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ABSTRACT 
 
 

Although acetate is a predominant metabolite produced by many eukaryotic microbes, far 

less attention has been given to acetate metabolism in eukaryotes than in bacteria and archaea. 

Acetate kinase (Ack), which catalyzes the reversible phosphorylation of acetate from ATP, is a 

key enzyme in bacterial acetate metabolism. Ack primarily partners with phosphotransacetylase 

(Pta), which catalyzes the generation of acetyl phosphate from acetyl-CoA, but can also partner 

with xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), which produces acetyl 

phosphate from either xylulose 5-phosphate or fructose 6-phosphate. The Ack-Pta pathway, 

found primarily in bacteria, is also present in lower eukaryotes such as the green algae 

Chlamydomonas reinhardtii and the oomycete, Phytophthora. The Ack-Xfp pathway, which 

forms a modified pentose phosphoketolase pathway in heterofermentative bacteria, has been 

found in a number of ascomycete and basidiomycete fungi. Although bacterial and eukaryotic 

microbes possess these pathways, humans, animals and plants lack these enzymes, making this 

pathway a potential drug target in eukaryotic pathogens.  

Two types of Ptas have previously been identified: PtaI and PtaII. PtaII enzymes have an 

N-terminal regulatory domain that the PtaI enzymes lack. Through sequence analysis, we 

identified four subtypes, IIa, IIb, IIc, and IId, of the PtaII enzymes based on the presence or 

absence of two N-terminal subdomains. Here we describe the first biochemical characterization 

of a eukaryotic Pta, the Phytophthora ramorum Type IIa Pta1 (PrPta1IIa). Although the N-

terminus of PrPta1IIa shares only 19% amino acid identity with the N-terminus of the bacterial 

Escherichia coli and Salmonella enterica PtaIIa enzymes, the effector molecules, ATP, NADH, 

PEP, and pyruvate, inhibit all three enzymes in the acetyl-CoA-forming direction; whereas, AMP 

differentially regulates PrPta1IIa compared to SePtaIIa.  
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We hypothesize that Xfp-Ack would function as a modified pentose phosphoketolase 

pathway to produce acetate and ATP in the opportunistic, fungal pathogen Cryptococcus 

neoformans, which has two open reading frames, designated as Xfp1 and Xfp2, with sequence 

identity to Xfp. To investigate the metabolic and physiological role of the Ack-Xfp pathway in C. 

neoformans, we have generated single XFP1, XFP2 and ACK knockouts, as well as a XFP1/XFP2 

double knockout. Our results indicate both Xfp1 and Xfp2 play a role in the survival of C. 

neoformans within macrophages, and that Ack and Xfp2 most likely partner together under low 

glucose and possibly low iron environments. 
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CHAPTER ONE 
 

Literature Review of Acetate Metabolism in Bacterial and Eukaryotic Microbes 
 
 

I. Introduction 

Numerous studies have focused on enzymes in acetate assimilation and dissimilation 

pathways in bacteria. Although acetate is an important end product of energy metabolism in fungi 

and protists (1-3), few investigations into acetate production have been reported in eukaryotic 

microbes. The main acetate metabolism pathways in bacteria include acetate kinase (Ack), that 

functions with phosphotransacetylase (Pta) to interconvert acetate and acetyl-CoA (4). Although 

primarily identified as a bacterial pathway, a number of eukaryotic microbes have the Ack-Pta 

pathway (5). Euascomycete and basidiomycete fungi lack an open reading frame (ORF) with 

identity to Pta, but instead possess a xylulose 5-phosphate/fructose 6-phosphate phosphoketolase 

(Xfp) to convert either xylulose 5-phosphate or fructose 6-phosphate to acetyl phosphate and 

either glyceraldehyde 3-phosphate or erythrose 4-phosphate, which resembles heterofermentative 

bacteria, which uses this pathway as a modified pentose phosphate pathway (6). While missing in 

plants and animals, both of these pathways exist and are utilized in eukaryotic microbes; 

however, little is known about both the biochemistry of the enzymes and the roles these two 

pathways play in physiology and metabolism of eukaryotic pathogens. Thus, both the Ack-Pta 

and Ack-Xfp pathways may be potential targets for the development of treatments.  

This chapter is a comprehensive review of acetate dissimilation and assimilation in 

bacteria and the physiological roles of Pta and Xfp in both bacterial and eukaryotic microbes. The 

main focus of this chapter encompasses published studies on the metabolism of acetate in 

eukaryotic pathogens. The focus of this dissertation is to begin to unravel the role acetate, as well 
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as Pta and Xfp, may play in the virulence of eukaryotic pathogens, and if these roles differ from 

that found in bacteria. 

 

II. Acetate Metabolism in Bacteria  

 Acetate metabolism, which includes both dissimilation and assimilation, is well studied 

in bacteria, such as E. coli. The study of E. coli growth on multiple acetogenic carbon sources, 

has led to the observation that a “switch” occurs that allows the cells to adapt to their varying 

nutritional status; when acetate evolution and activation come to equilibrium with one another, 

bacterial cells execute what is known as the “acetate switch” (4, 7). This “switch” allows the cell 

to detect the external and internal environment and to activate the expression of genes that 

constitute the cellular processes responsible for altering the acetate metabolism of the cell 

[Figure 1.1] (4). In order to regenerate NAD+, to recycle CoA and to limit the induction of the 

full TCA cycle, which increases the rate of cell growth, the cell must excrete acetate (4, 8). 

During acetate evolution, the TCA cycle operates through a branched route, which provides 

precursor metabolites but lacks the production of high-energy molecules. Therefore, in E. coli, 

ATP pools regenerate through glycolysis or through the Ack [EC 2.7.2.1; Eq. 1.1] - Pta [EC 

2.3.1.8; Eq. 1.2] pathway that converts acetyl-CoA to acetate, which is excreted outside of the 

cell (9, 10). Another pathway in E. coli that produces acetate directly from pyruvate under both 

aerobic and microaerophilic conditions is pyruvate oxidase [PoxB; EC 1.2.5.1; Eq. 1.3], which 

also generates FADH2 that provides two electrons for oxidative phosphorylation (4). The Ack-Pta 

pathway is active during exponential, aerobic and anaerobic growth, while maximal activity of 

Pox is seen during late exponential and stationary phase under aerobic conditions (11-13). 
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acetyl!phosphate+ ADP! ⇋ acetate+ ATP [Eq. 1.1] 

acetyl− CoA+ !P! !⇋ acetyl!phosphate+ CoA [Eq. 1.2] 

pyruvate+ !FAD! → acetate+ CO! + !FADH+ !H! [Eq. 1.3] 
 

 

While the Ack-Pta pathway is the primary pathway for acetate dissimilation, AMP- 

forming acetyl-CoA synthetase [Acs; EC 6.2.1.1; Eq. 1.4] is the main acetate assimilation 

pathway in bacteria (4), where it functions under low acetate concentrations (9, 14). However, 

during growth on high concentrations of acetate, the Ack-Pta pathway can activate acetate as this 

pathway is reversible.  

 

!acetate+ ATP+ CoA! → !acetyl− CoA+ PP! + AMP [Eq. 1.4] 
  

  

Several other enzymes that produce acetyl phosphate, can partner with Ack in bacteria as 

an alternative pathway to produce acetate [Figure 1.2] (4). Phosphoketolase (PK) enzymes 

convert the sugars xylulose 5-phosphate [X5P; EC 4.1.2.9; Eq. 1.5] and fructose 6-phosphate to 

acetyl-phosphate [F6P; EC 4.1.2.22; Eq. 1.6], and are found in heterofermentative lactobacilli 

(15, 16). Gram-positive bacteria such as Clostridium and Eubacterium species use glycine 

reductase [GR; EC 1.21.4.2; Eq. 1.7] to catalyze the production of acetyl phosphate from glycine 

(17, 18). Unlike PoxB in E. coli, an acetyl phosphate forming pyruvate oxidase [APF-Pox; EC 

1.2.3.3; Eq. 1.8] is found in lactobacilli that converts pyruvate to acetyl phosphate under aerobic 

conditions, and may be the main contributor to the acetyl phosphate pool in Streptococcus 

pneumoniae (19). Lastly, the sulfoacetaldehyde acetyltransferase [Xsc; EC 2.3.3.15; Eq. 1.9] is 



 4 

found across the Bacteria, although missing in E. coli, and is responsible for producing acetyl 

phosphate and sulfite from sulfoacetaldehyde (20).  

 

!ylulose!5− phosphate+ P! !!→ acetyl!phosphate+ glyceraldehyde!3− phosphate!! [Eq. 1.5] 

fructose!6− phosphate+ !P! !→ acetyl!phosphate+ erythrose!4− phosphate  [Eq. 1.6] 

glycine+ !P! + thioredoxin! → acetyl!phosphate+ NH! + thioredoxin!disulfide   [Eq. 1.7] 

pyruvate+ !P! + !O! !→ acetyl!phosphate+ CO! + !H!O!  [Eq. 1.8] 

2− sulfoacetaldehyde+ !P! !→ acetyl!phosphate+ sulfite! [Eq. 1.9] 
 

 

In most organisms, ORFs with sequence identity to either Pta and/or Ack are found in 

microbes along with the following enzymes listed in Eq. 1.5-1.9, and the encoding genes are 

often expressed together in operons (4). Therefore, these enzymes can partner with Pta and/or 

Ack to produce acetyl phosphate as a global signal to activate response regulatory pathways, to 

convert acetyl phosphate to acetate for dissimilation purposes, or to generate acetyl-CoA that 

feeds back into the TCA cycle or for fatty acid synthesis (4). Not only is acetyl phosphate an 

important metabolic intermediate produced in all Ack pathways, it also can donate phosphate 

groups to signal transduction pathways that regulate responsive processes such as stress, 

pathogenesis, and chemotaxis (21).  

 

Pta, the Primary Bacterial and Archaeal Partner of Ack 

The isolation and analysis of mutants resistant to fluoroacetate, a toxic analogue of 

acetate, assisted in delineating the role of Ack and Pta in E. coli metabolism. These studies 

established that Ack-Pta works primarily in acetate dissimilation, but that this pathway can play a 

role in acetate assimilation under high acetate concentrations (9). When the cells were grown with 
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labeled acetate and glucose as carbon sources, neither the Δack nor Δpta mutants incorporated the 

labeled acetate. However, when the same experiment used glycerol, both mutants were able to 

take up and incorporate the labeled acetate (9). Additionally, when adding glucose to cells 

growing on glycerol, little effect was observed for the uptake of the labeled acetate or the 

incorporation with either mutant, suggesting that glucose transcriptionally represses the Ack-Pta 

pathway without inhibiting the enzymes (9). Acs is the high affinity pathway, which can explain 

the incorporation of labeled acetate in the absence of both Ack and Pta, since Acs acts as a 

scavenger under low acetate concentrations. When Δack mutants were grown on acetate as the 

sole carbon source, the cells doubled in growth within 6 hours, whereas Δpta mutants took 15 

hours for the same amount of growth. Unlike WT cells and Δack cells, Δpta cells were unable to 

excrete acetate into the growth medium when grown on glucose (9). This study indicates that Pta, 

not Ack, is essential for excretion of acetate through the formation of acetyl phosphate, which can 

be hydrolyzed non-enzymatically to acetate without the need for Ack (9).  

 Another study in Salmonella enterica planned to use the inactivation of the enzyme 

isocitrate lyase to specify if S. enterica virulence was affected by its ability to use acetate as both 

a carbon and energy source (22). Since an earlier study showed that a double knockout of both 

ack and pta lacked an affect on virulence in a mouse model, this study planned on using Pta as a 

control. Therefore, the knockouts of both isocitrate lyase and Pta were made in unison; however, 

the pta knockout not isocitrate lyase, was avirulent in the mouse model (22). Compared to wild 

type, the complemented strain was as virulent; therefore, this experiment indicates that Pta is 

essential for growth and/or invasion of S. enterica in the mammalian host. 

 Experimental studies with both Vibrio cholera (23) and Listeria monocytogenes (24) 

show that Pta plays an important role in colonization and motility. In all of these examples, they 

speculate that the acetyl phosphate pools are changing, which may manipulate the 
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phosphorylation of certain response regulators or provide another mechanism of acetate excretion 

that is unknown (9, 22). 

 

Enzymology 

Kaplan et al. (25) jointly confirmed Ack and Pta activities in E. coli cell extracts in 1948; 

however, Ack and Pta were not purified and characterized until the mid-1950’s (10, 26). Rose et 

al. (10) determined that the enzymatic role of Ack is to reversibly phosphorylate acetate to acetyl 

phosphate [Eq. 1.1] utilizing the γ- phosphoryl group of ATP. The enzymatic mechanism of Ack 

operates through a direct in-line transfer of the phosphate group of ATP to acetate (27). Pta was 

initially partially purified from extracts of Clostridium kluyveri (26). These experiments 

established that the enzymatic rate of Pta was directly proportional to the amount of CoA in the 

reaction, and that the CoA-enzyme complex was highly dissociable due to the inability to saturate 

Pta with CoA (26). Stadtman also demonstrated a requirement for both KCl and NH4Cl and an 

optimal pH of 7.4-8.2 (26).  

Sequencing of bacterial genomes reveals two types of Pta: PtaI and PtaII (28-30). PtaI 

enzymes have been thoroughly characterized, and there are a number of solved crystal structures 

(31-36). Only two PtaII enzymes, one from E. coli (EcPtaII) and one from S. enterica (SePtaII), 

have been fully characterized and a structure is unavailable (29, 30). Comprised of only a 

catalytic subunit, the PtaI enzyme is approximately 350 amino acids long. In addition to 

possessing a catalytic C-terminal domain, PtaII enzymes have a N-terminal regulatory domain of 

roughly 350 amino acids (29, 30). The regulatory domain of PtaII contains two recognizable 

subdomains: the P-loop containing NTPase and the DRTGG domains (30). The P-loop NTPase 

domain includes a conserved nucleotide tri-phosphate-binding motif, and exists in enzymes 

involved in multiple cellular processes (37). The DRTGG domain has an unknown function and 
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is identifiable by some of the most conserved residues found in the domain. This domain is 

associated with the cystathione-beta-synthase domain (CBS) that exists in both membrane-bound 

and cytosolic proteins, and known to function in in all three domains of life (38). 

Little is known about the N-terminal domain of PtaII and its regulatory function, except 

from the closely related (96.1% identity) EcPtaII and SePtaII enzymes. The EcPtaII operates in 

both the acetyl-CoA-forming direction, as well as the acetyl phosphate forming direction, 

although the kcat is 8-fold lower in this direction. In the acetyl-CoA – forming direction, EcPtaII 

displays positive cooperativity in regards to CoA, but not with acetyl phosphate, and in the acetyl 

phosphate – forming direction, a sigmoidal response for acetyl-CoA, but not with Pi, is observed 

(30). Truncations of the N-terminal region of EcPtaII reveal that the regulation of the enzyme is 

through metabolic effector molecules. The P-loop domain is required for the effect of NADH, 

ATP, PEP and pyruvate, and the DRTGG subdomain is vital for the sigmoidal response observed 

in allosteric enzymes (30). 

Like the EcPtaII enzyme, the SePtaII enzyme also catalyzes the acetyl-CoA and acetyl 

phosphate forming directions of the Pta pathway and is also an allosteric enzyme (29). However, 

unlike EcPtaII, the SePtaII enzyme displays positive cooperativity for acetyl phosphate, not CoA, 

in the acetyl-CoA forming direction, and is reported to lack a sigmoidal response in the acetyl 

phosphate-forming direction. Although the SePtaII kinetics indicate a lack of cooperativity with 

either substrate in the acetyl phosphate-forming direction, the authors still tested NADH and 

pyruvate as metabolic effectors only in this direction (29). Both the EcPtaII and SePtaII enzymes 

were inhibited by NADH and activated by pyruvate in the acetyl phosphate forming direction (29, 

30). 
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Structure 

The Ack-Pta pathway is also present in one genus of methane-producing archaea. 

Methanosarcina species utilize this pathway to activate acetate to acetyl-CoA for use as a carbon 

and/or energy source (33, 39, 40). However, the pathway can also function in the opposite 

direction for energy conservation during growth on carbon monoxide (41, 42).  Pta follows a 

ternary catalytic mechanism that lacks an order in the binding of both substrates (31). However, 

the mechanism is base-catalyzed with an important Asp-316 residue interacting with the thiol 

group of CoA, forming a nucleophile that readily attacks acetyl phosphate. Acetyl-CoA is 

produced, along with the PO4
3- ion; this ion removes the proton from Asp-316 that is abstracted 

from CoA, regenerating Asp-316 for the next round of catalysis (32). The Pta structure from M. 

thermophila forms a homodimer [Figure 1.3A], and each elongated monomer contains two 

domains [Figure 1.3B] (36). Domain one consists of a sheet of β3, β2, β1, β4, and β11 in parallel, 

encompassed by four major alpha helices. Domain two includes β10, β5, β6, β9, β7, and β8 in 

both parallel and anti-parallel, with five major helices surrounding the mixed sheet. This crystal 

structure of Pta (36) confirmed the 1976 suggested ternary mechanism suggested by Henkin et al. 

(36, 43).  

 

Xfp, an Enzyme Partner for Ack in Heterofermentative Bacteria. 

Lactic acid bacteria are Gram positive, non-sporulating bacteria that produce lactate as 

the main fermentation product. Homofermentative bacteria produce fermentation products that 

consist of 100% lactate, and use glycolysis as the sole method to metabolize hexose sugars (44). 

Whereas heterofermentative bacteria produce fermentation products that include approximately 

50% lactate, with other products such as acetate, ethanol, and CO2, and break down hexose sugars 

through both glycolysis and the pentose phosphate pathway (44). Phosphoketolases constitute a 
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modified form of the pentose phosphate pathway that converts either fructose 6-phosphate [Eq. 

1.6] from glycolysis or xylulose 5-phosphate [Eq. 1.5] from the pentose phosphate pathway to 

acetyl phosphate. Within this enzymatic family, there are either dual substrate specific enzymes, 

xylulose 5-phosphate/fructose 6-phosphate phosphoketolases (Xfp), or single substrate specific 

enzymes, fructose 6-phosphate phosphoketolases (F6ppk) (45).  

 

Physiological Significance 

 The biochemical characterization of the recombinant Lactobacillus pentosus Xfp and the 

investigation into the metabolic and physiological role of this enzyme indicates that it is 

necessary for the fermentation of pentose sugars and gluconate (46). The Δxfp mutant is unable to 

grow on arabinose, xylose, ribose or gluconate, and the observation of maximal activity of Xfp in 

cell extracts occurs during growth on xylose and gluconate, not on glucose and fructose. Further 

confirmation that Xfp is active under certain growth conditions results from a western blot in 

which Xfp was only detected from cells grown on pentoses and gluconate, and not on glucose or 

fructose (46).  

 Another study indicates that Xfp in Clostridium acetobutylicum could possibly use both 

the pentose phosphate pathway and the Ack-Xfp pathway for the metabolism of both arabinose 

and xylose (47). C. acetobutylicum Xfp is a dual substrate specific enzyme, with a slight 

preference for X5P, and expression is 6.7x higher when cells are grown in arabinose versus 

xylose. Although this bacterium can ferment both substrates, it grows 3.5x better on arabinose 

than xylose, indicating that the pentose phosphate pathway in C. acetobutylicum is unable to 

metabolize sugars swiftly due to two possible reasons: the lack of proper amounts of transaldolase 

or an inefficient system of transporting xylose (47). Therefore, the physiological role of the Ack-

Xfp pathway could be to metabolize pentose and hexose sugars and sugar alcohols as a modified 
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pentose phosphate pathway to provide for the nutrient status of the cell under conditions when the 

cells are unable to use the pentose phosphate pathway fully. Another possible role would be to 

connect the oxidative portion of the pentose phosphate pathway with the lower part of glycolysis 

(46, 47). 

 

Enzymology 

Several bacterial phosphoketolase enzymes have been kinetically characterized, with 

Bifidobacterium lactis and Lactobacillus plantarum being one of the most thorough of the 

investigations (15, 16, 48-50). Most lactic acid bacteria have two ORFs with sequence identity to 

phosphoketolases, and B. lactis and L. plantarum are no exception (15, 16). Both 

phosphoketolase enzymes from B. lactis had activity in crude extract, and phosphoketolase assays 

provided evidence that one was an Xfp and the other was an F6ppk (15). Characterization of the 

Xfp uncovered a slight preference for F6P over X5P, the requirement for thiamine pyrophosphate 

(TPP), and the production of a 92,000 Da subunit (15).  

With L. plantarum, both phosphoketolase enzymes are Xfps; however, only Xfp2 was 

further characterized. Unlike B. lactis, L. plantarum Xfp2 has a slight preference for X5P over 

F6P (16). Yevenes et al. (16) established that the L. plantarum Xfp2 enzyme follows a ping-pong 

kinetic mechanism (16). The kinetic mechanism for L. plantarum Xfp2 indicates that F6P binds 

to the TPP bound Xfp enzyme to form the enzyme bound DHETPP (2-(α,β-

dihydroxyethylidene)-thiamine pyrophosphate) intermediate; this also releases E4P. Dehydration 

of the DHETPP, creates the enzyme bound AcTPP (2-acetyl-thiamine pyrophosphate) 

intermediate. Once Pi binds to the enzyme and accepts the acetyl group from AcTPP, acetyl 

phosphate is released (16). Recently, the L. plantarum Xfp2 was reported to be allosterically 

regulated by PEP, OAA and glyoxylate. Unlike the eukaryotic Xfp2 from C. neoformans, 



 11 

mentioned later in this chapter, ATP and AMP have no effect on L. plantarum Xfp2 (51). This 

study indicates that allosteric regulation is not only a eukaryotic adaptation, but spans across both 

the Bacteria and Eukarya. 

The cyanobacteria Anabaena species has three ORFs with sequence identity to 

phosphoketolases; however, when recombinantly produced and purified, only All1483 and 

All2567 had phosphoketolase activity (52). These two enzymes utilize both X5P and F6P as 

substrates, and display positive cooperativity for F6P and negative cooperativity for Pi. Although 

the other putative phosphoketolase, Alr1850, lacked phosphoketolase activity and sequence 

similarity with the other two Xfp enzymes, BLAST searches indicate that all three enzymes have 

a TPP-binding domain within the N-terminus. Therefore, Alr1850 is a TPP-dependent enzyme, 

which may catalyze reactions with different substrates (52). 

 

Structure 

Structures of the Bifidobacterium breve and Bifidobacterium longum Xfps were solved in 

2010 (53, 54). Gel filtration studies, with both bacterial Xfps, confirmed a homohexameric peak 

with the simplest functional unit being a dimer. Each Xfp subunit consisted of an N-terminal, 

middle and C-terminal domain, with the active site located between the middle and N-terminal 

domains (53, 54). Although the overall bacterial Xfp structure resembles the TPP-dependent 

transketolase (TK) from Saccharomyces cerevisiae, which plays a role in the pentose phosphate 

pathway also utilizing X5P as a substrate, B.breve and B.longum only share 15% and 17.1% 

amino acid identity, respectively, with the TK enzyme (53, 54). However, histidine residues 

found in the active site and other residues that play a role in the binding of TPP are conserved 

between both the Xfp and TK enzymes. One particular residue, Glu-479, plays an active role in 

the initial binding of TPP and forming the TPP bound enzyme. Altering this residue to alanine in 
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B. breve or aspartate in B. longum eliminated all activity, further confirming the relation of both 

bacterial Xfp enzymes to other TPP-dependent enzymes (53, 54). Although similar to TK, there 

are some major differences that make Xfp a phosphoketolase and not a transketolase. These 

include the dehydration of DHETPP in the absence of Pi, and the nucleophilic attack of AcTPP by 

Pi. Through NMR studies, Suzuki et al. (53) showed that the active site of the transketolase lacks 

any form of dehydration, but that this dehydration reaction is more like enolase, the glycolytic 

enzyme that produces PEP. 

 

III. Acetate Production in Eukaryotes 

 The foundation of energy metabolism is glycolysis, which supplies ATP and balances the 

cells redox equivalents. However, fermentation allows for the production of ATP in the presence 

of glucose but in the absence of oxygen. A highly diverse group of eukaryotic microbes have 

evolved ways to produce acetate as a metabolic end product when supplied glucose but little 

oxygen through anaerobic metabolism (55). Multiple studies have focused on eukaryotic energy 

metabolism at the molecular level; however, there is a necessity for further detail on acetate 

production and the enzymes that catalyze the acetate producing reactions.  

 The metabolism of pyruvate, β-oxidation of fatty acids, and the catabolism of amino 

acids produce acetyl-CoA (55). Acetyl-CoA conversion to acetate occurs in eukaryotes through 

six different pathways. Although previously thought to be only a bacterial and archaeal pathway, 

Ack and Pta [Eq. 1.1 & 1.2] are in green algae and in the Phytophthora species (5). In 1975, 

Reeves et al. (56) identified the ADP-forming acetyl-CoA synthetase [Acd; EC 6.2.1.13; Eq. 

1.10] in Entamoeba histolytica, which is also conserved in Giardia lamblia and the Plasmodium 

species (57). Acetyl-CoA hydrolase [Ach1; EC 3.1.2.1; Eq. 1.11] is fairly universal, and found in 

a number of microbes, including the kinetoplastids, such as Trypanosoma brucei, along with 
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acetate:succinate CoA transferase [Asct; EC 2.8.3.8; Eq. 1.12] (55). Acetate formation occurs 

through Asct in the model organism Saccharomyces cerevisiae as well, (58) and in a number of 

parasites, including the parasitic helminth, Fasciola hepatica (59).  

 

acetyl− CoA+ P! + ADP! → acetate+ ATP+ CoA    [Eq. 1.10] 

acetyl− CoA+ !H!O! → acetate+ CoA!  [Eq. 1.11] 

acetyl− CoA+ succinate! → acetate+ succinyl− CoA   [Eq. 1.12] 
 

 

Acetyl-CoA is not the only source for acetate dissimilation in eukaryotes. Pyruvate, in 

addition to acetyl-CoA, is able to act as electron acceptor during fermentation in eukaryotic 

microbes (59). In yeast such as S. cerevisiae, only one acetate production pathway originates 

from pyruvate, which involves the pyruvate dehydrogenase complex through the enzymes 

pyruvate decarboxylase [Pdc; EC 4.1.1.1; Eq. 1.13] and acetaldehyde dehydrogenase [Ald; EC 

1.2.1.5; Eq. 1.14] (55). Euascomycete and basidiomycete fungi have another pathway for acetate 

production, Xfp-Ack, [Eq. 1.1, 1.5, & 1.6] which is primarily found in bacteria (5). However, this 

pathway does not use pyruvate or acetyl-CoA as a precursor for acetate, but uses five and six 

carbon sugars such as xylulose 5-phosphate and fructose 6-phosphate. 

 

pyruvate! → acetaldehyde+ CO! [Eq. 1.13]  

acetaldehyde+ NAD! !→ acetate+ NADH+ H!   [Eq. 1.14] 
 

Role of Acetate in Pathogenic Eukaryotic Microbes 

 During invasion and other stages of infection, the availability of oxygen for a pathogen 

may be limiting. Therefore, under hypoxic and anoxic conditions, acetate production from 
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glucose is an important metabolic end product (55). Acetate formation is a main part of energy 

metabolism in eukaryotic pathogens but not in mammalian hosts; therefore, this portion of energy 

metabolism could be focused on as a novel therapeutic target (55).  F. hepatica is a parasitic liver 

fluke that infects mainly cattle and sheep; however, it can infect humans. Both the liver and bile 

duct are invaded by this parasite, but the level of oxygen in both of these organs differs. The 

oxygen level decreases from the liver to the bile duct, which alters acetate metabolism. In the bile 

duct, the production of acetate provides ATP for the parasite under anaerobic conditions via Asct 

(59, 60). 

E. histolytica and G. lamblia are amitochondriate protists that rely primarily on glycolysis 

for all metabolite and ATP production; two main metabolic products created by these two 

organisms are acetate and ethanol (57, 61). To conserve energy, Acd, found in both parasitic 

protozoa, converts acetyl-CoA to acetate; however, in E. histolytica, Acd also functions to 

convert acetate to acetyl-CoA, which could be explained as playing a role in the survival and 

growth of the parasite within the intestine, where bacteria produce high concentrations of acetate 

and glucose levels are low (2, 57, 61, 62). Unlike G. lamblia, E. histolytica also has an Ack that 

catalyzes the production of acetyl phosphate from acetate; the Ack enzyme identified in E. 

histolytica is the only known Ack enzyme that uses pyrophosphate and inorganic phosphate 

instead of ATP and ADP (63). The role of Ack could possibly be to produce PPi for glycolysis, 

and the acetate that is produced may be converted by Acd to acetyl CoA (62). 

 Multiple studies of T. brucei, the causative agent of sleeping sickness, focus on acetate 

metabolism throughout the parasite’s life cycle. This organism possesses enzymes involved in 

acetate metabolism such as Acs, Ach, and Asct (64). Acs functions in the acetyl-CoA forming 

direction in T. brucei where de novo biosynthesis of lipids occurs though this enzyme. RNAi 
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experiments of Acs resulted in a 20-fold reduction of labeled glucose or acetate into fatty acid 

synthesis and indicated that Acs is essential for growth.  

Although this parasite produces acetyl-CoA through Acs, both Ach and Asct produce 

acetate from acetyl-CoA (64). The overexpression of Asct in T. brucei resulted in increased 

activity, as well as increased acetate excretion, whereas the knockout of Asct led to lower levels 

of both acetate and succinate (65). However, gene deletion of Asct does not prevent all acetate 

production (65). T. brucei does have an ORF with sequence identity to Ach which is likely the 

other source of acetate production (55).   

 

Acetate Kinase-Phosphotransacetylase Pathway in Eukaryotes 

Using M. thermophila ACK as the query search, BLAST searches identified the first 

eukaryotic ACK sequences in a number of eukaryotic microbes, including Chlamydomonas 

reinhardtii, Entamoeba histolytica, the oomycete genus Phytophthora, and fungi from the phyla 

Ascomycota, Chytridiomycota, and Basidiomycota (5). Similar to many bacteria, both C. 

reinhardtii and Phytophthora have ORFs that have sequence identity to Pta. Most species of 

Phytophthora have one Ack and two Ptas, but C. reinharditti has two Acks and two Ptas. This 

suggests that Phytophthora and Chlamydomonas utilize different Ack-Pta pathways for acetate 

assimilation and acetate dissimilation (5).  

Photosynthetic organisms experience levels of little to no oxygen when light is limiting 

and respiration has increased, and during these periods, it is unknown what mechanisms are 

regulated that allows these organisms to respond to the changing environment (66). C. reinhardtti 

is a unicellular green algae that experiences levels of anoxia, generally under dark conditions. 

Mus et al. (66) examined transcript levels under anoxia in dark environments to attempt to 

elucidate cellular metabolism and gene expression during this rapid environmental change. Pat1 
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and Ack2 localize to the mitochondria, whereas Pat2 and Ack1 localize to the chloroplast (67-70) 

(Note: Pta is defined at Pat in Chlamydomonas). PAT1, PAT2, ACK1 and ACK2 transcript levels 

increased when cells were grown in the dark and under anoxia. Levels were two to three-fold 

higher for PAT2 and ACK1 compared to PAT1 and ACK2 at 30 minutes, and approximately six 

fold higher for ACK1 and 16 fold higher for PAT2 at two hours (66). The upregulation of 

fermentative pathways occur to produce energy under these conditions. 

Yang et al. (70) generated Ack1, Ack2 and Pat2 mutants to further study the role these 

enzymes play in producing acetate and ATP under dark, anoxic conditions in vivo [Figure 1.4]. 

Viability assays conducted on the Δack1, Δack2, Δpat2, Δack1Δack2, and Δpat2Δack2 indicated 

that the Δack1 and Δpat2 mutants were more susceptible to killing under anoxic conditions. This 

suggests that acetate and/or ATP plays an important role in the chloroplast under conditions of 

low oxygen (70). The Δack2 mutant, found in the mitochondria, appeared similar to the WT. 

Although there was a two to seven fold reduction in the levels of intracellular acetate for all of the 

mutants, acetate excretion still occurred; indicating, the Ack-Pta pathway contributes to the main 

population of acetate in both the chloroplast and mitochondria, but is not the only source, as Ach 

is present and may be responsible (70). Acs has been thought to be the primary pathway for 

acetate assimilation in eukaryotic microbes, but W. Yang et al. has recently demonstrated that 

Ack1-Pat2 is primary pathway for acetate assimilation under dark oxic conditions and Acs is the 

primary pathway under light oxic conditions (W. Yang and A. Grossman, personal 

communication).  
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Acetate Kinase-Xylulose 5-Phosphate/Fructose 6-Phosphate 

 Phosphoketolase Pathway in Fungi 

 ACK sequences have previously been identified in both euascomycete and basidiomycete 

fungi; however, these fungal genomes lack an ORF with identity to PTA, the primary partner to 

ACK (5). However, they do have at least one ORF with identity to XFP, and in most cases two 

(5). Of the 650 bacterial and eukaryotic genomes that Sanchez et al. (71) screened for putative 

XFP genes, 110 contained at least one phosphoketolase gene. Out of the 57 Eukarya genomes 

screened, only 20 genomes, which were from the Ascomycota and Basidiomycota fungal Phyla, 

included at least one XFP sequence; these fungal XFP sequences separate into two distinct clades 

designated as XFP1 and XFP2 (71). The authors hypothesized from their phylogenetic analysis 

[Figure 1.5] that the XFP2 sequences are of bacterial origin due to the Xfp2 monophyletic cluster 

branching out from a group of sequences from bacteria. In addition, the XFP1 sequences are 

closely related to the marine bacteria Shewanella, although the direction of transfer, whether of 

bacterial descent, is debatable. Nevertheless, it is clear the evolution or acquisition of Xfp1 

occurred before the separation of the Ascomycota and Basidiomycota fungal phyla (71). The 

putative XFP genes identified were extremely variable hindering any possibility of understanding 

the evolutionary history of these genes, or the ability to identify the substrates these enzymes 

catalyze by the phylogenetic relationships observed through this analysis (71). 

All fungi that have at least one XFP open reading frame also have ACK with the 

exception of Schizosaccharomyces species, which has one XFP belonging to the Xfp1 family (5). 

As in heterofermentative bacteria, Ack and Xfp could partner together within fungi to form a 

modified pentose phosphate pathway. When grown on xylose and glucose, cell growth 

diminished, indicating the phosphoketolase pathway as an alternative pathway for the metabolism 

of these carbon sources (72). Most Aspergillus species have two XFP genes, but Aspergillus 
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nidulans has only one belonging to the Xfp1 sub-family. Through the use of a constitutive 

promoter, Panagiotou et al. (73) overexpressed A. nidulans Xfp, which resulted in both higher 

growth rates and biomass yields when grown on xylose, ethanol and glycerol. Incorporation of 

iodoacetate led to a 6-fold increase in the production of acetyl-CoA, which is a result of the flux 

through the phosphoketolase pathway (73). These studies provide evidence that central carbon 

metabolism may rely on the Xfp-Ack pathway to supply flexibility. 

In addition to the Aspergillus species relying on the Xfp-Ack pathway to provide 

flexibility to central metabolism, the insect pathogenic fungus Metarhizium anisopliae requires 

this pathway for pathogenesis (74). Metarhizium anisopliae has one XFP gene identified as 

MPK1 that belongs to the Xfp2 sub-family. Culturing the fungus in insect haemolymph resulted 

in elevated transcript levels of MPK1, and gene deletion studies indicate that MPK1 is required 

for full virulence against insects (74). The generation of an ACK mutant was not reported.  

 

IV. Phytophthora ramorum 

Some of the most devastating species of plant pathogens that impact the agriculture and 

forest ecosystems come from the genus Phytophthora, whose name derives from the Greek 

meaning “plant-destroyer (75). There are more than eighty known different species of 

Phytophthora, and most are plant pathogens. This genus produces progeny sexually and 

asexually. Oospores are the sexual progeny, which are durable and survive within harsh 

conditions, allowing the cells to re-infect other plants and continue the asexual life cyle. The 

asexual life cycle allows the cell to differentiate into other forms, such as the zoospore that 

initiates infection [Figure 1.6] (76). The dispersal of progeny spores occurs over wide ranges 

through rain, wind, rivers, streams, and human and animal activities (77). Unlike fungi with 

genomes that average approximately 37 Mb, oomycetes all have genomes larger than 40 Mb and 
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are diploid, indicating diversity in their biology and evolution compared to fungi, as well as the 

genes used to infect host organisms (78). 

Unlike other Phytophthora species, Phytophthora ramorum, which causes Sudden Oak 

Death (SOD), can infect a broad range of host plants, up to 109 different species (76). P. 

ramorum grows optimally at 20°C, reproduces sexually, and has a 65 Mb genome. This species is 

only found in North America and Europe, and studies indicate that the populations are from three 

distinct lineages (79). 

 The two main diseases of P. ramorum infection are Sudden oak death, which occurs on 

oak trees within the United States, and Ramorum blight, which is found in both Europe and North 

America within the forest, nursery and garden environments (79). With Sudden oak death, the 

features consist of stem cankers and bleeding cankers found normally in Coast live oak, tanoak, 

and European Beech. With Ramorum blight, the symptoms found include leaf blight, tip and 

shoot dieback, and foliar and twig blight in a wide list of host including rhododendron, lilac, 

Douglas fir, and California bay laurel (79). When found in the forest, populations are cut down 

and eliminated through burning or through containment and preventative measures to slow down 

the infection process. Established protocols for nurseries include good sanitary practices, 

quarantine procedures, and eradication methods during outbreaks (79). Although there are 

containment and preventative measures, P. ramorum is a quarantined plant pathogen to reduce 

further introduction and propagation. 

 

V. Cryptococcus neoformans 

Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous 

system, is the most frequent cause of fungal meningitis worldwide (80). C. neoformans infects 

approximately one million individuals worldwide each year (CDC Report, 2009), and kills 
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approximately 650,000 people globally. The majority of those individuals are found in sub-

Saharan Africa [Figure 1.7] and Asia (80-83). Although first isolated 120 years ago in fermented 

peach juice, it was during the AIDS epidemic when this yeast-like basidiomycete gained 

prominence, as 5-10% of individuals with AIDS also developed life-threatening cryptococcosis 

(84). This encapsulated fungus is spherical in structure and 5-10 µm in size. It gains access into 

the respiratory tract through inhalation of its spores, which are encountered throughout the 

environment (80, 84). Individuals with an intact immune system can clear the infection; however, 

for those who are immunocompromised, the fungus can either lay dormant reoccurring later on in 

the individual’s life or establish a pulmonary infection through the production of cryptococcomas. 

Once pulmonary cryptococcosis is established, C. neoformans can disseminate throughout the 

body, causing systemic disease, including life-threatening meningitis [Figure 1.8] (80, 85). The 

fungus disseminates quickly, having a predilection to the central nervous system, and is the third 

most frequent neurological complication in AIDS patients. 

The treatment for cryptococcosis is unsatisfactory due to harmful side effects and 

growing resistance, and the treatment goals are different between those patients who are infected 

versus those who have developed meningitis. Fluconazole, amphotericin B, and flucytosine are 

the three primary drugs available. Fluconazole inhibits the synthesis of ergosterol in the fungal 

cell membrane by inactivating 14-α-demethylase that plays a role in its production. Amphotericin 

B binds to ergosterol causing a transmembrane channel within the cell membrane; these pores 

formed by amphotericin B allow ion leakage, which eventually causes cell death. Both 

amphotericin B and flucytosine, a pyrimidine analogue that disrupts nucleic acid biosynthesis, are 

fairly toxic to humans (81, 82). Those infected with C. neoformans but with an unaffected central 

nervous system, are given fluconazole. Individuals who have AIDS or have meningitis are given 

a regimen of amphotericin B and flucytosine (81, 82). 
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Virulence 

 C. neoformans is grouped within the Order Tremellales, which includes a large number 

of mycoparasitic fungi. This indicates that C. neoformans may be a pathogen to the heterologous 

hosts that it has been isolated from, such as amoebae, insects and mites (80). As a soil fungus, C. 

neoformans evolutionarily adapted to its surroundings to survive, and in turn, became an 

intracellular pathogen. Some of the organisms that this fungus co-exists and interacts with could 

have stimulated virulence of C. neoformans by the toxins they excrete or the anti-cryptococcal 

activity they have gained (80). 

  C. neoformans does not require a human host during its life cycle, but it does infect 

humans and other mammals.  Mammals have multilayered defense mechanisms to fight off 

infection, and thus life inside the mammalian host is a hostile environment. C. neoformans has 

three well-defined traits that increase pathogenicity: a polysaccharide capsule, melanin 

production, and growth at mammalian body temperature (84, 86). The polysaccharide capsule 

consists of glucuronoxylomannan and galactoxylomannan polysaccharides, and when cell-

associated, can provide protection from phagocytosis through concealment of components found 

on the cell wall. This capsule can also be shed, which results in reduced leukocyte migration, and 

as a result, diminishes the inflammatory response (84, 87). C. neoformans also deposits melanin 

into the cell wall. This provides protection against free radicals and phagocytosis by stabilizing 

the cell wall. Cells producing melanin are also less susceptible to killing by amphotericin B (84, 

86, 88). Clinical isolates of C. neoformans can grow at 37°C, which is required to cause disease 

in the mammalian host; the ability to grow at this temperature is a rare trait within the fungal 

community because it is estimated that only 0.01% of soil fungi are able to grow at 37°C. (84). 

Enzymes important for virulence include phospholipase B that aids in dissemination across the 

blood brain barrier, possibly through the destruction of the host cell membranes, urease that 
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produces ammonia and carbamate through the hydrolysis of urea, to increase the local pH and aid 

in transversal across the blood brain barrier, and an array of reductases, permeases, and 

siderophores that aid in iron acquisition (84, 86, 89).  

 An important adaptation to the host environment is the ability of C. neoformans to 

survive and replicate within the macrophage [Figure 1.9] (90, 91). Once phagocytosed by 

macrophages, Cryptococcal cells become enclosed within lysosomes and get exposed to a low 

pH. Most pathogenic microbes evolve ways to manipulate the phagolysosomal fusion, and 

therefore, avoid the environmental acidification. C. neoformans does not inhibit this 

phagolysosomal fusion, and not only survives in the low pH of the macrophage, but prospers in 

the acidic environments (90). In addition to being able to survive the acidic environment within 

macrophages, C. neoformans also causes macrophage dysfunction by shedding the capsule 

components within the lysosome vesicles (92). Persistence of C. neoformans within the 

macrophage has been described as a mode of dissemination for the fungus, including a way to 

transverse the blood brain barrier defined as the Trojan horse method (93). 

  

A Model Organism and the Gene Tools Created to Unravel Its Biology 

Cryptococcus neoformans was previously grouped into 3 varieties and 4 serotypes: 

Cryptococcus neoformans var. grubii (serotype A), Cryptococcus neoformans var. neoformans 

(serotype D), and Cryptococcus neoformans var. gattii, now known just as Cryptococcus gattii 

(serotypes B and C) (84). The life cycle of each of these species includes the survival of haploid 

types, either α or a, that mate with either the opposite mating type to produce a dikaryon or with 

the same mating type to produce a monokaryon (94). The different mating types are characterized 

by the MAT locus, which is the same size and contains the same genes in each, but the difference 

is within the arrangement of the genes within this locus for either α or a cells. This distinction 
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allowed for the creation of congenic strain pairs in serotype A and D, which has aided in the 

development of genome wide analysis tools, that made C. neoformans a model organism (84, 94-

96).  

The ability of this organism to survive as both a haploid and a diploid provides a 

mechanism where essential genes in C. neoformans can be analyzed. The two mating strains are 

capable of genetic crossing, and due to the segregation of alleles through meiosis, further genetic 

analysis within C. neoformans can occur (94).  If a diploid strain contains a heterozygous 

mutation (e.g., XFP1/xfp1), the isolation and analysis of haploid spores can establish the 

essentiality of the gene. If the mutation (xfp1) is lethal, the surviving haploid spores will all have 

the XFP1 allele, indicating that XFP1 is essential (94).   

Development of molecular techniques such as gene disruption was imperative to study C. 

neoformans pathogenesis. The development of two systems for transformation, electroporation 

and biolistics, occurred in the early 1990s (97, 98). Introduction of foreign DNA into 

Cryptococcus through electroporation transpired due to its success in S. cerevisiae (97). However, 

this method is only efficient when the DNA that needs to be introduced is maintained episomally 

(97). The electroporation of a plasmid-borne URA5 selectable marker into C. neoformans ura5 

mutants resulted in only 0.001 to 0.1% stable transformants (97). Using electroporation to 

reconstitute capsule production in an acapsular mutant produced a transformation efficiency rate 

of just 0.25% (99). 

Although electroporation can result in stable episomes, it is inefficient in introducing 

linear DNA that needs to integrate into the genome through homologous recombination. 

Depending on the gene that will be altered, biolistic transformation results in a stable 

transformation efficiency of 2-50% (98, 100, 101). Biolistic transformation is the best choice for 

introduction of linear DNAs into the C. neoformans genome via homologous recombination. 
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These transformation techniques provide other methods where the pathogenesis of C. neoformans 

can be unraveled further by analyzing gene function and evolution through targeted gene 

disruption, insertional mutagenesis, and genetic manipulation through the use of an episomal 

plasmid (94).  

 

Cryptococcus neoformans Acetate Evolution 

Acetate is one of the principal metabolites produced by C. neoformans during in vitro 

growth in glucose-fed cultures (102) and during infection (1, 103). NMR studies conducted on 

cryptococcomas, large mass lesions resulting from cryptococcal infection, indicated high levels of 

acetate that may play a role in pathogenesis during pulmonary infection (1). In addition, the 

acidic environment of brain lesions, produced by C. neoformans, is consistent with the production 

of acetate during infection (103).  

The Smith lab has identified three possible pathways that could be the source of acetate: 

Xfp1-Ack, Xfp2-Ack, and Pdc-Ald. The Xfp-Ack pathways are the focus of this dissertation. A 

microarray study of C. neoformans gene expression by Fan et al. (104) indicated ACK is 

expressed during murine macrophage infection; however, information about the expression of 

XFP1 and XFP2 was absent as neither were present on the microarray. Serial analysis of gene 

expression on cells recovered from the lungs of infected mice uncovered elevated transcripts of 

XFP2, as well as PDC and ALD (105). In addition, Chun et al. (106) executed a genome wide 

microarray study that revealed both ACK and XFP2 are induced under hypoxic conditions. A 

global transcriptome profile of C. neoformans treated with hydrogen peroxide revealed induction 

of XFP1 in response to oxidative stress (107). These studies suggest that the Ack-Xfp pathway 

would be functioning during infection and may be responsible for acetate production. 
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Although an investigation of the role of the Ack-Xfp1/Xfp2 pathway in C. neoformans 

has not been reported, Glenn et al. (108) provided the first characterization of a eukaryotic Xfp 

enzyme. C. neoformans Xfp2 is allosterically regulated by both positive and negative effector 

molecules; ATP, PEP and OAA inhibit Xfp2, whereas AMP activates the enzyme. This was the 

first biochemical investigation into this pathway in C. neoformans, which provided unique insight 

into the enzymology of Xfp (108). 

 



 26 

VI. References 
 

1. Himmelreich U, Allen C, Dowd S, Malik R, Shehan BP, Mountford C, Sorrell 
TC. 2003. Identification of metabolites of importance in the pathogenesis of 
pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. 
Microb Infect / Institut Pasteur 5:285-290. 

2. Reeves RE, Warren LG, Susskind B, Lo HS. 1977. An energy-conserving 
pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a 
new acetate thiokinase. J Biol Chem 252:726-731. 

3. Mazet M, Morand P, Biran M, Bouyssou G, Courtois P, Daulouede S, Millerioux 
Y, Franconi JM, Vincendeau P, Moreau P, Bringaud F. 2013. Revisiting the 
central metabolism of the bloodstream forms of Trypanosoma brucei: production 
of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop 
Dis 7:e2587. 

4. Wolfe AJ. 2005. The acetate switch. MMBR 69:12-50. 

5. Ingram-Smith C, Martin SR, Smith KS. 2006. Acetate kinase: not just a bacterial 
enzyme. Trends Microbiol 14:249-253. 

6. Jeffries TW. 1983. Utilization of xylose by bacteria, yeasts, and fungi. Adv 
Biochem Eng Biotechnol 27:1-32. 

7. Wolfe AJ. 2010. Physiologically relevant small phosphodonors link metabolism 
to signal transduction. Curr Opin Microbiol 13:204-209. 

8. El-Mansi M, Cozzone AJ, Shiloach J, Eikmanns BJ. 2006. Control of carbon flux 
through enzymes of central and intermediary metabolism during growth of 
Escherichia coli on acetate. Curr Opin Microbiol 9:173-179. 

9. Brown TD, Jones-Mortimer MC, Kornberg HL. 1977. The enzymic 
interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen 
Microbiol 102:327-336. 

 



 27 

10. Rose IA, Grunberg-Manago M, Korey SF, Ochoa S. 1954. Enzymatic 
phosphorylation of acetate. J Biol Chem 211:737-756. 

11. Dittrich CR, Bennett GN, San KY. 2005. Characterization of the acetate-
producing pathways in Escherichia coli. Biotechnol Prog 21:1062-1067. 

12. Hahm DH, Pan J, Rhee JS. 1994. Characterization and evaluation of a pta 
(phosphotransacetylase) negative mutant of Escherichia coli HB101 as production 
host of foreign lipase. Appl Microbiol Biotechnol 42:100-107. 

13. Yang YT, Aristidou AA, San KY, Bennett GN. 1999. Metabolic flux analysis of 
Escherichia coli deficient in the acetate production pathway and expressing the 
Bacillus subtilis acetolactate synthase. Metab Eng 1:26-34. 

14. Kumari S, Tishel R, Eisenbach M, Wolfe AJ. 1995. Cloning, characterization, and 
functional expression of acs, the gene which encodes acetyl coenzyme A 
synthetase in Escherichia coli. J Bacteriol 177:2878-2886. 

15. Meile L, Rohr LM, Geissmann TA, Herensperger M, Teuber M. 2001. 
Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate 
phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183:2929-
2936. 

16. Yevenes A, Frey PA. 2008. Cloning, expression, purification, cofactor 
requirements, and steady state kinetics of phosphoketolase-2 from Lactobacillus 
plantarum. Bioorg Chem 36:121-127. 

17. Stadtman TC, Davis JN. 1991. Glycine reductase protein C. Properties and 
characterization of its role in the reductive cleavage of Se-carboxymethyl-
selenoprotein A. J Biol Chem 266:22147-22153. 

18. Schrader T, Andreesen JR. 1992. Purification and characterization of protein PC, 
a component of glycine reductase from Eubacterium acidaminophilum. Eur J 
Biochem 206:79-85. 



 28 

19. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow 
C, Masure HR. 1996. Pyruvate oxidase, as a determinant of virulence in 
Streptococcus pneumoniae. Mol Microbiol 19:803-813. 

20. Ruff J, Denger K, Cook AM. 2003. Sulphoacetaldehyde acetyltransferase yields 
acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in 
taurine degradation. Biochem J 369:275-285. 

21. McCleary WR, Stock JB, Ninfa AJ. 1993. Is acetyl phosphate a global signal in 
Escherichia coli? J Bacteriol 175:2793-2798. 

22. Kim YR, Brinsmade SR, Yang Z, Escalante-Semerena J, Fierer J. 2006. Mutation 
of phosphotransacetylase but not isocitrate lyase reduces the virulence of 
Salmonella enterica serovar Typhimurium in mice. Infect Immun 74:2498-2502. 

23. Chiang SL, Mekalanos JJ. 1998. Use of signature-tagged transposon mutagenesis 
to identify Vibrio cholerae genes critical for colonization. Mol Microbiol 27:797-
805. 

24. Gueriri I, Bay S, Dubrac S, Cyncynatus C, Msadek T. 2008. The Pta-AckA 
pathway controlling acetyl phosphate levels and the phosphorylation state of the 
DegU orphan response regulator both play a role in regulating Listeria 
monocytogenes motility and chemotaxis. Mol Microbiol 70:1342-1357. 

25. Kaplan NO, Lipmann F. 1948. Reactions between acetate, acetyl phosphate and 
the adenylic acid system in tissue and bacterial extracts. Fed Proc 7:163. 

26. Stadtman ER. 1952. The purification and properties of phosphotransacetylase. J 
Biol Chem 196:527-534. 

27. Miles RD, Gorrell A, Ferry JG. 2002. Evidence for a transition state analog, 
MgADP-aluminum fluoride-acetate, in acetate kinase from Methanosarcina 
thermophila. J Biol Chem 277:22547-22552. 

28. Starai VJ, Garrity J, Escalante-Semerena JC. 2005. Acetate excretion during 
growth of Salmonella enterica on ethanolamine requires phosphotransacetylase 



 29 

(EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and 
phosphotransacetylase (Pta) activities. Microbiology 151:3793-3801. 

29. Brinsmade SR, Escalante-Semerena JC. 2007. In vivo and in vitro analyses of 
single-amino acid variants of the Salmonella enterica phosphotransacetylase 
enzyme provide insights into the function of its N-terminal domain. J Biol Chem 
282:12629-12640. 

30. Campos-Bermudez VA, Bologna FP, Andreo CS, Drincovich MF. 2010. 
Functional dissection of Escherichia coli phosphotransacetylase structural 
domains and analysis of key compounds involved in activity regulation. The 
FEBS J 277:1957-1966. 

31. Lawrence SH, Ferry JG. 2006. Steady-state kinetic analysis of 
phosphotransacetylase from Methanosarcina thermophila. J Bacteriol 188:1155-
1158. 

32. Lawrence SH, Luther KB, Schindelin H, Ferry JG. 2006. Structural and functional 
studies suggest a catalytic mechanism for the phosphotransacetylase from 
Methanosarcina thermophila. J Bacteriol 188:1143-1154. 

33. Lundie LL, Jr., Ferry JG. 1989. Activation of acetate by Methanosarcina 
thermophila. Purification and characterization of phosphotransacetylase. The 
Journal of biological chemistry 264:18392-18396. 

34. Iyer PP, Ferry JG. 2001. Role of arginines in coenzyme A binding and catalysis 
by the phosphotransacetylase from Methanosarcina thermophila. J Bacteriol 
183:4244-4250. 

35. Iyer PP, Lawrence SH, Yennawar HP, Ferry JG. 2003. Expression, purification, 
crystallization and preliminary X-ray analysis of phosphotransacetylase from 
Methanosarcina thermophila. Acta Crystallogr D Biol Crystallogr 59:1517-1520. 

36. Iyer PP, Lawrence SH, Luther KB, Rajashankar KR, Yennawar HP, Ferry JG, 
Schindelin H. 2004. Crystal structure of phosphotransacetylase from the 
methanogenic archaeon Methanosarcina thermophila. Structure 12:559-567. 



 30 

37. Leipe DD, Koonin EV, Aravind L. 2003. Evolution and classification of P-loop 
kinases and related proteins. J Mol Bio 333:781-815. 

38. Baykov AA, Tuominen HK, Lahti R. 2011. The CBS domain: a protein module 
with an emerging prominent role in regulation. Chem Biol 6:1156-1163. 

39. Aceti DJ, Ferry JG. 1988. Purification and characterization of acetate kinase from 
acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. 
J Biol Chem 263:15444-15448. 

40. Latimer MT, Ferry JG. 1993. Cloning, sequence analysis, and hyperexpression of 
the genes encoding phosphotransacetylase and acetate kinase from 
Methanosarcina thermophila. J Bacteriol 175:6822-6829. 

41. Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M, Hill K, Moran JJ, 
Karger BL, Ferry JG. 2006. An unconventional pathway for reduction of CO2 to 
methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc 
Natl Acad Sci U S A 103:17921-17926. 

42. Rother M, Metcalf WW. 2004. Anaerobic growth of Methanosarcina acetivorans 
C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. 
Proc Natl Acad Sci U S A 101:16929-16934. 

43. Henkin J, Abeles RH. 1976. Evidence against an acyl-enzyme intermediate in the 
reaction catalyzed by clostridial phosphotransacetylase. Biochem 15:3472-3479. 

44. Kandler O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie Van 
Leeuwenhoek 49:209-224. 

45. Krampitz LO. 1969. Catalytic functions of thiamin diphosphate. Annu Rev 
Biochem 38:213-240. 

46. Posthuma CC, Bader R, Engelmann R, Postma PW, Hengstenberg W, Pouwels 
PH. 2002. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, 
from Lactobacillus pentosus MD363 is induced by sugars that are fermented via 
the phosphoketolase pathway and is repressed by glucose mediated by CcpA and 



 31 

the mannose phosphoenolpyruvate phosphotransferase system. Appl Environ 
Microbiol 68:831-837. 

47. Servinsky MD, Germane KL, Liu S, Kiel JT, Clark AM, Shankar J, Sund CJ. 
2012. Arabinose is metabolized via a phosphoketolase pathway in Clostridium 
acetobutylicum ATCC 824. J Ind Microbiol Biotechnol 39:1859-1867. 

48. Grill JP, Crociani J, Ballongue J. 1995. Characterization of fructose 6 phosphate 
phosphoketolases purified from Bifidobacterium species. Curr Microbiol 31:49-
54. 

49. Schramm M, Klybas V, Racker E. 1958. Phosphorolytic cleavage of fructose-6-
phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J 
Biol Chem 233:1283-1288. 

50. Petrareanu G, Balasu MC, Vacaru AM, Munteanu CV, Ionescu AE, Matei I, 
Szedlacsek SE. 2014. Phosphoketolases from Lactococcus lactis, Leuconostoc 
mesenteroides and Pseudomonas aeruginosa: dissimilar sequences, similar 
substrates but distinct enzymatic characteristics. Appl Microbiol Biotechnol 
98:7855-7867. 

51. Glenn K, Smith KS. 2015. Allosteric Regulation of Lactobacillus plantarum 
Xylulose 5-phosphate/Fructose 6-phosphate Phosphoketolase (Xfp). J Bacteriol 
doi:10.1128/JB.02380-14. 

52. Moriyama T, Tajima N, Sekine K, Sato N. 2014. Characterization of three 
putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the 
cyanobacterium Anabaena sp. PCC 7120. Biosci Biotechnol Biochem 
doi:10.1080/09168451.2014.993357:1-8. 

53. Suzuki R, Katayama T, Kim BJ, Wakagi T, Shoun H, Ashida H, Yamamoto K, 
Fushinobu S. 2010. Crystal structures of phosphoketolase: thiamine diphosphate-
dependent dehydration mechanism. J Biol Chem 285:34279-34287. 

54. Takahashi K, Tagami U, Shimba N, Kashiwagi T, Ishikawa K, Suzuki E. 2010. 
Crystal structure of Bifidobacterium Longum phosphoketolase; key enzyme for 
glucose metabolism in Bifidobacterium. FEBS Lett 584:3855-3861. 



 32 

55. Tielens AG, van Grinsven KW, Henze K, van Hellemond JJ, Martin W. 2010. 
Acetate formation in the energy metabolism of parasitic helminths and protists. 
Int J Parasitol 40:387-397. 

56. Reeves RE, Guthrie JD. 1975. Acetate kinase (pyrophosphate). A fourth 
pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem Biophys 
Res Commun 66:1389-1395. 

57. Montalvo FE, Reeves RE, Warren LG. 1971. Aerobic and anaerobic metabolism 
in Entamoeba histolytica. Exp Parasitol 30:249-256. 

58. Lee FJ, Lin LW, Smith JA. 1990. A glucose-repressible gene encodes acetyl-CoA 
hydrolase from Saccharomyces cerevisiae. J Biol Chem 265:7413-7418. 

59. Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, 
van der Giezen M, Tielens AG, Martin WF. 2012. Biochemistry and evolution of 
anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444-495. 

60. Tielens AGM. 2000. The carbohydrate metabolism of Fasciola hepatica, an 
example of biochemical adaptations in parasitic helminths. Acta Parasitologica 
45:59-66. 

61. Lindmark DG. 1980. Energy metabolism of the anaerobic protozoon Giardia 
lamblia. Mol Biochem Parasitol 1:1-12. 

62. Jones CP, Ingram-Smith C. 2014. Biochemical and kinetic characterization of the 
recombinant ADP-forming acetyl coenzyme A synthetase from the 
amitochondriate protozoan Entamoeba histolytica. Eukaryot Cell 13:1530-1537. 

63. Fowler ML, Ingram-Smith C, Smith KS. 2012. Novel pyrophosphate-forming 
acetate kinase from the protist Entamoeba histolytica. Eukaryot Cell 11:1249-
1256. 

64. Riviere L, Moreau P, Allmann S, Hahn M, Biran M, Plazolles N, Franconi JM, 
Boshart M, Bringaud F. 2009. Acetate produced in the mitochondrion is the 
essential precursor for lipid biosynthesis in procyclic trypanosomes. Proc Natl 
Acad Sci U S A 106:12694-12699. 



 33 

65. Riviere L, van Weelden SW, Glass P, Vegh P, Coustou V, Biran M, van 
Hellemond JJ, Bringaud F, Tielens AG, Boshart M. 2004. Acetyl:succinate CoA-
transferase in procyclic Trypanosoma brucei. Gene identification and role in 
carbohydrate metabolism. J Biol Chem 279:45337-45346. 

66. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR. 2007. Anaerobic 
acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase 
induction, and metabolic pathways. J Biol Chem 282:25475-25486. 

67. Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, 
Martin W. 2006. Pyruvate formate-lyase and a novel route of eukaryotic ATP 
synthesis in Chlamydomonas mitochondria. J Biol Chem 281:9909-9918. 

68. Terashima M, Specht M, Hippler M. 2011. The chloroplast proteome: a survey 
from the Chlamydomonas reinhardtii perspective with a focus on distinctive 
features. Curr Genet 57:151-168. 

69. Atteia A, van Lis R, Tielens AG, Martin WF. 2013. Anaerobic energy metabolism 
in unicellular photosynthetic eukaryotes. Biochim Biophys Acta 1827:210-223. 

70. Yang W, Catalanotti C, D'Adamo S, Wittkopp TM, Ingram-Smith CJ, Mackinder 
L, Miller TE, Heuberger AL, Peers G, Smith KS, Jonikas MC, Grossman AR, 
Posewitz MC. 2014. Alternative Acetate Production Pathways in Chlamydomonas 
reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in 
Fermentative Acetate Production. Plant Cell 26:4499-4518. 

71. Borja Sanchez MZ, Fernando Gonzalez-Candelas, Clara G. de los Reyes-Gavilan, 
and Abelard Margolles. 2010. Bacterial and Eukaryotic Phosphoketolases: 
Phylogeny, Distribution and Evolution. J Mol Microbiol Biotech 18:37-51. 

72. Panagiotou G, I. K, Jonsdottir SO, Olsson L. 2007. Monitoring novel metabolic 
pathways using metabolomics and machine learning: induction of the 
phosphoketolase pathway in Aspergillus nidulans cultivations. Metabolomics 
3:503-516. 

73. Panagiotou G, Andersen MR, Grotkjaer T, Regueira TB, Hofmann G, Nielsen J, 
Olsson L. 2008. Systems analysis unfolds the relationship between the 
phosphoketolase pathway and growth in Aspergillus nidulans. PloS one 3:e3847. 



 34 

74. Duan Z, Shang Y, Gao Q, Zheng P, Wang C. 2009. A phosphoketolase Mpk1 of 
bacterial origin is adaptively required for full virulence in the insect-pathogenic 
fungus Metarhizium anisopliae. Environ Microbiol 11:2351-2360. 

75. Govers F, Gijzen M. 2006. Phytophthora genomics: the plant destroyers' genome 
decoded. Mol Plant Microbe Interact 19:1295-1301. 

76. Savidor A, Donahoo RS, Hurtado-Gonzales O, Land ML, Shah MB, Lamour KH, 
McDonald WH. 2008. Cross-species global proteomics reveals conserved and 
unique processes in Phytophthora sojae and Phytophthora ramorum. Mol Cell 
Proteomics 7:1501-1516. 

77. Grunwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S. 2012. 
Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends 
Microbiol 20:131-138. 

78. Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, 
Kapraun DF, Greilhuber J, Bennett MD. 2007. Eukaryotic genome size databases. 
Nucleic Acids Res 35:D332-338. 

79. Grunwald NJ, Goss EM, Press CM. 2008. Phytophthora ramorum: a pathogen 
with a remarkably wide host range causing sudden oak death on oaks and 
ramorum blight on woody ornamentals. Mol Plant Pathol 9:729-740. 

80. Lin X, Heitman J. 2006. The biology of the Cryptococcus neoformans species 
complex. Annu Rev Microbiol 60:69-105. 

81. Powderly WG. 1993. Cryptococcal meningitis and AIDS. Clinical infectious 
diseases : an official publication of the Infectious Diseases Society of America 
17:837-842. 

82. Price MS, Betancourt-Quiroz M, Price JL, Toffaletti DL, Vora H, Hu G, Kronstad 
JW, Perfect JR. 2011. Cryptococcus neoformans requires a functional glycolytic 
pathway for disease but not persistence in the host. mBio 2:e00103-00111. 



 35 

83. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. 
2009. Estimation of the current global burden of cryptococcal meningitis among 
persons living with HIV/AIDS. AIDS 23:525-530. 

84. Steenbergen JN, Casadevall A. 2003. The origin and maintenance of virulence for 
the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5:667-
675. 

85. Hull CM, Heitman J. 2002. Genetics of Cryptococcus neoformans. Annu Rev Gen 
36:557-615. 

86. Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ, Geddes 
JM, Hu G, Jung WH, Kretschmer M, Saikia S, Wang J. 2011. Expanding fungal 
pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev 
Microbiol 9:193-203. 

87. Vecchiarelli A. 2000. Immunoregulation by capsular components of 
Cryptococcus neoformans. Med Mycol 38:407-417. 

88. van Duin D, Casadevall A, Nosanchuk JD. 2002. Melanization of Cryptococcus 
neoformans and Histoplasma capsulatum reduces their susceptibilities to 
amphotericin B and caspofungin. Antimicrob Agents Chemother 46:3394-3400. 

89. Jung WH, Kronstad JW. 2008. Iron and fungal pathogenesis: a case study with 
Cryptococcus neoformans. Cell Microbiol 10:277-284. 

90. Levitz SM, Nong SH, Seetoo KF, Harrison TS, Speizer RA, Simons ER. 1999. 
Cryptococcus neoformans resides in an acidic phagolysosome of human 
macrophages. Infect Immun 67:885-890. 

91. McQuiston TJ, Williamson PR. 2012. Paradoxical roles of alveolar macrophages 
in the host response to Cryptococcus neoformans. J Infect Chemother 18:1-9. 

92. Tucker SC, Casadevall A. 2002. Replication of Cryptococcus neoformans in 
macrophages is accompanied by phagosomal permeabilization and accumulation 
of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci U S A 
99:3165-3170. 



 36 

93. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. 2009. Evidence 
of a role for monocytes in dissemination and brain invasion by Cryptococcus 
neoformans. Infect Immun 77:120-127. 

94. Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, Heitman J. 2005. Deciphering 
the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol 
3:753-764. 

95. Kwon-Chung KJ, Bennett JE. 1978. Distribution of alpha and alpha mating types 
of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 
108:337-340. 

96. Kwon-Chung KJ, Edman JC, Wickes BL. 1992. Genetic association of mating 
types and virulence in Cryptococcus neoformans. Infect Immun 60:602-605. 

97. Edman JC, Kwon-Chung KJ. 1990. Isolation of the URA5 gene from 
Cryptococcus neoformans var. neoformans and its use as a selective marker for 
transformation. Mol Cell Biol 10:4538-4544. 

98. Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR. 1993. Gene 
transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J 
Bacteriol 175:1405-1411. 

99. Chang YC, Kwon-Chung KJ. 1994. Complementation of a capsule-deficient 
mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 
14:4912-4919. 

100. Davidson RC, Cruz MC, Sia RA, Allen B, Alspaugh JA, Heitman J. 2000. Gene 
disruption by biolistic transformation in serotype D strains of Cryptococcus 
neoformans. Fungal Genet Biol 29:38-48. 

101. del Poeta M, Toffaletti DL, Rude TH, Sparks SD, Heitman J, Perfect JR. 1999. 
Cryptococcus neoformans differential gene expression detected in vitro and in 
vivo with green fluorescent protein. Infect Immun 67:1812-1820. 

102. Bubb WA, Wright LC, Cagney M, Santangelo RT, Sorrell TC, Kuchel PW. 1999. 
Heteronuclear NMR studies of metabolites produced by Cryptococcus 



 37 

neoformans in culture media: identification of possible virulence factors. Magn 
Reson Med 42:442-453. 

103. Wright L, Bubb W, Davidson J, Santangelo R, Krockenberger M, Himmelreich 
U, Sorrell T. 2002. Metabolites released by Cryptococcus neoformans var. 
neoformans and var. gattii differentially affect human neutrophil function. Microb 
Infect 4:1427-1438. 

104. Fan W, Kraus PR, Boily MJ, Heitman J. 2005. Cryptococcus neoformans gene 
expression during murine macrophage infection. Eukaryot Cell 4:1420-1433. 

105. Hu G, Cheng PY, Sham A, Perfect JR, Kronstad JW. 2008. Metabolic adaptation 
in Cryptococcus neoformans during early murine pulmonary infection. Mol 
Microbiol 69:1456-1475. 

106. Chun CD, Liu OW, Madhani HD. 2007. A link between virulence and 
homeostatic responses to hypoxia during infection by the human fungal pathogen 
Cryptococcus neoformans. PLoS Pathog 3:e22. 

107. Upadhya R, Campbell LT, Donlin MJ, Aurora R, Lodge JK. 2013. Global 
transcriptome profile of Cryptococcus neoformans during exposure to hydrogen 
peroxide induced oxidative stress. PLoS One 8:e55110. 

108. Glenn K, Ingram-Smith C, Smith KS. 2014. Biochemical and kinetic 
characterization of xylulose 5-phosphate/fructose 6-phosphate phosphoketolase 2 
(Xfp2) from Cryptococcus neoformans. Eukaryot Cell 13:657-663. 
 



 38 

 

Figure 1.1. Main Acetate Metabolism Pathways in Bacteria. Acetate assimilation and 

dissimilation pathways make up the “acetate switch.” ACS, AMP-forming acetyl-CoA 

synthetase; ACK, acetate kinase; PTA, phosphotransacetylase. Modified from (8). 
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Figure 1.2. Acetyl Phosphate Producing Enzymes in Bacteria. In addition to Ack and Pta, 

other enzymes in bacteria catalyze reactions that produce acetyl phosphate as an intermediate 

metabolite. ACP-POX, acetyl phosphate forming pyruvate oxidase; XSC, sulfoacetaldehyde 

acetyltransferase; XPK, xylulose 5-phosphate phosphoketolase; GR, glycine reductase.  Image is 

from (4), and permission was granted for reuse of this figure. 
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Figure 1.3. Structure of M. thermophila Pta.  A) Phosphotransacetylase forms a dimer with 

domains I in orange and yellow and domains II in blue and red. B) The individual subunit of Pta 

is shown with domain I in orange and domain II in blue, with both the N-terminus and C-terminus 

located in domain I.  Image is from (36), and permission was granted for reuse of this figure. 
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Figure 1.4. Dark, Anoxic Conditions Indicate Ack1 and Pat2 are Important in the 

Chloroplast. The first panel includes the wild type and knockout cells grown in low oxic (LO), 

dark oxic (DO) and dark anoxic (DA) conditions and spotted on solid tris acetate phosphate 

medium. The second panel includes complementation strains for each of the knockouts in 

triplicate.  Image is from (70), and permission was granted for reuse of this figure. 
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Figure 1.5. Phylogenetic Analysis of Bacterial and Eukaryotic Phosphoketolases. The fungal 

sequences separate into two specific clusters, Fungal 1 with Shewanella sequences and Fungal 2 

together with the sequence from Acidiphilium cryptum. B. longum Xfp sequence was the query 

search. The Mega 4 program analyzed the aligned sequences using the maximum-likelihood 

algorithm, and only bootstrap values of 90% or higher are shown. Image is from (71), and 

permission was granted for reuse of this figure.  
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Figure 1.6. Phytophthora ramorum Asexual Life Cycle. Image is from (76) and permission was 

granted for the reuse of this figure. (A) The zoospore initiates infection by making contact with 

the plant host, and once the connection has been made, (B) the zoospore encysts after shedding 

the flagella. (C) Once germination occurs, a germ tube sprouts from the cyst that can be used to 

infiltrate the plant cells. (D) Growth then begins throughout the plant tissue by the mycelium. (E) 

The mycelium end differentiates into the sporangium, which produces the zoospores that re-

initiate the cycle. 
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Figure 1.7. AIDS-related Cryptococcosis Kills Approximately 504,000 Individuals in Sub-

Saharan Africa. In 2009, a study indicated that among common infectious diseases in Sub-

Saharan Africa, excluding HIV, Cryptococcus infections are the 4th leading cause of death.  

Image is from (83) and was adapted by CDC.gov. Permission was granted for reuse of this figure. 
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Figure 1.8.  The Infection Cycle of Cryptococcus neoformans. C. neoformans is found within 

the environment, such as in the soil that is fertilized by pigeon excreta and eucalyptus trees. The 

spores of the fungus are inhaled into the lungs, and as consequence, a pulmonary infection is 

established. If an individual becomes immunocompromised, C. neoformans will disseminate 

throughout the body and enter the central nervous system (CNS). Cryptococcal meningitis can be 

detected through a positive cerebrospinal fluid culture. Image is from (85), and permission was 

granted for reuse of this figure. 
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Figure 1.9. Survival and Replication of C. neoformans Within the Macrophage. The 

macrophage is used to hold and kill invading organisms within the host. However, C. neoformans 

has adapted to survive within the low pH of the macrophage, which provides protection from 

other immune cells activated due to the infection. The protection and mobility the macrophage 

provides, facilitates further C. neoformans infection. Image is from (90) and permission was 

granted for the reuse of this figure. 
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CHAPTER TWO 

Biochemical and Kinetic Characterization of the Eukaryotic  
Phosphotransacetylase Type IIa Enzyme from Phytophthora ramorum1 

 

Tonya Taylor, Cheryl Ingram-Smith, and Kerry Smith 

 

Abstract 

Phosphotransacetylase (Pta), a key enzyme in bacterial metabolism, catalyzes the 

reversible transfer of an acetyl group from acetyl phosphate to CoA to produce acetyl-CoA and 

Pi. Two classes of Pta have been identified based on the absence (PtaI) or presence (PtaII) of an N-

terminal regulatory domain. PtaI has been fairly well studied in bacteria and one genus of archaea; 

however, only the Escherichia coli and Salmonella enterica PtaII enzymes have been 

biochemically characterized, and both are allosterically regulated. Here we describe the first 

biochemical and kinetic characterization of a eukaryotic Pta from the oomycete Phytophthora 

ramorum. The two Ptas from P. ramorum, designated as PrPtaII1 and PrPtaII2, both belong to 

class II. PrPtaII1 displayed positive cooperativity for both acetyl phosphate and CoA and is 

allosterically regulated. We compared the effect of different metabolites on PrPtaII1 and the S. 

enterica PtaII and found that although the N-terminal regulatory domains share only 19% identity, 

both enzyme are inhibited by ATP, NADP, NADH, PEP, and pyruvate in the acetyl-CoA/Pi–

forming direction but are differentially regulated by AMP. Phylogenetic analysis of bacterial, 

archaeal, and eukaryotic sequences identified four subtypes of PtaII based on the presence or 

absence of the P-loop and DRTGG subdomains within the N-terminal regulatory domain. 

Although the E. coli, S. enterica, and P. ramorum enzymes all belong to the IIa subclass, our 

                                                
1 Eukaryotic Cell 
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kinetic analysis has indicated that enzymes within a subclass can still display differences in their 

allosteric regulation.



49 

 

Introduction 

Acetate production has been studied for many years in bacteria, but has received less 

attention in eukaryotic microbes even though acetate is produced as an important end product of 

energy metabolism in fungi (1-3) and protists (4-6). Four different pathways for production of 

acetate from acetyl-CoA have been identified in eukaryotic microbes (7). ADP-forming acetyl-

CoA synthetase (Eq. 1; EC 6.2.1.13) has been implicated in acetate production in amitochondriate 

protists and some species of archaea. Acetate:succinate CoA-transferase (Eq. 2; EC 2.8.3.8) is 

present in kinetoplastids and Trichomonas. Acetyl-CoA hydrolase (Eq. 3; EC 3.1.2.1) is involved 

in peroxisomal acetate formation in yeast and kinetoplastids, such as Trypansoma brucei (7, 8). 

Phosphotransacetylase (Pta; Eq. 4; EC 2.3.1.8) and acetate kinase (Ack; Eq. 5; EC 2.7.2.1) form a 

pathway for the interconversion of acetate and acetyl-CoA that was previously thought to be 

limited to bacteria and one genus of archaea but has now been shown to be present in eukaryotes 

such as green algae and Phytophthora (9, 10). 

[Eq. 1]  acetyl-CoA + ADP + Pi ↔ acetate + ATP + CoA 

[Eq. 2]  acetyl-CoA + succinate ↔ acetate + succinyl-CoA 

[Eq. 3]  acetyl-CoA + H2O ↔ acetate + CoA 

[Eq. 4]  acetyl-CoA + Pi ↔ acetyl phosphate + CoA 

[Eq. 5]  acetyl phosphate +ADP ↔ acetate + ATP 

The Pta-Ack pathway is best understood in its roles in both acetate production and 

assimilation in Escherichia coli and other bacteria. This pathway is responsible for the production 

of acetate during mixed acid fermentation under hypoxic conditions, and in a metabolic overflow 

mechanism in which acetyl-CoA is diverted from the TCA cycle when there is an imbalance 

between the rapid uptake of glucose and its conversion into products (11). Under high acetate 
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concentrations, this low affinity pathway can also be used for assimilation of acetate by its 

conversion to acetyl-CoA (12). 

In eukaryotes, the Pta-Ack pathway has only been investigated in the green algae 

Chlamydomonas, in which two parallel Pta-Ack pathways have been identified (9). Proteomic 

studies have suggested that the Pat1-Ack2 pathway is localized to mitochondria (note that 

phosphotransacetylase is designated as Pat in Chlamydomonas), and the Pat2-Ack1 pathway is 

localized to chloroplasts (9, 13). Acetate is found to be one of the major fermentative products 

excreted by Chlamydomonas during growth in dark, anoxic conditions, and ACK1, ACK2, PAT1, 

and PAT2 transcript levels are increased, in agreement with a role for the Pat-Ack pathway in 

acetate production (14). The ack1 and pat2 mutants were the most vulnerable to anoxia and 

strains could not be recovered after a 24 hour exposure to anoxia (15). Far less acetate was 

produced in each of the mutants after imposition of anoxia, yet small amounts of acetate (<20%) 

were still produced in the ack1-ack2 double mutant suggesting Pat-Ack is not the only pathway 

for acetate production in Chlamydomonas (15).  

Analysis of bacterial and archaeal Pta sequences revealed two classes (16). PtaI enzymes 

consist of a single catalytic domain, whereas the PtaII enzymes have an additional N-terminal 

regulatory domain (16, 17). The Pta from the archaeon Methanosarcina thermophila is the best 

studied class I enzyme (18-21), and several structures have been solved (22, 23). A ternary 

complex mechanism based on kinetic and structural studies has been proposed for this enzyme 

(20). Two PtaII enzymes have been characterized, one from Salmonella enterica (SePtaII) and one 

from E. coli (EcPtaII) (16, 17); however, a structure for a PtaII has not been reported. The N-

terminal regulatory domain of EcPtaII and SePtaII contains two recognizable subdomains 

designated as the P-loop and the DRTGG subdomains (17). Truncations of the N-terminal domain 

of EcPtaII revealed that the P-loop subdomain is required for regulation of the enzyme by NADH, 
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ATP, PEP and pyruvate, and that the DRTGG subdomain is vital for the sigmoidal response that 

is observed in allosteric enzymes (16, 17). 

Here we report the first biochemical and kinetic investigation of a eukaryotic Pta, the PtaII 

enzyme from Phytophthora ramorum, a pathogenic oomycete that causes Sudden Oak Death 

(24). P. ramorum has a single ORF that encodes Ack and two ORFs that encode class II Ptas 

(designated here as PrPtaII1 and PrPtaII2). Our characterization of PrPtaII1 demonstrates that this 

enzyme strongly prefers the acetyl-CoA/Pi - forming direction, unlike the S. enterica and E. coli 

enzymes. PrPtaII1 displays substrate cooperativity for acetyl phosphate and CoA, and is 

allosterically regulated through inhibition by ATP, AMP, NADP, NADH, PEP, and pyruvate. 

Our phylogenetic analysis of the Pta family, the first reported that includes eukaryotic sequences, 

indicates there are four different subclasses of PtaII based on differences in the N-terminal 

regulatory domain. A comparison of the bacterial and eukaryotic enzymes and the phylogenetic 

diversity suggests that the N-terminal domain and its regulatory role have evolved throughout the 

Bacteria and Eukarya domains. 
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Materials and Methods 

Materials 

 Chemicals were purchased from Sigma-Aldrich, VWR, Fisher Scientific, and Gold 

Biotechnology. Oligonucleotide primers were purchased from Integrated DNA Technologies. A 

codon-optimized gene encoding P. ramorum PrPtaII1 (JGI 78441; http://genome.jgi-

psf.org/Phyra1_1/Phyra1_1.home.html) was synthesized by GenScript and supplied in the E. coli 

expression vector pET21b, which provides for addition of a C-terminal His tag for use in nickel 

affinity column purification. Plasmid pPTA69 (kindly provided by Dr. Jorge Escalante-Semerena, 

University of Georgia) encodes S. enterica PtaII with a His6 tag fused to the N-terminus of the 

protein (16). 

 

Phylogenetic Analysis of Pta 

BLASTP and TBLASTN (25, 26) were used to search the sequence databases at the 

National Center for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov), the Broad 

Institute (http://www.broadinstitute.org/), and the U.S. Department of Energy Joint Genome 

Institute (http://genome.jgi-psf.org/) for putative Pta amino acid sequences, using the M. 

thermophila PtaI as the query sequence. Sequences were aligned using ClustalW with the Gonnet 

protein weight matrix, a gap-opening penalty of 10.0, and a gap extension penalty of 0.2 (27). 

Phylogenetic analysis of the aligned sequences was performed with the MEGA 5.1 program (28) 

using the neighbor-joining algorithm with partial deletion estimates. Five hundred bootstrap 

replicates were executed, and bootstrap values of 75% or greater are shown. The EMBOSS 

Needle Pairwise Sequence Alignment program (http://www.ebi.ac.uk) was used to determine 

sequence identity and similarity (29). The presence or absence of the P-loop and DRTGG 
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subdomains in each PtaII sequence was analyzed using the Pfam Protein Families Database 

(http://pfam.xfam.org/search) with an e-value cutoff of E-10 (30). 

 

Heterologous Production and Purification of Pta 

Recombinant plasmids were transformed into E. coli RosettaTM 2 (DE3) pLysS, and cells 

were grown in Luria-Bertani broth with 50 µg/mL ampicillin and 34 µg/mL chloramphenicol at 

37°C shaking at 200 rpm until an OD600 of 0.6 – 0.8 was reached. Production of recombinant Pta 

was induced by addition of isopropyl-β-D-thiogalactopyranoside to a final concentration of 1 

mM.  

Following overnight incubation at ambient temperature, cells were harvested by 

centrifugation.  Cells were resuspended in Buffer A (25 mM Tris, 150 mM NaCl, 25 mM 

imidazole, 10% glycerol; pH 7.5), disrupted by three passages through a chilled French pressure 

cell at 138 mPa, and centrifuged at 100,000 x g for 90 minutes at 4°C. The supernatant was 

applied to a HisTrapTM HP Ni2+ affinity column (GE Healthcare, Inc.) equilibrated with Buffer A. 

The protein was eluted using a linear gradient from 25 mM to 500 mM imidazole in 25 mM Tris-

HCl, 150 mM NaCl, and 10% glycerol (pH 7.5). Fractions with Pta activity were pooled and 

dialyzed against buffer containing 25 mM Tris-HCl and 10% glycerol (pH 7.5). The recombinant 

enzyme was determined to be electrophoretically pure by SDS-PAGE. The protein concentration 

for purified PrPtaII1 was calculated from the absorbance at 280 nm using an extinction coefficient 

of 36,330 M-1cm-1.  

 

Activity Assays 

PrPtaII1 activity in the acetyl-CoA forming direction was measured by monitoring the 

increase in absorbance at 233 nm due to thioester bond formation (ε233 nm = 5.55 mM-1 cm-1) (16, 
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17). The reaction mixture contained 50 mM Tris (pH 7.5), 20 mM KCl, 20 mM NH4Cl, 1 mM 

DTT, and the concentrations of acetyl phosphate and CoA were varied. Activity in the acetyl 

phosphate forming direction was measured with two different assays. The thioester assay 

monitors the decrease in absorbance at 233 nm due to the release of CoA (ε233 nm = 4.44 mM-1 

cm-1) (18), and the Ellman’s thiol reagent assay monitors the increase in absorbance at 412 nm 

due to the formation of the thiophenolate anion with DTNB [5',5-dithiobis(2-nitrobenzoic acid); 

ε233 nm = 14,150 M-1 cm-1] (16, 17). The reaction mixtures for both assays contained 50 mM Tris 

(pH 7.5), 20 mM KCl, 20 mM NH4Cl, 1 mM DTT, and the concentrations of acetyl-CoA and Pi 

were varied. The Ellman’s thiol reagent assay also included 1 mM DTNB. Reaction mixtures for 

all assays were pre-incubated for 3 minutes at 37°C. Reactions were initiated by the addition of 

enzyme and were performed in triplicate.  

SePtaII activity in the acetyl-CoA forming direction was measured by monitoring the 

increase in absorbance at 233 nm. The reaction mixture contained 50 mM Tris (pH 7.5), 40 mM 

NH4Cl, 1 mM CoA, and 3 mM acetyl phosphate. Reaction mixtures containing acetyl phosphate 

and enzyme were pre-incubated for 1 min at 37°C, and reactions were initiated by the addition of 

CoA. All reactions were performed in triplicate. 

Assays were performed in 96-well plates and the absorbance was monitored using the 

Synergy HT Multi-mode Microplate Reader (BioTek Instruments, Inc.). Data are expressed as 

mean ± S.D.  

 

Kinetic Analysis 

 To determine apparent kinetic parameters for PrPtaII1 in the acetyl-CoA forming 

direction, the concentration of one substrate was varied while the second substrate was held 

constant at saturating concentration (determined to be 4 mM for CoA and 5 mM for acetyl 
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phosphate). KaleidaGraph (Synergy Software) was used to fit the data to the Michaelis-Menten 

equation [Equation 6], where V0 is initial velocity, [S] is substrate concentration, V is maximum 

velocity, and Km is the Michaelis constant. 

[Eq. 6]  

When acetyl phosphate was varied, the data displayed positive cooperativity when fit to the Hill 

equation [Equation 7] (31, 32), where K0.5 is the substrate concentration at half maximal velocity 

and h is the Hill constant. 

[Eq. 7] ) 

 

Determining IC50 Concentration 

 Metabolic intermediates, coenzymes, and nucleotide triphosphates were tested as 

allosteric effectors of PrPtaII1and SePtaII. Substrate concentrations were held at saturating 

conditions, and effector molecule concentrations were varied from 3 µM to 3 mM. Half maximal 

inhibitory concentrations (IC50) were determined for all PrPtaII1 and SePtaII allosteric inhibitors 

by measuring the decrease in activity as a function of increasing inhibitor concentration. IC50 

values were determined using GraphPad Prism 5 (GraphPad Software, Inc.) by fitting the data 

with a log [inhibitor] vs. response curve.   

 

Site-directed Mutagenesis 

 The QuikChange® Lightning Site-Directed Mutagenesis kit (Stratagene, Inc.) was used 

for mutagenesis according to the manufacturer’s instructions. Primers used in the alteration of the 

Gly-300 codon are as follows: 5’PrPTAG300D, 

CACCTGAAAAAATATAAAGACGACGCGATGATTATCACCAGTGGT; 3’PrPTAG300D, 

ACCACTGGTGATAATCATCGCGTCGTCTTTATATTTTTTCAGGTG; 5’PrPTAG300A 
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CACCTGAAAAAATATAAAGACGCGGCGATGATTATCACCAGTGGT; 3’PrPTAG300A 

ACCACTGGTGATAATCATCGCCGCGTCTTTATATTTTTTCAGGTG. Alterations were 

confirmed by sequencing at the Clemson University Genomic Institute (CUGI). 

 

Gel Filtration Chromatography 

 The native molecular mass of recombinant PrPtaII1 was examined by gel filtration 

chromatography using an ÄKTA Fast Protein Liquid Chromatography (FPLC) system with a 

Superose 12 column (GE Healthcare). The gel filtration column was calibrated with cytochrome 

C (12.4 kDa), carbonic anhydrase (29 kDa), albumin (66 kDa), amylase (200 kDa), apoferritin 

(443 kDa), and thyroglobulin (669 kDa) (Sigma Aldrich Co.). The column was equilibrated with 

buffer containing 50 mM Tris and 150 mM KCl (pH 7.5) and developed at a rate of 0.5 mL/min.
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Results 

Discovery of the Different Subclasses of PtaII 

The Pta enzyme family has previously been divided into two classes (16). PtaI enzymes 

are approximately 350 amino acids long and consist of only a catalytic domain. PtaII enzymes are 

approximately twice the size, with a C-terminal catalytic domain and an N-terminal regulatory 

domain (16, 17). Although Pta was commonly considered to be a bacterial enzyme, sequences 

have now been identified in the Eukarya (10). To determine the extent of the Pta enzyme family 

in this domain, searches of the sequence databases were performed using the Methanosarcina 

thermophila PtaI sequence as the query. Pta sequences were identified in a number of eukaryotes 

such as green algae, lycophytes, moss, and oomycetes, but were absent in fungi, higher plants, 

and metazoans. Every completed eukaryotic genome that has a Pta sequence also has an ORF 

with identity to Ack, consistent with these enzymes acting as a pathway as in bacteria. In a 

phylogeny of Pta sequences constructed based on the catalytic domain, the PtaII sequences form a 

separate clade (Figure 1). All of the eukaryotic sequences belong to the PtaII class except for 

those from Perkinsus marinus and Thecamonas trahens. The Emiliana huxleyi Pta (shown in red 

in Figure 1) is a fusion to Ack, and thus is also considered to be a PtaI rather than PtaII. 

The N-terminal regulatory domains of EcPtaII and SePtaII contain two recognizable 

subdomains designated as the P-loop and the DRTGG subdomains (17). The P-loop NTPase 

subdomain contains a conserved nucleotide triphosphate-binding motif similar to that found in 

enzymes involved in translation, transcription, intracellular trafficking, membrane transport, and 

DNA replication and repair (33). The DRTGG subdomain has an unknown function, but is named 

after some of its most conserved residues. This domain is related to the cystathione-beta-synthase 
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domain (CBS) that exists in both membrane-bound and cytosolic proteins, and is known to 

function in eukaryotes, prokaryotes, and archaea (34). 

Although the PtaII N-terminal domains are similar in size, analysis of their sequences has 

revealed four subclasses based on the presence or absence of the P-loop and DRTGG subdomains 

(Figure 2). The PtaIIa N-terminal domain includes both subdomains, whereas the PtaIIb, PtaIIc, and 

PtaII subclasses lack one or both subdomains. The majority of PtaII sequences belong to the PtaIIa 

subclass, with PtaIIb, PtaIIc, and PtaIId sequences distributed infrequently throughout the 

phylogeny. Surprisingly, the two C. reinhardtii PtaII enzymes belong to two different subclasses, 

PtaIId and PtaIIc. 

 

Purification and Molecular Properties of PrPtaII1 

 The genome of P. ramorum (http://genome.jgi-psf.org/Phyra1_1/Phyra1_1.home.html) 

has two PtaIIa ORFs, designated as PtaII1 (Protein ID 78441) and PtaII2 (Protein ID 78440). An E. 

coli codon-optimized gene encoding PrPtaII1 (GenScript Inc.) was cloned into pET21b (C-

terminal His tag), and the recombinant enzyme was produced in E. coli and purified by nickel 

affinity chromatography to electrophoretic homogeneity. In determining optimal reaction 

conditions for PrPtaII1, we tested the requirement for KCl and NH4Cl, as other PtaII enzymes have 

been shown to have increased activity in the presence of one or both salts (16, 17). Maximum 

activity was observed in the presence of 20 mM NH4Cl and 20 mM KCl, and both salts are 

required. Increasing the concentration of either or both salts does not further increase enzyme 

activity. Optimal activity also requires the presence of 1 mM DTT final concentration. PrPtaII1 

has highest activity at 37°C; therefore, all experiments were conducted at 37°C. Due to 

aggregation issues, the molecular mass of the enzyme could not be determined by gel filtration. 

Brinsmade and Escalante-Semerena (16) encountered similar discrepancies with the S. enterica 



 59 

Pta. 

 

Kinetic Analysis of PrPtaI1 

 In determining kinetic parameters for PrPtaII1 in the acetyl-CoA/Pi – forming direction, 

plots of substrate concentration versus velocity were sigmoidal. Apparent kinetic parameters were 

determined by fitting the experimental data to the Hill equation (Eq. 7) in which a Hill constant 

(h) greater than 1.0 represents positive cooperativity and a Hill constant less than 1.0 represents 

negative cooperativity (35, 36). PrPtaII1 exhibited positive cooperativity (h = 1.75 ± 0.18) with 

acetyl phosphate and slight positive cooperativity (h = 1.04 ± 0.05) with CoA (Table 1). The 

maximum activity observed in the acetyl phosphate/CoA-forming direction is approximately 

three-fold lower than that in the acetyl-CoA/Pi-forming direction (8.9 ± 0.5 µmol min-1 mg-1 

versus 23.8 ± 0.7 µmol min-1 mg-1, respectively), but kinetics parameters could not be determined 

in this direction due to an inability to reach saturation with inorganic phosphate. 

 

Allosteric Regulation of the PtaIIa Enzyme Family 

 Although the catalytic domains of all Pta enzymes share strong identity (e.g., the catalytic 

domains of PrPtaII1 and SePtaII share 52.0% identity), the N-terminal domains within a subclass 

can differ substantially. The PrPtaII1 N-terminal domain shares only 19% identity with the N-

terminal domains of the E. coli and S. enterica PtaIIa enzymes, raising the question of whether this 

eukaryotic Pta is subject to similar allosteric regulation as the bacterial PtaII enzymes. We tested 

metabolic intermediates from both the glycolytic pathway and citric acid cycle as effector 

molecules of PrPtaII1. NAD+, NADH, NADP, and NADPH were potent inhibitors, with NADP 

having the strongest effect (Figure 3A). ATP, ADP, AMP, PEP, and pyruvate were also found to 

inhibit activity (Figure 3B), but to a lesser extent than the nicotinamide derivatives. Fructose-1,6-
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bisphosphate (1 mM), oxaloacetate (1 mM), a-ketoglutarate (1.5 mM), and citrate (1.5 mM) had 

no effect on PrPtaII1activity. 

 Although SePtaII and EcPtaII were shown to be allosterically regulated (16, 17), only 

ATP, NADH, PEP and pyruvate were examined for EcPtaII, and only pyruvate and NADH were 

tested in the acetyl phosphate-forming direction for SePtaII. IC50 values were not reported for 

EcPtaII and the IC50 values for SePtaII were reported only in the acetyl phosphate/CoA – forming 

direction. To allow direct comparison between the eukaryotic and bacterial enzymes, the effects 

of ATP, AMP, NADP, NADH, PEP and pyruvate on SePtaII enzymatic activity were determined 

in the acetyl-CoA/Pi – forming direction and IC50 values were determined (Table 2). Our results 

show that both SePtaII and PrPtaII1 are regulated by the same allosteric effectors although the 

potency differed.  

Because NADP was the most potent inhibitor for PrPtaII1, we evaluated its effect on 

substrate affinity. The Km values for CoA were relatively unchanged by the presence of increasing 

concentrations of NADP but the Vmax decreased (Figure 4A), suggesting mixed inhibition by 

NADP towards CoA. The K0.5 values for acetyl phosphate increase and the cooperativity 

decreases as the NADP concentration is increased (Figure 4B), indicating that NADP has a direct 

effect on the affinity of PrPtaII1 for acetyl phosphate.  

For PrPtaII1, activity steadily decreases as AMP concentration is increased, similar to the 

behavior observed with other PrPtaII1 effectors. Surprisingly, AMP has a much different effect on 

SePtaII, resulting in activation of the enzyme when present at low concentrations and inhibition at 

higher concentrations. SePtaII has 28% higher activity in the presence versus absence of 30 µM 

AMP (Figure 5); however, as the concentration of AMP was increased to 100 µM, the activity 

returned to the level observed in the absence of effector. Activity is inhibited further as the AMP 
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concentration is increased, with approximately 50% inhibition in the presence of 1 mM and 

complete loss of activity at 3 mM AMP. 

 

Analysis of PrPta1G300D and PrPta1G300A 

 Brinsmade and Escalante-Semerena (16) previously identified three single amino acid 

changes in the N-terminal domain of PrPtaII1 that resulted in altered responses to allosteric 

effectors. A G273D variant had approximately two-fold increased Vmax in the acetyl-CoA/Pi – 

forming direction and three-fold increased Vmax in the acetyl phosphate/CoA – forming direction. 

This variant also showed approximately three-fold stimulation by pyruvate versus 0.2-fold 

stimulation for the wild type enzyme, but remained subject to strong inhibition by NADH (16). 

This Gly residue is conserved in both PrPtaII1 and PrPtaII2, unlike the other two residues 

identified that altered the wild type SePtaII response to allosteric regulators.  

 To investigate the role of the conserved Gly residue in allosteric regulation of PrPtaII1, 

we targeted the corresponding residue Gly300 for alteration. The G300A variant was soluble but 

was not active in either direction of the reaction. Kinetic analysis of the PrPtaII1 G300D variant 

revealed a nearly 450-fold reduction in the catalytic rate in the acetyl-CoA forming direction 

(Table 1) and activity was completely abolished in the acetyl phosphate forming direction, 

indicating the importance of this residue in catalysis. A slight decrease in the K0.5 for acetyl 

phosphate and a four-fold decrease in the K0.5 for CoA were observed for the G300D variant versus 

the wild type enzyme. The kcat/K0.5 value for each substrate decreased significantly, with a 420-

fold decrease for acetyl phosphate and a 110-fold decrease observed for CoA (Table 1). This 

alteration resulted in increased substrate cooperativity for both CoA and acetyl phosphate. The 

Hill constant for CoA increased by half, and that for acetyl phosphate increased 3.7-fold versus 

the wild type (Table 1). 
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 We analyzed the effect of several allosteric inhibitors on the PrPtaII1 G300D variant and 

found that the IC50 values for ATP, AMP, and NADH decreased approximately five-fold versus 

the wild type, whereas only a 1.6-fold decrease was observed for NADP (Table 2). A nearly 14-

fold decrease was observed in the IC50 for PEP (Table 2). Interestingly, nearly 50% inhibition 

was observed with 50 µM pyruvate, but activity increased as the pyruvate concentration was 

increased. At 1 mM pyruvate, enzyme activity had reached the uninhibited level and by 3 mM 

pyruvate concentration activity was 124% that of the control (Figure 6). The EC50 for pyruvate 

was determined to be 503 ± 24 µM.  
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Discussion 

Phylogenetic analysis of Pta sequences shows that PtaI and PtaII sequences form separate 

clades (Figure 1). Notably, nearly all of the eukaryotic enzymes belong to the PtaII class, whereas 

both PtaI and PtaII enzymes are well represented in the bacteria. In fact, E. coli and S. enterica 

possess both PtaI and PtaII enzymes. Based on these distributions and what is currently known 

about the roles of Pta in various bacteria and Chlamydomonas, it is difficult to determine what 

dictates whether an organism is more likely to have at PtaI or a PtaII.  

Our sequence analysis of the regulatory domain of PtaII enzymes has revealed four 

subclasses based on the presence or absence of the P-loop and DRTGG subdomains. Our 

phylogeny indicates that the eukaryotic enzymes group together within the PtaII clade, and that 

the eukaryotic PtaIIa sequences are clustered together. Both of the P. ramorum PtaII sequences 

belong to this subclass and fall within this cluster. 

Like P. ramorum, Chlamydomonas reinhardtii and Volvox carteri also have two PtaII 

enzymes. However, Pat2 from C. reinhardtii lacks the DRTGG subdomain and thus belongs to 

the PtaIIc subclass, whereas Pat1 lacks identity to either subdomain within the N-terminus and is 

classified as a PtaIId. The V. carteri PtaII sequences both belong to PtaIIc and are most closely 

related to the P. ramorum enzymes. The PtaIIa subclass is the most prevalent, followed by PtaIId. 

The infrequent number of PtaIIb and PtaIIc sequences and their distribution throughout the 

phylogeny suggests these subclasses arose recently and sporadically through the loss of domains. 

 

Eukaryotic PtaII versus Bacterial PtaII 

Our characterization of PrPtaII1 allowed us to investigate the similarities and differences 

between bacterial and eukaryotic PtaII enzymes and provides us with a better overall picture of the 

regulation of this subclass. PrPtaII1, SePtaII, and EcPtaII all display positive cooperativity but for 
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different substrates. SePtaII and PrPtaII1 display positive cooperativity for acetyl phosphate but 

little or no cooperativity for CoA, whereas EcPtaII displays positive cooperativity for CoA but not 

for acetyl phosphate. 

As EcPtaII and SePtaII are both allosterically regulated (16, 17), we examined whether 

PrPtaII1 is also subject to allosteric regulation and if the same metabolites are effectors for all 

three enzymes. ATP, NADH, PEP and pyruvate were previously shown to be inhibitors of EcPtaII 

(17), and we have now shown that they are also inhibitors of SePtaII and PrPtaII1, although the 

order of potency of these inhibitors differs. We have also found that AMP influences both SePtaII 

and PrPtaII1 activity but in different ways. AMP inhibits PrPtaII1 but activates SePtaII at lower 

concentration and then inhibits activity at higher concentrations. AMP has a similar effect on 

glycogen phosphorylase (37). At low concentrations, AMP acts as a strong activator by binding to 

a site close to the subunit interface and increasing release of glucose 1-phosphate from glycogen 

(38, 39). At higher concentrations, AMP binds to the ATP inhibitor site (40, 41) located at the 

entrance to the channel to the catalytic site (41), resulting in inhibition. By analogy, this may 

suggest that AMP and ATP bind at separate effector sites on SePtaII. 

 

The Role of the P-loop and DRTGG Subdomains in Catalysis and Allosteric Regulation 

 Through analysis of EcPtaII truncations, Campos-Bermudez et al. (17) demonstrated that 

the N-terminal domain is required for maximal catalytic activity and that the P-loop subdomain is 

required for the regulation of the enzyme by metabolic effector molecules. Using a positive 

selection method to identify Pta variants that allow S. enterica growth on low acetate 

concentrations in an acs mutant, Brinsmade and Escalante-Semerena (16) identified three single 

amino acid variants altered in the N-terminal domain for which regulation by allosteric effectors 

differs. Of particular interest is the G273D SePtaII variant, which displayed much stronger 
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activation by pyruvate than the wild type enzyme but similar inhibition by NADH (16). This 

glycine is located in the DRTGG subdomain and is conserved among all PtaIIa and PtaIIb enzymes, 

including both enzymes from P. ramorum. 

We altered Gly300, the equivalent residue in PrPtaII1, to Ala and Asp to investigate 

whether this enzyme is regulated similarly to SePtaII. The G300A variant lacked activity in either 

direction, and the G300D variant had greatly reduced activity in the acetyl-CoA/Pi – forming 

direction and no activity in the acetyl phosphate/CoA forming direction. With the exception of 

pyruvate, each allosteric effector had a similar effect on activity of the PrPtaII1 G300D variant as 

for the wild type, although IC50 values were reduced. Remarkably, pyruvate enhanced activity of 

the variant in the acetyl-CoA/Pi-forming direction. However, activity was still very low in the 

opposite direction. In the corresponding SePtaII variant, this alteration greatly stimulated activity 

in the acetyl phosphate/CoA forming direction. This result demonstrates that residue G300 in the 

DRTGG subdomain of the N-terminal regulatory domain is important across both bacteria and 

eukaryotes in how the enzyme reacts to the presence and absence of pyruvate.  

 

Concluding Remarks 

Our knowledge of Pta and its physiological role has largely been limited to bacterial 

enzymes. The Pta-Ack pathway has been shown to be essential for growth and invasion in several 

pathogenic bacteria, including Vibrio cholera (42), uropathogenic E. coli (43), S. enterica (44), 

and Listeria monocytogenes (45). A eukaryotic Pta has not previously been characterized, and the 

only reports on the physiological role of a non-bacterial Pta are from the green algae 

Chlamydomonas (15). PrPtaII1 preferentially operates in the acetyl-CoA/Pi-forming direction, 

suggesting acetyl-CoA formation is its physiological role in Phytophthora. The presence of a 

second Pta raises the possibility that the two enzymes are specialized, with PrPtaII2 operating in 
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the acetyl phosphate/CoA-forming direction. Alternatively, PrPtaII2 may catalyze both directions 

of the reaction and metabolic effectors may regulate these activities as well as the activity of 

PrPtaII1. 

The PtaII class is much more complex than previously thought, with four subclasses, and  

PtaIIa enzymes are subject to allosteric regulation by a number of effectors (46, 47). Regulation of 

enzymes from the other three subclasses and further study of the N-terminal domain is needed. 

An understanding of the regulation exerted by this domain would be greatly facilitated by having 

a structure of a PtaII enzyme. Characterization of PrPtaII2 might help answer some of elusive 

questions regarding the N-terminal domain. 
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Table 2.1. Kinetic Parameters for PrPtaII Wild Type and the G300D Variant in the Acetyl-CoA-

Forming Direction 

Enzyme K0.5 CoA 
(mM) 

K0.5 AcP 
(mM) 

kcat/K0.5 CoA 
(sec-1 mM-1) 

kcat/K0.5 AcP 
(sec-1 mM-1) 

Hill constant 
CoA (h) 

Hill constant 
AcP (h) 

Wild type  1.05 ± 0.31  1.85 ± 0.14   35.1 ± 6.0 18.04 ± 1.26   1.04 ± 0.05   1.75 ± 0.18 
G300D  0.24 ± 0.05  1.75 ± 0.10   0.32 ± 0.06 0.043 ± 0.001   1.50 ± 0.05   6.50 ± 1.76 
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Table 2.2. IC50 Values for PtaII Enzymes in the Acetyl-CoA Direction 

Effector Molecule PrPta IC50  
(µM) 

PrPtaG300D IC50 
(µM) 

SePta IC50 
(µM) 

ATP 736 ± 6 133 ± 8 364 ± 19 
AMP 287 ± 4 53 ± 2 ND 

NADP 135 ± 4 81 ± 3 97 ± 8 
NADH 275 ± 21 52 ± 2 24 ± 6 

PEP 1018 ± 128 74 ± 4 67 ± 3 
ND: IC50 could not be determined. 
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Figure 2.1. Phylogeny of PtaI and PtaII family. The phylogenetic tree was constructed based on 

the sequences of the Pta catalytic domains. PtaI sequences are shown in black, PtaIIa sequences are 

shown in blue, PtaIIb sequences are shown in purple, PtaIIc sequences are shown in green, and 

PtaIId sequences are shown in pink. Only bootstrap value of 75% or higher are shown. 
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Figure 2.2. Subdomain Structure of the PtaI and PtaII classes. PtaI enzymes have just a 

catalytic domain; PtaII enzymes have a catalytic domain and an N-terminal domain. Four 

subclasses of PtaII enzymes have been identified based on the presence or absence of the P-loop 

and DRTGG subdomains, as shown. Domains are not drawn to scale. 
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Figure 2.3. Regulation of PrPtaII1 by Allosteric Effec 

A) 

B) 

 

Figure 2.3. Regulation of PrPtaII1 by Allosteric Effectors. PrPtaII1 activity in the acetyl-CoA 

forming direction was monitored in the absence and presence of allosteric effector molecules. All 

data was normalized to the control, which represents the enzymatic activity observed in the 

absence of effector molecule. (a) Results are displayed as percent activity in the presence of 100 

µM and 750 µM NAD+, NADH, NADP, and NADPH. (b) Results are displayed as percent 

activity in the presence of 100 µM and 750 µM ATP, ADP, and AMP, and 100 µM and 1000 µM 

PEP and pyruvate.  
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A) 

B) 

 

Figure 2.4. Effect of NADP on CoA and Acetyl Phosphate Utilization (a) Enzymatic activity 

was measured in the acetyl-CoA forming direction in the presence of 5 mM acetyl phosphate with 

varying concentrations of NADP using the thioester-forming assay. (�) 0 µM NADP, (¢) 67.1 

µM NADP, (¿) 134.2 µM NADP.  (b) Enzymatic activity in the acetyl-CoA forming direction 

was measured in the presence of 4 mM CoA with varying concentrations of NADP using the 

thioester-forming assay. (�) 0 µM NADP, (¢) 67.1 µM NADP, (¿) 134.2 µM NADP.  
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Figure 2.5. AMP Inhibits and Activates SePtaII. SePtaII activity in the acetyl-CoA forming 

direction was determined in the presence of increasing concentrations of AMP. All data was 

normalized to the control, which represents the enzymatic activity observed in the absence of 

effector molecule. 
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Figure 2.6. Alteration of the Gly300 Residue in PrPtaII1 Changes the Effect of Pyruvate. 

Enzyme activity was determined in the presence of increasing amounts of pyruvate in the acetyl-

CoA forming direction for PrPta1 (�) and PrPta1G300D (¢).  
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Abstract 

 

The basidiomycete Cryptococcus neoformans, an invasive opportunistic pathogen of the 

central nervous system, is the most frequent cause of fungal meningitis worldwide resulting in 

more than 625,000 deaths per year worldwide. Although electroporation has been developed for 

the transformation of plasmids in Cryptococcus, only biolistic delivery provides an effective 

means to transform linear DNA that can be integrated into the genome by homologous 

recombination.  

Acetate has been shown to be a major fermentation product during cryptococcal 

infection, but the significance of this is not yet known. A bacterial pathway composed of the 

enzymes xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (Xfp) and acetate kinase 

(Ack) is one of three potential pathways for acetate production in C. neoformans. Here, we 

demonstrate the biolistic transformation of a construct, which has the gene encoding Ack fused to 

the fluorescent tag mCherry, into C. neoformans. We then confirm integration of the ACK-

mCherry fusion into the ACK locus.
                                                
1 Taylor, T., Bose, I., Luckie, T., Smith, K. Biolistic Transformation of a Fluorescent Tagged 
Gene into the Opportunistic Fungal Pathogen Cryptococcus neoformans. J. Vis. Exp. (97), 
e52666, doi:10.3791/52666 (2015). 
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I. Introduction 

 Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous 

system, is the most frequent cause of fungal meningitis resulting in more than 625,000 deaths per 

year worldwide (1). Acetate has been shown to be a major fermentation product during 

cryptococcal infection (2-4), and genes encoding enzymes from three putative acetate-producing 

pathways have been shown to be upregulated during infection (5). This suggests that acetate 

production and transport may be a necessary and required part of the pathogenic process; 

however, the significance of this is not yet understood. One possible pathway for acetate 

production is the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) - acetate 

kinase (Ack), a pathway previously thought to be present only in bacteria but recently identified 

in both euascomycete as well as basidiomycete fungi, including C. neoformans (6). 

 To determine the localization of these enzymes of this pathway in the cell, a construct 

carrying a neomycin resistance gene downstream of an ACK gene fusion to the fluorescent tag 

mCherry (ACK:mCherry:Neo) will be introduced into C. neoformans using the well-established 

method of biolistic transformation (7, 8). Although electroporation is an efficient method for 

transformation of plasmids that will be maintained as episomes into Cryptococcus (9), it is not 

useful in creating stable homologous transformants (8). Only biolistic delivery using a gene 

gun provides an effective means to transform linear DNAs that will be integrated into the genome 

by homologous recombination. For example, Edman et al. showed that of the transformants 

resulting from electroporation of a plasmid-borne URA5 selectable marker into C. neoformans 

ura5 mutants, just 0.001 to 0.1% of transformants were stable (9). Chang et al. achieved just a 

0.25% stable transformation efficiency using electroporation to reconstitute capsule production in 

an acapsular mutant (10). Unlike electroporation, biolistic transformation has been shown to 
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result in stable transformation efficiency of 2-50% depending on the gene that is being altered (7, 

8, 11).  

 This visual experiment will provide a step-by-step demonstration of biolistic 

transformation of the linear ACK:mCherry:Neo DNA construct into C. neoformans, and will 

describe how to confirm its proper integration via homologous recombination into the ack locus. 

The protocol demonstrated here is a modification of the method developed in the Perfect 

laboratory (7, 8, 11). 
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II. Materials and Methods 

The overall scheme of this protocol is outlined in Figure 2.1. 

 

1) C. neoformans Preparation 

1.1) For each transformation reaction, grow a 2-3 mL overnight culture of C. neoformans in YPD 

medium at 30 °C shaking at 250 RPM.  

 

1.2) Centrifuge the overnight culture for 5 min at 900 x g at 10 °C and discard the supernatant. 

 

1.3) Resuspend each cell pellet in 300 µL of Yeast Peptone Dextrose (YPD) medium.  

 

1.4) Using glass beads, gently spread 300 µL of the washed cell suspension onto YPD agar 

containing 1M sorbitol.  

 

1.5) Allow plates to dry at ambient temperature for 3-4 hours.  

 

2) Gold Microcarrier Preparation 

2.1) Resuspend 0.25 g of 0.6 µm gold beads in 1 mL of ddH2O, centrifuge for 1 min at 900 x g to 

pellet the beads, and remove the supernatant.   

 

2.2) Resuspend the gold beads in 1 mL of 100% ethanol. 

 

2.3) Distribute the beads into 4 tubes, 250 µL each, and add 750 µL of 100% ethanol. 
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2.4) Store gold bead aliquots at 4°C. 

 

3) DNA Preparation 

3.1) Prepare orange macrocarrier biolistic discs by submerging them in 100% ethanol using 

forceps. Place discs into a large petri dish containing drierite to dry (make sure the drierite does 

not touch the discs).  

 

3.2) Once dry, press the macrocarrier discs into the silver disc holders (previously wiped down 

with 100% ethanol). 

 

3.3) Vortex gold beads (prepared as in step 2) and aliquot 12 µL into a 1.5 mL microcentrifuge 

tube, one tube per transformation.  

 

3.4) Add to each tube in order: 2 µg of DNA (preferably 2 µL of 1 µg/µL of DNA), 10 µL 2.5 M 

CaCl2, and 2 µL 1M spermidine free base.  

 

3.5) Set up a negative control as in step 3.4 but with no DNA.  

 

3.6) Vortex each tube and incubate at ambient temperature for 5 min. Gently flick each tube 

occasionally to resuspend the settled beads during this incubation. 

 

3.7) Spin tubes at 225 x g for 30 sec to pellet the DNA-coated gold beads. Carefully remove the 

supernatant (by pipetting or aspiration) and discard. 
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3.8) Resuspend beads completely in 600 µL of 100% ethanol by slowly pipetting up and down.  

 

3.9) Spin tubes at 225 x g for 30 sec to pellet the beads without packing. Carefully remove and 

discard the supernatant. 

 

3.10) Resuspend the DNA-coated gold beads in 8 µL of 100% ethanol by slowly pipetting up and 

down. 

 

3.11) Pipette the DNA-coated gold beads onto the center of the biolistic disc in a 1 cm diameter 

and allow to dry. Note: A dried gold circle visible on the center of the biolistic disc indicates that 

a sufficient concentration of gold beads is present.  

 

Note: The macrocarrier discs loaded with DNA-coated gold beads are now ready for use with the 

gene gun. 

 

4) Operating the Gene Gun 

4.1) Turn on the vacuum pump.  

 

4.2) Turn on the helium gas by turning the knob counterclockwise until a pressure of 

approximately 2200 psi is reached on the pressure gauge.  

 

4.3) Turn on the gene gun by flipping the red switch on the left. 
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4.4) Be sure that the flow rates for the vacuum and the vent are adjusted so the vacuum will reach 

28 inches Hg within 15 sec.  

 

4.5) Be sure the distance between the rupture disc and macrocarrier is approximately 3/8 inch. 

 

4.6) Clean the entire chamber by wiping down with ethanol. 

 

4.7) Submerge the rupture discs in 100% ethanol. Allow to dry on a sterile surface (e.g., petri 

dish). 

 

4.8) Use a torque wrench to loosen the rupture disc holder. Insert a clean rupture disc into the 

holder. Screw the rupture disc holder back into place and tighten with torque wrench by turning it 

once to the right. Note: Rupture discs will be replaced following each shoot. 

 

4.9) Submerge the mesh screens in 100% ethanol. Allow to dry on a sterile surface (e.g., petri 

dish). 

 

4.10) Once dry, place a washed mesh screen on the white plastic mounting plate. Place the 

macrocarrier disc holder DNA side down into the disc chamber. Screw on the silver cap, and 

place the mounting plate in the highest slot. Note: The mesh screen will be replaced after each 

shoot. 

 

4.11) Place a YPD agar plate containing 1M sorbitol on the bottom plate. 
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4.12) Shut chamber door and lock into place. 

 

4.13) Push and hold the middle red switch up to engage vacuum and allow the vacuum to reach 

28 inches Hg. Once proper vacuum level is reached, move this switch to the down position. When 

ready, hold down the red switch on the right to fire.  When the rupture disc pops, immediately 

release the fire button and push the middle red switch to the middle position to vent the chamber 

to 0 psi.  

 

4.14) Clean out rupture disc debris and turn off the gene gun. Then turn off the helium gas by 

turning the knob clockwise, and finally, turn off the vacuum pump. 

 

5) Plating Transformed Cells 

5.1) Allow the transformation plates to sit at room temperature for four hours to allow the cells to 

recover. 

 

5.2) Pipette 700 µL of YPD onto the plate. Use a cell scraper to gently scrape the cells off of the 

agar and pipette liquid into a sterile 1.5 mL microfuge tube. Repeat this step to ensure all cells 

have been recovered from the plate.  

 

5.3) Pellet cells at 225 x g for 30 sec. Remove and discard the supernatant.  

 

5.4) Resuspend the pellet in 500 µL of YPD.  
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5.5) Pipette 100 µL of the cell suspension onto the center of the YPD + antibiotic plates and 

spread using glass beads.  

 

5.6) Leave inverted plates at room temperature for 3-4 days. As colonies appear, patch onto new 

YPD + antibiotic plates. 

 

6) Genomic DNA Isolation for PCR  

Note: This is a modified version using reagents from a DNA purification kit (See Table of 

Materials). 

6.1) Grow a 5 mL culture of each of the C. neoformans transformants in YPD liquid at 30 °C 

shaking at 250 RPM overnight. 

 

6.2) Pellet 3 mL of cells at 900 x g, and resuspend in 600 µL of nuclei lysis solution. 

 

6.3) Add the suspension to a new 1.5 mL microcentrifuge tube with 200 µL of 0.5 mm acid 

washed glass beads. 

 

6.4) Homogenize for 45 sec in a mini beadbeater at ambient temperature, cool tube on ice, and 

repeat.  

 

6.5) Allow sample to settle on ice for 2 min and transfer supernatant to a new 1.5 mL tube. Add 

200 µL of protein precipitation solution to each tube, (100 µL for every 600 µL of supernatant 

recovered) and vortex vigorously for 20 sec. 
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6.6) Allow samples to settle on ice for 5 min, and centrifuge at 11,000 x g for 3 min. 

 

6.7) Transfer the supernatant to a clean 1.5 mL tube containing 300 µL of room temperature 

isopropanol. Gently mix by inversion. 

 

6.8) Centrifuge samples at 11,000 x g for 2 min, carefully remove the supernatant, and drain the 

tubes onto paper towels. 

 

6.9) Add 300 µL of room temperature 70% ethanol to each tube, and gently invert to wash the 

pellet. 

 

6.10) Centrifuge samples at 11,000 x g for 2 min, and carefully remove all of the ethanol. 

 

6.11) Drain the tube onto clean paper towels, and allow the pellet to air dry for 10 - 15 min. 

 

6.12) Add 50 µL of DNA rehydration solution and 1.5 µL of RNase solution to each pellet and 

vortex. 

 

6.13) Centrifuge samples for 5 sec to remove all of the liquid from the cap. 

 

6.14) Incubate samples at 37 °C for 15 min. 

 

6.15) Rehydrate the DNA by incubating the samples at 65 °C for 1 hour. 
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6.16) Quantify DNA spectrophotometrically by measuring the absorbance at 260 nm (an A260 

reading of 1.0 is equivalent to ~50 µg/ml double-stranded DNA), and use up to 200 ng in each 

PCR reaction.  

 

7) RNA Isolation for Reverse Transcriptase-PCR. 

7.1) Using a RNA purification kit (See Table of Materials), follow the manufacturer’s 

instructions to isolate RNA from yeast cells using a minibeadbeater. 

 

7.2) Quantify the concentration of the RNA by measuring the absorbance at 260 nm (an A260 

reading of 1.0 is equivalent to ~40 µg/ml single-stranded RNA). 

 

7.3) Using an RT-PCR kit (See Table of Materials), follow the manufacturer’s instructions to set 

up RT-PCR reactions with approximately 1 µg of RNA. For the results obtained in this study, use 

the primers listed in Table 2.1. 
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III. Representative Results 

 

A successful biolistic transformation of C. neoformans can be obtained by following this 

protocol scheme (Figure 2.1). With biolistic transformation, a successful shoot of the coated gold 

beads is indicated by a gold ring visible on the plate after the DNA is shot (Figure 2.2a). 

Colonies should appear within 4 to 5 days when left at room temperature after plating the 

recovered cells from the YPD + 1M sorbitol plates onto selective media. Transforming 2µg of 

DNA should result in 20 to 30 colonies (Figure 2.2b). When colonies appear, they should be 

restreaked on selective media for individual colonies. 

The individual colonies can be grown in YPD media, and both DNA and RNA can be 

isolated from these cells and analyzed through PCR and RT-PCR to confirm proper integration 

and expression. If this protocol is used for tagged gene fusion, as in this example, the primers 

would need to anneal within the coding region of the gene of interest (primer 2) and within the 3’ 

noncoding region of the gene of interest (primer 4) (Figure 2.3a). With this construct, the DNA 

amplified from the PCR reaction was sequenced for another confirmation that the mCherry tag 

was fused in frame to the ACK gene. A positive PCR confirmation would be a larger PCR product 

from the DNA isolated from the transformed cells compared to the DNA isolated from the wild 

type cells. Another PCR reaction would also need to be conducted utilizing the primer set 

(primers 2 & 5) where one primer anneals outside of the construct and within the surrounding 

genome (primer 5) to confirm the correct recombination into the desired locus (primer 7 in Table 

1) (Figure 2.3b). RT-PCR will be used to make sure that both the gene of interest and the tag are 

both being expressed (Figure 2.3c). Sequencing of the RT-PCR fusion product indicates that the 

tag is properly fused to the gene at the RNA level.  
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If this protocol is utilized to knock out a gene of interest, primer sets for PCR should be 

designed such that one primer anneals to a genome sequence outside of where the construct 

should recombine into the genome, and the other primer anneals either in the coding region of the 

gene or in the selective marker. A positive confirmation that the construct has successfully and 

correctly recombined into the genome would be the presence of the correct size product for the 

primer set that anneals within the marker but not with the primer set that anneals to the gene of 

interest. Another primer set should be made that has one primer that anneals outside of the 

designed construct, which is used with PCR to confirm that the recombination event occurred at 

the correct locus. In the same design to create a knockout, RNA is isolated from both the 

transformed cells and wild type (WT) cells, and RT-PCR is performed to confirm that no 

expression of the gene of interest is observed from the transformed cells. 

Because a fluorescent tag was fused to the ACK gene, another confirmation that 

recombination was a success into the desired locus and that RNA is being translated into protein 

is through fluorescent microscopy (Figure 2.4). Ideally, conditions have already been established 

where it is known that the protein of interest is being expressed. However, if the fluorescent 

signal is too low to observe, there is a possibility that successful recombination still occurred, but 

growth conditions need to be altered in the chance that optimal conditions have not been met for 

sufficient expression, which would lead to a low fluorescent signal. This would need to be 

confirmed through other methods such as a western blot. 
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IV. Discussion 

Utilizing this protocol, biolistic transformation can be accomplished in which linear DNA 

is integrated into a desired locus in the Cryptococcus neoformans genome by homologous 

recombination. Certain steps in the protocol can have a dramatic effect on the 

effectiveness/efficiency of the transformation. For a successful transformation, it is imperative 

that the DNA utilized in the shoot has a concentration of at least 1 µg. However, the volume of 

DNA added to the gold beads can be increased in the chance the DNA yield is lower than 1 µg 

(Step 3.4).  

 Another important step is in the DNA coating of the gold beads. Insufficient numbers of 

beads in the DNA preparation sample, due to an error in the preparation, leads to a decreased 

amount of DNA shot onto the plate. After the DNA has been loaded onto the gold beads, they are 

pipetted onto the biolistic disc and allowed to dry. When dry, a visible gold circle about 1 cm in 

diameter should be present on the disc. The absence of this circle suggests that the concentration 

of the gold beads is not high enough. Another clue that the gold bead concentration is too low is 

following the shoot. There should be a gold ring visible on the plate (Figure 2.2a), and if no gold 

ring is visible and the rupture disc burst, this could indicate that the concentration of gold beads 

used in the preparation was not high enough.  

  The typical yield using the biolistic transformation method is 20-30 colonies. Fewer 

colonies may indicate that the technique or gene gun set-up is not 100% efficient. One reason for 

the fewer colonies may be the amount of cells scraped off from step 5.2. Depending on the size of 

the pellet in step 5.3 and the number of colonies that appear from the previous experiments, the 

volume the pellet is resuspended in, in step 5.4, may need to be altered. From these colonies, 

DNA should be isolated, and PCR conducted to confirm a larger size gene product compared to 

WT, indicating the presence of the tag. RNA should be isolated and RT-PCR performed to 
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confirm that there are transcripts of the gene product being made, and if a fluorescent tag was 

inserted into the genome, then microscopy should be used to observe whether the tag is being 

expressed.  

 The main limitation to this protocol is the requirement for specialized equipment such as 

a gene gun and a fluorescent microscope. However, biolistic transformation is the best choice for 

introduction of linear DNAs for gene knockouts versus electroporation, which is used for 

introduction of episomes or Agrobacterium tumefaciens mediated transformation, which has been 

used for random insertional mutagenesis (12). Biolistics may also prove to be a suitable method 

for rapid introduction of a wide variety of vital dyes into Cryptococcus. Lipophilic dyes are used 

to stain extracellular vesicles and the capsule of C. neoformans (13). Biolistic delivery of gold 

particles coated with lipophilic dye that imbed into the membranes of cells and organelles has 

been used to study the interconnection of neighboring cells (14). Therefore, biolistics may be a 

less time-consuming technique to visualize extracellular vesicles and organelles. 
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Table 3.1. PCR and RT-PCR Primers. 

Primer # Primer Name Primer Sequence
1 KI003 5’ – GTA GCG AGG TCT GGA AGC CAC – 3’
2 ACKmChRT-F 5'- GCT TTG GCC GGT ACT ACC AAC -3
3 ACKmChRT-R 5'- GAC AGC TTC AAG TAG TCG GGG -3'
4 KI004 5’ – GAC TTG GGG AAG AGG AAT TC – 3’
5 KI0032 5' – CGG GGT ACC ATC AAT AAA AGC TTT CTT CAC TCC  - 3'
6 Actin 1 5’- CGC TAT CCT CCG TAT CGA TCT TGC -3’
7 Actin 2 5’- CAG CTG GAA GGT AGA CAA AGA GGC -3’  
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Protocol Scheme 

 
1. Plate C. neoformans onto YPD + 1M sorbitol and allow to grow for 3-4 hours at 

ambient temperature.  
2. Observe under a microscope for thorough distribution of cells. 
3. Wash and aliquot gold beads. 
4. Coat the gold beads with the DNA that is to be transformed. 
5. Prepare macrocarriers with gold beads coated with DNA. 
6. Using the gene gun, transform DNA into C. neoformans 
7. Allow cells to recover by incubating plates for 3-4 hours at room temperature. 
8. Scrape recovered C. neoformans cells onto selective media. 
9. Allow cells to grow on the selective media until colonies appear. 

10.  Restreak each colony onto a freshly made YPD + antibiotic plate to ensure 
 individual colonies. 

11. Isolate DNA and RNA from those individual colonies, and perform PCR and RT-
PCR analysis to confirm a successful recombination event.  

12. Examine cells under a fluorescent microscope to confirm fluorescently tagged 
fusion protein is being expressed.   

  

Figure 3.1. Protocol Scheme. 
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Figure	  3.2a. DNA-coated Gold Beads Successfully Shot Onto a YPD + 1M Sorbitol Plate. 

An orange patch seen in the center of the YPD + 1M sorbitol plate is due to the DNA-coated gold 

beads, indicating proper gold preparation, as well as a successful shoot.  

 

 

 

 

 

 



 104 

	  

Figure	  3.2b. Transforming 2 µg of DNA Results in 20-30 Colonies per Plate. If the cells were 

diluted as mentioned in the protocol, approximately 20-30 colonies are expected prior to plating 

on selective media.  
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Figure 3.3a. Schematic of the ACK:mCherry:Neo Construct and Primer Design. 
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Figure 3.3b. PCR Used to Confirm Successful Homologous Recombination. Lanes 1 and 2: 

PCR products obtained using primers 2 and 5 (Table 1) with genomic DNA from wild type C. 

neoformans H99 (lane 1) and the ACK:mCherry transformed strain, (lane 2). Expected sizes are 

1511 and 5622 bp, respectively. Lanes 3 and 4 are the DNA products of the C. neoformans H99 

(expected size 1443 bp) and the ACK:mCherry (expected size 5552 bp) strains, respectively, 

using primers 2 and 4 in Table 1. Lanes 5 and 6 are the DNA products of the C. neoformans H99 

(should not anneal) and ACK:mCherry (expected size 3016 bp) strains, respectively, using 

primers 1 and 3.  

 

 

 

 

 

 



 107 

Actin!

ACKmChRT!

H9
9!

Ac
k:m
Ch
err
y!

683 bp 

567 bp 
 

 

Figure 3.3c. RT-PCR Confirmation of Expression of the mCherry Tag. The top lanes are the 

cDNA products of the ACKmCherry fusion product (expected size 683 bp) amplified from the C. 

neoformans H99 and the ACK:mCherry strains using primers 2 and 3 in Table 1. The actin gene 

was included as a control and was amplified under the same conditions as ACKmCherry 

(expected size 567 bp) using primers 6 and 7 in Table 1.  
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Figure 3.4. Fluorescence of the mCherry tagged Ack. Microscopic analysis of strains 

producing Ack fused to a mCherry tag with an excitation optimum at 587 nm and an emission 

optimum at 610 nm.   
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CHAPTER FOUR 

The Investigation into the Metabolic and Physiological  
Role of the Ack-Xfp Pathway in Cryptococcus neoformans 

Tonya Taylor, Indrani Bose, Taylor Luckie, and Kerry Smith  

 

Abstract 

Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous 

system, is the most frequent cause of fungal meningitis resulting in more than 625,000 deaths per 

year worldwide. Acetate has been shown to be a major fermentation product during cryptococcal 

infection, and genes encoding enzymes from two putative acetate-producing pathways and two 

putative acetate transporters have been shown to be upregulated during infection. This suggests 

that acetate production and transport may be a necessary and required part of the pathogenic 

process; however, the significance of this is not yet understood. One possible source of acetate in 

C. neoformans is the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) - acetate 

kinase (Ack), a pathway previously thought to be present only in bacteria, and like most other 

fungi, C. neoformans has two ORFS with sequence identity to Xfp, designated as Xfp1 and Xfp2.  

To investigate the metabolic and physiological role of the Ack-Xfp pathway in C. 

neoformans, we have generated single XFP1, XFP2, and ACK knockouts through a 3-step overlap 

PCR technique, as well as a double XFP1/XFP2 knockout. If Ack and Xfp do indeed partner 

together, then the phenotypes observed in the in vitro and in vivo assays described below would 

be expected to be similar for the xfp or ack knockout mutants. The mutants do not have a 

discernable phenotype when grown on YNB media containing alternative carbon sources (2% and 

0.2%) or under a variety of stresses. However, when the wild type and mutants were grown in 

YNB with very low glucose concentrations (as low as 0.001%), growth of the Δxfp2 mutant was 
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impaired. A measurable increase in growth was seen for the Δxfp1 mutant, while an intermediate 

phenotype was observed for the for Δxfp1/xfp2 mutant. Macrophage-killing assays suggest the 

Δxfp1, Δxfp2, and Δxfp1/xfp2 mutants are more susceptible to killing than both the wild type and 

Δack mutant, suggesting a role for both Xfp1 and Xfp2 in survival in the macrophage. Overall, 

our results suggest that Ack and Xfp may have separate functions in the physiology and 

metabolism of C. neoformans. 
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I. Introduction 

Cryptococcus neoformans is an opportunistic, fungal pathogen and the leading cause of 

fungal meningitis, killing approximately 625,000 people per year globally (1). This 

basidiomycetous yeast gains access into the respiratory tract through inhalation of its fungal 

spores and can disseminate throughout the body of immunocompromised individuals causing 

infection. C. neoformans, the most common fungal infection of the central nervous system, has a 

predilection for the central nervous system (CNS), where it causes fungal meningitis (2). 

Acetate and ethanol are two main metabolites produced by Cryptococcus during infection 

and in glucose-fed cultures (3, 4); however, the significance of this is not yet understood. We 

have identified two potential pathways for acetate metabolism in C. neoformans (Figure 1). The 

pyruvate decarboxylase (Pdc; EC 4.1.1.1) – acetaldehyde dehydrogenase (Ald; EC 1.2.1.10) 

pathway, that converts pyruvate to acetate, is found in yeast and fungi. The second pathway is the 

xylulose-5- phosphate/fructose-6-phosphate phosphoketolase (Xfp) and acetate kinase (Ack) 

pathway, which is also present in other euascomycete and basidiomycete fungi (5). 

Heterofermentative bacteria such as Lactobacillus use Xfp-Ack as part of a modified form of the 

pentose phosphate pathway for the breakdown of pentoses and hexoses (11). Xfp catalyzes the 

formation of acetyl phosphate from the pentose phosphate pathway products xylulose 5-

phosphate (X5P; X5P + Pi ↔ acetyl phosphate + glyceraldehyde 3-phosphate; EC 4.1.2.9) and 

fructose 6-phosphate (F6P; F6P + Pi ↔ acetyl phosphate + erythrose 4-phosphate; EC 4.1.22). 

Ack then converts the acetyl phosphate product of the Xfp reaction to acetate and ATP (acetate + 

ATP ↔ acetyl phosphate + ADP; EC 2.7.2.1) (5). Many fungi, including C. neoformans, have 

two Xfp ORFs each belonging to one of two distinct clades, designated as Xfp1 and Xfp2, for the 

fungal Xfps (6).  
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Most Aspergillus species have two XFP genes, but Aspergillus nidulans has only one, 

that belongs to the Xfp1 sub-family. When the A.nidulans ACK and XFP were overexpressed in 

Saccharomyces cerevisiae, which lacks this pathway, an increase in acetate production was 

observed in batch cultivations (12); this experiment suggests that at least in A. nidulans, this 

pathway works in the direction of acetate production.  The identification of the genes encoding 

the enzymes of the pentose phosphate pathway in Cryptococcus (4), along with the presence of 

ACK and XFP, suggest these eukaryotes might utilize a modified pentose phosphoketolase 

pathway for acetate production.  

The biochemical and kinetic characterization of Ack and Xfp2 support a role for acetate 

production. The C. neoformans Ack functions in both directions of acetate metabolism; however, 

kinetic characterization of C. neoformans reveals a higher kcat in the acetate-forming direction (C. 

Ingram-Smith, T. Dang, A. Guggisberg, S. Henry, J. Welch, K. Laws, A. Mattison, A. Bizhanova, 

and K. Smith, manuscript in preparation) (13). The presence of two putative XFP ORFs and the 

minimal (39%) identity between Xfp1 and Xfp2 suggests possible differences in the 

physiological/metabolic roles for these two enzymes in C. neoformans. Xfp has been 

biochemically and kinetically characterized from several bacterial species, including 

Lactobacillus plantarum (14, 15), Bifidobacterium spp. (16, 17), Lactococcus lactis (18), 

Leuconostoc mesenteroides (18), Pseudomonas aeruginosa (18), and Anabaena sp. PCC 7120 

(19). However, the characterization of Xfp from a eukaryote had not been reported until the 

recent description of Xfp2 from C. neoformans. Xfp2 is allosterically regulated by key metabolic 

intermediates, such as ATP, PEP and OAA (20), and although slight differences are observed 

between organisms, allosteric regulation is a general property of both eukaryotic and bacterial 

phosphoketolases (21).  The Xfp2 enzyme is fairly well characterized, however, there is no report 

on the biochemical investigation of an Xfp1. 
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Although the role of the Xfp-Ack pathway in C. neoformans has not yet been 

investigated, several studies examining gene expression during infection or under conditions that 

the fungus is expected to experience during infection (e.g., oxidative stress and hypoxia) suggest 

this pathway is active during C. neoformans infection. An early microarray study of C. 

neoformans gene expression by Fan et al. (7) indicated ACK is expressed during murine 

macrophage infection; however, XFP1 and XFP2 were not included in the microarray. Serial 

analysis of gene expression on cells recovered from the lungs of infected mice uncovered 

elevated transcripts of XFP2 (8). A global transcriptome profile of C. neoformans treated with 

hydrogen peroxide revealed induction of XFP1 in response to oxidative stress (9). In addition, 

Chun et al. (10) executed a genome wide microarray study that revealed both ACK and XFP2 are 

induced under hypoxic conditions.  

To investigate the role of the Xfp-Ack pathway in C. neoformans, we have taken a 

genetic approach by generating single XFP1, XFP2 and ACK knockouts, as well as the double 

XFP1/XFP2 knockout, through a three-step overlap PCR technique. Our in vitro experiments 

suggest that Ack and Xfp2 may partner together in low glucose environments, and possibly under 

low iron conditions. In addition, we have also shown that Xfp1 and Xfp2 play a mammalian-

specific role in the survival of C. neoformans within murine macrophages. This work provides the 

first investigation into the role of Ack and Xfp in C. neoformans, which indicates that although 

these enzymes may partner together, they also may operate individually under certain conditions. 
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II. Materials and Methods 

Materials 

Chemicals were purchased from Sigma-Aldrich, VWR, Fisher Scientific, Becton 

Dickinson and Company, and Gold Biotechnology. Oligonucleotide primers were purchased from 

Integrated DNA Technologies. C. neoformans strains were grown in Yeast Extract Peptone 

Dextrose (YPD) medium (yeast extract 1%, peptone 2%, dextrose 2%) or Yeast Nitrogen Base 

(YNB) broth supplemented with a carbon source.  

 

Disruption of ACK, XFP1, and XFP2 mutants 

 The Δack:Neo was generated in the congenic C. neoformans KN99a strain and the 

Δxfp1:Hyg and Δxfp2Neo were generated in the KN99α strain. The three-step overlap PCR 

technique, previously described (22), was used to generate the null mutant constructs. Primer 

sequences used for construction of the gene deletions are listed in Table 1. Deletion constructs 

were generated by joining approximately 1000 bp of non-coding genomic sequence 5' to the 

targeted gene,, the neomycin resistance (Neor) or hygromycin resistance (Hygr) cassette 

(amplified from pMH12-T and pHYG7KB1 vectors, respectively (23), and approximately 1000 

bp of non-coding genomic sequence 3' to the targeted gene. The final gene deletion constructs 

were created through overlap PCR using all three amplified regions, and the resultant PCR 

products were confirmed through sequencing. The constructs were transformed using biolistic 

delivery of gold microcarrier beads (0.6 µm; Bio-Rad) into the serotype A strains as described 

previously (22). YNB medium + 0.2% glucose containing either G418 (300 µg/mL) or 

hygromycin B (300 µg/mL) was used for the screening of stable transformants.  
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Confirmation of successful homologous integration occurred through the use of PCR, 

RT-PCR and Southern blot. Genomic DNA was isolated using a modified version of protocol 

from the Wizard Genomic DNA Isolation Kit (Promega) (50). The following primers from Table 

2, 5’XFP1ext/3’HYGintcoding, 5’HYGintcoding/3’XFP1ext, 5’XFP2ext/3’NEOintcoding, 

5’NEOintcoding/3’XFP2ext primers and 200 ng of genomic DNA from the wild type and 

putative knockouts were used in each PCR reaction; the KOD Hot Start polymerase kit (EMD 

Millipore) was used for each reaction.  

RNA isolation was performed by the manufacturer’s instructions for the RNeasy Mini kit 

(Qiagen). The following primers from Table 2, XFP1F-RT/ XFP1R-RT, XFP2F-RT/ XFP2R-RT, 

ACTIN-1/ACTIN-2 and 1 µg of RNA were used to set up the RT-PCR reactions using the One-

step RT-PCR kit (Qiagen).  

Genomic DNA for Southern blots was isolated following the CTAB midi prep protocol 

(51, 52). Genomic DNA isolated from both the WT and knockout strains was restricted overnight 

at 37°C.  Genomic DNA from strains with the neomycin resistance cassette was restricted with 

EcoRI, while DNA from strains with the hygromycin resistance cassette was restricted with 

PvuII. Restriction of the pMH12-T and pHYG7KB1 plasmids was used as controls. The Biotin 

Chromogenic Detection kit (Thermo Scientific) was used to detect biotinylated nucleic acid 

probes: (Neo) 5’ TGC CGA ATA TCA TGG TGG AAA ATG GCC GCT 3’ and (Hyg) 5’ CGC 

GAT TGC TGA TCC CCA TGT GTA TCA CTG 3’.  

 

Stress and drug response assays 

 C. neoformans WT and knockout strains were grown overnight in YPD at 30°C, washed 

three times and were diluted in PBS to 1 x 104 cells. Five microliters of ten-fold serial dilutions 

were spotted onto plates with different carbon sources or chemicals that induce a stress response. 
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Plates were incubated at both 30°C and 37°C to determine the response of each C. neoformans 

strain. For alternative carbon sources, cells were plated and growth was monitored on YNB agar 

with one of the following carbon sources: 0.2% glucose, 2% glucose, 2% arabinose, 2% xylose, 

2% glycerol, 2% galactose, 2% ethanol, 0.2% acetate, and 1.5% acetate.  

In addition, growth was monitored in liquid synthetic medium (6.7g/L Sigma Yeast 

Nitrogen Base with 2% glucose, 2% agar, and 1x amino acid stock mix) supplemented with no 

glucose, 0.001% glucose, 0.01% glucose, and 0.1% glucose for both the WT and knockout strains 

(Andrew Alspaugh, Duke University, personal communication). Cells were incubated at 30°C 

and shaking at 250 RPM in an Incubating Microplate Shaker (Fisher Scientific). Absorbance 

measurements were taken at 0, 9, and 30 hours using the Epoch Multi-volume Microplate Reader 

(BioTek Instruments, Inc.). 

The response to hypoxia was tested using YES media (0.5% yeast extract, 2% glucose, 

and 225 µg/ mL of each: uracil, adenine, leucine, histidine, and lysine) supplemented with 0.7 

mM CoCl2 (25).  To test osmotic stress, the cells were plated and growth was monitored on YPD 

supplemented with either 1.2 M KCl or 1.5 M NaCl. Cells were plated on YPD supplemented 

with 0.5 mM H2O2 for oxidative stress and with 8 mM NaNO2 for nitrosative stress. YPD with the 

addition of 0.1% SDS or 0.5 mg/mL Congo Red analyzed the cell wall integrity of each strain.  

To test sensitivity to fluconazole, C. neoformans WT and knockout cells were grown 

overnight in YPD at 30°C. Cells were diluted 1:10 into YPD and grown for another 3 hours. Cells 

were diluted to 0.07 OD in 0.9% NaCl, and cotton swabs were used to plate each strain onto a 

YPD or YNB + 0.2% glucose plate. One fluconazole Etest Strip (BioMérieux, Inc.) was gently 

placed down the center of each plate and plates were incubated at 30°C for two days. The 

minimal inhibitory concentration (MIC) for each was determined in µg/mL by the ellipse that 

intersected the strip. 
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Capsule formation and melanin production 

Melanin production was assayed using YNB media with 0.1% glucose and 1 mM L-

Dopamine. Cells were washed three times and diluted in PBS to 1 x 104 cells, and five microliters 

of ten-fold serial dilutions were spotted onto the L-Dopamine media. The polysaccharide capsule 

formation was tested by growing the WT and mutant cells overnight under iron limiting 

conditions at 30°C using YNB liquid supplemented with 100 µM bathophenanthroline 

disulfonate (BPS). The cells grown under low iron were washed and diluted to 2x103 cells, and 

visualized microscopically using India ink as described previously (24).  

 

Virulence assays 

 C. neoformans WT and mutant cultures were grown in YPD at 30°C, washed three times 

and diluted to 1.5 x 105 cells in sterile phosphate-buffered saline (PBS). Galleria mellonella (wax 

moth) larvae (Vanderhorst, Inc.) were weighed (330 ± 25 mg in weight) and inspected for any 

discoloration. Ten larvae per strain were chosen at random and disinfected using alcohol wipes 

before each inoculation. Hamilton syringes were used to inject 10 µL aliquots of each diluted 

culture into the bottom, left proleg of each larva. PBS was injected into the larvae within one 

group to monitor death due to injury. As a negative control, WT cells were also heat killed at 

60°C for 1 hour, and the Δacs knockout strain (kindly provided by Dr. James Kronstad, 

University of British Columbia) was used as a control. Two sets of larvae were inoculated for 

each strain; one set was incubated at 30°C and the other at 37°C. The larvae were monitored daily 

and scored for death when they no longer were able to roll over. Each assay was repeated three 

times. Kaplan-Meier survival analysis was conducted using GraphPad Prism version 4.0 software. 
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Survival of C. neoformans cells in J774A.1 cells 

Phagocytosis and fungal killing assays were conducted using J774A.1 macrophages 

(kindly provided by Jeff Anker, Clemson University) as previously described (26). 

Approximately 1x105 J774A.1 macrophage-like cells per well were cultured in complete 

Dulbecco’s modified Eagle medium (DMEM) and incubated at 37°C, 5% CO2 overnight. C. 

neoformans cells were grown overnight in YPD at 30°C, washed three times and diluted in PBS. 

C. neoformans cells were opsonized with 1 µg/mL MAb 18B7 (kindly provided by Arturo 

Casedevall, Albert Einstein College of Medicine of Yeshiva University)  and added to 10 nM 

phorbol myristate acetate (PMA) - activated macrophages in a 1:1 ratio. The macrophages and 

fungal cells were co-incubated for one hour at 37°C, 5% CO2. Each well was carefully washed to 

remove extracellular fungi and left overnight at 37°C, 5% CO2. The macrophages were lysed, the 

cell suspension diluted 1:100 and plated onto YPD, where the killing index was determined (# of 

fungal cells added/# of cells recovered). Each strain had three replicates per assay, and the assay 

was repeated three times. Analysis of variance was calculated using Graph Pad online software 

QuickCalcs (http://www.graphpad.com/quickcalcs/). 

 

Fluorescence microscopy 

For confocal microscopy, cells expressing Ack:Neo:mCherry (27, 50) were grown 

overnight in synthetic medium at 30°C and shaking at 250 RPM; cells were diluted five-fold and 

grown for an additional two hours. Prior to microscopy, cells were washed and resuspended in 

PBS. Z-stack images were collected on a DeltaVision Elite Deconvolution microscope (Olympus) 
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using a 100x oil immersion objective with the mCherry/AF594 575/25 filter. Images were 

processed using Fiji (ImageJ).   

Molecular organelle dyes (Life Technologies) were used to label the cells to further 

delineate the localization of Ack. Ack:mCherry cells were grown overnight at 30°C in YPD and 

shaking and then diluted five - fold and grown for an additional two hours before the addition of 

the following dyes. Manufacturer’s instructions were followed for all dyes. The Nuc Blue Live 

Cell Reagent is Hoechst 33342 nuclear stain that when bound to DNA and excited by the DAPI 

365/50 filter emits blue fluorescence. The yeast vacuole membrane marker, MDY-64, which 

stays sequestered in the lumen of the vacuole, the FM1-43 dye, which partitions into the lipid 

bilayer of the membranes of endocytic vesicles and the plasma membrane, and the Mitotracker 

Green Stain, which crosses the mitochondrial membrane where it interacts with thiol groups on 

other proteins and stays sequestered within the organelle, all emit green fluorescence when 

excited using the GFP/FITC 470/40 filter. The ER-tracker Blue-White dye is a lipophilic dye that 

selectively stains the ER and emits blue fluorescence when excited by the DAPI 365/50 filter. 

Images were taken on an Axiovert Inverted Microscope (Zeiss). Images were processed using 

Zeiss software and Fiji (Image J). 

 

Western blot analysis 

A 10 mL culture of Ack:Neo:mCherry H99 was grown overnight at 30°C and shaking at 

250 RPM. Five milliliters of culture was centrifuged for five minutes at 900 x g at 10°C. The 

pellet was resuspended in 500 µL of lysis buffer (1% TritonX-100, 50 mM Tris, pH 7.5, 150 mM 

NaCl, 0.5 mM EDTA) and cells were lysed using glass beads with eight passages through a mini-

beadbeater (Biospec Products, Inc.) at RT with one minute rests on ice. The debris was pelleted 

by centrifugation and the lysate collected. Lysate samples were diluted 1:1 with sample buffer 
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containing 0.4% SDS and 1% β-mercaptoethanol, denatured at 95°C for ten minutes, and then 

electrophoresed on a 10% SDS-PAGE gel. The gel was transferred to nitrocellulose membrane at 

12V for 1.5 hours using the Trans-Blot SD Semi-Dry Transfer Cell (Biorad Laboratories, Inc.), 

followed by incubation for 2 hours at RT in blocking solution, 5% non-fat dry milk in 50 mL of 

1x TBS/Tween (2 mM Tris-HCl, pH 7.6/13.7 mM NaCl/0.5% Tween). The membrane was rinsed 

in 1x TBS Tween before adding the anti-mCherry monoclonal antibody (Abcam) at a 1:2000 

dilution in blocking buffer overnight at 4°C to detect the ACK:Neo:mCherry. The secondary 

antibody was a goat anti-mouse HRP-conjugated antibody (ImmuneChem) used at a 1:6000 

dilution in blocking buffer at RT for 1 hour. 
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III. Results 
 

Disruption of the ACK, XFP1 and XFP2 genes in the C. neoformans serotype A strain 

through biolistic transformation 

To characterize the role of the Xfp-Ack pathway in the physiology and metabolism of C. 

neoformans, constructs for the gene disruptions of ACK, XFP1 and XFP2 were generated (Figure 

2) using both the neomycin resistance gene (2.7kb) and the hygromycin resistance gene (2.9 kb), 

and then introduced into C. neoformans using biolistic transformation. The double 

Δxfp1:Hyg/Δxfp2:Neo was generated by transforming the Δxfp2:Neo construct into Δxfp1:Hyg 

cells. Attempts to create a double Δack:Neo/Δxfp1:Hyg through both biolistic transformation and 

mating were not successful.  

The validation of a successful homologous recombination event into the proper locus 

occurred through the use of PCR with two independent primers sets: one set that annealed within 

the selective marker and a second set that annealed within the coding region of the gene. If the 

XFP1 coding region were present, a PCR product of 2173 bp would be expected. If the 

hygromycin resistance gene had replaced the XFP1 coding region, a PCR product of 1612 bp 

would be generated. The 1612 bp band observed confirmed the XFP1 knockout (Figure 3a). If 

the XFP2 coding region were intact, a PCR product of 1850 bp would be amplified. If the 

neomycin resistance gene had replaced the XFP2 coding region, a PCR product of 1535 bp would 

be generated. The 1535 bp band observed confirmed the XFP2 knockout (Figure 3b). 

 As further confirmation that the coding region of XFP1 and XFP2 were indeed disrupted  

RNA was isolated from the wild type (WT) and knockout mutants for cDNA analyses. The XFP1 

primers amplified the 5’ region of the XFP1 transcript, and would produce a cDNA product 

approximately 410 bp in size (Figure 4a). The XFP2 primers amplified the 5’ region of the XFP2 
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transcript and would produce a cDNA product approximately 567 bp in size (Figure 4b). The 

RT-PCR products were of the expected size, which is conclusive of successful homologous 

recombination and that the RNA isolation was not contaminated with genomic DNA. 

Amplification of the 3’ portion of the actin transcript was used as a positive control for each RT-

PCR reaction (Figure 4c). 

 To confirm a single integration event into the appropriate locus and that the construct had 

also not illegitimately recombined elsewhere in the genomes, a Southern blot was performed. 

EcoRI cuts one time within the neomycin resistance gene, downstream from where the 

biotinylated neomycin probe would anneal. The PvuII cuts one time within the hygromycin 

resistance gene, downstream from where the biotinylated hygromycin probe would anneal. The 

detection of single bands indicated that only a single integration event occurred for each of the 

knockout strains (data not shown). 

 

 Ack and Xfp may influence growth under low glucose and low iron conditions 

 The availability of glucose as the sole carbon source is limiting in some environments of 

the mammalian host during infection (28, 29). To test whether the ACK and XFP mutants could 

adapt and utilize other carbon sources during limiting conditions, the C. neoformans WT and 

mutants were grown on media supplemented with glucose, acetate, ethanol, xylose, galactose, 

arabinose or glycerol (Figure 5). The WT and mutants displayed similar growth to one another 

on all media tested, and under both 30°C and 37°C.  

 Environments of infection are usually low in available glucose (28, 30); therefore, we 

conducted growth curves of the ACK and XFP mutants in low concentrations of glucose, 0.001%, 

0.01%, and 0.1% glucose, to observe any differences (Figure 6). Under all conditions tested, the 

Δxfp1:Hyg experienced an average of 8.7% increase in growth compared to WT by 30 hours, 



 123 

whereas the Δack:Neo and the Δxfp2:Neo grew slightly less than the WT by 10.6% and 9.1%, 

respectively, by 30 hours. The Δxfp1:Hyg:Δxfp2:Neo had an increase in growth as glucose 

increased. By 30 hours at 0.001% glucose, the double knockout was 17.9% below WT 

absorbance, at 0.01%, it was 16.7% below WT absorbance, and at 0.1% glucose, it reached WT 

absorbance.  

 C. neoformans has three main virulence factors: the presence of a polysaccharide capsule, 

the production of melanin, and the ability to grow at 37°C. The effect of these mutants on 

polysaccharide capsule production was observed by growing the cells under low iron conditions. 

The Δxfp1:Hyg produced cells with capsule that were similar to WT whereas the Δxfp2:Neo was 

primarily microcells (Figure 7a). However, a pleiotropic effect was observed with the Δack:Neo 

in which microcells, macrocells, and cells with and without capsule were observed. A melanin 

deficiency was tested on media supplemented with L-Dopamine; both the WT and the mutants 

were able to produce melanin at a similar level (Figure 7b).  The growth of the WT and mutants 

on various carbon sources were also performed at 37°C. No growth defect was observed at 37°C 

(Data not shown). 

 

C. neoformans Xfp-Ack pathway may play a role in stress response towards azole drugs  

 To determine whether the mutants of the Xfp-Ack pathway display an increased 

sensitivity to stress conditions, all strains were tested for a response to osmotic, nitrosative, and 

oxidative stresses. When the mutants and WT were grown on YNB medium supplemented with 

the different compounds that mimic stressful conditions, no significant differences were observed 

(Figure 8). Changing the growth to mammalian body temperature did not alter the effect of the 

stress response.  
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 Next, we determined whether the Xfp-Ack pathway might play a role in stress response 

towards azole drugs by testing the effect of fluconazole, which is used to inhibit fungal growth in 

mammals, on the mutants and wild type. Fluconazole Etest strips (Figure 9) were used to 

determine the MIC50 for the WT and the ACK and XFP mutants (Table 3). Since the mutants 

were originally isolated on YNB + 0.2% glucose plates, both 0.2% and 2% glucose plates were 

used to determine sensitivity to fluconazole. At 0.2% glucose, the Δack:Neo and 

Δxfp1:Hyg:Δxfp2:Neo displayed sensitivity to fluconazole with a MIC50 of 10 µg/mL and 

8µg/mL, respectively, compared to the WT with a MIC50 of 12µg/mL. The Δxfp1:Hyg and 

Δxfp2:Neo displayed more resistance to fluconazole with MIC50 values of 32 µg/mL and 

16µg/mL, respectively. At 2% glucose, no difference was observed in MIC50 values compared 

between Δxfp2:Neo, Δxfp1:Hyg:Δxfp2:Neo and WT at 8 µg/mL. However, the Δack:Neo and 

Δxfp1:Hyg exhibited slight resistance compared to WT with a MIC50 of 12µg/mL. 

 

The XFP1, XFP2, and XFP1/XFP2 knockout mutants displayed reduced survival in 

J774A.1 macrophages 

 To investigate the role of this acetate-producing pathway in the virulence of C. 

neoformans, the Ack and Xfp mutants were injected into the model, the wax moth larvae Galleria 

mellonella, All of the mutants killed the larvae at the same rate as the WT cells, at both 37°C and 

25°C, with no significant difference observed (Figure 10). The median days of survival at 37°C 

for the PBS control was 4.74 ± 1.09, the WT was 3.30 ± 1.20, the Δack:Neo was 2.41 ± 0.62, the 

Δxfp1:Hyg was 3.22 ± 0.52, Δxfp2:Neo was 3.02 ± 0.44, and the Δxfp1:Hyg:Δxfp2:Neo was 3.37 

± 0.89. The median days of survival at 25°C for the PBS control was 10.87 ± 2.96, the WT was 

6.43 ± 2.39, the Δack:Neo was 6.70 ± 2.79, the Δxfp1:Hyg was 6.90 ± 2.48, Δxfp2:Neo was 6.63 

± 2.25, and the Δxfp1:Hyg:Δxfp2:Neo was 6.80 ± 2.16.  
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 Although insect immunity is similar to mammalian immunity (31), we tested the survival 

of the ACK and XFP knockout strains within alveolar macrophages. The C. neoformans mutant 

cells were co-cultured with J774A.1 macrophage-like cells and analyzed for defects in survival 

within macrophages (Figure 11). There was no significant difference in survival between the WT 

(67.9 ± 22.5 %) compared to the Δack:Neo (67.8 ± 24.8%). In contrast, all three XFP mutants 

displayed a significant decrease in survival. The Δxfp1:Hyg had a recovery of 45.2 ± 18.4% (p < 

0.05). The Δxfp2:Neo, and Δxfp1:Hyg:Δxfp2:Neo had a significance with a p-value less than 

0.001 with a recovery of 35.4 ± 7.3 and 32.8 ± 3.8, respectively.  

  

C. neoformans AckmCherry localizes to punctate structures when grown in synthetic 

complete medium and to the cytoplasm when grown in YPD. 

 To further address the role of Ack in physiology and virulence, we studied the 

localization of Ack. The AckmCherry fusion construct was integrated into the ACK locus where it 

is under the control of its native promoter. The resulting strain lacked any morphological 

abnormalities when grown in low iron media and visualized with India ink as the Δack:Neo 

indicating that the AckmCherry is functional. A Western blot conducted with antisera to mCherry 

demonstrated that full length AckmCherry is expressed. Cleaved mCherry would have been 

expected to approximately 26.7 kDa, whereas full length AckmCherry is 74 kDa (Figure 12).  

When AckmCherry cells were grown and refreshed in synthetic complete medium, 

confocal microscopic analysis revealed the mCherry to be localized to punctate vesicles (Figure 

13). To identify these punctate structures, co-localization experiments using organelle dyes were 

conducted. We used Nuc Blue Live Cell Stain to identify the nucleus, Yeast Vacuole Membrane 

Marker to visualize vacuoles (Figure 14), Mitotracker to identify the mitochondria (Figure 15), 

FM1-43 to stain endosomes/lysosomes (Figure 16), and ER-tracker to visualize the endoplasmic 
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reticulum (Figure 17). Throughout all of the co-localization experiments, the AckmCherry 

continued to display a pattern consistent with cytoplasmic staining when the cells were grown in 

YPD. 
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IV. Discussion 

  Across all three domains of life, acetate is found to be a predominant metabolite excreted 

from the cell that can be used as both a carbon and energy source (32). The study of E. coli 

growth on multiple acetogenic carbon sources, has led to the observation that a “switch” occurs 

that allows the cells to adapt to their varying nutritional status; when acetate evolution and 

activation come to equilibrium with one another, bacterial cells execute what is known as the 

“acetate switch” (33, 34). During acetate evolution, the TCA cycle operates through a branched 

route, which provides precursor metabolites but lacks the production of high-energy molecules. 

Therefore, in Escherichia coli, ATP pools regenerate through glycolysis or through the Pta-Ack 

pathway when acetate concentrations are high (35, 36).   

  A highly diverse group of eukaryotic microbes evolved ways to produce acetate as a 

metabolic end product when supplied glucose but little oxygen through anaerobic metabolism 

(37). One pathway previously thought to be only found in bacteria, Xfp-Ack, is found in some 

fungi and may provide ATP under conditions when the TCA cycle or oxidative phosphorylation 

is not functioning at levels as when both glucose and oxygen are available. In C. neoformans, 

acetate production by the Xfp-Ack pathway could play a role in virulence by reducing the pH of 

the external environment. This can result in the inhibition of chemotaxis of neutrophils, increased 

apoptosis of neutrophils, and lowering the generation of superoxides (4). Expression studies in C. 

neoformans have shown that genes encoding enzymes of this pathway are upregulated during 

infection (8) and under conditions the microbe may experience in the mammalian host, such as 

growth in macrophages (7) or in environments that induce hypoxic (24) and oxidative stress (9).  

  The presence of both Xfp and Ack, combined with the presence of genes encoding all of 

the other enzymes of the pentose phosphate pathway in Cryptococcus suggested Xfp-Ack might 
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function as a modified pentose phosphoketolase pathway for acetate production (4). Comparing 

the mutant strains to the WT, there is not a significant defect on acetate production when grown 

on glucose (G. Kisirkoi and K. Smith, unpublished), indicating the Pdc-Ald pathway maybe the 

principal route of acetate production in vitro. Also, the acetate may never leave the cell but 

instead, be utilized by Acs, which converts the acetate to acetyl-CoA (1). However, this does not 

rule out a role for Ack-Xfp1/Xfp2 pathways in acetate production during infection. 

 The lack of phenotype for both mutants under certain in vitro conditions suggests that 

although Xfp and Ack may partner, they may not always partner together. The individual 

knockouts of ACK, XFP1, and XFP2 could be constructed, along with the double XFP1/XFP2 

knockout; however, attempts to generate a double knockout of ACK and XFP1 have thus far been 

unsuccessful. If these enzymes partnered together under all circumstances, the individual 

knockouts, as well as the XFP1 and XFP2 double knockout, would be expected to show a 

phenotype similar to the double ACK and XFP1 knockout. Therefore, this genetics approach 

suggests the enzymes may function in two separate pathways, but we also question the possibility 

of another partner enzyme that interacts with either Xfp and/or Ack that can use and produce 

acetyl phosphate. Genes encoding other known acetyl phosphate-producing enzymes are absent 

from the C. neoformans genome. Two possibilities to explain this are: (1) a novel or 

evolutionarily distinct class of known acetyl phosphate-producing enzyme is present in fungi with 

Ack, or (2) a previously uncharacterized or undiscovered acetyl phosphate-generating enzyme is 

present in fungi with Ack 

  In each fungal genome that possesses an ACK, at least one XFP ORF has been identified. 

In many cases, like C. neoformans, two ORFS have sequence identity to XFP (5). A phylogenetic 

analysis of Xfp sequences revealed two distinct fungal Xfp clades, designated as Xfp1 and Xfp2. 

This is the first study that investigates the physiological role of this pathway in a fungus that has 



 129 

two Xfps. Sanchez et al. (6) conducted a phylogenetic analysis that grouped the Xfps into three 

groups. Group 1 includes fungal and bacterial phosphoketolases from Cryptococcus, Aspergillus, 

Bifidobacteria, and Lactobacillus species.  Group 2 and 3 include phosphoketolases mainly from 

proteobacteria and cyanobacteria; however, Group 3 does include the fungal Xfp1 clade (19). 

Several experimental studies on Xfp2 enzymes from Group 2 have been reported (19, 21). Until 

recently, the only biochemical data available on an Xfp came from bacterial Xfps, but Glenn et al. 

(20) characterized the Xfp2 from C. neoformans in the acetyl phosphate-producing direction and 

did not report characterization of the phosphoketose-forming direction.  

  The Group 3 Xfps include the Xfp1 enzymes from C. neoformans, A. nidulans, and 

Schizosaccharomyces pombe. Characterization of a fungal Xfp1 has not been reported. Prior 

attempts to express and purify these three fungal Xfps from E. coli have resulted in the 

production of inactive protein when assayed with F6P (Taylor, Nguyen and Smith, unpublished 

data). In addition, the Group 3 Xfp from Anabaena lacks activity with either X5P or F6P as the 

substrate, whereas both Group 1 Xfps could use both substrates (19). The Xfp1 enzymes could 

possibly be functioning in the opposite direction or catalyzing a different reaction, since they all 

possess a TPP-binding domain and little activity when assayed with either F6P or X5P (19).  

However, a phosphoproteomic study conducted in S. pombe (38) indicates that a conserved serine 

residue is phosphorylated, within all of the fungal Xfp1 enzymes, which is a glycine residue in 

the Group 1 Xfps: the fungal Xfp2s and the bacterial Xfps (Taylor, Guggisberg, and Smith, 

unpublished). Therefore, post-translational modification may be needed in order for these 

enzymes to be active.  

  Furthermore, the question is also raised whether Xfp1 and Xfp2 are redundant enzymes 

in C. neoformans. This could be an additional reason for why the individual XFP1 and XFP2 
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knockouts survive. However, if they aren’t redundant, one of the Xfps could partner with Ack to 

catalyze the phosphoketose-forming direction, and under certain conditions, one of the Xfps 

could play a role in generating glyceraldehyde 3-phosphate to shuttle back into the pay-off phase 

of glycolysis to by-pass the consumption of ATP in the beginning of glycolysis under stressful 

conditions (12). If glyceraldehyde 3-phosphate is the main product, then acetyl phosphate is a by-

product, and Ack could be present to regulate the acetyl phosphate pools of the cell.  

  The low glucose growth experiments (Figure 6) suggest that Ack and Xfp2 may function 

together under low glucose environments. The Δxfp1:Hyg grew 8.7% better than WT under all 

conditions tested. Ack and Xfp2 would still be present in this knockout, but in both the Δack:Neo 

and Δxfp2:Neo, growth was less than observed in WT under all three conditions tested. In this 

scenario, Ack and Xfp2 could be functioning to produce acetate to be used as a carbon source 

since glucose is limiting, along with ATP. If Xfp1 is using another phosphoketose such as 

sedoheptulose 7-phosphate or ribose 5-phosphate, it may be removing metabolites from important 

pathways such as the pentose phosphate pathway or the synthesis of nucleotides. However, 

certain fungi, such as A. nidulans and S. pombe, only have one Xfp that falls within the Xfp1 

clade suggesting that Xfp1 may partner with Ack under certain growth conditions within these 

fungi.  

To investigate the role of the Xfp-Ack pathway in C. neoformans virulence, in vivo 

studies were conducted with the ACK, XFP1, and XFP2 mutants using the invertebrate Galleria 

mellonella (wax moth larvae). G. mellonella is an excellent model for studying fungal 

pathogenesis due to the larvae’s size, cost effectiveness, and survival at RT, removing any 

temperature effects in the experiment (39). In addition, the larvae are an easy method to study the 

interactions of the fungus with the immune system, which is similar to the mammalian innate 
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immune system (40). The immune system of the larvae is organized by hemocytes, which are 

very similar to mammalian neutrophils. This model system is excellent when observing mutants 

that may be defected in capsule or melanin production (40). Although insect hemocytes can 

phagocytose and kill invading cells, they more closely resemble human neutrophils than 

macrophages, especially through their oxidative burst pathways (41).  

No significant difference was observed in the phenotype between WT and mutants 

(Figure 10). The disparity that insect immunity displays compared to mammalian immunity (42) 

may be an explanation for why no difference is seen among the mutants and the WT, when G. 

mellonella was used as the in vivo model . 

Macrophage survival assay indicates that Xfp1 and Xfp2 each play important roles in 

fungal survival in J774A.1 cells (Figure 11). Furthermore, this data suggests that Xfp1 and Xfp2 

may not be partnering with Ack within the macrophage in the mammalian host, since the survival 

for the Δack:Neo is similar to WT and that of Δxfp1:Hyg, Δxfp2:Neo, and Δxfp1:Hyg:Δxfp2:Neo 

are all statistically reduced from the WT. The acetyl phosphate produced by these enzymes could 

still be hydrolyzed to acetate in the absence of Ack. We hypothesize these mutants will also be 

less virulent than wild type in the murine model, since experimental results produced in 

macrophage studies predict the results acquired when using mice as an in vivo model (43). 

Additional experimental evidence suggesting Ack and Xfp2 may work together is when the cells 

were grown in low iron media and imaged with India ink as both the Δack:Neo and Δxfp2:Neo 

mutants displayed different cell wall and cell size effects (Figure 7a).  

Ack localizes to punctate structures within the cell (Figure 13), which is similar to the 

localization previously reported for both Kic1 and Cbk1 (44). Kic1 and Cbk1 are both serine 

threonine kinases that localize to punctate structures within C. neoformans that function within 

the RAM signaling pathway that plays a role in morphogenesis (44). Homologs of both of these 
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proteins have been studied in Drosophila melanogaster, Neurospora crassa, Caenorhabditis 

elegans, and humans (44). These homologs play some role in morphology such as hyphal 

elongation in fungi, wing hair development in the fruit fly, neuronal cell shape in C. elegans, and 

tumor suppression in humans (44). These punctate structures are thought to be recycling 

endosomes, which are an intermediate between the Golgi and the plasma membrane and are 

thought to be a hub for the biosynthesis or modification of plasma membrane proteins (44). These 

data suggests that Ack may play a structural role within C. neoformans. Little is known about the 

sorting of proteins to the cell surface in eukaryotic organisms, but there is some evidence that 

sorting occurs in endosomes (45, 46). 

The punctate structures in the confocal microscopy are absent in the fluorescence 

microscopy (Figures 14-17), and the fluorescence pattern is consistent with Ack localizing to the 

cytoplasm (47). Therefore, the FM1-43 dye used to determine co-localization to the plasma 

membrane and recycling endosomes does not co-localize with the AckmCherry pattern. This 

difference could possibly be due to the YPD media the cells were grown prior to the fluorescence 

microscopy versus the synthetic complete media the cells were grown in prior to the confocal 

microscopy. The punctate structures seen in Figure 13, which were observed in cells grown in 

synthetic complete medium, could be a difference in localization due to the surrounding 

environment (48).  

Localization studies of Xfp1 from S. pombe indicate that this enzyme is found in both the 

cytoplasm and the nucleus (49). If Xfp1 and Ack function together at some point during 

metabolism, then it would be reasonable that Ack would also be found in the cytoplasm. In 

addition, if there were instances these two enzymes did not work together, then the localization of 

Ack to these punctate structures within the cell would also be plausible, along with Xfp1 
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localizing to the nucleus. Even though many questions remain unanswered, the Xfp-Ack 

pathway(s) is far more complex in fungi than in heterofermentative bacteria.  

Our data indicates that Xfp1 and Xfp2 play a role in macrophage survival during C. 

neoformans pathogenesis, and that Ack and Xfp2 possibly partner together under low glucose and 

low iron environments. Although Ack does not seem to play a role in virulence, it does have a 

role under specific growth conditions.  Further studies need to be conducted to elucidate the 

partnership of Ack and Xfp1 or Xfp2, as well as whether both Xfp enzymes use the same 

phosphoketose substrates or if a second partner enzyme is present. Additionally, more rigorous 

mating experiments with the Δack:Neo KN99a and Δxfp1:Hyg KN99α cells needs to be 

conducted, since attempts to generate an ACK/XFP1 double mutant by both biolistic 

transformation and preliminary mating experiments have been unsuccessful. The creation of a 

Δxfp2:Hyg construct would allow generation of a ACK/XFP2 double mutant through biolistic 

transformation or mating. The inability to create a double mutant of either pathway (Xfp1-Ack or 

Xfp2-Ack) would clarify if one or both pathways are indeed essential and indicate whether the 

functioning of both enzymes is necessary. 

Ma et al. have previously demonstrated that experimental results generated with 

macrophage studies are strong predictors to the results using mice as an in vivo model. Therefore, 

inhalation and/or tail-vein injection experiments need to be conducted in the murine model with 

the different mutants since we have observed an in vivo phenotype within mouse macrophages 

with both the XFP1 and XFP2 mutants. These experiments would be expected to provide more 

information about the mammalian specific role these enzymes are playing within C. neoformans.  
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Table 1. Primers Used in Creating the Deletion Constructs. 
 

No Primer Name Primer Sequence 
1 5’ XFP1 out: 5’ CAGTGCAATTTCAGGGAAAC 3’ 
2 5’ XFP1 in: 5’ GAAGATATTGTCAGCCTGCTACTGCG 3’ 
3 5’ XFP1-selec 5’ GTCAGCTGAACGCTCATAAACCAGGAAACAGCTATGACCATG 3’ 
4 selec-5’ XFP1 5’ CATGGTCATAGCTGTTTCCTGGTTTATGAGCGTTCAGCTGAC 3’ 
5 selec-3’ XFP1 5’ CACTGGCCGTCGTTTTACAAcGGTCCAGTCACTGGAATAAT 3’ 
6 3’ XFP1- selec 5’ ATTATTCCAGTGACTGGACCGTTGTAAAACGACGGCCAGTG 3’ 
7 3’ XFP1 in 5’ CGTCTTCTCCCTTTCCGACCATCCGAG  3’ 
8 3’ XFP1 out 5’ CAGATTTGGGCAGCAGTGAGC 3’ 
9 5’ XFP2 out: 5’ CGTCGGTGACCGATTATTAAG 3’ 
10 5’ XFP2 in: 5’ CAAGGTTCAAGGGGAAACAAGGCGGC 3’ 
11 5’ XFP2-selec 5’ CACTCAATACAACTCTCAGCCAGGAAACAGCTATGACCATG 3’ 
12 selec-5’ XFP2 5’ CATGGTCATAGCTGTTTCCTGGCTGAGAGTTGTATTGAGTG 3’ 
13 selec-3’ XFP2 5’ CACTGGCCGTCGTTTTACAACCGAATAGGGTAGGTTACAGTC 3’ 
14 3’ XFP2- selec 5’ GACTGTAACCTACCCTATTCGGTTGTAAAACGACGGCCAGTG 3’ 
15 3’ XFP2 in 5’ GTCCTACTGCTCTTCCCATGTC 3’ 
16 3’ XFP2 out 5’ CGGACAGCTCAGGCGAGACG 3’ 
17 K1O1 5' TTCTGAAAGACAGAAGGAGCCCACC 3' 
18 K1O2 5' GCTTTCTTCACTCCCGATGGATTCG –3' 
19 K1O3 5’ GTAGCGAGGTCTGGAAGCCAC 3’ 
20 K1O4 5’ GACTTGGGGAAGAGGAATTC 3’ 
21 K1O5 5’ CATCACCAAGTACTGACTGCCCAGGAAACAGCTATGACCATG 3’ 
22 K1O6 5’ CATGGTCATAGCTGTTTCCTGGGCAGTCAGTACTTGGTGATG 3’ 
23 K1O7 5’ CACTGGCCGTCGTTTTACAACATTTACTACGAAGCCAACATTTC 3’ 
24 K1O8 5’ GAAATGTTGGCTTCGTAGTAAATGTTGTAAAACGACGGCCAGTG 3’ 
!  
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  Table 2: PCR and RT-PCR Confirmation Primers 

Primer Name Primer Sequence

5’XFP1ex 5' – CCAGTATCCGGCCCTCATCTGGTC – 3'

3’HYGintcoding 5' – GCCGATGCAAAGTGCCGATAAACA – 3'

5’HYGintcoding 5' – TGTTTATCGGCACTTTGCATCGGC – 3'

3’XFP1ext 5' – CCGACGTTCTTACCAGGGCCTTGG – 3'

5’XFP2ext 5’ – GCCGCTCGATGAATTTGTGGCCTC – 3'

3’NEOintcoding 5’ – CTGCAGTTCATTCAGGGCACCGGA – 3’

5’NEOintcoding 5’ – TCCGGTGCCCTGAATGAACTGCAG – 3’

3’XFP2ext 5' – TCTGGCTTCTTCCCTGATCAGGAC – 3'

XFP1F-RT 5’ – GGTCTCATTGCTTTCCAGAGGGTAGCC – 3’

XFP1R-RT 5’ – CCACCTTCATGAAGCGCACCGGG – 3’ 

XFP2F-RT 5’ – CATCTCAAGGCTCGTCTTTTGGGTCACTGG – 3’

XFP2R-RT 5’ – GGCTTCCAGCCATAGCCAACGAAGAG – 3’ 

ACTIN-1 5’ – CGCTATCCTCCGTATCGATCTTGC – 3’

ACTIN-2 5’ – CAGCTGGAAGGTAGACAAAGAGGC – 3’
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Table 3. The Effect of Fluconazole Determined Through Etest. 

! 2%!Glucose! 0.2%!Glucose!
WT! 8!µg/mL! 12!µg/mL!
Δack! 12!µg/mL! 10!µg/mL!
Δxfp1! 12!µg/mL! 32!µg/mL!
Δxfp2! 8!µg/mL! 16!µg/mL!
Δxfp1Δxfp2! 8!µg/mL! 8!µg/mL!
!  
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Figure 1. Two putative pathways in C. neoformans for acetate production. Two pathways for 

the production of acetate in C. neoformans are highlighted in red. Acs (in green) utilizes acetate 

transported into the cell and converts it into acetyl-CoA. Enzyme abbreviations are designated in 

the text. (Unpublished data; permission granted for the reuse of this figure by K. Smith). 
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Figure 2. Strategy for generating XFP1, XFP2, and ACK deletion knockouts. The final 

deletion constructs with either the Neomycin or Hygromycin selectable marker were created by 

three-step overlap PCR,. Using the Xfp1 schematic as an example, the first PCR would include 

amplification of the 5’ non-coding region, with primers 1 and 4, and the 3’ non-coding region, 

with primers 5 and 8 from genomic DNA. The second PCR would include amplification of the 

selectable marker using primers 3 and 6 from the respective plasmids. The third PCR would use 

the overlap strategy of this method and amplify all 3 pieces with nested primers 2 and 7.  
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Figure 3a. Δxfp1 KN99α knockout mutant gDNA confirmation. gDNA was amplified with 

primers that would anneal within the XFP1 coding region and the 3’ non-coding region. This 

results in an expected size product of 2173 bp for WT gDNA (Lane 1) and would not amplify the 

Δxfp1 KN99α gDNA (Lane 2). gDNA was also amplified with primers that would anneal within 

the 5’ non-coding region and the hygromycin resistance gene. This would not amplify the WT 

gDNA (Lane 3) and results in the expected size product of 1612 bp for the Δxfp1 KN99α gDNA 

(Lane 4).   
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Figure 3b. Δxfp2 KN99α knockout mutant gDNA confirmation. gDNA was amplified with 

primers that would anneal within the XFP2 coding region and the 3’ non-coding region. This 

results in the expected size product of 1850 bp for WT gDNA (Lane 1) and would not amplify the 

Δxfp2 KN99α gDNA (Lane 2). gDNA was also amplified with primers that would anneal within 

the 5’ non-coding region and the neomycin resistance gene. This would not amplify the WT 

gDNA (Lane 3) and results in the expected size product of 1535 bp for the Δxfp2 KN99α gDNA 

(Lane 4).   

 



 148 

 

gD
N
A%

750$~$

500$~$
W
T%
RN

A%
Δx
fp
1%
RN

A%

W
T#
RN

A#

Δx
fp
2#
RN

A#

500#~#

500~$

Δx
fp
1$

Δx
fp
2$

Δa
ck
$

W
T$

A) B) 

C) 



149 

Figure 4. Confirmation of knockout mutants using RT-PCR. (a) Δxfp1 KN99α knockout 

mutant verification. Isolated RNA from both WT and the Δxfp1 KN99α, grown in YPD at 30°C, 

was used for cDNA analysis. Amplification of WT gDNA results in a size of 695 bp (Lane 1). 

WT RNA produced a cDNA with a size of 410 bp (Lane 2), and the primers would not amplify 

the Δxfp1 KN99α RNA (Lane 3). (b) Δxfp2 KN99α knockout mutant verification. Isolated 

RNA from both WT and the Δxfp2 KN99α was used for cDNA analysis with primers that 

amplified across 2 introns of XFP2. The amplification of WT RNA produces a cDNA with a size 

of 567 bp (Lane 1), and the primers would not amplify the Δxfp2 KN99α RNA (Lane 2). (c) 

Actin RNA controls. As confirmation of RNA stability, primers were used to amplify the 3’ 

portion of the actin gene. This results a 543 bp band for Δxfp1 (Lane 1), Δxfp2 (Lane 2), Δack 

(Lane 3), and WT (Lane 4). 
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Figure 5. Xfp-Ack knockouts lack a growth phenotype on all carbon sources. Cells were 

diluted in water to 1 x 104 cells, and then diluted serially 10-fold. Five microliters of each dilution 

was spotted onto YNB plates. Similar results were seen at both 30°C and 37°C. 
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Figure 6. Growth differences observed with the Xfp-Ack knockouts when grown in low 

glucose. Growth in YNB + Glucose (0.001%, 0.01% and 0.1%) at 30°C. Growth was monitored 

at OD600 from zero to thirty hours. Data shown are three different independent assays per strain 

and error bars represent standard deviations.  
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Figure 7. The effect of the ACK and XFP mutants on virulence factors. (a) Cells were grown 

in low iron conditions at 30°C and visualized microscopically using India Ink at 40x 

magnification. (b) Cells were resuspended in water to 1 x 104 cells and diluted serially 10-fold. 

Five microliters of each dilution was spotted onto 0.1% Glucose + 1mM L-Dopamine plates to 

test melanin production. 
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Figure 8. Knockouts lack a stress response phenotype on all compounds tested. Cells were 

resuspended in water to 1 x 104 cells, and then diluted serially 10-fold. Five microliters of each 

dilution was spotted onto YPD plates. 
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Figure 9. A representation of the fluconazole Etest. WT and mutant cells were diluted to 0.07 

OD in 0.9% NaCl and plated onto a YPD or YNB + 0.2% glucose plate. One fluconazole Etest 

Strip (BioMérieux, Inc., Durham, NC) was gently placed at the center of each plate and the plate 

was incubated at 30°C 2-3 days. The MIC50 for each strain was determined by the zone of killing. 
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Figure 10. The ACK and XFP mutants are as virulent as WT C. neoformans in Galleria 

mellonella model.  Kaplan-Meier plots of WT and mutant strains injected into G. mellonella 

larvae. The larvae were incubated at both 25°C and 37°C. PBS and heat-killed WT cells were 

used as controls.  
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Figure 11. Xfp1 and Xfp2 play a role in the survival of C. neoformans in macrophages. WT 

and mutant strains were co-incubated in a 1:1 ratio with J774A macrophages, and incubated at 

37°C, 5% CO2. The mean numbers of cells recovered (%) ± SD are reported. Three biological 

replicates and three assay replicates were conducted for each strain. 
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Figure 12. Only full length AckmCherry detected in cell lysate. An anti-mCherry monoclonal 

antibody was used to detect the full-length ACK:Neo:mCherry in cell extract, supernatant and the 

cell lysate of C. neoformans cells grown on YPD.  



 159 

 

 

Figure 13. AckmCherry confocal microscopy localizes to punctate structures within the cell. 

A strain expressing AckmCherry under its native promoter was grown at 30°C in synthetic 

complete medium. Z-stack images were collected using a 100x oil immersion objective with the 

mCherry/AF594 575/25 filter. 
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Figure 14. AckmCherry does not localize to the vacuolar membrane or the nucleus. Images 

were taken using a fluorescent microscope at a magnification of 100x. AckmCherry cells were 

stained with the vacuole organelle dye and the nuc blue stain.  
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Figure 15. AckmCherry does not localize to the mitochondria. Images were taken using a 

fluorescent microscope at a magnification of 100x. AckmCherry cells were stained with the 

mitotracker organelle dye, while another population of AckmCherry cells that lacked stain was 

used as a control for interference due to the dyes.  
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Figure 16. AckmCherry does not localize to endosomes. Images were taken using a fluorescent 

microscope at a magnification of 100x. AckmCherry cells were stained with the FM1-43 

organelle dye, while another population of AckmCherry cells that lacked stain was used as a 

control for interference due to the dyes.  



 163 

AckmCherry*
No*Dye*

WT*

AckmCherry*

DIC* Texas*Red* ER7tracker* Merge*

 

 

Figure 17. AckmCherry does not appear to co-localize with the ER-tracker. Images were 

taken using a fluorescent microscope at a magnification of 100x. AckmCherry cells were stained 

with the ER-tracker organelle dye, while another population of AckmCherry cells that lacked 

stain was used as a control for interference due to the dyes.  
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CHAPTER FIVE 

Conclusions and Future Works 

 

Acetate assimilation and dissimilation pathways and the regulation of the enzymes in 

these pathways have received far less attention in eukaryotic microbes than in bacteria. This 

dissertation is comprised of two studies that provide details on the partner enzymes of acetate 

kinase (Ack) in eukaryotic pathogens and the roles that the two different pathways may play in 

metabolism.  

 The first major study is the biochemical and kinetic characterization of the Phytophthora 

ramorum Pta1II enzyme, which functions primarily to covert acetyl phosphate and CoA to acetyl-

CoA and Pi. This work highlights significant differences and similarities between bacterial and 

eukaryotic Pta enzymes, including the two previously characterized bacterial PtaII enzymes from 

Escherichia coli and Salmonella enterica. A comparison of the bacterial and eukaryotic enzymes 

and the phylogenetic diversity across the domains suggests that the N-terminal domain and its 

regulatory role have evolved throughout the Bacteria and the Eukarya. We discovered that the 

PtaII enzyme family is more complex than previously thought. Four subtypes of PtaII are found 

based on the presence and absence of the P-loop and DRTGG subdomains within the N-terminus 

regulatory domain. We also demonstrate that a conserved Gly residue (Gly-300 in P. ramorum 

Pta1II) in the N-terminal regulatory domain of both the bacterial and eukaryotic Pta enzymes 

influences the regulation of the Pta enzyme in how it responds to pyruvate as an allosteric 

effector. 

Future studies for the P. ramorum Pta project should include the biochemical and kinetic 

characterization of the PrPta2II from P. ramorum. This would provide information on whether 

PrPta1II and PrPta2II are redundant enzymes within the organism, such as both enzymes only 
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working in the acetyl-CoA-forming direction, or if they play two separate roles, such as PrPta2II 

working in either direction or only the acetyl phosphate-forming direction. In addition, it would 

be interesting to know whether PrPta2II is allosterically regulated in a similar manner to PrPta1II 

or through a different type of regulation.  

Within C. reinhardtii, the Pat1-Ack2 pathway is found in the mitochondria, whereas the 

Pat2-Ack1 pathway is found within the chloroplast (1). Utilizing predicted subcellular 

localization software, PrPta1II is predicted to localize to the cytoplasm but also has a chloroplast 

targeting sequence, whereas PrPta2II is only predicted to localize to the cytoplasm. Would the P. 

ramorum and C. reinhardtii enzymes be similar in their localization and biochemical role?  Are 

the differences seen between the bacterial and eukaryotic enzymes restricted between the two 

domains or would we see differences among the eukaryotes as well? Due to the presence and 

absence of the two subdomains, differences in allosteric regulation would be expected among all 

of the Type II subtypes. The characterization of the other Pta subtypes would allow us to establish 

the role of the P-loop and DRTGG subdomains. 

We have provided purified PrPta1II protein to a crystallographer collaborator; however, 

crystal growth has been problematic. If a structure were solved in the presence of an effector 

molecule, the molecular basis for allostery could be directly investigated. A structure in the 

absence of effectors would allow us to utilize molecular modeling to assist in the identification of 

allosteric effector binding pockets. PtaII structures would provide information on other residues 

within both the N-terminus and C-terminus that would answer more questions about the 

differences between the PtaI and PtaII enzymes, along with the differences among Bacteria, 

Eukarya and Archaea Pta enzymes. 

The second focus of my dissertation is the characterization of the Ack-Xfp1/Xfp2 

pathway in the opportunistic fungal pathogen Cryptococcus neoformans. We generated single 
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ACK, XFP1 and XFP2 knockouts, as well as the double XFP1/XFP2 knockout to investigate the 

metabolic and physiological role of this pathway in C. neoformans. When acetate production was 

assayed for both the WT and mutants, no significant defect was observed, which led us to 

hypothesize that this, at least in vitro, may not be the main acetate fermentation pathway in C. 

neoformans. Our results suggest that Ack and Xfp2 most likely partner together under low 

glucose and possibly low iron environments, and that Xfp1 and Xfp2 play a role in the survival of 

C. neoformans within macrophages. Although these two enzymes partner together in lactic acid 

bacteria, they may serve separate functions in eukaryotic fungi, especially in the role of survival 

of C. neoformans within macrophages.  

Future work should be focused on trying to further elucidate the partnership of Ack and 

Xfp1 or Xfp2 and the roles each enzyme or pathway plays. Attempts to generate an ACK/XFP1 

double mutant by both biolistic transformation and preliminary mating experiments have been 

unsuccessful. A more rigorous mating experiment with the Δack:Neo KN99a and Δxfp1:Hyg 

KN99α cells needs to be conducted. The inability to create a double mutant would clarify that this 

pathway is indeed essential and indicate that the functioning of both enzymes is necessary. The 

creation of a Δxfp2:Hyg construct would allow generation of a ACK/XFP2 double mutant 

through biolistic transformation or mating.  

Since the XFP1, XFP2 and XFP1/XFP2 mutants have an in vivo phenotype within mouse 

macrophages, inhalation and/or tail-vein injection experiments need to be conducted in the 

murine model. These experiments would be expected to provide more information about the 

mammalian specific role these enzymes are playing within C. neoformans. Ma et al. have 

previously demonstrated that experimental results generated with macrophage studies are strong 

predictors to the results using mice as an in vivo model (2).  
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Lastly, localization studies of Ack, Xfp1 and Xfp2 will continue to answer questions 

about the physiological role of these enzymes. The Xfp1 and Xfp2 fluorescent-tagged constructs 

should be created with the coding regions fused with GFP; this will allow for co-localization 

studies with the AckmCherry construct. Once all of the constructs are generated and transformed 

into C. neoformans, studies can be conducted to look at the localization of these enzymes when 

the cells are grown under different growth conditions. If co-localization occurs, this may further 

address when Ack may partner with Xfp1 and/or Xfp2. Co-localization under only certain growth 

conditions could uncover the role of the Ack-Xfp1/Xfp2 pathway. This could lead to protein-

protein interaction studies, such as pull down assays with cell extract to further characterize these 

interactions. 

This is the first substantial study into the two major partner enzymes of Ack in eukaryotic 

pathogenic microbes. The phylogenetic analysis of the Pta enzymes from both bacterial and 

eukaryotic organisms has filled a major gap in this field by identifying four different subtypes of 

the regulated Pta enzyme by the absence and presence of the DRTGG and P-loop subdomains 

within the N-terminal regulatory domain. This work indicates there is a complexity in the 

regulation of the Pta enzyme across the Bacteria and Eukarya, and although we have 

biochemically characterized only one of the two PtaIIa enzymes from P. ramorum, this 

information along with further characterization of other enzymes of different subtypes, such as 

the bacterial pathogen Mycobacterium, will provide further advancement in the field where 

testable hypotheses can be proposed about the metabolic and physiological role of these enzymes 

and their regulation.  

In addition, the investigation into the metabolic and physiological role of the Xfp-Ack 

pathway in C. neoformans, has led us to conclude that environmental conditions play a role in the 

localization and partnering of these enzymes. It also indicates that the Xfp-Ack pathway in fungi 
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is more complex than it is in heterofermentative bacteria. In this work, we indicate a role for Xfp 

in the survival of C. neoformans within the macrophage, which may open up a new, 

unappreciated target that could be exploited in drug development.  

 



 169 

	  
References 

 
1. Yang W, Catalanotti C, D'Adamo S, Wittkopp TM, Ingram-Smith CJ, Mackinder 

L, Miller TE, Heuberger AL, Peers G, Smith KS, Jonikas MC, Grossman AR, 
Posewitz MC. 2014. Alternative Acetate Production Pathways in Chlamydomonas 
reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in 
Fermentative Acetate Production. Plant Cell 26:4499-4518. 

2. Ma H, Hagen F, Stekel DJ, Johnston SA, Sionov E, Falk R, Polacheck I, 
Boekhout T, May RC. 2009. The fatal fungal outbreak on Vancouver Island is 
characterized by enhanced intracellular parasitism driven by mitochondrial 
regulation. Proc Natl Acad Sci U S A 106:12980-12985. 



170 

Appendix A 
 

Fungal Ack Structures Possess a Loop that is Non-Existent in Other Ack Enzymes 
 
 

A.# B.#
 

 
Figure A-1. The E. histolytica Ack (A) and C. neoformans Ack (B) Crystal 
Structures. The loop structure highlighted in yellow is present in fungal sequences only, 
and could possibly be a binding domain for another partner enzyme. Image is adapted 
from (Ch. 4, Ref 13) and permission was granted for the reuse of this figure. 
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                                          232      241 
Mtherm           CHLGNG-SSITAVEGGKSVETSMGFTPLEGLAMGTRCGSIDPAIVPFLMEKEGL------ 259 
Bsubtilis        CHLGNG-ASIAAVEGGKSIDTSMGFTPLAGVAMGTRSGNIDPALIPYIMEKTGQ------ 257 
Creinhardtii2    CHLGNG-SSVAAVRGGQCVDTSMGMTPLEGLLMGTRCGDIDPAVVLHIQNQLGL------ 285 
Creinhardtii1    CHLGNG-SSVAAVRGGQCVDTSMGLTPLEGLLMGTRCGDMDPAVVLHIQNQCGL------ 267 
Pramorum         CHLGNG-SSIAAISKGRCIDTSMGMTPLEGLVMGTRSGDIDPAIHAFLCKELDM------ 287 
Psojae           CHLGNG-SSIAAIHKGRCIDTSMGMTPLEGLVMGTRCGDVDPALHAFLCKELDM------ 332 
EcoliK12         CHLGNG-GSVSAIGNGKCVDTSMGLTPLEGLVIGTRSGDIDPAIIFHLHDTLGM------ 261 
Ehistolytica     CHLGTGGSSCCGIVNGKSFDTSMGNSTLAGLVMSTRCGDIDPTIPIDMIQQVG------- 249 
Edispar          CHLGTGGSSCCGIVNGKSFDTSMGNSTLAGLVMSTRCGDIDPTIPIDMIQQVG------- 249 
Einvadens        CHLGTGGSSCCAILNGKSYDTSMGNSTLAGLVMSTRCGDIDPSIPINIVEQIG------- 249 
Anidulans        LHIGSG-ASVCAIKDGKSIDTSMGLTPLAGLPGATRSGDIDPSLVFHYTNEAGKLSPAST 270 
Ncrassa          LHLGSG-ASACAIKGGKSLDNSMGLTPLAGLPGATRSGSVDPSLVFHYASDVGKLSPAST 296 
Pnodorum         LHLGSG-ASACCVMNGKSHDTSMGLTPLAGLPGATRSGSIDPSLMFHFTHKAGKPSRSSS 273 
Cneoformans      AHLGSG-SSSCCIKNGKSVDTSMGLTPLEGLLGGTRSGTIDPTAIFHHTKDAA--SDANV 275 
Umaydis          LHLGSG-SSICSVVRGRSFDTSMGLTPLEGLPGGTRSGSVDPVLALHLSSATLPGGKDGT 304 
                  *:*.* .*   :  *:. :.*** :.* *:  .**.* :**                   

                                             283 285 
Mtherm           -------TTREIDTLMNKKSGVLGVSGLSNDFRDLDEAASKGN----------------R 296 
Bsubtilis        -------TADEVLNTLNKKSGLLGISGFSSDLRDIVEATKEGN----------------E 294 
Creinhardtii2    -------SASETDTLLNKKSGLLGLTG-SNDLRAVIEGAGKGE----------------P 321 
Creinhardtii1    -------NVKETDTLLNKKSGLLGLTG-SNDLRAVIEGAGKGE----------------P 303 
Pramorum         -------SIQEVDTMLNKKSGLLGICD-ESDIRVIQDRVRAGDD---------------P 324 
Psojae           -------TIQDVDKMLNKQSGLLGICD-ESDIRVIQDRVRAGND---------------P 369 
EcoliK12         -------SVDAINKLLTKESGLLGLTEVTSDCRYVEDNYATKE----------------- 297 
Ehistolytica     --------IEKVVDILNKKSGLLGVSELSSDMRDILHEIETRGPK-------------AK 288 
Edispar          --------VERVVDILNKRSGLLGVSELSSDMRDILHEIEIKGPK-------------AK 288 
Einvadens        --------IQKTVDLLNKRSGLFGVSETSCDIRDLLKEIKENGQK-------------AE 288 
Anidulans        KEMH----ISTAEEILNKKSGWKVLTG-TTDFSQIAVEDPPS-----------------E 308 
Ncrassa          KDLH----ISRAEEILNKQSGWKALTG-TTNFGTITAALDPSSSDTTS----HLSPEEVA 347 
Pnodorum         EKLH----ITQAEEILNKNSGWKSLTG-TTDFGKISSSDRRE------------------ 310 
Cneoformans      GDFT----VSKAEIILNKNSGLKALAG-TTNFGHIIQNLDPS----------KCSKEDHE 320 
Umaydis          VEIADGIRVSRAEVVLNKHSGFKAVAG-SSDFAEIVQRRNEFLQGRTMGKHKEEERSKDR 363 
                                :.*.**   :     :   :                           
 
Figure A-2. Sequence Alignment of Ack Sequences. The residues found in the loop 
structure in Figure A-1,are highlighted in yellow and found only in fungal Ack 
sequences. 
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