
Clemson University
TigerPrints

All Theses Theses

5-2015

Artist-Oriented Surfacing Workflow
Virginia Bailey Nearing
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Art and Design Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Nearing, Virginia Bailey, "Artist-Oriented Surfacing Workflow" (2015). All Theses. 2167.
https://tigerprints.clemson.edu/all_theses/2167

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1049?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2167?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Artist-Oriented Surfacing Workflow

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Fine Arts

Digital Production Arts

by

Virginia Bailey Nearing

May 2015

Accepted by:

Dr. Jerry Tessendorf, Committee Chair

Dr. Robert Geist

Dr. Timothy Davis

Abstract

Surfacing is the art of creating materials for digital objects, and it is an incredible technical

and artistic challenge. Creating materials and textures for 3D meshes involves managing potentially

hundreds of image files, moving data between multiple software packages, and building shaders that

will work consistently through a digital production hierarchy. All while attempting to create a

piece of art that will tell a story of what an object is, how it was made, and where it has been.

Balancing these technical and artistic components is an extraordinary challenge, and it is easy for

an artist to get overwhelmed or distracted by the technical demands of surfacing at the cost of the

quality of their art. The topic of this thesis is a suite of tools designed to allow artists to intuitively

manage these technical demands by streamlining the most time-consuming aspects of surfacing into

condensed one-click operations.

ii

Acknowledgments

I would like to thank my family, Nancy, Steve, and Elizabeth for their unconditional love and

support. Thank you to my friends for their constant encouragement and humor, especially Mandy,

Ben, Anna, Kristen, and Sarah. And to my undergraduate advisors, Dr. Lindsay Jamieson and

Dr. Alan Jamieson, for encouraging me to apply to the Digital Production Arts Program, for their

mentorship, and their friendship. Finally, I would like to thank my advisor, Dr. Jerry Tessendorf,

and my committee, Dr. Robert Geist and Dr. Timothy Davis for their instruction and guidance

throughout my time at Clemson.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Tables . v

List of Figures . vi

1 Introduction . 1

2 Background . 12
2.1 Autodesk Maya . 13
2.2 Foundry’s Mari . 15
2.3 Initial Workflow . 17

3 Design and Implementation . 21
3.1 OBJ Export . 21
3.2 Create Mari Project . 22
3.3 Mari Export . 23
3.4 Shader Creation . 24

4 Results . 31
4.1 Recommendations for future work . 36

Bibliography . 37

iv

List of Tables

2.1 Surfacing assets for Peanut Butter Jelly’s cannon . 18
2.2 Surfacing assets for Peanut Butter Jelly’s Flyboy gang members 19
2.3 Surfacing assets for Peanut Butter Jelly’s Hero Flyboy 20
2.4 Surfacing assets for Peanut Butter Jelly’s Pirate Captain 20

4.1 Surfacing assets in various productions . 33

v

List of Figures

1.1 Surfacing Iterations for Alien Oasis . 3
1.2 Alien Oasis Completed Frame . 4
1.3 Blinn Shader Options . 5
1.4 Blinn Shader Options . 6
1.5 An ideal production pipeline . 8
1.6 A more realistic production pipeline. Courtesy of Dr. Tessendorf[7] 9
1.7 Asset dependency graph for a single shot of Life of Pi. Courtesy of Dr. Tessendorf[7] 10
1.8 An example of the surfacing workflow as it fits in the production pipeline 10
1.9 Implementation of the DPA surfacing pipeline, in which the data between workflows

is connected using the tools discussed in this thesis. 11

2.1 Maya’s Hypershade Window . 14
2.2 Mari GUI . 16

3.1 Create New Mari Project Windows . 22
3.2 First Generation Mari Export Panel . 23
3.3 Maya Shader Generation GUI . 25
3.4 An example of the generated node network . 26
3.5 Maya Shader Generation GUI, showing how users selects maps to be used in their

generated shader network . 28

4.1 Final Frames . 32
4.2 Alien Oasis Surfacing . 34

vi

Chapter 1

Introduction

The art of texturing digital objects is a fundamental design process in computer graphics.

Whether it is for creating a photo-realistic digital object to fit into a live action scene, or creating a

fully animated digital film, the artistic choices and quality of the surfacing are critical to the look

and impact of the final frame. In order to meet the artistic needs of this technical and complex

work, surfacing artists can benefit greatly from a workflow that allows them to focus on their art

and design, rather than on repetitive, tedious actions that can be automated.

While an artist’s skill is not defined by the quality or complexity of the tools at their disposal

- the right set of tools can give the artist the freedom to create more sophisticated work. Having

the right tools enables artists to spend their time refining their work and honing in on their artistic

vision. Modern productions are massive operations with many artists, many objects, and chaotic

deadlines. In this situation the artist’s tool kit is every bit as critical as a well prepared canvas. A

well developed workflow and tools can give artists the freedom to spend their time on improving

their craft, rather than fighting the package or process.

To design and implement a toolset that gives artists this kind of freedom one must under-

stand the medium and the art. Artists in any medium have a workflow, or a set of steps they take

to help construct a creative environment. Painters keep their paintbrushes located in a comfortable

location so they don’t have to think when they reach for them. Canvases are framed, stretched, and

primed. Particular paints are selected for their material properties. As digital artists we create and

manipulate our environments as well: windows are positioned in specific locations on the screen, we

have our favorite digital brushes, our files are stored and named according to personal or production

1

preferences. Many of these habits will vary from artist to artist in digital and traditional media.

Such as what brushes they prefer or how their tools are visually arranged. And some of these things

will be the same across a studio - where old paints are disposed of, where the solvent is stored,

procedures for ventilation. By understanding these routines as an artist we can build more intuitive

tools.

Without a well designed workflow, texture artists will spend the majority of their time

manually saving files and building shading networks. When working with complex objects this can

become extremely tedious and repetitive, leaving the work prone to human error such as overwriting

files, saving to the wrong location, inconsistent naming conventions, and bad file permissions. At

the least, this makes it challenging to have multiple artists working on an object, and at the worst

can completely break renders.

To manage the technical process of a surfacing workflow across a production one solution

is to give the artist a set of tools that distances them from the actual file system. This enables

artists more time to focus on their art. By automatically generating names, file paths, permissions,

and settings, we can reduce human error significantly and ensure consistency across multiple artists.

We can further improve the artists productivity by identifying other repetitive tasks such as shader

network generation and transferring objects between graphics packages. The less time an artist

spends interacting with the files, file system, and shader networks, the more time they will be able

to spend focused on the materials of the object. This enables more iterations of texturing, which

in turn means more refined texturing. Figure 1.1 shows how dramatically iterations of textures can

improve the quality of surfacing, and figure 1.2 shows the impact that the quality of the surfacing

has on a completed frame.

In order for artists to communicate critiques and goals to each other, it is important for us

to use a common language. This helps to troubleshoot tools, and to communicate their technical

needs.

When surfacing an object, the shader is the center of the artist’s attention. A shader defines

how the surface of a mesh will look when rendered. It calculates how the light bounces off the object

and what color it will be when it reaches the camera. Artists use several attributes to manipulate

the shader to achieve their artistic intent.

Some common attribute types include diffuse, specular, bump, and displacement. Diffuse

attributes relate to the basic color of a material - what it looks like without any reflection, refraction,

2

(a) Early iteration - metallic arm and black hand-pads

(b) In progress - arm changed to plastic, and pads white for visibility

(c) Final iteration - hand pads and arm worn down and roughed up from use

Figure 1.1: Surfacing Iterations for Alien Oasis

3

Figure 1.2: Alien Oasis Completed Frame

or shadow. Specular attributes control how the light bounces off of the material to create the shiny

glint on an object that helps to visually define it’s 3D form for an artist. Bump and displacement

perform similar functions in that they alter the surface structure of an object, warping the surface

of the geometry without additional modeling. The difference between them is that bump attributes

do not actually distort the mesh, they just tweak the calculation of how the light reflects from

the surface, giving the appearance of variations in highlights where there would normally be a flat

surface. The result is that the silhouette of the geometry is unchanged. Displacement distorts the

geometry, affecting the silhouette, and generating shadows.

Each of these attributes are defined by many variables. The simplest is diffuse because the

artist only needs to define a color and intensity. Specular properties vary dramatically based off of

the equations being used. For example, in a Blinn shader in Maya the artist has control over the

specular fall off, eccentricity, and color as shown in figures 1.3. Figure 1.4 shows the variations of

the fall off and eccentricity values: the top row shows eccentricity values of 0.1, 0.3, and 0.7, the

lower row shows roll off values of 0.3, 0.7, and 0.9[2].

4

Figure 1.3: Blinn Shader Options

5

(a) Eccentricity = 0.1 (b) Eccentricity = 0.3 (c) Eccentricity = 0.7

(d) Roll Off = 0.3 (e) Roll Off = 0.7 (f) Roll Off = 0.9

Figure 1.4: Blinn Shader Options

The majority of these variables can be controlled either with static input - such as a numer-

ical value or a color - or with variable input. Variable input can come in the form of procedural or

painted textures, where the input is determined by the value of a pixel on the texture. Procedural

textures are generated programmatically, and painted textures are created using photographs or

manually created images.

Choosing what pixel in the texture input affects which vertex or face on the geometry is

called mapping, and it can be done programmatically or using UV coordinates on the geometry. UV

mapping is the act of mapping a 3D object onto a 2D plane in which U and V denote the axis of the

2D plane. It is used by surfacing and modeling artists to determine how the pixels of the 2D image

will be rendered on each vertex of a 3D object.

The production pipeline is the sequence of processes a production goes through from the

initial concepts to the final cut of the film. This pipeline is divided into three major stages: pre-

production, production, and post-production. Pre-production largely consists of design work and

research, and is where the core story is developed. It is also where some early research is done on

a small scale to ensure the ideas are technically achievable. Production is where a team of artists

create the content seen on the screen: CG models, effects, lighting, animation, and texturing are all

6

done in production. The post-production stage is is where all the content generated in production

is assembled and any final edits or color correction is done.

Within each major stage of the production pipeline there several departments called work-

flows such as: modeling, surfacing, rigging, animation, lighting, and effects. Each of these workflow

areas contain work items and assets. Work items are the files used to create content such as Au-

todesk Maya files for modeling, rigging, and animation or Houdini files for effects work. Assets, also

known as products, are the files generated by the artist that are used elsewhere in the pipeline such

as texture map image files, shader networks, geometry caches, or rendered frames.

To push data from one workflow to the next we use a publish and subscribe system. When

artists are ready for their work to be used down the pipeline they will publish it, then the next

workfow can subscribe to the necessary data. For example, when modelers are ready to pass their

work down to the surfacer and rigger they will publish the Maya file or the mesh as a geometry

cache. The surfacer sees published work that is available for them to subscribe to and work with.

Ideally data will flow smoothly from one stage in the pipeline to the next as shown in figure 1.5.

However in practice the pipeline function is described in figure 1.6. Figure 1.7 shows the pipeline in

action on a single shot of Life of Pi and the extraordinary quantity of data that the system needs

to manage. Both artists and tools must be flexible enough to function in semi-organized chaos.

For the purposes of this thesis, we focus on the surfacing workflow in the pipeline. Figure

1.8 shows the data flow within surfacing, as well as with other adjacent stages of production. Figure

1.9 shows how the tools described in this thesis facilitate the practical flow of surfacing data through

the pipeline. The four tools shown are the OBJ Export, DPA Create Project, DPA Export, and

Generate Shaders. The OBJ Export publishes data from modeling for access in other workflows. The

DPA Create Project subscribes to that OBJ data within the surfacing workflow and sets up a new

Mari project for the artist. The DPA Export tool publishes painted texture files for other working

files and workflows to access. And finally the Generate Shaders tool subscribes to the texture files

and creates shader node networks within Maya for the artist.

Determining how successful a surfacing workflow is for artists is challenging. The most useful

indicators in the current Digital Production Arts studio are the consistency of naming conventions,

the quantity of surfacing assets generated, the number of iterations or versions created for each map,

and a visual assessment of the quality and evolution of the surfacing.

7

Figure 1.5: An ideal production pipeline

8

Figure 1.6: A more realistic production pipeline. Courtesy of Dr. Tessendorf[7]

9

Figure 1.7: Asset dependency graph for a single shot of Life of Pi. Courtesy of Dr. Tessendorf[7]

Figure 1.8: An example of the surfacing workflow as it fits in the production pipeline

10

Figure 1.9: Implementation of the DPA surfacing pipeline, in which the data between workflows is
connected using the tools discussed in this thesis.

This thesis explains how the surfacing pipeline within the Digital Production Arts studio

was designed with these artistic concerns in mind. Chapter 2 discusses the software and tools at

our disposal at the beginning of the design process. Chapter 3 explains the design choices and tools

shown in 1.9. Chapter 4 discusses the artistic successes of these tools and recommendations for

future work.

11

Chapter 2

Background

When designing a new set of tools for use within an existing pipeline, it is important to

first consider the available tools and workflow, and how they address the problems from an artist’s

perspective. From there the weaknesses and strengths of each tool and task with regard for artist

comfort can be assessed. Weaknesses are points in production where preventable mistakes are made

and significant time is spent by the artists not creating reviewable material. Once problematic areas

are identified, work can begin on patching the problems. This chapter discusses the tools already

available in the DPA studio. These tools were created in a way that artists found intuitive and

effective.

DPA has a suite of tools to handle file management, publishing, subscribing, rendering,

and more, including APIs and command line tools to create assets and organize files on disk[4].

Collectively these tools are referred to as “the pipeline” within the studio. The production pipeline

is not a static environment. It constantly shifts and evolves to meet the ever changing demands of

production. As our films become more complex, the pipeline has to adapt, and any major new tools

being added must also be able to adapt.

There are two main iterations of the DPA pipeline that are relevant here. The current

pipeline was developed by Dr. Jerry Tessendorf and DPA students in 2012. The first phase of the

surfacing pipeline was developed for it. The second major iteration of the DPA pipeline is under

development by Josh Tomlinson and DPA students. The second phase of the surfacing pipeline is

built for this new version of the DPA pipeline.

Within the DPA studio we use several existing software packages. The software available

12

includes Autodesk Maya, the Foundry’s Mari, and Pixar’s Renderman. Mari is used for painting

texture maps, RenderMan is used for its shaders and rendering, and Maya is used for modeling,

shader creation, lighting, and its rendering package. For the purposes of this thesis, Maya and Mari

are the two programs we will discuss as we access Renderman’s shaders through the Maya interface.

2.1 Autodesk Maya

Autodesk Maya is the 3D software package currently used by the Digital Production Arts

studio for modeling, rigging, creating shader nodes, layout, animation, and lighting. For the purposes

of this thesis, we focus on its use for creating shaders for surfacing 3D objects.

Maya uses a node based structure for handling its shaders in which a Shading Group is the

root node. The Shading Group is connected to several different types of nodes, most notably surface

nodes or displacement nodes. Surface nodes control all of the common aspects of material interaction

with light, including color, refractions, reflections, transparency, bump, and more depending on the

shader type. Common surface nodes include Blinn, Phong, Phong-E, Mental Ray materials, and

Render Man shaders. Because of how Maya connects displacement attributes, the displacement is

handled by a separate node from the surface.

Maps are attached to the shader nodes using file nodes that contain several properties

including the file path, filtering options, and color space options. The file nodes can be connected

to nearly any attribute in the shader node. Also several nodes exist to manipulate the maps that

can be inserted between the file and shader nodes.

Once a shader network is assembled, whether it is a single Blinn node or a complex custom

network, it is then attached to the 3D mesh, either to the object as a whole, or to individual faces.

The entire node network can be manipulated through Maya’s Hypershade window, as shown in

figure 2.1, which provides a GUI to view a variety of node networks from surfacing to lighting.

Additionally, Maya provides tools for UV unwrapping in order to generate appropriate flat surfaces

for an artist to paint using the UV Editor window.

Maya provides the user with a variety of scripting tools to facilitate plug-in development.

It uses a combination of Python based API’s and the MEL scripting language that ties into nearly

every aspect of Maya’s functionality. It also provides a bridge between the Python API and the

MEL language using a package called PyMEL, and the ability to run MEL commands through the

13

Figure 2.1: Maya’s Hypershade Window

14

Python API.

Through the Python based API Maya provides access to customized elements of PyQt to

build GUIs. This allows for functional and consistent plug-in designs.

2.2 Foundry’s Mari

Beginning in the summer of 2013, DPA began using the Foundry’s Mari 1.6 to handle the

bulk of its surfacing. This package is designed to allow an artist to paint on a 3D object with all the

functionality and ease of Adobe Photoshop, but with the convenience of being able to paint directly

on a 3D mesh. It provides access to several 3D views including a perspective camera, orthographic

camera, and traditional UV patches.

Mari uses a projection system to allow users to paint on the 3D model. It stores the artist’s

painting as a 2D map in a buffer, projecting it onto the 3D object from the current camera. There

is a versatile masking tool to prevent unwanted stretched projection and control the application of

the painting. Mari allows the user to work on several different maps on the same object, each with

their own layers that behave intuitively to users familiar with other digital painting packages. Each

map can be exported in a set of 2D images such as tifs or pngs. One image is exported for each UV

patch. As shown in figure 2.2, Mari provides a convenient way to paint on a 3D object while seeing

both the UV patches and the 3D image. For an artist this makes Mari an extremely comfortable

way of visualizing the painting of a 2D map for a 3D mesh.

The GUI in Mari is built up out of a series of palettes. Each palette is a GUI element that

can be docked in the main window, or pulled off into a stand-alone window. This allows users to

easily manipulate their painting tools to construct a work environment that is comfortable for them.

Examples of palettes include a brush palette, color picker, layer manager, channel manager, shader

manager, and python console.

Mari uses a Python based API to allow users to easily access their GUI information and

package functionality to facilitate plug-in development. PyQt is used to build the GUIs, and provide

a built in Python console to allow for convenient development.

15

Figure 2.2: Mari GUI

16

2.3 Initial Workflow

An important component to designing an effective workflow is to be aware of existing struc-

tures. This can help identify the most problematic areas of the pipeline and any choke points that

are slowing production down. As of summer 2013 the DPA production workflow for painting texture

maps in Mari contained several steps that invited user error and sloppy workarounds from stressed

artists:

1. Creating a Wavefront OBJ file required exiting the 3D graphics package and manually creating

an asset within the pipeline through the command terminal. It also required manually changing

file permissions, and applying and reverting a modifier on the mesh.

2. Creating a new project in Mari manually, including setting up channel names, channel settings,

and OBJ settings.

3. Exporting from Mari required a significant amount of time outside of the Mari package to

create pipeline assets on the command line, being aware of the current version of the assets,

and then exporting each map into the correct location, then finally changing permissions of

all the exported assets. The export process was two steps: flattening the channel layers, then

exporting. For a single map on a single object it is a manageable process. In the instance of

the 2013 production of QA-ARM-A, when attempting to texture 7 unique arm models each

with 3 maps attached, that process ended up taking as much time to step through as actually

painting the textures.

4. Shader creations in Maya required the artist to set up consistent and well named file nodes,

shader nodes, and utility nodes. Then for each file node navigating to the correct file path.

Once this was set up, it also required the artist to maintain the most recent file path to a

texture manually.

In the event of an object with 5 UV patches, and 4 maps (for example: Diffuse, Specular,

Bump, and Displacement) that means the artist would need to create 5 shader nodes, and 20 file

nodes. Then every time artists updated a texture file they would need to create a new version of

the texture asset, change the permissions appropriately, and manually update each file node.

Needless to say this system invites user error. Misnamed files, incorrect permissions, and

incorrectly updated file nodes can (and have) caused rendering issues. Overwriting old files to avoid

17

having to create an asset and update the file nodes in Maya can (and have) caused problems with

losing data and being unable to return to an older version. Incorrect export settings can (and have)

caused issues with image resolution and color space when rendering.

The benefits of having a system of tools to manage these problems can be seen by looking

at how much work it would take to create a complex shader such as the sunken canon in Peanut

Butter Jelly [1].

Map Name Versions Files

Barnacle 19 54

Fungus 23 64

Cellular 17 46

Algae 22 61

Bubble 22 61

Barnacles 8 19

Growth 36 100

Transparency 29 85

Disp 58 172

Diffuse 30 88

Bump 32 94

Specular 28 82

Total Versions 324

Total Files 926

Table 2.1: Surfacing assets for Peanut Butter Jelly’s cannon

Table 2.1 shows the volume of maps and iterations that an artist would have to manage.

To create this using the same system we had in place during the summer 2013 productions artists

would have needed to manually create each of the 12 map assets on the command line. They then

would have needed to manually create an asset for each version - that is 324 total commands typed

into the terminal, at a minimum. At this point an artist looking to take shortcuts might consider

just overwriting old data, which creates massive problems if they need to return to a previous. The

18

cannon only uses two UV patches, but that means for every map the artist needs to create two file

nodes. Then they need to manually update the file path on both those nodes every time they export

a new map. That means 24 file nodes which all must have the most recent file path to a texture

associated with it.

Now consider a more complicated example, such as the hero characters in Peanut Butter

Jelly [1][3].

The two stars of Peanut Butter Jelly are a flyboy jellyfish and a pirate jellyfish. Each hero

has a gang of companions that share the hero’s basic look. The jellyfish model for the pirate has 8

UV patches, and the flyboy had 3 UV patches. While the gangs shared the model and core design

with the captains, they needed unique changes to the texture maps to ensure that each character

had a unique look[3]. This is a massive organizational challenge. The artists needed a system flexible

enough to allow them to manage these different looks so they could focus on the artistic direction

of the characters. Tables 2.2, 2.3, and 2.4 are a sample of the sheer volume of maps and characters

that were required. Updating these manually would have been impossible.

Map Name Versions Files

Blur 3 10

Disp 6 13

Eyemap 8 20

5 21 39

4 18 33

3 7 19

2 12 26

1 8 19

Total Versions 83

Total Files 179

Table 2.2: Surfacing assets for Peanut Butter Jelly’s Flyboy gang members

19

Map Name Versions Files

Transparency 3 9

Specular 5 17

Disp 18 66

Bump 5 16

Diffuse 36 137

Eyemap 59 228

Blur 24 88

Total Versions 150

Total Files 561

Table 2.3: Surfacing assets for Peanut Butter Jelly’s Hero Flyboy

Map Name Versions Files

Transparency 4 24

Specular 4 24

Disp 5 30

Bump 8 48

Diffuse 33 198

Total Versions 54

Total Files 324

Table 2.4: Surfacing assets for Peanut Butter Jelly’s Pirate Captain

20

Chapter 3

Design and Implementation

Based on the problematic components of the preexisting pipeline described in the previous

chapter, breaking the surfacing pipeline tools into smaller solvable problems is clearer. The goal

in the design of these tools is to get everyone on the same page, minimize file system navigation,

and automatically enforce naming conventions. Four major points of concern became clear: OBJ

exporting from Maya, starting up a new Mari project, Mari texture file export, and shader generation

in Maya.

Implementation and deployment was done in two major stages - a first and a second stage

- with many minor patches and hot-fixes in between. The reason for this was to account for the

organic nature of the pipeline. The first stage was to make sure the basic principles were sound.

The second stage was to identify the changes in artists needs as the complexity of projects ramped

up.

3.1 OBJ Export

Due to the fact that transferring the mesh from Maya to Mari requires consistent mesh

settings and asset creation, it is logical to automate the process of generating OBJ files, particularly

because there are enough steps to be suspect to major errors. Maya’s smooth mesh preview requires

a permanent alteration to the mesh in order to correctly export smoothed faces in an OBJ. An

artist could either fail to smooth the mesh before export and create problems with UVs not lining

up between Mari and Maya, or fail to undo the application of the preview and cause problems with

21

the density of the model down the pipeline.

The final implementation is a one-click tool that generates the asset, exports a smoothed

OBJ, and doesn’t damage the model. This saves artists significant time and effort, allowing more

time for texturing.

3.2 Create Mari Project

In order to alleviate the burden of having to locate the OBJ file and initialize a project

with the correct settings, the New DPA Project tool in Mari provides a layer between the artist and

the file system. The tool populates a list of all published OBJ files in the pipeline for an artist to

easily navigate, and provides a back-up option to open a file browser to locate an OBJ that may be

outside of the pipeline, as shown in Figure 3.1. Then it programatically creates a new Mari project

and generates several common maps that the artist will likely use. These maps are created with

standard naming conventions and settings to ensure that the artist can start painting as quickly as

possible.

(a) Selecting the OBJ

(b) Selecting the OBJ version

Figure 3.1: Create New Mari Project Windows

22

3.3 Mari Export

Mari’s patch structure generates many files, which creates a substantial file management

issue. The surfacing pipeline focuses on reducing the user’s interactions with the file system by

creating the asset directories, managing the current version of the texture files, and handling the

naming conventions for the maps. In order to ensure that the user does not have to go through the

asset directories to manually find the most recent files, a master symbolic link points to the most

recent texture files.

The GUI for this process needed to fit into Mari’s palette structure unobtrusively and allow

for the export of either the selected or all the painted channels. To accommodate RenderMan, it

allows for tex conversion as well. Tex conversion can either be done serially on the local machine or

in parallel through the DPA queuing system. Additionally, artists need the ability to have hi and

low quality texture images exported. The only practical difference between them is the path of the

master link. This allows artists to switch the quality of the image by only switching the words “hi”

and “lo” in the master link path. This combination of features reduces the decisions an artist and

distractions an artist faces while painting.

Figure 3.2: First Generation Mari Export Panel

23

3.4 Shader Creation

Creating and maintaining shader nodes in Maya is exceptionally time consuming, motivating

artists to take shortcuts and limit the sophistication of shader node networks. Using the surfacing

pipeline and the Mari export tools, several pieces of information are available to reduce this burden:

Texture files are programatically locatable, as they are stored correctly within the pipeline.

Given the naming convention applied during Mari Export, texture files can be connected to shader

nodes automatically. For example, the diffuse map should connect to the color attribute, and the

specular map should connect to either the specular color or specular intensity attributes. More

complex schemes, such as connecting a displacement map to an adjustment node and then to the

shader group, are also possible as automated steps.

Applying Maya’s scripting abilities and node based shading networks, shaders can be gener-

ated for artists. If an object has 5 uv patches and requires 3 maps (eg. diffuse, bump, and specular)

with textures exported from Mari, that would be 15 file nodes and paths. A total of 5 shaders,

and 15 connections would need to be created and named. Manually creating them is a a significant

time burden for artists, particularly if they must also update each node when new texture files are

generated.

This portion of the surfacing pipeline has two parts. The first part is a shader generation

tool that works in the DPA pipeline. The second part takes the data gathered from artists and the

new tools being created for the new DPA pipeline to create a more robust surfacing pipeline.

The first part of the shader creation was built exclusively for Maya and went into use

September 2013 for the production Alien Oasis. As of February 2015 it is still in use while the new

DPA pipeline is being phased in.

The GUI was designed to mimic the simplicity of the Mari export palette, as shown in 3.2

and 3.3. The basic choices an artist needs to make are: shader node type and maps to attach.

When generating the node networks the three most important components were function-

ality, consistent naming, and uniform file settings. The ability to manage the color space settings of

a production from the moment the files are set up enables the team to prevent color issues further

down the pipeline in lighting and rendering.

In the first stage of the pipeline the naming conventions of each node type was not as

consistent as it should have been, but was an improvement from the automatically generated ’file’,

24

Figure 3.3: Maya Shader Generation GUI

25

Figure 3.4: An example of the generated node network

26

’file1’, ’file18’ node names that are easy for users to leave when crunched for time.

Node network naming conventions, as shown in figure 3.4, in the first stage tool are:

• Shader node = s 10[uv] to immediately tell artists that they are dealing with the shader

from the given uv patch, where [uv] is the patch identifier from Mari. The additional is to

prevent Maya from treating the uv patch like a number to increment. This way if a second

node network is generated it’s automatically named ”s 10[uv] 1” instead of ”s 10[uv+1]’. It

also gives artists a place to add additional descriptive information such as ’s 10[uv] metal’ or

’s 10[uv] burned’ if they have decided to duplicate the node network and have alternate shader

attributes.

• File nodes = [mapName]10[uv] to immediately let the artist know what map is linked and for

what uv patch, where [mapName] is the channel name from Mari (such as Diffuse or Bump),

and [uv] is the patch identifier.

• Utility nodes = [utilType] 10[uv] so that the user knows what the function of the utility is,

where [utilType] is the Maya specific shader type and [uv] is the patch identifier. This is

particularly helpful when Maya re-uses icons, or has similar icons for different utility nodes

such as the bump and displacement utilities.

• Shading group = SG10[uv] is the root node for any shader in Maya, where [uv] is the patch

identifier.

After a year in production, the first stage of shader generation in the DPA pipeline was suc-

cessful. It has worked through two productions and several hot-fixes that increased artist efficiency,

as shown table 4.1. There is a dramatic increase in the quantity and variety of texture assets from

QA-ARM-A and Robo+Repair to Alien Oasis and Peanut Butter Jelly.

However, with a major overhaul of the core pipeline in progress and new production needs,

it was clear that the first stage of the shader generation would not be robust enough for long term

use. A more flexible and dynamic option was needed. The most critical components of the first

stage of code to be addressed were: handle custom maps in node network generation, custom maps

in Mari project startup, and integrating the new products, publishing, and subscription systems.

Such fundamental updates were too far-reaching to justify patching the older code. Starting

over and using lessons learned from the previous tools made more sense for a cleaner and more usable

27

tool. Because of the increasing need to handle custom maps and shaders[1][6], the second stage of

the surfacing pipeline was designed to theoretically work for any map.

(a) Available maps for Ren-
derMan’s General Purpose
Shader, none selected

(b) Available maps for a
Phong shader, with three
maps selected

Figure 3.5: Maya Shader Generation GUI, showing how users selects maps to be used in their
generated shader network

In order to achieve that level of flexibility the shader generation code needs to approach

texture maps and their connections to shader networks more abstractly instead of hard-coding

that information into the software. Additionally, storing the map information and shader network

connections externally to the main shader generation code then dynamically loading that data when

the tool is called up makes adding new map and connection information possible without editing

the code.

28

The new DPA pipeline contains an API for configuration files that is a natural method for

storing this connection information. These configuration files are loaded when the tool is launched,

allowing the artists to define maps and connections without needing to understand the software

generation code. All they should need to know is the nodes and network connections required by

Maya’s hypershade.

From an artist’s perspective, figure 3.5 illustrates how configuration files are presented with

options to load when creating or modifying shader networks.

The given configuration structure is essentially a way of organizing key/value pairs. Each

attribute in the configuration file is a string key, and its value can be anything including floats,

strings, lists, and another configuration file.

Each map has its own configuration file that is roughly defined as having three main pa-

rameters: software package, name, and color. The name is the name of map, the color is considered

the default color for the map if it hasn’t been painted yet, and then each software package is an

embedded configuration file for that product. Within each tool the configuration file defines all of the

information that tool will require to construct a shader. The following describes the core structure

of a map configuration file and the value types expected:

toolName : [c o n f i g u r a t i o n f i l e]

name : [s t r i n g]

d e f au l tCo l o r : [r , g , b , a]

A shortened example of a configuration file for a bump map:

Maya : [c o n f i g f i l e]

name : Bump

de f au l tCo l o r : [0 . 5 , 0 . 5 , 0 . 5 , 1 . 0]

For Maya, the tool configuration defines only one type of key: shader type. Users can define

as many shader types as they need, and each one will map to the configuration file for that shader.

The key is also passed to Maya on shader creation, so it must match the string that Maya uses to

identify that shader type.

Within each shader another set of keys is defined. At a minimum the shader will need two

keys: nodes and connections. This will inform the shader generation code what nodes to create and

29

how to connect them. Additional keys can include file extensions, shader file locations for custom

RenderMan shaders, and custom RenderMan attributes that need to be attached to nodes. These

are designed to be as flexible as possible so that if a new shader type needs custom information it is

relatively easy to add it to the shader generation.

The following is an example of the Maya shader configurations for a bump map:

b l inn :

nodes : [f i l e , bump2d]

connec t i ons : [[f i l e , outAlpha , bump2d , bumpValue] ,

[bump2d , outNormal , shader , normalCamera]]

ext : t i f

phong :

nodes : [f i l e , bump2d]

connec t i ons : [[f i l e , outAlpha , bump2d , bumpValue] ,

[bump2d , outNormal , shader , normalCamera]]

RenderManShader :

nodes : []

connec t i ons : [[shaderName , sBumpMap, path]]

shaderLoc :

/DPA/ moosefs / PeanutButterJe l ly /prod/ share / a s s e t s /

rmLex/0001/ h i / s l / lexShader . s l o

ext : tex

m i a m a t e r i a l x p a s s e s :

nodes : [f i l e , bump2d]

connec t i ons : [[f i l e , outAlpha , bump2d , bumpValue] ,

[bump2d , outNormal , shader , overal l bump]]

30

Chapter 4

Results

The quality of the surfacing work being done in the DPA studio has dramatically improved

since the implementation of these tools. During the production of QA-ARM-A there was a huge

struggle with managing the flow of data through the pipeline, and our solution was to radically

simplify our shader networks and scene so that we could complete the film[5]. As shown in Figure

4.1, as our surfacing pipeline has grown more sophisticated, so has the quality of our work. The

Water is Always Bluer... from 2012 was created with no pipeline in place, QA-ARM-A was created

in 2013 with a basic production pipeline in place, but there was no surfacing pipeline. Peanut Butter

Jelly was completed in 2015 with the benefit of the tools described in this thesis.

We can see the improvement in the generated data in addition to the visual results. As

shown in Table 4.1, the surfacing pipeline enabled a dramatic increase in iterations and adherence

to the pipeline procedures. The two films QA-ARM-A and Robo+Repair were created with no

standard surfacing pipeline, so artists were conservative about versioning their files and the quantity

of maps they were creating. Alien Oasis and Peanut Butter Jelly were both created using the

surfacing pipeline described in this thesis and the output of texture assets dramatically increased.

Examples of the surfacing created in Alien Oasis can be seen in 4.2. Notably, Alien Oasis and

Robo+Repair have nearly the same number of work items, yet Alien Oasis produced thousands of

versions compared to Robo+Repair ’s 56 versions. The shows currently in production are on track

for continuing that trend.

Less easily calculated are the ease of starting up a new Mari project, making modifications

to existing textures, the reduced learning curve to get started in the surfacing pipeline, and the ease

31

(a) The Water is Always Bluer... (2012)

(b) QA-ARM-A (2013)

(c) Peanut Butter Jelly (2015)

Figure 4.1: Final Frames

32

Show Workitems versions files

QAARMA ∗ 26 66 387
Robo+Repair ∗ 29 56 642
Alien Oasis (Fall 2013) 30 3336 14420
Peanut Butter Jelly (2014) 116 3938 28560
2015TARS+ 38 1290 7130
Cylon+ 37 872 4353
∗ no surfacing pipeline in place - numbers are a minimum
+ still in production

Table 4.1: Surfacing assets in various productions

of passing work off to another artist. However, in conversations with surfacing artists they have

expressed that they are spending their time actually surfacing rather than performing tedious and

repetitive tasks. Compared to the 2013 production of QA-ARM-A, where each texturing artist had

a unique workflow and managed files manually, this is a huge improvement.

The basic structure of the tools have proven themselves, and made increasingly more complex

productions possible. Doing the work of PBJ and Alien Oasis would have been extraordinarily

difficult without tools. Due to the number of artists, varying skill sets of the artists, and the volume

and complexity of shaders, these productions would likely not have been possible without a surfacing

pipeline in place.

The greatest challenge to designing and implementing the DPA surfacing workflow was

finding a design that would enhance the artistic output of the texturing and improve how quickly

an artist can go from a blank mesh to a first pass. This required not only a personal understanding

of what tools an artist needs to create, but also communication with the other artists in the studio

to ensure the workflow was as comfortable as possible. A constant flow of information and feedback

between developers and artists was critical to achieving a solution to this artistic problem.

Since the implementation of the surfacing pipeline, two productions have been completed

and two more are in progress. In the completed productions of Alien Oasis and Peanut Butter Jelly,

there are many examples of artists benefiting from these tools - in particular the jellyfish in Peanut

Butter Jelly [3] and managing the large number of texture artists in Alien Oasis.

While working on Alien Oasis we had twice as many students working on the film as we

had for our previous six productions - the typical team size had been approximately 5 students on

earlier productions, and Alien Oasis had 10 students. This made ensuring that all the artists were

33

Figure 4.2: Alien Oasis Surfacing

34

on the same page significantly more of a challenge as we had a large number of people with varying

degrees of experience and comfort with surfacing. Having the pipeline in place ensured that every

artist started with a consistent environment, and when we needed to make production-wide changes,

gave us a way to enforce those changes across all surfacing work items. This happened several times

during the production. When we decided to change the organization of generated assets so that

each output map was a unique asset, all that was required of the artists was a one time update to

their shader file paths. Also, when we realized that the file settings on the output texture maps was

incorrect, a one time re-export was all that was required to push the change through all workitems.

The final example of the successes of the surfacing pipeline was the ease of switching work between

artists. The effort to make texture resolutions more efficient required only one artist to go back

through the surfacing work of many to resize and re-export, instead of calling back every surfacing

artist.

Most recently, the surfacing pipeline was heavily used in Peanut Butter Jelly, which con-

tained a dramatically more complex shading work than any of our previous productions. From

lichen and coral covered rocks, to sunken ships, to jellyfish there was a variety of organic and layered

surfaces to manage. In order to handle the rendering demands of the production, it was decided to

use Pixar’s RenderMan renderer and shaders to create the film. This required the surfacing pipeline

to make several changes to accommodate RenderMan’s tex format, allowing the artist to convert

to tex on export from Mari rather than manually. Additionally, the export tool gives the option

for artists to convert the textures in parallel through a queuing system rather than locking their

computer up while converting textures serially.

One of the biggest and most important challenges was surfacing the jellyfish. As the stars

of the film, they needed to have a strong artistic vision, be easily recognized as jellyfish and unique

characters, and be customizable to create variations for crowds[1]. To accomplish this the artist

creating the jellyfish relied heavily on the ability to create custom maps to control everything from

diffuse color, to masking refractions, to control the final look[3]. Having the surfacing pipeline

in place alleviated the burden of transfering data between Maya and Mari when she changed the

geometry or UVs on the object, and when rapidly updating iterations of the texture map. This

allowed her to focus on the look and feel of the jellyfish artistically and in a workflow that was

intuitive to her as an artist, rather than fighting the file system.

35

4.1 Recommendations for future work

While the current status of the surfacing pipeline is stable and functional, the demands of

production are constantly changing. Looking towards the future use of these tools there are several

features that could be implemented to enable artists to create realistic textures more easily:

1. With the current setup of using configuration files, the natural first step to making the system

more usable will be to expand the number of available maps. The larger variety of maps that

exist, the less set up work artists will have to do in order to get from their first pass at painting

to their first render.

2. Currently the generation of configuration files is done manually. Having a user interface to

help create the files, or the ability to take a shader network and convert it into a configuration

file would make the system substantially more usable for custom node networks.

3. The configuration files are designed so that we can expand the shader generation beyond Maya.

Currently all the shader generation is being done in Maya, but it could just as readily benefit

artists using Houdini to control effects maps, or artists using Katana if future productions use

that application for texturing and lighting.

4. With UV mapping being such a time-consuming and frustrating point in our productions,

integrating PTex into the surfacing pipeline would be a significant improvement in efficiency,

freeing both the modeling and surfacing artists from the tedious and time consuming task.

5. Newer versions of RenderMan include built in support for textures exported by Mari that would

be worth looking into, as would integrating RenderMan’s slim into the shader generation.

36

Bibliography

[1] Alex Beaty. Peanut butter jelly: An animated short film. Master’s thesis, Clemson University,
May 2015.

[2] James F. Blinn and Martin E. Newell. Texture and reflection in computer generated images.
Commun. ACM, 19(10):542–547, October 1976.

[3] Brianne Campbell. Surfacing jellyfish for peanut butter jelly. Master’s thesis, Clemson University,
May 2015.

[4] Timothy Curtis. Efficient control of assets in a modern production pipeline. Master’s thesis,
Clemson University, May 2014.

[5] Timothy Curtis. Lighting and compositing for qa-arm-a. Master’s thesis, Clemson University,
May 2014.

[6] Karen Stritzinger. The rusterizer: An art-directable and semi-procedural tool for generating rust
surfaces. Master’s thesis, Clemson University, May 2014.

[7] Dr. Jerry Tessendorf. private communication, 2015.

37

	Clemson University
	TigerPrints
	5-2015

	Artist-Oriented Surfacing Workflow
	Virginia Bailey Nearing
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Autodesk Maya
	Foundry's Mari
	Initial Workflow

	Design and Implementation
	OBJ Export
	Create Mari Project
	Mari Export
	Shader Creation

	Results
	Recommendations for future work

	Bibliography

