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ABSTRACT 
 
 

My doctoral studies focused on studying FA metabolism in the deadly protozoan 

parasite T. brucei. In my dissertation, I addressed various aspects of the 

regulation of TbACC, which catalyzes the first committed step in FA synthesis. In 

the second chapter, I hypothesized that TbACC is regulated in response to 

environmental lipids. I examined changes in TbACC RNA, protein abundance, 

and enzymatic activity in response to different levels of environmental lipids in 

both BF and PF cells. I also delineated the mechanisms by which TbACC 

expression and activity is regulated by phosphorylation in response to altered 

lipid environments. In the third chapter, which has been published, we tested the 

effects of a compound in green tea extract known as epigallocatechin gallate 

(EGCG), on growth of T. brucei, and on TbACC activity and phosphorylation. 

EGCG is a known inducer of AMPK, which phosphorylates ACC in other 

organisms. In the fourth chapter, I demonstrated that TbACC in PF is also 

regulated by various allosteric regulators. I also showed that TbACC might form 

oligomers. Together these studies have given an insight on the ability of T. brucei 

to regulate its FA synthesis and the role this pathway may play in the survival of 

this deadly parasite in its hosts. This knowledge may be exploited in the future to 

find a better cure for Trypanosomiasis. 
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CHAPTER ONE 
LITERATURE REVIEW 

 

INTRODUCTION 

Trypanosoma brucei, an early branching protozoan belonging to the family 

Trypanosomatidae is a 15-30 µm long, highly motile organism powered by a 

single flagellum. At the base of the flagellum is the kinetoplast, which is the highly 

condensed genome of the single tubular mitochondrion and marks T. brucei as a 

member of the class of Kinetoplastida, which contains both free-living and 

parasitic species. T. brucei species causes fatal disease in humans and animals 

and are transmitted by an insect vector, the tsetse fly (Glossina species). 

 Trypanosomiasis affects people and animals living in the ~6.2 million 

square miles of sub-Saharan Africa (FAO, Food and Agricultural Organization of 

the United Nations, 2007). The World Health Organization (WHO) indicates that 

between 1998 and 2004 there were an estimated 50,000 – 70,000 cases 

annually of human African trypanosomiasis (HAT) (WHO, 2010). More recently 

sustained control efforts have reduced the number of reported HAT cases, with 

6,743 and 7,197 cases reported in 2011 and 2012, respectively. However, HAT 

remains a major public health concern in 36 countries (Simmaro et al., 2009), 

particularly in some regions (Democratic Republic of Congo, Angola, and South 

Sudan), where the infection rate is especially high, exceeding malaria or HIV/ 

AIDS as a cause of death (WHO, 2010).  
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Three different T. brucei sub-species affect sub-Saharan Africa: T. b. 

brucei, T. b. gambiense and T. b. rhodesiense. T. b. brucei causes disease in 

domestic and wild animals but not humans. T. b. brucei’s inability to infect 

humans can be attributed to its susceptibility to human trypanolytic factor (TLF), 

which is a type of high density lipoprotein particle in human serum. Endocytosis 

of TLF by T. b. brucei causes lysis of the parasites (Wheeler, 2010). Cattle and 

other mammals lack TLF in their serum, which makes them susceptible to 

infection by T. b. brucei. However, T. b. rhodesiense and T. b. gambiense are 

resistant to TLF and therefore can successfully infect humans. T. b. gambiense 

causes endemic disease in central and west Africa, while T. b. rhodesiense 

affects east and south Africa (Brun et al., 2010) (Fig. 1.1). The Nile Rift Valley is 

responsible for the strict geographical distribution that physically separates the 

insect vectors bearing these two human infective strains. However, in northwest 

Uganda these strains do overlap due to the occurrence of both strain-bearing 

vectors. 

 

AFRICAN TRYPANOSOMIASIS  

African Sleeping Sickness  

HAT, also commonly known as African sleeping sickness, differs depending on 

which sub-species causes infection. T. b. gambiense causes a chronic infection 
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Figure 1.1: Geographic distribution of T. brucei. T. b gambiense causes endemic disease in 

central and west Africa, whereas T. b. rhodesiense affects east and south Africa. Both strains are 

geographically separated by the physical separation of their corresponding insect vectors by the 

Great Rift Valley (WHO, 1999).  

 

with death occurring after ~3 years, while T. b. rhodesiense causes an acute 

infection resulting in death in 2-3 months (Brun et al., 2010). There are reports 

that demonstrate in some untreated patients that T. b. gambiense infection is not 

always fatal. However, very little is known about the frequency of self-cure or 

latent asymptomatic infections (Jamonneau et al., 2012).  

 There are two distinct clinical stages of HAT:, the haemolymphatic stage 

(stage I) and the meningo-encephalitic stage (stage II). In stage I, the parasite is 
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limited to the bloodstream and lymph nodes. This results in non-specific 

symptoms such as intermittent fever, headache, lymphoadenopathy (swollen 

lymph nodes), pruritus (itching), joint pains, and to lesser extent 

hepatosplenomegaly (enlarged liver or spleen). If infection is not treated in stage 

I, then the disease progresses to stage II after several weeks, months, or even 

years. In stage II, the parasite crosses the blood-brain barrier and invades the 

cerebrospinal fluid. Stage II symptoms include dramatic neurological and 

psychiatric symptoms, including sleep disturbances, tremor, fasciculation 

(involuntary muscle contraction and relaxation), general motor weakness, limb 

paralysis, hemiparesis (weakness on one side of the body), akinesia (inability to 

move around), and abnormal movements, such as dikinesia (slight tremor of the 

hands) and orchoreo-athetosis (occurrence of involuntary movements). 

Hallucinations are also reported in rare cases. Without treatment, patients with 

stage II HAT slip into a coma and die (Brun et al., 2010).  

 

Nagana  

Cattle and other livestock lack TLF, and are thus susceptible to T. b. 

brucei, which causes animal trypanosomiasis, also known as nagana 

(Baumgärtner, et al., 2008). Nagana is a wasting disease of livestock and 

undermines the establishment of an efficient agricultural system in sub-Saharan 

Africa, resulting in estimated economic losses of ~$4.5 billion dollars annually 

(FAO, Food and Agricultural Organization of the United Nations, 2007).                                                                                 
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The primary clinical signs of nagana are intermittent fever, anemia, and 

weight loss. Cattle usually have a chronic infection, lasting a few weeks to 

several months depending upon the virulence. This infection may result in high 

mortality, especially if there is poor nutrition or other stress factors present. Some 

African cattle breeds are considerably more resistant to African trypanosomiasis. 

Susceptibility studies have shown these cattle have existed in the regions for 

over 5,000 years. The mechanism of trypano-tolerance has been demonstrated 

to have a genetic basis (Moulton and Sollod, 1976; Murray et al., 1984). 

 

Diagnosis  

The CATT (Card Agglutination Test for Trypanosomiasis) is the most rapid 

serological test available for T. b. gambiense. Various patient samples such as 

serum, capillary blood from finger prick, and blood from impregnated filter papers 

are used with 87-98% sensitivity and 93-95% specificity (Noireau et al., 1988; 

WHO, 1998; Jamonneau et al., 2000; and Truc and Cuny, 2000). The CATT test 

relies on the presence of antibodies in patient sera to commonly occurring 

variants of T. b. gambiense surface proteins known as variant surface 

glycoproteins (VSGs). However, there is no serological test presently available 

for T. b. rhodesiense. The CATT is not a very effective diagnostic tool for T. b. 

rhodesiense as there are few commonly occurring VSGs that could be used. 

Hence, microscopic analysis of blood and/or lymph node aspirate is widely used 

for direct pathological confirmation of T. b. rhodesiense infection, as well as to 
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confirm T. b. gambiense infection. More advance diagnostics such as 

immunofluorescence or enzyme-linked immunosorbent assays are generally 

used in non-endemic countries (WHO, 1998) (Lejon et al., 1998). PCR-based 

diagnostics have the potential to provide a useful and sensitive method, though 

these tests need further validation and standardization (Chappuis et al., 2005). 

Sensitive methods such as loop-mediated isothermal amplification (LAMP), 

which relies on amplification of a multicopy transposon-like sequence for 

detection of T. brucei, has promise as it can be used with specific primers for 

sub-species determination (Njiru et al., 2008). However the biggest drawback is 

that these molecular diagnostic techniques are expensive, time-consuming, rely 

on more advanced infrastructure, and require highly trained personnel. 

 

Treatment  

Current treatment of HAT focuses on preventive strategies and 

chemotherapy. Preventive strategies are aimed at vector control, such as 

trapping, habitat destruction, and insecticide treatment. These methods can be 

cost effective, but are labor and time-intensive. The treatment of HAT depends 

on the stage of disease (I vs. II) and on the infective species (gambiense vs. 

rhodesiense) (WHO, 2010).  

Stage I drugs 

 Pentamidine is used to treat stage I T. b. gambiense infection. It is 

administered intramuscularly  or as a 2 h intravenous (IV) infusion every 24 hours 
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for 7 days. Pentamidine is well tolerated in patients and no resistance has been 

reported in the field. Some of the adverse reactions include hypoglycemia, 

injection site pain, diarrhea, and nausea. Pentamidine is transported into T. 

brucei by at least three known transporters. Pentamidine selectively binds to the 

minor groove of kinetoplast DNA, leaving the nuclear DNA unaffected. This 

promotes the cleavage of kinetoplast minicircle DNA, eventually leading to 

dyskinetoplastic cells (Barret et al., 2007). Pentamidine is also a reversible 

inhibitor of S-adenosylmethionine decarboxylase, an enzyme in the polyamine 

biosynthetic pathway, but this is unlikely to be the primary mechanism of action 

(Barret et al., 2007 and Wang, 1995).  

Suramin is used to treat stage I T. b. rhodesiense infection. The dosing 

regimen is IV injections every 7th day for a month, with escalating dosage over 

the course of treatment (WHO 1986). Severe allergic reactions are often 

reported, and other side effects include albuminuria and hematuria (protein and 

blood in urine, respectively) and peripheral neuropathy. Suramin binds to T. 

brucei LDL receptors and thus, is rapidly endocytosed by the parasite. Suramin 

inhibits enzymes in the glycolytic and pentose phosphate pathways, resulting in 

rapid lysis of the parasite as the bloodstream form relies exclusively on 

glycolysis. Suramin also affects other enzymes such as thymidine kinase and 

dihydrofolate reductase (Wang, 1995).  
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Stage II drugs 

Neither suramin nor pentamidine can be used for stage II T. brucei 

infection, as these drugs cannot penetrate the blood-brain barrier (Nok et al., 

2003). Until 1990, melarsoprol was the only drug available for the treatment of 

stage II HAT. It is given either as a series of 2-3 daily IV infusions for over a 

month or as single daily injections for 10 days (Chappuis, 2007). Like suramin, 

the mode of action of melarsoprol is not clear, but it is known to inhibit glycolytic 

enzymes such as pyruvate kinase, phosphofructokinase, and fructose-2,6-

bisphosphatase (Wang et al., 1995). Melarsoprol is also known to affect the 

redox balance of T. brucei by forming adducts with trypanothione (N1,N8-

bisglutathionyl spermidine), a metabolite unique to trypanosomes (Wang et al., 

1995; Fairlamb et al., 1985; Fairlamb et al., 1989).  

Melarsoprol, being an arsenic derivative, is very toxic to humans. Ten 

percent of patients administered this drug suffer from reactive arsenic-induced 

encephalopathy often followed by pulmonary edema and death within 48 h. Other 

common side effects include skin reactions such as pruritus (itching) and 

maculopapular eruptions (rash), peripheral motoric palsy (loss of movement), 

sensorial paraesthesia (loss of senses), neuropathies, and thrombophlebitis (vein 

inflammation). Highly insoluble in water, melarsoprol is dissolved in glycol, which 

also makes it very painful to administer (described as “fire in the veins”) and 

destroys veins after several administrations (Chappuis, 2007; Priotto et al., 

2006). 
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Difluoromethylornithine (DFMO), or eflornithine, is a more recent drug to 

treat stage II HAT, but it is only effective against T. b. gambiense infections. The 

drug is administered by IV infusion every 6 h for 14 days (Priotto et al., 2006; 

Checchi et al., 2007). Side effects of eflornithine treatment include bone marrow 

suppression, gastrointestinal symptoms, and convulsions, all of which subside 

upon completion of treatment (Chappuis et al., 2004). Eflornithine is an enzyme-

activated irreversible inhibitor of ornithine decarboxylase (ODC), the initial 

enzyme in the polyamine synthetic pathway (Bacchi et al., 1980). The major 

downsides of this drug are its cost, the complexity and duration of treatment, and 

its limited availability (Chappuis et al., 2004). 

Nifurtimox Eflornithine Combination Therapy (NECT), introduced in 2009, 

is the latest approach to treat stage II HAT. Nifurtimox is a registered drug for T. 

cruzi treatment and initial studies showed that the combination of eflornithine and 

nifurtimox was far superior to either eflornithine or melarsoprol and resulted in far 

less toxicity (Priotto et al., 2007). The use of NECT also reduced the treatment 

regimen from 14 days to 7 days with a 94% cure rate. NECT has an additional 

benefit of easier administration, resulting in a reduction in staff and logistic 

resources. Combining two drugs also may reduce the possibility of the 

development of drug resistance. However, NECT is not effective for T. b. 

rhodesiense treatment (Kansiime et al., 2009). 
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PARASITE LIFE CYCLE  

T. brucei is transmitted as metacyclic trypomastigotes through the bite of 

the infected tsetse fly. After inoculation into the mammalian host, the parasites 

proliferate at the infection site, which can cause an inflamed nodule or ulcer 

(Tatibouet et al., 1982), though the ulcers are rare with T. b. gambiense infection. 

Once in the bloodstream, T. brucei transforms into bloodstream form (BF) 

trypomastigotes that undergo rapid binary fission and populate the blood and 

lymph. Later during infection, BFs transform into non-dividing short stumpy 

forms, which are primed for return to the tsetse fly host. When a tsetse fly feeds 

on an infected mammal, the fly takes up the short stumpy forms with the blood 

meal (Fig. 1.2). 

In the fly midgut, T. brucei transforms into procyclic form trypomastigotes 

(PFs), which also multiply by binary fission. The PFs then exit the midgut, 

traverse through the hemolymph, and migrate into the salivary glands, where 

they transform into epimastigotes. These epimastigotes undergo meiosis and 

sexual reproduction before undergoing a final transformation into metacyclic 

forms (Peacock et al., 2011), which are ready for transmission to another 

mammalian host (Matthews, 2005; Fenn et al., 2007; CDC, 2012).  
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Figure 1.2: T. brucei life cycle. T. brucei cycles between its mammalian host and insect vector, 

the tsetse fly. Figure is modified from (Lee et al., 2007).  

 

PARASITE SURVIVAL STRATEGIES IN THE HOST  

Parasite surface coats  

In both the insect and mammalian stages, T. brucei expresses surface 

coat proteins that are important for its survival. The PF surface coat is composed 

of 106  copies of procyclin (Richardson et al., 1988; Roditi et al., 1989), a 

glycosylphosphatidylinositol (GPI)-anchored protein containing characteristic 

amino acid repeats at the C terminus: either Glu-Pro repeats (EP procyclin) or 
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Glu-Pro-Glu-Glu-Thr repeats (GPEET procyclin). The procyclin GPI anchor 

contains one C16:0 (palmitate) and one C18:0 (stearate) fatty acid as the lipid 

moiety (Butikofer et al., 1997). Procyclins are predicted to play a role in 

protecting these parasites against proteolytic degradation in the tsetse fly midgut 

(Acosta-Serrano et al., 2001). 

In the mammalian bloodstream, T. brucei is fully exposed to the immune 

system, but has multiple strategies to evade the host’s immune responses. The 

BF surface coat protein VSG plays a key role in the parasite’s ability to evade the 

mammalian immune system. VSGs are also GPI-anchored to the plasma 

membrane, and the lipid moiety consists of two C14:0 fatty acids (myristate). 

VSGs are highly immunogenic and form a dense coat around the parasite with 

107 copies per cell. The VSG coat protects the invariant surface antigens from 

immune recognition and stimulates a strong antibody response. Periodic 

shedding of VSG coat provides protection from complement-mediated lysis 

(Tachado and Schofield, 1994; Taylor and Rudenko, 2006). 

The T. brucei genome possesses >1500 different VSG genes and ~20 

different VSG expression sites (Barry et al., 2005; Berriman et al., 2005; Marcello 

et al., 2007). Only one VSG is expressed at a time, a process tightly regulated by 

an allelic exclusion mechanism. At any one time, parasites expressing the 

dominant VSG coat are lysed and killed by the host immune system, and a 

subset of the parasite’s population switches its coat to a different VSG before 

being killed by the immune system (Turner and Barry, 1989). This periodic VSG 
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switching forces the immune system to mount successive waves of specific 

antibodies against the distinct VSGs (Borst et al., 2002). Hence the immune 

system can never completely destroy the parasite and the parasite population  

persists in the host, ultimately causing severe symptoms and death of the host if 

untreated. 

Evasion of complement mediated lysis        

A ~10-fold higher endocytosis rate is observed in BFs compared to PFs 

(Natesan et al., 2007; Field and Carrington, 2009). This upregulation of 

endocytosis clears antibodies bound to the parasite surface, thereby evading the 

antibody-mediated complement cascade and resulting death by cell lysis. 

Upregulation of both fluid phase endocytosis and receptor-mediated endocytosis 

is associated with the clearance of antibodies and complement from the surface 

(Barry, 1979; Ferrante and Allison, 1983; Pal et al., 2003; Engstler et al., 2007). 

Upregulation of fluid phase endocytosis is responsible for the high general 

membrane turnover rate observed in BFs (i.e. complete VSG turnover occurs in 

~12 minutes) (Engstler et al., 2004), whereas upregulation of receptor-mediated 

endocytosis is responsible for clearing surface-bound antibodies and 

complement from the parasite surface via VSG recycling (Kabiri and Steverding, 

2000; Chung et al., 2004; Field and Carrington, 2009). VSG bound to antibodies 

and complement are internalized via the flagellar pocket into a VSG recycling 

endosome, which contains proteases that selectively degrade and inactivate the 

antibodies and complement. The VSG is then recycled back to the surface. 
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Modulation of host immunity 

Trypanosomes are sensitive to reactive oxygen and nitrogen species, a 

common immune killing mechanism. In the bloodstream, T. brucei triggers a 

cascade of immune reactions modulated for the benefit of the parasite (Shi et al., 

2004; Pan et al., 2006). T. brucei activates polyclonal B cell expansion, which 

induces the production of IgM antibodies. The parasites are opsonized by IgM 

(and IgG) antibodies, which activates macrophage recruitment and leads to the 

production of inflammatory cytokines. These inflammatory cytokines then down-

regulate the production of reactive oxygen and nitrogen species. At the same 

time, T. brucei suppresses the development and function of T lymphocytes, 

which results in an overall immune suppression (Barrett et al., 2003). T. brucei 

also secretes immunomodulatory molecules (Trypanokines) that mimic the 

activities of host cytokines (Vaidya et al., 1997) and are capable of triggering 

immune responses that are not required for elimination of the parasite itself 

(Sharafeldin, 1999) but favors survival and persistence of T. brucei and 

establishment of later stages of infection (Hamadien et al., 1999). These 

immunomodulatory tactics provide the parasite additional mechanisms to evade 

the host immune system (Lucas et al., 1994).   

 

HOST MICROENVIRONMENTS 

In the different stages of its life cycle, T. brucei encounters a number of 

distinct microenvironments. In the insect, the parasite encounters the tsetse 
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midgut, ectoperitrophic space, and salivary glands; while in the mammal, the 

parasite encounters the blood, lymph, and cerebrospinal fluid (Fig. 1.3). These 

environmental niches differ in their nutrient composition, including lipids. For 

example, when T. brucei leaves the bloodstream and crosses the blood-brain 

barrier, it experiences a dramatic ~300-fold drop in environmental lipids (Roheim 

et al., 1979). 

  

 

 

Figure 1.3: Host microenvironments. T. brucei encounters different microenvironmental niches 

in its tsetse fly and mammalian hosts, which differ in their nutrient composition including fatty 

acids.  

Fatty acids (FAs) are the simplest lipids and they play a major role in T. 

brucei. Not only are FAs structural components of membranes, but they are also 

cell signaling molecules and play a vital role in protein localization via membrane 

anchors. In particular, FAs are key constituents of GPI-anchors that localize 
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surface proteins like VSG and Procyclin. The high density of these GPI-anchored 

coat proteins creates a high demand for FAs in T. brucei.  

T. brucei can effectively take FAs from the host or synthesize their own to 

satisfy its fatty acid requirements. If FAs in the host microenvironment become 

limiting, then T. brucei must rely on FA synthesis. Synthesis of FAs requires 

more energy than uptake, thus T. brucei must have the ability to efficiently 

regulate de novo FA synthesis to meet its changing nutrient demands (Fig. 1.4). 

Earlier studies in our lab demonstrated that a growth defect was observed in PFs 

when FA synthesis was knocked down in cells grown in low lipid conditions 

(Vigueira et al., 2011). Knock down of FA synthesis also reduced virulence in a 

mouse model of infection (Vigueira et al., 2011). A high demand for FAs is also 

created by the need to maintain a high membrane turnover required to avoid 

antibody-mediated complement lysis (McKnight, 2012).  
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Figure 1.4: Fatty acid synthesis vs. uptake. T. brucei can effectively take up FAs when 

environmental lipids are available. However, under conditions of limited external lipids, T. brucei 

synthesizes FAs by converting acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC). 

The malonyl-CoA is then used by the ELO pathway for FA synthesis. 

 

FATTY ACID UPTAKE  

One mode of lipid uptake in various systems is the endocytosis of 

lipoproteins. Lipoproteins have a polar surface layer made up of phospholipids, 

apolipoproteins and cholesterol; and a non-polar inner core comprised of 

triglycerides, cholesterol, and cholesterol esters (Wasan et al., 2008). After 

internalization, the lipoproteins are transported to lysosomes where they are 
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degraded and the lipids are liberated. In addition, lipoproteins are also acquired 

directly from donor lipoprotein particles without being transported to lysosomes 

(Engelmann and Weidmann, 2010). 

 A second major lipid uptake mechanism involves the direct uptake of 

phospholipids and FAs (Glatz et al., 2010). Due to their low aqueous solubility, 

these lipids often associate with carrier proteins (typically serum albumin) in the 

bloodstream. The internalization of lipids by cells begins with their dissociation 

from carrier proteins and partitioning into the outer leaflet of the plasma 

membrane bilayer. This is followed by flip-flop movement of the phospholipids 

and FAs, which changes the orientation of the polar head group from the outer to 

the inner lipid-water interface. This process enables FAs to partition into the cell, 

where they become bound or activated, and ultimately incorporated into more 

complex lipids. This process follows biphasic kinetics: partitioning into the lipid 

bilayer is much faster, and internalization is much slower. The process of lipid 

flip-flop, being the slowest step in FA uptake, is considered the rate-limiting step 

(Mellors et al., 1989; Kamp et al., 2007a; Kamp et al., 2007b). 

The transmembrane protein, CD36, and plasma membrane FA binding 

protein (FABP) both facilitate FA diffusion by binding and concentrating FAs on 

the membrane surface (Ehehalt et al., 2006). The bound FAs are then more 

easily partitioned into the membrane, resulting in a greatly enhanced FA uptake 

rate. FA uptake also takes place through lipid rafts associated with caveolae 

(Glatz et al., 2010). Caveolin binds FAs with high affinity, but the major role of 
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caveolin in FA uptake is likely by providing a docking site for CD36. Supporting 

this idea, cholesterol depletion leads to the disassembly of lipid rafts, the 

dispersion of CD36 throughout the plasma membrane, and a resulting decrease 

in FA uptake (Ehehalt et al., 2006; Glatz et al., 2010). In addition to passive 

diffusion, FA uptake is also mediated by a family of FA transport proteins 

(FATPs), which are integral membrane proteins responsible for active transport 

of FAs into cells (Glatz et al., 2010).  

FA uptake can also occur through the action of proteins not associated 

with the plasma membrane. FAs must be activated before they can be 

metabolized for energy or incorporated into more complex lipid species. FA 

activation occurs by the esterification of a FA to Coenzyme A (CoA), mediated by 

a family of enzymes called acyl-CoA synthetases (ACS) (Webster, 1963). Failure 

to activate FAs can result in free outward passive diffusion and no net uptake. 

Activation of the FA to the CoA form makes the FA membrane impermeable, and 

thus, retention of FAs internalized by facilitated or passive diffusion is enhanced 

by ACSs (Milger et al., 2006). 

Fatty acid uptake in T. brucei 

Various mechanisms of FA uptake have been described in T.  brucei. 

Endocytosis of high density and low density lipoproteins by BFs is well described 

(Coppens et al., 1995; Green et al., 2003). The lipoprotein scavenger receptor 

enhances this process (Green et al., 2003; Thomson et al., 2009). A similar 

endocytic mechanism used to take up lipophorin, a family of high density 
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lipoproteins in the fly, has been demonstrated in the related trypanosome, T. 

rangeli (Folly et al., 2003). Specialized uptake mechanisms for the acquisition of 

phospholipids occurs along with lipoprotein uptake in T. brucei. For example, the 

coordinated activity of three proteins: phospholipase A1, acyl-CoA ligase, and 

lysophosphatidylcholine: acyl-CoA acyltransferase has been confirmed in the 

uptake of lysophosphatidylcholine (Bowes et al., 1993). 

Little is known about the mechanisms of FA uptake in T. brucei. Proteins 

involved in the uptake of FAs have not yet been identified or characterized in 

these parasites, though early studies demonstrate that FA uptake occurs with 

biphasic kinetics (Voorheis,1980). This kinetic similarity between mammalian and 

T. brucei FA uptake suggests the presence of both protein-mediated active 

transport and passive diffusion in trypanosomes. The genome of T. brucei 

encodes 5 ACSs, four of which have been characterized (Jiang et al., 2000; 

Jiang et al., 2001; Jiang et al., 2004).The effect of TbACS knock-down by a PAN 

ACS construct was measured by monitoring uptake of a fluorescently tagged 

C12:0 FA (BODIPY-C12:0). The uptake of BODIPY-C12:0 was reduced by 34% 

in 2 days, 47% in 4 days, and 58% in 6 days upon RNAi induction. However 

panRNAi of the TbACSs caused only a small reduction in growth (Vigueira, 

2011).  

FA synthesis in T. brucei 

For many years, only PF T. brucei were thought to posses the ability to 

synthesize FAs while BF lacked this capacity (Dixon et al., 1971). However, 
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studies showed that both BF and PF can synthesize FAs de novo from a butyryl-

CoA primer (Morita et al., 2000). Subsequently, the genome project of T. brucei 

revealed the absence of a canonical eukaryotic type I FA synthase (Berriman et 

al., 2005). Instead, T. brucei possesses a microsomal elongase (ELO) FA 

synthesis pathway and mitochondrial type II FA synthesis pathway. T. brucei 

relies on the microsomal ELO pathway for the bulk of their FA synthesis (Lee et 

al., 2006) in contrast to other eukaryotic organisms, where the ELO pathway is 

used for elongation of pre-existing long chain FAs. T. brucei possesses four ELO 

genes (ELO1-4) encoding the ketoacyl-CoA synthases of the ELO pathway. 

Each of these four ketoacyl-CoA synthases have distinct, but overlapping chain-

length specificities: ELO1 (C4:0–C10:0), ELO2 (C10:0–C14:0), and ELO3 (C14–

C18), and ELO4 acts on long chain unsaturated FAs (Lee et al., 2006). The ELO 

pathway also comprises two ketoacyl-CoA reductases (KCR), which reduce 

ketoacyl-CoA to hydroxylacyl-CoA; a dehydratase that converts hydroxyacyl-CoA 

to enoyl-CoA; and an enoyl-CoA reductase that converts enoyl-CoA to an acyl-

CoA two carbons longer than the primer chain. Individual ELOs are not essential 

in vivo, likely due to their overlapping substrate specificities. However, RNAi of 

the sole enoyl-CoA reductase that acts downstream of all the ELOs suggests that 

the ELO pathway as a whole is essential (Lee et al., 2006) (Fig. 1.5). 
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Figure 1.5: Enzymatic reactions of FA synthesis pathway in T. brucei. The T. brucei ELO FA 

synthesis pathway consists of four reactions: the 2-carbon donor malonyl-CoA is condensed with 

a butyryl-CoA primer by ketoacyl-CoA synthase (1), reduced by ketoacyl-CoA reductase (2), 

dehydrated by dehydratase (3), and finally reduced by enoyl-CoA reductase (4) to yield a FA 

product that 2 carbons longer. The malonyl-CoA is synthesized from acetyl-CoA by acetyl-CoA 

carboxylase (ACC). Figure is modified from (Lee et al., 2007).  

 

 The mitochondrial type II FA synthesis pathway is composed of one acyl 

carrier protein (ACP), one ketoacyl-ACP synthase, three ketoacyl-ACP 

reductases, a dehydratase, and two enoyl-ACP reductases (Stephens et al., 

2007; Autio et al., 2008). The major products synthesized by the mitochondrial 

type II pathway are C16:0 and C8:0, the latter of which is the precursor for lipoic 

acid, a key prosthetic group in several mitochondrial respiratory enzymes. 

Mitochondrial FA synthesis is known to account for only ~10% of overall FA 



23 
 

synthesis in T. brucei, but this pathway is essential in both PFs and BFs to 

supply FAs required for lipoic acid synthesis and to locally maintain mitochondrial 

membrane composition, respiratory complex functions, and mitochondrial 

morphology (Stephens et al., 2007; Guler et al., 2008). 

In addition to being found in other trypanosomes such as T. cruzi, ELO 

pathways are present in other parasites including Leishmania major, Plasmodium 

falciparum, Toxoplasma gondii, and Entamoeba histolytica, though their exact 

functions may vary (Lee et al., 2007). The modular structure of the ELO pathway 

in trypanosomatids enables differential control of the FA products. This may be 

advantageous to allow parasites to adapt to different host environments. For 

example, downregulation of ELO3 might be responsible for the observed chain-

length preference in BFs to synthesize myristate (C14:0), which is the sole FA 

component of the VSG GPI-anchor (Lee et al., 2006; Lee et al., 2007). The 

presence of environmental lipids can also lead to the overall up- and 

downregulation of the ELO pathway to meet the FA demands of the parasite. For 

example, in low lipid conditions the balance shifts towards FA synthesis and 

increased ELO pathway activity. In extreme cases, BF will even elongate 

myristate, normally the final product of FA synthesis in BFs (Doering et al., 1993; 

Lee et al., 2006). The exact mechanisms regulating the ELO and mitochondrial 

FA synthesis pathways and the roles they play in T. brucei pathogenesis are 

largely unknown. 
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ACETYL-COA CARBOXYLASE 

  Acetyl-CoA carboxylase (ACC) is a key enzyme in the FA synthesis 

pathway and catalyzes the first committed step: the conversion of acetyl-CoA to 

malonyl-CoA, the 2-carbon donor for FA synthesis (Barber et al., 2005). ACC 

uses a biotin prosthetic group to transfer CO2 from bicarbonate to acetyl-CoA in 

two half reactions: biotin carboxylation and carboxyl transfer. In bacteria, 

archaea, and chloroplasts, ACC is a multi-enzyme complex composed of a biotin 

carboxylase (BC) enzyme; a biotin carboxyl carrier protein (BCCP) that carries 

the biotin prosthetic group attached to a conserved lysine; and a 

carboxyltransferase enzyme (CT) composed of one or two subunits (Fig. 1.6). In 

contrast, many eukaryotic ACCs are large multi-domain enzymes composed of 

BC and CT domains separated by a BCCP domain (Fig. 1.6). 

 

Figure 1.6: Comparison of ACC protein structure. T.b., T. brucei ACC; S.c., Saccharomyces 

cerevisiae ACC; E.C.,  Escherichia coli ACC.  

 Known ACC functions 

The  function of ACC depends on the role of its product, malonyl-CoA. The 

majority of metazoans express two different ACC isoforms that differ in their 
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functions (Barber et al., 2005): ACC1 (ACCα) initiates FA synthesis in lipogenic 

tissues, whereas ACC2 (ACCβ) is expressed in vertebrate oxidative tissues such 

as skeletal muscle and heart. ACC2 (ACCβ) is associated with the mitochondria 

and plays a role in regulating FA oxidation (Abu-Elheiga et al., 1997; Abu-Elheiga 

et al., 2000). Malonyl-CoA synthesized by ACC2 inhibits carnitine 

palmitoyltransferase I, part of the machinery that imports FAs into the 

mitochondria for oxidation. In tissues such as the liver, both ACC isoforms are 

expressed and function coordinately (Abu-Elheiga et al., 1997; Abu-Elheiga et 

al., 2001; Mao et al., 2006). In the hypothalamus, ACC also functions as a 

component of a malonyl-CoA dependent fuel sensing pathway that regulates 

whole body metabolism (Hu et al., 2003; Hu et al., 2005; Wolfgang and Lane, 

2006). 

In most unicellular organisms, malonyl-CoA formation is the first 

committed step in FA synthesis. S. cerevisiae ACC is the best characterized 

among unicellular eukaryotes. This organism harbors two ACCs: a cytosolic ACC 

that functions in FA synthesis and elongation, and a mitochondrial ACC that 

functions in lipoic acid synthesis (Hoja et al., 2004; Hiltunen et al., 2005). Unlike 

mammalian ACC2, the S. cerevisiae mitochondrial ACC does not play a role in 

regulating FA oxidation, perhaps because FA oxidation occurs in specialized 

organelles known as peroxisomes rather than mitochondria (Hiltunen et al., 

2005). Very little is known about ACC in protozoan parasites. The 

Apicomplexans Toxoplasma and Plasmodium express two multi-domain ACCs. 
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The ACC in the apicoplast (a non-photosynthetic plastid organelle) plays an 

essential role in lipoic acid synthesis (Jelenska et al., 2001), however the function 

of Apicomplexan cytosolic ACC is not clearly understood (Jelenska et al., 2001; 

Gornicki, 2003; Mazumdar et al., 2006). Another Apicomplexan, 

Cryptosporidium, expresses only single multidomain ACC, which is located in 

cytoplasm (Zhu, 2004; Zhu et al., 2000). 

T. brucei ACC  

According to the TriTryp database, the T. brucei genome encodes a single 

predicted ACC isoform (Tb927.8.7100) (Aslett et al., 2009). Southern blot 

analysis confirmed the presence of a single copy gene (Vigueira et al., 2011). 

The T. brucei ACC (TbACC) gene is ~6.5 Kb in length and encodes a protein of 

2,181 amino acids with a calculated molecular weight 243.9 kD. TbACC shares 

the multidomain structure of other eukaryotic ACCs, and multiple sequence 

alignments showed that TbACC has a moderate 30% identity to yeast and 

human ACCs, and a much higher ~60% identity to other trypanosomatid ACCs 

(Vigueira et al., 2011). TbACC is expressed in both BFs and PFs. The 

expression of TbACC in PFs is 6-fold higher than in BFs when normalized to 

tubulin, which is consistent with a 5-fold higher rate of FA synthesis in PFs 

compared to BFs (Morita et al., 2000; Vigueira et al., 2011).  

TbACC was predicted to be cytosolic and sub-cellular localization 

experiments confirmed this prediction (Vigueira et al., 2011). However, 

immunofluorescence microscopy showed that TbACC is localized to a multitude 
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of small distinct puncta rather than in a diffuse cytoplasmic distribution (Vigueira 

et al., 2011). RNA silencing of TbACC resulted in partial inhibition (50-70%) of 

[3H]laurate and [3 H]myristate elongation in PFs. In BFs, TbACC RNAi caused 

only a 15% inhibition of [3H]laurate elongation, but completely abolished the 

minor elongation of [3 H]myristate. When grown in normal lipid conditions, TbACC 

RNAi cells exhibited no growth defect in either PFs or BFs, which could be 

attributed to the ability of the parasite to acquire FAs from its environment (i.e. 

media). However, when the environmental conditions were changed to low lipid 

conditions, TbACC RNAi in PFs reduced growth by 64% (Vigueira et al., 2011). 

Though TbACC RNAi had no effect on growth of BFs even in low lipid conditions, 

it reduced virulence in mice, nearly doubling the mean time to death when 

compared to the uninduced cell line where TbACC was expressed normally. 

Regulation of ACC 

In mammals, ACC is highly expressed in certain tissues, such as white 

and brown fat, liver, and lactating mammary glands, but ACC expression is 

inhibited during starvation (Wakil et al., 2009). Three distinct promoters are 

known to play a role in controlling the expression of ACC at the transcriptional 

level in response to glucose, hormones, and leptins (Hillgartner and Charron, 

1997; Mao et al., 2003; Kim et al., 2010). Transcription factors such as sterol-

regulatory-element-binding protein 1c (SREBP1c), X-receptor, retinoid X 

receptor, and peroxisome-proliferator-activated receptors (PPARs) play an 
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important role in controlling ACC1 expression (Shimano et al., 1999; Wolfram et 

al., 2004; Barber et al., 2005). 

Allosteric effectors, such as citrate and other carboxylic acids, are known 

to activate mammalian ACC (Vagelos et al., 1963; Lane et al., 1974). Signals 

from amino acid metabolism such as glutamate also activate ACC1 (Winz et al., 

2000). Malonyl-CoA, free CoA and FA-CoA esters were also demonstrated to 

inhibit ACC1 (Ogiwara et al., 1978; Moule et al., 1992). 

Metabolic labeling experiments on liver and fat tissues with [32P]phosphate 

demonstrated the presence of at least four hormone-responsive phosphorylation 

sites in ACC. Treatment with glucagon leads to the rapid phosphorylation of 

ACC, which is an inactivating post-translational modification (Brownsey et al., 

1992; Hardie et al., 1992). Phosphorylation of ACC is mediated by two major 

kinases: AMP-dependent protein kinase (AMPK ), and protein kinase A (PKA) 

(Hardie et al., 1992). 

 Many metabolic enzymes are organized in complexes known as 

‘metabolons’, where high intracellular protein concentrations favor protein-protein 

interactions (Velot et al., 1997). Mammalian and avian ACC activity is regulated 

by polymerization: ACC exists as dimeric form but can assemble into a higher-

order polymeric form (Kleinschmidt et al., 1969; Mackall et al., 1978; Thampy et 

al., 1985; Barber et al., 2005). Allosteric activators such as citrate induces in vitro 

polymerization of ACC in chicken liver extracts, where the inactive protomeric 

form of the enzyme converts to an active filamentous form composed of 10-20 
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protomers (Beaty et al., 1983). In addition, protein inducers like MIG12 can 

induce ACC polymerization in mice by lowering the threshold citrate 

concentration (Kim et al., 2010). Negative regulators such as malonyl-CoA, ATP, 

and Mg2+ causes depolymerization and inactivation of fully polymerized ACC 

(Beaty et al., 1983).  
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CHAPTER TWO 

REGULATION OF T. brucei ACC IN PRESENCE OF ENVIRONMENTAL 

LIPIDS 

 

INTRODUCTION  

African trypanosomiasis is caused by the parasite Trypanosoma brucei, 

which is transmitted by the blood sucking tsetse fly. In mammals, the 

bloodstream form (BF) of the parasite exists extracellularly in the bloodstream 

and the cerebrospinal fluid. When the tsetse fly feeds on an infected mammal, T. 

brucei differentiate into procyclic forms (PF) in the fly midgut. These PFs then 

invade the hemolymph, cross the midgut epithelium and enter into the salivary 

glands. In the salivary glands, the PFs undergo meiosis and further development 

to form an infectious metacyclic form, which is transmissable to a new 

mammalian host when the fly takes another blood meal.  

T. brucei surface coat proteins play an important role in the survival of the 

parasite in its hosts. The T. brucei PF surface coat is composed of ~3 x 106 

copies of one of the procyclins, a small family of glycoproteins (Schell and 

Overath, 1990; Matthews and Gull, 1994). Procyclins are predicted to play a role 

in protecting these parasites against proteolytic degradation in the tsetse fly 

midgut (Acosta-Serrano et al., 2001). The T. brucei BF surface coat is composed 

of 1 x 107 copies of a single Variant Surface Glycoprotein (VSG) (Tachado and 

Schofield, 1994; Taylor and Rudenko, 2006). T. brucei can periodically switch its 
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VSG coat to an entirely new antigenic variant thereby allowing the parasite to 

avoid destruction by the immune system, a process known as antigenic variation 

(Turner and Barry, 1989). Both the procyclin and VSG proteins are GPI-anchored 

to the parasite plasma membrane, though their GPI-anchors differ in their fatty 

acid (FA) moieties. The procyclin GPI-anchor contains two FAs, a palmitate 

(C16:0) esterified to inositol and a stearate (C18:0) esterified to the sn-1 position 

of the monoacylglycerol moiety (Field et al., 1991; Butikofer et al., 1997). The 

VSG GPI-anchor also contains two FAs, both of which are myristate (C14:0) 

(Ferguson and Cross, 1984). Consequently, the need to maintain their lipid 

anchored surface coats creates a high demand for FAs. Interestingly, myristate is 

not an abundant FA in blood. (Edelstein,1986). 

During its life cycle, a host presents T. brucei with different 

microenvironments: the blood meal, hemolymph, gut and salivary glands in 

tsetse flies; and the bloodstream and cerebrospinal fluid in mammals. In all of 

these microenvironments, the parasite encounters differences in nutrient 

availability, including FAs. For example, the parasite experiences a dramatic 

~400-fold drop in lipid availability when it crosses the blood-brain barrier and 

enters the cerebrospinal fluid (Roheim et al., 1979). To satisfy its FA needs, T. 

brucei relies on two mechanisms: de novo synthesis of FAs and uptake of 

environmental FAs from the host. T. brucei readily takes fatty acids from its host 

to supply itself (Mellors and Samad, 1989; Coppens et al., 1995). However, 

under conditions of limiting exogenous FAs, T. brucei is unable to rely on uptake 
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alone and must synthesize FAs de novo. FA synthesis is functional in both PF 

and BF T. brucei (Lee et al., 2006; Stephens et al., 2007).  

A canonical eukaryotic cytosolic type 1 pathway does not exist in 

trypanosomatids (Aslett et al., 2010). Instead, there are two known FA synthesis 

pathways in T. brucei: an elongase pathway localized to the endoplasmic 

reticulum that accounts for ~90% of total FA synthesis (Lee et al., 2006) and a 

mitochondrial pathway that is responsible for ~10% of total FA synthesis 

(Stephens et al., 2007; Guler et al., 2008). Both FA synthesis pathways depend 

on a key substrate malonyl-CoA, the 2-carbon chain donor, which is synthesized 

from acetyl-CoA by Acetyl-CoA carboxylase (ACC) in what constitutes the first 

committed step in FA synthesis (Barber et al., 2005). 

T. brucei ACC (TbACC) is 58-66% identical to the ACCs in other 

trypanosomatids such as Leishmania and Trypanosoma cruzi (Vigueira et al., 

2011).  However, TbACC is only 31-33% identical to human, rat, and 

Saccharomyces cerevisiae ACCs (Vigueira et al., 2011). ACC is a member of the 

biotin carboxylase family of enzymes, which use a biotin prosthetic group to 

transfer a carboxyl group to an acceptor acetyl-CoA (Barber et al., 2005). The 

domain identity between the human ACC and TbACC is ~ 48% for the biotin 

carboxylase domain, ~30% for the biotin carboxyl carrier protein domain, and 

~34% for the carboxyl transferase domain (Vigueira et al., 2011). Earlier studies 

demonstrated that RNAi of TbACC in PFs and BFs caused a reduction in FA 

elongation (Vigueira et al., 2011). TbACC RNAi also caused a growth defect in 



49 
 

PFs when environmental lipids were low, and reduced the virulence of BFs in 

mouse infection studies (Vigueira et al., 2011). 

Because ACC catalyzes the first committed step in FA synthesis, it serves 

as a control point for regulating FA synthesis and is known to be highly regulated 

by various control mechanisms in other organisms (Brownsey et al., 2006). In 

many metazoans, ACC is a component of a fuel-sensing pathway that responds 

to the metabolic state of cell (Hu et al., 2003; Hu et al., 2005; Wolfgang and 

Lane, 2006). In all systems studied to date, ACC is regulated by phosphorylation. 

AMP-activated protein kinase (AMPK) is the best characterized kinase that 

phosphorylates ACC, and its function is conserved from yeast to mammals 

where it serves as an energy and stress sensor (Winder and Thomson, 2007). In 

yeast and mammals, phosphorylation of ACC results in the inhibition of ACC 

activity, creating a way to conserve energy during stress (Winder et al., 1997; 

Carlson and Winder 1999).  Mammalian ACC is phosphorylated on least 6-8 

sites, however only 2-3 sites have actually been demonstrated to affect ACC 

activity (Tong, 2005). In mammals, the canonical sites for AMPK phosphorylation 

are Ser79, Ser1200, and Ser1215, whereas yeast ACC is primarily controlled by 

AMPK phosphorylation at Ser1500 (Barber et al., 2005). 

ACC likely plays a central role in FA metabolism in T. brucei, however little 

is known about ACC in parasitic protozoans and almost nothing is known about 

trypanosomatid ACCs and their regulation. In this chapter, I investigated the 

hypothesis that T. brucei ACC is regulated in response to environmental lipids. I 
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found that ACC activity is increased in low lipid environments and decreased in 

high lipid environments. I then delineated the mechanisms by which ACC 

expression and activity is regulated in response to altered lipid environments and 

found that phosphorylation of TbACC has a negative effect on TbACC activity 

and is one of the major post-translational mechanisms regulating TbACC in 

response to environmental lipids. Finally, I found that environmental lipid 

regulation of TbACC occurs only in PFs and is not observed in BFs. 

 

RESULTS  

Effect of environmental lipids on TbACC mRNA levels 

To examine the regulation of TbACC at the transcriptional level, we used 

qRT-PCR (quantitative reverse transcriptase polymerase chain reaction). Total 

mRNA was isolated from lysates prepared from cells grown in low, normal, and 

high lipid conditions. qRT-PCR analysis revealed that in both BFs and PFs, there 

was no significant difference in TbACC mRNA levels in cells grown in low, 

normal, and high lipid conditions (Fig. 2.1 A). There is no significant difference in 

TbACC mRNA level between PF and BF when normalized to actin (Fig. 2.1 B).    
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A. 

 

Figure 2.1: Environmental lipids do not affect ACC mRNA levels in PF and BF. (A.) BF and 

PF T. brucei cells were grown in low, normal, and high lipid conditions to mid-logarithmic stage. 

ACC transcript levels were assessed by qRT-PCR and normalized to β-actin as a loading control. 

Data shows the mean ± SEM of three independent experiments. (B.) BF and PF ACC RNA levels 

normalized to actin as a control.  
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Effect of environmental lipids on TbACC protein levels 

To investigate regulation of TbACC at the post-translational level, BF and 

PF cells were grown in low, normal, and high lipid media and then TbACC protein 

levels in total cell lysates were analyzed by SDS-PAGE and western blotting 

using streptavidin-HRP (SA-HRP), which binds to the biotin prosthetic group of 

ACC (Nikolau et al., 1985; Haneji and Koide, 1989). Other biotinylated proteins 

can also be detected using SA-HRP, however the genome of T. brucei shows the 

presence of only one other biotinylated protein, the 71 kD α subunit of 3-

methylcrotonyl-CoA carboxylase (Tb927.8.6970), an enzyme involved in amino 

acid degradation. TbACC is 243 kD, making it distinguishable from the other 

biotinylated enzyme in T. brucei. In BFs, TbACC protein levels showed no 

significant difference in cells grown in low, normal, or high lipid media (Fig. 2.2.A 

and C). However, in PFs growth in low lipid media resulted in a significant 1.6-

fold increase in TbACC protein levels as compared to high lipid media (Fig. 2.2.B 

and C). 
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Figure 2.2: Environmental lipids affects TbACC protein levels in PF but not BF. BF (A.) and 

PF (B.) WT cells were grown in low, normal, and high lipid media to mid-logarithmic stage. 
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Lysates were prepared in the presence of HALT phosphatase inhibitor cocktail. 10 µg of total 

protein/lane was resolved by 10% SDS-PAGE and transferred to nitrocellulose. TbACC was 

detected by SA-HRP blotting (top panel) and the same blots were probed for tubulin as a loading 

control (bottom panel). Representative blots are shown in A and B. (C.) Densitometric 

quantification of three independent experiments. ACC signal was normalized to the tubulin 

loading control. Mean ± SEM is shown. ** P ≤ 0.01 for difference between PF cells grown in high 

lipid and low lipid media (Student’s t-Test).  

 

Effect of environmental lipids on TbACC activity 

To examine the effect of environmental lipids on TbACC activity, lysates were 

prepared from cells grown in low, normal, and high lipid media and then assayed 

for ACC activity. TbACC enzyme activity was assayed by measuring the 

incorporation of [14C]CO2 from radiolabeled [14C]NaHCO3 in the presence of 

acetyl-CoA and ATP into the acid-resistant product [14C]malonyl-CoA, which was 

quantified by scintillation counting. In BFs, growth in high or low lipid media did 

not affect TbACC activity, as compared to growth in normal lipid media. In 

contrast, in PFs growth in high lipid media resulted in ~60% decrease in TbACC 

activity compared to growth in low lipid media (Fig. 2.3). 
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Figure 2.3: Environmental lipids affect TbACC activity in PF but not BF. BF and PF WT cells 

were grown in low, normal, and high lipid conditions to mid-logarithmic stage. Lysates were 

prepared in the presence of HALT phosphatase inhibitor cocktail, and equal amount of total 

protein was assayed for ACC activity by measuring incorporation of [14C]NaHCO3 into the acid-

resistant malonyl-CoA product in the presence of ATP and acetyl-CoA. Values were first 

normalized to “no ATP” negative control before averaging. Average values were then expressed 

relative to that of normal media. Mean ± SEM of 3 independent experiments is shown. ** P≤ 0.01 

for difference between PF cells grown in high and low lipid conditions (Student’s t-Test).  

 

Effect of exogenous C18:0 FA on TbACC activity 

To confirm that the change in activity of TbACC in different environmental lipids 

was due to the lipid component of the media, we determined if addition of a 

single FA can affect TbACC activity. PFs were first grown in low lipid media to 

mid-logarithmic stage. The culture was then divided into 3 sub-cultures that were 

either maintained in low lipid media, or supplemented with serum to equal the 

high lipid media, or supplemented with 35 µM of stearate (C18:0) FA. ACC 
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enzyme activity was assayed as described above. PFs supplemented with serum 

(high lipid) or 35 µM C18:0 FA showed a ~25% and ~40% decrease, 

respectively, in TbACC activity when compared to cells maintained in low lipid 

media (Fig. 2.4). 

 

Figure 2.4: PF TbACC activity is reduced upon addition of exogenous C18:0 FA. PF WT 

cells were grown in low lipid conditions, then maintained in low lipid (Low Lipid) or supplemented 

with serum (High lipid) or 35 µM C18:0 FA (Low Lipid + 35 µM C18:0). Hypotonic lysates were 

assayed for ACC activity as described in Fig. 2.2. Values were normalized to the “no ATP” control 

before averaging, then averaged values expressed relative to the cells grown in low lipid 

conditions. Mean± SEM of 3 independent experiments is shown. **P≤ 0.01 for difference from low 

lipid conditions (Student’s t-Test). 

 

In silico analysis of potential phosphorylation sites in TbACC 

To determine if TbACC might be phosphorylated, the TbACC protein 

sequence (Tb 927.8.7100) was analyzed for potential serine, threonine, and 
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tyrosine phosphorylation sites using the NetPhos 2.0 prediction software (Bloom 

et al., 1999). The NetPhos 2.0 output indicated the presence of 52 serine, 33 

threonine, and 19 tyrosine potential phosphorylation sites with a confidence 

threshold ≥0.50 (Tables 2.1, 2.2, and 2.3). With a threshold of ≥ 0.90, there were 

19 phosphorylation sites, consisting of 13 serine, 3 threonine, and 3 tyrosine 

sites (Fig. 2.5.A and B). 

To determine what kinases might potentially phosphorylate TbACC, 

KinasePhos 2.0 was used to assess the TbACC protein sequence for kinase-

specific phosphorylation sites (Wong et al., 2007). The output predicted the 

presence of a total of 29 kinase-specific phosphorylation sites with a confidence 

threshold >0.70 (Table 2.4) and included 20 protein kinase C (PKC) sites, 8 

protein kinase A (PKA) sites, and 1 protein kinase B (PKB) site. Five of the sites 

predicted by the NetPhos 2.0 software were coincident with 3 predicted PKC 

sites and 2 predicted PKA with threshold of ≥ 0.90. Interestingly, no 

phosphorylation sites specific to AMPK were predicted. 
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Table 2.1: Predicted phospho-serine sites 
Position Context  Score 
48    KGIDSVRSW   0.521   
147    FLGPSAKAM   0.717   
175    TVPWSGDEI   0.926   
199    KAYISTAEE   0.913   
396    PYDTSPIDF   0.918   
430    FRPTSGRVE   0.994 
441    AFKNSKECW   0.885 
469    GHIFSSAET   0.681   
553    LRMLSKRDE   0.997   
578    TEFLSNYES   0.990   
600    MGLTSPTEI   0.995   
643    EKEPSSLRI   0.507   
644    KEPSSLRIS   0.925   
648    SLRISIGGK   0.989  
705    PLRASTVGA   0.655   
735    PDDPSKVAR   0.719   
766    ERLDSLARA   0.988   
797    RRLKSAFSD   0.910 
827    RVVGSDHAT   0.747 
921    VNLRSTGDG   0.929   
958    LEEGSMMDL   0.932   
1046    ATAGSAENQ   0.945   
1084    SRCPSVCTV   0.852  
1143    FTYRSAHDW   0.991   
1160    VAPLSARRL   0.961   
1195    PKKKSVSFL   0.991   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Position Context  Score 
1197    KKSVSFLEH   0.994   
1245    IRSDSTIKY   0.976   
1279    QVGKSYKWR   0.993   
1313    VIVSSSSGA   0.816   
1315    VSSSSGASA   0.909   
1355    TSSDSVQEQ   0.992   
1370    VEPPSGCPA   0.899   
1397    SLLPSRGDE   0.993   
1465    RFPLSRIPP   0.922   
1511    INPPSYYDS   0.996   
1575    RIGLSAEVK  0.585   
1600    YLVQSDYDE   0.908   
1720    YSDNSQLGG   0.685   
1811    FDRDSWVES   0.995   
1815    SWVESLEGW   0.734   
1858    ADPTSSEAF   0.974   
1874    WFPDSARKT   0.613   
1902    WRGFSGGMR   0.610   
1918    KFGASIVDN   0.890   
1965    YCDGSARGG   0.873   
1999    PRLRSLSPD   0.786   
2001    LRSLSPDHR   0.987   
2048    PWKDSRRRF   0.954   
2119    ELNVSTHNI   0.809   
2125    HNIVSPTSA   0.887   
2128    VSPTSASAE   0.976   
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Table 2.2: Predicted phospho-threonine sites 
Position    Context  Score   
9    SPVTTMRPQ   0.941  
60    HTGNTEAVE   0.601   
70    TVMATPEDL   0.566   
418    AVRVTAEDT   0.687  
422    TAEDTDEGF   0.636 
429    GFRPTSGRV   0.845 
473    SSAETREEA   0.872 
548    TAACTLRML   0.665 
688    VEEGTIVAE   0.817  
730    VAEITPDDP 0.975 
744    PREATEPWP   0.850 
869    QVRETTGDT   0.922 
870    VRETTGDTR   0.910 
873    TTGDTRKVF   0.871 
922    NLRSTGDGT   0.893 
1079    NLQQTSRCP   0.909 
1097    CRQFTEEEV   0.932 
1140    PRTFTYRSA   0.978 
1151    WREDTLIRN   0.930 
1179    VMYPTPFKE   0.868 
1190    VFHATPKKK   0.979 
1210    RACVTPRDL   0.986 
1246    RSDSTIKYP   0.604 
1674    ISIVTGRSV  0.818   
1694    RVIQTGDAP   0.700   
1782    DRDVTYEPS   0.773 
1825    KTVVTGRAT   0.823 
1845    ETRPTRKCK   0.846 
1857    PADPTSSEA   0.905 
1878    SARKTADAL   0.821 
2036    RMEATGVVR   0.778  
2068    SLAATLVER   0.526 
2179    LERTTAK   0.899  
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Table 2.3: Predicted phospho-tyrosine sites 

Position    Context  Score   
54  RSWLYVHTG   0.858   
99    NRNNYANVD   0.904   
197    YEKAYISTA   0.970   
274  LADDYGDCI   0.561   
393    GEQPYDTSP   0.907   
447   ECWGYFSVG   0.934   
540   QQDVYIALT   0.597   
562    NHGRYVSFL   0.744   
585    ESESYVNRS  0.985   
1249  STIKYPKHN   0.607   
1350  MNSLYTSSD   0.846   
1478  ATELYLDPA   0.955   
1512  NPPSYYDSE   0.866   
1594     EEAEYLYLV   0.827   
1632     GEVRYVIRG   0.936   
1664     MSKNYSNVP   0.658   
1716     GKEVYSDNS   0.952   
1754     RWLDYVPPV   0.665   
1783     RDVTYEPSG   0.905   
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Table 2.4: Predicted kinase-specific phosphorylation sites 
Site Kinase Score 
T-8 PKC 0.71 
T-108 PKC 0.71 
S-166 PKC 0.71 
T-338 PKC 0.89 
T-401 PKC 0.78 
S-531 PKC 0.72 
T-744 PKB 0.76 
S-797 PKA 0.77 
S-912 PKA 0.77 
S-939 PKA 0.74 
T-1079 PKC 0.73 
S-1084 PKA 0.71 
T-1140 PKC 0.88 
T-1190 PKC 0.80 
S-1195 PKA 0.72 
T-1246 PKC 0.90 
S-1268 PKC  0.89 
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A.  

 

B.  

 

 

Figure 2.5: Phospho-prediction analysis. The TbACC predicted protein sequence was 

analyzed for potential phosphorylation sites using NetPhos 2.0 prediction software. (A.) Graph 

showing the frequency vs. predicted sites of phosphorylation. (B.) Cartoon showing high 

confidence (≥0.90) phosphorylation sites and their location in the TbACC protein. N, N-terminal 

domain; BCD, biotin carboxylase domain; BCCP, biotin carboxyl carrier protein domain; CT, 

carboxyl transferase domain; and C, C-terminal domain.  
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TbACC is a phosphoprotein whose phosphorylation is affected by 

environmental lipids 

To confirm that TbACC is a phosphoprotein, T. brucei PF cells carrying a 

C-terminally myc-tagged ACC in one of the genomic loci (PF ACC-myc) were 

grown in low, normal, and high lipid media for 48 h, then metabolically labeled 

with [32P]orthophosphate as the sole source of phosphate. [32P]orthophosphate 

labeling of TbACC-my immunoprecipitates confirmed that TbACC is 

phosphorylated in PFs (Fig. 2.6). Furthermore, TbACC-myc showed a 4-fold 

increase in phosphorylation in high lipid media compared to normal lipid media, 

while TbACC-myc showed an 80% decrease in phosphorylation in low lipid 

media compared to normal media (Fig 2.6.A and B). 
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A. 

 

B. 

 

 

Figure 2.6: Effect of environmental lipids on PF TbACC phosphorylation via 

[32P]phosphate labeling. PF ACC-myc cells were grown in normal lipid media to mid-logarithmic 

phase. Cells were harvested and incubated with 1-2 mCi [32P]orthophosphate in low, normal, and 

high lipid phosphate-free media for 16 h. TbACC-myc immunoprecipitates were resolved by SDS-

PAGE, transferred on nitrocellulose, and blots assessed by autoradiography (A., top panel). 

Identically-loaded blots were prepared in parallel and probed for total TbACC by SA-HRP blotting 

(A., bottom panel) (B.) Densitometric analysis of the blots in A. TbACC-myc phosphorylation 

values were normalized to total TbACC loaded. 
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We further confirmed TbACC phosphorylation using a non-radioactive 

phospho-staining method. PF ACC-myc cells were grown in low, normal, and 

high lipid media, and TbACC-myc immunoprecipitates were resolved by SDS-

PAGE and stained for phosphoproteins using a non-specific phosphoprotein gel 

stain, Pro Diamond Q. TbACC-myc purified from the low, normal, and high lipid 

growth condition showed different levels of phosphorylation (Fig. 2.7A and B). 

Low lipid media resulted in a 50% decrease in TbACC phosphorylation compared 

to normal lipid media. In contrast, high lipid media induced the highest level of 

TbACC phosphorylation with an increase of 2.5-fold over that in normal lipid 

conditions. Similar experiments performed in BF ACC-myc cells indicated that 

phosphorylation of TbACC was not detected in BFs (Fig. 2.8). 
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A. 

 

B. 

 

Figure 2.7: Effect of environmental lipids on PF TbACC phosphorylation via 

phosphoprotein gel staining. PF TbACC-myc immunoprecipitates from cells grown in low, 

normal, and high lipid media were prepared as described for Fig. 2.6, resolved by SDS-PAGE, 

and the gels stained with Pro Diamond Q phosphoprotein gel stain and imaged under UV (A., 

upper panel). Identically-loaded gels prepared in parallel were transferred to nitrocellulose and 

the blots probed for total TbACC by SA-HRP blotting (A., lower panel). (B.) Densitometric 

analysis of 3 independent experiments. PF TbACC-myc phosphorylation values (ACC-p) were 

normalized to total TbACC-myc loaded (ACC-t). Mean± SEM is shown. *, P≤ 0.01 for differences 

between high lipid and low lipid conditions (Student’s t-Test). 
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Figure 2.8: Effect of environmental lipids on BF TbACC phosphorylation via 

phosphoprotein gel staining. BF TbACC-myc immunoprecipitates from cells grown in low, 

normal, and high lipid media were analyzed by Pro Diamond Q phosphoprotein gel staining as 

described for Fig. 2.6, except 5 x 108 cells were used. Upper panel, UV imaging of 

phosphoprotein gel staining of TbACC (ACC-p). Lower panel, SA-HRP blotting for total TbACC 

(ACC-t) of identically-loaded blots processed in parallel. 

 

Phosphorylation reduces the activity of TbACC-myc  

To determine the effect of phosphorylation on TbACC activity, PF TbACC-

myc cells were grown in high lipid media and TbACC-myc isolated by pull-down 

with anti-myc sepharose beads. TbACC-myc-bound beads were treated with 

lambda phosphatase or left untreated as a control. The TbACC activity of the 

TbACC-myc bound to the beads was assayed as described previously. To 

confirm successful dephosphorylation, TbACC-myc pull-downs were also 

assessed by SDS-PAGE and Pro Diamond Q phosphoprotein gel staining as 

described previously. Phosphoprotein staining confirmed successful 
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dephosphorylation of TbACC-myc by lambda phosphatase treatment (Fig. 2.9A). 

Dephosphorylation of TbACC-myc resulted in a 2-fold increase in TbACC-myc 

activity as compared to the untreated control, indicating that phosphorylation is 

an inhibitory modification (Fig. 2.9B).   

 
A. 

 
B. 

 
 
Figure 2.9: Phosphorylation of TbACC reduces activity. PF TbACC-myc cells were grown in 

normal media to mid-log phase. TbACC-myc was pulled down by anti-myc sepharose beads and 

directly treated with 400 U of lambda phosphatase or mock treated as a control. TbACC-myc pull-

downs were assessed for phosphorylation by SDS-PAGE and phosphoprotein staining. (A.) 

Representative UV image of phosphoprotein gel staining (upper panel) and SA-HRP blotting of 

TbACC-myc pull-downs processed in parallel (lower panel). (B.) Phosphatase and mock-treated 

TbACC-myc pull-downs were assayed for ACC activity. Values were normalized to “no ATP” 

control. Mean ± SEM of 3 independent experiments are shown. *, P≤0.01 for difference between 

phosphatase-treated and untreated (Student’s t-Test).
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DISCUSSION  

It is well documented that T. brucei can readily take up and use lipids, 

including FAs, from its environment (Dixon et al., 1971; Voorheis, 1980; Bowes et 

al., 1993; Coppens et al., 1995; Lee et al., 1999). Given that T. brucei can satisfy 

its FA requirements either through uptake from the host or through de novo 

synthesis, the parasite may have a mechanism to modulate FA synthesis in 

response to environmental lipid availability. We hypothesized that TbACC serves 

as a regulatory control point and thus, is regulated by environmental lipids. As 

serum is the sole source of lipid in the media, we determined the effect of 

modulating the serum lipids in the growth media on TbACC expression and 

activity.  

Quantitative RT-PCR analysis of TbACC mRNA levels showed no 

significant difference when BF and PF T. brucei were grown in low, normal, or 

high lipid media. Thus, TbACC does not appear to be transcriptionally regulated. 

This result is consistent with studies that indicate minimal transcriptional 

regulation in T. brucei, due to their polycistronic mode of transcription and the 

absence of classical RNA Pol II promoters (Campbell et al., 2003; Palenchar and 

Bellofatto, 2006; Günzl et al., 2007; Martinez-Calvillo et al., 2010). 

We next looked at TbACC protein levels in cells grown in low, normal, and 

high lipid media by western blot analysis. In BFs, there was no significant 

difference in TbACC protein levels. However, in PFs we observed the highest 

levels of TbACC protein in the low lipid media and the lowest level in the high 
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lipid media. Growth in low, normal, or high lipid media had no effect on TbACC 

enzyme activity in BFs, but in PFs, TbACC was highest in the low lipid media and 

lowest in the high lipid media. The reduction of TbACC activity seen when low 

lipid media was supplemented with C18:0 FA confirms the idea that the 

regulation of PF TbACC is due to the lipid component of the media. Together, 

these results demonstrate that TbACC is regulated post-transcriptionally in PFs 

in response to environmental lipids, both at the level of protein and activity. 

TbACC protein levels may be regulated due to protein degradation in high lipid 

conditions. Control at the level of protein stability occurs due to translational and 

post translational regulation in Trypanosomes (Torri et al., 1993; Gale et al., 

1994). Proteasomal mediated degradation has already been established in 

T.brucei (Li et al., 2002). This selective degradation can be due to environmental 

sensing and post translational modification of TbACC resulting in targeted 

TbACC degradation in high lipid environment.  

In other organisms, it is well documented that ACC activity is regulated 

through phosphorylation by AMPK and PKA (Hardie et al.,1992; Brownsey et al., 

2006). Metabolic labeling experiments demonstrated the presence of at least four 

hormonal-responsive phosphorylation sites in mammalian ACCs (Brownsey et 

al., 1992; Hardie et al., 1992). Glucagon treatment or high cellular AMP levels 

lead to the rapid phosphorylation and inactivation of ACC. Because ACC is 

regulated by phosphorylation in all organisms studied to date (Kim, 1983; Kim et 

al., 1989), we hypothesized that TbACC is also regulated by phosphorylation. 
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First, in silico analysis of the TbACC protein sequence for potential 

phosphorylation sites and kinase-specific sites revealed multiple predicted high-

confidence sites, including consensus sites for PKA, PKC, and PKB kinases, 

homologs for which are present in the T. brucei genome (Nett et al., 2009). 

However, none of these predicted phosphorylation sites corresponded with 

known, highly conserved, phosphorylation sites in human and yeast ACCs 

(Kimberly Paul, personal communication). Interestingly, no sites for the best-

characterized ACC kinase, AMPK, were predicted despite the fact that AMPK is 

present in T. brucei (Clemmens et al., 2009). Although a negative observation 

and thus inconclusive, the sole phosphoproteomic study in T. brucei available at 

the time we initiated these studies showed no evidence that TbACC was 

phosphorylated (Nett et al., 2009). 

Metabolic labeling with [32P]orthophosphate and phosphoprotein staining 

of PFs confirmed that TbACC is phosphorylated in PF T. brucei, consistent with 

the detection of ACC phosphorylation in other species by 32P-labeling (Witters, 

1981; Thampi and Wakil, 1985). Further, these studies revealed that TbACC is 

differentially phosphorylated in PFs in response to environmental lipids. The 

relative phosphorylation level of TbACC increased in the presence of high 

environmental lipid levels and decreased as the environmental lipid levels 

decreased. This is consistent with the FA induction of the AMPK signaling 

cascade in response to environmental lipids observed in muscle (Li et al., 2013). 

We also demonstrated that dephosphorylation of TbACC leads to an increase in 
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its activity, indicating that phosphorylation is an inactivating post-translational 

modification of TbACC. These observations on TbACC phosphorylation are 

consistent with work on ACC regulation in humans and yeast, which 

demonstrated that treatment of cells with starvation-stimulated hormones such as 

glucagon leads to rapid phosphorylation and inactivation of ACC (Hardie et al., 

1992). Likewise, dephosphorylation of chicken liver ACC by treating it with 

protein phosphatase caused a 5-fold increase in ACC activity (Wada and 

Tanabe, 1983). 

We propose that when PFs have an adequate supply of lipid in their 

environment, they rely on uptake of exogenous fatty acids from the media and 

correspondingly phosphorylate and downregulate TbACC. However, under 

limiting lipid conditions, the parasite dephosphorylates TbACC, thereby activating 

it in order to synthesize its own FAs. This idea is consistent with the general 

upregulation of FA synthesis seen when PFs were grown in low lipid media (Lee 

et al., 2006) and studies showing that RNAi of TbACC or another FA synthesis 

enzyme enoyl-CoA reductase had no effect on growth in normal or high lipid 

media, but reduced growth only in low lipid media (Lee et al., 2006; Vigueira et 

al., 2011). 

The phosphorylation of human ACC isoforms is complex, involving several 

phosphorylation sites, thus the impact of a specific phosphorylation state and 

catalytic activity has been controversial (Lane et al., 1974; Kim, 1979; Tipper and 

Witters, 1982; Tipper et al., 1983). Given the number of potential phosphorylation 
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sites in TbACC, phosphoregulation of TbACC may also be subject to complex 

regulation by multiple kinases. Supporting this idea, a recent phosphoproteomic 

study in T. brucei (Urbaniak et al., 2013) identified three TbACC 

phosphopeptides, corresponding to Ser5, Ser1999, and Ser2001. The latter two 

phosphoserine sites were predicted by NetPhos 2.0 as potential phosphorylation 

sites with confidence scores of 0.786 and 0.987, respectively. None of the three 

phosphoserine sites were predicted by NetPhosK 1.0 to be a kinase-specific site, 

possibly owing to the divergence of consensus sites between T. brucei kinases 

and other eukaryotic kinases (Brownsey et al., 1992; Hardie et al., 1992). Future 

work will be needed to determine the identity of the TbACC kinase(s) and the role 

of each phosphorylation site. 

 In contrast to PFs, we observed no changes in TbACC protein levels or 

activity in BFs grown in different lipid conditions. In addition, we observed no 

phospholabeling of TbACC in BFs grown in low, normal, or high lipid media. 

These data suggest that BF TbACC does not appear to be regulated by 

environmental lipids and that under typical culture conditions, BF TbACC is 

constitutively dephosphorylated and active. We have demonstrated, however, 

that phosphorylated TbACC can be detected in BFs, when the cells were treated 

with a compound, epigallocatechin gallate, which is a known activator of AMPK 

(Vigueira et al., 2012). 

 Constitutive activation of TbACC in BFs can have several possible 

explanations. First, there may be a difference in the sensitivity of BFs to 
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environmental lipids compared to PFs. Perhaps the altered lipid levels in the low 

or high lipid media did not achieve the threshold needed for BFs to modulate 

their TbACC expression or activity. We attempted to further lower the lipid in 

media by delipidation or reduction of serum, but the resulting media did not 

support T. brucei growth. 

Second, there may be a high demand of FAs in BFs due to the VSG coat, 

which plays a vital role in immune evasion in T. brucei (Donelson, 2003). The 

VSG GPI-anchors contain exclusively myristate, a relatively scarce FA in blood 

(Paul et al., 2001), and at any given time, a single parasite expresses around a 

10 million copies of VSG, each of them anchored by two myristates (Ferguson 

and Cross, 1984). Thus, BF T. brucei may rely on TbACC and ongoing FA 

synthesis to make enough myristates to maintain the VSG coat. 

Third, constitutive activation of TbACC and ongoing FA synthesis may be 

required to support a second immune evasion tactic in BF T. brucei, the 

upregulation of endocytosis (Field and Carrington, 2009). The rate of endocytosis 

in BFs is 10-fold higher than that of PFs (Natesan, et al., 2007), and this high rate 

of endocytosis is thought to enable BF T. brucei to clear surface-bound 

antibodies and evade complement-mediated lysis (Balber et al., 1979; Ferrante 

and Allison, 1983; Donelson et al., 1998). Clearance of antibody from the surface 

is achieved by internalization of VSGs bound to antibodies into a recycling 

endocytic pathway, where after sorting, the antibody is degraded and VSG is 

recycled back to the surface (Donelson et al., 1999; Field and Carrington, 2009). 
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The high rate of membrane turnover needed to sustain this rapid rate of 

endocytosis and recycling may require a high rate of TbACC activity and FA 

synthesis in BFs in order to maintain membrane homeostasis. Studies from our 

lab provide support for the idea that activation of TbACC is required to sustain 

high rates of endocytosis (Mcknight, 2012). RNAi of ACC in BF T. brucei resulted 

in a reduction in both fluid phase and receptor-mediated endocytosis, slowed 

kinetics of antibody clearance, and increased susceptibility to killing by 

complement-mediated lysis (McKnight, 2012). 

In summary, the work presented in this chapter demonstrate that TbACC 

is regulated by environmental lipids in PFs but not in BFs. We showed that T. 

brucei regulates its FA metabolism so that FA synthesis is down-regulated in 

lipid-rich environments and is upregulated when environmental lipids are limiting. 

These results also suggest that T. brucei can transduce its environmental lipid 

status into regulatory signals that not only alter TbACC protein levels but also its 

activity, suggesting multiple post-transcriptional regulatory mechanisms. Finally, 

we have demonstrated that one such environmental regulatory mechanism is 

phosphorylation, which occurs under high lipid conditions and serves to reduce 

TbACC activity. 
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MATERIALS AND METHODS 

Reagents  

All chemicals and reagents used in this study were purchased from 

Thermo Fisher Scientific and Sigma except: Iscove’s Modified Dulbecco’s 

Medium (IMDM) and Minimum Essential Media (MEM) (Invitrogen), Serum Plus 

(JRH Biosciences), and delipidated Fetal Bovine Serum (Cocalico Biologicals).  

 

T. brucei strains and growth media 

Wild-type PF and BF T. brucei strain 427 were a kind gift from Dr. Paul 

Englund (Johns Hopkins School of Medicine). ACC-myc PF cell line expressing 

one genomic loci of ACC with a C-terminal myc epitope tag was developed by  

Dr. Patrick Vigueira (Vigueira et al., 2011). A BF ACC-myc cell line was 

generated using the same method as in (Vigueira et al., 2011). Correct 

integration of myc epitope tag was verified using diagnostic PCR and western 

blotting. 

Serum is the only source of lipids in the T. brucei growth media. Three 

different sera were used to prepare media: Fetal Bovine Serum (FBS), 

delipidated Fetal Bovine Serum (dFBS), and Serum Plus (SP) (see Table 2.5 for 

media formulations). According to the manufacturers, both dFBS and SP have 

20% of the lipids found in FBS. The normal growth medium for PFs is SDM-79 

(Brun and Shonenberger, 1979) supplemented with heat-inactivated 10% FBS, 

making the medium 10% total serum lipids. For BFs, the normal growth medium 
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is HMI-9 (Hirumi and Hirumi, 1989) supplemented with heat-inactivated 10% FBS 

and 10% SP, making the medium 12% total serum lipids. 

To prepare low lipid media for PFs, heat-inactivated 10% dFBS replaced 

the FBS giving a final concentration of 2% total serum lipids. BF low lipid media 

was prepared with 10% heat-inactivated dFBS and 10% SP, giving a final 

concentration of 4% total serum lipids. For both BFs and PFs, high lipid media 

was prepared by doubling the heat- inactivated FBS, resulting in a final of 20% 

and 22% total serum lipids for BF and PF media, respectively. 

 

TABLE 2.5:  Formula for low, normal, and high lipid T. brucei growth media 

 Condition  Delipidated 
Serum  

Fetal 
Bovine 
Serum  

Serum 
Plus  

Serum lipid 
Equivalents  

BSF  Low  10%  0%  10%  4% (~0.2X)  

Normal  ____  10%  10%  12% (1X)  

High  ____  20%  10%  22% ~(2X)  

PCF  Low  10%  0%  ____  2% (0.2X)  

Normal  ____  10%  ____  10% (1X)  

High  ____  20%  ____  20% (2X)  

 

Lysate preparation 

Hypotonic lysates were prepared from 5 x 108 cells as described (Morita et 

al., 2000) or from 1 x 109 cells as described (Bangs 1993; Roggy and Bangs, 
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1999). For both lysis methods, a protease inhibitor cocktail (1 µg/ml Leupeptin, 

0.1 mM tosyllysine chloromethyl ketone hydrochloride (TLCK)) and HALT 

phosphatase inhibitor cocktail (Thermo Scientific) were added during the lysis 

Hypotonic lysates were sheared by passage through a 271/2 gauge needle three 

times, and lysates were clarified by centrifugation at 4 ºC at 1,000 x g (10 min.) 

followed by 16,000 x g (10 min.). RIPA (radioimmunoprecipitate assay) lysates 

were prepared from 1 x 109 cells/ml as described (Vigueira et al., 2011). Cell 

lysates were centrifuged for 30 min. at 16,000 x g at 4 ºC to remove cellular 

debris. 

 

Quantitative reverse transcriptase PCR 

BF and PF WT cells (3-5 x 106) were grown to mid-logarithmic stage and 

washed in bicine-buffered saline glucose buffer (Raper et al., 1993). Total RNA 

was extracted using Aurum Total RNA Mini Kit (Bio-Rad) according to the 

manufacturer’s protocol, except RNA was eluted using 40 µl of elution buffer.  

T. brucei ACC-specific primers were designed using Primer3 (Rozen and 

Skaletsky, 2000): Forward ACC primer, 5’-TTT CGT AAG TTG AAG TCT GG-3’; 

and reverse ACC primer, 5’-CTT AGT CGG ATC AAT GTC AC-3’. Actin was 

used as a control and actin-specific primers were a kind gift from Dr. Meredith 

Morris (Clemson University): forward Actin primer, 5’-GCC ACG TAT TTC CAT 

CCA TC-3’; and reverse Actin primer, 5’-CCT GAG CTT CAT CAC CAA CA-3’. 

cDNA synthesis was performed on 100-200 ng total RNA using the iScript cDNA 
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Synthesis Kit (Bio-rad) using the manufacturer’s protocol. The resultant cDNA 

was used as template with 0.2 μM of each primer pair and the SensiFAST SYBR 

& Fluorescein Mix (Bioline) in quantitative PCR with 1 cycle at 95 °C for 2 min, 

and then 40 cycles as follows: 95 °C for 30 s., 57 °C for 1 min., and 72 °C for 30 

s. β-actin served as the endogenous control. ΔΔCt method was used to calculate 

the relative expression levels. 

 

Western blotting  

Proteins were resolved by 10% SDS-PAGE and transferred to 

nitrocellulose membrane. For streptavidin blotting, the membrane was blocked in 

2.5% nonfat dry milk, 1X Tris Buffered Saline (TBS), 0.05% Tween 20 for ≥ 1 h. 

and washed three times (5 min. each) in streptavidin wash buffer (0.2% nonfat 

dry milk, 1X TBS, 0.05% Tween 20). To probe for ACC, blots were probed with 

1:200 SA-HRP (Pierce), which recognizes the biotin prosthetic group (Nikolau et 

al., 1985) for  ≥ 2 h. The blots were then washed twice with streptavidin wash 

buffer and twice with 1X TBS, 0.05% Tween 20 before development with Super 

Signal West Pico Chemiluminescent substrate kit (Thermo Scientific).  

For anti-tubulin blotting, membranes were blocked in 2.5% nonfat dry milk, 

1X TBS, 0.05% Tween 20 for ≥ 1 hour then probed with mouse anti-tubulin 

(Pierce) diluted 1:50,000 in blocking buffer. The blots were washed thrice in 

blocking buffer and then probed with peroxidase-conjugated goat anti-mouse IgG 

(Rockland) diluted 1:10,000 in blocking buffer. Blots were then washed twice with 
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blocking buffer and twice with 1XTBS, 0.05% Tween 20 before chemiluminescent 

development.  

For anti-c-myc blotting, membranes were blocked in 5% nonfat dry milk, 

1X TBS, 0.05% Tween 20 for ≥ 1 h., then probed for myc-tagged ACC using 

mouse anti-c-myc monoclonal antibodies (sc 40, Santa Cruz Biotechnology) 

diluted 1:250 in blocking buffer. The blots were washed twice in blocking buffer 

and then probed with peroxidase-conjugated goat anti-mouse IgG (Rockland) 

diluted at 1:10,000 in blocking buffer. Blots were then washed twice with blocking 

buffer and twice with 1X TBS, 0.05% Tween 20 before chemiluminescent 

development. Appropriately exposed blots were analyzed by densitometry using 

Image J software (NIH) and values normalized to the indicated loading control. 

 

ACC activity assay  

  PF and BF cells were grown to logarithmic stage (1-2.5 x 107 PF cells/ml 

and 2.5-5 x 106 BF cells/ml) in low, normal and high lipid media. Hypotonic 

lysates were prepared in the presence of 1X HALT phosphatase inhibitor cocktail 

(Thermo Scientific). To remove endogenous CoA substrates and ATP, lysates 

were fractionated through a 1.5-2 ml G-50 sephadex column equilibrated in biotin 

carboxylase buffer (50 mM Tris-Cl pH 8.0, 5 mM MgCl2, 5 mM DTT) 

supplemented with 1X HALT phosphatase inhibitor cocktail. The protein 

concentration of the chromatographed lysates were determined using the 

Bradford protein assay kit (Bio-Rad) using BSA as a standard. Equal protein was 
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assayed for ACC activity as described (Vigueira et al., 2011). ACC activity was 

normalized to the background (no ATP) and expressed as a percent of ACC 

activity in normal lipid media. Statistical significance of differences was assessed 

using Student’s T-test (Microsoft Excel).  

 

TbACC-myc immunoprecipitation  

 TbACC-myc was purified from hypotonic PF and BF lysates using Pierce 

c-myc-Tag IP/Co-IP kit (Thermo-Fischer). The manufacturer’s protocol was 

modified as follows to obtain the maximum yield: hypotonic lysates (500 µl or 5 x 

108 cell equivalents) were incubated with 10-15 µl of anti-myc agarose beads 

overnight at 4 °C with constant end-over-end mixing. Then the lysate/beads 

mixture was loaded into an empty spin column and unbound proteins removed 

with 3 washes with 1X TBS, 0.5% Tween 20. Bound TbACC-myc was eluted 

using 150 mM glycine pH 2.8, added 10 µl at a time. Elution volumes were 100 µl 

and 60 µl for PF and BF TbACC-myc, respectively. Eluted TbACC-myc was 

immediately neutralized by the addition of 20 µl (PF) and 10 µl buffer (BF) of 100 

mM Tris-Cl pH 9.5). 

 

Metabolic [32P]labeling of TbACC-myc 

 PF ACC-myc cells were grown in normal medium to mid-logarithmic phase 

(1-2.5 x 107 cells/ml). The cells were harvested by centrifugation and washed 3X 

in Cunningham’s phosphate-free medium (Kaminsky et al., 1983). Cells were 
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resuspended to a final concentration 0.5 x 108 cells/ml in Cunningham’s 

phosphate-free medium supplemented with dialyzed serum to generate low, 

normal, and high lipid media (Table 2.1). Cells were then incubated with 1-2 mCi 

[32P]orthophosphate (ARC # 0103, 350 mCi/ml) for 16 h. at 28 ºC/ 5% CO2 . As a 

control, cells were incubated with the equivalent concentration of non-radioactive 

phosphate (10 mM KPi, pH 7.0). After labeling, the cells were harvested, 

hypotonic lysates prepared in the presence of HALT phosphatase inhibitor 

cocktail, and TbACC-myc purified by immunoprecipitation. TbACC-myc 

immunoprecipitates were resolved using SDS-PAGE and transferred to 

nitrocellulose. TbACC-myc blots were first assessed by autoradiography by 

exposing it to X-ray film for 10 days at room temperature. The same blot was 

then blotted using SA-HRP for total ACC as a loading control. Autoradiographs 

and blots were quantified by densitometry using ImageJ software (NIH) and 

values normalized using the loading control. 

 

Phosphoprotein gel staining  

 Tb ACC-myc immunoprecipitates from hypotonic lysates of PF TbACC-

myc cells grown in low, normal, and high lipid media were resolved by SDS-

PAGE, and the gels were processed and stained with Pro Diamond Q 

Phosphoprotein Gel stain (Invitrogen) according to the manufacturer’s directions. 

Phosphostained gels were imaged under UV using the Gel Doc XR Imaging 

System (Bio-Rad). In parallel, an identically-loaded non-stained gel was 
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transferred to nitrocellulose and probed with SA-HRP to detect total ACC loaded. 

Appropriately exposed blots and gel images were analyzed by densitometry 

using Image J software (NIH). Values for phosphorylated ACC-myc were 

normalized to total ACC loaded.  

 

Lambda phosphatase treatment 

 Hypotonic lysates prepared from PF TbACC-myc cells grown to log-phase 

in normal lipid media were incubated with the Pierce ProFound c-Myc Tag IP/Co-

IP kit (Thermo Fischer) for 16h at 4 ºC with constant end-to-end mixing. TbACC-

myc bound beads were washed 5X with 500 µl BC buffer then treated with 400 U 

of Lambda phosphatase (NEB) in a final volume of 200 µl in the provided buffer 

according to the manufacturer’s protocol. As a control, TbACC-myc bound beads 

were incubated as above, but Lambda phosphatase was omitted. Treated or 

control TbACC-myc bound beads were then washed 2X in BC buffer and 

assayed for ACC activity as described above by adding assay components 

directly to TbACC bound beads.   

 Phosphatase treated and control TbACC-myc immunoprecipitates were 

resolved by SDS-PAGE and the gels stained with Pro Diamond Q phosphostain. 

In parallel, an identically-loaded non-stained gel was transferred to nitrocellulose 

and probed with SA-HRP to detect total ACC loaded. Appropriately exposed 

blots and gel images were analyzed by densitometry using Image J software 
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(NIH). Values for phosphorylated TbACC-myc were normalized to total ACC 

loaded.  
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CHAPTER 3 

EFFECTS OF THE GREEN TEA CATECHIN (-)-EPIGALLOCATECHIN 

GALLATE ON Trypanosoma brucei 

Patrick A. Vigueira, Sunayan S. Ray, Ben A. Martin, Marianne M. Ligon, Kimberly 

S. Paul * 

 

 

ABSTRACT 

The current pharmacopeia to treat the lethal human and animal diseases caused 

by the protozoan parasite Trypanosoma brucei remains limited. The parasite’s 

ability to undergo antigenic variation represents a considerable barrier to vaccine 

development, making the identification of new drug targets extremely important. 

Recent studies have demonstrated that fatty acid synthesis is important for 

growth and virulence of T. brucei brucei, suggesting this pathway may have 
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therapeutic potential. The first committed step of fatty acid synthesis is catalyzed 

by acetyl-CoA carboxylase (ACC), which is a known target of 

(-)-epigallocatechin-3-gallate (EGCG), an active polyphenol compound found in 

green tea. EGCG exerts its effects on ACC through activation of AMP-dependent 

protein kinase, which phosphorylates and inhibits ACC. We found that EGCG 

inhibited TbACC activity with an EC50 of 37 µM and 55 µM for bloodstream form 

and procyclic form lysates, respectively. Treatment with 100 µM EGCG induced a 

4.7- and 1.7- fold increase in TbACC phosphorylation in bloodstream form and 

procyclic lysates. EGCG also inhibited the growth of bloodstream and procyclic 

parasites in culture, with a 48 h EC50 of 33 µM and 27 µM, respectively, which is 

greater than the EGCG plasma levels typically achievable in humans through 

oral dosing. Daily intraperitoneal administration of EGCG did not reduce the 

virulence of an acute mouse model of T. b. brucei infection. These data suggest 

a reduced potential for EGCG to treat T. brucei infections, but suggest that 

EGCG may prove to be useful as a tool to probe ACC regulation. 

 

INTRODUCTION 

The protozoan parasite Trypanosoma brucei (sub-species gambiense and 

rhodesiense) are the causative agent of African sleeping sickness, a fatal human 

disease that ranges across sub-Saharan Africa. In addition to causing substantial 

morbidity and mortality in humans, a third sub-species, T. brucei brucei is 

responsible for causing nagana, a livestock disease that results in wasting and 
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death. Nagana imposes a tremendous economic burden on the region, causing 

4.5 billion dollars in economic losses each year (FAO, 2007). Vaccine 

development is confounded by the parasite’s ability to switch its surface coat 

through antigenic variation (Horn and McCulloch, 2010). Chemotherapeutics are 

relied upon to battle the disease, yet currently approved drugs cause undesirable 

side effects, are subject to failure, and can be too expensive for citizens of 

economically depressed regions (Castillo et al., 2010). To meet this urgent need, 

investigation of existing compounds are an important avenue to identify potential 

new drugs that are effective, safe, and economical. 

Green tea is amongst the most widely consumed beverages worldwide 

and is often touted for its wealth of medicinal effects (Moon et al., 2007; Khan 

and Mukhtar, 2008; Thielecke and Boschmann, 2009; Ahmed, 2010). The best-

studied active components of green tea are the catechins, of which (−)-

epigallocatechin-3-gallate (EGCG) is one of the most abundant (Lin et al., 2003). 

In addition to numerous other pathways, EGCG has been demonstrated to inhibit 

fatty acid synthesis (Wang and Tian, 2001; Brusselmans et al., 2003) through its 

effect on the regulation of acetyl-CoA carboxylase (ACC) (Huang et al., 2009). 

ACC catalyzes the first committed step in fatty acid synthesis: the ATP-

dependent carboxylation of acetyl-CoA, which provides the two-carbon donor, 

malonyl-CoA, for fatty acid synthesis (Tong and Harwood, 2006). ACC is 

negatively regulated by phosphorylation by AMP-activated protein kinase 

(AMPK), a key regulator of cellular energy metabolism (Barber et al., 2005; 
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Brownsey et al., 2006). EGCG treatment activates AMPK, leading to increased 

phosphorylation of human ACC, which resulted in its inhibition (Moon et al., 

2007; Huang et al., 2009). 

In T. b. brucei, both the cytoplasmic and mitochondrial fatty acid synthesis 

pathways are important for growth in culture and virulence in mouse models (Lee 

et al., 2006; Lee et al., 2007; Stephens et al., 2007; Vigueira and Paul, 2011). 

We have recently demonstrated that RNA interference (RNAi)-mediated gene 

knock-down of ACC in T. b. brucei reduced fatty acid elongation activity in intact 

cells and reduced virulence in a mouse model of infection (Vigueira and Paul, 

2011). In addition, treatment with thiolactomycin, an inhibitor of fatty acid 

synthetase, inhibited fatty acid synthesis activity and growth of T. b. brucei in 

culture (Morita et al., 2000). Taken together, these results suggest that fatty acid 

synthesis has the potential to be an effective drug target in T. brucei. Here, we 

examined the effect of EGCG on T. b. brucei and found that physiologically 

relevant levels of EGCG had no effect on growth in culture and did not reduce 

virulence in a mouse model of infection, while higher levels of EGCG decreased 

TbACC activity, likely through an increase in TbACC phosphorylation. These 

data suggest that although EGCG inhibits T. b. brucei ACC activity, EGCG is a 

questionable candidate for further development as a potential cure for T. brucei 

infection. However, EGCG may be a useful pharmacological tool to investigate 

the signaling pathways governing phospho-regulation of TbACC. 
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RESULTS 

To investigate whether EGCG could be used to target ACC in T. b. brucei, 

we first tested EGCG for its ability to inhibit TbACC enzymatic activity in whole 

cell lysates from two different life cycle stages: the procyclic form (PF) found in 

the fly midgut, and the mammalian bloodstream form (BF). Because of the known 

mode of action of EGCG on mammalian ACC phosphorylation, we sought to 

preserve any potential changes in phosphorylation caused by EGCG by adding 

HALT, a broad-spectrum phosphatase inhibitor, to the cell lysate. In the presence 

of HALT, EGCG reduced ACC activity in both BF and PF lysates, with an EC50 of 

29 ± 1.3 µM (n=3) and 55 ± 2.4 µM (n=3), respectively (Fig. 1A and B). HALT 

treatment alone had no effect on ACC activity (data not shown). However, in the 

absence of HALT, we observed no inhibition of TbACC activity in lysates by 

EGCG. Thus, EGCG treatment inhibited ACC activity only in the presence of 

phosphatase inhibitors. Although the effect of EGCG on ACC activity in lysates 

has not been previously measured, our observations are consistent with the 

reported mode of action of EGCG on ACC by increasing ACC phosphorylation 

(Collins et al., 2007; Huang et al., 2007; Moon et al., 2007, Huang et al., 2009; 

Murase et al., 2009). That no effect was observed in the absence of HALT rules 

out a more general inhibitory “tannin” effect on the ACC enzyme (Wink 2008). 

Thus, we propose that HALT, by inhibiting the endogenous phosphatases in the 

lysate, preserved an EGCG-driven increase in ACC phosphorylation, resulting in 

decreased TbACC activity. 
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 To more directly examine the effect of EGCG treatment on TbACC 

phosphorylation, we used BF and PF cell lines in which the C-terminus of one 

TbACC allele was fused to the c-myc epitope (TbACC-myc), which allows for 

expression of TbACC-myc at endogenous levels under the native promoter 

(Vigueira and Paul, 2011; and this study). BF and PF TbACC-myc lysates were 

treated with 100 µM EGCG or DMSO as solvent control in the presence of HALT. 

After EGCG treatment, TbACC-myc immunoprecipitates were resolved by SDS-

PAGE and phosphorylated TbACC detected by in-gel phospho-staining with Pro 

Q Diamond stain (Fig. 2A and B, upper panels, respectively). As a loading 

control, identically-loaded gels were transferred to nitrocellulose and total ACC 

detected by blotting with streptavidin-HRP (Fig. 2A and B, lower panels). 

Densitometry of the phospho-stained gels revealed that EGCG treatment 

resulted in a statistically significant 4.7 ± 0.12 -fold (P<0.0001; n=3) and 

1.7 ± 0.20 -fold (P<0.05; n=3)  increase in phosphorylation of TbACC in BFs and 

PFs, respectively. This increase in phosphorylation is correlated with the 

observed inhibition of TbACC activity in BF and PF lysates (Fig. 1A and 1B). It is 

possible that ACC-myc is inefficiently or aberrantly phosphorylated compared to 

native ACC, which might mask the true response of ACC to EGCG treatment. 

However, the facts that immunoprecipitated ACC-myc was also highly active and 

ACC-myc exhibited the same subcellular fractionation as native ACC (Vigueira 

and Paul, 2011) argue against this idea. In addition, similar increases in ACC 

phosphorylation were observed in mammalian cells after treatment with similar 
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concentrations of EGCG (50-400 µM) (Huang et al., 2007; Moon et al., 2007; 

Huang et al., 2009; Murase et al., 2009). Taken together, the results shown in 

Fig. 1 and 2 indicate that ACC is phosphorylated in both BFs and PFs of 

T. brucei, and that EGCG treatment leads to increased TbACC phosphorylation 

and correspondingly decreased TbACC activity. It is unknown how EGCG 

treatment leads to phosphorylation and inactivation of TbACC. In mammalian 

cells, how EGCG activates AMPK is not well understood, but occurs via 

activation of one or more upstream kinases (e.g. liver kinase B1 (LKB1) and 

calmodulin-dependent protein kinase (Cask) in a process that may involve the 

production of reactive oxygen species (ROS) via oxidation of EGCG (Sang et al., 

2005; Hou et al., 2005; Hwang et al., 2007; Collins et al., 2007; Moon et al., 

2007; Murase et al., 2009; Hou). Future work will be needed to determine the 

identity of the upstream TbACC kinase(s) and the role of ROS in their signaling. 

 We next examined the effect of EGCG on T. b. brucei growth in culture. 

Orally administered EGCG is rapidly cleared from the body (Ullmann et al., 2003; 

Chow et al., 2005). In humans, repeated daily oral administration of EGCG can 

achieve a maximum plasma concentration of ~1 µM for 5-6 h (Ullmann et al., 

2004). A 6 day treatment of BF cells at these physiological EGCG concentrations 

(0.1–1 µM) caused no change in growth or doubling time (Fig. 3A and B). Next, 

we tested higher EGCG concentrations (5–50 µM), and observed a statistically 

significant reduction in cell growth over 48 h (Fig. 3C and D), with an EC50 of 

34 ± 2.4 µM and 25 ± 2.7 µM for BF and PF parasites, respectively (P<0.01, 
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n=4). These values are consistent with the trypanocidal activity of EGCG (IC50 

20.2 µM at 72 h) previously reported for T. b. rhodesiense (Tasdemir et al., 

2006). Our previous data showed that TbACC is largely unnecessary in BF 

parasites cultured in vitro and is only required when PF parasites are cultured in 

low-lipid media (Vigueira and Paul, 2011). Thus, we contend that inhibition of 

TbACC by EGCG should have little consequence on T. b. brucei growth in 

culture. Consequently, we attribute the reduction in growth observed with EGCG 

concentrations >5 µM to other previously described target(s) of EGCG (Ahmed, 

2010; Singh et al., 2011), rather than to its inhibition of TbACC. 

Finally, we examined the effect of EGCG treatment on the course of T. b. 

brucei infection in mice. Although the EC50 values for EGCG for growth in culture 

are greater than the achievable physiological concentrations in humans, there 

were three reasons to justify testing EGCG in a mouse model of infection. First, 

T. b. brucei exhibited condition-specific essentiality in the case of both TbACC 

and enoyl-CoA reductase (EnCAR). PF ACC and EnCAR RNAi cell lines 

exhibited slowed growth only when exogenous lipids were limited, and a TbACC 

RNAi line had attenuated virulence in mice (Lee et al., 2006; Vigueira and Paul, 

2011). Second, studies in rats showed that intravenous administration of EGCG 

resulted in greater plasma half-life and in higher maximal plasma concentrations 

than seen with the oral route of administration (Isbrucker et al., 2006; Misaka et 

al., 2012). Third, previous studies of EGCG in mice have yielded promising 

results for treatment of trypanosomiasis. T. cruzi mortality in mice and growth in 
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culture was reduced with EGCG treatment (Paveto et al., 2004; Güida et al., 

2007). In addition, inflammation caused by T. b. brucei infection was reduced and 

survivorship was extended with oral green tea supplementation (Karori et al., 

2008). Taken together, these observations suggest that first, parenteral 

administration of EGCG might achieve therapeutic plasma concentration of 

EGCG, and second, the requirement for ACC and thus the parasite’s sensitivity 

to EGCG could be higher in vivo. 

To test the ability of EGCG to clear a T. b. brucei infection in mice, we 

administered daily IP injections of 4.13 mg/kg EGCG in sterile H2O two days prior 

to infection and over the course of the trial. This EGCG concentration had been 

previously determined not to cause mouse liver damage, though the actual 

EGCG serum concentration was not determined (Güida et al., 2007). After 2 

days of EGCG pre-treatment, Swiss mice were then infected with 1x105 BF wild-

type 427 parasites as previously described (Bacchi et al., 2009), and time until 

death (or humane end-point) was determined. In this infection model, EGCG 

treatment had no effect on infection duration or mouse mortality. Mean time until 

death was 3.5 days for both treatment and control groups (data not shown). 

Thus, although EGCG has trypanocidal activity at supraphysiological 

concentrations, the compound did not attenuate virulence in our acute infection 

mouse model. EGCG concentrations may not have been sufficiently high in the 

mouse bloodstream to affect the parasite, however a much lower intraperitoneal 

dose (0.8 mg/kg/day) led to a significant decrease in parasitemia and increased 
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survivorship of mice infected with T. cruzi (Güida et al., 2007). Alternatively, it is 

possible that the course of infection was too rapid to allow EGCG to exert its 

effects. If so, a chronic infection model might be better suited to examine the 

efficacy of EGCG as a possible anti-trypanosomiasis therapy. 

In summary, we found that EGCG inhibits TbACC activity in lysates, and 

this inhibition was correlated with an increase in ACC phosphorylation. This 

suggests that EGCG may be a useful tool for studying the effects of 

phosphorylation on TbACC activity. We also demonstrated that EGCG kills both 

PF and BF parasites in culture. However, EGCG treatment did not affect T. b. 

brucei virulence in a mouse model of acute infection, which reduces its promise 

as a therapeutic candidate to treat T. brucei infection. 

 

METHODS 

Materials, cell lines, and media 

Most chemicals and reagents were purchased from Thermo Fisher 

Scientific and Sigma, including EGCG (E4143), which was prepared and frozen 

in single-use aliquots, either as a 100X stock in dimethyl sulfoxide (DMSO) or in 

sterile water for use in mice. EGCG stocks were freshly thawed just before use. 

Minimum Essential Medium Eagle and Iscove’s Modified Dulbecco’s Medium, 

was from Invitrogen. Serum Plus was from JRH Biosciences. [14C]NaHCO3 

(14.9 mCi mmol-1) was from American Radiolabeled Chemicals. Wild-type (WT) 

T. b. brucei 427 bloodstream form (BF) and tsetse midgut procyclic form (PF) cell 
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lines were a kind gift of Dr. Paul Englund (Johns Hopkins School of Medicine). 

BFs were grown at 37°C/5% CO2 in HMI-9 media containing 10% heat-

inactivated fetal bovine serum (FBS) and 10% Serum Plus (Hirumi and Hirumi, 

1989). PFs were grown at 28°C/5% CO2 in SDM-79 media containing 10% heat-

inactivated FBS and 7.5 µg ml-1 hemin (Brun and Shonenberger, 1979). PF ACC-

myc cells are tagged in one genomic locus with a c-terminal fusion to the c-myc 

epitope and have been described previously (Vigueira and Paul, 2011). BF ACC-

myc cells were generated in this study with the same tagging construct used to 

make the PF ACC-myc cell line. ACC-myc cell lines are maintained in the 

appropriate growth media supplemented with 2.5 µg ml-1 phleomycin. 

 

Effect of EGCG on T. b. brucei growth 

WT BF T. b. brucei were diluted into fresh media containing 0.1-1 µM 

EGCG or 1% DMSO as the solvent control and the cell culture densities 

measured every 2 days for 6 days by flow cytometry (BD FACScan). Following 

each cell count, cultures were diluted to maintain logarithmic phase growth, and 

EGCG/DMSO was added to maintain experimental concentrations. Doubling 

times were calculated from the growth curves.  

To determine EC50 for growth, WT BF and PF T. brucei were diluted into fresh 

media containing 5-50 µM EGCG or 1% DMSO as solvent control and cell culture 

densities determined after 2 days. 
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ACC activity assays 

Hypotonic lysates were desalted and TbACC activity was assayed 

essentially as described (Vigueira and Paul, 2011). Briefly, ACC activity was 

determined by measuring the incorporation of the [14C]CO2 from [14C]NaHCO3 

into the acid resistant [14C]malonyl-CoA product, which is quantified by 

scintillation counting. To test the effect of EGCG on TbACC activity, 5-100 µM 

EGCG or 1% DMSO only (solvent control) was added to the lysates with or 

without 1X HALT phosphatase inhibitor cocktail (Thermo Scientific Pierce) just 

prior to assaying for TbACC activity. 

 

ACC phosphorylation and blotting 

Hypotonic lysates from BF and PF ACC-myc cells were prepared in the 

presence of 1X HALT phosphatase inhibitor cocktail. Lysates were supplemented 

with 5 mM ATP, divided, with one aliquot treated with 100 µM EGCG and the 

other with 1% DMSO as solvent control.  Lysates were then incubated at 30˚C for 

30 min. under constant mixing (Eppendorf Thermomixer, 500 rpm). ACC-myc 

was immunoprecipitated from the lysates using the ProFound c-myc IP/Co-IP kit 

(Thermo Scientific Pierce) according to the manufacturer’s instructions and 

eluted in 150 mM glycine at pH 2.2 followed by immediate neutralization with 9.5 

M Tris-HCl, pH 9.0.  

 To detect phosphorylated ACC-myc, approximately equal quantities of 

immunoprecipitated ACC-myc (~8.8 x 107 cell equivalents/lane for PF and ~1.5 x 
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108 cell equivalents/lane for BF) were resolved by SDS-10%PAGE, followed by 

gel staining with Pro Diamond Q phosphoprotein gel stain (Invitrogen) according 

to the manufacturer’s instructions. Phospho-stained gels were imaged using the 

Gel Doc XR Imaging System (BioRad). To detect total ACC, identically loaded 

non-stained gels were transferred to nitrocellulose and probed for ACC as 

described (Vigueira and Paul, 2011) with streptavidin conjugated to horseradish 

peroxidase (SA-HRP), which detects the ACC biotin prosthetic. Densitometric 

quantification was performed on gels and appropriately exposed blots (in the 

linear range of detection) using Image J software (NIH). Phosphorylated ACC-

myc was normalized to the total amount of ACC in the ACC-myc 

immunoprecipitates and lysates. 

 

Mouse infection 

To test the ability of EGCG to clear a T. b. brucei infection in mice, we 

chose a daily dose of 4.13 mg/kg EGCG prepared in sterile H2O and 

administered daily by IP injection. This EGCG concentration had been previously 

determined not to cause mouse liver damage, though actual serum levels of 

EGCG were not determined (Güida et al., 2007). For the EGCG-treated group, 

12 week old Swiss mice were pre-treated with EGCG for two days prior to 

infection and EGCG treatment was continued throughout the course of infection. 

Both the EGCG-treated (n=5) and untreated controls (n=5) were infected with 

1x105 BF wild-type 427 parasites as previously described (Bacchi et al., 2009). 
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Tail blood samples were examined by microscopy to confirm successful infection, 

and time to death (or humane end-point) was determined. All work with animals 

was carried out in compliance with a protocol approved by the Clemson 

University Institutional Animal Care and Use Committee. 
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FIGURES  

Figure 3.1 Inhibition of TbACC activity by EGCG. TbACC activity in lysates 

of (A) BF and (B) PF trypanosomes was measured in the presence of 5–100 μM 

EGCG in the absence (black bars) or presence (grey bars) of HALT phosphatase 

inhibitor cocktail. As a negative control, ATP was omitted from the reaction (No 

ATP). Values are expressed as a percentage of the DMSO solvent control. 

DMSO concentrations were maintained at 1% v/v for all conditions. The mean of 

3 independent experiments is shown. Error bars indicate ±SEM. The * 

indicates P < 0.01 for the difference between DMSO control and EGCG-treated 

conditions (student’s t-test). 
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Fig 3.2 EGCG induces phosphorylation of TbACC. BF and PF ACC-myc 

lysates were treated with 100 μM EGCG or DMSO as solvent control in the 

presence of HALT phosphatase inhibitor cocktail. (A) BF and (B) PF TbACC-myc 

immunoprecipitates (∼5 × 108 cell equivalents/lane) were resolved by SDS–

PAGE and stained with Pro Q Diamond phosphoprotein gel stain to detect 

phosphorylated ACC (ACC-p; upper panels). Identically loaded gels were blotted 

to nitrocellulose and probed for total ACC with SA-HRP (ACC-t; bottom panels). 

Representative gels and blots are shown. Unlabeled upper band in panel A is an 

unknown phosphorylated contaminant. (C) Densitometric quantification of 

phosphorylated ACC from phospho-stained gels normalized to total ACC 

detected by SA-HRP blotting. The mean of 3 independent experiments is shown. 

Error bars indicate the ±SEM. The * indicates P < 0.05 and ** 

indicates P < 0.00001 for the difference between DMSO control and EGCG-

treated conditions (student’s t-test). 
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Fig 3.3 Effect of EGCG on in vitro growth of T. brucei. (A and B) WT BF cells 

were diluted back to 1 × 106 cells/ml into fresh media containing 0.1–1 μM EGCG 

or DMSO as the solvent control and culture cell densities were monitored for 

6 days. (A) Representative growth curve showing cumulative culture densities. 

(B) Mean culture doubling times of 3 independent experiments. Error bars show 

±SEM. (C) WT BF and (D) WT PF cells were back-diluted into fresh media 

containing 5–50 μM EGCG or DMSO control. Culture cell densities were 

determined after 48 h. Values are expressed as a percentage of DMSO control. 

The mean of 4 independent experiments is shown. Error bars show ±SEM. The * 

indicates P < 0.01 for the difference between DMSO and EGCG-treated 

conditions (student’s t-test). 
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CHAPTER 4 

ALLOSTERIC REGULATION OF Trypanosoma brucei ACETYL-COA 

CARBOXYLASE 

 

INTRODUCTION 

Trypanosoma brucei is a protozoan extracellular parasite that is 

introduced into the bloodstream of a mammalian host by its tsetse fly vector 

during a blood meal. From the mammalian bloodstream, the parasite crosses the 

blood brain barrier and passes into the central nervous system. T. brucei causes 

a fatal disease in humans known as African sleeping sickness and a wasting 

disease in livestock known as Nagana. If not treated, this disease is nearly 100% 

fatal. Currently available drugs are highly toxic and resistance is a growing 

problem. Hence, there is a need to find novel therapeutics (Jacobs et al., 2011).  

Throughout its life cycle, the parasite experiences different nutrient levels 

in the microenvironments of its hosts. In these microenvironments, the parasite 

undergoes physiological changes in order to adapt to its host. For example, T. 

brucei bloodstream forms (BFs) upregulate genes such as pyruvate kinase 1 and 

hexokinase 1, while tsetse midgut procyclic forms (PFs) upregulate 

phosphoglycerate kinase and the cytochromes (Jenson et al., 2009).  

Both BF and PF T. brucei require fatty acids (FAs) and can readily take 

FAs from their hosts (Coppens et al., 1995; Green et al., 2003)., Under 

conditions of limited environmental FAs, however T. brucei can also synthesize 
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FAs de novo (Dixon et al., 1971; Morita et al., 2000). The first committed step in 

FA synthesis is catalyzed by acetyl-CoA carboxylase (ACC), which converts 

acetyl-CoA to malonyl-CoA, the two carbon donor for the ER-localized FA 

synthesis pathway (Lee et al., 2006). However, FA synthesis is an energy 

intensive biosynthetic pathway. For example, the parasite would need to expend 

6 ATP and 12 NADH/NADPH reducing equivalents to synthesize a 16-carbon 

FA, while uptake and activation of the same FA from the host might require only 

1 ATP. As FA synthesis is such an energy-utilizing process, it likely to be 

important for T. brucei to regulate the balance between FA synthesis and uptake. 

Because it catalyzes the first committed step in FA synthesis, ACC plays a 

central role in lipid metabolism in other organisms and has been shown to be 

controlled by multiple regulatory mechanisms (Lane et al., 1974; Moule et al., 

1992; Anderson et al., 1998; Andre et al., 2012). Most ACCs are subject to 

allosteric regulation by metabolites upstream (feed-forward signals) and 

regulation by downstream products (feedback signals) (Andre et al., 2012). ACC 

is also known to undergo conformational changes that modulate its activity 

(Vagelos et al., 1963; Lane et al., 1974). Metabolites such as citrate, glutamate, 

and other dicarboxylic acids activate ACC (Vagelos et al., 1963; Lane et al., 

1974), while fatty acyl-CoAs function as negative regulators (Moule et al., 1992; 

Anderson et al., 1998). 

In this chapter, I examined allosteric regulation of TbACC and the effect of 

different modulators on TbACC activity: adenine nucleotides such as cAMP and 
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AMP; metabolic intermediates such as pyruvate, citrate, glutamate, and acetate; 

and fatty acyl-CoAs. I also assessed the oligomeric state of TbACC under normal 

lipid growth conditions. I found that TbACC activity was reduced when treated 

with increasing concentration of AMPK. TbACC showed increased activity in the 

presence of metabolic intermediates, with highest activity when treated with 

citrate and moderate increase when treated with acetate and glutamate. TbACC 

was inhibited by fatty acyl-CoA in a chain-length dependent manner. I also 

demonstrated that TbACC potentially, might form oligomers.  

 

RESULTS  

AMP decreased and cAMP increased TbACC activity 

AMP-activated protein kinase (AMPK) and protein kinase A (PKA) were both 

previously known to affect ACC in other organisms (Boone et al., 1999; Park et 

al., 2002), and homologs to both kinases were present in T. brucei (Clemmens et 

al., 2009; Kramer, 2005). As AMPK and PKA were responsive to AMP and 

cAMP, respectively, we first examined the effect of these adenine nucleotides on 

TbACC activity. PF WT lysates were assayed for ACC activity as described 

previously (Vigueira and Paul, 2011) in the presence of a 12.5–100 µM AMP and 

cAMP (see Table 4.1). TbACC showed a decrease in activity with increasing 

concentrations of AMP (~40% reduction at the highest concentration tested (100 

µM)) (Fig. 4.1). In contrast, cAMP treatment increased TbACC activity, and this 
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increase was only significant at the highest concentration of cAMP tested (100 

µM) (Fig 4.1). 

 

 

 
Figure 4.1: AMP and cAMP affected PF TbACC activity. Hypotonic lysates prepared from WT 

PFs were treated with 12.5–100 µM AMP (black bars) and cAMP (grey bars) and assayed for 

TbACC activity. As a negative control, ATP was omitted from the reaction (No ATP). Values are 

expressed as a percentage of the untreated control. The mean ± SEM of 3 independent 

experiments is shown. ** P < 0.01 for the difference between control and treatment (Student’s t-

Test). 

 

Citrate increased TbACC activity 

Next we examined the effect of intermediate metabolites on TbACC activity. WT 

PF lysates were treated with citrate, pyruvate, glutamate, or acetate, and 

assayed for TbACC activity. Citrate caused a dose-dependent increase in 

TbACC activity (Fig. 4.2A), while glutamate and acetate had a small but 
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significant positive effect on TbACC activity (Fig. 4.2B). Pyruvate treatment had 

no apparent effect on TbACC activity except at 10 mM (Fig. 4.2A). 

 

A. 

 
B.  
 

 

 

Figure 4.2: Citrate increased TbACC activity. WT PF hypotonic lysates were treated with (A.) 

12.5 µM–10 mM citrate (black bars) and pyruvate (grey bars) or (B.) 0.5–10 mM acetate (black 
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bars) and glutamate (grey bars) and assayed for TbACC activity. As a negative control, ATP was 

omitted from the reaction (No ATP). Values are expressed as a percentage of untreated control. 

The mean ± SEM of 3 independent experiments is shown. * P < 0.05 and ** P < 0.01 for 

difference between control and treated conditions (Student’s t-test). 

 

Fatty acyl-CoAs inhibited TbACC activity in a chain-length dependent 

manner Mammalian ACCs are subject to feedback inhibition by the product of 

FA synthesis, palmitoyl-CoA. Thus, we examined whether TbACC was also 

inhibited by fatty acyl-CoAs and if there was a dependence on acyl-chain length. 

WT PF lysates were treated with fatty acyl-CoAs 12–18 carbons in length and 

assayed for TbACC activity. TbACC was inhibited by fatty acyl-CoAs, with the 

strongest inhibition observed with C16 palmitoyl-CoA and C18 stearoyl-CoA 

(EC50s of 12.6 µM and 12.5 µM, respectively) (Fig. 4.3). TbACC was less 

sensitive to C14 myristoyl-CoA (EC50=40.6 µM) and largely refractory to C12 

lauroyl-CoA. 
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Figure 4.3: Fatty acyl-CoAs inhibit PF TbACC activity in lysates. WT PF hypotonic lysates 

were treated with 10–50 µM fatty acyl-CoAs and assayed for TbACC activity. As a negative 

control, ATP was omitted from the reaction (No ATP). Values are expressed as a percentage of 

the untreated control. The mean ± SEM of 3 independent experiments is shown. * P < 0.05 and 

**P < 0.01 for the difference between control and treated conditions (Student’s t-Test). 

 

TbACC exists in oligomers 

Mammalian and avian ACCs form polymers which suggests that TbACC also 

might form higher order structures. Thus, we determined the oligomeric structure 

of TbACC using size exclusion chromatography. Hypotonic lysates prepared 

from WT PFs grown in normal lipid media were fractionated on an S300 

sephacryl column equilibrated in BC buffer. Column fractions were blotted for 

total ACC using SA-HRP (Fig. 4.4C). TbACC was found in complexes estimated 

to range between 400-1000 kDa when compared to a standard curve generated 
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from molecular weight standards sized on the same column under the same 

buffer conditions (Fig. 4.4A and B). Given a predicted molecular weight of 243 kD 

for TbACC, the gel filtration data suggests that TbACC might exist as a mixture of 

oligomers, which correspond in size to dimers, trimers, and tetramers of TbACC.  
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A. 

 
B. 

 
C. 

 
 
Fig 4.4: TbACC exists in oligomers. PF WT hypotonic lysates were resolved by Sephacryl S-

300 size exclusion chromatography and TbACC detected in column fractions by SA-HRP blotting. 

(A.) Abs280 nm of indicated protein standards (B.) Standard curve of the log molecular weights 

vs. distribution coefficient (Kav). (C.) SA-HRP blotting of column fractions for total TbACC.   
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DISCUSSION  

We hypothesized that TbACC would be subject to allosteric regulation, as 

this is true of ACC in all other organisms studied to date (Vagelos et al., 1963; 

Lane et al., 1974). We examined the effect of three classes of potential allosteric 

regulators on TbACC activity in WT PF hypotonic lysates. We first examined the 

effect of adenine nucleotides (AMP and cAMP) for their effect on TbACC activity. 

TbACC activity was only mildly stimulated by cAMP. In contrast, TbACC was 

significantly inhibited by AMP in a dose-dependent manner. It is unclear whether 

this inhibition of TbACC by AMP is due to a direct or indirect effect on TbACC. 

AMP could be competing for ATP-binding in the active site, though the assay 

conditions have a 10-fold higher concentration of ATP (0.5 mM). AMP could also 

be binding to a second regulatory site of TbACC. Finally, AMP could be acting 

indirectly through the activation of AMPK, which is known to phosphorylate and 

inhibit ACC in other organisms. This mode of action is supported by our studies 

in Ch. 3 that showed the AMPK activator EGCG inhibited PF TbACC with 

increasing concentration in a phosphorylation-dependent manner. 

As metabolic intermediates reflect the nutritional state of an organism, we 

also examined the effect of intermediate metabolites (acetate, citrate, glutamate 

and pyruvate) on TbACC activity. We found that pyruvate did have a stimulatory 

effect on TbACC activity, though only at the highest concentration tested (10 

mM). To our knowledge, this is the first reported stimulation of ACC by pyruvate. 

In most cells, including T. brucei, pyruvate is the major metabolic source of 



132 
 

acetyl-CoA for FA synthesis. Pyruvate is converted to acetyl-CoA by pyruvate 

dehydrogenase complex (PDH) followed by the transport of acetate back to the 

cytosol via the citrate/malate shuttle (Hatzivassiliou et al., 2005). There is some 

evidence for this pathway operating in T. brucei (Riviere et al., 2009). These 

experiments elucidated an alternate pathway in T. brucei involving the 

conversion of pyruvate to acetyl-CoA within the mitochondrion by PDH and 

subsequent conversion to acetate by an acetate:succinate-CoA transferase, 

followed by transport of acetate into the cytosol by an unknown transporter where 

an acetyl-CoA synthetase rapidly re-esterifies it to acetyl-CoA (Rivière et al., 

2009). Thus, pyruvate may serve as feed-forward signal reflecting high nutrient 

status in the parasite and the need to synthesize FAs and the precursors needed 

to synthesize lipids (Fig. 4.5). 

We found that citrate had the most significant effect of the metabolites 

tested, stimulating TbACC activity in a nearly dose-dependent manner. The 

existence of a citrate-dependent alternate pathway for acetyl-CoA production 

from citrate is already known in T. brucei, which might explain why citrate had a 

significant effect on TbACC activity (Rivière et al., 2009) (Fig. 4.5). This citrate 

stimulation of TbACC is also in accordance with mammalian and avian ACCs, 

which are known to be activated by citrate and glutamate (Beatty and Lane et al., 

1983). In addition, citrate and glutamate were shown to induce polymerization of 

ACC thereby increasing its activity (Beatty and Lane et al.,   
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1983; Cesquini et al., 2008). TbACC was only mildly stimulated by glutamate, 

suggesting it may not be as sensitive to feed-forward signals of amino acid 

metabolism. A key enzyme in glutamate metabolism is glutamate dehydrogenase 

(Newsholme et al., 2003). However, earlier studies in T. brucei showed that 

knockout of glutamate dehydrogenase had no effect on the parasite (Estevez et 

al., 1999). Perhaps other amino acids, such as proline or threonine, might be 

more relevant to TbACC regulation in T. brucei, as proline metabolism is already 

known to be important in PFs (Coustou et al., 2008; Bringaud et al., 2012) and 

threonine can serve as a source of acetyl-CoA for FA synthesis (Linstead et al., 

1974). Finally, acetate also showed a mildly stimulating effect on TbACC, which 

might be due to activation of AMP-forming acetyl-CoA synthetase (Fig. 4.5). 

However, the concomitant generation of AMP, which we have already shown 

inhibits ACC, may explain the mild effect of acetate. 

Fatty acyl-CoAs are the final products of FA synthesis and thus, we 

examined their effect on TbACC activity. TbACC exhibited an acyl chain-length 

dependent inhibition of activity, with longer chain lengths such as palmitoyl-CoA 

(C16) and stearoyl-CoA (C18) showing more robust inhibition, followed by 

myristoyl-CoA (C14). Lauroyl-CoA (C12) had no effect on TbACC activity. This 

chain-length specificity of fatty acyl-CoA action might be explained by the FA 

requirements of PFs. PFs express procyclin as their surface coat protein and are 

attached to the plasma membrane by a GPI-anchor that contains palmitate (C16) 

and stearate (C18) FAs (Butikofer et al., 1997). Hence, in PFs there is a demand 
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for longer chain FAs and thus FA synthesis is not affected by the shorter FAs. 

Mammalian hepatic ACC is known to bind reversibly to palmitoyl-CoA resulting in 

inhibition of the enzyme (Ogiwara et al., 2008). To our knowledge the chain-

length specificity of this inhibition in mammalian ACCs has not been explored. 

Mammalian and avian ACCs polymerize in response to both allosteric 

regulators and dephosphorylation (Vagelos et al., 1963; Lane et al., 1974). In 

yeast, an ACC mutant was shown to form planar arrays (Schneiter et al., 1996), 

suggesting ACC may also polymerize in yeast. Finally, immunofluorescence 

microscopy studies of TbACC demonstrated that the enzyme is localized to 

numerous cytoplasmic puncta (Vigueira and Paul, 2011). Based on these 

observations, we examined the oligomeric state of TbACC by size exclusion 

chromatography. In PFs, TbACC was found to exist in complexes that migrated 

with a molecular weight range of 400-900 KDa, consistent with a mixture of 

dimers, trimers, and tetramers. Detection of TbACC oligomers suggested the 

possibility that TbACC might be regulated at the level of quaternary structure in 

addition to regulation by phosphorylation and at the level of protein expression. 

However, the fractionation was performed with lysate rather than purified protein, 

thus we cannot rule out the role of other proteins interacting with TbACC  

(Magnard et al., 2002). We also cannot rule out the possibility that TbACC 

formed aggregates, but sub-cellular fractionation of TbACC performed under 

similar conditions showed that TbACC behaved as a soluble cytosolic protein 

and no indication of aggregation was observed (Vigueira et al., 2011).  The 
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TbACC oligomers isolated in our studies were too small to consist of the puncta 

seen by microscopy. A possible explanation for this disparity may be that the 

TbACC oligomers are unstable in lysates and hence, the higher-order polymers 

break into the smaller protomers we observed by gel filtration. In mammals, ACC 

binds to a 22 kDa cytosolic protein, MIG12, which stabilizes the ACC polymer 

(Kim et al., 2010). No MIG12 homolog was found in the T. brucei genome, which 

might also explain the relative instability of the larger TbACC structures.  

In summary, I have shown that TbACC activity is inhibited by AMP and 

long-chain fatty acyl-CoAs and stimulated by citrate and to a lesser extent, 

acetate and glutamate indicating a degree of metabolic control of TbACC in 

response to the nutritional state of the cell. The extent to which this regulation 

involves direct binding to TbACC remains to be determined. Finally, TbACC 

might exist as a mixture of oligomers in PFs grown in normal media. However 

this will need to be confirmed with purified protein and sedimentation studies. If 

TbACC oligomers are confirmed, it will be interesting to determine if the TbACC 

oligomeric state is affected by growth in high or lipid media or in response to the 

effectors such as AMP and glutamate, which we already demonstrated alter 

TbACC activity in lysates.  
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METHODS  

Effect of allosteric regulators on TbACC activity 

 WT PFs were grown to mid-logarithmic stage. Hypotonic lysates were 

prepared from 5 x 108 cells and chromatographed through a Sephadex G50 

column to remove endogenous substrates. The resulting lysates were treated 

with different concentrations of allosteric regulators (Table 4.1) and TbACC 

activity assayed essentially as described (Vigueira and Paul, 2011), except the 

final acetyl-CoA concentration was 2.5 mM. Values were normalized to the “No 

ATP” control and expressed as a percentage of untreated lysate. Significance of 

differences between treatment and control were determined using the Student’s 

t- Test. 
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Table 4.1 Tested concentrations of potential allosteric regulators  

Class Name Concentrations 

Adenine nucleotides   

 cAMP 0, 12.5, 25, 50, 100 µM  

 AMP 0, 12.5, 25, 50, 100 µM 

Metabolic intermediates   

 Pyruvate 0,12.5, 25, 50, 100 µM  

0.5, 1, 5, 10 mM   

 

 

Citrate 0,12.5, 25, 50, 100 µM  

0.5, 1, 5, 10 mM   

 Acetate  0, 0.5, 1, 5, 10 mM   

 Glutamate 0, 0.5, 1, 5, 10 mM   

Fatty acyl-CoAs   

 Lauroyl-CoA  0, 10, 20, 30, 40, 50 µM  

 Myristoyl-CoA  0, 10, 20, 30, 40, 50 µM 

 Palmitoyl-CoA 0, 10, 20, 30, 40, 50 µM 

 Stearoyl-CoA  0, 10, 20, 30, 40, 50 µM 

 

Sizing of TbACC oligomers 

 PF WT hypotonic lysates were prepared from cells grown in normal lipid 

conditions. Size exclusion chromatography was performed using a Sephacryl S-

300 column and the AKTA Prime Plus chromatography and purification system 

(GE Healthcare) for sample injection, separation, and fraction collection. The 

column was equilibrated in BC Buffer (50 mM Tris-Cl pH 8.0, 5 mM MgCl2, 5 mM 

DTT) and run in the same buffer. Samples were injected in a volume of 800 µl, 
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separated at a flow rate of 0.5 ml min-1, and 1 ml fractions were collected at room 

temperature. The column fractions were resolved by SDS-PAGE and total ACC 

detected by SA-HRP blotting. Calibration of the column was performed using a 

standard curve generated by the separation of blue dextran (void volume) and 

the following protein standards: Thyroglobulin (660 KDa), Ferritin (440 KDa), 

Aldolase (161 KDa) and Conalbumin (76 KDa). Protein peaks were monitored 

using the UV detector at 280 nm. 
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CHAPTER 5 

CONCLUDING REMARKS 

 

Trypanosoma brucei is a protozoan extracellular parasite that is 

transmitted by infected tsetse flies. T. brucei affects sub-Saharan Africa, where it 

causes human African trypanosomiasis (HAT). T. brucei also causes a wasting 

disease in livestock called Nagana, which makes agriculture very difficult and has 

caused this region of Africa to be nicknamed the “green desert”, owing to the 

tremendous economic impact T. brucei has had on the people living in this 

poverty stricken continent (FAO, 2002). The survival of T. brucei within its hosts 

is very much dependent upon the ability of the parasite to evade the immune 

system of its host. The ability of T. brucei to evade its host immune system is in 

turn dependent upon the expression of surface coat proteins. The requirement of 

the T. brucei surface coat proteins for fatty acids (FAs) as part of their membrane 

anchor creates a high demand for FAs in this parasite. 

T. brucei readily acquires FAs from its hosts. When the host supply is 

limited, T. brucei can synthesize its own FAs using its FA synthesis pathways. 

Uptake of lipids requires much less energy than FA synthesis, yet aspects of the 

biology of this parasite involving the regulation of FA synthesis, the sensing of 

environmental lipids, and the mechanism of regulation, has never been studied in 

T. brucei. Environmental regulation of FA synthesis would allow preferential use 

of host FA resources, and would only turn on FA synthesis when the supply of 
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the host is insufficient. The research I presented in this doctoral dissertation has 

added to our growing knowledge about lipid metabolism in T. brucei. 

A key substrate for FA synthesis is malonyl-CoA, which is synthesized 

from acetyl-CoA by acetyl-CoA carboxylase (ACC). Because ACC likely serves 

as one control point for regulating FA synthesis, I studied the regulation of T. 

brucei ACC (TbACC) in response to environmental lipids. I demonstrated that 

procyclic form (PF) T. brucei regulated TbACC at the protein, activity, and post-

translational levels in response to environmental lipids. The green tea catechin, 

epigallocatechin gallate (EGCG), induced ACC phosphorylation and reduced 

TbACC activity (Vigueira et al., 2012). However, unlike in PFs, no change in 

TbACC RNA or protein levels, activity, or phosphorylation was observed in BFs 

in response to environmental lipids. 

Our current model is that in PFs, TbACC was regulated by environmental 

lipids, where it played a role in resource management: the parasite only 

synthesized FAs when host lipids are insufficient. We also demonstrated that at 

least in PFs, TbACC was both positively and negatively regulated by a variety of  

metabolites. For example, citrate increased TbACC activity, whereas AMP and 

long chain fatty acyl-CoAs inhibited TbACC activity. In contrast, BF TbACC was 

not regulated by environmental lipids. Instead, we propose that BF TbACC was 

always active to support immune evasion strategies, such as upregulation of 

endocytosis, that require extensive membrane turnover. 
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As Russell L. Ackoff rightly said, “The extensive literature addressed to the 

definition or characterization of science is filled with inconsistent points of view 

and demonstrates that an adequate definition is not easy to attain. Part of the 

difficulty arises from the fact that the meaning of science is not fixed, but is 

dynamic. As science has evolved, so has its meaning. It takes on a new meaning 

and significance with successive ages.” My dissertation work established 

important background on the regulation of T. brucei FA synthesis, while raising 

many questions. I hope my dissertation stimulates future work aimed at 

understanding various aspects of T. brucei lipid metabolism. Key questions that 

can be addressed in the future are as follows: 

 

What are the phosphorylation sites in TbACC and how does each site 

contribute to the regulation of TbACC? 

 We know that ACC lacks canonical phosphorylation sites, but a recent 

phosphoproteomics study identified three serines in TbACC that were 

phosphorylated (Urbaniak et al., 2013). It will be interesting to validate these 

phosphorylation sites and determine if there are additional phosphorylation sites. 

This information will provide insight into how phosphorylation of TbACC might 

alter the activity of the enzyme. Finally it will be useful to determine how 

phosphorylation at each site is regulated and the contribution of each site to 

overall TbACC activity. 
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What is/are the TbACC kinases? 

 My research provided indirect evidence for multiple kinases (PKA, PKC, 

PKB, and AMPK) that might potentially phosphorylate TbACC. However, no 

direct TbACC kinase has been identified. Identifying the TbACC kinase(s) will not 

only help determine the signaling cascade(s) regulating TbACC and FA 

synthesis, but also can point the way towards the development of new 

therapeutics. Inducers of these kinases could trigger TbACC phosphorylation, 

making it inactive. Inactivating TbACC might have therapeutic potential, as we 

know from earlier studies in our lab that ACC was essential to establish infection 

and was required for full virulence in mice (Vigueira and Paul, 2011). 

 

How is T. brucei sensing environmental lipids?  

 We observed stage-specific differences in TbACC regulation in the 

presence of environmental lipids. All environmental regulation was observed in 

PFs, whereas in BFs, ACC showed constitutive activity. It will be interesting to 

know how the parasites “read” the environmental lipids and what proteins are 

involved. TbACC could potentially sense environmental lipids directly through 

binding of fatty acyl-CoAs. But the changes in TbACC phosphorylation in 

response to environmental lipids also suggested that a signal transduction 

pathway may be involved. Finally, it will be useful to determine the underlying 

mechanisms governing the differences in how each life cycle stage senses 

environmental lipids. 
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Is TbACC regulated by other mechanisms, such as acetylation or 

ubiquitination?  

 Acetylation of lysine residues has been demonstrated in various metabolic 

enzymes in human liver (Zhao et al., 2010; Wang et al., 2010). Key enzymes in 

FA metabolism, such as acetyl-CoA synthetases, are also acetylated (Starai et 

al., 2002). It will be interesting to know if TbACC is acetylated and what effect 

acetylation has on TbACC. Perhaps acetylation plays a role in making the 

decision between FA synthesis and uptake. Acetylation could alter ACC activity 

by promoting substrate binding, inhibiting substrate binding, or stimulating 

selective degradation of TbACC by ubiquitination (Xiong et al., 2011).  

Although no change in TbACC mRNA levels were observed, PFs did show 

changes in TbACC protein levels in response to changes in environmental lipids. 

This regulation could occur through regulated ubiquitination and degradation of 

TbACC protein. It will be interesting to examine if high lipid conditions activate a 

ubiquitin ligase that ubiquitylates TbACC leading to its selective degradation. 

The work presented in this dissertation contributed new knowledge about 

FA synthesis and its regulation in the protozoan parasite T. brucei. I hope my 

work will also shed light on the pathobiology of other related organisms, that 

possess similar pathways to regulate FA synthesis. An increased understanding 

of the role of FA synthesis and regulation in host adaptation and pathogenesis 

opens the door not only to the treatment of HAT, but also may help in the 
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development of therapeutic approaches against other trypanosomatids such as 

Trypanosoma cruzi, which causes Chagas disease, and Leishmania, which 

causes leishmaniasis. 
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