
Clemson University
TigerPrints

All Theses Theses

8-2015

SELF-ADAPTING PARALLEL FRAMEWORK
FOR LONG-TERM OBJECT TRACKING
Salim Mohammed Ali
Clemson University, salimm@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Mohammed Ali, Salim, "SELF-ADAPTING PARALLEL FRAMEWORK FOR LONG-TERM OBJECT TRACKING" (2015). All
Theses. 2203.
https://tigerprints.clemson.edu/all_theses/2203

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268638329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2203?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Title Page
SELF-ADAPTING PARALLEL FRAMEWORK FOR LONG-

TERM OBJECT TRACKING

A Thesis

Presented to
the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree
Master of Science

Computer Engineering

by

Salim A. Mohammed Ali
August 2015

Accepted by:
Dr. Melissa Crawley Smith, Committee Chair

Dr. John Gowdy
Dr. Hiaying Shen

ABSTRACT

Object tracking is a crucial field in computer vision that has many uses in human-

computer interaction, security and surveillance, video communication and compression,

augmented reality, traffic control, etc. Many implementations are introduced in practice,

and yet recent methods emphasize on tracking objects adaptively by learning the object’s

perspectives and rediscovering it when it becomes untraceable, so that object’s absence

problem (in case of occlusion, cluttering or blurring) is resolved. Most of these

algorithms have high computational burden on the computational units and need

powerful CPUs to attain real-time tracking and high bitrate video processing. These

computational units may handle no more than a single video source, making it unsuitable

for large-scale implementations like multiple sources or higher resolution videos.

In this thesis, we choose one popular algorithm called TLD, Tracking-Learning-

Detection, study the core components of the algorithm that impede its performance, and

implement these components in a parallel computational environment such as multi-core

CPUs, GPUs, etc., also known as heterogeneous computing. OpenCL is used as a

development platform to produce parallel kernels for the algorithm. The goals are to

create an acceptable heterogeneous computing environment through utilizing current

computer technologies, to imbue real-time applications with an alternative

implementation methodology, and to circumvent the upcoming limitations of hardware in

terms of cost, power, and speedup.

ii

We are able to bring true parallel speedup to the existing implementations, which

greatly improves the frame rate for long-term object tracking and with some algorithm

parameter modification, it provides more accurate object tracking. According to the

experiments, developed kernels have achieved a range of performance improvement. As

for reduction based kernels, a maximum of 78X speedup is achieved. While for window-

based kernels, a range of couple hundreds to 2000X speedup is achieved. And for the

optical flow tracking kernel, a maximum of 5.7X speedup is recorded. Global speedup is

highly dependent on the hardware specifications, especially for memory transfers. With

the use of a medium sized input, the self-adapting parallel framework has successfully

obtained a fast learning curve and converged to an average of 1.6X speedup compared to

the original implementation. Lastly, for future programming convenience, an OpenCL-

based library is built to facilitate the use of OpenCL programming on parallel hardware

devices, hide the complexity of building and compiling OpenCL kernels, and provide a

C-based latency measurement tool that is compatible with several operating systems.

iii

DEDICATION

I dedicate this thesis to my late father, my mother, and all my family members for

their absolute encouragement and support. Also, I would like to dedicate this thesis to my

advisor Dr. Melissa C. Smith for her persistence help and motivation from the beginning

of my research.

iv

ACKNOWLEDGMENTS

This manuscript was written through the knowledge I obtained from the hard

working community that have surrounded me since the beginning of my program in

Clemson University. This thesis would be incomplete without acknowledging the people

who participated in fulfilling this accomplishment with their ideas, experience and

enlightenment.

First, I commence my gratitude with my advisor, Dr. Melissa C. Smith, for her

precious guidance and invaluable support.

To my thesis committee members, Dr. John Gowdy and Dr. Haiying Shen, I

would like to acknowledge them for accepting to read and review this thesis and for their

valuable advice and guidance.

To my parents and family, I would like to thank them from all my heart for their

everlasting support and encouragement.

To the members of FCTL group, I would like to acknowledge them for their

valuable help and advice throughout this research.

Finally, I strongly acknowledge the Higher Committee for Educational

Development in Iraq (HCED) for their financial funding, without their aid this thesis

would not happen.

v

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES ... x

CHAPTER

 1. INTRODUCTION ... 1

 2. RELATED WORK .. 7

 2.1 TLD Algorithm .. 7
 2.2 TLD in CUDA ... 8
 2.3 Hybrid CPU-GPU implementation of TLD 10
 2.4 Motion tracking on Multi GPUs .. 11
 2.5 Motion tracking using Deep Learning ... 13
 2.6 Summary .. 14

 3. BACKGROUND ... 15

 3.1 OpenCL Environment .. 15
 3.2 OpenCL vs. CUDA .. 17
 3.3 OpenMP API .. 20
 3.4 TLD Application .. 21
 3.5 Summary .. 25

 4. ANALYSIS .. 26

 4.1 TLD Latency Analysis ... 27
 4.2 TLD Algorithm Analysis ... 33
 4.3 Summary .. 39

vi

Table of Contents (Continued)

Page

 5. DESIGN AND IMPLEMENTATION .. 40

 5.1 Parallel Framework Methodology ... 40
 5.2 Parallel Framework Design .. 44
 5.3 Implementation .. 63
 5.4 Summary .. 66

 6. RESULTS AND EVALUATIONS ... 67

 6.1 Hardware Specifications .. 67
 6.2 Experiments and Results .. 69
 6.3 Analysis and Evaluation .. 86
 6.4 Summary .. 103

 7. CONCLUSIONS AND FUTURE WORK .. 104

 6.1 Conclusion ... 104
 6.2 Future work .. 106

REFERENCES .. 108

vii

LIST OF TABLES

Table Page

 3.1 OpenCL Gradient computation on CPUs and GPUs 17

 4.1 Latency analysis for each TLD phase of MOTLD 29

 4.2 TLD analysis against input size of MOTLD.. 30

 4.3 Latency analysis for each TLD phase of OpenTLD 31

 4.4 TLD analysis against input size of OpenTLD ... 32

 4.5 Tracking algorithms latency for different inputs (ms) 34

 4.6 Detection stage latency analysis through number of BBs 37

 6.1 HW + SW Specifications of the Desktop workstation 68

 6.2 HW + SW Specifications of the Graphic Laptop .. 68

 6.3 Sum kernel latency evaluation on both platforms.. 71

 6.4 Square Sum kernel latency evaluation on both platforms 71

 6.5 Integral kernel latency evaluation on both platforms 72

 6.6 Gaussian filter kernel latency evaluation on both platforms 73

 6.7 Resize kernel latency evaluation on both platforms 74

 6.8 Gradient kernel latency evaluation on both platforms 74

 6.9 Sobel filter (RGB) kernel latency evaluation on both platforms 75

 6.10 RGB to Gray kernel latency evaluation on both platforms.......................... 76

 6.11 Template match (NCC) kernel latency evaluation on both platforms 76

 6.12 Parallel (NCC) kernel latency evaluation on both platforms 77

viii

List of Tables (Continued)

Table Page

 6.13 PLK kernel average latency evaluation on both platforms 78

 6.14 PLK kernel average latency against number of
 features on both platforms ... 79

 6.15 Multi-core CPU experiment evaluation on both platforms 80

 6.16 TLD parameters those are susceptible to change ... 81

 6.17 Parallel framework average frame latency
 compared to sequential on HP1 ... 82

 6.18 Parallel framework with performance factor
 learned from measurements ... 82

 6.19 4k-video tracking experiment .. 84

 6.20 Reduction based kernel speedup on both platforms 87

 6.21 Window-based kernel speedup on both platforms 91

 6.22 Pixel based kernel speedup on both platforms ... 91

 6.23 PLK kernel speedup on both platforms ... 98

ix

LIST OF FIGURES

Figure Page

 2.1 CUDA-TLD block diagram ... 9

 2.2 Lucas-Kanade algorithm implementation on GPU [4] 12

 2.3 Tracking approach with Deep Neural Network [5] 13

 3.1 OpenCL runtime in AMD GPU [11] ... 16

 3.2 LK feature points [22] .. 22

 4.1 Frame samples of the tested videos taken from [27] 28

 4.2 Timing diagram for TLD phases of MOTLD .. 29

 4.3 TLD phases behavior against input size of MOTLD 31

 4.4 TLD phases timing analysis for OpenTLD .. 32

 4.5 TLD phases behavior against input size of OpenTLD 33

 4.6 Tracking algorithms deep analyses .. 35

 5.1 Parallel coding as iterative process .. 41

 5.2 Three level Sum Reduction Tree [28] .. 46

 5.3 Reduction types [29] .. 48

 5.4 Two pass convolution process [30].. 50

 5.5 TLD data flow .. 54

 5.6 Parallel framework for preprocessing stage ... 55

 5.7 Tracking stage data flow .. 59

 5.8 BB’s sum area from an integral image [21] ... 62

x

List of Figures (Continued)

Figure Page

 5.9 Parallel framework for detection stage .. 63

 6.1 Parallel framework convergence against original implementation 83

 6.2 Sum kernel results on both hardware platforms .. 88

 6.3 Square sum kernel results on both hardware platforms 89

 6.4 Integral kernel results on both hardware platforms 90

 6.5 Gaussian filter kernel results on both hardware platforms 92

 6.6 Gradient kernel results on both hardware platforms 93

 6.7 Sobel Kernel results on both hardware platforms .. 94

 6.8 Resize kernel results on both platforms ... 95

 6.9 RGB2GRAY kernel results on both hardware platforms 96

 6.10 NCC kernel results on both hardware platforms.. 97

 6.11 PLK kernel results against input size on both hardware platforms 100

 6.12 PLK numbers of features test on both hardware platforms 101

xi

CHAPTER 1

INTRODUCTION

When Intel produced its first 4GHz clock frequency processor, design limitations

were revealed in the CPU manufacturing process [1]. These limitations include power

wall, clock frequency, and memory management comprising CPU cache in terms of

speed and size. Since then, multi-core CPUs have become the ultimate choice to prevail

compute escalation. Meanwhile, GPU manufacturers started to rethink their architecture

methodology. Nowadays, GPUs support various kinds of APIs not only DirectX and

OpenGL but also CUDA, OpenCL, DirectCompute, etc. These recent updates open new

routes in designing algorithms and processing data, especially through the use of

heterogeneous computing. As engineers, these changes in hardware motivate us to

reconfigure computing algorithms to adapt better in heterogeneous environments.

However, not all algorithms can be designed in such a way that can maximize full

hardware utilization, which sometimes lead us to tune the hardware itself to fit the

computing behavior as in the use of FPGAs.

In the last few years, many algorithms are designed and implemented to comply

with the new hardware infrastructure. The outcomes of harnessing GPUs and FPGAs

comprise a considerable amount of speedup and power savings for applications that

involve large amount of data with concurrent and independent threads. However, real-

time applications require strict timing limits, which compel heterogeneous computation

methods to perform acceleration, specifically speaking; data transfer is the main obstacle

1

to pursue for such methods. Nowadays, GPGPUs and CPUs can perform the same

computational tasks with slight distinction in memory management. Both have their own

limitations when it comes to processing applications with large amounts of data in real-

time. The former can handle the first condition with the price of lagging time, while the

latter might perform promisingly through minimizing the input size. Using both will

introduce new restraints, which require deep analysis of the problem and punctilious

distribution of resources. Therefore, viable heterogeneous computation depends on

selecting optimal hardware specifications and on tuning application algorithms to such

degree that does not undermine our foreseeing of positive expectations.

This thesis focuses on studying the behavior of real-time applications when

implemented on a heterogeneous computing environment, it verifies the efficacy of using

such environments in today’s technologies, and shows the pros and cons in terms of

computing acceleration, cost, and power consumption. It also tries to conceive a unique

model that serves similar real-time applications. Although real-time applications in their

nature differ in their requirements, timing constraint is the only factor that all shares,

which then forces us to invest our research time to compel it.

Video and image processing applications, specifically object tracking, became an

interesting field of research with the advent of numerous of cameras serving surveillance,

smartphones, cars and various other devices, in addition to the availability of high-speed

networks that facilitate the data transfer to the processing units. The algorithms suggested

for such applications are not new, but have waited for the perfect time to be prevalent and

more applicable in real-time processing. These kinds of algorithms are time dependent

2

and necessitate variable computation capacities. Therefore, to poise the computation

burden into better level, one needs to build an ecosystem for mapping computational

models into a suitable computing environment. However, compromising tradeoffs among

computing environments are unpromising to all applications; in fact, sometimes it

exacerbates the problem in many factors. As an example, the object tracking method:

Tracking-Learning-Detection (TLD) [2], for which we are trying to build a parallel

framework, was designed to run on a single core CPU, and the majority of algorithms

used in TLD are dependent on each other, which makes it difficult to deploy a full

parallel implementation on heterogeneous computing elements. Thus, many portions

remain untouchable unless further modification is achieved. To build a parallel

framework for a TLD algorithm, the sub-algorithms should be categorized based on their

appropriateness. To provide better scalability while keeping the real-time flow

acceptable, one should consider building a mechanism to distribute the work among

multiple devices.

The motivation behind creating an acceptable heterogeneous computing

environment through utilizing current computer technologies is to imbue real-time

applications with an alternative implementation methodology, and circumvent the

upcoming limitations of hardware in terms of cost, power, and speedup.

The selected application, TLD object tracking, is a novel idea designed by Kalal

[2], which has robust capability of tracking objects through a unique method that makes

use of negative plus positive expert templates from the moving object--augmented to the

traditional optical flow tracking. By using these expert templates, a prediction of the

3

object shape can be made even after it occludes or moves out of image boundary. The

TLD computation becomes more challenging if the number of templates exceeds a

certain limit, which eventually slows down the tracking operation, leading to skipped

frames and loss of valuable tracking information. Most TLD implementations are tested

on QVGA video samples, which are only 320x240 pixels in size, and this size is

incomparable with the current high resolution capturing devices. This gap gives us a

strong rationale of using a better method to accelerate and scale up the implementation

via heterogeneous computing.

Furthermore, the future of computing is relying on multi-core processors and

GPGPUs, not only in high end workstations, but also on small embedded devices as in

smartphones, robots, drones, and similar devices that can be classified as having limited

power consumption profile. Basically, whatever technology is being used in high end

machines, it migrates quickly if not instantly to small portable devices; the same

assumption can be applied for applications. Therefore, building a parallel framework by

harnessing a heterogeneous computing environment can be applicable on many

platforms, not only the above mentioned application but also similar ones.

Recent available programming models like CUDA and OpenCL can be superiorly

invested to accomplish the proposed problem, with the ability of processing chunks of

threads and kernels on various processing units. Usage of the OpenCL framework as a

building tool for our approach is promising, because OpenCL is platform independent,

and runs on many vendor’s computing devices such as Intel CPUs, AMD APUs and

GPUs, Nvidia GPUs, etc.

4

Many challenges are exposed in the goals of this thesis. As implied earlier,

algorithm designers and developers are not always aware of how their applications and

algorithms execute on computational units. In fact, they usually use simulators to develop

and test their algorithms; giving challenging options to make adjustments and

optimizations. Memory transfer speed among devices is another issue, which directly

limits heterogeneous computing efficiency whatsoever cutting edge technology is used.

 The contribution of this thesis research can be summarized by several main

points. First, the most time-consuming stages of TLD are studied, and a parallel

framework for the implementation is designed based on the conclusions obtained from

the deep analysis of the algorithm. Further, the design comprises of independent

components (parallel kernels), which are flexible to reuse and export to other related

applications. Secondly, portability of OpenCL programs among various hardware devices

makes it an evolving environment for shaping parallelism into various algorithms. Next,

memory transfers are still an issue limiting the overall speedup in these applications. An

OpenCL-based library is assembled to facilitate the use of the latter, and make it more

similar to a CUDA API when interacting with hardware devices. Finally, the developed

kernels have a range of speedups; for some it exceeds 2000X speedup. Global speedup is

highly dependent on the hardware specifications, especially memory hierarchy and

configuration. With the use of medium size video streaming, the framework achieved

1.6X speedup.

5

The aim is to achieve speedup on GPU and see how much better performance we

can accomplish compared to other conventional and parallel implementations of the same

application. The chapters in this thesis are organized based on the technical connotation

presented in each. Chapter 1 introduces the thesis. The second chapter presents some

recent implementations of object tracking algorithms harnessing GPGPUs and multi-core

CPUs. In Chapter 3, we present the skeleton of the TLD algorithm, and show how some

segments of the algorithm are not fully optimized and can be accelerated using

heterogeneous computing; in addition, we shed some light on the tools used to achieve

this research. In Chapter 4, we show the most computationally intensive sections of the

algorithm through deep analysis of two implementations available in the literature. The

methodology of our implementation will be excessively presented in Chapter 5, including

a brief model of the design plus some implementation scenarios. In Chapter 6, we show

the results of tested experiments plus various evaluations. Lastly, we end the thesis with

future work and conclusions.

6

CHAPTER 2

RELATED WORK

This chapter presents research literature that relates to this thesis. Currently, real-

time implementations in heterogeneous computing are leading-edge, and research similar

in scope to this work still under development. The first section offers a quick review of

the TLD algorithm, which we considered as a test case for building the parallel

framework. The second section presents a partial implementation of TLD using CUDA

[3], which stands for Compute Unified Device Architecture invented by NVIDIA [10].

The third section reviews a hybrid implementation of the algorithm using CUDA and

OpenMP [24]. Section 4 reviews a real-time implementation of the Lucas-Kanade

method for motion tracking on multiple GPUs utilizing OpenGL [4]. The fifth section

introduces an alternative implementation of object tracking by using deep learning

methods utilizing multi-core CPUs, and it produces similar results compared to TLD [5].

The last section summarizes the whole chapter.

2.1 TLD Algorithm

The TLD paper [2] examines long-term tracking of unknown objects in a video

stream. Basically, the object can be defined through its coordinates in the frame. In

successive frames, the goal is to track the object and determine its existence and position

in the frame. The task can be decomposed into tracking, learning, and detection phases.

The tracker tails the object within all frames. The detector stores object orientations, size

and intensity changes and feeds the tracker as needed. The learning stage evaluates the

7

detector's flaws and resolves it, so that flaws are disregarded in upcoming frames. The

paper describes a real-time application of TLD. Many implementation versions of this

algorithm have been introduced using various programming tools, as explained in [6],

[7], [8], [9] and [26].

 The following sections in this chapter show how researchers have achieved better

results in motion tracking by exploiting parallel computation, but these implementations

have not utilized the full hardware potential. Some of these research studies use

revolutionary implementations as discussed later.

2.2 TLD in CUDA

In [3], the authors study the most time-intensive stages of TLD, and then present a

parallel algorithm based on CUDA. Their research is mostly invested in the detection

stage of TLD, which is the most time consuming part. The other two stages remain on the

host side using only the CPU for the computation. In the detection stage, three parallel

algorithms were implemented: Variance Filter, Ensemble Classifier, and Nearest

Neighbor Classifier. They used CUDA techniques to harness numerous computing units

of the GPU to work together. Those three algorithms use the same input data and provide

unified output, minimizing the transfer latency to and from the GPU device when each

instance is called. A detailed diagram is shown in Figure 2.1, showing the steps of the

CUDA-TLD implementation and where each phase of TLD is allocated to the specified

computing device, i.e. GPU or CPU.

8

Figure 2.1: CUDA-TLD block diagram

All experiments accomplished in this research used OpenCV-2.4.1 and CUDA-

4.1. The hardware specification of their experiments as implemented on both the CPU

and the GPU, a 3.3GHz Intel, and 1.8GHz GeForce GTX 550 Ti respectively. Three

different sizes of data sets were used as video inputs with the following resolutions:

320x240, 352x288, and 640x480. Their results showed that the speedup of the algorithm

reaches up to 2.59X compared to TLD on some kernels while keeping the same detection

percentile. Additionally, for the VGA standard input size, the CUDA implementation

exceeded 18 frames per second rate, while the original implementation remained under 9

frames per second as its fastest rate.

In this work, the authors had only parallelized the detection phase of the TLD

implementation by Arthurv [26] using CUDA, and their results are based on a small

dataset with similar resolution videos, with an exception of a single VGA dataset. The

9

speedups were obtained through comparing the latencies between the GPU and the CPU

implementations (specifications mentioned above). In our work, we tested the parallel

framework on different devices using a wide range of scaled inputs. Also, we emphasize

the flexibility and portability of the implementation.

2.3 Hybrid CPU-GPU implementation of TLD

 In [24], the authors provide a recent parallel implementation of TLD using the

computational capability of GPUs and a premium multi-core CPU, utilizing CUDA for

the GPU and OpenMP for the CPU. Their parallel implementation is synonymous to the

implementation discussed in Section 2.2. They harness the multi-core CPU to accomplish

the GPU unfriendly portions (i.e. when data transfer far exceeds the execution time).

They used an Intel i7 4770K 3.5GHz, with 4 physical cores and a hyper-threading factor

of 2; and for the GPU they used an Nvidia Tesla K40. For software development tools,

they used CUDA 6.0, OpenCV 2.4.9, and OpenMP 2.0; all installed on Windows 7 x64

Operating System. For low resolution videos, they achieved significant speedup of some

kernels, about 2.82X for low resolution videos and 10.25X for Full HD quality videos.

 This implementation is similar to that presented in Section 2.2, with additional

speedup obtained through cutting-edge hardware components and multi-core CPU

utilization, i.e. complete TLD modification to be compatible with the specified hardware.

In our work, we separated the acceleration techniques to deeper observe the application

behavior, since we are trying to build a global parallel framework that is not only for the

TLD algorithm, but also for other object tracking methods.

10

2.4 Motion tracking on Multi GPUs

In [4], they present a methodology for optical flow motion tracking using the

Lucas-Kanade algorithm. It is later made to work with the Harris corner detector and

thereby may do sparse tracking, i.e. tracking of the important pixels only, which

significantly lowers the processing burden of the method. Also, both parts of the

algorithm, i.e. corner selection and tracking, are carried out on the GPU and as a result,

the software is extremely fast, permitting real-time motion tracking on videos in Full HD

or even 4K format. The implementation used OpenCV for video preprocessing and

CUDA interface for GPU implementation of Lucas Kanade. The experiments were

conducted on a machine equipped with: 2.33 GHz Intel Core 2 Quad Q8200, GTX 580

NVIDIA GeForce GPU with 1.5GB of RAM, and 8GB main memory.

 Figure 2.2 shows how Lukas Kanade implementation is achieved on the GPU.

The CPU is only responsible for video preprocessing (extracting raw frames from a

compressed video), while the GPU accomplishes the whole tracking process, which can

be summarized in 8 subsequent steps: edge detection (or corner detection), building

pyramidal images, pixel matching, gradient computation, temporal derivatives, optical

flow computation, estimation correction (by matching with previous pyramidal image),

and displaying output using OpenGL visualization as described in [4].

The research presented in [4] provides a parallel implementation of LK using

GPU only, and the output is shown directly on the screen using OpenGL support of the

GPU (i.e. results sink at the GPU and never return to the host). These results from the

literature provided guidance for parallelization of the tracking phase of the TLD

11

algorithm. We leveraged their implementation to accelerate the tracking phase of our

parallel framework with the ability of reviewing results at the host. We have not utilized

muli-GPUs in this thesis research, but list it as future work.

Figure 2.2: Lucas-Kanade algorithm implementation on GPU [4]

12

2.5 Motion tracking using Deep Learning

In [5], a totally different approach is utilized. The authors designed two-layer

networks trained using either supervised or unsupervised learning techniques. The

networks, integrated with a radial basis function classifier, are able to track objects based

on a single example. They tested the networks tracking performance on the TLD dataset,

one of the most intensive sets of tracking tasks and real-time tracking is achieved in 0.074

seconds per frame for 320x240 pixel image on a 2-core 2.7GHz Intel i7 laptop. The

significant contribution from this approach is the ability to harness heterogeneous

computing to implement such methods to obtain better results, especially when

conventional computing produces limited results as presented earlier. Figure 2.3 shows

successive images from a video is being processed to obtain the output.

Figure 2.3: Tracking approach with Deep Neural Network [5]

13

The authors used two layers network to find the output confidence map. The

process can be summarized as: first, the RGB input is sliced into small patches, and then

the small patches are fed to the network for convolution vector computation, then Pooling

process is applied to generate spatial invariance while forwarding only important features

to the following layer. The confidence map consists of values associated with the patches

locations in the RGB input. The best confidence value narrows down the object location.

2.6 Summary

 In this chapter, different implementations of motion tracking applications are

presented. The implementations are organized by the relevancy of the work to our scope.

We discussed the differences of our model with other author works. The next chapter

provides technical background for the TLD algorithm and the tools used in this research.

14

CHAPTER 3

BACKGROUND

Based on the related work presented earlier, the next step is to carry out our own

methodology, which is synonymous with a heterogeneous solution. Before introducing

the methodology, concise highlights on the algorithm and the tools used for

accomplishing this research is necessary. This chapter elaborates on the tools and

techniques used in this thesis through four main sections. The first section discusses the

mechanisms of the OpenCL environment, and how it is useful to our implementation.

The second section is a “compare and contrast” illustration between OpenCL and CUDA

platforms, with a brief reasoning of why we chose OpenCL and not CUDA. The third

section introduces the OpenMP API as parallel environment for multi-core CPUs. Lastly,

the fourth section describes the whole structure of the TLD algorithm emphasizing the

parts we implement in our model.

3.1 OpenCL Environment
Accelerated Parallel Processing offered from different vendors utilize the

tremendous processing power of GPUs for high-performance and data-parallel computing

in a wide range of applications. As an example, the AMD Accelerated Parallel Processing

system includes a software stack, AMD GPUs, and AMD multi-core CPUs. Figure 3.1a

illustrates the AMD Accelerated Parallel Processing Software Ecosystem and where the

OpenCL runtime environment is located [11]. As shown in Figure 3.1b, OpenCL maps

the total number of work-items, which are the hardware units that execute the kernel, to

15

be launched onto an N-dimensional grid (ND-Range). The programmer can decide how

to specify these items into groups. In AMD GPUs, it executes on wavefronts (collections

of work-items run simultaneously); there are multiple wavefronts in each work-group.

(a) (b)

Figure 3.1: OpenCL runtime in AMD GPU (a) AMD Accelerated Parallel Processing
Software Ecosystem, (b) Work-Item Grouping into Work-Groups and Wavefronts [11]

In fact, there is an intermediate step for scheduling the work-items to run on a

parallel computing device by specifying how many wavefronts are in a single work-

group. This leads to a customizable configuration that attains maximum parallelization.

In our implementation, we used different criteria for each kernel, such that in color space

conversion, RGB to Gray, we used 1-dimensional range, while in the Sobel filter we used

2-dimensional range.

OpenCL runtime can run on multi-core CPUs as well, as various CPU and GPU

architectures, but have very different outcomes for a specific kernel. For example,

computing the X and Y gradients of different image sizes using the OpenCL framework

on a commodity laptop showed positive results on the GPU. However, for best results on

the GPU, the image dimensions should be a power of 2 such as 512, 1024, 2048 and so

16

on, assuming the input data is an image. Then, the distribution of kernels on the GPU

queues will be equally spaced, utilizing all work-items simultaneously. For a simple

demonstration, Table 3.1 shows some optimistic results.

Table 3.1: OpenCL Gradient computation on CPUs and GPUs

Image size Latency
type

CPU Intel core i5 3230M
quad (ms)

GPU AMD Radeon
HD7650M (ms)

512X512

Program 0.191454 0.0773813
Compute
Kernel 0.006218 0.0009236

1024X1024

Program 0.25854 0.0749347
Compute
Kernel 0.024492 0.00356956

10240X6400

Program 1.98372 0.301274
Compute
Kernel 1.7935 0.23652

10240X10240

Program 1.98372 0.43275
Compute
Kernel 1.7935 0.330216

For a simple speedup we compare gradient calculation on the CPU and GPU of a

mid-level laptop. We can see how the speedup is not significant smaller sizes, but as the

data size increases to the big data domain, we record strong scaling of the program and

really good speedup on the OpenCL implementation for GPU; despite both CPU and

GPU running on the OpenCL platform. This program compatibility for CPUs and GPUs

is an advantage because systems without GPUs can also run the code on a multi-core

CPU in parallel and it will still be faster than a sequential implementation.

3.2 OpenCL vs. CUDA
For the last few years, GPGPU programmers have the choice to select a GPU

interface for their application development, which can be either CUDA or OpenCL. Both

17

can achieve high performance computing and both can access lower levels of hardware

[12]. In [13], the authors’ implementation of “the EMRI Teukolsky Code” on low-level

parallelization using both OpenCL and CUDA showed equivalent performance.

According to Kyle Spafford [12], at Oak Ridge National Lab (ORNL) from the Future

Technology Group, their benchmarking of OpenCL and CUDA exhibited comparable

results for both. Also AccelerEyes [14], a GPU Software Company, agrees with these

conclusions.

Therefore, understanding which interface to utilize depends on the nature of the

application and the device type one is using; considering CUDA works only on NVIDIA

based GPGPUs, while OpenCL can work on many different products. To bolster this

assumption, the following subsections provide technical details that subsequently clarify

the decision.

3.2.1 CUDA as GPU interface
NVIDIA made the CUDA framework available in 2007 [15], since then it has

assisted programmers in accessing lower levels of GPU hardware components by using

C/C++ synonymous coding. With the introduction of CUDA, GPUs have become one of

the most popular choices of accelerating technology in HPC.

In [16], they used a Quantum Monte Carlo application as a comparison subject

between CUDA and OpenCL. Their results showed better performance when using

CUDA due to the fact that transferring data to and from the GPU is faster. Also, they

found that CUDA’s Kernel execution is faster, although implementation codes are

identical. In [17], they worked more thoroughly by performing extensive analysis of

18

selecting 16 benchmarks encompassing synthetic and real-world applications. Their

results convey 30% better performance using CUDA than OpenCL. However, their

conclusion involved the fact that some of the comparison guidelines lack fairness. This

led them to perform more potential analysis of two applications with fair comparison, and

the later exhibited similar performance.

One more fact about CUDA that significantly makes it more preferable among

GPU programmers is the availability of a proprietary tightly coupled CUDA library,

various debugging and performance analysis tools, and rich technical support.

3.2.2 OpenCL as a parallel interface
OpenCL first introduced by the KHRONOS Group in 2008 [18], a year after

CUDA’s first proprietary development library was announced. Currently, OpenCL can be

executed on CPUs, GPUs, DSPs, FPGAs, and other hardware. Its portability and open

source standard makes it more promising than CUDA for future parallel programming,

especially with the availability of multi-core CPUs in servers and embedded

architectures. In contrast to CUDA [19], OpenCL’s synchronization feature is more

flexible, (i.e. queued actions, like memory transfer or kernel execution, can be pre-

empted to allow other operations to finish first). For C++ programmers, OpenCL spares

object oriented programming bindings, while CUDA has a more restricted C API. And

lastly, OpenCL can use function pointers as in CPUs in its CL_Command_Queues, but

CUDA does not have this feature. Other minor differences found in [19], which does not

reflect much to the scope of this thesis.

19

Besides the points mentioned above, the main reasons for selecting OpenCL and

not CUDA were: first, OpenCL is more heterogeneous environment friendly than CUDA;

second, although experiments show CUDA performs better in most applications, real-

time applications are required to run on more generic devices, (i.e. not only heavy duty

workstations but also embedded devices); third, the application we are pursuing is

already implemented on CUDA, this gives us the opportunity to compare the

performance of an OpenCL implementation to the similar implementations in the

literature.

3.3 OpenMP API
 OpenMP is a portable interface for programming and stands for Open Multi-

Processing. At its earlier stages around 1997, its developers aimed to build a unified

model of coding to support shared memory systems [25]. Currently, it is supported by

many vendors and compilers, and it is specifically used to harness multi-core processors

through providing shared memory management among many processing units. In general,

the availability of multi-core processors nowadays across almost all devices we use daily

forces us to utilize tools that provide maximum use of resources and to migrate the

conventional programming technique to the next level. In this thesis, we use OpenMP for

performance analysis and result comparison of single core versus many cores depending

on the available hardware specifications. Additionally, the OpenMP API is used to

accelerate some code portions to provide maximum acceleration for the overall

application but it remains optional since the acceleration depends on the hardware used.

20

3.4 TLD Application
Long-term tracking has been very popular in real-time applications such as

surveillance, cameras, warfare, etc. but highly scalable implementations are not common.

For the application to be widely applicable, a scalable approach is needed. Conventional

implementations use large data centers to support multiple video input infrastructure. For

example, if there are thousands of surveillance cameras and the former implementation is

used, there will be a significant performance bottleneck for tracking a specific object

within all video streams. This section explores the algorithms that are essential for large-

scale TLD implementation.

3.4.1 Tracking
There are many methods available for object tracking, but the one that is used in

TLD is called Lucas and Kanade [20]. This method is very effective for tracking features

that lay on non-homogeneous regions of an image, otherwise the feature would be

difficult to track. To select good features within an interested object, preprocessing of the

first image is required. However, since the object position is known by the bounding box

(BB), a term used to define the boundary of an object in an image usually by a

rectangular shape, as it is given in the first image, the later step is not necessary.

Instead of finding good features, equally distributed points in the initial box are

positioned as initial features [6]. Later, two techniques will be used [22], normalized

cross correlation (NCC) and forward-backward (FB) error, and it will overcome

mispositioned initial feature points. Figure 3.2 illustrates how erroneous features are

removed in the second frame,

21

Figure 3.2: LK feature points: Frame (t): features initialization, frame (t+1): good features
stabilization [22]

 The tracking process is recursive, (i.e. the new features position are inputs of the

next tracking process). The Lucas and Kanade tracking method is based on three

premises: brightness constancy, temporal persistence, and spatial coherence [6, 23]. The

mathematical formulas are discussed later in Chapter 5.

 The two techniques mentioned earlier, FB and NCC, are corrective criteria for

feature points and image patches (bounding box parts) respectively of two consecutive

frames. The forward-backward error is basically a combination of the Euclidean distances

between a feature point and its new calculated position, and the distance between the new

location and its original shadowed point. Hence, the tracking process is implemented

twice for computing the error between the two distances because the moving object

points should have the same distance magnitude to keep the feature point validity. In

[22], it chooses median FB distance as a point keeping strategy, (i.e. points with distance

more than FBmedian will be removed from the feature set).

 The NCC technique instead calculates the brightness correlation between the old

image patch and its new patch location. NCC uses a single value for each patch. Again, it

takes NCC median as a threshold if the new image location represents the original object.

22

To avoid any erratic tracking, they set βFB as a default threshold for FB distance, (i.e.

FBmedian value more than predefined threshold refers to stop tracking).

3.4.2 Detection
 In the previous section, we explained the tracker operation, but what will happen

if the tracker loses the object? A simple way to find the object is to apply exhaustive

search, looking for the object through the whole image. However, scanning the whole

image requires considerable amount of time. Therefore, in [2] they used three techniques

to reduce the search time. These techniques basically disregard image regions where the

probability of object existence is minimal. Furthermore, the search operation will be more

cumbersome if several versions of the object are obtained from the learning stage

(discussed later). To clarify the whole detection process, we summarize the whole

operation in two steps [2]:

1. Scanning Sub-Windows: The input to the detection stage is the video frame plus

positive image patches of the object (obtained from first frame and learning

stage). Based on the size of the object, the number of scanning sub-windows is

calculated, which may range from 50,000 to 200,000 for VGA video resolution

(640X480) [6]. Additional image preprocessing may involve alterations to the

image patches such as resizing, scaling, stepping, etc.

2. Cascaded Classifier: In this step, sub-window patches are classified into two

categories: accepted or rejected. To speed up the classification, the classifier is

divided into three sequential stages, where each decides whether the image patch

23

can be rejected before forwarding it to the next stage [2]. These stages are: patch

variance, ensemble classifier, and nearest neighbor classifier.

3.4.3 Learning
 This phase helps the detector locate the object more profoundly through negative

and positive expert templates. The learning stage can be summarized as three main

components [2]:

1. Initialization: The training process starts as early as the first frame. First, the

initial object box is taken plus the closest scanning sub-windows that includes the

object to a certain extent--which can be named as positive examples. Second, for

each positive example, multiple wrapped versions are spawned based on random

uniform distribution parameters like shifting, scaling, and in-plane rotation. Then

additive Gaussian noise is applied for each version. In [2], the authors used 10

positive examples closest to the object and 20 wrapped versions for each one,

resulting total of 200 positive patches. Third, for negative examples, negative

patches are extracted around the initial box, and wrapped versions are not

necessary for negative examples.

2. Positive expert: The job of this component is to update the positive examples

with new object trajectory, size and brightness. How new positive patches are

obtained is a sophisticated decision and depends on confidence parameters. In

short, the tracker and the detector phases work in tandem, the tracker updates the

location, and the detector compares the object with the positive patches. Any

small change will trigger a middle phase, called an integrator, to produce new

24

positive examples and wrapped versions as in the initialization process. In this

time, fewer positive patches are generated for the sake of efficiency.

3. Negative expert: The job of this component is to help the detector avoid

background clutter, assuming that the object can be found in one location.

Negative patches are updated when new positive patches are generated. In [2], a

patch that overlaps the object 20% or less is considered negative examples.

In this section, some image processing details are skipped for the sake of simplicity.

Furthermore, some TLD parameters are flexible and can be changed depending on how

much efficiency and accuracy is required.

3.5 Summary
In this chapter, the technical background needed for implementation is presented

for the terms that are mentioned in the previous chapters. The next chapter provides deep

analysis for our model including more technical details within the scope of this thesis.

25

CHAPTER 4

ANALYSIS

 This chapter presents the analysis of two implementations available in the

literature. It shows the timing behavior of the TLD application, and it studies the affect of

input size and how it meets the thesis expectations. We thoroughly searched the

application for components that can be executed in the OpenCL environment without

putting a burden on the overall implementation. Furthermore, it explores and analyzes the

timing measures of TLD application phases and algorithms. We select two TLD

implementations: MOTLD and OpenTLD, provided by [9] and [26] respectively.

The reasons for choosing MOTLD include: first, the implementation is new and

fast; second, it does not depend on third party software, unlike the original

implementation of TLD that requires software packages such as Matlab, OpenCV,

Microsoft Visual Studio, etc.; third, it is customizable and well documented; forth, it runs

on various Operating Systems like Microsoft Windows and Linux, (This is important for

the fact that we faced technical compatibility issues in compiling some GPGPUs drivers

on some Operating Systems due to the lack of vendor support); and last but not least, it

has a multi-object tracking feature, which facilitates the stressful performance tests.

The second TLD implementation presented in [26], has been used by the literature

for parallel implementations. This implementation offers the best opportunity for results

comparisons. However, this implementation is based on OpenCV, which has its pros and

cons. The plus side of this implementation is having the phases built in separate modules,

which facilitates in the insertion of parallel kernels without affecting other modules, and

26

collection of timing behavior for each phase. The negative side comprises of being

dependent on third party libraries, which are tightly coupled and difficult to modify.

4.1 TLD Latency Analysis

 As discussed earlier in Chapter 3, TLD has three main phases: tracking, learning

and detection. The detection phase is always on, with each input frame, while the

tracking can be switched off when the object gets out of the image boundary or becomes

untraceable. The learning phase depends on object trajectory change, so it is difficult to

anticipate whether it is going to be on or off. To inspect more about the timing models of

these phases, stress analysis is applied to the implementation in [9] and [26] using several

video inputs obtained from the datasets available in [27] that have various dimensions

and frame counts. Figure 4.1 shows frame samples of the tested videos. The first video

sample in the figure (top left) pictures a pedestrian walking in a street with an unstable

(unsteady) camera, the second (top right) plots a fast moving object, the third sample

(bottom left) represents a jumping subject with the ability to track his face, and the last

one (bottom right) ensures the application can track a moving subject with various

brightness level (from dark to bright).

Starting with the implementation in [9], Table 4.1shows the average time spent by

each phase per frame as a total of four different inputs. As we can see, more than 50% of

the computation time spent per frame is consumed by the detection phase for all inputs,

followed by the tracking phase. The nn column in the table is the last filtering step of the

detection and it is responsible for the final patch classification. Despite the fact that nn

27

has a small period proportional to the detection time, its value may escalate depending on

algorithm parameters.

pedestrian.jpg

motocross.jpg

jumping.jpg

david.jpg

Figure 4.1: Frame samples of the tested videos taken from [27]

For more clarification Figure 4.2 plots the timing bins of the values analyzed in

Table 4.1. The results in Figure 4.2 and Table 4.1 quantify the sequential execution of the

TLD application excluding any sort of acceleration. As in [3] and [24], our analyses

ascertain that the most intensive computation occurs in the detection phase, where the

whole filtering process takes place. Therefore, the majority of kernels are designed to

reduce this phase. More details are provided in Chapter 5.

28

Table 4.1: Latency analysis for each TLD phase of MOTLD
Average latency per frame (ms)

Video sample Tracker Detector nn Learner Total
david 320x240

(761 frame) 11.65263 65.2855 0.4855263 0.56842 77.99211

jumping 352x288
(313 frame) 15.06731 66.3846 0.4519230 1.073718 82.9775

motocross 470x210
(100 frame) 13.84848 23.808 0.0606060 0.939394 38.65656

pedestrian 320x240
(140 frame) 10.58993 31.8849 0.122302 0.43165 43.0287

Average Latency 15.06731 66.3846 0.4519230 1.073718 82.9775

Figure 4.2: Timing diagram for TLD phases of MOTLD

These results do not show the application behavior as the when input size is

scaled to a higher dimension. Most of the videos in the dataset provided by the author in

29

[27] have particularly small sizes. Also the outcomes from each phase varies from one

video to another because the tracked object is not contiguous in all frames, which may

affect the aggregate latency, and as a result different videos produce different timing

behavior.

Therefore, the above analysis is insufficient to support a scalable parallel

framework; instead the application was tested with a range of scaled video inputs starting

as low as the QVGA standard up to the 4K high definition standard, with all having the

same tracking results. Table 4.2 shows our results and the scalable analysis of the

application regarding the average time spent in each phase for each input size. The graph

shown in Figure 4.3 illustrates each phase latency behavior against the input size

increment.

Table 4.2: TLD analysis against input size of MOTLD
Average frame phase latency in (ms)

Input size tracker detector nn learner sum
320x240 18.0000 4.5000 0.0000 0.0000 22.5000
640x480 17.1683 53.6238 0.6733 2.1485 73.6139
720x480 17.2376 40.4653 0.4554 2.7228 60.8812
1280x720 28.0891 103.0990 0.7624 5.7723 137.7228
1440x1080 38.1584 177.3960 0.6238 8.7030 224.8812
1920x1080 50.9307 268.4653 0.7228 11.2673 331.3861
3840x2180 181.8416 1004.2178 1.3168 35.6931 1223.0693

What we can observe from Figure 4.3 is that the processing time scales linearly as

the number of pixels increases. Further, the total time required for the last two input sizes

is not tolerable for a real-time application.

30

Figure 4.3: TLD phases behavior against input size of MOTLD

 The second TLD implementation, which is available in [26], is more modular and

performs better in terms of object tracking but with the cost of frame latency. The

implementation method is more synonymous with the first implementation by the author

Kalal [2]. The previous tests are repeated for this implementation and the results are

shown in Tables 4.3 and 4.4 with the corresponding graph illustrations plotted in Figures

4.4 and 4.5 respectively.

Table 4.3: Latency analysis for each TLD phase of OpenTLD
Average latency per frame (ms)

Video Input Tracker Detector Learner Total
david 6.226404011 13.03367479 4.564010929 20.45666046

jumping 5.983371795 31.55411218 0.1658996764 37.70178846
pedestrian 5.060863309 47.86902158 1.454297101 54.37371942
motocross 7.000970588 12.20951961 0.0653627451 19.27585294
Average 6.067902426 26.16658204 1.562392613 32.95200532

31

Table 4.4: TLD analysis against input size of OpenTLD
Average frame phase latency in (ms)

Input Size Tracker Detector Learner Total
320x240 6.376748954 56.95876569 2.036778243 65.37229289
640x480 8.585723849 37.73978661 0.8032301255 47.12874059
720x480 9.254376569 44.21420921 0.9001924686 54.36877824
1280x720 11.51897908 79.76250628 2.702200837 93.98368619
1440x1080 17.3531841 104.0465397 3.860214286 125.2437866
1920x1080 21.74756485 135.1211255 4.177096234 161.0457866
3840x2160 73.91930962 175.2103598 3.703691983 252.8023682

Figure 4.4: TLD phases timing analysis for OpenTLD

 From Figures 4.4 and 4.5, we see that the results only differ from MOTLD in the

average latency. The measured latency for the OpenTLD does not include some

intermediate operations (the total frame time is higher than what is shown in Tables 4.3

and 4.4) due to the common data tables and functions used by all phases. Conversely, in

MOTLD all operations for each phase are implemented in separate modules.

32

Figure 4.5: TLD phases’ behavior against input size of OpenTLD

The detection phase is typically a major bottleneck compared to the other phases

as the input size increases. Also, we can see that the detection phase at 320x240

resolution is defying the curve due to the low quality of the image (down sampled from a

higher resolution video). Down sampling leaves the detector open to more possibilities

and an increased number of bounding boxes inside each frame, which then deteriorates

the detector operation. After investigation of each phase, further analysis is required at

the algorithm level, which is discussed in next section.

4.2 TLD Algorithm Analysis

This section investigates the algorithms used in TLD and implementable on a

parallel computing device. As introduced earlier not all algorithms can produce positive

results if implemented on a parallel device, at least for real-time applications. Even cases

where the most parallelizable components are implemented, slowdown in the overall

33

application performance can occur. The rest of this section is organized by phase with the

associated algorithms.

4.2.1 Tracking algorithms
 Tracking comprises of five steps: calculating the optical flow of the identified

feature points (produced in frame initialization), backward optical flow calculation for

newly located feature points, forward-backward (FB) error calculation between the

original feature points with the ones calculated in the second step, normal cross-

correlation calculation for image patches associated around the feature points, and lastly

filtering points based on the FB error values computed earlier.

 The first two steps use the same pyramidal Lucas-Kanade method (PLK)

algorithm with reverse parameters. So if we get a significant improvement in a parallel

(PLK) implementation it benefits both. The third step poses only subtraction between two

points, which can be parallelized but it will be inefficient due to the limited number of

points. The fourth step can be generalized as a template matching between two image

patches, which also can be easily parallelized especially when using large patch sizes.

The last step has the same deficit as step three. Deep latency analysis is applied to the

tracking phase as shown in Table 4.5 and depicted in Figure 4.6.

Table 4.5: Tracking algorithms latency for different inputs (ms)
Video input LK1 LK2 FB_error NCC
motocross 2.343779 2.308470 0.00269 2.23395
pedestrian 1.83004 1.9404 0.0028 2.50362
jumping 1.94262 1.99350 0.002531 2.3665

david 1.41245 1.45533 0.002417 2.13715

34

Figure 4.6: Tracking algorithms deep analyses

 Table 4.5 and Figure 4.6 present the latency differences of the first four steps in

the tracking stage (the latency of the fifth step is negligible). LK1 and LK2 represent the

two optical flow calculations. From the measurements, we see that only three steps are

worthy to parallelize, which are represented by the two algorithms PLK and NCC.

4.2.2 Detection algorithms
 This section explores the main bottleneck points that make the detection phase the

most time consuming phase. This phase includes many steps and levels, and they are

executed in a sequential manner. Based on the size of the frame and the object, the

number of candidate bounding boxes (BBs) is generated (can exceed 300,000 BBs for a

VGA video input). From these BBs, only the top hundred or less are selected based on a

similarity confidence to the BB from the previous frame. The whole process can be

35

summarized as three level filtering: variance filter, ensemble classifier, and template

matching.

 For variance filtering, two main parameters should be calculated from the BBs

patch before making a filtering decision: BB’s Sum Area (SA) and Square Sum Area

(SSA). After passing this level of filtering, the BB is processed for fern features that are

used to compute a confidence value, this value should be greater than a predetermined

threshold to enable the BB to pass to the next level. For better confidence determination,

the BB should be blurred with a Gaussian filter. Detections from the second level are

assembled in a data structure for further processing. If the number of confident BBs is

higher than a default parameter, (typically around 100) the best BBs can be extracted by

their highest confidence values. The reason for this reduction is to forward the fewest

number of BBs as possible to the next level, which is a more computationally expensive

level. The last step of detection process is to compare the remaining BBs with the original

BB (the one in the previous frame) for full pattern match, and then the one with highest

similarity can be selected as the best BB for the current frame. This BB is forwarded to

the tracker if the object has been tracked and to the learner if some object features have

been changed to what is available in the learner’s repository.

 Major speedup can be exploited in the first and second level, since the number of

BBs is significantly high. As the frame dimension increases the number of BBs in a

frame increases as well. A basic method to estimate the number of BBs that a single

frame has is to apply the following equation [6],

𝑁𝑜. 𝑜𝑓 𝐵𝐵𝑠 = (𝑊−𝐵𝐵𝑤𝑖𝑑𝑡ℎ) ∗ (𝐻 − 𝐵𝐵ℎ𝑒𝑖𝑔ℎ𝑡) (Eq. 4.1)

36

where (W, H) are width and height of the frame respectively, and (BBwidth, BBheight)

are bounding box dimensions.

 Timing analysis for detection algorithms is not analogous to the tracking phase

because of the nested behavior of the BB filtration process. The best way to present a

good timing estimation is by counting the number of BBs in each step.

 Table 4.6 shows BBs’ count for each step of the detection stage for a selection of

video samples. We see that the total number of BBs depends on the input size. Whereas,

the variance filtered BB’s depends on two factors: input size and video background

texture. The remaining BBs after the Fern Classifier step does not depend on the input

size or on the background texture, but rather on the object texture. In Figure 4.5 we notice

an odd TLD latency startup when processing the 320x240 video, it consumes more time

than 640x480 video. The reason is obvious when we check the remaining BBs at the end

of the detection stage.

Table 4.6 Detection stage latency analysis through number of BBs

Video
name

Number of BBs
Total BBs Variance Filter output Fern Classifier output

average median average median average median
motocross 143642 143642 9544 8963 15 10
pedestrian 69310 69310 28103 28571 11 11
jumping 98433 98433 45063 45299 10 9

david 58901 58901 54982 56033 1 1
320x240 66763 66763 10351 10637 108 107
640x480 258044 258044 24255 23640 64 64
720x480 285432 285432 28161 27501 64 62

1920x1280 2289439 2289439 109310 101196 18 18

37

4.2.3 Learning algorithms
 Learning algorithms update positive examples whenever a newly detected and

tracked BB has different characteristics than what exist in the training repository. Timing

analysis for both implementations shows that the learning step is not a significant

bottleneck for the whole application, even when using a large scale input. For this reason,

we kept this phase out of the parallel framework.

4.2.4 Other algorithms
 There are some preprocessing steps for the frames prior to forwarding to the TLD

phases. Some of these steps can be parallelized as well, but they are not very effective in

terms of efficiency. These steps include some image processing and preparation such as

converting color components to gray level, resizing images, rotating images, etc.

4.2.5 Analysis conclusion
 As a conclusion from the observation and analysis the following conclusions are

offered:

1. The behavior of the application is not the same for each video input and object

size.

2. Input scaling keeps the behavior unchanged as long as the object can be tracked.

3. The Detection phase is the major bottleneck for all types of inputs and parameter

changes.

4. The Tracking phase could be a bottleneck as input scale increases.

5. The Learning phase remains in the acceptable delay zone for most video inputs.

38

6. There are marginal differences in timing between the two implementations

because the first implementation (MOTLD) is designed for speedup rather than

tracking efficiency, while the second (OpenTLD) prefers tracking efficiency over

latency.

4.3 Summary

 In this chapter, we analyzed the TLD application using two different

implementations available in [9] and [26]. This chapter investigated the timing behavior

of each phase of the algorithm and pinpointed the modules where the majority of latency

is incurred. The next chapter provides the main methodology for designing a parallel

framework for long-term tracking with the use of various implementation scenarios.

39

CHAPTER 5

DESIGN AND IMPLEMENTATION

 After deep analysis of the algorithm on our selected hardware platforms using two

implementations available in the literature, this chapter presents the core components of

this thesis. It shows the mathematical models of TLD algorithms, and it studies the affect

of partial modifications. TLD is not a parallel friendly algorithm. Most components can

run better sequentially. We thoroughly searched the algorithm for components that can be

executed on the OpenCL environment without putting a burden on the overall

implementation performance. Our approach attempts to mitigate this bottleneck through a

better computational environment, which can use different hardware components to

achieve the same performance with much less cost. This chapter is divided into three

main sections. The first section introduces the steps of deploying parallel implementation

of an algorithm, and lists the design methodology we followed in this thesis with a simple

example of creating a parallel kernel using OpenCL. The second section derives the

design model of the TLD parallel implementation; by implementing each kernel

individually then combining them into a unified model. Section three provides various

implementation scenarios for testing the model. The last section summarizes this chapter.

5.1 Parallel Framework Methodology

Many tools, IDEs, and programming techniques have been developed and

introduced recently to facilitate and support widespread use of parallel systems. In [15],

40

they classify parallel coding as an iterative process of software development that can be

generalized through these steps:

1. Locate the code section that has unutilized parallelism in the original source code.

2. Select a fitting programming technique to achieve parallel acceleration.

3. Apply and augment the parallelization inside the original source code.

4. Validate the output.

5. Justify the performance of the application.

These steps may be repeated to other sections of the source code till maximum

parallelization is employed. Figure 5.1 depicts a simple diagram for the iterative parallel

coding process.

Figure 5.1: Parallel coding as iterative process

41

Based on the iterative model, we derived the mechanism for parallel TLD

implementation summarized by the following:

1. Design kernels for different inherent algorithms utilized by TLD.

2. Stress and analyze the performance of these kernels on both CPU and GPU.

3. Locate the delay points and critical paths with regards to data and resource

availability (this is to ensure real-time efficiency within an acceptable boundary).

4. Check the global speedup by implementing all the kernels within the sequential

program on both CPU and GPU.

5. Trigger parallel kernels whenever their efficiency is acceptable.

6. Finalize with a self-adapting parallel framework that achieves high scalability and

meets the real-world demands.

 The presented steps can be considered a rule-of-thumb and can be implemented

on other algorithms. As an example of a single kernel parallelization, the following sub-

section describes the whole process of color space conversion from RGB to Gray,

essential for TLD, using a simple kernel.

5.1.1 Example: RGB to Grey level Conversion Kernel in OpenCL

One of the steps essential for the TLD algorithm is converting the input from the

standard RGB color format to gray scale, because the TLD algorithm is based on gradient

computation, which requires gray scale input. After implementing this step serially we

investigate penalization of this pixel-based compute intensive section. We wrote an

OpenCL kernel to bring massive parallel operation to this unit. The RGB-to-Gray

conversion is based on taking the Red, Green and Blue intensity components of the

42

colored image and taking the average of their sum respectively. This average value is

stored for the pixel in the converted gray scale image. The Red, Green and Blue pixels

are passed as float values to the compute kernel and the gray scale level is also stored as

float. The following list shows the steps followed to run the OpenCL kernel:

1. Declare the OpenCL buffers, which are signals and values to be used as

arguments for calling the buffer.

2. Choose the device to be used by the OpenCL directive GET_DEVICE_ID_CPU

or GET_DEVICE_ID_GPU, depending on the target device for the kernel.

3. Define the wavefront design by assigning values to global and local work groups

IDs.

4. Create the buffers for kernel inputs and a buffer for the kernel output.

5. The kernel is built as a program with the next command, and then the kernel is

executed with the input buffers loaded into device memory and the output buffers

downloaded to the host, after all the process streams finish computing.

6. Assign the output date to the output buffer and write the data to an output file.

This methodology for creating, building and executing is also used for the other

kernels. The above kernel implementation is inefficient for an accelerator device because

the kernel itself is computationally simple, therefore implementing it on the host is more

reasonable and efficient yet the decision ultimately depends on the CPU specifications

and the task characteristics.

43

5.2 Parallel Framework Design

 This section provides a detailed discussion of the algorithms that can be

accelerated using available devices that support the OpenCL API. Based on the analysis

and timing diagrams presented in the previous chapter, algorithms are selected from the

TLD implementations in [9] and [26]. Each algorithm is parallelized, tested and executed

in a standalone situation for the sake of recording results and comparing efficiency.

Timing diagrams for each parallel kernel implementation are recorded and compared

with the sequential implementation across scaled inputs. Parallel implementations for

long-term object tracking can be affected by many factors: algorithms’ timing behavior,

input video classification and dimensions, hardware specification, available APIs,

application parameters and preferred precision, and other application designer

preferences like timing constraints and power consumption. Thus, developing a single

fixed platform might be inappropriate for the wide spectrum of video inputs.

The final application includes all parallel modules as well as the sequential ones.

Decisions are made whether to use sequential or parallel modules depending on the

learning curve of the application efficiency when it executes the first time; giving the

system the opportunity to calibrate itself to the best performance curve. It is unreliable to

design a fixed system through testing it on a limited number of inputs. Instead, using our

model will ensure that long-term tracking applications will adapt and produce the best

performance based on the application’s response for each kernel. Moreover, it can also

sustain hardware changes if hardware devices are upgraded over time.

44

 The remainder of this section is organized as two subsections. In the first

subsection, each algorithm is introduced with a mechanism of parallelization. While in

the second subsection, the top parallel framework is built using all kernels combined with

an explanation of their operations.

5.2.1 Parallel algorithms design

 The kernels that are designed in this chapter are based on the studies in previous

chapter. Each kernel design is contingent on the analysis from the original application.

Some kernels use the same design techniques, so for the sake of brevity, redundant

designs are referenced to a shared category. Furthermore, this subsection includes the

mathematical models for each kernel plus the corresponding approach that extracts the

inherent parallelism. The kernel designs are arranged beginning with the most general to

the more specific.

5.2.1.1 Reduction based kernels

 The reduction technique that reduces a large vector into a smaller vector or single

scalar, usually done by separating the vector into equally sized chunks, each chunk is

executed on a distinct computing unit simultaneously (multi-core CPUs or streaming

processors in GPUs) [28]. Reduction is useful when a similar operation is performed on

each data items of a large dataset Examples of reduction kernels are Sum, Square Sum,

Average, Minimum, Maximum, etc. Figure 5.2 depicts reduction process of having the

sum of 8 numbers using three level trees.

45

Figure 5.2: Three level Sum Reduction Tree [28]

 Reduction can be implemented in many strategies, the simple ones use

mathematical properties: associativity and commutativity. To implement sum reduction

on GPUs using OpenCL, certain steps should be followed [29]:

1. Using the associative property, divide the vector into small sub-vectors. e.g.

(a+b+c+d+e+f….) will be ((a+b) + (c+d) + (e+f).....). Each work-group will be

responsible for a sub-vector.

2. Each sub-vector will have its own reduction tree, each sub-vector will be reduced

independently and in parallel.

3. If each sub-vector can be held in a local memory, then each element can be

assigned to a work-item.

46

4. Performing reduction for each tree stage requires loading and storing of the

branch results. This is why it is important to use local memory, so work-items can

share results with work-groups.

5. The whole process can be summarized as a loop obtaining results from each stage

plus setting barriers for memory updates.

 There are many limitations to using this strategy and each one can be solved with

a specific technique:

1. Vector size consistency: make the number of work-items a power of 2 for each

work-group, requiring the number of vector elements be consistent with the work-

items, which can be solved by padding the necessary zeros to the vector to make it

a power of 2.

2. SIMD structure: the above strategy can be more SIMD friendly if the

commutativity property is used. To clarify, the difference between associativity

and commutativity, Figure 5.3 (a-b) shows how SIMD utilization can be better

achieved from commutative property. In commutative reduction, the blocks are

contiguous and the allotted wavefronts for each work-group will be reduced,

minimizing the execution time.

3. Vector size per work-group: when the vector size does not fit in a single

workgroup, several methods can be employed: recursive multistage reduction,

two-stage reduction, or reductions using atomics. All methods provide reduction

scalability and are self-explanatory except for the atomic one, which is AMD API

device specific, and more details can be found in [29].

47

(a)

 (b)

Figure 5.3: Reduction types: (a) Associative reduction
 (b) Commutative reduction [29]

Kernels that are used in the TLD application and exploit parallel reduction are

Sum, Average, Square Sum, and Image Integral. Some of these kernels may not appear

explicitly but rather as a part of a larger kernel (e.g. Image Integral uses Sum and Square

sum). These kernels are tested and analyzed in next chapter.

48

5.2.1.2 Window-based kernels

 Window-based kernels are popular in image processing due to the use of 2D

window. Many image processing algorithms such as filtering, transforming, edge

detection, etc. use small window convolutions across the entire image. This repetitive

process can be easily implemented on parallel computing devices by mapping a

computing unit with a corresponding memory addresses to perform the specified

processing. However, memory buffers are logically 1-D vectors, so the windowing

approach should be carefully implemented (careful memory management and addressing

for each convolved window). Recent convolution implementations favor the use of 1-D

kernel passed horizontally then vertically [30]. It has been shown that using the latter

method increases efficiency. The two-pass method is considered an efficient convolution

implementation as explained via a 3x3 example in [30]:

1. Suppose we have a pixel at location P(x,y) and 1-D horizontal kernel of H[a b c],

the first horizontal pass will result in:

h0 = p(x-1,y-1) * a + p(x,y-1) * b + p(x+1,y-1) *c (Eq. 5.1)

h1 = p(x-1, y) * a + p(x,y) * b + p(x+1,y) *c (Eq. 5.2)

h2 = p(x-1,y+1) * a + p(x,y+1) * b + p(x+1,y+1) *c (Eq. 5.3)

2. The second pass (vertical) will reuse the above results directly to produce the final

convolved pixel F(x,y) as in:

F(x,y)= h0*a + h1*b + h2*c (Eq. 5.4)

3. The efficiency come from the horizontal pass transpose of the output to column-

wise instead of row-wise, and then the vertical pass work as row-wise without

49

modification of the with memory dimensions, since it is already transposed in the

first pass. This method will also reduce the second pass computation leaving us

with (3-horizontal and 1-vertical computation).

4. Furthermore, the next pixel will reuse h1 and h2, since they have already been

computed for the previous pixel, reducing the total computation to (1-horizontal

and 1-vertical).

5. In terms of memory bandwidth, this method will reduce nine-pixel fetch into six-

pixel fetch but it requires two write operations, which yields eight R/W operations

in total, while the 2D-implementation requires ten R/W operations (9 for read and

1 for write). Figure 5.4 depicts the entire two pass convolution.

As a GPU device, memory operations are considered expensive, so reducing I/O

operations can be a crucial benefit. Kernels in the window-based category includes:

Sobel, Gradient, and Gaussian smooth filters.

Figure 5.4: Two pass convolution process [30]

50

5.2.1.3 Pixel based kernels

 Pixel based kernels include algorithms that usually depend on the pixel itself such

as color space conversion, noise addition and removal, pixel comparison, etc. There is no

general implementation of such kernels since each algorithm has its own computation

method. Parallel implementation of such kernels follows a simple mathematical operation

on each pixel or group of pixels. The output can be mapped to a vector, if it is a one-to-

one relationship, or to a scalar if it is many-to-one relationship. These kinds of kernels

can be easily implemented on GPU devices due to the simplicity of the kernel structure

(simple input/output mapping). Kernels that reside in this category in TLD are RGB-to-

Gray conversion, Normalized Cross Correlation (NCC), and image down sampling or

resizing.

5.2.1.4 Special purpose kernels

 These kinds of kernels can be composed of several sub-kernels of different

categories, i.e. multiple kernels use the same device memory and work collaboratively,

each using one of the above mentioned techniques to produce a multi-stage output. These

kernels are the most complex because they require extra care for memory management,

since all sub-kernels may access and change the same shared memory locations. The

purpose of using such complex kernels is to exploit common data usage among different

kernels, reducing the number of data transfers from host to device and vice versa. One

example of a special purpose kernel found in our parallel framework is Parallel

Pyramidal Lucas Kanade (PPLK).

51

5.2.2 Parallel framework design for long-term tracking

 The TLD method for object tracking has many steps and components. Some of

the components are essential and some can be optional. For better results, all steps

followed by the original author [2] should be implemented with suitable parameter

settings. As explained in Section 5.1, we follow the same strategy for building a parallel

implementation. Furthermore, some additions were applied to make the model flexible

and highly portable. To describe the parallel implementation, first we show TLD

components in a diagram, and then pinpoint the parts that can be replaced with efficient

parallel kernels. A decision should be made whether the part should be replaced or

remain unchanged based on a performance factor. Therefore, a new block should be

added to the iterative parallel coding process, shown in Figure 5.1, which embodies the

decision process and receives the feedback from the performance block while it is

running.

 To provide further explanation, the next two sub-sections describe the usual data

flow in the TLD algorithm and the necessary changes to ensure better parallel

environment.

5.2.2.1 TLD data flow

 We introduced TLD as a long-term object tracking method and discussed the

mechanisms it uses to track objects. Now we explain what actually happens when a

sequence of images enters the system. Figure 5.5 shows the data flow for the

implementation in [26]. As seen in the diagram, the system assumes continuous object

52

availability; otherwise some blocks will suspend processing until the object becomes

tracked again. All blocks are dependent on each other, this precludes frame pipelining.

One can say that some portions of the blocks have fixed inputs (as in the preprocessing

stage, Gaussian filter, and others). Thus, there is a possibility to process frames in groups

(multiplexing) while awaiting other blocks to finish processing, and then provide single

preprocessed frames (de-multiplexing) whenever possible. However, this method is

useful when processing offline videos (i.e. archives), and it is not applicable for real-time

video processing scenarios. Further, it requires more memory units for storing and

processing.

5.2.2.2 TLD parallel framework

 As shown in Figure 5.5, all blocks are depicted as separate modules (we do not

show all components of TLD for the sake of simplicity), this facilitates understanding of

parallel implementation mechanism. As provided in the previous section, the parallel

kernel associated for TLD blocks are many, to simplify the whole operation, we separate

each phase into a different section, skipping two stages: initialization stage since it runs

one time only, and learning stage because of negligible processing time.

5.2.2.2.1 Preprocessing stage

 This stage varies from one implementation to another; it depends on the type of

input to the system. As an example, if it is raw (uncompressed), meeting the required

dimensions, and having gray level color space, then no preprocessing is required.

Otherwise, any of the missing input requirements should be resolved.

53

Figure 5.5: TLD data flow

In our implementation, we exploit two preprocessing stages: RGB-to-Gray

conversion and input resizing. Figure 5.6 describes the parallel implementation for the

54

preprocessing stage. The cubing blocks represents parallel implementation, while the

dotted arrows and borders indicate optional stages and blocks respectively. Hence, before

input frames are forwarded to one of the processing blocks, a decision should be made

whether to choose the parallel implementation or the sequential one. The block named

“Performance factor” is updated through an external performance evaluator, which

controls the triggering operation for all kernels. Lastly, it is possible for the frame to be

processed by any combination of the preprocessed blocks depending on the input,

performance factor, and requirements of the next stage.

Figure 5.6: Parallel implementation for preprocessing stage

55

 5.2.2.2.2 Tracking stage

 The tracking stage comprises of three steps, two optical flow tracking functions

and one template matching. The optical flow tracking used is called, “Pyramidal Lucas

Kanade feature tracker” (PLK) [31]. Optical flow tracking determines the displacement

between feature points located on the first frame and their new locations in the next frame

within a moving picture.

Let u = [ux uy]T be the vector of feature points, and d = [dx dy]T be the vector that

represents the velocity of the image at location x, and v be the vector of new locations’

points, then,

v = u + d (Eq. 5.5)

the velocity of the optical flow can be measured using this general formula [31];

𝜖𝜖(𝑑) = 𝜖𝜖�𝑑𝑥,𝑑𝑦� = ∑ ∑ (𝐼(𝑥,𝑦) − 𝐽(𝑥 + 𝑑𝑥
𝑢𝑦+𝑤𝑦
𝑦=𝑢𝑦−𝑤𝑦 ,𝑦 + 𝑑𝑦))2𝑢𝑥+𝑤𝑥

𝑥=𝑢𝑥−𝑤𝑥

(Eq. 5.6)

where,

𝜖𝜖 is velocity residual function.

I, J are the first frame, next frame respectively, and

wx , wy are the integration window dimensions (usually 2,3,4,5,6,7).

Image pyramids can be computed in a recursive fashion with this equation [31]:

𝐼𝐿(𝑥,𝑦) = 1
4
𝐼𝐿−1(2𝑥, 2𝑦) + 1

8
(𝐼𝐿−1(2𝑥 − 1, 2𝑦) + 𝐼𝐿−1(2𝑥 + 1,2𝑦) + 𝐼𝐿−1(2𝑥, 2𝑦 −

1) + 𝐼𝐿−1(2𝑥, 2𝑦 + 1)) + 1
16

(𝐼𝐿−1(2𝑥 − 1, 2𝑦 − 1) + 𝐼𝐿−1(2𝑥 + 1, 2𝑦 + 1) +

 𝐼𝐿−1(2𝑥 − 1, 2𝑦 + 1) + 𝐼𝐿−1(2𝑥 + 1,2𝑦 + 1)) (Eq. 5.7)

56

where,

I: original image (the highest image resolution, or level 0 pyramid),

L: level of the pyramid, and

x, y: pyramid image dimensions.

 To find the dimensions (x, y) of each pyramid level, we can use these two simple

recursive formulas,

 xL ⩽ 1
2
(xL-1 + 1) (Eq. 5.8)

 yL ⩽ 1
2
(yL-1 + 1) (Eq. 5.9)

 The optical flow equation (5.6) is applied to all pyramid levels (TLD usually uses

5 levels) starting with the lowest level (lowest image resolution level), with the

corresponding u vectors that can be identified using the following formula:

 uL = u/2L (Eq. 5.10)

Next, the results of each pyramid are forwarded to the upper level as an initial guess for

the new pixel location. The result of the overall computation can be expressed as:

 d = 2LdL + 2L-1dL-1 + 2L-2dL-2 +…. + 2L-mdL-m (Eq. 5.11)

where m is the maximum number of levels.

 The second type of tracking algorithm is the template matching between two

patches using Normalized Cross Correlation (NCC). NCC is a scalar that represents the

correlation between two image patches (in TLD, it is usually 15x15 pixels) and it follows

the following formula:

57

𝑁𝐶𝐶�𝑃𝑖 ,𝑃𝑗� =
∑ �𝑃𝑖(𝑥,𝑦)∙𝑃𝑗(𝑥,𝑦)�𝑥,𝑦

�∑ 𝑃𝑖(𝑥,𝑦)2𝑥,𝑦 ∙∑ 𝑃𝑗(𝑥,𝑦)2𝑥,𝑦
2

 (Eq. 5.12)

where,

pi, pj : first image patch and the next image patch respectively, and

x, y : pixel coordinates within the image.

 After showing the mathematical models for the tracking stage, it is time to

observe their parallel implementation in the parallel implementation. As explained

earlier, the PLK kernel operates under the special purpose kernels, while the NCC resides

in reduction based kernels. PLK is executed twice for each frame, which makes it an

interesting algorithm to accelerate.

The input of the tracking stage comprises of two preprocessed frames (framet and

framet-1) and feature points propagated from the previous frame. Likewise, the output

provides the new point locations. Based on these points, the detector will checkout the

new BB location within a frame. What makes TLD tracking robust is the presence of

extra checking steps for error correction. The second PLK pass and NCC ascertain the

first pass of PLK is providing accurate results.

 The tracking stage data is shown in Figure 5.7. As in the preprocessing stage, the

cubic blocks represent the parallel the implementation (block name has an extra P) and

the dotted arrows indicate that the flow may not be the same for all frames. Hence, there

is no need to check the second PLK performance since it resembles the first.

58

Figure 5.7: Tracking stage data flow

 5.2.2.2.3 Detection stage

 This stage is the most time consuming one but the least complicated. The whole

detection process comprises of filtering false BBs within a frame. The task of detection

becomes more important when the object disappears (lost) from the frame. As we can see

in TLD data flow diagram Figure 5.5, the detection phase has mainly three filtering

stages. However, there are many in-between computations that dramatically slow down

the filtration process. A naive implementation may follow this procedure:

1. The frame is scanned for all possible BBs that may have properties similar to the

previous identified BB, if available; if not, then positive examples are used as

indicators. The candidate BBs are stored in a data structure as the very first pixel

59

of the BB (top left corner) along with the width and height. This operation will

produce hundreds of thousands of BBs.

2. In the first level filtration, BBs with homogenous regions are excluded (usually

background texture). To do so, the variance of each BB is calculated, and then

compared with a variance threshold for the filtering process. To calculate the

variance of a BB, the following formula is used:

Variance (p) = E(p2) - E2(p) (Eq. 5.13)

where,

p: represents the grey level vector of all pixels inside the corresponding BB,

E: represents Mean value, and

E2: represents Square Mean value.

The variance threshold is not a fixed number. Likewise, its value can be obtained

from Equation 5.13 from the very first BB (best BB). BBs with variances greater

than or equal the threshold are forwarded to the next filtration step. Finally, this

step approximately reduces the number of BBs by a factor of 10X (i.e. 300,000

BBs will be reduced to 30,000).

3. The second filtering process is the fern filter. This step involves pixel comparison

between the original BB and the candidate BB. Not all pixels are compared;

instead a few random pixel locations (ferns) are picked up from BBs to compute

confidence values. Confidence values higher than a selected confidence threshold

are passed to the next level. However, exact pixel location comparisons of moving

objects produce values far from what it should be. For this reason, the frame is

60

applied to a blurring process through using big window size Gaussian filter

(usually (9, 9), with a predefined sigma). The following formula is used to build a

Gaussian kernel [32]:

𝑔(𝑥,𝑦) = 𝑐𝑒−
(𝑥2+𝑦2)
2𝜎2 (Eq. 5.14)

where,

g(x,y) represents the 2D kernel component coordinates ((0,0) is the center of the

kernel),

c is the scaling factor, and

𝝈𝝈 is the Gaussian filter smoothing factor.

The resulting window is convolved with the frame to produce a smooth image.

This process dramatically reduces the number of BBs to a few hundred.

4. The last filtering process constitutes a heavy computation for each remaining BB.

Therefore, only the BBs with the top 100 confidence values are processed through

this stage (pre-filtering). The NCC values are computed for the remaining BBs.

Once again, the one having the lowest difference value from the original NCC is

chosen as the next best BB.

 We have two unexploited heavy computational steps: variance filter and Gaussian

image. For the first one, we can use two parallel integrations: integral sum, and integral

square sum for the whole frame, and then when it comes to the sum area and sum square

area, 4 lookup table fetches are needed for each then through using the following

formula, both values can be computed:

61

 Area Sum (AS) or Area Square sum (ASS) = (A+D) - (B+C) (Eq. 5.15)

where,

A: represents the top-left corner value of integral image,

B: represents the top-right corner value of integral image,

C: represents the bottom-left corner value of integral image, and

D: represents the bottom-right corner value of integral image.

 We obtained the idea of parallel integral image technique from [33]. Figure 5.8

illustrates how integral images are useful in finding a BB area sum. The same

methodology can be used for finding area square sum.

Figure 5.8: BB’s sum area from an integral image [21]

 For the Gaussian filter, we use a window-based kernel as described in the

previous section. The parallel framework for detection stage is depicted in Figure 5.9. As

described earlier, the cubic blocks indicate the parallel implementation components of the

stage, and their usage depends on the pre-calculated performance factor. Also, as we can

see, Area sum and Area square sum share the same input due to the usage of the similar

kernels and memory operations.

62

The PNCC block is reused from the tracking stage since it is the same algorithm.

Lastly, there are some in-between operations related to the TLD that we ignore due to

their irrelevance in our parallel framework.

Figure 5.9: Parallel framework for detection stage

5.3 Implementation

The entire implementation process can be as brief as applying the parallel design

to specific computer hardware, and then changing various application parameters. Also,

63

we test it on a range of inputs with different scales and types. Other implementations are

also tested such as using multi inputs instead of single input and using network video

streaming instead of offline videos.

5.3.1 Hardware specifications: reasons of choice

 Hardware specifications play an important role in the parallel framework,

although the designed model is adaptive to hardware changes. It is important to

compromise when selecting the host CPU and GPU device. The specific application

usage can also limit hardware choices, such as power consumption limits, or cooling

constraints. For evaluation purposes, we choose considerably high-performance CPUs

and moderate capability GPUs (more details listed in next chapter). Both hardware

choices have high computational capabilities, which can be considered adequate to run

TLD in an acceptable frame rate with minimum size video input.

5.3.2 Multi-core CPU implementation

 As explained earlier in Chapter 4, the TLD implementation from [9] is more CPU

than GPU suited. Since we are building a parallel framework, we run this implementation

in two scenarios: first, we exclude any type of acceleration, and second, we utilized

OpenMP API to exploit multi-core CPU availability. The parallelizable components in

this implementation are limited to code section accelerations (i.e. for loops, repetitive

operations, etc.). However, the obtained efficiency of using this method is strongly

dependent on the number of cores in the CPU. Moreover, extreme usage of CPU

resources will result in system blockage, especially when operating with real-time

64

processes. Finally, we use this implementation to show the CPU’s maximum capability

for running the TLD application.

5.3.3 GPGPU implementation as an accelerator

 GPGPUs are one of the most common high-performance computing devices at

this time, and harnessing them as computing accelerators has been productive for many

research areas. The parallel framework designed in this thesis can be implemented not

only for specific GPGPUs but also for any device that supports the OpenCL platform

(which is becoming widespread for most HPC devices). Lastly, we use a medium

capability GPU for producing results to ensure our model is applicable for lower level

computing devices (i.e. not just high end devices).

5.3.4 Multi-input and network streamed video implementation

 Two main input types are used for analysis and performance evaluation: offline

videos and a set of stationary images (frames obtained from real videos). However, to test

our model on real-world scenarios, we run the application on multiple inputs through

multiplexing and merging of video inputs (four VGA video resolutions treated as a single

full HD video), and then the assembled input is forwarded to the parallel TLD model.

Multi-input support is crucial for situations with numerous small scale videos, since our

model performs better in larger dimensions. The second real-world scenario uses

streaming over network as a source of video frames. Here, the performance factor is

important to keep stream buffering within an acceptable range.

65

5.4 Summary

 In this chapter, we designed a self-adapting parallel framework based on the

studied behavior of both implementations. This design can sustain and adapt to any

hardware specification changes, application designer preferences, and many other factors.

The design is tested and implemented on various scenarios to ascertain the efficiency of

the model. The next chapter provides results, evaluations, and explanations of how this

model will act when deployed it in real-world applications.

66

CHAPTER 6

RESULTS AND EVALUATIONS

 To test the viability of the designed parallel framework, real-time evaluations are

performed on each designed kernel and on the whole application. Despite the conjecture

of having comparable performance when testing a standalone kernel against the part of a

larger application, test results may reveal different aspects of the kernels. Hardware

component (CPU, GPU, etc.) specifications, such as transfer bandwidth and latency,

clock frequency, etc. that are provided by the manufacturers, cannot always be fully

utilized in all applications. Therefore, there is no precise rule-of-thumb for selecting the

perfect device for an application or kernel, however there is ongoing research to address

this need [34] and [35]. This chapter includes three main sections, the first describes the

hardware platforms used to evaluate the designed approach. The second section provides

all of the results produced during testing of the model. The third section evaluates,

analyzes, and compares the results that were produced. The last section summarizes the

chapter.

6.1 Hardware Specifications

In this section, the specifications for the machines used to analyze the TLD

algorithm and to produce results are listed. Two type of computers are used, a powerful

graphic laptop and a desktop workstation. Both equipped with dedicated GPUs that can

run the OpenCL API. The hardware specifications with the software tools versions for

both computers are tabulated in Tables 6.1 and 6.2.

67

Table 6.1: HW + SW Specifications of the Desktop workstation

HP1- Hardware Platform 1(Desktop workstation: 2011 generation)

Operating System Ubuntu 12.04.5 LTS

CPU Intel i7 930 @ 2.80GHz, 4 physical cores, 2x hyper threading,
TDP: 135 Watt.

GPU1 (for display
only)

Nvidia Geforce 8400 GS, Total Memory: 256 MB, Memory
interface: 64-bit, Bus type: PCI Express x16, CUDA cores: 16

GPU2 (as GPGPU)
Nvidia Geforce GTX 580, Total Memory: 3072MB, Memory
Interface: 384-bit, Bus type: PCI Express x16 Gen2, CUDA
cores: 512, Power consumption: ~(195-401) Watt

RAM 6 GB

OpenCL version 1.1

OpenCV version 2.4.10

OpenMP version 3.0

Gcc & G++ 4.6.3 (Compiler)

Table 6.2: HW + SW Specifications of the Graphic Laptop

HP2- Hardware Platform 2 (Graphic laptop: 2013 generation)

Operating System Windows 8.1

CPU AMD A10 5750M APU Quad-core 2.5Ghz, TDP: 35 Watt

GPU1 (Integrated)
AMD HD8650G,Total Memory: (depends on the host memory),
Memory Interface: (integrated with CPU), Bus type: PCI,
Streaming Processors: 384, Power consumption: ~35 max Watt

GPU2 (as GPGPU:
dedicated)

AMD 8970M, Total Memory: 2GB, Memory interface: 256-bit,
Bus type: PCI Express 2.0 x8, Streaming Processors: 1280,
Power consumption: ~100 max Watt

RAM 16 GB

OpenCL version 1.2

OpenCV version 2.4.10

OpenMP version 3.0

CodeBlocks & mingw 13.12 (Compiler)

 Cluster systems are avoided for these tests because they are more suited for

submitting large sequential jobs and also it is not a good idea to analysis timings of the

68

real-time applications on such systems since they are shared systems and the results vary

significantly across executions. We see that it is sufficient to use the above two hardware

platforms for the purpose of testing the parallel framework.

6.2 Experiments and Results

 In this section, the efficiency of each designed kernel is investigated through the

use of the two hardware platforms described in Tables 6.1 and 6.2. Also, the multi-core

CPU implementation is examined and compared to its sequential version. Moreover,

some TLD parameters are modified to maximize parallel framework efficiency and to

tackle the video scaling tracking deficiency (e.g. larger videos need more features to

track). The last section is finalized with plots of the parallel framework timing behavior

learning curve and explanations of its features.

6.2.1 Parallel kernels assessment
 Parallel kernels are implemented using the OpenCL platform and the

implementations are extensively tested for performance efficiency through the use of a

wide range of scaled inputs, different hardware platforms, and several iterated executions.

The kernels are divided into categories as presented in Chapter 5, because each parallel

implementation technique may produce similar performance.

Moreover, kernel performance is plotted on a latency per pixel measurement for

each scaled input, so that data transfer overhead can be measured for each kernel,

proportional to the input size. The kernel’s average latencies are measured on both

69

hardware platforms: HP1 and HP2 (specifications are listed in Tables 6.1 and 6.2

respectively).

6.2.1.1 Reduction based kernels performance evaluation
 As mentioned earlier, reduction based kernels benefit from the size of data. Thus,

if the processed data is not large enough to compensate for the data transfer overhead,

then the results will not produce performance improvement. Eventually, these

performance factors determine whether or not to use the kernel. This category of kernels

covers: Sum, Average and Square Sum. Also, Integral sum and Integral square sum can

be included within this particular category, although having a slightly different

implementation strategy (output is a vector rather than a scalar).

6.2.1.1.1 Sum, Average and Square Sum
 Sum kernel results can be propagated to Average kernel results, since the latter

have only one extra operation, which is dividing the sum with the number of items.

However, the Square Sum kernel requires more memory access for its implementation,

which directly affects its average latency. Tables 6.3 and 6.4 present the latencies

obtained from standalone kernel executions of Sum and Square Sum respectively. Both

kernels use RGB images as inputs making the kernel outputs a Sum or Square sum of

each color component. For gray scale images, the latency can be up to 60% less.

 Parallel implementations of Sum and Square Sum kernels show significant

latency difference compared to the sequential implementations for all input sizes and on

both hardware platforms. The parallel implementation is highly scalable and the

performance does not decline when the input size increases.

70

Table 6.3: Sum kernel latency evaluation on both platforms
(a) Sum kernel latency (1000 Iterations) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.457 5.954 ×10-6 0.059 7.680 ×10-7
640x480 1.836 5.975 ×10-6 0.077 2.510 ×10-7
800x600 2.391 4.982 ×10-6 0.085 1.770 ×10-7

1920x1200 13.986 6.070 ×10-6 0.248 1.080 ×10-7
4096x2160 53.720 6.072 ×10-6 1.003 1.130 ×10-7

 (b) Sum kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.750 9.767 ×10-6 0.265 3.459 ×10-6
640x480 3.047 9.918 ×10-6 0.281 9.150 ×10-7
800x600 4.016 8.366 ×10-6 0.297 6.180 ×10-7

1920x1200 22.829 9.908 ×10-6 0.641 2.780 ×10-7
4096x2160 91.394 1.033 ×10-5 1.578 1.780 ×10-7

Table 6.4: Square Sum kernel latency evaluation on both platforms
(a) Square Sum kernel latency (1000 Iterations) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.648 8.431 ×10-6 0.058 7.500 ×10-7
640x480 2.597 8.453 ×10-6 0.080 2.610 ×10-7
800x600 3.410 7.104 ×10-6 0.087 1.820 ×10-7

1920x1200 19.802 8.595 ×10-6 0.250 1.090 ×10-7
4096x2160 76.092 8.601 ×10-6 1.005 1.140 ×10-7

 (b) Square Sum kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.906 1.180 ×10-5 0.266 3.459 ×10-6
640x480 3.688 1.200 ×10-5 0.297 9.660 ×10-7
800x600 4.906 1.022 ×10-5 0.297 6.180 ×10-7

1920x1200 27.645 1.110 ×10-5 0.719 3.110 ×10-7
4096x2160 113.080 1.278 ×10-5 1.656 1.870 ×10-7

71

6.2.1.1.2 Integral Sum and Square Sum
Both Integral Sum and Square Sum are implemented in a combined kernel

because of their mutual usage in TLD application. Table 6.5 shows the average latency of

the standalone implementation.

Parallel and sequential implementations of the integral kernel show no significant

latency differences for HP1, while the parallel implementation on HP2 shows lower

latency than the sequential implementation as the input size increases because the GPU of

the HP2 has more computational cores (streaming processors) than the GPU of HP1.

Table 6.5: Integral kernel latency evaluation on both platforms
(a) Integral kernel latency (1000 Iterations) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.352 4.586 ×10-6 0.370 4.815 ×10-6
640x480 1.410 4.590 ×10-6 1.465 4.767 ×10-6
800x600 1.836 3.825 ×10-6 1.711 3.564 ×10-6

1920x1200 10.660 4.627 ×10-6 5.997 2.603 ×10-6
4096x2160 41.388 4.687 ×10-6 44.495 5.029 ×10-6

 (b) Integral kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (nsec)
320x240 0.219 2.849 ×10-6 0.172 2.238 ×10-6
640x480 1.078 3.510 ×10-6 0.203 6.610 ×10-7
800x600 1.438 2.995 ×10-6 0.218 4.560 ×10-7

1920x1200 8.104 3.517 ×10-6 0.781 3.390 ×10-7
4096x2160 37.656 4.256 ×10-6 8.282 9.360 ×10-7

6.2.1.2 Window-based kernels
 These kernels should have the best performance outcome since they are highly

parallelizable and better suited for GPUs versus CPUs. The main window-based kernel of

TLD is the Gaussian filter. Others are inclusive with other kernels (e.g. Gradient and

72

Sobel filters are required for Pyramidal Lucas Kanade). Also, the image resize kernel can

be considered a part of this category, since it has an edge smoothing operation (when

pixels are truncated or appended), which uses window-based techniques. Tables 6.6-6.19

tabulate the latency evaluation of the following kernels: Gaussian filter, Resize, Gradient

image, and Sobel filter.

Table 6.6: Gaussian filter kernel latency evaluation on both platforms
(a) Gaussian filter kernel latency (1000 Iterations) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.266 3.464 ×10-6 0.053 6.900 ×10-7
640x480 1.016 3.309 ×10-6 0.068 2.220 ×10-7
800x600 1.316 2.741 ×10-6 0.090 1.880 ×10-7

1920x1200 7.657 3.323 ×10-6 0.482 2.090 ×10-7
4096x2160 31.257 3.533 ×10-6 1.839 2.080 ×10-7

 (b) Gaussian filter kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (nsec) Latency (ms) Latency per pixel (nsec)
320x240 0.344 4.475 ×10-6 0.047 6.100 ×10-7
640x480 1.313 4.272 ×10-6 0.062 2.020 ×10-7
800x600 1.688 3.515 ×10-6 0.063 1.300 ×10-7

1920x1200 10.500 4.557 ×10-6 0.064 2.800 ×10-8
4096x2160 41.619 4.704 ×10-6 0.067 8.000 ×10-9

 Table 6.6 shows an optimistic performance of the Gaussian filter parallel

implementation on both hardware platforms. The results ensure that the window-based

kernels are more suited on GPUs due to the complete utilization of the computing units of

the GPU. Likewise, Resize, Gradient, and Sobel kernels have the same attributes towards

inherent parallelism. The Sobel filter uses RGB input, so we can check its affect on both

implementations.

73

Table 6.7: Resize kernel latency evaluation on both platforms
(a) Resize kernel latency (1000 Iterations) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.082 1.067 ×10-6 0.033 4.200 ×10-7
640x480 0.319 1.040 ×10-6 0.037 1.200 ×10-7
800x600 0.414 8.630 ×10-7 0.035 7.300 ×10-8

1920x1200 2.433 1.056 ×10-6 0.067 2.900 ×10-8
4096x2160 9.358 1.057 ×10-6 0.239 2.700 ×10-8

 (b) Resize kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.108 1.403 ×10-6 0.034 4.470 ×10-7
640x480 0.429 1.396 ×10-6 0.036 1.170 ×10-7
800x600 0.564 1.175 ×10-6 0.037 7.400 ×10-8

1920x1200 3.750 1.628 ×10-6 0.042 2.000 ×10-8
4096x2160 13.784 1.558 ×10-6 0.046 5.000 ×10-9

Table 6.8: Gradient kernel latency evaluation on both platforms
(a) Gradient kernel latency (1000 Iterations) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.819 1.066 ×10-5 0.045 5.810 ×10-7
640x480 3.832 1.247 ×10-5 0.055 1.790 ×10-7
800x600 4.335 9.032 ×10-6 0.066 1.370 ×10-7

1920x1200 25.363 1.101 ×10-5 0.334 1.450 ×10-7
4096x2160 104.387 1.180 ×10-5 1.315 1.490 ×10-7

(b) Gradient kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.875 1.139 ×10-5 0.078 1.017 ×10-6
640x480 4.594 1.495 ×10-5 0.172 5.590 ×10-7
800x600 4.828 1.006 ×10-5 0.1874 3.900 ×10-7

1920x1200 28.223 1.225 ×10-5 0.1875 8.100 ×10-8
4096x2160 119.441 1.350 ×10-5 0.1875 2.100 ×10-8

74

Table 6.9: Sobel filter (RGB) kernel latency evaluation on both platforms
(a) Sobel filter (RGB) kernel latency (1000 Iterations) evaluation on HP1
 HP1 (Sequential) HP1 (Parallel)

Input Size Latency (ms) Latency per pixel (nsec) Latency (ms) Latency per pixel (ms)
320x240 2.47247 3.219 ×10-5 0.039 5.050 ×10-7
640x480 10.879 3.541 ×10-5 0.070 2.290 ×10-7
800x600 13.221 2.754 ×10-5 0.091 1.890 ×10-7

1920x1200 77.742 3.374 ×10-5 0.484 2.100 ×10-7
4096x2160 316.429 3.577 ×10-5 1.840 2.070 ×10-7

 (b) Sobel filter (RGB) kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 2.625 3.418 ×10-5 0.154 2.008 ×10-6
640x480 12.516 4.074 ×10-5 0.155 5.060 ×10-7
800x600 14.688 3.060 ×10-5 0.156 3.260 ×10-7

1920x1200 88.125 3.825 ×10-5 0.157 6.800 ×10-8
4096x2160 355.572 4.019 ×10-5 0.158 1.800 ×10-8

6.2.1.3 Pixel-based kernels performance evaluation
 As previously discussed, there are no fixed implementations methods for these

kinds of kernels, so kernels speedup may differ from one to another. Kernels under this

category are: RGB to Gray conversion and template matching (NCC). Tables 6.10 and

6.11 show these evaluations.

The RGB parallel kernel performs better when the input size increases, this can be

clearly shown when observing (Latency per pixel) column. Regarding the NCC kernel,

results show a significant latency compared to other kernels. The reason is that NCC

cannot be used in the TLD algorithm to process large image sizes. Instead, NCC

technique is used to calculate the correlation among a small number of patches, such as in

last stage of the detection filtering process and in the FB error calculation of a tracking

stage.

75

Table 6.10: RGB to Gray kernel latency evaluation on both platforms
(a) RGB to Gray kernel latency (1000 Iterations) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.155 2.015 ×10-6 0.024 3.150 ×10-7
640x480 0.618 2.012 ×10-6 0.031 1.010 ×10-7
800x600 0.802 1.671 ×10-6 0.036 7.500 ×10-8

1920x1200 4.703 2.041 ×10-6 0.146 6.400 ×10-8
4096x2160 18.152 2.052 ×10-6 0.543 6.100 ×10-8

 (b) RGB to Gray kernel latency (1000 Iterations) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 0.156 2.034 ×10-6 0.064 8.300 ×10-7
640x480 0.656 2.136 ×10-6 0.066 2.14 ×10-7
800x600 0.828 1.725 ×10-6 0.067 1.400 ×10-7

1920x1200 5.172 2.245 ×10-6 0.152 6.500 ×10-8
4096x2160 19.56 2.211 ×10-6 0.631 7.100 ×10-8

Table 6.11: Template match (NCC) kernel latency evaluation on both platforms

(a) Template match (NCC) kernel latency (1 Iteration) evaluation on HP1
 HP1 (Sequential) HP1 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 95.239 1.240 ×10-3 88.159 1.148 ×10-3
640x480 124.650 4.058 ×10-4 104.686 3.401 ×10-4
800x600 135.404 2.821 ×10-4 108.668 2.264 ×10-4

1920x1200 392.359 1.703 ×10-4 233.043 1.012 ×10-4
4096x2160 1400.51 1.583 ×10-4 667.079 7.540 ×10-5

 (b) Template match (NCC) kernel latency (1 Iteration) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 62.458 8.133 ×10-4 46.868 6.103 ×10-4
640x480 140.693 4.580 ×10-4 109.439 3.563 ×10-4
800x600 171.878 3.581 ×10-4 140.623 2.930 ×10-4

1920x1200 890.627 3.866 ×10-4 640.622 2.781 ×10-4
4096x2160 4031.25 4.556 ×10-4 2421.94 2.737 ×10-4

76

The size of the patch is determined through a fixed number assigned by the

developer preferences. To deliver a realistic understanding of parallel NCC efficiency,

different input measurements are used to replicate actual patch sizes from the original

application. Table 6.12 evaluates the parallel NCC on small image patches on both

hardware platforms.

Table 6.12: Parallel (NCC) kernel latency evaluation on both platforms
(a) Parallel (NCC) kernel latency (1000 Iteration) evaluation on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
15x15 0.547 2.433 ×10-3 0.531 2.358 ×10-3
20x20 0.565 1.413 ×10-3 0.544 1.360 ×10-3
25x25 0.583 9.325 ×10-4 0.546 8.729 ×10-4
30x30 0.597 6.639 ×10-4 0.554 6.157 ×10-4
50x50 0.739 2.957 ×10-4 0.629 2.515 ×10-4

 (b) Parallel (NCC) kernel latency (1000 Iteration) evaluation on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
15x15 2.241 9.960 ×10-3 2.210 9.822 ×10-3
20x20 2.410 6.025 ×10-3 2.378 5.945 ×10-3
25x25 2.700 4.320 ×10-3 2.637 4.219 ×10-3
30x30 2.978 3.309 ×10-3 2.916 3.240 ×10-3
50x50 4.058 1.623 ×10-3 3.87 1.548 ×10-3

6.2.1.4 Special purpose kernels
 The only special purpose kernel that is used in the parallel framework is the

Parallel Pyramidal-Lucas-Kanade (PPLK). The evaluation for this kernel is different

from other kernels due to the evaluation of two subsequent frames at a time. One way to

assess the speedup of PPLK is to take the average latency of all tracked subsequent video

frames. The standalone PPLK implementation consists of a feature detector (to detect

best features in a frame) plus a feature tracker. Two parameters can be changed: number

77

of features and input size. Therefore, both parameters are investigated such that changing

the input size will have a fixed number of features, and using various numbers of feature

points while maintaining a constant input size. Table 6.13 presents the PPLK evaluation

on a range of different input sizes with the use of 100 feature points. Table 6.14 shows

the effect of feature number increments on the PLK average latency using fixed input size

(640x480 pixels).

Table 6.13: PLK kernel average latency evaluation on both platforms
(a) PLK kernel average latency of (100 features) evaluated on HP1

 HP1 (Sequential) HP1 (Parallel)
Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 4.187 5.452 ×10-5 2.997 3.902 ×10-5
640x480 7.227 2.353 ×10-5 4.084 1.329 ×10-5
800x600 9.621 2.004 ×10-5 4.875 1.016 ×10-5

1920x1200 34.492 1.497 ×10-5 9.715 4.217 ×10-6
4096x2160 163.151 1.844 ×10-5 47.352 5.352 ×10-6

 (b) PLK kernel average latency of (100 features) evaluated on HP2
 HP2 (Sequential) HP2 (Parallel)

Input Size Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
320x240 8.412 1.095 ×10-4 3.941 5.132 ×10-5
640x480 17.179 5.592 ×10-5 5.058 1.647 ×10-5
800x600 24.005 5.001 ×10-5 5.285 1.101 ×10-5

1920x1200 82.529 3.582 ×10-5 21.292 9.241 ×10-6
4096x2160 294.793 3.332 ×10-5 72.173 8.158 ×10-6

Note that the first frame latency of the parallel PLK implementation involves a

large delay compared to the rest of the frames, which is not seen in the sequential

implementation. This delay is due to the GPU device initialization. Therefore, to ensure

consistent evaluation, the first frame latency is disregarded from the final results.

78

Both of the PLK experiments show positive scalable performance for the parallel

implementation. In this kernel, HP1 performs slightly better in both experiments in terms

of average frame latency due to the efficient hardware components. In Table 6.14, the

sequential implementation latency increases with the increment of the feature points,

while it remains constant in the parallel implementation.

Table 6.14: PLK kernel average latency against number of features on both platforms
(a) PLK kernel average latency against number of features on HP1

I/P:640x480 HP1 (Sequential) HP1 (Parallel)
No. of features Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)

20 4.842 1.576 ×10-5 3.926 1.278 ×10-5
40 5.503 1.791 ×10-5 3.950 1.286 ×10-5
80 6.625 2.157 ×10-5 4.006 1.304 ×10-5
160 8.957 2.916 ×10-5 4.253 1.385 ×10-5
320 13.825 4.501 ×10-5 4.526 1.473 ×10-5

 (b) PLK kernel average latency against number of features on HP2
I/P:640x480 HP2 (Sequential) HP2 (Parallel)

No. of features Latency (ms) Latency per pixel (ms) Latency (ms) Latency per pixel (ms)
20 13.265 4.3.179 ×10-5 4.698 1.5292 ×10-5
40 14.432 4.6.979 ×10-5 4.737 1.5421 ×10-5
80 16.265 5.2.947 ×10-5 4.763 1.5507 ×10-5
160 20.108 6.5.455 ×10-5 4.786 1.5580 ×10-5
320 27.937 9.0.941 ×10-5 4.863 1.5829 ×10-5

6.2.2 Multi-Core CPU

 In this experiment, the power of the multi-core CPU implementation is utilized

through running the implementation in [9] on both hardware platforms with OpenMP

acceleration. This experiment does not include the GPU. In fact, it only exploits repetitive

tasks through utilizing the available CPU cores, thus enhancing the overall application

efficiency. Table 6.15 shows the speedup obtained in this experiment.

79

 As can be seen in the above tables, the first hardware platform achieved

considerable speedup, up to 2.4X, while the second platform remained unchanged.

Although both CPUs have four physical cores, only the Intel processor achieved a

speedup because of the double threading units for each core (i.e. 8 logical cores). From

this experiment, we see that increasing the number of CPU cores is not an efficient way

to provide global speedup, plus the power consumption increases and the CPU is

unavailable to perform other substantial tasks.

Table 6.15: Multi-core CPU experiment evaluation on both platforms
(a) Multi-core CPU experiment evaluation on HP1

Video sample Without OpenMP acceleration
(ms)

With OpenMP acceleration
(ms) Speedup

david 320x240 (761 frame) 77.992 32.913 2.369
jumping 352x288 (313 frame) 82.977 35.724 2.322

motocross 470x210 (100 frame) 38.656 16.535 2.338
pedestrian 320x240 (140 frame) 43.028 17.388 2.475

Average Latency 60.663 25.640 2.366
 (b) Multi-core CPU experiment evaluation on HP2

Video sample Without OpenMP
acceleration (ms)

With OpenMP acceleration
(ms) Speedup

david 320x240 (761 frame) 102.211 95.664 1.068
jumping 352x288 (313 frame) 138.365 135.237 1.023

motocross 470x210 (100 frame) 78.686 73.525 1.07
pedestrian 320x240 (140 frame) 69.044 62.543 1.103

Average Latency 97.077 91.742 1.058

6.2.3 TLD parameters modification
 Some important TLD parameters are set to be optimal for low resolution input

videos such as 320x240 pixels. Due to the input scaling experiments, some characteristics

of the TLD tracker become less efficient. Therefore, suitable parameter selection is

needed to keep the application within acceptable reliability. However, changing these

80

parameters also affords the opportunity to observe more about parallel framework

response. Parameters that can influence TLD efficiency are listed in the Table 6.16.

Table 6.16: TLD parameters those are susceptible to change
Parameter Description Possible values
patch_size image portions dimension (usually square) 15, 20, 25, ...
rect_size patch dimension for the associated feature pt. 10, 11, 12, 13, ...
max_pts maximum number of tracking feature points 10, 16, 20, ...
num_trees number of trees of fern filter 8, 10, 12, ...
num_features number of point in each tree of fern filter 13, 15, ...

6.2.4 Parallel framework learning curve

 After showing the kernel execution latencies for GPU (represented by the term

parallel in the tables) versus CPU (represented by the term sequential in the tables), a

kernel can be embedded inside the application source code with the ability to trigger it for

the most efficient implementation. Despite having positive results for standalone parallel

kernels, global speedup may be different from what is shown Tables 6.3 to 6.14. For

building the complete parallel implementation, the criterion in the previous chapter is

used. Each parallel kernel is compiled aside with its original implementation. At runtime,

the performance profiler will monitor and adjust the kernel selection until the application

reaches optimal results. The application output is monitored to ensure that both methods

produce the same outcome. The following sub-section provides further details.

6.2.4.1 Parallel framework efficiency

 The parallel framework is tested with a range of inputs to verify flawless

operability of the model compared to the original implementation. Table 6.17 shows

81

average frame latency of a 10-second video input with 24 fps rate using various parallel

kernel implementations without using performance profiler.

Table 6.17: Parallel framework average frame latency compared to sequential on HP1
 Readings in (ms) on HP1

Input size Without Kernel RGB Kernel LK Kernel Integral Kernel Gaussian Kernel NCC Kernel
320x240 171.584 123.252 166.664 108.828 125.729 211.578
640x480 176.774 146.247 100.612 254.605 136.466 245.150
720x480 171.652 133.160 119.523 206.519 139.481 249.330

1280x720 325.060 316.672 301.978 642.009 246.752 450.066
1440x1080 715.535 675.815 664.866 1138.175 691.641 782.009
1920x1080 905.269 936.8615 925.088 2510.422 983.034 723.461
3840x2160 800.289 769.193 837.671 1909.568 364.751 379.699

 Table 6.17 shows the gain of each kernel individually. Further, different kernels

have different efficiencies based on the input size, and for the last input size (4K

resolution shaded region) the tracker failed to operate properly due to the object size

(which requires some parameters adjustments to operate normally). To observe the

performance factor decision, Table 6.18 indicates which kernel should be used when

running the application (i.e. parallel kernels with low efficiency will be “turned off”).

Table 6.18: Parallel framework with performance factor learned from measurements
Kernels triggering for HP1

Input size Original (ms) RGB Kernel LK Kernel Integral Kernel Gaussian Kernel NCC Kernel
320x240 171.584 ON ON ON ON OFF
640x480 176.774 ON ON OFF ON OFF
720x480 171.652 ON ON OFF ON OFF

1280x720 325.060 ON ON OFF ON OFF
1440x1080 715.535 ON ON OFF OFF OFF
1920x1080 905.269 OFF OFF OFF OFF ON

82

 The values in Table 6.18 may differ from one hardware platform to another and

from one video type to another. The average frame latency value of the 240 frames is

taken, so the tabulated values can be more precise.

 The next experiment shows the time response while processing incoming frames

from a real-time camera stream. The video dimension is set to (512x512) pixel resolution.

Figure 6.1 depicts the time series of both implementations, original and parallel. The

results are from hardware platform 2, and show that, the self-adapting parallel framework

starts with higher average latency proportional to the original one due to the accelerator

device initialization and improper kernel selection, and then converges nicely as the

parallel framework utilizes the best kernel. The two curves shown in the figure represent

the accumulated average latencies (i.e. the last reading is the average of the entire

previous frame latencies).

Figure 6.1: Parallel framework convergence against original implementation

83

6.2.4.2 Parallel framework parameter variation

 Table 6.16 shows the possible parameter variations. These values if increased,

will improve TLD tracking and detection accuracy. Further, even small increments in

these parameters will directly impact the latency performance of the application (i.e.

more computation is needed). Therefore, to resolve such improvement cost, the self-

adapting parallel framework is tested by varying the parameters shown in Table 6.16. As

an example, increasing the max_pts parameter will increase the number of tracking points

in each frame; as a result, the box alignment (which is based on the tracking points)

becomes more adjusted to the object location in the image, which then generates more

precise results. Another example, increasing the rect_size parameter will expand the grid

size for the initial feature points, so that more points will be examined.

 An experiment is applied to resolve 4k video resolution failure. In this

experiment, the grid size is increased and after each increment, the 4K input video is

tested for operability. Some of the results are recorded in Table 6.19. The speedup

remains constant since the number of feature points are fixed, but the detection

performance is increased due to the increment of the grid density.

Table 6.19: 4k-video tracking experiment
4k-video experiment on HP1

NO. of features Grid size Sequential tracking % Parallel tracking % Tracking latency ratio Speedup
10 16x16 228/240 226/240 87.75/43.73 2.007
10 20x20 227/240 226/240 88.081/43.89 2.007
10 30x30 232/240 228/240 91.16/46.47 1.962

84

6.2.4.3 Optimistic kernels vs. critical kernels

 Most parallel kernels show positive results when tested seperately. Some kernels

achieve significant speedup while others only have a slight speedup. Kernels with low

speedup are considered critical kernels. In other words, since not all frames have the

same computing specifics, it is possible that those kernels will impact negatively on the

entire application. Therefore, to ensure stable performance, a performance factor

threshold is assigned for each kernel (usually when it is less than 20% efficient). The

value of the threshold requires excessive testing and analysis until a premium and

acceptable value is achieved. However, the threshold value is selected by observing the

experiments.

6.2.4.4 Avoiding resonance and critical decisions

To avoid critical decisions while learning the performance factor of kernels

during execution time, decisions can be made after a specific duration (e.g. as long as 10

frames). Abrupt triggering of parallel kernels can cause a severe slowdown of the

application due to the accelerator device initialization and memory transfer path

switching (which sometimes costs the aggregate latency of several frames altogether).

However, these decision checkpoints reduce the overall performance of the application

slightly, which makes the use of passive learning (hard-wire kernel selection) more

preferable, especially when the number of parallel kernels is small.

85

6.3 Analysis and Evaluation

 This section shows graphs of the results, tabulated in the previous section, with a

brief explanation of each. Each kernel is tested on two different hardware platforms, and

on each platform both the CPU and GPU implementation are observed. The efficiency of

each kernel will determine its usage in the TLD application. Furthermore, global speedup

can be achieved only through the use of efficient kernels (optimistic kernels). Other

system parameters can be analyzed such as overall system power consumption and total

hardware utilization. All of these analyses reveal the positive and negative sides of the

parallel framework.

6.3.1 TLD Kernels Speedup and efficiency

 In the previous section, many measurement are provided to evaluate the efficiency

of each designed parallel kernel through comparison with its original implementation

(many of the original kernels use different parallel techniques of CPU utilization like

vectoring, pipelining, SSE, etc.). To show a better view of the results, this section

provides graphs for each table showing the total processing latency of each frame against

its total size, and the processing latency per pixel against the total frame size. Along with

the graphs, speedups of the kernels are also tabulated. The same kernel classification is

used as in the previous section.

6.3.1.1 Reduction based kernels
 This category includes Sum, Square Sum, and Integral kernels. The first two are

used by other kernels, so technically those are not shown explicitly in the parallel

86

framework, and the last one is a crucial part of the detection stage. Table 6.20 shows the

average speedup of each kernel versus input size on two different platforms. Visual

performance plots of Sum, Square Sum, and Integral kernels are shown in Figures 6.2,

6.3 and 6.4 respectively.

Table 6.20: Reduction based kernel speedup on both platforms
 kernel speedup on HP1 kernel speedup on HP2

Input size Sum Square sum Integral Sum Square sum Integral
320x240 7.753 11.241 0.952 2.824 3.411 1.273
640x480 23.805 32.38 0.963 10.839 12.426 5.310
800x600 28.147 39.033 1.073 13.537 16.540 6.527

1920x1200 56.204 78.853 1.778 35.64 38.578 10.375
4096x2160 53.735 75.447 0.932 58.034 68.348 4.547

As can be seen in Figure 6.4, the Integral kernel failed to provide speedup for

most of the inputs on the first hardware platform, while in the second platform it

managed to have up to10x speedup. This behavior is why the efficiency of the parallel

framework can be nondeterministic at least at a fine level. The square Sum kernel has

better performance than the sum kernel; despite the first one consuming more memory.

The GPU performs better than the CPU in terms of parallel processing because the

number of operations of the Square Sum kernel is more than that in the sum kernel

(addition plus multiplication).

6.3.1.2 Window-based kernels speedup and analysis
 The four kernels presented in this category are: Gaussian filter, Gradient filter,

Sobel filter, and image resize. Gaussian filter is implemented for each frame in the TLD,

so its speedup is important as long as the bidirectional image transfer latency of the

device is less than the total computing latency of the CPU.

87

Figure 6.2: Sum kernel results on both hardware platforms

0
10
20
30
40
50
60

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Sum kernel

HP1 (Sequential)

HP1 (Parallel)

0

2

4

6

8

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Sum kernel

HP1 (Sequential)

HP1 (Parallel)

0

50

100

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Sum kernel

HP2 (Sequential)

HP2 (Parallel)

0

5

10

15

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Sum kernel

HP2 (Sequential)

HP2 (Parallel)

88

Figure 6.3: Square Sum kernel results on both hardware platforms

0

20

40

60

80

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Square Sum kernel

HP1 (Sequential)

HP1 (Parallel)

0
2
4
6
8

10

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Square Sum kernel

HP1 (Sequential)

HP1 (Parallel)

0

50

100

150

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Square Sum kernel

HP2 (Sequential)

HP2 (Parallel)

0

5

10

15

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Square Sum kernel

HP2 (Sequential)

HP2 (Parallel)

89

Figure 6.4 Integral kernel results on both hardware platforms

0

20

40

60

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Integral kernel

HP1 (Sequential)

HP1 (Parallel)

0

2

4

6

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Integral kernel

HP1 (Sequential)

HP1 (Parallel)

0

10

20

30

40

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Integral kernel

HP2 (Sequential)

HP2 (Parallel)

0

1

2

3

4

5

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Integral kernel

HP2 (Sequential)

HP2 (Parallel)

90

The Gradient and Sobel filters are parts of PLK, and the image resize kernel is

optional as explained in the previous chapter. The speedup of each is shown in Table 6.21

and the corresponding Figures 6.5 - 6.8.

Table 6.21: Window-based kernel speedup on both platforms
 kernel speedup on HP1 kernel speedup on HP2

Input size Gaussian Gradient Sobel Resize Gaussian Gradient Sobel Resize
320x240 5.020 18.3528 63.748 2.540 7.336 11.201 17.022 3.139
640x480 14.905 69.676 154.638 8.667 21.148 26.751 80.5138 11.932
800x600 14.579 65.927 145.735 11.822 27.038 25.789 93.862 15.8783

1920x1200 15.899 75.917 160.676 36.413 162.75 151.222 562.48 81.400
4096x2160 16.986 79.187 172.778 39.148 588.000 642.857 2232.778 311.600

 As can be observed from the illustrations, the window-based kernels scale as the

input size increases. The second platform performs better for most of the inputs; the

reason behind this divergence is that the CPU in the first platform is more powerful than

the second, which might directly affect speedup compatibility. Also, the number of

streaming processors in the second platform GPU is more than the first platform GPU.

6.3.1.3 Pixel based kernels speedup and analysis
 This category includes two main kernels, RGB to grayscale conversion and

template matching or NCC. The speedups are tabulated in the Table 6.22. The

corresponding graphs are shown in Figures 6.9 - 6.10.

Table 6.22: Pixel based kernel speedup on both platforms
kernel speedup on HP1 kernel speedup on HP2

Input size RGB2GRAY Input size NCC Input size RGB2GRAY Input size NCC
320x240 6.397 15x15 1.032 320x240 2.451 15x15 1.014

640x480 19.921 20x20 1.038 640x480 9.981 20x20 1.013

800x600 22.280 25x25 1.068 800x600 12.321 25x25 1.023

1920x1200 31.891 30x30 1.078 1920x1200 34.538 30x30 1.021

4096x2160 33.639 50x50 1.175 4096x2160 31.141 50x50 1.048

91

 Figure 6.5: Gaussian filter kernel results on both hardware platforms

0

10

20

30

40

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Gaussian Filter kernel

HP1 (Sequential)

HP1 (Parallel)

0

1

2

3

4

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Gaussian Filter kernel

HP1 (Sequential)

HP1 (Parallel)

0
10
20
30
40
50

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Gaussian Filter kernel

HP2 (Sequential)

HP2 (Parallel)

0

1

2

3

4

5

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Gaussian Filter kernel

HP2 (Sequential)

HP2 (Parallel)

92

Figure 6.6: Gradient kernel results on both hardware platforms

0

50

100

150

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Gradient kernel

HP1 (Sequential)

HP1 (Parallel)

0

5

10

15

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Gradient kernel

HP1 (Sequential)

HP1 (Parallel)

0

50

100

150

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Gradient kernel

HP2 (Sequential)

HP2 (Parallel)

0

5

10

15

20

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Gradient kernel

HP2 (Sequential)

HP2 (Parallel)

93

Figure 6.7: Sobel Kernel results on both hardware platforms

0

100

200

300

400

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Sobel kernel

HP1 (Sequential)

HP1 (Parallel)

0

10

20

30

40

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Sobel kernel

HP1 (Sequential)

HP1 (Parallel)

0

100

200

300

400

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Sobel kernel

HP2 (Sequential)

HP2 (Parallel)

0

10

20

30

40

50

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Sobel kernel

HP2 (Sequential)

HP2 (Parallel)

94

Figure 6.8: Resize kernel results on both platforms

0
2
4
6
8

10

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Resize kernel

HP1 (Sequential)

HP1 (Parallel)

0

0.5

1

1.5

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Resize kernel

HP1 (Sequential)

HP1 (Parallel)

0

5

10

15

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

Resize kernel

HP2 (Sequential)

HP2 (Parallel)

0

0.5

1

1.5

2

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

Resize kernel

HP2 (Sequential)

HP2 (Parallel)

95

Figure 6.9: RGB2GRAY kernel results on both hardware platforms

0

5

10

15

20

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

RGB2GRAY kernel

HP1 (Sequential)

HP1 (Parallel)

0

1

2

3

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)
 RGB2GRAY kernel

HP1 (Sequential)

HP1 (Parallel)

0

10

20

30

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

RGB2GRAY kernel

HP2 (Sequential)

HP2 (Parallel)

0

0.5

1

1.5

2

2.5

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

RGB2GRAY kernel

HP2 (Sequential)

HP2 (Parallel)

96

Figure 6.10: NCC kernel results on both hardware platforms

0

0.2

0.4

0.6

0.8

15x15 20x20 25x25 30x30 50x50

La
te

nc
y

(m
s)

NCC kernel

HP1 (Sequential)

HP1 (Parallel)

0

1000

2000

3000

15x15 20x20 25x25 30x30 50x50La
te

nc
y

pe
r p

ix
el

 (n
se

c)

NCC kernel

HP1 (Sequential)

HP1 (Parallel)

0

1

2

3

4

5

15x15 20x20 25x25 30x30 50x50

La
te

nc
y

(m
s)

NCC kernel

HP2 (Sequential)

HP2 (Parallel)

0
2000
4000
6000
8000

10000
12000

15x15 20x20 25x25 30x30 50x50

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

NCC kernel

HP2 (Sequential)

HP2 (Parallel)

97

The first kernel, RGB2GRAY, has shown considerable speedup, while the NCC

kernel performed poorly on both hardware platforms. NCC is used for small input sizes,

so parallelizing it does not yield a performance improvement.

Another way to parallelize NCC is to use each computing unit for calculating a

distinct NCC, since image patches are not dependent on each other at this level. Once

again, the number of NCC calculations is not numerous in TLD situation, therefore the

NCC kernel is kept inactive for the parallel framework, at least for the two hardware

platforms in this research.

6.3.1.2 Special purpose based kernels speedup and analysis
 The only special purpose kernel used in the model is PLK, which includes Sobel

and gradient filter. Two experiments are conducted for this kernel, since it is the most

important kernel in the parallel framework (it occupies almost all the tracking stage). The

speedup from each experiment is shown in Table 6.23. Corresponding plots of the results

are shown in Figures 6.11 and 6.12. PLK becomes a very promising kernel of the parallel

framework when the number of tracking points is increased. Both hardware show

positive results and it scales better as the input size increases.

 Table 6.23: PLK kernel speedup on both platforms
kernel speedup on HP1 kernel speedup on HP2

Input size PLK vs. size Input size PLK vs.
features Input size PLK vs. size Input size PLK vs.

features
320x240 1.397 20 1.233 320x240 2.134 20 2.824
640x480 1.770 40 1.393 640x480 3.396 40 3.046
800x600 1.973 80 1.654 800x600 4.542 80 3.414

1920x1200 3.550 160 2.106 1920x1200 3.876 160 4.201
4096x2160 3.446 320 3.055 4096x2160 4.084 320 5.745

98

6.3.2 Global speedup and efficiency

 Global speedup is highly dependent on the input data size and the hardware

platform. Figure 6.1 shows how the system converges and stabilizes. The global speedup

shown in the figure is about 1.6X, which is not as high as observed in the individual

parallel kernels. There are many reasons for this speedup shortage. First, not all TLD

components are implemented in parallel, which keeps the majority of the application

kernels in their original form; second, some parallel kernels are not used in the parallel

framework because of their low efficiency expectation due to the accelerator hardware

limitations (host CPU is far more capable than the device GPU for executing these

kernels); third, memory transfer overhead plays a major role in the overall performance.

6.3.3 Power consumption

 Power consumption is becoming an important factor in limiting high-performance

computing capabilities. In this thesis, power consumption is not measured per device due

to the unavailability of power measurement utilities in these devices. Instead, a basic

analysis of the benchmarking data provided by the vendors, which is listed in Tables 6.1

and 6.2, is used to estimate power consumption. The first hardware platform has larger

power consumption profile proportional to the second one, due to the mobile technology

of the laptop computing devices. Although both showed comparable results, the predicted

consumed power in HP2 is much less than HP1. In heterogeneous computing, increased

power consumption can be justified only if execution time of the system is much less

than the non-heterogeneous method (CPU only).

99

Figure 6.11: PLK kernel results against input size on both hardware platforms

0

50

100

150

200

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

PLK kernel

HP1 (Sequential)

HP1 (Parallel)

0

20

40

60

320x240 640x480 800x600 1920x1200 4096x2160La
te

nc
y

pe
r p

ix
el

 (n
se

c)

PLK kernel

HP1 (Sequential)

HP1 (Parallel)

0

100

200

300

400

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

(m
s)

PLK kernel

HP2 (Sequential)

HP2 (Parallel)

0
20
40
60
80

100
120

320x240 640x480 800x600 1920x1200 4096x2160

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

PLK kernel

HP2 (Sequential)

HP2 (Parallel)

100

Figure 6.12: PLK numbers of features test on both hardware platforms

0

5

10

15

20 40 80 160 320

La
te

nc
y

(m
s)

PLK feature test kernel

HP1 (Sequential)

HP1 (Parallel)

0
10
20
30
40
50

20 40 80 160 320

La
te

nc
y

pe
r p

ix
el

 (n
se

c)

PLK feature test kernel

HP1 (Sequential)

HP1 (Parallel)

0

10

20

30

20 40 80 160 320

La
te

nc
y

(m
s)

PLK feature test kernel

HP2 (Sequential)

HP2 (Parallel)

0

20

40

60

80

100

20 40 80 160 320La
te

nc
y

pe
r p

ix
el

 (n
se

c)

PLK feature test kernel

HP2 (Sequential)

HP2 (Parallel)

101

6.3.4 Self-adapting parallel framework: benefits and drawbacks

To conclude this chapter, major advantages and disadvantages of the parallel

framework are discussed. First, the parallel framework is built for portability, in other

words, not all of the inherent parallelism in the TLD algorithm was exploited because

TLD is considered a case study for the parallel framework. Therefore, some methods

presented in the literature review can only be used to accelerate TLD algorithm.

Therefore, their design is not applicable to other object tracking methods. The approach

in this research focuses on the reusability of the kernels and portability to any other video

or image processing algorithm, especially those utilizing object tracking. The main

drawback of the parallel framework in this research is that it is not optimized specifically

for the TLD algorithm, despite the numerous deep analyses that were conducted.

The main advantages of this implementation compared to the literature are:

● The model is portable and flexible. All parallel components are independent

modules, which can be easily exported to other systems.

● The main focus when building this model was the ability to use it on various

hardware platforms. While other methods can be implemented only on a single

kind of GPGPU, generally speaking, those that can support CUDA.

● The model can be easily ported to OpenCL embedded devices.

● The model is tested with a wide range of video inputs in terms of size (from

QVGA up to 4k resolution) and purpose, while the examples introduced in the

literature are limited.

102

● The model is tested on two different hardware platforms with computing devices

from various vendors such as: Intel, Nvidia and AMD. The results presented in

the literature use single hardware platform assessment, which make the results

less credible.

● The tracking stage of the TLD algorithm is widely explored and evaluated, while

other parallel implementations, the algorithm remained unchanged.

6.4 Summary

 In this chapter, actual hardware specifications are selected and described, and the

results with the analyses are presented with respect to the parallel framework

components. Moreover, the model pros and cons are discussed coherently with the

literature review cited in Chapter 2. The next chapter concludes the thesis research work

by expressing substantial points that are observed and potential suggestions that can assist

future research.

103

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter highlights the main accomplishments of this research and it

concludes with important observations and technical contributions acquainted throughout

building the self-adapting parallel framework for long-term object tracking. Moreover, it

pinpoints the unexplored parts and further possible optimizations that are left for future

work.

7.1 Conclusions

Object tracking is not a new research topic, however long-term tracking has been

recently introduced and yet, it is not optimized to efficiently utilize computational units

and to provide fine accuracy results. The efforts in this research of building this thesis

were to build a proper model that uses heterogeneous computing devices in a real-world

application. The results clearly show that small video sizes can be easily implemented

with the proposed model, albeit it is designed to perform better on scalable inputs.

However, some TLD components show that pushing the input size toward HD quality or

more, or say multiple video inputs, will require increasing the computational resources

exponentially and not linearly. To overcome this issue we proposed a heterogeneous

model. The model alleviates the global performance through using the best combination

of hardware computing units, and endures the changes of application parameters and

other extrinsic factors. The contributions of this thesis can be summarized as follows:

104

1. Deep study for the most time-consuming stages of TLD is obtained and a self-

adapting parallel framework is designed to overcome the compute intensive

stages.

2. OpenCL is an evolving environment for exploiting parallelism in various

algorithms. It provides wide portability among different device platforms and

vendors. The only matter that makes it unpopular among programmers is its

complexity and it involves many steps to implement a simple kernel. As a result,

A C-based library is built to minimize such complications through programming

functions and subroutines to easily facilitate OpenCL operation.

3. Memory transfer latency is still an issue limiting the overall speedup. However,

such latency can be compensated for, through computing speedup provided by the

accelerating devices and using cutting edge communication peripherals such as

PCI Express 3.0 or better.

4. Speedup obtained varies between 1.1X to 2.4X for the OpenMP implementations,

considering only small inputs.

5. Large inputs will impact the overall speedup because of the limited speed of local

storage (limited amount of fast memory). Therefore, video inputs with HD quality

and higher can be an obstacle for processing at the same input rate (frame-per-

second).

6. For relatively small inputs the speedup for kernels is minimal, but it scales very

nicely for large inputs and we get a range of speedup depending on the kernel

type.

105

7. The learning algorithm in parallel framework achieved good results for selecting

best kernels based on the current application specifications.

8. The global speedup is primarily dependent on the hardware used, and secondarily

on the nature of the tracked object. For an average, the global speedup was 1.6X.

7.2 Future work

The expectations for parallel implementations will soon prevail not only on

heterogeneous computer systems but also on embedded devices such as smartphones,

robots, drones, etc. Recent smartphones are equipped with various APIs like OpenCL that

facilitate the utilization of multiple computing units on the same device. Lastly, there are

some issues to consider for the future work:

1. Attempting real-time implementation will require further optimization of the

parallel segments; possibly more efficient device architectures are required.

2. Real-time implementation coupled with video streaming for enhanced security or

object tracking needs.

3. Parallelization is expanding into more platforms. Mobile computing and

companies such as Qualcomm are designing SDKs for mobile development using

parallel computing.

4. Development of the parallel algorithm for FPGAs and other devices such as

drones, small robots and other image processors.

5. The same parallel modules can be used for other image processing applications.

The filters parallelized and conversions in this research can be applied to other

106

image processing operations such as image segmentation, edge detection, stereo

matching and other computer vision requirements.

6. The TLD algorithm is still new and under continued development. Newer

versions could be further analyzed for new parallel exploitation.

7. Multi GPU devices can be an interesting direction for real-time applications.

8. OpenCL version 2.0 has many new features, which are worthy to explore and

enhance the self-adapting parallel framework efficiency.

107

REFERENCES

[1] R. Tsuchiyama, T. Nakamura, T. Lizuka, A. Asahara, J. Son, and S. Miki, “The
OpenCL programming,” revisied for OpenCL 1.2, 2012.

[2] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,” IEEE
transctions on pattern analysis and machine intelligence, vol. 34, No. 7, July 2012.

[3] Z. Ping, S. Youngqi, W. Yali, and Z. Rui, “A Parallel Implementation of TLD
Algorithm using CUDA,” ICWMMN2013 Proceedings, p. 220-224. 2013.

[4] S.A. Mahmoudi, M. Kierzynka, P. Manneback, and K. Kurowski, “Real-time motion
tracking using optical flow on multiple GPUs,” Bulletin of the Polish Academy of
Sciences, Technical sciences, vol., no., pp. 62,1,139-150 2014.

[5] J. Jin, A. Dundar, J. Bates, C. Farabet, and E. Culuciello, “Tracking with Deep Neural
Networks,” Information Sciences and Systems (CISS), 2013 47th Annal Conference on,
vol., no., pp.1,5,20-22 March 2013.

[6] G. Nebehay, “Robust Object Tracking Based on Tracking-Learning-Detection”,
M.S.thesis, Faculty of Informatics, Technical University of Wien, Vienna, May 2012.

[7] L. Liu, “TLD: Track Learn Detect,” [Online]. Available: http://libccv.org/doc/doc-tld/

[8] R. Chauvin, “ROS OpenTLD,” [Online]. Available: https://github.com/Ronan0912
/ros_opentld/

[9] C. Lutz, and T. Engesser, “MOTLD: Multi-Object tracking using TLD,” [Online].
Available: https://github.com/evilsantabot/motld/

[10] CUDA, NVIDIA, [Online]. Available:
http://www.nvidia.com/object/cuda_home_new.html

[11] Advanced Micro Devices, Inc. “AMD Accelerated Parallel Processing OPENCL
Programming Guide,” rev., p., 2.7,37 2013.

[12] M. Feldman, “OpenCL Gains Ground on CUDA,” HPCwire, Tabor
Communications, Inc. February 28, 2012. [Online]. Available:
http://www.hpcwire.com/2012/02/28/opencl_gains_ground_on_cuda/

108

[13] G. Khanna, and J. McKennon, “Numerical modeling of gravitational wave sources
accelerated by OpenCL,” Computer Physics Communications, vol., no., pp., 181,9,1605-
1611 September 2010, ISSN 0010-4655.

[14] AccelerEyes. GPU Software Maker Company, [Online]. Available:
http://arrayfire.com/welcome/

[15] “Accelerated Computing Guide,” [Online]. Available:
https://www.olcf.ornl.gov/support/system-user-guides/accelerated-computing-guide/

[16] K. Karimi, et al. “A Performance Comparison of CUDA and OpenCL”, May 2011,
[Online]. Available: http://arxiv.org/abs/1005.2581

[17] J. Fang, A.L Varbanescu, and H. Sips, "A Comprehensive Performance Comparison
of CUDA and OpenCL," Parallel Processing (ICPP), 2011 International Conference on,
vol., no., pp.216, 225, 13-16 September 2011.

[18] KHRONOS Group, “The open standard for parallel programming of heterogeneous
systems,” [Online]. Available: https://www.khronos.org/opencl/

[19] A. Klöckner. “CUDA vs OpenCL: Which should I use?,” [Online]. Available:
http://wiki.tiker.net/CudaVsOpenCL,

[20] B. D. Lucas and T. Kanade. “An iterative image registration technique with an
application to stereo vision,” In Proceedings of the International Joint Conference on
Artificial Intelligence, vol., pp., 2,674-679 1981.

[21] C. de Souza, “Haar-feature Object Detection in C#,” Codeproject article, December
02, 2014. http://www.codeproject.com/Articles/441226/Haar-feature-Object-Detection-
in-Csharp?fid=1765507

 [22] Z. Kalal, K. Mikolajczyk, and J. Matas. “Forward-Backward Error: Automatic
Detection of Tracking Failures,” In International Conference on Pattern Recognition, pp.
2756-2759 August 2010.

[23] G. Bradski and A. Kaehler. “Learning OpenCV: Computer Vision with the OpenCV
Library,” Ch. 10, p. 324. 2008.

[24] I. Gurcan, “Hybrid CPU-GPU Implementation of Tracking-Learning-Detection
Algorithm,” M.S. thesis, School of Informatics, Middle East Technical University,
Ankara, Turkey, September 2014.

109

[25] B. Chapman, G. Jost, and R. Van der Pas, “Using OpenMP: Portable Shared
Memory Parallel Programming,” Book title, Boston, Massachusetts, MIT, October 2007.

[26] Arthurv, “OpenTLD,” [Online]. Available: https://github.com/arthurv/OpenTLD

[27] Kalal, Z.; Matas, J.; Mikolajczyk, K., "P-N learning: Bootstrapping binary classifiers
by structural constraints," Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference, vol., no., pp.49,56, 13-18 June 2010

[28] A. Kaminsky, “BIG CPU, BIG DATA: Solving the World's Toughest
Computational Problems with Parallel Computing,” Book title, Computer science
department, Rochester Institute of Technology, 2015.

[29] B. Catanzaro, “OpenCL Optimization Case Study: Simple Reductions,” AMD
developer Center, 24 August 2010. [Online]. Available:
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-
optimization-case-study-simple-reductions/

[30] AMD. “Tiled Convolution: Fast Image Filtering,” Developer guide, 2014. [Online].
Available: http://developer.amd.com/resources/documentation-articles/articles-
whitepapers/tiled-convolution-fast-image-filtering/

[31] J. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature Tracker
Description of the algorithm,” [Online]. Available:
http://robots.stanford.edu/cs223b04/algo_tracking.pdf

[32] G. Stockman and L. G. Shapiro. “Computer Vision,” first ed.. Prentice Hall PTR,
Upper Saddle River, NJ, USA. 2001. Chapter 5- Page 166.

[33] B. Bilgic, B.K.P. Horn, and I. Masaki, "Efficient integral image computation on the
GPU," Intelligent Vehicles Symposium (IV), 2010 IEEE, pp.528-533, 21-24 June 2010.

[34] M. Bhuiyan, “Performance Analysis and Fitness of GP-GPU and Multicore
Architectures for Scientific Applications,” PHD dissertation, College of Engineering and
Science, Clemson University, Clemson, SC, December 2011.

[35] K. Pallipuram, “Exploring Multiple Levels of Performance Modeling for
Heterogeneous Systems,” PHD dissertation, College of Engineering and Science,
Clemson University, Clemson, SC, December 2013.

110

	Clemson University
	TigerPrints
	8-2015

	SELF-ADAPTING PARALLEL FRAMEWORK FOR LONG-TERM OBJECT TRACKING
	Salim Mohammed Ali
	Recommended Citation

	Title Page
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	RELATED WORK
	2.1 TLD Algorithm
	2.2 TLD in CUDA
	2.3 Hybrid CPU-GPU implementation of TLD
	2.4 Motion tracking on Multi GPUs
	2.5 Motion tracking using Deep Learning
	2.6 Summary

	CHAPTER 3
	BACKGROUND
	3.1 OpenCL Environment
	3.2 OpenCL vs. CUDA
	3.2.1 CUDA as GPU interface
	3.2.2 OpenCL as a parallel interface

	3.3 OpenMP API
	3.4 TLD Application
	3.4.1 Tracking
	3.4.2 Detection
	3.4.3 Learning

	3.5 Summary

	CHAPTER 4
	ANALYSIS
	4.1 TLD Latency Analysis
	4.2 TLD Algorithm Analysis
	4.2.1 Tracking algorithms
	4.2.2 Detection algorithms
	4.2.3 Learning algorithms
	4.2.4 Other algorithms
	4.2.5 Analysis conclusion

	4.3 Summary

	CHAPTER 5
	DESIGN AND IMPLEMENTATION
	5.1 Parallel Framework Methodology
	5.1.1 Example: RGB to Grey level Conversion Kernel in OpenCL

	5.2 Parallel Framework Design
	5.2.1 Parallel algorithms design
	5.2.1.1 Reduction based kernels
	5.2.1.2 Window-based kernels
	5.2.1.3 Pixel based kernels
	5.2.1.4 Special purpose kernels

	5.2.2 Parallel framework design for long-term tracking
	5.2.2.1 TLD data flow
	5.2.2.2 TLD parallel framework
	5.2.2.2.1 Preprocessing stage
	5.2.2.2.2 Tracking stage
	5.2.2.2.3 Detection stage

	5.3 Implementation
	5.3.1 Hardware specifications: reasons of choice
	5.3.2 Multi-core CPU implementation
	5.3.3 GPGPU implementation as an accelerator
	5.3.4 Multi-input and network streamed video implementation

	5.4 Summary

	CHAPTER 6
	RESULTS AND EVALUATIONS
	6.1 Hardware Specifications
	6.2 Experiments and Results
	6.2.1 Parallel kernels assessment
	6.2.1.1 Reduction based kernels performance evaluation
	6.2.1.1.1 Sum, Average and Square Sum
	6.2.1.1.2 Integral Sum and Square Sum

	6.2.1.2 Window-based kernels
	6.2.1.3 Pixel-based kernels performance evaluation
	6.2.1.4 Special purpose kernels

	6.2.2 Multi-Core CPU
	6.2.3 TLD parameters modification
	6.2.4 Parallel framework learning curve
	6.2.4.1 Parallel framework efficiency
	6.2.4.2 Parallel framework parameter variation
	6.2.4.3 Optimistic kernels vs. critical kernels
	6.2.4.4 Avoiding resonance and critical decisions

	6.3 Analysis and Evaluation
	6.3.1 TLD Kernels Speedup and efficiency
	6.3.1.1 Reduction based kernels
	6.3.1.2 Window-based kernels speedup and analysis
	6.3.1.3 Pixel based kernels speedup and analysis
	6.3.1.2 Special purpose based kernels speedup and analysis

	6.3.2 Global speedup and efficiency
	6.3.3 Power consumption
	6.3.4 Self-adapting parallel framework: benefits and drawbacks

	6.4 Summary

	CHAPTER 7
	CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future work

	REFERENCES

