runtime.

 Table 6.7: Observed and Predicted Values for Iterative Host to Device Transfer (ms)

Dimensions
Y x Y

Ghost Rows
G

Predicted
Thost-device-

iter

Observed
Thost-device-

iter

Error in
Thost-device-

iter
(%)

8000x8000 10 2.554 2.265 11.31227
10000x10000 20 6.287 6.22 1.05504
12000x12000 40 14.983 15.248 -1.76881
13000x13000 80 32.385 29.511 8.87549
12000x12000 10 3.942 3.642 7.59889
14000x14000 20 9.084 8.77 3.44735
16000x16000 40 20.648 19.645 4.85823
18200x18200 80 46.866 49.391 -5.38808
18000x18000 10 5.807 6.206 -6.86924
20000x20000 20 12.787 13.258 -3.68241
22000x22000 40 28.013 31.196 -11.36194
25360x25360 80 64.457 71.769 -11.34377
28000x28000 10 16.068 14.073 12.4182
30000x30000 20 34.2 29.417 13.98434
32000x32000 40 72.689 62.103 14.56351
35104x35104 80 159.216 137.821 13.43785

!

! 66

6.1.2.2.2 Iterative Device to Host Transfer

Lastly, the table 6.8 below presents the predicted and experimental runtimes for

the iterative device to host transfers for a single iteration. In this case too, the parameters

Y and G are varied to compare the runtimes. We use Equations 5.32 and 5.24 for the

predictions. The maximum error rate observed is under 12% implying that the predicted

and observed runtimes are in tune. This parameter also affects the overall communication

runtime due to its iterative nature.

The iterative host to device and device to host components have a small payload.

This makes the modeling process complex since it is difficult to predict the behavior and

the timings for the transfers of small amounts of data. This may call for a change in the

modeling process and include any missing predictors to improve the prediction models.

 Table 6.8: Observed and Predicted Values for Iterative Device to Host Transfer (ms)

Dimensions
Y x Y

Ghost Rows
G

Predicted
Tdevice-host-

iter

Observed
Tdevice-host-

iter

Error in
Tdevice-host-

iter
(%)

8000x8000 10 2.359 2.26 4.23135
10000x10000 20 5.82 5.377 7.61871
12000x12000 40 13.882 13.326 4.00543
13000x13000 80 30.015 30.488 -1.57386
12000x12000 10 3.369 3.3 2.0513
14000x14000 20 7.764 7.296 6.02654
16000x16000 40 17.648 17.623 0.14065
18200x18200 80 40.057 44.81 -11.86755
18000x18000 10 5.008 4.768 4.79523
20000x20000 20 11.033 10.789 2.21236
22000x22000 40 24.175 25.666 -6.16758
25360x25360 80 55.631 61.451 -10.46206
28000x28000 10 13.73 13.383 2.53018
30000x30000 20 29.286 25.881 11.62582
32000x32000 40 62.307 57.695 7.40206
35104x35104 80 136.542 139.134 -1.89849

!

! 67

6.1.3 Total Application Runtime

In this section, we carry out a comparison of the overall predicted and

experimentally observed application runtime at large problem sizes. The set number of

iterations K is fixed to 400. We compare the overall predicted and experimental

computation and communication runtimes and the total application runtime is the sum of

these components. Table 6.9 shows the total predicted and observed computation timing

over the set number of iterations K. The overall prediction errors are good (under 8%) for

medium problem sizes but are as high as 16% for the largest problem size.

 Table 6.9: Observed and Predicted Values for Overall Computation Runtimes (ms)

Configuration Dimensions
Y x Y

Ghost
Rows

G
Predicted

Tcomputation
Observed

Tcomputation
Error in

Tcomputation
(%)

2-Node

8000x8000 10 29034.843 28849.719 0.63759
10000x10000 20 45648.772 46667.927 -2.2326
12000x12000 40 66437.66 70645.17 -6.33302
13000x13000 80 79693.126 92164.315 -15.64901

4-Node

12000x12000 10 32682.005 32724.455 -0.12989
14000x14000 20 44917.472 46295.484 -3.06788
16000x16000 40 59667.759 63301.7 -6.09029
18200x18200 80 79476.638 92583.812 -16.49186

8-Node

18000x18000 10 36665.523 36760.762 -0.25975
20000x20000 20 45917.403 47242.27 -2.88533
22000x22000 40 56990.84 61779.433 -8.40239
25360x25360 80 78827.484 90824.97 -15.21993

16-Node

28000x28000 10 44733.22 44779.879 -0.10431
30000x30000 20 52436.121 53750.225 -2.5061
32000x32000 40 61774.496 64895.918 -5.05293
35104x35104 80 78945.92 89168.992 -12.94946

Table 6.10 consists of the total predicted and observed communication timing

over the effective number of iterations K/G. The SIGE model is effective when the sum

of individual components is considered to get the overall timing with the highest error

rate being under 4%.

!

! 68

Table 6.10: Observed and Predicted Values for Overall Communication Runtimes (ms)

Configuration Dimensions
Y x Y

Ghost
Rows

G
Predicted

Tcommunication
Observed

Tcommunication
Error in

Tcommunication
(%)

2-Node

8000x8000 10 21667.298 21630.36 0.17048

10000x10000 20 33139.853 33210.133 -0.21207

12000x12000 40 47063.156 47407.022 -0.73065

13000x13000 80 54959.467 55401.336 -0.80399

4-Node

12000x12000 10 68280.658 67596.47 1.00202

14000x14000 20 92050.993 90742.555 1.42143

16000x16000 40 119414.034 118233.719 0.98842

18200x18200 80 153656.305 152605.544 0.68384

8-Node

18000x18000 10 172058.961 176131.489 -2.36694

20000x20000 20 211653.154 212970.337 -0.62233

22000x22000 40 255376.141 255881.206 -0.19777

25360x25360 80 338084.472 347101.79 -2.66718

16-Node

28000x28000 10 443021.58 458046.292 -3.39142

30000x30000 20 508296.447 511593.376 -0.64862

32000x32000 40 576966.681 583107.668 -1.06436

35104x35104 80 693187.399 709502.607 -2.35365

Table 6.11 shows the overall predicted and observed application runtimes.

We observe that even though larger errors were observed in the computational

components, the runtimes of this component is not sufficiently large to affect the overall

runtime. With the highest error rate being under 10%, we can say that the SIGE model

has proved to be effective in the runtime predictions of Synchronous Iterative Algorithms

(SIAs).

!

! 69

Table 6.11: Observed and Predicted Values for Overall Application Execution Runtimes
(ms)

Configuration Dimensions
Y x Y

Ghost
Rows

G

Predicted
Texecution-time

Observed
Texecution-time

Error in
Texecution-time

(%)

2-Node

8000x8000 10 50702.14 50478.709 0.44067
10000x10000 20 78788.625 79866.989 -1.36868
12000x12000 40 113500.817 118056.734 -4.014
13000x13000 80 134652.593 147538.656 -9.56986

4-Node

12000x12000 10 100962.664 100335.029 0.62165
14000x14000 20 136968.465 137010.42 -0.03063
16000x16000 40 179081.792 181493.325 -1.34661
18200x18200 80 233132.944 245141.838 -5.15109

8-Node

18000x18000 10 208724.485 212937.105 -2.01827
20000x20000 20 257570.557 260291.05 -1.05621
22000x22000 40 312366.981 317587.063 -1.67114
25360x25360 80 416911.957 437948.566 -5.04582

16-Node

28000x28000 10 487754.8 502824.433 -3.08959
30000x30000 20 560732.568 565163.097 -0.79013
32000x32000 40 638741.176 647816.579 -1.42083
35104x35104 80 772133.319 798574.374 -3.42442

6.2 Insights.

The SIGE model can be used to draw certain insights on the characteristics of the

application. In the following section, we present these insights based on an analysis of the

prediction models.

6.2.1 Performance variation

Since the shallow water wave application is a SIA, two important parameters

specify the quality of execution of the SIA – the problem size dimensions Y and the

number of iterations to be executed K. The SIA might be executed on a wide range of

problem sizes depending on the nature of the SIA and the specification of the target user.

Similarly, the number of iterations determines the extent to which an end user would

!

! 70

desire the SIA to evolve. An application that evolves slowly might require a large number

of iterations. On the other hand, the target user might observe the application behavior

after a small number of iterations. With these two parameters in mind, we have the

flexibility of choosing the number of hardware resources (or processes, P) and the

number of ghost rows G that the application should use.

The prediction models that we have developed allow us to determine the expected

runtimes of the application at various problem sizes and desired number of iterations, but

the application performance for different G and P values is undetermined. At a particular

G and P value, the application might deliver the best performance. For a specified value

of the problem size Y and number of iterations K, we study the predicted runtime and

classify the application performance based on the number of processes. We also identify

the G value at which best performance is observed. Table 6.12 shows this study that is

carried out for different values of Y and K. We consider a sufficiently wide range for the

problem size ranging from 112 to 16384 and the K parameter is varied from 500 to 8000.

Each cell contains three values – the runtime predicted by the SIGE model, the identified

G value, and a ranking of the number of hardware nodes on the basis of the performance

delivered. The node with the smallest runtime is ranked as the best node that can be

selected to execute the application using the G value specified.

!

! 71

Table 6.12: Execution Time of Application over different Y-dimension and K-values with
a Ranking of Best Performing Node Configuration and Best G values.

Y
K-value

500 1000 2000 4000 8000

112
T = 97.67

G = 20
2 > 8 > 4 > 16

T =190.56
G = 50

2 > 8 > 4 > 16

T = 377.56
G = 20

2 > 8 > 4 > 16

T = 746.45
G = 50

2 > 8 > 4 > 16

T = 1488.12
G = 100

2 > 8 > 4 > 16

512
T = 474.13

G = 20
8 > 2 > 4 > 16

T =804.9
G = 20

8 > 2 > 4 > 16

T = 1466.7
G = 20

8 > 2 > 4 > 16

T = 2790
G = 20

8 > 4 > 16 > 2

T =5437.2
G = 20

8 > 16 > 4 > 2

1024
T = 1221.1

G = 10
8 > 2 > 4 > 16

T = 1895
G = 10

8 > 4 > 2 > 16

T = 3244.7
G = 10

8 > 4 = 16 > 4

T = 5942
G = 10

8 > 16 > 4 > 2

T = 10528
G = 10

16 > 8 > 4 > 2

2048
T = 3726

G = 8
8 > 4 > 2 > 16

T = 5292
G = 8

8 > 16 > 4 > 2

T = 8129
G = 8

16 > 8 > 4 > 2

T = 12843
G = 8

16 > 8 > 4 > 2

T =22091
G = 8

16 > 8 > 4 > 2

4096
T = 13366

G = 4
8 > 16 > 4 > 2

T =16176
G = 4

16 > 8 > 4 > 2

T = 21797
G = 4

16 > 8 > 4 > 2

T = 33038
G = 4

16 > 8 > 4 > 2

T = 55520
G = 4

16 > 8 > 4 > 2

8192
T =46242

G = 4
16 > 8 > 4 > 2

T = 54089
G = 4

16 > 8 > 4 > 2

T =69782
G = 4

16 > 8 > 4 > 2

T = 101167
G = 4

16 > 8 > 4 > 2

T =163939
G = 4

16 > 8 > 4 > 2

16384
T =174699

G = 4
16 > 8 > 4 > 2

T = 199651
G = 4

16 > 8 > 4 > 2

T = 249555
G = 4

16 > 8 > 4 > 2

T = 349362
G = 4

16 > 8 > 4 > 2

T = 548978
G = 4

16 > 8 > 4 > 2

We observe that for lowest problem size, the 2-node configuration dominates and

G values in the range of 20 to 100 are observed. As the problem size increases, higher

node configurations begin to dominate and for the largest problem size, the 16-node

configurations outperform the rest for a consistent G value of 4. For the intermediate

problem sizes, the 8-node configuration typically dominates and G values in the range 4

to 20 are identified as best to deliver the optimum performance. In this way, table 6.12

provides significant insights to select the number of hardware resources and configure the

application (select a G value) so that an optimal performance can be achieved. Figure 6.1

provides a general summary in which the number of hardware nodes that are best suited

!

! 72

to deliver the highest performance for a given problem size dimension is indicated. This

summary is independent of the number of iterations.

 Figure 6.1: Mapping of problem dimensions with number of hardware
 nodes

6.2.2 Prediction of G value

Since the application has a configurable number of ghost rows G, this parameter

could be tuned to provide the best performance for a given problem size, number of

iterations, and number of nodes. The runtime predictions provided by the SIGE model

can be used to make near accurate prediction regarding which G value will yield the best

performance. We consider two such cases as shown in Figure 6.2 and Figure 6.3 with Y =

512, K = 1000 and Y = 4096, K = 2000 respectively. In both cases, we see that for a

particular value of G, lowest runtime is achieved. A deviation from this value results in

increase in runtime. This is because, the G parameter affects both, the computation and

communication components. For the communication component, an increase in G lowers

the effective number of iterations for the iterative components, resulting in overall

decrease in communication time. But the computation component increases considerably

0!

5!

10!

15!

20!

112! 1024! 4096! 16384!

H
ar
dw

ar
e%
N
od
es
%

Problem%Dimension%

Mapping%

Nodes!

!

! 73

with an increase in G and dominates the decrease in communication component. Table

6.13 and 6.14 shows the predicted and experimental G values at which best performance

is observed for both the cases. We observe that the SIGE model predicts the G value with

a good degree of accuracy.

6.2a: Prediction on 2 nodes 6.2b: Prediction on 4 nodes

 6.2c: Prediction on 8 nodes 6.2d: Prediction on 16 nodes
Figure 6.2: Prediction of G value with Y = 512, K = 1000 for 2, 4, 8, and 16 nodes

0!
500!
1000!
1500!
2000!
2500!
3000!
3500!
4000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

0!

1000!

2000!

3000!

4000!

5000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

0!
500!
1000!
1500!
2000!
2500!
3000!
3500!
4000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

0!

1000!

2000!

3000!

4000!

5000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

!

! 74

Table 6.13: Observed and Predicted Best G Value for Y = 512, K = 1000.
Y = 512, K = 1000

Configuration
Runtime (ms) G value

Predicted Observed Predicted Observed
2-Node 878.176 845.086 8 20
4-Node 1157.536 1288.012 20 20
8-Node 804.914 746.054 20 20

16-Node 1956.521 2059.164 20 20

6.3a: Prediction on 2 nodes 6.3b: Prediction on 4 nodes

6.3c: Prediction on 8 nodes 6.3d: Prediction on 16 nodes
Figure 6.3: Prediction of G value with Y = 4096, K = 2000 for 2, 4, 8, and 16 nodes

0!

20000!

40000!

60000!

80000!

100000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

0!

20000!

40000!

60000!

80000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

0!
10000!
20000!
30000!
40000!
50000!
60000!
70000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

0!
10000!
20000!
30000!
40000!
50000!
60000!
70000!

0! 200! 400! 600!

Ru
nt
im
e%
(m
se
c)
%

G%value%

!

! 75

Table 6.14: Observed and Predicted Best G Value for Y = 4096, K = 2000.
Y = 4096, K = 2000

Configuration
Runtime (ms) G value

Predicted Observed Predicted Observed
2-Node 49035.174 48214.763 4 8
4-Node 33867.487 33322.249 8 8
8-Node 25472.338 25898.881 4 4

16-Node 21349.018 20767.353 4 4

6.3 Effects of Variation in Parameters.

The SIGE model is useful in observing the effect of individual parameters on the

runtime components. In this section, we explore the effects of the independent parameters

on the computation and communication components. In each subsection, we study the

effect of one parameter keeping the other parameters constant. We consider only the

predicted runtimes for this analysis

6.3.1 Variation in problem size Y

On increasing the Y parameter, both, the computation and communication

components increase. Table 6.15 shows an instance of varying Y for an 8-node

configuration with K = 1000 and G = 20. The computation runtime has a complexity of

O(n2), hence, doubling of the problem size causes the runtime to quadruple. This is

confirmed by the predicted runtime. For the communication runtime, the iterative

components are doubled as the problem size doubles. However, the scatter and gather

components also have a complexity of O(n2), and therefore, dominate. The net

communication component quadruples with some approximation. The predicted

communication runtimes verify this.

!

! 76

Table 6.15: Variation in Problem Dimension Y on a 8-Node Configuration
with K = 1000, G = 20

K = 1000, G = 20 Runtimes (ms)

8-Node
configuration

Y Tcomputation Tcommunication
4000 5121.857 11585.937
8000 19144.703 39492.362

16000 73980.595 144519.041
32000 290812.242 551312.851

6.3.2 Variation in number of nodes P

As we increase the number of hardware nodes, the computation runtime decreases

whereas the communication runtime increases. Table 6.16 describes the scenario in

which the number of nodes are varied for the size Y = 8000, K =1000 and G = 20. The

computation data is halved every time the number of nodes are doubled thereby causing

the runtime to reduce by half. The computation runtime can be approximated with the

following Equation 6.1:

Tcompute-2P ≈ Tcompute-P / 2 (6.1)

Here, Tcompute-2P represents the computation time when the number of processes

are doubled from P to 2P and is approximately half of Tcompute-P that is the runtime for

P processes. This can be verified by the predicted computation runtimes. For the

communication components, the data transferred is constant for the scatter, gather and

iterative components and an increase in number of nodes causes the communication

overhead to increase. Hence the communication runtime increases with an increase in

nodes. Table 6.16 confirms this observation.

!

! 77

Table 6.16: Variation in Number of Nodes P with Y = 8000, K = 1000, G = 20
K = 1000, G = 20 Runtimes (ms)

Y = 8000

Configuration Tcomputation Tcomputation
2-node 73306.668 24903.4115
4-node 37233.148 35140.3558
8-node 19144.773 39492.362

16-node 10201.848 42512.2574

6.3.3 Variation in number of iterations K

The number of iterations has a direct relation to the computation and

communication runtimes. We consider a 16-node configuration with Y = 4000, G = 20

and vary the K parameter in table 6.17 Being an iterative component, the computation

runtime is linearly scaled by K and hence, doubles on doubling K. For the communication

component, the only the iterative components are scaled by the effective number of

iterations K/G and are linearly scaled. Since, the contribution of these components is

lesser than the one-time components, a gradual increase in the overall communication

runtime should be expected. Table 6.16 confirms both the observations.

 Table 6.17: Variation in Set Number of Iterations K with Y = 4000, G = 20 on a 16-Node
Configuration

16-node configuration, G = 20 Runtimes (ms)

Y = 4000

K Tcomputation Tcomputation
500 1434.425 11603.563

1000 2868.8473 13075.602
2000 5737.646 16019.481
4000 11475.3692 21907.138

6.3.4 Variation in the number of ghost rows G

The number of ghost rows determines the iterative communication data and the

effective number of iterations. We consider a 2-node configuration with Y = 4000, K =

800 and vary the G parameter in table 6.18. The computation data size has a very weak

!

! 78

dependence on G and therefore, the computation runtime should increase gradually with

an increase in G. This is confirmed by the predicted computation runtimes. The iterative

communication data size has a linear dependence on G and it doubles as G doubles, but

the frequency of these communications is halved on doubling G. But these components

are shadowed by the scatter and gather operations and the changes on varying G are

insignificant, as can be seen in table 6.18

 Table 6.18: Variation in Number of Ghost Rows G with Y = 4000, K = 800 on
a 2-Node Configuration

2-node configuration Runtimes (ms)

Y = 4000
K = 800

G Tcomputation Tcommunication
10 14648.302 7098.275
20 14936.686 7067.962
40 15511.554 7051.606
80 16662.339 7047.641

6.4 SWO Analysis of the SIGE model

In this section, we perform a Strength (S), Weakness (W), and Opportunities (O)

or SWO analysis of the SIGE model based on the results discussed in section 6.1. The

SWO analysis is a subset of the SWOT where T stands for Threats, but the discussion of

threats is not applicable for this model.

Strengths – The SIGE model is used to develop equations to predict the computation and

communication runtimes of the application. Table 6.11 shows the total application

runtime for different configurations and problem sizes with the maximum prediction

errors being under 10%. Tables 6.9 and 6.10 provide the overall computation and

communication runtimes respectively. The maximum error rates for the computation

component is 8% barring a few outlier cases and that for the communication component

!

! 79

is 4%. The SIGE model can provide sufficiently accurate runtime prediction models. An

important strength is the ease of use of the model since it makes use of readily available

application parameters like data bytes consumed or transferred as predictor variables. It

should be noted that although the training data set used a maximum problem dimension

of 6000, the results were collected by considering dimensions as large as 35104. Hence,

the maximum possible dimensions restricted by only the hardware resources were

considered. Therefore, it can be concluded that the SIGE model is effective and provides

good prediction results with sufficient accuracy even at the highest problem sizes.

Secondly, the SIGE model enables us to model the runtime for a single iteration

of a communication or computation component. With the knowledge of the application,

we can obtain the total runtime of any iterative component by scaling it with the number

of iterations. This underlines the simplicity of using the SIGE model.

Thirdly, for the computation component, the SIGE model effectively abstracts the

number of FLOPS parameter as can be seen from equations 5.1-5.4. The A2A roadmap

required the knowledge of the FLOPS capacity of the accelerator but the regression

coefficients developed using the training data set doesn’t deem this parameter necessary.

This enables the prediction mechanism to be truly architecture independent and can be

extended to future architectures as well. The only knowledge necessary is of the

application data size consumed in the computation. This should be considered as a

significant strength of the SIGE model.

Lastly, as discussed in the introduction, the application of interest has sufficient

communication complexity because of the exchange of ghost data between CPU host and

GPGPU devices and between neighboring CPU nodes at regular iterations. The authors in

!

! 80

[16] and [32] had considered Spiking Neural Network models that did not involve

extensive communication operations and were pleasingly parallel. The ability of the

SIGE model to provide sufficiently accurate prediction models validates its use for SIAs

with sufficient communication complexity. This should also be considered as an

important strength of the SIGE model.

Weakness – Tables 6.4, 6.5, 6.6, 6.7 and 6.8 show the one-time and iterative

communication runtimes. We observe that the error rates increase as the problem

dimensions increase and are as high as 19% in some cases. We also observed a distinct

variability in the iterative communication models for the 16-node configurations. The

SIGE model is susceptible to parameters such as variability in network protocols and the

error rates can be attributed to these missing predictor variables. For very low data

transfers (the iterative host-device transfers), the SIGE model predictions show greater

errors. Additional predictors could be considered for the send-receive component. The

model could consider more accurate methods of modeling such communication

transactions. Also, for the chosen application, the scatter and gather operations dominate

and overshadow the high error rates in the iterative communication runtimes. If an SIA is

chosen in which the iterative components dominate, high error rates in such components

may result in higher errors in overall application runtime. The SIGE model should be

able to address theses weaknesses.

Opportunities – The SIGE model has potential to improve the communication runtimes

explained above by considering additional predictor variables. By improving the

performance models for the send-receive component, the application performance at

higher configurations such as 32-node and 64-node could be predicted. Further, the SIGE

!

! 81

model can be applied to different SIAs with varying computation and communication

complexities for runtime predictions. The model can also be verified on accelerators such

as future GPGPUs from NVIDIA and AMD.

6.5 Summary

In this chapter, we presented the predicted and experimentally observed runtimes

for the computation and different communication components and the application as a

whole for different hardware and problem configurations and compared the same.

Thereafter, we used the SIGE model to draw insights on how certain application

parameters could be tuned to achieve the best performance. We elaborated that the SIGE

model can also be used to predict the value for number of ghost rows to attain the best

performance for a particular configuration. The chapter concluded with a SWO analysis

of the SIGE model.

!

! 82

CHAPTER 7

CONCLUSION

We conclude the thesis by presenting a summary in section 7.1 and the

conclusions and insights in section 7.2. Future challenges are presented in section 7.3.

7.1 Summary

In chapter 1, we discuss the trends in parallel computing and identify certain

accelerators for parallel application development. We stress the importance of a roadmap

to help map accelerators to application by considering performance parameters such as

floating point operations per second and memory access bandwidth. We propose to use

the Application to Accelerator (A2A) roadmap [23] to identify an accelerator that is best

fit for the concerned application - shallow water wave equations. Secondly, we aim to

verify the SIGE model for Synchronous Iterative Algorithms [16] by carrying out a low

level abstraction of the chosen accelerator.

In chapter 2, we present the background work in the realm of performance

modeling of parallel applications on GPGPUs and discuss certain works in which

applications using finite difference method have been implemented on GPGPUs.

Although the performance models yield sufficiently high accuracy, most of them require

fine knowledge of the accelerator characteristics, making it cumbersome to apply the

models directly. Conversely, the SIGE model relies on straightforward application

parameters such as the data bytes transferred or consumed in computations. The ease of

use coupled with a high accuracy of the model makes it convenient to use it for

performance modeling.

!

! 83

In chapter 3, we provide the application and accelerator background. We describe

the shallow water wave application. The parallelism of the application lies at the core of

the finite difference step that is carried out iteratively. We discuss the available

accelerators - homogeneous multiprocessor and heterogeneous CPU- GPGPU clusters.

The characteristics of the CUDA architecture and NVIDIA Tesla K20 GPGPU are also

discussed.

In chapter 4, we discuss the Application to Accelerator (A2A) roadmap

extensively. The roadmap is applied to the application of interest by developing

application and accelerator vectors. The heterogeneous CPU-GPGPU cluster is identified

as the best-fit accelerator and the results obtained in section 4.3 validate this conclusion.

The A2A roadmap is aims in ranking accelerators but does not provide a guarantee

regarding relative performance of accelerators. On the recommendation of this roadmap,

we choose the heterogeneous CPU-GPGPU cluster for performance modeling.

In chapter 5, we describe the low level abstraction of the SIGE model. We model

the computation and communication sections of the applications by performing

regression analysis on micro benchmarks. For the communication section, we model the

iterative and one-time components separately. The total runtime of the iterative

communication components is obtained by scaling it with the effective number of

iterations and the total computation runtime is obtained using the set number of iterations.

In chapter 6, we present the experimental validation of the low level abstraction of

the SIGE model. We compare the predicted and observed runtimes for the individual

communication and computation components and the overall application as a whole.

Parameters such as the problem size dimension (Y), number of processes (P), set number

!

! 84

of iterations (K), and number of ghost rows (G) are identified as independent parameters

and the prediction models rely on these to obtain the total application runtime. We

observed that the maximum error for the computation component was about 8% for the 2,

4 and 8 node configurations. Higher error rates of up to 16% were observed for the 16

node configurations. For the one-time communication components such as the scatter and

gather, we achieved sufficiently high accuracy with the maximum error for the scatter

and gather operations being under 3% and 5% respectively. The one-time download and

read-back transfers between the CPU host-GPGPU device faced higher errors of up to

17%. However, the latencies for these transfers are insignificant when large application

sizes are concerned. For the iterative send-receive operations, we observe error rates of

up to 15% for 2, 4, 8-node configurations and higher rates of up to 19% for 16-node

configurations. For the iterative download and read-back operations, the maximum errors

observed are 15% and 12% respectively. On comparing the overall application runtime,

we observe that the maximum error rate is under 9%.

We discuss certain insights obtained by the usage of the SIGE model. For the

shallow water wave SIA, the runtime prediction model enables us to select the number of

hardware nodes and number of ghost rows to execute the application on, for a given

problem size dimension and given set number of iterations. This is accomplished by

ranking the performance on different nodes and by identifying the adequate value for the

number of ghost rows. The runtime model is also able to predict with sufficient accuracy,

the G value at which the best performance could be obtained for a fixed problem size

dimension and set number of iterations, over different number of nodes. We further

discuss the impact of varying the independent parameters on the communication and

!

! 85

computation component runtimes. Chapter 6 is concluded by a discussion of the

Strengths, Weaknesses and Opportunities of applying the SIGE model for performance

prediction.

7.2 Conclusions

Based on this summary, we draw the following conclusions:

1. The Application to Accelerator roadmap accomplishes the task of ranking

potential accelerators and we can select the best-fit accelerators for low-level abstraction

and performance modeling. Each accelerator entails an accelerator vector as well as an

application vector since the application developed on each accelerator is unique. The

A2A roadmap imposes the condition that the user should possess intricate knowledge of

the application in order to accurately describe the application vectors. The advantage of

this roadmap is that readily available hardware parameters could be used to construct the

accelerator vectors.

 2. The performance-modeling framework of the SIGE model enables us to predict

the application runtimes at larger data configurations within a good degree of accuracy.

For a SIA, based on the problem size and number of iterations that are required, we need

to select application parameters and accelerators to achieve the best possible

performance. Since our application is a SIA, we can further harness the prediction model

to identify the application specific number of ghost rows (G value) and the number of

hardware nodes (P value) at which the best performance would be delivered for a specific

problem size dimension (Y value) and number of iterations (K value). It is also possible

to rank the performance across different number of hardware nodes for a specific Y value

and K value. Further, the prediction model helps us to tune and identify the value of G at

!

! 86

which best performance could be attained for specific Y value and K value on different

number of nodes. Barring a few outlier cases, the predicted G values are in good

agreement with the observed values.

3. The performance model enables us to observe the effects of varying each of the

independent parameters – Y, P, K and G on the computation and communication

runtimes, while keeping the other parameters constant. An increase or decrease in some

parameters has different impacts on the communication and computation runtimes. Both

runtime components show quadratic increase on increasing the problem size dimension.

We observe that the one time communications- scatter and gather, are the most dominant

in the communication runtimes and therefore, demand higher accuracy in their prediction

models. The SIGE model provides this accuracy. On increasing the number of nodes P,

the computation runtime decreases linearly whereas the communication runtime shows a

gradual increase due to greater communication overhead. The total computation runtime

linearly scales with the number of iterations K but the total communication runtime

increases gradually as K is increased. Lastly we observe that the computation runtime

increases gradually on increasing the G value due to a weak dependence on the number

of ghost rows, whereas the iterative communication runtime decreases as the G value

increases. The total communication runtime decreases gradually due to the weak

contribution of the iterative components. Tables 6.15, 6.16, 6.17 and 6.17 illustrate the

effects of varying the Y, P, K and G parameters.

4. We also conduct a SWO analysis based on the modeling techniques of the

SIGE model and the prediction results. Chapter 6.4 describes this analysis in depth. With

!

! 87

this approach, we explore the potential of the SIGE model and its applicability to SIAs on

future architectures.

7.3 Future Work.

This thesis aims to verify the Application to Accelerator (A2A) roadmap and the

performance prediction framework of the SIGE model on the SIA – shallow water wave

equations using finite difference method. We can consider SIAs of varying computation

and complexities to perform this verification. For the verification of the A2A roadmap,

we can consider additional accelerators such as FPGAs and the Intel Xeon Phi co-

processor. We can perform a ranking of the accelerators for the chosen SIA and verify

this by comparing small-scale implementations. Additionally, for each accelerator, we

can undertake performance modeling using the SIGE model and verification of the same.

With this approach, the applicability of the SIGE model can be confirmed across various

architectures. The performance modeling could be further extended to larger clusters such

as 32-node, 64-node, or even 128-node. However, prior to this, it is essential that the

missing predictors discussed in the previous chapter be considered in the performance

modeling process. An improvement in the iterative communication components could

improve the overall performance prediction at higher node configurations. Further, it is

possible to develop insights as described in chapters 6.2 and 6.3 for each accelerator. The

SIGE model can also be used for performance prediction on AMD and future NVIDIA

GPGPUs. Lastly, we observed certain drawbacks of the SIGE model for the iterative

communication runtimes. By considering the suggestions of the SWO analysis, we can

enhance the prediction modeling process for these components to yield more accurate

prediction models.

!

! 88

REFERENCES

1. Intel Xeon Processor E5-2600 Product Family

http://download.intel.com/newsroom/kits/xeon/e5/pdfs/Intel_Xeon_E5_Factsheet.pdf

2. NVIDIA CUDA C Programming Guide

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

3. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi – Whitepaper
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_
Architecture_Whitepaper.pdf

4. NVIDIA Tesla GPU Accelerators
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-
Datasheet.pdf

5. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110 –
Whitepaper
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

6. Anthony Danalis, Philip C. Roth, Gabriel Marin, Kyle Spafford, Collin McCurdy,
Vinod Tipparaju, Jeremy S. Meredith, Jeffrey S. Vetter. The Scalable HeterOgeneous
Computing (SHOC) Benchmark Suite. GPGPU ’10 March 14, 2010. Pittsburgh, PA,
USA

7. Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, Richard Vuduc. A Performance

Analysis Framework for Identifying Potential Benefits in GPGPU Applications.
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.

8. Rafael Ubal, Dana Schaa, Perhaad Mistry, Xiang Gong, Yash Ukidave, Zhongliang

Chen, Gunar Schirner, David Kaeli. Exploring the Heterogeneous Design Space for
both Performance and Reliability. DAC ’14, June 01 - 05 2014, San Francisco, CA,
USA

9. Shuai Che, Kevin Skadron. BenchFriend: Correlating the performance of GPU

benchmarks. The International Journal of High Performance Computing Applications
2014, Vol. 28(2) 238–250

10. Andrew Kerr, Eric Anger, Gilbert Hendry, Sudhakar Yalamanchili. Eiger: A

Framework for the Automated Synthesis of Statistical Performance Models.

!

! 89

11. Michael Boyer, Jiayuan Meng, Kalyan Kumaran. Improving GPU Performance
Prediction with Data Transfer Modeling. 2013 IEEE 27th International Symposium
on Parallel & Distributed Processing Workshops and PhD Forum

12. Mitesh R. Meswani, Laura Carrington, Didem Unat, Allan Snavely, Scott Baden,

Stephen Poole. Modeling and predicting performance of high performance computing
applications on hardware accelerators. The International Journal of High
Performance Computing Applications 27(2) 89–108

13. Cedric Nugteren, Henk Corporaal. The Boat Hull Model: Enabling Performance

Prediction for Parallel Computing Prior to Code Development. CF’12, May 15–17,
2012, Cagliari, Italy.

14. L. G. Valiant. A Bridging Model for Parallel Computation. Communications of the

ACM, vol. 33(8), pp. 103-111, 1990

15. Tiffani L. Williams and Rebecca J. Parsons. The Heterogeneous Bulk Synchronous

Parallel Model.

16. V.K. Pallipuram, M.C. Smith, N. Raut, X. Ren. A Regression-Based Heterogeneous

Performance Prediction Framework for GPGPU Clusters. In Proceedings of
Concurrency and Computation: Practice and Experience, pp. 27, 2012

17. A. Balevic, L. Rockstroh, A. Tausendfreund, S. Patzelt, G. Goch, S. Simon.

Accelerating Simulations of Light Scattering based on Finite-Difference Time-
Domain Method with General Purpose GPUs. 2008 11th IEEE International
Conference on Computational Science and Engineering

18. Rached Abdelkhalek, Henri Calandra, Olivier Coulaud, Jean Roman, Guillaume Latu.

Fast Seismic Modeling and Reverse Time Migration on a GPU Cluster

19. Diego Branda ̃o, Marcelo Zamith, Esteban Clua, Anselmo Montenegro, Andre ́

Bulca ̃o, Daniel Madeira, Mauricio Kischinhevsky, Regina C.P. Leal-Toledo.
Performance Evaluation of Optimized Implementations of Finite Difference Method
for Wave Propagation Problems on GPU Architecture. 2010 22nd International
Symposium on Computer Architecture and High Performance Computing Workshops

20. David Miche ́a and Dimitri Komatitsch. Accelerating a three-dimensional finite-

difference wave propagation code using GPU graphics cards. Geophys. J. Int. (2010)
182, 389–402

21. Lauri Savioja. Real-time 3D Finite-Difference Time-Domain Simulation of Low- and

Mid-Frequency Room Acoustics. Proceedings of the 13th Int. Conference on Digital
Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

!

! 90

22. Lucian Mihai Itu, Constantin Suciu, Florin Moldoveanu, Adrian Postelnicu. GPU
Accelerated Simulation of Elliptic Partial Differential Equations. The 6th IEEE
International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications 15-17 September 2011, Prague, Czech
Republic

23. M.A. Bhuiyan, M.C. Smith, V.K. Pallipuram. Performance, Optimization, and

Fitness: Connecting Applications to Accelerators. Concurrency and Computation:
Practice and Experience, vol.23(10), pp. 1066-1100, 2010

24. M.A. Bhuiyan. Performance Analysis and Fitness of GPGPU and Multi-Core

Architectures for Scientific Applications. Ph.D. Dissertation, Clemson University,
2011.

25. Chapter 18 – Shallow Water Wave Equation

https://www.mathworks.com/moler/exm/chapters/water.pdf

26. “What makes the Ocean Wave?” Summer seminar ISC5939. John Burkardt,

Department of Scientific Computing, Florida State University.
http://people.sc.fsu.edu/~jburkardt/presentations/shallow_water_2012_fsu.pdf

27. The Message Passing Interface (MPI) Standard
http://www.mcs.anl.gov/research/projects/mpi/

28. Intel Xeon Processor E5-2600 Series

http://download.intel.com/support/processors/xeon/sb/xeon_E5-2600.pdf

29. The R Project
http://www.r-project.org/

30. Palmetto Cluster User Guide
http://citi.clemson.edu/palmetto/pages/userguide.html

31. V.K. Pallipuram. Exploring Multiple Levels of Performance Modeling for
Heterogeneous Systems. Ph.D. Dissertation, Clemson University, 2013

32. N. Raut. Statistical Regression Methods for GPGPU Design Space Exploration.

Master’s Thesis, Clemson University, 2013.

33. L. Michaelis, M.L. Menten. The Kinetics of Invertase Action. Biochem. Z, vol. 49,

pp. 333- 369, 1913
Translated by Roger S. Goody, Kenneth A. Johns
http://path.upmc.edu/divisions/chp/PDF/Michaelis-Menten_Kinetik.pdf

	Clemson University
	TigerPrints
	8-2014

	Verifying a Systematic Application to Accelerator Roadmap using Shallow Water Wave Equations
	RANAJEET ANAND
	Recommended Citation

	Microsoft Word - Thesis_V2_new margin.docx

