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ABSTRACT 

 

South Atlantic coastal plain streams are unique and understudied freshwater 

environments that provide crucial habitats for a wide range of aquatic taxa. In Chapter 1, 

we investigated patterns in fish assemblages across South Carolina’s coastal plain, and 

developed statistical models to identify the dominant multi-scale abiotic environmental 

factors that influence assemblage structure. Our analyses indicated the presence of four 

predominant fish assemblages that commonly occur in the South Atlantic coastal plain, 

which we termed the: 1) fluvial, 2) eastern mudminnow, 3) centrarchid, and 4) non-

fluvial assemblages. Natural geographic gradients and instream habitat parameters 

associated with velocity, channel form, stream size, and depth played a greater role in 

distinguishing fish assemblages than catchment land cover, and these instream habitat 

parameters showed weak relationships with anthropogenic land cover conditions. We 

proposed four possible explanations as to why geographic gradients and instream 

parameters have greater explanatory power than catchment land cover parameters in 

determining coastal plain fish assemblage structure, and why instream factors may not be 

strongly linked to land cover factors. Explanations included: 1) a sustained dynamic 

equilibrium among catchment, riparian, and instream conditions over time may 

encourage assemblage partitioning among differential instream habitats, 2) past-

landscape disturbances may have greater influence on current instream habitats and fish 

assemblage structure, 3) weak relationships between catchment land cover and instream 

habitats may be common in low elevation regions, and 4) seasonal hydrologic patterns 

may dominantly influence instream habitat conditions and fish assemblage structure. This 



 iii 

study adds essential information towards a better understanding of how South Atlantic 

coastal plain fish assemblages respond to abiotic factors across multiple spatial scales. 

Such knowledge will help improve management and conservation strategies, as well as 

assist in the development of appropriate indicators for standardized evaluations of 

ecological integrity.   

We investigated the impacts of channelization on South Atlantic coastal plain 

stream habitats and fish assemblages in Chapter 2. Hundreds of miles of coastal plain 

streams have been dramatically altered by channelization over the last 200 years for 

agricultural, silvicultural, or other anthropogenic endeavors. Although there is some 

evidence to the contrary, the impacts of channelization on stream habitats and fish 

assemblages of different regions have generally been negative. Previous research on the 

impacts of channelization on fishes has largely focused on changes in traditional 

measures of taxonomic diversity and assemblage-based analyses. However, trait-based 

analyses offer an alternative approach for assessing fish assemblage response to 

channelization that may enhance our understanding of disturbance/response patterns in 

South Atlantic coastal plain streams. We categorized sampled streams a priori into 4 

channel types based on observations of their gross channel morphology: 1) single channel 

non-channelized streams, 2) maintained channelized streams, 3) unmaintained (> 5years) 

channelized streams, and 4) braided swamp-like non-channelized streams. We performed 

a series of statistical tests to identify significant instream habitat differences among 

channel types, and evaluated differences in fish assemblages using both taxonomic and 

trait-based analyses. Our results indicated that channelization significantly influences the 
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instream physicochemical habitat conditions of South Atlantic coastal plain streams, and 

in turn influences patterns of fish assemblage structure. Maintained channelized streams 

retained higher average velocities than unmaintained channelized streams, but both types 

of channelized streams had fewer structural habitat components, greater indications of 

water quality degradation, and lacked floodplain connectivity in comparison to 

unchannelized streams. We found no difference in fish taxonomic diversity metrics 

among channel types, and taxonomic assemblage-based analyses revealed limited 

information regarding structural associations. In contrast, our trait-based analysis 

elucidated species differences among all channelized and non-channelized channel types; 

principal differences were found in habitat preference, and body size/reproductive 

ecology. Single channel non-channelized streams were typified by a suite of native 

rheophillic species, while braided swamp-like streams hosted native rheophobic fishes 

with high tolerance to low-flow habitats. Although actively maintained channelized 

streams retained fluvial habitats, they failed to support native rheophillic species. Instead, 

they were typified by fishes with opportunistic/colonizing life histories common to 

aquatic systems with low environmental stability and high abiotic stress. Unmaintained 

channelized streams were typified by predatory species, reflecting the potential for these 

streams to undergo seasonal dewatering events. Unmaintained channelized assemblages 

were otherwise similar to those of braided-swamp like streams, indicating the potential 

for biotic recovery of channelized streams over time. Our study suggests that trait-based 

analyses may be particularly well suited to elucidating information on ecological 

response to environmental disturbances in the South Atlantic coastal plain, and their use 
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in conjunction with taxonomic analyses should provide a fruitful avenue for developing 

and testing ecological theory of fish assemblage organization in this region.  

Dam removal is considered an effective tool for restoring ecological integrity to 

rivers and streams, yet few studies have investigated the impacts and recovery of fish 

assemblages after dam removal(s), and virtually no published research has emerged from 

dam removals in the southeastern U.S. The study presented in Chapter 3 examined the 

effects of two dam removals on instream habitat, fish metrics, and fish assemblage 

structure of Twelvemile Creek, a tributary to the Lake Harwell Reservoir, located in 

Pickens County, South Carolina. Our results indicated that the bulk of instream habitat 

changes occurred within 1-year of each dam removal; major geomorphic adjustments led 

to dramatically increased flow rates and shifts from fine to coarse/bedrock substrates in 

both former impoundments. However, we found no significant instream habitat changes 

in downstream free-flowing sites despite field observations that indicated persisting 

deposited sediment for the duration of the study, with greater deposition in the vicinity of 

the downstream-most removed dam. Previously lentic-dominated fish assemblages at 

former impounded sites generally shifted to a lotic-dominated structure within 6-months 

(upper-removed dam), and 1-1.5 years (lower-removed dam) after dam removal. Despite 

these prominent assemblage shifts, we found impacts on benthic invertivore density at 

sites flanking the upper-removed dam at 2.5-years post dam removal, and impacts on 

total density, richness, benthic invertivore density, and native centrarchid density at sites 

flanking the lower-removed dam at 2-years post dam removal. These findings suggested 

that multiple dam removals had a cumulative downstream increase in negative impacts on 
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fish assemblages. We also observed a sharp increase in non-native density following the 

removal of the lower-most dam, led by captures of Micropterus henshalli, a non-native 

species introduced to the downstream Lake Hartwell reservoir in the 1980s that is known 

to reduce native Micropterus coosae populations through introgressive hybridization. We 

routinely captured Micropterus coosae at all sample sites both before and after dam 

removals, whereas we only captured Micropterus henshalli in post dam removal samples. 

As such, our study elucidated the potential for tributary dams to act as barriers that 

protect native lotic species from the influence of downstream reservoir taxa; such 

phenomena may be exacerbated in southeastern U.S., where impoundment and reservoir 

density is extremely high. Although dam removal can have ecological trade-offs and 

short-term disturbance impacts, we demonstrated that dam removal can also reverse 

many of the negative impacts dams have on fish assemblages, primarily through the 

restoration of high-quality lotic habitats required by native riverine species. Our findings 

suggest that fish assemblages in high-gradient southeastern U.S. systems are likely to 

recover once habitat disturbances and sediment loads are fully reduced, assuming highly 

vulnerable or sensitive species are not at risk. 

 

 



 vii 

ACKNOWLEDGMENTS 

 

Special thanks to Mark Scott of the South Carolina Department of Natural 

Resources for support and guidance through both my academic and professional career, 

and Rob Baldwin of Clemson University for facilitating this collaborative effort. I thank 

the South Carolina Department of Natural Resources Stream Team for data collection, 

data entry, and many memorable life experiences. Stream team members included Kevin 

Kubach, Troy Cribb, William Poly, and Andrew Gelder. I additionally thank numerous 

Clemson University students and South Carolina Department of Natural Resources 

seasonal technicians for their assistance in sampling including: Jeremy Pike, Alan Jones, 

Andrew Sayer, Molly Keaton, Jace Johnston, Annemarieke DeVlaming, Seth Mycko, 

Cory Guinn, Greg Satterfield, Patricia Whitener, and Brandon Seda. This manuscript was 

greatly improved by comments from Mark Scott and Kevin Kubach of the South Carolina 

Department of Natural Resources, Rob Baldwin and Rockie English of Clemson 

University, Bryan Brown of Virginia Tech, and Stephen Sefick of Auburn University. I 

additionally thank Ross Self and Jim Bulak of the South Carolina Department of Natural 

Resources, as well as all the members of the Freshwater Fisheries Section for technical 

support and research assistance. This research was funded by two State Wildlife Grants 

from the U.S. Fish and Wildlife service, a grant from the Twelvemile Creek Natural 

Resources Board of Trustees, and the South Carolina Department of Natural Resources.   

Finally, I thank Amy Winter, Russ Marion, Gail Marion, and Jeremy Pike for 

their endless support and patience during this endeavor; this would not have been 

possible without you.  



 viii 

TABLE OF CONTENTS 

 

 

Page 

 

TITLE PAGE .................................................................................................................... i 

 

ABSTRACT ..................................................................................................................... ii 

 

ACKNOWLEDGMENTS ............................................................................................. vii 

 

LIST OF TABLES ........................................................................................................... x 

 

LIST OF FIGURES ........................................................................................................ xi 

 

CHAPTER 

 

 I. MULTI-SCALE INFLUENCES ON THE TAXONOMIC  

                  STRUCTURE OF SOUTH ATLANTIC COASTAL PLAIN  

                  FISH ASSEMBLAGES ................................................................................. 1 

 

   Abstract .................................................................................................... 1 

   Introduction .............................................................................................. 2 

   Study Site ................................................................................................. 6 

   Methods.................................................................................................... 7 

   Results .................................................................................................... 16 

   Discussion .............................................................................................. 22 

   References .............................................................................................. 31 

   Tables ..................................................................................................... 38 

   Figures.................................................................................................... 41 

 

 II. FISH TAXONOMIC AND TRAIT ASSOCIATIONS  

  AMONG MIXED CHANNEL GEOMORPHOLOGIES  

  IN THE SOUTH ATLANTIC COASTAL PLAIN ..................................... 49 

 

   Abstract .................................................................................................. 49 

   Introduction ............................................................................................ 51 

   Study Site ............................................................................................... 54 

   Methods.................................................................................................. 54 

   Results .................................................................................................... 61 

   Discussion .............................................................................................. 65 

   References .............................................................................................. 75 

   Tables ..................................................................................................... 84 

   Figures.................................................................................................... 88 



 ix 

Table of Contents (Continued) 

 

Page 

 

 III. THE EFFECTS OF MULTIPLE DAM REMOVALS ON  

  THE FISH ASSEMBLAGE OF TWELVEMILE CREEK,  

  PICKENS COUNTY, SOUTH CAROLINA .............................................. 91 

 

   Abstract .................................................................................................. 91 

   Introduction ............................................................................................ 93 

   Methods.................................................................................................. 96 

   Results .................................................................................................. 101 

   Discussion ............................................................................................ 110 

   References ............................................................................................ 121 

   Tables ................................................................................................... 128 

   Figures.................................................................................................. 130 



 x 

LIST OF TABLES 

 

 

Table                                                                                                                               Page 

 

 1.1 Summary statistics for multi-scale abiotic predictor variables. ................... 38 

 

 1.2 Group membership and indicator values for four coastal  

   plain fish assemblages............................................................................ 40 

 

 2.1 Traits derived from FishTraits database used in data analysis. ................... 84 

 

 2.2 Habitat ranges, overall means, and means (±SD) by channel  

   type. P-values are associated with results of one-way  

   ANOVAs with channel type (1,2,3,4) as the independent  

   variable. Bolded italics indicate statistical significance. ....................... 85 

 

 2.3 Fish diversity metric ranges, overall means, and means  

   (±SD) by channel type. P-values are associated with  

   results of one-way ANOVAs with channel type (1,2,3,4)  

   as the independent variable. Bolded italics indicate  

   statistical significance. ........................................................................... 86 

 

 2.4 Significant species and trait relationships among channel  

   types based on 4
th

 corner analysis. Abbreviations and  

   codes are found in Table 2.1. Positive and negative signs  

   indicate directionality of bivariate relationship between  

   trait and channel type. * = P < 0.05, ** = P < 0.01,  

   *** = P < .001. ....................................................................................... 87 

 

 3.1 Pre- and post- dam removal mean values (± SE) of habitat  

   variables among BA pairwise comparisons. Values in  

   bolded italics indicate a significant difference from  

   the BA analysis at P < 0.05. ................................................................. 128 

 

 3.2 Pre- and post- dam removal mean values (± SE) of fish  

   metrics among BA pairwise comparisons. Values in bolded  

   italics indicate a significant difference from the  

   BA analysis at P < 0.05. ...................................................................... 129 

 

 

 

 

  



 xi 

LIST OF FIGURES 

 

 

Figure                                                                                                                             Page 

 

 1.1 Study area showing EPA level IV ecoregions, major  

   drainage basins, and locations of all sampling sites. ............................. 41 

 

 1.2 Non-metric multidimensional scaling results for first  

   3 axes. Symbols represent species in sample space,  

   and are individually coded to show their assemblage  

   association as determined by the cluster analysis.  

   Triangles represent members of the fluvial community,  

   stars represent members of the eastern mudminnow  

   community, crosses represent members of the centrarchid  

   community, and squares containing an X represent  

   members of the non-fluvial community. ................................................ 42 

 

 1.3 Variable importance plot showing top ranked variables  

   from random forests classification for predicting  

   coastal plain taxonomic assemblage membership.   

   Mean decrease in accuracy is the normalized difference  

   of the classification accuracy for the observations  

   excluded from model calibration, and the classification  

   accuracy for the same observations when values of  

   the predictor are randomly permuted. Higher values  

   of the mean decrease in accuracy indicate that a variable  

   is more important to the classification. .................................................. 43 

 

 1.4 Ecobasin was the most important predictor for coastal plain  

   taxonomic group classification.  Here, we have shaded  

   ecobasin regions of the coastal plain based on their  

   probability of classification of each of the taxonomic  

   groups (group 1 = fluvial assemblage,  

   group 2 = eastern mudminnow assemblage,  

   group 3 = centrarchid assemblage,  

   group 4 = non-fluvial assemblage). Shaded areas  

   indicate high (dark grey), intermediate (medium grey),  

   and low (light grey) probabilities of classification.. .............................. 44 

 

 

 

 

 



 xii 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 1.5 Partial dependence plots for top ranked predictors (a-j). Partial  

   dependence plots isolate and examine the behavior of  

   individual predictors on the outcome, while holding  

   the effect of all other predictive variables constant.   

   Partial dependence plots are divided into four quadrants,  

   showing the isolated relationship between each predictor  

   and each individual coastal plain taxonomic assemblage.   

   Group 1 is the fluvial assemblage, group 2 is the  

   eastern mudminnow assemblage, group 3 is the  

   centrarchid assemblage, and group 4 is the  

   non-fluvial assemblage.. ........................................................................ 45 

 

 1.6 Principal components analysis of multi-scale abiotic variables.   

   The length of arrow vectors represents a variable’s  

   strength of relationship with a given explanatory axis. ......................... 48 

 

 2.1 Study area showing EPA level IV ecoregions, major drainage  

   basins, and locations of all sampling sites. ............................................ 88 

 

 2.2 Classification tree from the Classification and Regression  

   Tree (CART) model. Values below explanatory variables  

   indicate splitting criteria (e.g. if a site had ≥ 0.063 m/s  

   average velocity, then it was placed into the group to  

   the left of the branch, otherwise it was placed on the  

   branch to the right). Numbers in circles indicate channel  

   type (1,2,3,4) terminal nodes. ................................................................ 89 

 

 2.3 Non-Metric Multidimensional Scaling (NMDS) follow-up  

   to NPMANOVA analysis. Symbols represent sites,  

   and are coded according to channel type. Blue triangles  

   represent channel type 1, gray stars represent  

   channel type 2, green circles represent channel type 3,  

   and red squares represent channel type 4. .............................................. 90 

 

 3.1 Locations of Twelvemile Creek, the two Woodside Dams,  

   the Easley-Central Dam (E-C Dam), and 6 sampling  

   sites. A) Twelvemile Creek watershed shaded in grey  

   within state of South Carolina. B) Locations of sampling  

   sites indicated by red circles. ............................................................... 130 

 



 xiii 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 3.2 Changes in non-native fish density across all study sites  

   over the 7-year study period. Vertical dashed lines  

   indicate removals of the a) Woodside I Dam, and the  

   b) Woodside II Dam............................................................................. 131 

 

 3.3 Non-Metric Multidimensional Scaling (NMDS) ordination  

   of fish assemblages by site. Points closer to one another  

   in the ordination are more similar in assemblage structure.  

   Upstream and Downstream coordinates are not shown  

   but fall tightly around locations indicated by ‘Upstream’  

   and ‘Downstream’. Species names along axes refer to  

   species that correlate strongly on each axis, whether  

   positively or negatively. Habitat variables under arrows  

   are parameters that were strongly correlated with each  

   NMDS axis. Species correlations were inherent weights  

   (i.e. the ordination is based on the species), whereas  

   habitat correlations were post-hoc calculations. .................................. 132 



1 

CHAPTER ONE 

 

MULTI-SCALE INFLEUNCES ON THE TAXONOMIC STRUCTURE OF  

 

SOUTH ATLANTIC COASTAL PLAIN FISH ASSEMBLAGES 

 

 

Abstract   

South Atlantic coastal plain streams are unique and understudied freshwater 

environments that provide crucial habitats for a wide range of aquatic taxa. We 

investigated patterns in fish assemblages across South Carolina’s coastal plain, and 

developed statistical models to identify the dominant multi-scale abiotic environmental 

factors that influence assemblage structure. We performed hierarchical agglomerative 

clustering, indicator species analysis, and non-metric multidimensional scaling analyses 

on fish assemblage data collected at 208 wadeable coastal plain streams to identify and 

describe the predominant fish assemblages that commonly occur in the region. We used 

classification random forests to identify the multi-scale abiotic variables that best 

distinguish the habitats of faunal associations we identified. Our analyses indicated the 

presence of four predominant fish assemblages that commonly occur in the South 

Atlantic coastal plain, which we termed the: 1) fluvial, 2) eastern mudminnow, 3) 

centrarchid, and 4) non-fluvial assemblages. Assemblage names were assigned based on 

the prevailing taxonomic and/or ecological attributes of the species with the highest 

indicator values for each group. Natural geographic gradients and instream habitat 

parameters associated with velocity, channel form, stream size, and depth played a 

greater role in distinguishing fish assemblages than catchment land cover and stream 

network parameters, and these instream habitat parameters showed weak relationships 
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with anthropogenic land cover conditions. We proposed four possible explanations as to 

why geographic gradients and instream parameters have greater explanatory power than 

catchment land cover parameters in determining coastal plain fish assemblage structure, 

and why instream factors may not be strongly linked to land cover factors. Explanations 

included: 1) a sustained dynamic equilibrium among catchment, riparian, and instream 

conditions over time may encourage assemblage partitioning among differential instream 

habitats, 2) past-landscape disturbances may have greater influence on current instream 

habitats and fish assemblage structure, 3) weak relationships between catchment land 

cover and instream habitats may be common in low elevation regions, and 4) seasonal 

hydrologic patterns may dominantly influence instream habitat conditions and fish 

assemblage structure. This study adds essential information towards a better 

understanding of how South Atlantic coastal plain fish assemblages respond to abiotic 

factors across multiple spatial scales. Such knowledge will help improve management 

and conservation strategies, as well as assist in the development of appropriate indicators 

for standardized evaluations of ecological integrity.   

Introduction  

A key prerequisite for the conservation of biodiversity, particularly in under-

surveyed systems, is to determine the number and types of communities that exist; such 

efforts provide a starting point for researchers to assess status, trends, and losses over 

time (Angermeier and Winston 1999). Further identifying the primary environmental 

factors that influence community composition, and the relevant spatial scales at which 

they manifest, is a particularly important component in the development of appropriate 
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conservation and management plans (Allan 2004; Fausch et al. 2002; Johnson and Host 

2010). Hierarchical theory provides a framework for identifying the multi-scale factors 

that shape fish assemblages, where at fine scales fish assemblages are structured 

according to local abiotic factors such as hydrologic regimes, physiochemical gradients, 

and instream habitat availability, that are in turn constrained by increasingly larger scale 

catchment and landscape-level features which vary across physiographic and drainage 

boundaries (Frissell et al. 1986; Karr 1991; Townsend 1996). Variation at each scale 

contributes to unique differences in assemblage composition. Understanding the multi-

scale influences on fish assemblages provides conservation managers with baseline 

information about how aquatic species composition varies naturally across the landscape, 

thereby helping them specify how anthropogenic activities alter expected fish assemblage 

structure. 

South Atlantic coastal plain streams are unique and under-studied freshwater 

systems that provide crucial habitats for a wide range of aquatic taxa including many 

endemic habitat specialists. In South Carolina, coastal plain streams provide crucial 

habitats for N=26 endemic lowland specialist fish species (Rohde et al. 2009), as well as 

a wide variety of mussels (N=27; Bogan and Alderman 2008) and crayfish (N=26; 

Arnold Eversole, pers comm.). Coastal plain streams are typified by relatively harsh 

environmental conditions, with pronounced natural seasonal variation in flow regimes, 

and frequent exposure to extreme weather patterns (e.g., drought, tropical storms). In 

contrast to higher-elevation upland streams which have relatively uniform stream channel 

and hydrologic features (single channel with flow), low-elevation coastal plain stream 
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channels tend to be poorly defined and vary greatly across topographical gradients, 

ranging from confined channels with flow, to braided/swampy low-flow systems. Such 

seasonal variability and diversity in coastal stream habitats has forged, over time, a 

unique community of coastal plain fauna and associated life history adaptations.  

However, the identification of coastal plain fish assemblage types, their spatial variation, 

and the multi-scale abiotic influences that shape them are poorly documented and 

understood in the South Atlantic coastal plain.   

Several previous studies of coastal plain fish assemblages have emphasized the 

importance of instream habitat features, particularly large wood (Benke et al. 1985; 

Crook and Robertson 1999; Sheldon and Meffe 1995), stream size (Paller 1994), and 

hydrological flow gradients (Adams et al. 2004; McCargo and Peterson 2010; Meffe and 

Sheldon 1988) as drivers of assemblage structure. Yet little has been published that 

explicitly examines the influences of abiotic factors across multiple spatial scales on 

coastal plain fish assemblages. Researchers have conducted multi-scale analyses of the 

environmental influences on fish assemblages in many other geographic regions, and 

conclusions regarding the relative importance of various instream and landscape-level 

abiotic influences have yielded inconsistent results, indicating that the scales at which 

abiotic factors influence fish assemblages vary across different physiographic regions and 

stressor gradients (Esselman and Allan 2010; Hoeinghaus et al. 2007; Johnson et al. 

2007; Wang et al. 2006). Such incongruous results indicate the need for multi-scale 

analyses unique to the geographic area of conservation interest, particularly in 

understudied aquatic systems. A better understanding of how fish assemblages respond to 
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abiotic factors across spatial scales will help improve management and conservation 

strategies, as well as assist in the development of appropriate indicators for standardized 

evaluations of ecological integrity. Previous attempts to develop and implement 

evaluations of ecological integrity in this region have been restricted to the upper coastal 

plain (Paller et al. 1996), a narrow higher-elevation region which lacks the overall 

diversity of stream habitats observed in the lower-elevations of the South Carolina coastal 

plain. An effort to implement a coastal plain based Index of Biotic Integrity (IBI) by a 

neighboring state yielded counter-intuitive results, where proposed metrics reflecting 

positive aspects of community health correlated negatively to a habitat quality index 

(Patti Lanford, GA Dept. of Natural Resources, Pers. Comm.), exemplifying the 

complexity of this region and further indicating the need for a better understanding of 

South Atlantic coastal plain fish assemblages and the multi-scale abiotic factors that 

influence them.    

Here, we 1) describe the taxonomic patterns in fish assemblages across South 

Carolina’s coastal plain, and 2) develop statistical models to identify the dominant abiotic 

environmental factors that influence assemblage structure and the relevant spatial scales 

at which they manifest. The broad spatial extent of this study provides an opportunity to 

examine environmental influences at multiple scales across a range of stream types found 

in the South Atlantic coastal plain. Our results are intended to provide essential 

information to assist in the development of aquatic management and conservation 

strategies, and the development of aquatic integrity indicators.    
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Study Site 

South Carolina is located in the Southern Atlantic region of the United States. We 

focused on 208 wadeable freshwater streams in South Carolina’s coastal plain, a 45,773 

km² area which includes four major drainage basins (Pee Dee, Lower Santee, Ashepoo-

Combahee-Edisto (ACE), Savannah), and three Level IV ecoregions (Sand Hills, Atlantic 

Southern Loam Plains, Carolina Flatwoods (Figure 1.1; Omernik 1987).  Streams located 

within the Level IV ecoregion Sea Islands/Coastal Marsh were excluded due to 

predominant estuarine influences. Elevations of this region range from approximately 

90m in the Sand Hills to nearly sea level at the coastal zone boundary. Rainfall averages 

127-132 cm/yr (www.dnr.sc.gov/climate), with highest average rainfall during the 

winter/spring and lowest annual rainfall during summer months. There were incipient to 

moderate drought conditions throughout our summer sample periods (2006-2011), 

excluding 2009 which exhibited normal summer rainfall. Mean daily maximum 

temperatures range from 17°C in the winter months to 32°C in the summer months. 

Predominant land cover disturbances in the region range from tobacco, soybean and corn 

row-crop agriculture in the northern region (Pee Dee drainage), to rotating evergreen 

silvicultural crops in the southern portion (ACE/Savannah drainages; Kohlsaat et al. 

2005). Streams of this region generally have poorly defined channels, are low gradient 

and often blackwater, have low flows, are naturally low in pH, alkalinity, conductivity, 

and dissolved oxygen, have a shifting sand and/or organic debris substrate, and are 

generally less productive in both their abundance of fish and macroinvertebrates than 

their upland counterparts (Smock et al. 1985). Many of the sampled streams had been 

http://www.dnr.sc.gov/climate
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channelized or altered in the past for irrigation, transport of goods, or to promote areas of 

soil drainage for agricultural, silvicultural, or other anthropogenic purposes (Kapsch 

2010).   

Methods 

Sample Locations 

Data for this study are a subset of a larger evaluation of statewide aquatic 

resources conducted by the South Carolina Department of Natural Resources (SCDNR) 

in 2006-2011, termed the South Carolina Stream Assessment (SCSA). Statewide sample 

locations were randomly selected from a probabilistic framework designed by the South 

Carolina Department of Natural Resources, described in detail elsewhere (Scott 2008). 

Sample reaches were selected with known probability using a multistage design from a 

list frame of all stream segments in the state, stratified by ecobasin (unique combination 

of EPA level IV ecobasin and major drainage basin) and stream size, and allocated 

proportionally among ecobasin strata to allow statistically defensible estimates of 

statewide resource parameters from the sample data. Sample locations drained 

catchments ranging from 0.17 to 154.13 km² were selected to share no more than half of 

the drainage area of any downstream site, as a means of maintaining independence 

among samples. Selected stream reaches were either single channels, or minimally 

braided to ensure a comprehensive fish sample.   

Fish Collection 

We collected fishes from 208 sample locations with backpack electrofishers 

(Appalachian Aquatics Model AA-24) from spring to fall in the years 2006-2011 during 
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base flow conditions. Sample methods followed standard protocols employed by the 

South Carolina Department of Natural Resources for sampling fish in wadeable streams 

(Scott et al. 2009). This protocol dictates a three-pass electrofishing method along a 

stream reach length equivalent to 20x average width (reach length range 100-200 m, 

median = 100 m). Block nets were utilized at both ends of the sample reach unless the 

reach was sufficiently blocked at one (or both) ends by a natural barrier. All fishes were 

collected with dip nets (4.8-mm mesh), field identified and enumerated, and released 

upon sample completion. Specimens that could not be positively identified in the field 

were preserved in a 90% ethanol solution and returned to the lab for positive 

identification. Voucher specimens of all species were either preserved or photographed. 

Instream Parameters 

We quantified a range of in-stream parameters for each sample reach at the time 

of sample (Table 1.1). Stream channel width measurements were taken at the 0, 25, 50, 

75, and 100m distances along each sample reach and averaged to obtain mean stream 

width. Physical and chemical data, including water temperature, dissolved oxygen, 

conductivity, and pH were recorded prior to fish sampling using a YSI 556 MPS
 TM

 

multiparameter probe. Turbidity was recorded using a MicroTPW
TM

 turbidimeter. Depth, 

velocity, and substrate measurements were quantified using the ‘zig-zag’ habitat 

sampling method after the completion of fish sampling (Bevenger and King 1995; Scott 

et al. 2009).  This method required traversing a random ‘zig-zag’ longitudinal transect in 

a downstream to upstream direction along the sample reach, recording depth, velocity, 

and substrate at 50 randomly selected locations. Inorganic substrate particles were 
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measured in millimeters at the intermediate axis and median particle size was calculated 

for each site. The vast majority of coastal plain streams contained a median particle size 

of <2mm, therefore we examined inorganic substrates as percent sand in all statistical 

analyses. Organic substrates were classified into one of the following percent categories: 

1) fine particulate organic matter (FPOM), 2) coarse particulate organic matter (CPOM), 

3) fine woody debris (FWD), 4) large woody debris (LWD), and 5) aquatic vegetation 

(AV; Scott et al. 2009).  If one of the 50 random sampling points fell on a dry section of 

the stream (discontinuous flow), that measurement was recorded as ‘dry’ and the total of 

50 measurements was reduced by the number of ‘dry’ points. Site elevations were 

obtained in the lab from Terrain Navigator Pro Version 9.2 (Trimble Navigation Limited, 

Sunnyvale, CA, USA) using the North American Datum 1983 map layer. 

Two person crews conducted geomorphological surveys at sample locations 

during the winter succeeding the fish sample. Surveying techniques followed those 

described by Harrelson et al. (1994). Slope measurements were performed from head of 

riffle to head of riffle (where possible), or along stable runs and were approximately 90m 

in length. Crews measured a single representative cross-section of the sampled reach, at 

either riffle areas or stable run areas when riffles were not present. We extracted 

geomorphological parameters from the cross-sectional data using RIVERMorph® 

software (Table 1.1). We set bankfull stage at top of bank, thereby defining bankfull as 

the elevation of the floodplain adjacent to the active channel. We categorized sinuosity as 

a binary variable, describing each stream as either sinuous or not sinuous. Additionally, 

we qualitatively classified the general geomorphological character of each stream as 
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either a) not channelized with distinct single channel, b) channelized, or c) not 

channelized with swamp-like and braided characteristics (Type Code; Table 1.1).  

Catchment Land Cover and Stream Network Parameters 

We quantified land cover within study catchments and 120m riparian buffers 

using ArcGIS® 10.0 (Table 1.1). We mosaicked a combination of the highest resolution 

available digital elevation models (DEMs) for the South Carolina coastal plain, which 

included light detection and ranging data (3m resolution LiDAR; SCDNR Technology 

Development Program), and 10m-30m resolution data obtained from the US Geological 

Survey (Fry et al. 2011). We used Arc Hydro v2.0 to define stream networks based on a 

1.00 km² catchment threshold definition. Delineated catchments included the entire 

drainage area upstream of sample locations, and riparian buffers included 120m land 

areas adjacent to defined stream networks within catchments. We extracted National 

Land Cover Data (NLCD) classes for 2006 for each catchment and associated 120m 

riparian buffer (Gesch et al. 2002). The NLCD distinguishes 20 land cover class 

designations for 2006, which we initially combined into 6 land cover categories 

according to (Fry et al. 2009). Forest land cover was further sub-categorized as either 

deciduous/mixed (NLCD2006 classes: 41, 43) or evergreen (NLCD2006 class: 42) 

(Table 1.1). All map layers were projected in the Universal Transverse Mercator (UTM) 

projection system (zone 17 N), using the North American 1983 datum.  

We additionally calculated several stream network attributes which may influence 

species composition at a given sample location via dispersal opportunity and community 

connectivity (Table 1.1; Brown et al. 2011; Leibold et al. 2004). We used our created 
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stream networks to determine the dendritic distance from sample locations to their 

corresponding downstream HUC 8 mainstem river. We then quantified separate upstream 

and downstream mainstem network attributes including number of dams (USACE 2013), 

number of  impoundments (NHD; USGS 2011), number of road crossings (NHD; USGS 

2011), and number of tributaries (defined stream network).        

Data Analysis 

We performed a hierarchical agglomerative cluster analysis using the Wards 

linkage algorithm on a fish density matrix (number of individuals per 100m²) to identify 

groups of species that commonly co-occur in coastal plain wadeable streams. A 

log10(x+1) transformation was performed on the species density matrix to reduce the 

effect of large differences in fish densities among sample localities. The Euclidean 

distance measure was utilized to calculate species similarity. Preliminary analysis of the 

full species matrix of 77 species revealed an inordinate influence of several rare species 

(Lohr and Fausch 1997). Twenty-nine species whose densities were represented in ≤ 2% 

of sites were identified as strongly influencing the analysis based on rarity alone, and 

were subsequently omitted from the analysis. The vast majority of these rare species were 

considered to be ‘upland’ species, whose distributions do not fully extend into South 

Carolina’s coastal plain, but were captured at very low densities in the Sand Hills 

ecotone. We also detected a strong influence of Gambusia holbrooki based on its 

ubiquitous presence and extreme variability in densities among sites.  The variability of 

this species obscured the underlying fish assemblage structure and it was omitted from all 

subsequent analyses (Lohr and Fausch 1997; Matthews and Marsh-Matthews 2011).  The 
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final data matrix contained 48 species; the cluster analysis was conducted using the 

cluster package of the R 2.15.3 statistical software (R Core Development Team 2012).  

We used an indicator species analysis to assist in describing the faunal 

composition of each classification group (i.e. fish assemblage) and to identify the 

appropriate number of groups for use in subsequent analyses (Dufrêne and Legendre 

1997). The indicator species analysis was conducted using the labdsv package in R 

statistical software (R Core Development Team 2012).  Two- to four- group solutions 

were explored by calculating the indicator value (Iv) of each species for each group. A 

perfect indicator species (Iv=100) would be found if a species occurred in one group and 

in no other groups (McCune and Grace 2002). The significance (α = 0.05) of each 

indicator species was determined by 999 Monte-Carlo permutations. A four- group 

solution was selected for further analysis because it had the highest number of significant 

indicator species, providing evidence of greater difference among assemblages. 

We used non-metric multidimensional scaling (NMDS) to provide further 

validation and insight into the underlying structure of the four fish assemblages defined 

by the cluster analysis (Clarke 1993; Kruskal 1964). NMDS was performed in R’s vegan 

package (R Core Development Team 2012) using the Bray-Curtis distance measure (Bray 

and Curtis 1957), a random starting configuration, and 1000 runs with real data. We used 

a Monte-Carlo test with twenty iterations and ten randomized runs to determine the 

probability of obtaining an equal or lower stress value by chance (α=0.05). From the 

NMDS output, we produced plots showing species coded by their respective cluster 

group membership to further visualize and verify the cluster analysis outcome. 
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We used classification random forests (RF) analysis to identify the multi-scale 

abiotic variables that best distinguish among the four coastal plain fish assemblages 

determined by the cluster analysis (Breiman 2001; Cutler et al. 2007). Machine learning 

techniques such as RF provide an alternative modeling paradigm to traditional statistics, 

where no a priori model is defined, and complex data structures (i.e., non-normal 

distributions, interactions) are accommodated. Machine learning techniques use an 

algorithm to learn the relationship between the response and its predictors by identifying 

dominant patterns in the dataset (Breiman 2001; Elith et al. 2008). RF represent an 

advance in machine learning techniques that have increased the accuracy and prediction 

power of single classification and regression trees by the creation of an ensemble of trees 

(Breiman 2001). RF are non-parametric, can handle both categorical and continuous data 

as either predictor and/or response variables, can handle high-order interactions, are 

insensitive to outliers, and can accommodate missing data by using surrogates (Breiman 

2001; De'ath and Fabricius 2000; Urban 2002). Categorical RF fit an ensemble of trees to 

a dataset, where each individual tree in the forest is built using a randomly selected 

bootstrap sample of the training dataset. In addition, only a random subset of predictor 

variables is considered for node and splitpoint selection (Amit and Geman 1997). In this 

way, two elements of randomness are injected into the procedure. Observations not 

included in the bootstrap samples are passed down their respective trees, and each tree’s 

terminal nodes contain a predicted categorical response to different combinations of 

observed values among predictor variable pathways. Each tree has a ‘vote’ in the most 

important predictive variables to split on, and on the categorical responses of different 
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values of input combinations; and the majority of votes among the ensemble of trees (i.e. 

forest) ‘wins’. Therefore, we can a) predict and rank variables that most strongly 

influence an outcome (variable importance plot), and b) visualize functional relationships 

by examining responses of individual predictors on the outcome, while holding the effect 

of all other predictive variables constant (partial dependence plots).  

RF modeling was conducted by building 5000 trees using default values for other 

parameters in the randomForest package in the R programming environment (R Core 

Development Team 2012). RF models have known biases in variable importance 

selection for highly correlated predictor variables; therefore we conducted a preliminary 

screening of our abiotic variables to eliminate highly correlated variables (Strobl et al. 

2007). Riparian land cover proportions were highly correlated with whole catchment 

proportions (all r > 0.80), average velocity was highly correlated with standard deviation 

of velocity (r = 0.89), average depth was highly correlated with the standard deviation of 

depth (r = 0.70), downstream dams were highly correlated with downstream 

impoundments and downstream tributaries (all r > 0.70), upstream dams were highly 

correlated with upstream impoundments (r = 0.71), and upstream impoundments were 

highly correlated with watershed area (r = 0.72). Therefore, riparian land cover variables, 

the standard deviation of velocity, average depth, downstream dams and impoundments, 

downstream and upstream tributaries, and upstream impoundments were eliminated from 

further model development. We further eliminated the lowest ranking predictor variables 

that did not contribute to model importance including fine particulate organic matter, 

downstream roads, slope, and % catchment open water.   



 15 

The RF algorithm builds trees based on repeated randomized samples of the 

dataset, therefore it is not essential to hold back data for testing after model creation to 

obtain an unbiased estimate of error. Model performance was evaluated with three 

accuracy measures calculated using the resubstitution method (Theodoridis and 

Kourtroumbas 2009). The three measures were the Proportion Correctly Classified 

(PCC), Cohen’s weighted Kappa statistic (weighted K), and the area under the receiver 

operating curve (Gauch 1982). Both PCC and weighted K are derived from the model 

confusion matrix, which gives the actual versus predicted classifications of group 

membership. PCC performance measures are given in two forms: 1) an overall PCC 

percentage (accuracy) representing the total number of correctly classified cases divided 

by the total number of cases across all outcome classes, and 2) a measure of accuracy for 

a specific outcome class (precision). Weighted K corrects the PCC for agreement caused 

by chance, and gives a value ranging from -1 to 1 (Cohen 1968). A positive value 

indicates greater agreement between modeled and measured classifications than expected 

by chance alone, and a negative value indicates less agreement than expected by chance 

alone. Cohen’s weighted K was calculated using the vcd package in R (R Core 

Development Team 2012). The AUC is derived from plotting the true positive rate 

(sensitivity) against the false positive rate (specificity), with each point plotted 

representing a sensitivity/specificity pair. The area under the resulting plot is a measure 

of how well the model correctly classifies groups. AUC values range from 0 to 1, with 

values > 0.5 indicating better model performance than expected by chance alone (Swets 



 16 

1988). We used the ordROC function in the nonbinROC R package in R to calculate 

AUC values (http://cran.r-project.org/web/packages/nonbinROC/index.html).         

Lastly, we performed a principal components analysis on our multi-scale abiotic 

predictor variables (instream, land cover, and stream network parameters) using the 

vegan package of R (R Core Development Team 2012). This analysis was intended to 

show relationships among abiotic predictor variables, and further aid in the interpretation 

of RF results. Principal components analysis (PCA) is used to reduce the dimensionality 

of data, and to transform correlated variables into significant, independent components 

that help us better visualize and understand interdependencies among variables. Variables 

were first scaled and centered, and the PCA was performed on the correlation matrix 

(Legendre and Legendre 1998).   

Results 

Cluster and Indicator Species Analyses 

Four predominant coastal plain fish assemblage groups were identified with 

hierarchical cluster analysis, and described by an indicator species analysis. The indicator 

species analysis found thirty-nine species as significant at the α = 0.05 level, and 

membership was partitioned accordingly into the four fish assemblage groups (Table 

1.2). We assigned names to each of the four fish assemblages based on the prevailing 

taxonomic and/or ecological attributes of the species with the highest indicator values for 

each group. Group one was named the fluvial assemblage (n=12 species), since flow is a 

primary ecological requirement for all of its constituents (Rohde et al. 2009). The fluvial 

assemblage contained shiners, darters, madtoms, and bullheads. Only three members of 

http://cran.r-project.org/web/packages/nonbinROC/index.html
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the fluvial assemblage are completely restricted to the South Carolina coastal plain 

(Pteronotropis stonei, Etheostoma fricksium, Opsopoeodus emiliae); most of the 

identified species had ranges extending into higher elevation regions. Several members of 

the fluvial assemblage are only found in the Savannah, ACE, and Lower Santee basins 

(Percina nigrofasciata, Noturus leptacanthus, Notropis lutipinnis, Opsopoeodus emiliae, 

Etheostoma fricksium), and are absent from the Pee Dee system. All members of the 

fluvial assemblage are considered to be dependent on flow and specific benthic substrates 

(Rohde et al.2009) for either all or part of their life cycle, and are generally intolerant to 

stream drying.   

Group 2 was named the eastern mudminnow assemblage (n=1 species), since 

Umbra pygmaea was the sole constituent. The eastern mudminnow is restricted to the 

South Carolina coastal plain, and is typically found over coarse organic substrates in 

small headwater backwater streams with little to no flow (Rohde et al. 2009). The eastern 

mudminnow is very tolerant to both low pH and low dissolved oxygen conditions, and 

has specific adaptations to stream drying including the capability of gulping atmospheric 

air using a physostomous swim bladder, and the ability to aestivate in moist soils. 

Group 3 was named the centrarchid assemblage (n=10 species); several 

cosmopolitan centrarchids dominated this group including Lepomis auritus, Lepomis 

macrochirus, Lepomis punctatus, and Micropterus salmoides. This group also included 

Anguilla rostrata. Only three members of the centrarchid assemblage were restricted to 

the South Carolina coastal plain in our study (Lepomis punctatus, Anguilla rostrata, 

Labidesthes sicculus), all other members ranged into higher elevations. All assemblage 
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members are habitat generalists and opportunistic feeders. Several species in this group 

are long lived and can obtain fairly large sizes and therefore may prefer fairly stable large 

stream habitats with some flow and depth variability.   

Group 4 was named the non-fluvial assemblage (n=16 species), since all of its 

members either thrive in or require aquatic environments with little to no flow (Rohde et 

al. 2009). Nine members of the non-fluvial assemblage are either mostly or entirely 

restricted to the South Carolina coastal plain (Centrarchus macropterus, Enneacanthus 

gloriosus, Aphredoderus sayanus, Acantharchus pomotis, Lepomis marginatus, 

Enneacanthus obesus, Elassoma zonatum, Amia calva, Etheostoma fusiforme). All of the 

non-fluvial species are commonly found over coarse organic and muck substrates in 

streams with low to no flow. The non-fluvial assemblage contains species that are 

tolerant to high turbidity and stream temperatures (Notemigonus crysoleucas), low pH 

(Enneacanthus obesus), and low dissolved oxygen conditions (Amia calva, Etheostoma 

fusiforme).                    

Non-Metric Multidimensional Scaling 

The NMDS resulted in a 3-dimensional solution with a final stress value of 16.64, 

and a Monte Carlo test indicated significance at p < 0.001. To highlight the similarity 

between the NMDS ordination and the cluster analysis assemblage groups, we plotted 

species in a 3-dimensinal ordination space and coded each species to show their 

respective fish assemblage association as determined by the cluster analysis (Figure 1.2).  

The NMDS reiterated and validated the cluster analysis findings, highlighting the 

separation of four assemblages of coastal plain fish species. The NMDS also showed that 
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fish assemblage groups are not entirely distinct, but overlap to some degree. Species 

classified as belonging to the fluvial and centrarchid assemblages overlapped to some 

extent among samples, likewise species classified as belonging to the centrarchid and 

non-fluvial assemblages overlapped. However, species classified as belonging to the 

fluvial and non-fluvial assemblages displayed no overlap, and the eastern mudminnow 

assemblage was distinct from all other assemblages.   

Random Forests        

The RF model correctly classified the prevailing fish assemblage found in 60.84% 

of our sample sites, and performed better than chance alone (AUC = 0.74). The weighted 

kappa statistic indicated a moderate strength of agreement between observed and 

predicted values (weighted K = 0.46). An examination of individual class accuracies 

(precision) from the output confusion matrix provided additional information on model 

performance. The fluvial assemblage had the highest class precision at 84.78%. The 

eastern mudminnow and non-fluvial assemblages had class precisions of 54.72% and 

68.75% respectively. The centrarchid assemblage had the lowest precision (39.13%), 

with misclassifications most commonly placed in the non-fluvial assemblage.   

Variables associated with geographic gradients (ecobasin) and instream 

parameters (velocity, channel form, stream size, and depth) were the most important 

classifiers in our model (Figure 1.3). Our variable importance result additionally 

indicated that land cover played a diminished role in predicting assemblage group 

membership in comparison to geographic gradients and instream parameters. There was 
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no indication that the RF model was biased against selecting categorical variables; 

‘Ecobasin’ and ‘Type Code’ ranked high in importance (Strobl et al. 2007).   

Partial dependence plots isolate and examine the behavior of individual predictors 

on the outcome while holding the effect of all other predictive variables constant. We 

provide partial dependence plots for the top eleven most important predictor variables. 

The most influential predictor, ecobasin, is presented as a series of ecobasin maps (one 

per fish assemblage) that show shaded areas indicating high, medium, and low 

classification probabilities (Figure 1.4). The ecobasin partial dependence plot predicted 

fluvial and centrarchid assemblage classification to be the greatest in the inner coastal 

plain, particularly the inner ACE basin; however the centrarchid assemblage 

classification was predicted to range into lower elevation ecobasins, particularly in the 

Lower Santee. In contrast, the eastern mudminnow and non-fluvial assemblage 

classifications were predicted to be most probable in the outer coastal plain, with the non-

fluvial assemblage probability of classification predicted to be greater in the Pee Dee and 

Savannah ecobasins than in the ACE or Lower Santee.           

Partial dependence plots showed that the fluvial and centrarchid assemblage 

classification probabilities increase with increased average velocities, increased average 

wetted width, increased dissolved oxygen, increased watershed area, and increased width 

of bankfull (Figures 1.5a, 1.5c, 1.5e, 1.5f, 1.5j). However, the fluvial assemblage had a 

higher probability of classification in non-channelized single channel streams, whereas 

the centrarchid assemblage did not show a clear association with stream channel types 

(Figure 1.5b). The fluvial and centrarchid assemblages further differed in that the 
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probability of fluvial assemblage classification was positively associated with increased 

elevation, while the centrarchid assemblage was not associated with elevation (Figure 

1.5d). Likewise, the probability of fluvial assemblage classification was negatively 

associated with increased depth diversity, while the probability of centrarchid assemblage 

classification was positively associated (Figure 1.5g). Also, the probability of fluvial 

assemblage classification was positively associated with deciduous/mixed forest land 

cover and large wood, while the centrarchid assemblage was negatively associated 

(Figures 1.5h, 1.5i).    

Partial dependence plots showed that the probability of eastern mudminnow and 

non-fluvial assemblage classification were both negatively associated with average 

velocity, average wetted width, elevation, dissolved oxygen, and watershed area (Figures 

1.5a, 1.5c, 1.5d, 1.5e, 1.5f). The eastern mudminnow assemblage had a probability of 

classification across channel types, but showed an affinity for channelized and non-

channelized swamp-like and braided streams (Figure 1.5b). In contrast, the non-fluvial 

assemblage was predicted to be most probable in only channelized and non-channelized 

swamp-like and braided streams. The eastern mudminnow and non-fluvial assemblages 

further differed in that the probability of eastern mudminnow assemblage classification 

was negatively associated with depth diversity, large wood, and width of bankfull, while 

the probability of non-fluvial assemblage classification was positively associated (Figures 

1.5g, 1.5h, 1.5j). Likewise, the probability of eastern mudminnow assemblage 

classification was positively associated with deciduous forest catchment land cover, 

while the non-fluvial assemblage was negatively associated (Figure 1.5i). 
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Principal Components Analysis of Multi-scale Abiotic Parameters 

We conducted a PCA to help us better understand and visualize the 

interdependencies among predictor variables. The first two PCA axes accounted for 

21.17% and 11.93% of the total variance respectively, and 33.10% cumulatively (Figure 

1.6). Axis 1 represented a gradient in stream hydrology, where sites with increased 

average velocity were positively associated with increased dissolved oxygen, elevation, 

average stream width, watershed area, deciduous/mixed forest land cover, and large 

wood, and negatively associated with catchment wetland land cover, turbidity, fine wood, 

and coarse particulate organic matter. Axis 2 represented a land cover disturbance 

gradient, contrasting the environmental conditions of two land disturbances - agrarian and 

evergreen forest land cover (i.e., silviculture). We considered evergreen forest to be a 

disturbance land cover because South Carolina’s coastal plain evergreen forests are 

dominantly comprised of pine species in silvicultural systems, and it is estimated that 

natural pine cover (i.e. longleaf) has been severely reduced to less than 4% of its historic 

coverage (Kleppel et al. 2007; USDA 2011). Axis 2 showed that agrarian (and to a lesser 

extent, urban) catchments were positively associated with increased pH, conductivity, 

and width and depth of bankfull, and sand substrates, and negatively associated with 

evergreen land cover (silviculture).   

Discussion  

Though many species are ubiquitous throughout the South Carolina coastal plain 

(e.g., redfin pickerel, pirate perch), we identified four fish assemblages comprised of 

commonly co-occurring species that were more or less distinctive. No species operated as 
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a perfect indicator of any assemblage (i.e. found only in sample localities classified as a 

certain assemblage and not others), highlighting the propensity of lowland streams to 

commonly share species (Warren et al. 2000). Such overlap may partially reflect historic 

connectivity among drainages, or ecological convergence due to the high degree of 

environmental fluctuation, or the environmental harshness that in present in the coastal 

plain (Chesson and Huntly 1997; Hocutt et al. 1986; Hubbell and Foster 1986). 

Regardless, a generalized pattern emerged indicating that fluvial and/or centrarchid 

assemblages were found in coastal plain streams that maintain flow, and eastern 

mudminnow and/or non-fluvial assemblages were found in streams with reduced or 

absent flow.      

The four coastal plain fish assemblages differed according to natural gradients in 

the underlying stream habitat template, primarily diverging across natural geographic 

gradients (ecobasin) and instream parameters (velocity, channel form, stream size, and 

depth). Our RF model predicted fluvial assemblages to be most probable in the higher 

elevations of the upper coastal plain, with generally higher probabilities in the ACE basin 

than the Pee Dee basin. Fluvial assemblages were most probable in large, high-velocity, 

relatively shallow non-channelized single channel streams with large wood substrates and 

increased catchment forest cover. Centrarchid assemblages were also predicted to be 

most probable in large high velocity streams, however differed in that this assemblage 

was more probable in a variety of ecobasins across elevations, in both channelized and 

non-channelized deep streams, with decreased amounts of large wood substrates and 

catchment forest cover. Differences in fluvial and centrarchid assemblage habitats may, 
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in part, be explained by species turnover with longitudinal changes in stream 

environments (Paller 1994). In contrast, the eastern mudminnow assemblage was 

predicted to be most probable across the lower elevation coastal plain in small, shallow, 

low-velocity, channelized and swamp-like streams with decreased amounts of large 

wood, increased forest cover, and decreased width of bankfull (headwater streams). Non-

fluvial assemblages were also predicted to be most probable in the lower elevation 

coastal plain, however were predicted to be more probable in Pee Dee and Savannah 

ecobasins than in ACE or lower Santee ecobasins. The non-fluvial assemblage also 

differed from the eastern mudminnow assemblage in that it was found to be more 

probable in deeper streams with increased large wood substrates, with decreased amounts 

of large wood and increased widths of bankfull (non-headwater streams).  

Influence of Instream and Catchment parameters on Assemblage Composition 

Natural geographic gradients (ecobasin) and instream parameters associated with 

velocity, channel form, stream size, and depth played a greater role in distinguishing fish 

assemblages than catchment land cover and stream network parameters. Additionally, our 

PCA results showed that the abiotic factors our RF model ranked most influential in 

predicting assemblage membership (average velocity, average width, elevation, dissolved 

oxygen, watershed area, depth diversity) were uncorrelated with an anthropogenic 

(evergreen/agriculture) land cover disturbance gradient (Figure 1.6). This may indicate 

that coastal plain fish assemblages and instream conditions vary across natural 

environmental gradients that operate independently from an anthropogenic land cover 

disturbance gradient.   
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We propose four possible explanations as to why geographic gradients and 

instream parameters have greater explanatory power than catchment land cover 

parameters in determining coastal plain fish assemblage composition, and why instream 

factors may not be strongly linked to land cover factors. First, previous studies evaluating 

multi-scale influences on stream fish assemblages have shown that instream 

environmental factors have greater explanatory power than land cover factors in largely 

undisturbed catchments (Lyons 1996; Wang et al. 2006; Wang et al. 2003; Wiens 2002). 

Support for this finding resides in theories of hierarchical organization of stream systems, 

where in relatively undisturbed landscapes, there exists a dynamic equilibrium among 

catchment, riparian, and instream conditions. This dynamic equilibrium creates a 

relatively stable instream habitat template that constrains species life history strategies 

and determines the composition of biological communities (Allan 2004). As 

anthropogenic landscape influences increase past some intensity threshold, this 

equilibrium among catchment, riparian, and instream conditions is broken, and instream 

conditions reestablish new equilibria with their environments over time. Hence, the 

condition and structure of fish assemblages tends to reflect the altered instream 

environments (e.g., altered flow patterns, pollutant pulses, increased sedimentation, 

temperature extremes) associated with the cumulative effects of anthropogenic landscape 

degradation. Current landscape disturbances in our sampled catchments were generally 

not intense; the vast majority (n=185, 89% of total sites) of catchments contained <10% 

urban land cover, approximately half (n=100) of our catchments contained <20% 

agrarian land cover and none had >70%, and only 15 sites had catchments with greater 
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than 50% evergreen (silviculture) forest cover (Wang et al. 2006). Our randomized 

sampling regime likely captured the average gradient of anthropogenic landscape 

intensities throughout the coastal plain, rather than anthropogenic land use disturbance 

extremes. If current coastal plain landscape disturbances are not intense, and we assume 

that current instream and biological conditions reflect current landscape conditions, then 

we can postulate that local instream factors should show greater explanatory power than 

land cover factors.   

Second, despite the fact that we observed relatively non-intense catchment 

anthropogenic disturbances, past coastal landscape disturbances are known to have been 

severe. Therefore, the postulation that coastal plain fish assemblages show weak 

relationships with catchment land cover because streams have maintained a dynamic 

equilibrium among catchment, riparian, and instream conditions over time is likely 

flawed. Extensive deforestation and agriculture operations pervaded the South Atlantic 

coastal landscape throughout the 18
th

 and 19
th

 centuries; such land conversions reached 

their peak in the 1920s when nearly all timber had been extracted, and row-crop farm 

parcels sized 100-500 acres pervaded the region (Beck et al. 2012; Phillips 1994).  

Concurrently, South Carolina was the preeminent leader in infrastructure improvements 

from the 1790s to the 1830s, and developed an extensive system of more than 2000 miles 

of canals and ditches for agricultural expansions and increased connectivity with the port 

of Charleston (Kapsch 2010). While we cannot directly account for these past landscape 

disturbances, it is likely that they had unintended, and in some cases irreversible impacts 

(e.g. ditching, sedimentation) on coastal plain streams and fish assemblages. In recent 
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decades, the South Atlantic coastal plain has generally transitioned away from agrarian 

land to unutilized grass/shrubland, planted pine, and to a lesser extent, urban land use 

(Ainslie 2002; Fry et al. 2009). Current land cover conditions observed in our study may 

not reflect past landscape disturbances and their impacts on instream environments. It 

follows that current stream conditions may be more tightly linked to past landscape 

conditions rather than current landscape conditions, thus we would expect to observe 

stronger relationships between instream factors and fish assemblages, and weaker 

relationships between current land cover and fish assemblages (Harding et al. 1998; 

Wang et al. 2001).  

Third, instream conditions may be weakly related to catchment land cover 

conditions in low elevation regions. Our stream sample locations were predominantly 

located in low elevation areas (median elevation =32.6m) with low localized topographic 

variation within catchments, resulting in naturally low overland runoff and erosion rates 

and poorly defined drainage patterns (McNab et al. 2007). Many of the stream-degrading 

processes associated with landscape disturbances that we observe in higher-elevation 

regions result from increased overland flows across higher-gradient catchments, such as 

increased sediment transport, flash flooding, stream channel incision and erosion, nutrient 

and pollution pulses, etc. (Paul and Meyer 2001). Such characteristic responses of 

streams to landscape disturbances may be weak in coastal plain catchments due to the 

low-gradient and low topographical variation inherent to the coastal plain. As a result, we 

might expect local instream conditions to operate more independently of the dominant 
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land cover of the local landscape in which it resides, and therefore instream conditions 

may supersede the influence of land cover conditions on assemblage structure.   

Fourth, we may have failed to capture strong evidence of land cover-instream 

linkages due to the mono-seasonal nature of our sampling regime. All of our samples 

occurred in warm-weather months (April – September), during periods of stream drying. 

Additionally, the South Atlantic coastal plain experienced conditions of incipient to 

moderate drought during our summer sample period of 2006-2011, excluding 2009 which 

exhibited normal summer rainfall (SCDNR: www.dnr.sc.gov/climate). South Carolina 

coastal plain streams typically exhibit a fairly predictable seasonal variation in flow, with 

high flows during the wet cool winter months, and low flows and stream drying during 

the warm, dry summer months (Kohlsaat et al. 2005). However, seasonal flow dynamics 

among streams may be influenced by and differ across various land cover conditions. For 

example, streams in disturbed landscapes may show less dynamic flow regimes across 

seasons than streams in undisturbed landscapes. We failed to capture such seasonal 

dynamics in our sampling regime, and therefore cannot comment extensively about 

compositional changes across seasons. However, we do know that coastal plain fishes are 

adapted to maximize reproductive capacity and survival in variable hydrological 

environments (Poff 1996). The composition and structure of coastal fish assemblages, 

therefore, may be largely driven by dispersal dynamics according to seasonal variation in 

stream flows (Falke and Fausch 2010; Leibold et al. 2004; Schlosser and Angermeier 

1995). As streams begin to dry in the summer months, fishes that require flow may 

migrate away from spawning or other habitats to summer refugia areas that maintain 

http://www.dnr.sc.gov/climate
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flow. Fishes better suited to deal with harsh environmental conditions may remain, or 

move to stream reaches of increased size (pools). When flows resume as winter 

approaches, dispersal among localities may increase as stream habitats diversify into 

flowing environments. In this manner, the influence of local environmental habitat 

conditions (e.g. stream size, velocity, dissolved oxygen) may be accentuated in summer 

months, and predominantly influence fish assemblages over land cover conditions. We 

suggest that future studies employ a cross-seasonal sampling strategy to further explore 

the seasonal dynamics of coastal plain fish assemblages within a variety of coastal plain 

stream environments.  

Implications for Conservation Strategies   

Our study provides insight into the potential obstacles faced by researchers 

attempting to discern aquatic integrity indicators or develop multi-metric indices of 

biological health (e.g., IBIs) for the South Atlantic coastal plain. Such indicator methods 

evaluate biological health as the degree of departure from undisturbed or expected 

biological conditions representative of healthy stream habitats of the region (Angermeier 

and Karr 1994; Davis 1995; Karr 1981). However, these types of assessment procedures 

may be difficult to implement in the South Atlantic coastal plain because there at least 

two natural undisturbed (reference) stream habitats co-occur across the coastal landscape 

(fluvial and non-fluvial streams), that contain very different fish assemblages. A 

fluvial/centrarchid assemblage is expected in streams that retain flow and its correlates; 

species within these assemblages likely reflect a quantifiable gradient in tolerance to 

harsh and/or degraded stream conditions (Rohde et al. 2009). In contrast, we expect a 
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non-fluvial / eastern mudminnow assemblage in streams with low to no flow, or that are 

in the process of seasonal drying; both of these assemblages are generally tolerant to 

harsh stream conditions. Each of the four fish assemblages shows adaptations to the 

variety of naturally occurring coastal plain stream environments, and none of the 

assemblages directly or clearly indicates a landscape-based anthropogenic disturbance.  

Aquatic integrity indicators should be responsive to anthropogenic stresses and 

have limited sensitivity to natural variation (Karr 1991). Useful indicators display high 

sensitivity to a particular or suite of stressors, respond to stress in a predictable manner, 

reflect ecological changes, and have a known response to anthropogenic stress (Dale and 

Beyeler 2001). Our study shows that coastal plain fish assemblages predominantly vary 

across natural gradients, and are largely insensitive to anthropogenic land cover 

disturbances. These findings are important, because land managers and policy advisors 

cannot change the underlying natural features of the coastal plain environment, but can 

influence land cover activities and/or directly modify the local stream environment.    

This study represents an evaluation of the multi-scale abiotic influences on fish 

assemblage structure in an understudied freshwater ecosystem. We recommend that 

researchers continue to explore South Atlantic coastal plain fish assemblage 

characteristics in novel and creative ways in order to identify the abiotic and biotic 

features of disturbed coastal plain fish assemblages and streams in further pursuit of how 

to best conserve the fish assemblages of this unique and diverse geographic region.  
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Table 1.1..  Summary statistics for multi-scale abiotic predictor variables. 

Abbreviation Description 
Median / 

Ecoregion Mean Range Count 

Elevation Average watershed elevation (m) 32.6 39 0.9-139.6 

 Velocity_M Average velocity (m/s) 0.05 0.08 0-0.35 

 Velocity_SD Standard deviation of velocity (m/s) 0.06 0.06 0-0.24 

 Depth_M Average depth (m) 0.26 0.26 0.04-0.64 

 Depth_SD Standard deviation of depth (m/s) 0.12 0.13 0.03-0.32 

 Width_M Average width (m) 3.12 3.39 0.38-9.10 

 AV % Aquatic vegetation 0.02 0.08 0-0.96 

 FPOM % Fine particulate organic matter 0.02 0.07 0-1.00 

 CPOM % Coarse particulate organic matter 0.2 0.27 0-0.88 

 FWD % Fine wood 0.1 0.12 0-0.49 

 LWD % Large wood 0.1 0.12 0-0.40 

 Sand % Sand 0.26 0.27 0-0.80 

 Temp Temperature (°C) 22.56 21.73 8.98-33.34 

 DO Dissolved Oxygen (mg/L) 6.07 5.5 0.00-11.37 

 Cond Conductivity (µS/cm) 82 100 11-708 

 pH pH 6.67 6.64 4.92-8.33 

 Turbidity Turbidity (NTU) 5.47 9.45 1..03-59.29 

 Slope Slope 0 0 0-0.01 

 Wbkf Width at Bankfull (ft) 25.6 28.57 8.20-162.10 

 Dbkf Depth at Bankfull (ft) 1.8 2.22 0.30-8.00 

 Sinuosity Sinuosity (0=not sinuous, 1=sinuous) 

   

0=67, 1=141 

Type Code Stream Type (1=not channelized single, 2=channelized, 3=not channelized multiple) 

   

1=86, 2=66, 3=54 

WS_Area Watershed Area (km²) 20.71 30.63 0.17-154.13 

 B_06_OPENWATER % of 120m riparian buffer under open water cover 0 0.02 0-0.12 

 B_06_URBAN % of 120m riparian buffer under urban cover 0.03 0.05 0-0.58 

 B_06_DECIDUOUS.MIXED % of 120m riparian buffer under deciduous/mixed forest cover 0.01 0.05 0-0.62 

 B_06_EVERGREEN % of 120m riparian buffer under evergreen forest cover (silviculture) 0.18 0.19 0-0.68 

 B_06_GRASSSHRUB % of 120m riparian buffer under grass/shrub cover 0.11 0.12 0-0.40 

 B_06_AGRICULTURE % of 120m riparian buffer under agricultural cover 0.09 0.14 0-0.84 

 B_06_WETLAND % of 120m riparian buffer under wetland cover 0.42 0.43 0-0.90 

 W_06_OPENWATER % of catchment under open water 0 0 0-0.05 

 W_06_URBAN % of catchment under urban cover 0.05 0.07 0-0.48 

 W_06_DECIDUOUS.MIXED % of catchment under deciduous/mixed forest cover 0.02 0.05 0-0.39 

 W_06_EVERGREEN % of catchment under evergreen forest cover (silviculture) 0.23 0.26 0-0.80 

 W_06_GRASSSHRUB % of catchment under grass/shrub cover 0.15 0.17 0.03-0.52 

 W_06_AGRICULTURE % of catchment under agricultural cover 0.22 0.24 0.00-0.70 

 W_06_WETLAND % of catchment under wetland cover 0.18 0.2 0-0.61 

 



 39 

Table 1.1. continued.  Summary statistics for multi-scale abiotic predictor variables. 

Abbreviation Description 
Median / 

Ecoregion Mean Range      Count 

DIST MS m Distance to HUC 8 mainstem (m) 9778.5 10,967.95 323-36,031 

 DS DAMS MS Number of downstream dams on mainstem 0 0.26 0-5 

 DS IMPOUND MS Number of downstream impoundments on mainstem 0 0.43 0-4 

 DS ROADS MS Number of downstream roads on mainstem 3 3.13 0-12 

 DS TRIBUTARIES Number of downstream tributaries 3 4.23 0-33 

 US DAMS MS Number of upstream dams on mainstem 0 0.43 0-4 

 US IMPOUND MS Number of upstream impoundments on mainstem 0 0.74 0-8 

 US ROADS MS Number of upstream roads on mainstem 3 3.55 0-14 

 US TRIBUTARIES Number of upstream tributaries 2 3.22 0-19 

 Ecobasin Combination of Omernik (1987) Level III ecoregion and major drainage basin Savannah Sand Hills 

  

8 

  

Savannah Atlantic Southern Loam Plains 5 

  

Savannah Carolina Flatwoods 

 

5 

  

ACE Sand Hills 

  

12 

  

ACE Atlantic Southern Loam Plains 24 

  

ACE Carolina Flatwoods 
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Lower Santee Sand Hills 

 

5 

  

Lower Santee Atlantic Southern Loam Plains 12 

  

Lower Santee Carolina Flatwoods 

 

6 

  

Pee Dee Sand Hills 

  

18 

  

Pee Dee Atlantic Southern Loam Plains 34 

    Pee Dee Carolina Flatwoods   42 
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Table 1.2. Group membership and indicator values for four coastal plain fish 

assemblages. 

Scientific Name Common Name 

Group 

Number 

Community 

Name 

Indicator 

Value P Frequency 

Notropis cummingsae Dusky Shiner 1 Fluvial 0.643 0.001 54 

Pteronotropis stonei Lowland Shiner 1 Fluvial 0.588 0.001 45 

Etheostoma olmstedi Tessellated Darter 1 Fluvial 0.488 0.001 64 

Percina nigrofasciata Blackbanded Darter 1 Fluvial 0.436 0.001 33 

Noturus leptacanthus Speckled Madtom 1 Fluvial 0.374 0.001 29 

Noturus insignis Margined Madtom 1 Fluvial 0.363 0.001 32 

Etheostoma fricksium Savannah Darter 1 Fluvial 0.354 0.001 23 

Nocomis leptocephalus Bluehead Chub 1 Fluvial 0.206 0.001 18 

Notropis lutipinnis Yellowfin Shiner 1 Fluvial 0.196 0.002 16 

Ameiurus brunneus Snail Bullhead 1 Fluvial 0.190 0.001 22 

Notropis petersoni Coastal Shiner 1 Fluvial 0.111 0.034 22 

Opsopoeodus emiliae Pugnose Minnow 1 Fluvial 0.077 0.019 5 

Umbra pygmaea Eastern Mudminnow 2 Mudminnow 0.330 0.001 69 

Lepomis auritus Redbreast Sunfish 3 Centrarchid 0.514 0.001 96 

Lepomis macrochirus Bluegill 3 Centrarchid 0.454 0.001 83 

Lepomis punctatus Spotted Sunfish 3 Centrarchid 0.378 0.001 85 

Micropterus salmoides Largemouth Bass 3 Centrarchid 0.303 0.001 66 

Anguilla rostrata American Eel 3 Centrarchid 0.289 0.002 96 

Labidesthes sicculus Brook Silverside 3 Centrarchid 0.127 0.006 12 

Lepomis microlophus Redear Sunfish 3 Centrarchid 0.118 0.028 22 

Minytrema melanops Spotted Sucker 3 Centrarchid 0.113 0.014 17 

Perca flavescens Yellow Perch 3 Centrarchid 0.101 0.005 5 

Ameiurus platycephalus Flat Bullhead 3 Centrarchid 0.086 0.024 9 

Notemigonus crysoleucas Golden Shiner 4 Non-Fluvial 0.631 0.001 73 

Centrarchus macropterus Flier 4 Non-Fluvial 0.520 0.001 67 

Enneacanthus gloriosus Bluespotted Sunfish 4 Non-Fluvial 0.458 0.001 77 

Esox americanus Redfin Pickerel 4 Non-Fluvial 0.433 0.001 175 

Aphredoderus sayanus Pirate Perch 4 Non-Fluvial 0.362 0.001 180 

Lepomis gulosus Warmouth 4 Non-Fluvial 0.355 0.001 105 

Lepomis gulosus Mud Sunfish 4 Non-Fluvial 0.315 0.001 92 

Ameiurus natalis Yellow Bullhead 4 Non-Fluvial 0.298 0.004 99 

Erimyzon oblongus Creek Chubsucker 4 Non-Fluvial 0.290 0.002 85 

Lepomis marginatus Dollar Sunfish 4 Non-Fluvial 0.284 0.002 112 

Lepomis gibbosus Pumpkinseed 4 Non-Fluvial 0.271 0.001 44 

Erymyzon sucetta Lake Chubsucker 4 Non-Fluvial 0.266 0.001 35 

Enneacanthus obesus Banded Sunfish 4 Non-Fluvial 0.225 0.001 17 

Elassoma zonatum Banded Pygmy Sunfish 4 Non-Fluvial 0.202 0.006 55 

Amia calva Bowfin 4 Non-Fluvial 0.186 0.001 21 

Etheostoma fusiforme Swamp Darter 4 Non-Fluvial 0.117 0.046 27 
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Figure 1.1. Study area showing EPA level IV ecoregions, major drainage basins, and 

locations of all sampling sites.   
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Figure 1.2. Non-metric multidimensional scaling results for first 3 axes. Symbols 

represent species in sample space, and are individually coded to show their assemblage 

association as determined by the cluster analysis. Triangles represent members of the 

fluvial community, stars represent members of the eastern mudminnow community, 

crosses represent members of the centrarchid community, and squares containing an X 

represent members of the non-fluvial community.  
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Figure 1.3. Variable importance plot showing top ranked variables from random forests 

classification for predicting coastal plain taxonomic assemblage membership.  Mean 

decrease in accuracy is the normalized difference of the classification accuracy for the 

observations excluded from model calibration, and the classification accuracy for the 

same observations when values of the predictor are randomly permuted. Higher values of 

the mean decrease in accuracy indicate that a variable is more important to the 

classification.   
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Figure 1.4. Ecobasin was the most important predictor for coastal plain taxonomic group 

classification.  Here, we have shaded ecobasin regions of the coastal plain based on their 

probability of classification of each of the taxonomic groups (group 1 = fluvial 

assemblage, group 2 = eastern mudminnow assemblage, group 3 = centrarchid 

assemblage, group 4 = non-fluvial assemblage).  Shaded areas indicate high (dark grey), 

intermediate (medium grey), and low (light grey) probabilities of classification.  
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Figure 1.5 a-j. Partial dependence plots for top ranked predictors.  Partial dependence 

plots isolate and examine the behavior of individual predictors on the outcome, while 

holding the effect of all other predictive variables constant.  Partial dependence plots are 

divided into four quadrants, showing the isolated relationship between each predictor and 

each individual coastal plain taxonomic assemblage.  Group 1 is the fluvial assemblage, 

group 2 is the eastern mudminnow assemblage, group 3 is the centrarchid assemblage, 

and group 4 is the non-fluvial assemblage.    
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Figure 1.5 a-j continued. 
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Figure 1.5 a-j continued. 
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Figure 1.6. Principal components analysis of multi-scale abiotic variables.  The length of 

arrow vectors represents a variables strength of relationship with a given explanatory 

axis. 
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CHAPTER TWO 

FISH TAXONOMIC AND TRAIT ASSOCIATIONS AMONG MIXED STREAM 

CHANNEL GEOMORPHOLOGIES IN THE SOUTH ATLANTIC COASTAL PLAIN 

 

Abstract  

Hundreds of miles of South Atlantic coastal plain streams have been dramatically 

altered by channelization over the last 200 years for agricultural, silvicultural, or other 

anthropogenic endeavors. Although there is some evidence to the contrary, the impacts of 

channelization on stream habitats and fish assemblages of different regions have 

generally been negative. Previous research on the impacts of channelization on fishes has 

largely focused on changes in traditional measures of taxonomic diversity and 

assemblage-based analyses. Trait-based analyses offer an alternative approach for 

assessing fish assemblage response to channelization that may enhance our understanding 

of disturbance/response patterns in South Atlantic coastal plain streams. We sampled 

habitat and fishes in 163 freshwater coastal plain wadeable streams in South Carolina and 

categorized streams a priori into 4 channel types based on observations of their gross 

channel morphology: 1) single channel non-channelized streams, 2) maintained 

channelized streams, 3) unmaintained (> 5years) channelized streams, and 4) braided 

swamp-like non-channelized streams. We performed a series of statistical tests to identify 

significant instream habitat differences among channel types, and evaluated differences 

in fish assemblages using both taxonomic and trait-based analyses. Our results indicated 

that channelization significantly influences the instream physicochemical habitat 

conditions of South Atlantic coastal plain streams, and in turn influences patterns of fish 
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assemblage structure. Maintained channelized streams retained higher average velocities 

than unmaintained channelized streams, but both types of channelized streams had fewer 

structural habitat components, greater indications of water quality degradation, and 

lacked floodplain connectivity in comparison to unchannelized streams. We found no 

difference in fish taxonomic diversity metrics among channel types, and taxonomic 

assemblage-based analyses revealed limited information regarding structural associations. 

In contrast, our trait-based analysis elucidated species differences among all channelized 

and non-channelized channel types; principal differences were found in habitat 

preference, and body size/reproductive ecology. Single channel non-channelized streams 

were typified by a suite of native rheophillic species, while braided swamp-like streams 

hosted native rheophobic fishes with high tolerance to low-flow habitats. Although 

actively maintained channelized streams retained fluvial habitats, they failed to support 

native rheophillic species. Instead, they were typified by fishes with 

opportunistic/colonizing life histories common to aquatic systems with low 

environmental stability and high abiotic stress. Unmaintained channelized streams were 

typified by predatory species, reflecting the potential for these streams to undergo 

seasonal dewatering events. Unmaintained channelized assemblages were otherwise 

similar to those of braided-swamp like streams, indicating the potential for biotic 

recovery of channelized streams over time. Our study suggests that trait-based analyses 

may be particularly well suited to elucidating information on ecological response to 

environmental disturbances in the South Atlantic coastal plain, and their use in 
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conjunction with taxonomic analyses should provide a fruitful avenue for developing and 

testing ecological theory of fish assemblage organization in this region.  

Introduction   

The structure and function of aquatic assemblages are influenced by a myriad of 

physicochemical parameters as well as the geomorphic context and geological history of 

the systems they inhabit (Allan 2004; Frissell et al. 1986; Poff 1997). A link between 

stream geomorphology (i.e. channel form) and biota manifests when geomorphological 

conditions control and define the amount, diversity, and structure of physical habitat 

conditions available for biological assemblages (Frothingham et al. 2001; Smiley and 

Dibble 2005; Sullivan et al. 2006). If measures of channel form can be related to instream 

habitat and fish assemblage characteristics, then channel form classifications may be 

useful in predicting instream habitat impairment and developing conservation 

approaches. 

The South Atlantic United States coastal plain is a region of low-elevation and 

low-relief, with a high density of alluvial floodplain stream and wetland networks (Hupp 

2000; Sweet and Geratz 2003). Unmodified streams of this region show a high degree of 

floodplain connectivity, with geomorphic channel forms ranging from single-channel 

streams to braided and swamp-like channels (Hupp 2000; Hupp et al. 2009; Rosgen 1996, 

see Chapter 1). However, stream channelization has dramatically altered the natural 

geomorphic form of large numbers of South Atlantic coastal plain streams over the last 

200 years (Hardison et al. 2009; Hupp et al. 2009; Kapsch 2010; Stone et al. 1992). 

Channelization is the artificial mechanical straightening, deepening, and/or widening of 
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stream channels (Schneberger and Funk 1971) to control flooding, drain wetlands, 

provide irrigation, transport goods, and promote soil drainage for agricultural, 

silvicultural, or other anthropogenic purposes (Brooker 1985; Kapsch 2010; Maxted et al. 

2000; Wahl et al. 1997). The impacts of channelization on stream habitats and biological 

assemblages of different regions have generally been negative (Bayless and Smith 1964; 

Brooker 1985; Gorney et al. 2012; Oscoz et al. 2005; Schoof 1980; Tarplee et al. 1971), 

but have also yielded variable and sometimes conflicting results (e.g. Gidley et al. 2012; 

Kappesser 2002; Stammler et al. 2008). Rationale for such variability includes the 

influence of study spatial resolution (Smiley and Dibble 2008), sample methods 

(Frothingham et al. 2001; Takacs et al. 2012), and differences among aquatic habitats 

(Hardison et al. 2009; Johansson 2013).  

Examinations of the impacts of anthropogenic disturbances (e.g. channelization) 

on biodiversity are deeply rooted in analyses of taxonomic diversity metrics (e.g. 

richness, evenness, diversity, abundance) and assemblage structure (Doledec et al. 2011; 

Doledec and Statzner 2010). A known limitation of taxonomic-based analyses is that they 

vary considerably and perform poorly across biogeographic gradients (Heino 2001; 

Hewlett 2000; Poff and Allan 1995); this short-coming insinuates a limited ability to 

distinguish between the effects of an environmental disturbance and a strong natural 

gradient. Previous investigations of South Atlantic coastal plain fish assemblages indicate 

that fish assemblages overlap extensively, but are dominantly structured according to 

natural geomorphic and hydrological gradients that largely obscure potential impacts of 

landscape and habitat disturbances (see Chapter 1). Such strong natural variation, even 
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within a single biogeographic region, may limit the efficacy of taxonomic analyses in 

South Atlantic coastal plain streams (Herlihy et al. 2008).  

Trait-based analyses offer an alternative approach for assessing disturbance 

responses in stream fish assemblages (Doledec and Statzner 2010; Frimpong and 

Angermeier 2009; Mouillot et al. 2013; Winemiller 2005). Species traits are a collection 

of life-history and behavioral attributes that influence organismal performances 

(Frimpong and Angermeier 2010; Violle et al. 2007), and can be expected to reflect the 

functional relationships between biota and environmental characteristics (Frimpong and 

Angermeier 2010; Lamouroux et al. 2002; McGill et al. 2006; Poff 1997; Southwood 

1977; Townsend and Hildrew 1994). In regions with strong natural gradients that obscure 

disturbance patterns in fish assemblages, trait-based approaches may provide better 

information than taxonomic-based approaches regarding species response to disturbance. 

In the current study, we examined the impacts of stream channelization on 

instream habitats and fish assemblages of the South Atlantic coastal plain. Because 

stream channelization and resultant loss of floodplain connectivity represents profound 

and fundamental alterations of stream structure and function, we expected that instream 

habitat and fish assemblages in channelized stream channel types would be dissimilar to 

those in other unmodified, naturally occurring coastal plain stream channel types. To test 

this hypothesis we classified test streams to a priori channel type designations based on 

their gross channel morphologies (2 unmodified channel types, and 2 channelized 

channel types). We performed a series of statistical tests in order to: 1) identify instream 

habitat differences among 4 categories of channelized and unchannelized South Atlantic 
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coastal plain streams, and 2) evaluate differences in fish assemblages using both 

taxonomic and trait-based analyses. The results of this study should provide insight into 

the effects of channelization on instream habitats and fish assemblages, and evaluates the 

utility of taxonomic versus trait-based analyses in discerning the biological impacts of 

anthropogenic disturbances in South Atlantic coastal plain streams.     

Study Site 

Data for this study are a subset of a larger evaluation of statewide aquatic 

resources conducted by the South Carolina Department of Natural Resources (SCDNR) 

in the spring through fall of 2006-2011, termed the South Carolina Stream Assessment. 

We sampled 163 wadeable freshwater streams within the EPA level IV Atlantic Southern 

Loam Plains and Carolina Flatwoods ecoregions, and the Pee Dee, Lower Santee, 

Ashepoo-Combahee-Edisto (ACE), and Savannah drainage basins of South Carolina’s 

coastal plain, USA (Figure 2.1; Omernik 1987). Sample locations were randomly selected 

from a probabilistic framework designed by the South Carolina Department of Natural 

Resources, described in detail elsewhere (Scott 2008; see Chapter 1). Sample locations 

drained catchments ranging from 0.2 to 154 km² and shared no more than half of their 

drainage area with any downstream site, limiting the degree of dependence among 

samples.  

Methods  

We separated sample sites into 4 ‘channel type’ categories based on our 

observations of their gross channel morphology. Channel type 1 streams (n = 49) had a 

single sinuous channel with well-defined banks (non-channelized), and floodplain 
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connectivity. Channel type 2 streams (n = 16) had a single mechanically straightened 

channel disconnected from the floodplain (channelized), and were actively maintained 

(regular dredging, mowing of banks, or instream snag removal). Channel type 3 streams 

(n = 47) had a single mechanically straightened channel disconnected form the floodplain 

(channelized), but were not actively maintained (no signs of maintenance for > 5 years). 

Channel type 4 streams (n = 51) had multiple braided undefined channels or swamp-like 

characteristics (non-channelized), with full floodplain connectivity.    

Habitat Collection 

We quantified a range of habitat parameters for each sample reach. Site elevations 

were obtained in the lab from Terrain Navigator Pro Version 9.2 (Trimble Navigation 

Limited, Sunnyvale, CA, USA) using the North American Datum 1983 map layer. Slope 

measurements were taken along stable runs of approximately 90 m in length following 

techniques described in Harrelson (1994). Stream channel width measurements were 

taken at the 0, 25, 50, 75, and 100m distances along each sample reach and averaged to 

obtain mean stream width. Depth, velocity, and substrate measurements were quantified 

using the ‘zig-zag’ habitat sampling method (Bevenger and King 1995; Scott et al. 2009).  

This method required traversing a random ‘zig-zag’ longitudinal transect in a 

downstream to upstream direction along the sample reach, recording depth, velocity, and 

substrate at 50 randomly selected locations. Inorganic substrate particles were measured 

in millimeters at the intermediate axis and median particle size was calculated. The vast 

majority of coastal plain streams contained a median particle size of < 2 mm, therefore 

we examined inorganic substrates as percent sand (see Chapter 1). Organic substrates 
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were classified into one of the following percent categories: 1) fine particulate organic 

matter, 2) coarse particulate organic matter, 3) fine woody debris, 4) large woody debris, 

and 5) aquatic vegetation. If one of the 50 random sampling points fell on a dry section of 

the stream, that measurement was recorded as ‘dry’ and the total sample was reduced by 

the number of ‘dry’ points. Physical and chemical data, including water temperature, 

dissolved oxygen, conductivity, and pH were recorded prior to fish sampling using a YSI 

556 MPS
 TM

 multiparameter probe. Turbidity was recorded using a MicroTPW
TM

 

turbidimeter.   

Fish Collection 

We collected fishes with backpack electrofishers (Appalachian Aquatics Model 

AA-24) from spring to fall in the years 2006-2011 during base flow conditions. Sample 

methods followed standard protocols employed by the South Carolina Department of 

Natural Resources for sampling fish in wadeable streams (Scott et al. 2009). This 

protocol dictates a three-pass electroshocking method along a stream reach length 

equivalent to 20x average width (reach length range: 100-200m, median: 100m). We 

utilized block-nets at both ends of the sample reach unless the reach was sufficiently 

blocked at one (or both) ends by a natural barrier. All fishes were collected with dip nets 

(4.8-mm mesh), field identified and enumerated, and released upon sample completion. 

Specimens that could not be positively identified in the field were preserved in a 90% 

ethanol solution and returned to the lab for positive identification.  
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Statistical Analyses 

Habitat Differences among Channel Types 

We classified streams into 4 channel types based on observed geomorphological 

differences in channel form. Therefore, we did not perform statistical hypothesis tests of 

differences in geomorphological measurements, since any null hypotheses regarding no 

differences in geomorphic measures would be false, a priori (Peterson et al. 2009). We 

did hypothesize that different channel types created differences in instream habitat 

characteristics, which in turn influenced the structure of coastal plain fish assemblages. 

Therefore, we performed one-way analysis of variance (ANOVA) hypothesis testing of 

differences in habitat characteristics among channel types, and created a classification 

tree model to identify the habitat parameters that best distinguished among channel types.  

We used one-way ANOVAs to test a null hypothesis of no differences in habitat 

characteristics among the 4 channel types.  We log10(x)-transformed continuous habitat 

variables and arcsine√(x)-transformed proportional data. We used the Tukey-Kramer test 

to make post hoc pairwise multiple comparisons among channel types (Dunnett 1980). 

ANOVA and post hoc calculations were performed using the R 2.15.3 statistical software 

base platform and the DTK package (R Core Development Team 2012).  

We next built a classification tree model (Classification and Regression Trees: 

CART) using untransformed data to identify the most important habitat variables that 

distinguish among channel types (R package rpart; R Core Development Team 2012). 

CART models recursively partition observations in a data set into progressively smaller 

groups that predict the characteristics of the population of sites being studied (Breiman et 
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al. 1984; De'ath and Fabricius 2000). The CART algorithm can continue to split a dataset 

until each node contains a single observation of the data set, therefore it is common to set 

stopping criteria and to ‘prune’ the model to an optimal tree that contains a sufficient 

number of splits to describe the data.  We set the minimum number of samples to create a 

split at 10, the minimum number of observations in a terminal node at 7, the complexity 

parameter at 0.001, and the number of cross-validation procedures at 20. The model was 

pruned at a size that minimized the cross-validated error.   

CART model performance was evaluated with three accuracy measures calculated 

using the resubstitution method: Proportion Correctly Classified (PCC), Cohen’s 

weighted Kappa statistic (weighted K), and the area under the receiver operating curve  

(AUC; Theodoridis and Kourtroumbas 2009). Both PCC and weighted K are derived from 

the model confusion matrix, which gives the number of actual versus predicted 

classifications of group membership. PCC performance measures are given in two forms: 

1) an overall PCC percentage (accuracy) representing the number of correctly classified 

cases divided by the total number of cases across all outcome classes, and 2) a measure of 

accuracy for a specific outcome class (precision). Weighted K corrects the overall PCC 

for agreement caused by chance, and gives a value ranging from -1 to 1 (Cohen 1968). A 

positive value indicates greater agreement between modeled and measured classifications 

than expected by chance alone, and a negative value indicates less agreement than 

expected by chance alone. Cohen’s weighted K was calculated using the vcd package in R 

(R Core Development Team 2012). The AUC is derived from plotting the true positive 

rate (sensitivity) against the false positive rate (specificity), with each point plotted 
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representing a sensitivity/specificity pair. The area under the resulting plot is a measure 

of how well the model correctly classifies groups. AUC values range from 0 to 1, with 

values > 0.5 indicating better model performance than expected by chance alone (Swets 

1988). We used the ordROC function in the nonbinROC R package in R to calculate 

AUC values (http://cran.rproject.org/web/packages/nonbinROC/index.html). 

Taxonomic Diversity and Assemblage Differences among Channel Types  

We used one-way ANOVAs to test for differences in fish taxonomic diversity 

metrics among the four channel types, and used a NPMANOVA with a post-hoc NMDS 

analysis to test for differences in fish assemblage structure. Taxonomic diversity metrics 

examined in one-way ANOVAs included richness, evenness, Simpson diversity (D = 1-

(Σn(n-1)/N(N-1)), where n=the total number of fish of a particular species, and N=the 

total number of fish of all species), and total density (total number of individuals per 

100m²). Total density was log10(x)-transformed. We performed Tukey-Kramer post hoc 

pairwise multiple comparisons to specify fish metric differences among individual 

channel types (Dunnett 1980). ANOVAs and post hoc calculations were performed using 

the R 2.15.3 statistical software base platform and the DTK package (R Core 

Development Team 2012).     

We prepped assemblage data for a NPMANOVA by converting raw fish data to a 

density matrix (number of individuals by species per 100m²), then performed a log10(x+1) 

transformation to reduce the effect of large differences in fish densities among sample 

sites. Preliminary analysis of the full species matrix revealed an inordinate influence of 

sites with few species, and several rare species. Therefore, we removed sites from the 

http://cran.rproject.org/web/packages/nonbinROC/index.html
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analysis if they contained less than 2 species, and we removed species from the analysis 

if they occurred in less than 3 sites. Rare species generally have little influence on 

assemblage dynamics and their inclusion in an analysis could significantly distort trends 

or relationships (Gauch 1982). We additionally removed Gambusia holbrooki due to its 

extreme variability in densities among sites (Lohr and Fausch 1997; Matthews and 

Marsh-Matthews 2011). The final density matrix contained 148 sites and 55 species.  

We tested the multivariate hypothesis of differences in assemblage structure 

among different channel types using non-parametric multivariate analysis of variance 

(NPMANOVA; Anderson 2001). After verifying the assumption of homogeneity of 

group variances, we ran NPMANOVA using the Bray-Curtis distance measure (adonis 

function in R package ade4; R Core Development Team 2012). Statistical significance 

was assessed using an F-test derived from 999 random data permutations with α = 0.05. 

There are currently no established post hoc procedures for NPMANOVAs with 

unbalanced designs, therefore we performed non-metric multidimensional scaling 

(NMDS) to visualize patterns of differences in fish assemblage structure among channel 

types (Clarke 1993; Kruskal 1964). NMDS was performed using a random starting 

configuration, and 1000 runs with real data (R package vegan; R Core Development 

Team 2012). We used a Monte-Carlo test with twenty iterations and ten randomized runs 

to determine the probability of obtaining an equal or lower stress value by chance 

(α=0.05). From the NMDS output, we calculated Pearson correlations between individual 

axes and the fish matrix, and produced plots showing sites coded by their channel type to 

better interpret and visualize the NPMANOVA outcome.           
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Trait Differences among Channel Types 

We assigned species to a suite of 28 life history traits based on the FishTraits 

database (Table 2.1; Frimpong and Angermeier 2009). We focused on trait information 

regarding 1) trophic ecology, 2) body size and reproductive ecology, and 3) 

habitat/salinity preferences. Several traits in the FishTraits database were categorized at a 

finer resolution than used for our study, particularly for trophic and reproductive ecology 

traits, so many traits were excluded or grouped a priori. We used the fourth-corner 

method to determine functional associations among channel types (fourth corner function 

in R package ade4; R Core Development Team 2012). The fourth-corner method relates 

species traits to environmental variables (e.g. channel types) through a fish relative 

abundance matrix, and analyzes the significance of each bivariate combination of trait 

and environmental variable separately (Dray and Legendre 2008; Legendre et al. 1997). 

We followed the two-step permutation testing procedure proposed by Dray and Legendre 

(2008), with the sequential testing and significance level modifications to control for type 

I error proposed by ter Braak et al. (2012).        

Results  

Habitat Differences among Channel Types 

We captured considerable variation in habitat conditions across our coastal plain 

channel types (mean and ranges; Table 2.2). We found significant differences among the 

four channel types in all habitat variables except average depth, width, and fine 

particulate organic matter (one-way ANOVA results; Table 2.2). Post hoc tests revealed 

specific habitat differences among channel types. Elevation and reach slopes were higher 
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in channel type 1 than in all other channel types. Velocities were higher in channels types 

1 and 2 than in channel types 3 and 4. Sand substrates were higher in channel types 1 and 

2, and lower in channel types 3 and 4. Aquatic vegetation was higher in channel type 2 

than in all other channel types. Course particulate organic matter was lower in channel 

types 1 and 2, and higher in channel types 3 and 4. Fine wood was lower in type 2 

channels than all other channel types. Large wood was higher in channel types 1 and 4 

than in channel types 3 and 4. Temperatures were lower in channel types 1 and 2 than in 

channel types 3 and 4. Dissolved oxygen was higher in channel types 1 and 2 than in 

channel types 3 and 4. Conductivity was the lowest in channel type 1 (average = 77.83 

µS/cm), and highest in channel type 2 (average = 251.50 µS/cm). pH values were greater 

in channel type 2 than all other channel types. Turbidity was lower in channel type 1 than 

in either channel type 2 or 3, and also lower in channel type 4 than in channel type 3.  

The CART model produced a pruned tree with 4 splits and 5 terminal nodes 

(Figure 2.2). The model indicated that average velocity was the primary habitat variable 

that separated channel types 1 and 2 from channel types 3 and 4. Channel types 1 and 2 

were further distinguished by the increased prevalence (channel type 1), or scarcity 

(channel type 2) of large wood. Channel type 4 was typified by slow currents, non-sand 

substrates, and low conductivity. Channel type 3 was also typified by slow currents, but 

displayed variability in that some were typified by increased sand substrates, while others 

were typified by non-sand substrates and high conductivity.  

The CART model correctly classified the channel type by habitat differences in 

66.21% of our sample sites (PCC), and performed better than chance alone (AUC = 
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0.83). The weighted kappa statistic indicated a substantial strength of agreement between 

observed and predicted values (weighted K = 0.69). An examination of individual class 

accuracies (precision) from the output confusion matrix provided additional information 

on model performance. Channel types 1, 3, and 4 had the highest class precisions at 

86.05%, 61.53%, and 70.73% respectively. Channel type 2 had the lowest precision 

(41.67%), with misclassifications most commonly placed in channel type 3.  

Taxonomic Diversity and Assemblage Differences among Channel Types 

One-way ANOVAs of fish diversity metrics showed no significant differences 

among channel types (Table 2.3). However, we did find significant differences in fish 

assemblage structure among the 4 channel types (NPMANOVA; F = 6.06, P = 0.001). 

Our follow-up NMDS resulted in a 3-dimensional solution with a final stress value of 

17.23, and a Monte Carlo test indicated significance at P < 0.001. We plotted sites in a 3-

dimensional ordination space and coded each site according to its channel type, 

highlighting the nuanced separation of species among channel types (Figure 2.3). Species 

compositions in channel types 1 and 4 separated most distinctly; species compositions of 

channel type 3 largely overlapped with those found in channel type 4, and species 

compositions of channel type 2 showed large variation and overlapped the compositions 

of both channel types 1 and 4. Species most highly correlated with channel type 1 sites 

included: Etheostoma olmstedi, Pteronotropis stonei, Notropis cummingsae, Percina 

nigrofasciata, Noturus leptacanthus, Etheostoma fricksium, Notropis petersoni (all r > 

ǀ0.3ǀ). In contrast, species most highly correlated with channel type 4 included: Umbra 

pygmaea, Esox americanus, Aphredoderus sayanus (all r > ǀ0.3ǀ). Species that greatly 
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overlapped among channel types 3 and 4 included: Centrarchus macropterus, 

Notemigonus crysoleucas, Enneacanthus gloriosus, Lepomis gulosus, Erymyzon sucetta, 

Lepomis gibbosus, and Enneacanthus obesus. The species assemblages of channel type 2 

were highly variable, and showed no clear pattern within the NMDS plots.  

Trait Differences among Channel Types 

The fourth-corner analysis and associated permutation tests resulted in 27 

bivariate relationships among 15 species traits and the 4 channel types that were 

significantly different from values expected in a randomly organized environment (Table 

2.4). Species of single channel non-channelized streams (type 1) were typified by small-

bodied, short lived invertivores with preference for lotic habitats and sand/gravel 

substrates. In contrast, species of braided swamp-like streams (type 4) were typified by 

fishes that could be long-lived with a large body size, had a late maturation age, and 

preference for lentic habitats with aquatic vegetation but that lacked sand/gravel 

substrates. Species traits of maintained channelized streams (type 2) deviated 

significantly from both of these natural stream conditions, and were typified by low age 

of maturation, a protracted spawning season, were nest spawners and bearers, and were 

tolerant to salinity. Species traits of unmaintained channelized streams (type 3) showed a 

high-degree of overlap with those of braided-swamp like streams (type 4), however were 

distinguished by more invertivore-piscivores, with smaller potential body size, and were 

large river associates. 
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Discussion  

The results of this study support our hypothesis that channelization significantly 

influences the instream physicochemical habitat conditions of South Atlantic coastal 

plain streams during base flow conditions, and in turn, influences patterns of fish 

assemblage structure. Our findings are generally consistent with those of other studies 

that have shown that channelization leads to a cumulative loss of heterogeneous instream 

habitats (Brooker 1985; Lau et al. 2006; Shields et al. 1994; Wahl et al. 1997). We found 

that actively maintained streams (type 2) had higher average velocities than non-

maintained channelized streams (type 3), but both had fewer structural habitat 

components (e.g. large wood, fine wood), greater indications of water quality degradation 

(increased pH, conductivity, turbidity, temperature), and lacked flood plain connectivity 

in comparison to the natural non-channelized streams of the region (types 1,4).  

Fish taxonomic diversity and assemblage-based analyses revealed limited 

information regarding structural associations among channel types, and displayed 

difficulty in discerning fish assemblage response to channelization against the backdrop 

of a strong natural hydrological gradient that strongly influences patterns in coastal plain 

fish distribution (Poff and Allan 1995; see Chapter 1). In contrast, our trait-based analysis 

elucidated species differences among all channelized (types 2,3) and non-channelized 

(types 1,4) channel types, providing support for the theoretical expectation that species 

traits that promote local persistence should change along an environmental disturbance 

gradient (Frimpong and Angermeier 2010; McGill et al. 2006; Townsend and Hildrew 

1994). 
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Habitat Differences among Channel Types  

Both single channel non-channelized streams (type 1) and braided swamp-like 

streams (type 4) occur naturally throughout the South Atlantic coastal plain, and 

channelization dramatically alters the natural stream habitats that these channel types 

provide. We distinguished between maintained and unmaintained channelized streams 

(types 2, 3) a priori, and our ANOVA and CART analyses revealed a number of habitat 

differences between these two channel types (i.e. average velocity, sand, CPOM, AV, 

temperature, dissolved oxygen). However, several habitat similarities shared by these two 

channelized channel types highlighted the overarching negative impacts of channelization 

(i.e. lack of floodplain connectivity, degraded water quality, reduced structural habitat), 

and were consistent with the findings of previous research (Brooker 1985; Evans et al. 

2007; Lau et al. 2006; Shields et al. 1994; Wahl et al. 1997).  

Floodplain connectivity and water quality are tightly linked in the South Atlantic 

coastal plain, where active floodplains trap large amounts of sediments, associated 

nutrients, and contaminants (Hupp 2000; Mitsch and Gosselink 2000; Rheinhardt et al. 

1998). Channelization disrupts this important ecosystem function, and leads to degraded 

water quality conditions that can have damaging chronic effects on biota over time 

(Cooper 1993). The loss of structural habitat (e.g. large wood, fine wood) is also a 

disproportionally large problem for coastal plain streams, where few other stable 

substrates are available for fishes (Benke et al. 1985). Increased physical habitat 

complexity is known to support more biologically diverse and stable fish assemblages 

(Gorman and Karr 1978), by increasing available habitat, providing food resources, 
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spawning substrate, and protective cover (Angermeier and Karr 1984; Crook and 

Robertson 1999; Monzyk et al. 1997).     

Actively maintained (type 2) and unmaintained (type 3) channelized stream 

habitats were primarily distinguished by differences in their average velocities. Actively 

maintained channelized streams are commonly dredged at a slope, and had high average 

velocities that were similar to single channel non-channelized streams. Stream flow is a 

key habitat constituent for South Atlantic coastal plain fishes (see Chapter 1), as it has a 

major influence on patterns of fish habitat use related to habitat volume, substrate and 

cover composition, temperature, and dissolved oxygen (Olden and Kennard 2010; Poff 

and Allan 1995; Poff et al. 1997; Roy et al. 2005). Certain native coastal plain fish 

species are flow-dependent for part or all of their life cycle (Rohde et al. 2009), and it is 

possible that actively maintained channelized streams provide suitable hydrological 

habitats for these species. However, other negative physicochemical attributes (e.g. 

degraded water quality, reduced structural habitat) may preclude these sensitive fluvial 

taxa, despite the presence of flow.  

Un-maintained channelized streams had slow average velocities, similar to 

braided swamp-like streams. Unmaintained channelized streams retain excess sediments 

and fine/course organics that accumulate over time, which leads to decreased flows and a 

homogenous, organic-laden benthos (Hupp et al. 2009; Simon and Hupp 1992). Although 

these streams are not-maintained and therefore in a process of geomorphic recovery, they 

are unlikely to lose their archetypal straightened channels over time, but may become 

slightly wider and shallower until their banks stabilize (Hupp et al. 2009). Regardless, 
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numerous native coastal plain fishes are tolerant of low-flows and resultant low dissolved 

oxygen conditions that occur naturally throughout the region, therefore the low-flows 

present in unmaintained channelized streams do not necessarily preclude a native suite of 

coastal plain fishes. However it is possible that the general lack of habitat structural 

components and degraded water quality of unmaintained channelized streams may affect 

fish structure.  

Taxonomic Diversity and Assemblage Differences among Channel Types  

 The majority of published research regarding the impacts of channelization has 

examined differences in taxonomic diversity metrics. Although there is some evidence to 

the contrary (Gidley et al. 2012; Kappesser 2002; Stammler et al. 2008), the prevailing 

ecological consensus is that channelization decreases instream habitat complexity, which 

in turn causes declines in in richness, evenness, diversity, density, biomass, biotic 

integrity scores, and total numbers (Brooker 1985; Frothingham et al. 2001; Gorney et al. 

2012; Huggins and Moss 1974; Oscoz et al. 2005; Pilcher et al. 2004; Shields et al. 

1994). We found that taxonomic diversity metrics (richness, evenness, Shannon diversity, 

total density) did not significantly differ among channel types, despite identified habitat 

differences. In the absence of additional information, we might conclude that 

channelization has no impact on South Atlantic coastal plain fish assemblages. However, 

similar metric values across channel types indicated species turnovers and overlap rather 

than net losses or gains. The South Atlantic coastal plain displays a strong natural 

hydrological gradient, with healthy streams ranging from perennial flowing streams (e.g. 

type 1), to low-flow or even stagnant streams (e.g. type 4). The hydrologies of maintained 
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and unmaintained channelized streams are both captured within this naturally variable 

hydrological regime. A unique suite of native coastal plain fishes shows a large range of 

tolerances and adaptations to these disparate hydrological conditions (see NMDS results; 

also Chapter 1; Rohde et al. 2009). As given hydrological conditions change, intolerant 

species are replaced by species better suited to current conditions. Such variation along a 

strong natural hydrological gradient largely obscures our ability to discern the impacts of 

an environmental disturbance (see Chapter 1). As such, taxonomic diversity metrics are 

unlikely to be good indicators of disturbance in the South Atlantic coastal plain.  

Our assemblage-based taxonomic analysis (NPMANOVA) indicated significant 

fish assemblage differences among channel types, yet the follow-up NMDS yielded 

limited information regarding specific assemblage associations with stream types, and 

inferred a high degree of species overlap among channel types. The NMDS did show a 

strong assemblage separation between single channel non-channelized streams and 

braided swamp-like streams, which highlighted an overall assemblage response to natural 

hydrological differences between the two channel types (Poff and Allan 1995), and 

provided support for our assertion regarding species turnover or overlap among channel 

types. Species associated with single channel non-channelized streams included shiners, 

darters, and madtoms with life-history requirements for sustained flow. In contrast, 

species associated with braided swamp-like streams tended to be wetland specialists, with 

specific tolerances and specialized adaptations for low-flow conditions. Fish assemblages 

of non-maintained channelized streams tended to overlap extensively with those of 

braided swamp-like streams, and included several common coastal plain centrarchids and 
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tolerant cyprinids/catostomids. Our assemblage analysis (NMDS) did not reveal clear 

assemblage association with maintained channelized streams.  

Our habitat analysis revealed that channelized streams (types 2,3) displayed 

instream habitat conditions unlike their natural counterparts (types 1,4), and therefore 

represented an environmental disturbance. Proper biological indicators should be 

sensitive to, and show predictable variation across ecological disturbance gradients (Dale 

and Beyeler 2001). Taxonomic diversity and assemblage-based analyses revealed a 

general turnover in fluvial to non-fluvial species along a natural geomorphic-hydrological 

gradient, but largely failed to discern specific biotic impacts of channelization. 

Taxonomic diversity metrics and abundance distributions summarize the numerical 

structure and abundance variability of a population, but do not fully consider biological 

identity and functional differences among species, which may be more important in their 

explanation of assemblage response to ecosystem processes and environmental 

disturbances (Villeger et al. 2010). We conclude that taxonomic diversity metrics and 

abundance analyses, if used alone, may be inadequate to in assessments of environmental 

disturbances in South Atlantic freshwater stream systems.    

Trait Differences among Channel Types  

Our trait-based analysis better elucidated species differences among channel types 

than taxonomic diversity metrics and assemblage-based analyses, showing strong 

potential as a tool to evaluate the impacts of environmental disturbances on South 

Atlantic coastal plain fish assemblages. The principal functional associations among 

channel types were largely driven by differences in habitat preference (e.g. flow, 
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substrate) and body size/reproductive ecology (maxtl, matuage, longevity), while trophic 

ecology played a lesser role. The fourth-corner analysis reiterated the importance of flow 

dynamics in predicting patterns of coastal fish distributions among channel types; the 

association between hydrology and fish life history strategies is supported by a strong 

body of research (Olden et al. 2006; Tedesco et al. 2008; Vila-Gispert et al. 2005; 

Winemiller 2005; Winemiller and Rose 1992). The fluvial habitats of single channel non-

channelized streams host a unique suite of native rheophillic fishes (cyprinids, percids, 

and ictalurids). Lotic coastal plain habitats are primary zones of invertebrate production, 

the major food source for benthic percids and drift-feeding cyprinids, who typically 

exhibit optimal feeding behaviors at certain velocity ranges (Grossman et al. 2002; Hill 

and Grossman 1993). While our analysis did not discern reproductive trait associations, 

many of these rheophillic species are also lithophillic spawners who require clean 

inorganic substrates (e.g. sand, gravel) in flowing oxygenated waters to reduce egg 

mortality. In sharp contrast, the lentic habitats of braided swamp-like streams were 

largely inhabited by rheophobic fishes that exhibit high tolerance to low-flow or 

fluctuating water levels. Some have specific adaptations to low-flow conditions including 

the capability of gulping atmospheric air using a phytostomous swim bladder, and the 

ability to aestivate in moist soils (Rohde et al. 2009). Others are highly tolerant to low 

pH, low dissolved oxygen, and high temperatures. Large-bodied, late maturing swamp-

associated species (e.g. Amia calva, Lepisosteus osseus) commonly use braided swamp-

like stream habitats as spawning and juvenile rearing grounds (Rohde et al. 2009).   
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The impact of channelization on trait structures was more evident in actively 

maintained channelized streams than non-maintained channelized streams. Actively 

maintained channelized streams were typified by fishes with colonizing or opportunistic 

life history attributes including protracted breeding seasons and low age of sexual 

maturation. Opportunistic and/or colonizing life history strategies are common in aquatic 

systems with low environmental stability and high abiotic stress (Poff and Ward 1990; 

Winemiller 1992; Winemiller 2005). Several studies in other regions have found an 

increase in small-bodied opportunistic species associated with channelization, indicating 

this response may be general (Frothingham et al. 2001; Lau et al. 2006; Oscoz et al. 

2005; Pilcher et al. 2004; Shields et al. 1994). Although actively maintained channelized 

streams retained a fluvial habitat, their fish assemblages were not typified by traits of 

coastal plain fluvial specialists, indicating that some aspect of habitat disturbance 

associated with active channelization (e.g. structural degradation, water quality 

degradation, hydrological variability) limited the ability for those species to thrive.  

Non-maintained channelized streams were similar in trait composition to braided 

swamp-like streams, with fishes showing affinities for and/or tolerances to low-flow 

habitats. Non-maintained channelized stream species traits were distinguished from those 

of braided swamp-like systems in that they were typified by smaller-bodied large river 

invertivore-piscivore predator species, such as centrarchids (e.g. Enneacanthus, 

Lepomis). Although we failed to document information regarding seasonal or long-term 

hydrologic regime differences among channel types, our field observations indicated that 

non-maintained channelized streams were particularly susceptible to periods of seasonal 
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dewatering or near-dewatering. Several studies have suggested that the distribution of 

fishes are shaped, in part, by the interactions between life history strategies and patterns 

of predictability and variability in hydrologic regimes (Fausch et al. 2002). Seasonal 

dewatering may increase the proportion of predators (e.g. centrarchids) while decreasing 

the proportion of invertivores, as increased competition among species is instigated by 

dwindling food and habitat resources (DeAngelis et al. 1997).    

Taken as a whole, our results supported our hypothesis that the instream habitats 

and fish assemblages of channelized streams are dissimilar to those of unmodified, 

naturally occurring stream channel types of the South Atlantic coastal plain. Actively 

maintained channelized streams retained fluvial habitats, but failed to support native 

fluvial specialist assemblages, rather they hosted a suite of opportunistic and/or colonist 

species. Unmaintained channelized streams showed an association with predatory species 

whose abundances may reflect the potential for these streams to undergo seasonal 

variability in hydrological conditions and stream drying. Unmaintained channelized 

stream assemblages were otherwise similar to those of braided swamp-like streams, 

indicating potential for the biotic recovery of channelized streams over time.  

Our results indicated that fluvial specialists tend to predominantly inhabit single-

channel non-channelized streams, and have limited tolerance to actively maintained or 

unmaintained channelized streams, as well as non-channelized braided swamp-like 

streams. Therefore, the loss of fluvial habitats found in single channel non-channelized 

South Atlantic coastal plain streams to channelization or other anthropogenic 

disturbances may lead to the extirpation of the fluvial specialists dependent on these 
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habitats. Management efforts should focus on the preservation of these fluvial habitats 

where they exist.  

We suggest that trait-based analyses may be particularly well-suited to elucidating 

information on ecological response to environmental disturbances in the context of a 

strong natural gradient (e.g. flow, salinity, elevation), and their use in conjunction with 

taxonomic analyses may provide a fruitful avenue for developing and testing ecological 

theory of fish assemblage organization across the South Atlantic coastal plain. Our work 

builds on evidence that geomorphic characteristics are important local-scale determinants 

of coastal plain stream habitats and fish assemblages, and further enhances our 

understanding of the hierarchy of factors that influence South Atlantic coastal plain fish 

diversity and organization.  
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Table 2.1. Traits derived from FishTraits database used in data analysis. 

 

Trait Code Data Scale Description 

Trophic Ecology     

   benthic Binary Benthic feeder 

   surwcol Binary Surface or water column feeder 

   invertivore Binary Invertebrates and larval fish  

   invertivore-piscivore Binary Invertebrates/larval fish and larger fish, crayfish 

   omnivore Binary Feeds on herbivore, invertivore, and invertivore-piscivore 

      

Body Size / Reproductive Ecology   

   maxtl Continuous Maximum total length (cm) 

   matuage Continuous Mean, median, or modal age at maturity for females (years) 

   longevity Continuous Longevity based on life in wild (years) 

   fecundity Continuous Maximum reported fecundity 

   serial Binary Serial or batch spawner 

   matlength Continuous Mean total length at maturity for females (cm) 

   eggsize Continuous Mean diameter of mature (fully yolked) oocytes (mm) 

   season Continuous Length of spawning season (months) 

   A1 Binary Nonguarders, open substrate spawners 

   A2 Binary Nonguarders, brood hiders 

   B1 Binary Guarders, substratum choosers 

   B2 Binary Guarders, nest spawners 

   C Binary Bearers (internal and external), substrate indifferent 

      

Habitat / Salinity Preferences     

   muck Binary Muck substrate 

   sand Binary Sand substrate 

   gravel Binary Gravel substrate 

   vegetat Binary Aquatic vegetation 

   debrdetr Binary Organic debris or detrital substrate 

   lwd Binary Large wood substrate 

   largeriv Binary Medium to large river 

   creek Binary Creek 

   lotic Binary Moderate and/or fast current 

   euryhaline Binary Salinity tolerance 
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Table 2.2. Habitat ranges, overall means, and means (±SD) by channel type. P-values are associated with results of one-way 

ANOVAs with channel type (1,2,3,4) as the independent variable. Bolded italics indicate statistical significance. 

Habitat Variable Unit Range Mean  Channel Type 1  Channel Type 2  Channel Type 3  Channel Type 4 P 

Physical Parameters                 

   Elevation m 0.92-83.32 28.20 44.77 (21.69) 16.87(13.89) 22.32(12.39) 19.96(16.61) 0.000 

   Slope % 0-.007 0.001 0.0017(0.0015) 0.0007(0.0008) 0.0009(0.001) 0.001(0.001) 0.017 

   Average Width m 1-8.69 3.31 3.72(1.52) 3.34(1.06) 2.99(1.48) 3.18(1.42) 0.094 

   Average Velocity m/s 0-0.35   0.13(0.07) 0.105(0.108) 0.03(0.04) 0.02(0.02) 0.000 

   Average Depth m 0.07-0.58 0.25 0.27(0.10) 0.24(0.17) 0.27(0.14) 0.23(0.09) 0.312 

   Standard Deviation of Depth m 0.03-0.28 0.13 0.14(0.05) 0.09(0.04) 0.12(0.05) 0.13(0.05) 0.002 

Substrate Parameters                 

   Sand % 0-0.80 0.27 0.37(0.14) 0.45(0.26) 0.23(0.19) 0.14(0.17) 0.000 

   Aquatic Vegetation % 0-0.96 0.08 0.05(0.05) 0.23(0.19) 0.08(0.17) 0.05(0.11) 0.000 

   Fine Particulate Organic Matter % 0-0.47 0.06 0.07(0.09) 0.04(0.05) 0.06(0.08) 0.06(0.08) 0.663 

   Course Particulate Organic Matter % 0-0.88 0.30 0.17(0.10) 0.14(0.20) 0.34(0.23) 0.44(0.21) 0.000 

   Fine Wood % 0-0.49 0.12 0.11(0.06) 0.04(0.05) 0.13(0.10) 0.15(0.08) 0.000 

   Large Wood % 0-0.40 0.12 0.16(0.09) 0.03(0.03) 0.08(0.09) 0.13(0.10) 0.000 

Chemical Parameters                 

   Temperature °C 13.15-28.86 22.13 20.91(3.90) 22.7(3.81) 22.69(3.11) 22.72(2.93) 0.028 

   Dissolved Oxygen mg/L 0.2-11.37 4.96 7.06(2.11) 6.47(2.54) 4.22(2.58) 3.03(2.23) 0.000 

   Conductivity µS/cm 14-708 118.15 77.83(49.53) 251.5(198.21) 118.78(53.47) 118.19(71.39) 0.000 

   pH   4.92-8.06 6.73 6.73(0.58) 7.21(0.84) 6.71(0.60) 6.61(0.54) 0.039 

   Turbidity NTU 1.03-59.29 10.22 6.05(4.16) 13.19(10.20) 15.02(17.76) 9.29(9.19) 0.001 
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Table 2.3. Fish diversity metric ranges, overall means, and means (±SD) by channel type. P-values are associated with results 

of one-way ANOVAs with channel type (1,2,3,4) as the independent variable. Bolded italics indicate statistical significance.  

 

Fish Diversity Metric Range Mean Channel Type 1 Channel Type 2 Channel Type 3 Channel Type 4 P 

  Richness 3-25 12 14(6) 12(5) 12(5) 12(5) 0.06 

  Evenness 0.38-0.98 0.75 0.73(0.12) 0.81(0.11) 0.78(0.11) 0.74(0.13) 0.11 

  Simpson Diversity 0.32-0.91 0.75 0.75(0.14) 0.73(0.14) 0.76(0.12) 0.74(0.15) 0.77 

  Total Density 3.8-372.2 51.9 55.39(41.5) 52.34(36.69) 38.67(23.3) 60.13(72.7) 0.41 
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Table 2.4. Significant species and trait relationships among channel types based on 4
th

 

corner analysis. Abbreviations and codes are found in Table 2.1. Positive and negative 

signs indicate directionality of bivariate relationship between trait and channel type. * = P 

< 0.05, ** = P < 0.01, *** = P < .001   

 

Trait Code Channel Type 1 Channel Type 2 Channel Type 3 Channel Type 4 

Trophic         

   invertivore +   *     -   * 

   invertivore-piscivore     + *   

Body Size / Reproductive Ecology       

   maxtl -   *     +   * 

   matuage   - * + * +   * 

   longevity -   *   + * +  * 

   season   + **     

   A2   -   *     

   B1   +   *     

   C   + **     

Habitat          

   sand +   *     -   * 

   gravel +   *     - ** 

   vegetat -  **   + * + ** 

   largeriv     + *   

   lotic + ***   - *** - ** 

   euryhaline   + **     
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Figure 2.1. Study area showing EPA level IV ecoregions, major drainage basins, and  

locations of all sampling sites.    
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Figure 2.2. Classification tree from the Classification and Regression Tree (CART) 

model. Values below explanatory variables indicate splitting criteria (e.g. if a site had ≥ 

0.063 m/s average velocity, then it was placed into the group to the left of the branch, 

otherwise it was placed on the branch to the right). Numbers in circles indicate channel 

type (1,2,3,4) terminal nodes.  

 



 90 

 

Figure 2.3. Non-Metric Multidimensional Scaling (NMDS) follow-up to NPMANOVA 

analysis. Symbols represent sites, and are coded according to channel type. Blue triangles 

represent channel type 1, gray stars represent channel type 2, green circles represent 

channel type 3, and red squares represent channel type 4.  
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CHAPTER THREE 

THE EFFECTS OF MULTIPLE DAM REMOVALS ON THE FISH ASSEMBLAGE 

OF TWELVEMILE CREEK, PICKENS COUNTY, SOUTH CAROLINA 

 

Abstract  

Dam removal is considered an effective tool for restoring ecological integrity to 

rivers and streams, yet few studies have investigated the impacts and recovery of fish 

assemblages after dam removal(s), and virtually no published research has emerged from 

dam removals in the southeastern U.S. This study examines the effects of multiple dam 

removals on the instream habitat and fish assemblages of Twelvemile Creek, a tributary 

to the Lake Hartwell Reservoir, located in Pickens County, South Carolina. We collected 

habitat and fish data above and below two removed dams, and from upstream and 

downstream reference sites, for an approximate timeframe of 5-years prior and 2.5-years 

after dam removals. We evaluated ecological impacts and recovery by examining 

changes in habitat (depth, flow, substrate), fish metrics (total density, taxa richness, 

benthic invertivore density, insectivorous cyprinid density, round-bodied sucker density, 

native centrarchid density, non-native species density), and fish assemblage structure 

over time. The bulk of instream habitat changes occurred within 1-year of each dam 

removal; major geomorphic adjustments led to dramatically increased flow rates and 

shifts from fine to coarse/bedrock substrates in both former impoundments. However, we 

found no significant habitat changes in downstream free-flowing sites, despite field 

observations that indicated persisting deposited sediment for the duration of the study, 

with greater deposition in the vicinity of the downstream-most removed dam. Previously 
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lentic-dominated fish assemblages at former impounded sites generally shifted to a lotic-

dominated structure within 6-months (upper-removed dam), and 1-1.5 years (lower-

removed dam) after dam removal. Despite these prominent assemblage shifts, we found 

impacts on benthic invertivore density at sites flanking the upper-removed dam at 2.5-

years post dam removal, and impacts on total density, richness, benthic invertivore 

density, and native centrarchid density at sites flanking the lower-removed dam at 2-years 

post dam removal. These findings suggested that multiple dam removals had a 

cumulative downstream increase in negative impacts on fish assemblages. We also 

observed a sharp increase in non-native density following the removal of the lower-most 

dam, led by captures of Micropterus henshalli, a non-native species introduced to the 

downstream Lake Hartwell reservoir in the 1980s that is known to reduce native 

Micropterus coosae populations through introgressive hybridization. We routinely 

captured Micropterus coosae at all sample sites both before and after dam removals, 

whereas we only captured Micropterus henshalli in post dam removal samples. As such, 

our study elucidated the potential for tributary dams to act as barriers that protect native 

lotic species from the influence of reservoir taxa; such phenomena may be exacerbated in 

southeastern U.S., where impoundment and reservoir density is extremely high. Although 

dam removal can have ecological trade-offs and short-term disturbance impacts, we 

demonstrated that dam removal can reverse many of the negative impacts dams have on 

fish assemblages, primarily through the restoration of high-quality lotic habitats required 

by native riverine species. Our findings suggest that fish assemblages in high-gradient 
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southeastern U.S. systems are likely to recover once habitat disturbances and sediment 

loads are fully reduced, assuming highly vulnerable or sensitive species are not at risk. 

Introduction    

United States waterways are among the most dammed in the world, boasting over 

87,300 recorded dams, and numerous others too small for national registration (Smith et 

al., 2002; USACE, 2013). The dam building binge of the mid-nineteenth to mid-twentieth 

centuries has quickly become a major socio-political and economic issue of today, as the 

environmental costs of dams have been realized, and financial costs for maintenance and 

repair of ageing dams have steadily risen (ASCE 1997; Bednarek, 2001; Born et al., 

1998; Stanley & Doyle, 2003; Walter & Merritts, 2008). Resultantly, dam removal has 

increasingly been used as a restoration tool intended to mitigate future economic and 

societal costs, as well as reestablish natural ecological, hydrological, and biological 

conditions of riverine systems (American Rivers, 2002). Over 1000 dams have been 

removed from U.S. streams and rivers to date (American Rivers, 2014). However, there 

remains a limited number of published studies examining the ecological impacts of dam 

removal, and virtually no research has emerged from the southeastern U.S., despite the 

fact that the density of both existing and removed dams is relatively high in this region 

(Graf, 1999; Helms et al., 2011; American Rivers, 2014) 

The construction of dams and impoundments was extensive in southeastern U.S. 

rivers and streams over the last 100-200 years, primarily for hydroelectricity, recreation, 

water-storage, and irrigation (Graf, 1999; Jenkins, 1970). Large hydroelectric dams have 

dramatically altered the native hydrological conditions of almost all large rivers of this 
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region, and small and low-head dams are even more numerous and widespread in small 

rivers and streams (Graf, 1999; USACE, 2013). Dams degrade lotic habitats by altering 

the natural hydraulic regime, thermal regime, nutrient processing, physical habitat, 

benthic substrate composition, and longitudinal connectivity of aquatic ecosystems 

(Bednarek, 2001; Ligon, Dietrich & Trush, 1995; Petts, 1984). Consequently, dams alter 

the composition, abundance structure (Martinez et al., 1994; Santucci, Gephard & 

Pescitelli, 2005; Taylor, Knouft & Hiland, 2001), and longitudinal distribution of native 

fish assemblages (Winston, Taylor & Pigg, 1991; Wunderlich, Winter & Meyer, 1994).  

Removing dams causes a short-term ecological disturbance that disrupts and 

reconfigures the existing physical environment. Dam removal cannot be assumed to 

return an aquatic ecosystem to pre-dam conditions, rather is likely to create a novel 

system that resides somewhere on a continuum of partial recovery to pre-dam conditions 

(Doyle et al., 2005; Dufour & Piegay, 2009). The timing and extent of the recovery 

process is largely dictated by the characteristics of dam removal, the geomorphic 

conditions of the watershed, and the life history characteristics of biotic populations of 

interest (Doyle et al., 2005). The removal of small dams can be expected to restore lotic 

habitats within former impounded reaches (Bushaw-Newton et al., 2002; Stanley & 

Doyle, 2002), and can have long-term biological benefits such as the replacement of 

tolerant habitat generalist taxa with sensitive habitat specialist taxa (Catalano, Bozek & 

Pellett, 2007; Kanehl & Lyons, 1997), and improved fish migration (Catalano, Bozek & 

Pellett, 2007; Schmetterling, 2003). However, dam removal may also have negative 

short-term or potentially-permanent impacts on biota, primarily due to increased transport 
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and deposition of sediments previously retained behind the dam that can smother food 

sources, destroy spawning grounds, and disrupt existing assemblage structure (Burdick & 

Hightower, 2006; Gardner et al., 2013; Shuman, 1995; Stanley & Doyle, 2003; Thomson 

et al., 2005), or due to the introduction of novel species interactions  (Marks et al., 2010; 

Schroeder et al., 2012). 

A rare opportunity to study the ecological effects of multiple dam removals in the 

southeastern U.S. was presented with the removal of two small mainstem dams on 

Twelvemile Creek, in Pickens County, South Carolina. Twelvemile Creek is a tributary 

to a large artificial reservoir (Lake Hartwell) on the upper Savannah River system. 

Twelvemile Creek was extensively polluted with PCBs originating from a capacitor 

manufacturing plant from 1955-1975; the waste site and its receiving waters were listed 

with the EPA Superfund Program in 1990. As part of a settlement for damages caused by 

PCB contamination, a natural resources board of trustees facilitated the removal of two 

out of three mainstem dams on Twelvemile Creek. Dam removal began in August 2009 

with the initial dredging behind the upper dam (Woodside I Dam); this dam was 

completely removed by April 2011. Dredging and removal preparations on the lower dam 

(Woodside II Dam) began in April 2011, and removal was completed in September 2011. 

The primary objective of this study was to assess changes in the instream habitat 

and fish assemblage of Twelvemile Creek associated with the removal of two mainstem 

dams. We examined patterns in instream habitat, fish metrics, and fish assemblage 

structure before and after dam removals in order to evaluate the extent of habitat and 

biological impact, and to examine the process and timing of fish assemblage recovery. 
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Dam removals rates are expected to increase over time throughout the U.S., and this 

research should serve as a valuable tool for managers faced with questions and concerns 

regarding fish assemblage response.  

Methods  

Twelvemile Creek is located in the EPA level IV Inner Piedmont ecoregion of 

northwestern South Carolina, USA (Figure 3.1; Omernik, 1987). The small river drains a 

watershed of approximately 356 km² and is a major headwater tributary to Lake Hartwell, 

a 226 km² surface-area reservoir constructed between 1955 and 1964 by damming a 

portion of the upper Savannah River system. The Twelvemile Creek watershed is largely 

forested (55.6%) and pasture/shrubland (29.7%), with a relatively low level of urban 

development (12.4%) (SCDHEC, 2014). We established a study section in the lower 

portion of Twelvemile Creek that was approximately 7.25 km in length that encompassed 

three small run-of-the-river dams (Figure 3.1). The portion of this study section that 

contained all three dams is largely characterized by steep, gorge-like riparian terrain. The 

river’s steep valley walls are lined with mountain laurel and rhododendron; such 

landscape and floral features are somewhat atypical of the surrounding Piedmont region. 

In contrast, the study section terrain further above and below all dams contains a gentle 

slope more typical of the region. The upstream-most dam (hereafter the ‘Easley-Central 

Dam’) is located approximately 5.1 km upstream of Lake Hartwell, has a hydraulic 

height of approximately 6 m, and retains a small impoundment that supplies drinking 

water to a local water district (Bechtel Engineering Inc., 1994). The next two 

downstream-most dams (Woodside I Dam and Woodside II Dam) were built in 1937 and 
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1895 respectively, and both were associated with hydromechanical and hydroelectric 

power production for the now abandoned Norris Cotton Mill in Cateechee, SC. The 

Woodside I Dam had a hydraulic height of 9.4 m and was located approximately 4 km 

upstream of Lake Hartwell, and the Woodside II Dam had a hydraulic height of 13 m and 

was located approximately 2.4 km upstream of Lake Hartwell. Each of the Woodside 

Dams retained small impoundments that were approximately 40 m wide and 60-90 m in 

length.   

Sampling Design 

We utilized a modified Before-After-Control-Impact (BACI) sampling design 

(Underwood, 1992; Underwood, 1994). We established six sampling sites of 

approximately 150 m in length to collect biological and habitat data (Figure 3.1). The 

sampling sites were distributed as follows: 1) an alluvial undisturbed reference reach 

located upstream of both Woodside Dams, and 2.0 km upstream of the uppermost Easley-

Central Dam (Upstream) 2) an impounded reach immediately upstream of the Woodside I 

Dam (Woodside I Above), 3) a bedrock-constrained free-flowing reach immediately 

downstream of the Woodside I Dam (Woodside I Below), 4) an impounded reach 

immediately upstream of the Woodside II Dam (Woodside II Above), 5) a bedrock-

constrained free-flowing stream reach immediately downstream of the Woodside II Dam 

(Woodside II Below), and 6) an alluvial reach located approximately 1.5 km downstream 

of the Woodside II Dam (Downstream). This study referenced ten biological and habitat 

samples collected across sites before and after dam removal, in the fall and spring 

seasons (December 2006, August 2009, April 2010, September 2010, April 2011, 
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October 2011, April 2012, October 2012, April 2013, and October 2013). The Woodside 

I Dam was removed in April of 2011, yielding 4 pre-removal and 6 post-removal 

samples. The Woodside II Dam was removed in September of 2011, yielding 5 pre-

removal and 5 post-removal samples.   

Habitat  

We recorded depth (m), velocity (m/s), and inorganic substrate particle size (mm) 

at a representative point within each of twenty sampled stream segments per sample site 

(see fish collection for segment details). Depth and velocity were measured using a 

Marsh-McBirney Model 2000 Flo-Mate portable flowmeter and top-setting wading rod, 

and measured values were site-averaged for statistical analyses. Inorganic substrates were 

measured in millimeters at the intermediate axis, and median inorganic particle size 

(D50) was calculated for each site. Inorganic substrates considered to be bedrock were 

recorded as 999 mm, a standardized upper inorganic particle size limit.  We measured 

wetted-width (m) at 5 transects spaced evenly across each sample site reach, and a site-

averaged width was calculated. Turbidity was recorded using a MicroTPW
TM

 

turbidimeter (NTU). Water temperature, dissolved oxygen, conductivity, and pH were 

recorded prior to fish sampling using a YSI 556 MPS
 TM

 multiparameter probe, but none 

of these measurements were included in subsequent reported analyses due to low 

variability among sites and across time.     

Fish  

We collected fishes with a standardized electrofishing effort within each of our 

six sample sites. Twenty seine-set collections, each covering a stream segment area of 
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approximately 15m², were obtained in the following manner: a single backpack 

electrofisher operator (Smith-Root Model LR-24) acted in synchrony with one-two 

persons that collected fish with dipnets, all kicking downstream towards two persons 

holding a 3m seine. All fishes encountered per seine-set were collected, field identified to 

species level, recorded, and released after the twenty seine-sets at a site were completed. 

We preserved and returned specimens with any uncertainties in identification to the lab.   

Statistical Analyses  

A combination of univariate analyses of fish assemblage metrics and multivariate 

ordination was used to evaluate fish assemblage and instream habitat response to multiple 

dam removals on Twelvemile Creek. We used a replicated Before-After (BA) analysis to 

test for the effects of dam removal on instream habitat parameters. We calculated site-

averaged values for both velocity (m/s) and depth (m), and calculated median particle 

size (mm) and turbidity (NTU).  We tested for differences in instream habitat parameters 

before and after dam removal per sample site, and tested for differences between sites 

immediately upstream and downstream of dams both before dam removal and after dam 

removal. Habitat data were log-transformed as necessary to meet homogeneity of 

variances requirements of BA analyses. We considered the effect of dam removal to be 

significant if a given site displayed significant differences in habitat before versus after 

dam removal, or if sites immediately upstream and downstream of each dam showed 

differences prior to dam removal, then similarities after dam removal.   

We additionally used a replicated BA analysis to examine the effects of dam 

removal on several often-reported fish assemblage metrics: total density, taxa richness, 
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benthic invertivore density, insectivorous cyprinid density, round-bodied sucker density, 

native centrarchid density, and non-native density. Densities were calculated as number 

of individuals per seine-set, out of a total of 20 seine-sets. We tested for differences in 

metrics before and after dam removal within sample sites, and tested for differences 

between sites immediately upstream and downstream of dams both before dam removal 

and after dam removal. Fish metrics were log-transformed as necessary to satisfy 

homogeneity of variances requirements. The effect of dam removal was considered 

significant if a given site displayed differences in a fish metric before and after dam 

removal, or if sites immediately upstream and downstream of  each dam showed 

differences prior to dam removal, then similarities after dam removal. Preliminary 

analysis revealed that non-native density lacked a normal distribution despite 

transformation efforts, therefore we plotted non-native density by site over time to 

visually highlight patterns in non-native fish density before and after dam removal and 

provide further insight into assemblage changes among sites. 

We performed non-metric multidimensional scaling (NMDS) on a species relative 

abundance matrix to examine changes in fish assemblage abundance structure before and 

after dam removal, and to assess how assemblage structure was related to measured 

instream habitat parameters (Clarke, 1993; Kruskal, 1964). Prior to analysis, we removed 

12 species whose abundances comprised less than 5% of total collections and were 

identified as strongly influencing the analysis based on rarity alone (Lohr & Fausch, 

1997;  Matthews & Marsh-Matthews, 2011). The majority of these species were seasonal 

migrants from Lake Hartwell, others were represented by single individuals, or were 
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multiple individuals captured at only one site on only one occasion. The final relative 

abundance matrix contained 25 species. We applied a double-root transformation to 

reduce the effect of large differences in fish abundances among samples. NMDS was 

performed in R’s vegan package (R Core Development Team, 2012) using the Bray-

Curtis distance measure (Bray & Curtis, 1957), a random starting configuration, and 1000 

runs with real data. We used a Monte-Carlo test with 20 iterations and 10 randomized 

runs to determine the probability of obtaining an equal or lower stress value by chance (α 

= 0.05). We used Pearson correlation analysis to link instream habitat variables with our 

NMDS solution; habitat variables were log-transformed prior to this analysis. 

Results  

Before-After Analyses: Habitat  

The bulk of expected habitat changes in former impounded sites (Woodside I 

Above, Woodside II Above) occurred rapidly after dam removal, as the lentic habitats 

transformed to lotic habitats and became increasingly similar to the habitat conditions 

found in their respective downstream counterparts (Woodside I Below, Woodside II 

Below). Prior to dam removal, both of the small impoundments upstream of the 

Woodside I and II Dams had slower velocities, smaller median inorganic particle sizes 

(low D50 – dominantly sand), and were wider than their respective downstream free-

flowing counterparts (all P < 0.05, Table 3.1).  After dam removal, the average velocities 

and median substrate sizes of both Woodside I Above and Woodside II Above increased 

dramatically in comparison to their prior impounded conditions (both P < 0.05, Table 

3.1), and became similar to the velocity and substrate conditions found in their respective 
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downstream free-flowing counterparts (both P > 0.05, Table 3.1). The average widths of 

the impoundments at Woodside I Above and Woodside II Above were both greater than 

the average widths of their respective downstream free-flowing counterparts prior to dam 

removal (both P < 0.05, Table 3.1). The former impounded area at Woodside I Above 

remained wider than its downstream free-flowing counterpart after dam removal (p = 

0.01), whereas the average width of Woodside II Above decreased after dam removal (p 

= 0.01), and became more similar in width to its downstream free-flowing counterpart (p 

= 0.37). We found no significant differences in average depths and turbidities at 

Woodside I Above or Woodside II Above before and after dam removal (all P > 0.05, 

Table 3.1).     

Unlike the dramatic habitat changes we observed in both former impoundments 

following dam removal, we found no significant differences in any of the habitat 

measurements before and after dam removal at sites immediately below dams (Woodside 

I Below, Woodside II Below), or at the Upstream and Downstream sites (all P > 0.05, 

Table 3.1). We did visually observe a marked increase in fine sediment deposition at both 

Woodside I Below and Woodside II Below after both dam removals, although our BA 

analysis did not reveal these changes. The fresh sediments were likely derived from fine 

sediments previously trapped behind the dams, and deposition appeared to be greater at 

Woodside II Below than at Woodside I Below. Fresh sediments were also observed at the 

Downstream site, although this change was also not statistically significant. Prior to dam 

removal, the dominant median inorganic particle size at the Downstream site was coarse 
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sand (median = 4.5mm), but converted to fine sand (median = 0.5mm) after dam 

removal.  

Before-After Analyses: Fish 

We captured 11,117 individual fish comprised of 37 species and 8 families over 

the course of this study. The BA analyses of our fish assemblage metrics, detailed below, 

indicated that fish assemblages immediately above (Woodside I Above, Woodside II 

Above) and below (Woodside I Below, Woodside II Below) both dams displayed 

significant changes in assemblage structure associated with dam removal. In contrast, we 

found no significant changes in fish assemblage metrics at the Upstream and Downstream 

sites, indicating no measured impact of dam removal on the fish assemblages of those 

sample locations.    

Woodside I Above, Pre v. Post     

All metrics, except richness, that were calculated for the impoundment above the 

Woodside I Dam differed before and after dam removal (all P < 0.05, Table 3.2).  Total 

density, benthic invertivore density, insectivorous cyprinid density, and round-bodied 

sucker density was increased after dam removal, and native centrarchid density was 

decreased after dam removal.  

Woodside I Below, Pre v. Post 

Total density, richness, insectivorous cyprinid density, round-bodied sucker 

density, and native centrarchid density at the free-flowing site immediately downstream 

the Woodside I Dam did not differ before and after dam removal (all P > 0.05, Table 
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3.2). However, benthic invertivore density was decreased after dam removal (P = 0.02), 

potentially indicating a downstream benthic disturbance following dam removal.   

Woodside I Above v. Woodside I Below, Pre v. Post 

All fish metrics, except richness, differed between the sites immediately upstream 

and immediately downstream of the Woodside I Dam prior to dam removal (all P < 0.05, 

Table 3.2). Total density, benthic invertivore density, insectivorous cyprinid density, and 

round-bodied sucker density were greater, and native centrarchid density was less in the 

free-flowing site immediately downstream the Woodside I Dam than in the impounded 

site immediately upstream. After dam removal, all metrics that showed differences 

between sites immediately upstream and downstream of the Woodside I Dam before dam 

removal, were found statistically similar (all P > 0.05, Table 3.2). These findings suggest 

the fish assemblage of the former impoundment showed a recovery in total density, 

insectivorous cyprinid density, round-bodied sucker density, and native centrarchid 

density to the expected pre-removal baseline conditions established at Woodside I Below. 

Although benthic invertivore density increased in the former impoundment after dam 

removal, and was found to be similar to post-removal downstream benthic invertivore 

densities, it did not eclipse the baseline benthic invertivore densities established at the 

downstream free-flowing site prior to dam removal.  This indicates a lingering benthic 

dam removal disturbance at both Woodside I Above and Woodside I Below.    

Woodside II Above, Pre v. Post 

We observed a similar, yet less consistent set of responses among fish metrics 

measured at sites immediately above and below the Woodside II Dam. Of the metrics 
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calculated for the impoundment above the Woodside II Dam, only benthic invertivore 

density and native centrarchid density differed before and after dam removal (both P < 

0.05, Table 3.2). Benthic invertivore density was increased and native centrarchid density 

was decreased in the former impoundment after dam removal. We found no changes in 

total density, richness, insectivorous cyprinid density, or round-bodied sucker density 

after dam removal.    

Woodside II Below, Pre v. Post 

Total density, richness, benthic invertivore density, and native centrarchid density 

differed before and after dam removal at the free-flowing site immediately downstream 

of the Woodside II Dam (all P < 0.05, Table 3.2), while insectivorous cyprinid density 

and round-bodied sucker density did not differ before and after dam removal (both P  > 

0.05, Table 3.2). Total density, richness, benthic invertivore density, and native 

centrarchid density all significantly decreased after dam removal, potentially indicating a 

downstream impact due to dam removal.   

Woodside II Above v. Woodside II Below, Pre v. Post 

Total density, benthic invertivore density, and insectivorous cyprinid density 

differed between the sites immediately upstream and downstream of the Woodside II 

Dam before dam removal (all P < 0.05, Table 3.2).  Each of these metrics was higher in 

the free-flowing site below the Woodside II Dam, and lower in the impounded area above 

the dam prior to dam removal. Richness, round-bodied sucker density, and native 

centrarchid density did not differ at sites above and below the Woodside II Dam prior to 

dam removal (all P > 0.05, Table 3.2). After dam removal, total density, benthic 
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invertivore density, and insectivorous cyprinid density increased in the former 

impoundment (Woodside II Above), and became similar to densities observed in post-

removal Woodside II Below (All P > 0.05, Table 3.2).  Cumulatively, these findings 

suggest that several aspects of fish assemblage structure at Woodside II Below remained 

negatively impacted at 2-years post-removal of the Woodside II Dam, and also suggest 

that Woodside II Above has not shown all expected assemblage changes anticipated with 

dam removal. We found that total density, benthic invertivore density, insectivorous 

cyprinid density were less in the impoundment as compared to densities in the 

downstream free-flowing site prior to dam removal, and these metrics were found to be 

similar in both sample locations after dam removal. However, after dam removal, benthic 

invertivore densities and total densities of both Woodside II Above and Woodside II 

Below failed to reach the expected baseline conditions set at Woodside II Below prior to 

dam removal. In contrast, cyprinid densities appeared to have recovered to pre-dam 

removal levels at both Woodside II Above and Woodside II Below.  

Non-Native Density   

Prior to both dam removals, non-native density was minimal among sites, and no 

non-native species were captured at sites above the lower-most dam (Woodside II Dam; 

Figure 3.2). All pre-dam removal non-native captures were represented by a single 

species, Pylodictis olivaris. We did not observe an increase in non-native density after the 

removal of the Woodside I Dam. However, at 1-month after the removal of the 

downstream-most Woodside II Dam, non-native species density increased sharply at both 

Woodside II Below and Woodside II Above, as well as at the Downstream site. This 
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increase reflected the presence of Pylodictis olivaris in greater numbers than captured 

previously, and an increase in Micropterus henshalli, a species that had never been 

captured in any of our samples prior to dam removal. At 6-months post- removal of the 

Woodside II Dam, we had captured Micropterus henshalli at Downstream, Woodside II 

Below, Woodside II Above, as well as the free-flowing site immediately downstream of 

the former upper dam (Woodside I Below). Further fish surveys showed captures of 

Micropterus henshalli at Woodside I Above. In contrast, we did not capture Micropterus 

henshalli in our Upstream reference site, located above the third dam (Easley-Central 

Dam) that remained on the river. We captured the majority of Micropterus henshalli (N = 

9) within 1- year of the removal of the lower-most dam (Woodside II Dam), and observed 

only one additional catch occurrence between 1- and 2- years. To date, we have not 

reinforced our visual identifications of Micropterus henshalli with genetic verifications, 

although genetic samples were taken from almost all non-native fish captured. 

Non-Metric Multidimensional Scaling 

The NMDS resulted in a 2-dimensional solution that explained 97.5% of the 

variation in the fish relative abundance matrix, and resulted in a final stress value of 

15.67, a final instability of 0.0098, and a Monte Carlo test indicated significance at p < 

0.001. The NMDS solution confirmed that differences in assemblage structure among 

sites were strongly correlated to changes in habitat conditions before and after dam 

removal, showed that assemblages varied longitudinally across sample sites (i.e. 

assemblages displayed upstream-downstream variation), and provided insight into the 

gradual temporal changes in assemblage structure succeeding dam removal (Figure 3.3).   



 108 

Prior to dam removal, the habitat conditions and fish assemblage structure of both 

impoundments (Woodside I Above, Woodside II Above) were similar. The 

impoundments contained sand-dominated substrates (low D50), slow velocities and large 

average widths, and were characterized by lentic species such as Lepomis auritus, 

Lepomis gulosus, Lepomis macrochirus, Lepomis microlophus, and Micropterus 

salmoides. The NMDS solution also revealed similarities in the habitat conditions and 

assemblage structure of both free-flowing sites (Woodside I Below, Woodside II Below) 

prior to dam removal. The free-flowing sites had higher average velocities and much 

larger median substrate sizes than the impounded sites, and were characterized by lotic 

species such as Ameiurus brunneus, Etheostoma inscriptum, Hybopsis rubrifrons, 

Hypentelium nigricans, Notropis hudsonius, Noturus insignis, and Notropis lutipinnis. 

The fish assemblages of the free-flowing sites showed upstream-downstream longitudinal 

variation, where the free-flowing site below the Woodside I Dam (Woodside I Below) 

was more similar to the Upstream assemblage through time, and the free-flowing site 

below the Woodside II Dam (Woodside II Below) was more similar to the Downstream 

assemblage through time.  

After the first dam removal (Woodside I Dam), the fish assemblage structure of 

its former upstream impoundment (Woodside I Above) showed a dramatic drop in total 

numbers of all species at 1-month post-removal, but the general assemblage structure 

became similar to its immediate downstream free-flowing counterpart (Woodside I 

Below) and the free-flowing site below the lower dam (Woodside II Below) by 

approximately 6-months after dam removal. At 6-months post-removal, we observed 
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relatively strong increases in Percina nigrofasciata, Etheostoma inscriptum, Nocomis 

leptocephalus, Hybopsis rubrifrons, Notropis lutipinnis, Hypentelium nigricans, and 

Ameiurus brunneus, and dramatic reductions in Lepomis macrochirus, Lepomis auritus, 

and Micropterus salmoides. The downstream free-flowing site below the former 

impoundment (Woodside I Below) showed little variation in assemblage structure after 

the removal of the Woodside I Dam, indicating minimal impact of dam removal to the 

fish assemblage of this site.  

Workers began work to remove the second, downstream-most dam (Woodside II 

Dam) immediately following the Woodside I Dam removal, and completed its removal 

within five months. After its removal, the fish assemblage structure of the former 

impoundment (Woodside II Above) showed a noteworthy decrease in total numbers and 

species in our 1- and 6-months post-removal samples. We observed immediate dramatic 

reductions in Lepomis macrochirus, Lepomis auritus, and Lepomis cyanellus, and 

captured a sparse mix of lentic (Micropterus salmoides, Micropterus henshalli) and 

several lotic species (Percina nigrofasciata, Hypentelium nigricans, Ameiurus brunneus, 

Notropis hudsonius, Micropterus coosae) for up to 1-year following dam removal. The 

fish assemblage of this former impoundment came to resemble the assemblage structure 

of its downstream free-flowing counterpart (Woodside II Below), the free-flowing site 

below the Woodside I Dam, and the former impounded area above the removed upper 

dam (Woodside I Above) in approximately 1 – 1.5 years after the removal of the 

Woodside II Dam. 
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Whereas the NMDS revealed minimal impact on the free-flowing assemblage 

below the Woodside I Dam following dam removal, we did observe an impact on the 

free-flowing assemblage below the Woodside II Dam immediately following its removal.  

We observed a striking decrease in total numbers, and an immediate absence of Percina 

nigrofasciata, Cyprinella nivea, Etheostoma inscriptum, Nocomis leptocephalus, 

Hypentelium nigricans, Notropis hudsonius, Notropis lutipinnis, Lepomis macrochirus, 

Micropterus coosae, Lepomis cyanellus, and Lepomis microlophus from the sample at 1-

month post dam removal. Concurrently, we observed an increase of Ictalurus punctatus, 

as well as Pylodictis olivaris and Micropterus henshalli, two non-native species never 

captured at the site previously. Several individual fish showed bacterial infections and 

lesions. However, the NMDS indicated that the assemblage structure of this site became 

similar to the other free-flowing sites at approximately 1 -year after dam removal, 

indicating a relatively quick structural recovery. 

Discussion  

We observed changes in habitat, fish metrics, and abundance structure at sample 

sites immediately above (Woodside I Above, Woodside II Above) and below (Woodside 

I Below, Woodside II Below) each dam after dam removal. The bulk of in-stream habitat 

adjustments and fish assemblage changes occurred within the first year of each individual 

dam removal. Lotic habitats quickly reestablished following major geomorphic channel 

adjustments, and previously lentic-dominated fish assemblages of former impoundments 

generally shifted to a lotic-dominated structure. Despite these prominent assemblage 

shifts, we found only a partial recovery in benthic invertivore density at Woodside I 
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Above, and decreased benthic invertivore density at Woodside I Below at 2.5-years post 

dam removal. We found the negative biological impacts of the second dam removal 

(Woodside II Dam) more severe, with only a partial recovery in total density and benthic 

invertivore density at Woodside II Above, and decreased total density, richness, benthic 

invertivore density, and native centrarchid density at Woodside II Below at 2-years. Non-

native density increased sharply within all sample locations below the remaining 3
rd

 dam 

(Easley-Central Dam) for approximately 1-year after the removal of the lowermost 

Woodside II Dam. This increase was driven primarily by captures of Micropterus 

henshalli, an introduced species common in Lake Hartwell, but not captured in any 

Twelvemile Creek pre-dam removal samples. 

We found no significant habitat or fish assemblage changes at our Upstream 

reference or the Downstream site, indicating that a) observed changes were constrained to 

the high-gradient ~2.7 km river reach that contained the two dams, and b) changes in the 

high-gradient reach were responses to the impacts of dam removal rather than natural 

fluctuations or a secondary disturbance event. The Upstream and Downstream sites did 

help us discern spatial variation in assemblage structure. Prior to dam removal, our 

NMDS indicated that the free-flowing assemblages in the lower river reaches 

(Downstream, Woodside II Below) showed differences in species composition and 

abundances as compared to free-flowing assemblages in the upper river reaches 

(Upstream, Woodside I Below). Such upstream-downstream assemblage patterns are 

common to riverine fishes (Danehy et al., 1998; Fausch, Karr & Yant, 1984; Sheldon, 

1968; Vannote et al., 1980), and have been documented on rivers of similar size in the 
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Piedmont region of South Carolina (Kubach, Scott & Bulak 2011). The two impounded 

sites (Woodside I Above, Woodside II Above) showed no adherence to this upstream-

downstream pattern prior to dam removal, indicating that habitat alterations caused by the 

Woodside Dams dictated observed assemblage patterns and disrupted the natural 

longitudinal fish assemblage structure (Araujo, Pinto & Teixeira, 2009). The removal of 

both Woodside Dams successfully restored longitudinal fish assemblage structure among 

formerly impounded sites, as their habitats and assemblages became more similar to their 

neighboring free-flowing counterparts.        

Effects of Dam Removals on Instream Habitat   

Prior to dam removal, both impoundments (Woodside I Above, Woodside II 

Above) were shallow, with slow laminar flows, a fine sand benthos, and no large 

inorganic substrates characteristic of the free-flowing sites below dams. These 

homogenous habitat conditions were created by years of fine sediment accumulation 

behind the Woodside Dams. After dam removal, we observed major geomorphic channel 

adjustments in former impoundments which created a heterogeneous riffle-run flow 

pattern and an increase in larger gravel/cobble/boulder/bedrock substrates; habitat 

conditions similar to downstream free-flowing sites and endemic to the high-gradient 

reach containing the two former dams (Whitener, 2013).  

Although we found dramatic habitat changes in both former impoundments after 

dam removal, we detected no significant habitat changes in either downstream free-

flowing site (Woodside I Below, Woodside II Below). These findings were in discord 

with our field observations, which indicated increased suspended sediment during and 
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immediately after each dam removal, and increased downstream fine sediment deposition 

that attenuated over time, but persisted for the duration of this study. These findings are 

additionally in discord with other dam removal studies, which have predominantly found 

that benthic habitats downstream of dam removals are impaired, at least temporarily, due 

to the downstream flushing of impoundment and upstream sediments (Gardner et al., 

2013; Stanley & Doyle, 2003; Thomson et al., 2005). Regardless, we were able to 

identify a handful of studies that cited increased sediment flux after dam removal, but 

also failed to successfully quantify sediment transport and deposition rates (Hart et al., 

2002; Kanehl & Lyons, 1997; Pollard & Reed, 2004; Winter, 1990).  

Dam removal engineers removed approximately 152,900 m³of sediment from the 

impoundments immediately upstream of both Woodside Dams prior to dam removal, and 

transported it to an off-site sediment management unit. Despite this effort, residual fine 

sediments that heavily lined the riverbanks for 800-1000 m upstream of each dam were 

washed downstream over the course of this study. After the removal of the Woodside I 

Dam, an upstream headcut developed within several days that reached just downstream 

of the Easley-Central Dam. High-water storm events in 2012-2013 coupled with the 

restored high gradient channel quickly flushed the bulk of residual upstream sediment 

through the former Woodside I Above impoundment and Woodside I Below within ~6-

12 months after dam removal. Downstream sediment flushing was decelerated by the 

presence of the Woodside II Dam, which captured much of the fine sediment from the 

Woodside I Dam removal. The Woodside II Dam was removed within 5-months of the 

Woodside I Dam, and during the removal process we observed dramatically elevated 
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suspended and deposited sediment levels not present with the Woodside I Dam removal. 

Elevated suspended sediments dissipated within ~ 1-month of dam removal, and the bulk 

of deposited sediments flushed through Woodside II Above and Woodside II Below 

within 1-1.5 years.  

Effects of Dam Removals on Fish    

Theory suggests that higher gradient streams can flush sediments more quickly 

than lower gradient streams, leading to faster rates of geomorphic and habitat restoration, 

which in turn influences the timing and extent of biological recovery (Doyle et al., 2005). 

Both Woodside Dams were located within a single high-gradient stretch of river, yet we 

found that the rate of fish assemblage recovery was faster, and the extent of negative 

assemblage impacts was less at sites flanking the Woodside I Dam than at sites flanking 

the Woodside II Dam. Our results suggested that the rate and extent of biological 

recovery at each of the Woodside Dams was likely mediated by the combined influence 

of river gradient and the cumulative amount of sediment stored upstream. The influence 

of gradient was approximately equal among all Woodside sites, yet we believe that the 

cumulative amount of sediment was greater at Woodside II Above and Woodside II 

Below after these two sites captured upstream sediment from the Woodside I Dam 

removal. We suggest that the cumulative impacts of multiple dam removals led to a 

greater breadth of negative impacts on Woodside II fish assemblages.  

The obvious problem with our assertion regarding the cumulative negative 

assemblage impacts of multiple dam removals was our obvious lack of results indicating 

substrate size decreases at either Woodside I Below or Woodside II Below. However, 
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support for our argument lies in the fact that dam removals are known to negatively 

impact downstream biota, at least temporarily, due to the downstream transport of 

sediments (Poff & Hart, 2002; Shuman, 1995; Wood & Armitage, 1997). While our 

habitat analysis failed to reveal downstream substrate changes, we did find negative 

downstream biological impacts at both Woodside I Below and Woodside II Below 

following dam removal which coincided with our visual observations of increased fine 

sediment deposition. We found decreased benthic invertivore density at Woodside I 

Below, and decreased total density, richness, benthic invertivore density, and native 

centrarchid density at Woodside II Below after dam removal. These findings strongly 

suggested that the Woodside Dam removals did indeed create downstream habitat 

disturbances, most likely due to fine sediment deposition, which were more intense at 

Woodside II Below than Woodside I Below. Although dam removal is also known to 

decrease water quality (Nechvatal, 2004), and release stored contaminants (Bednarek, 

2001; Chatterjee, 1997) in downstream reaches, we do not believe either of these factors 

accounted for the pattern of downstream biotic changes we observed over the course of 

this study. The vast majority of PCB contaminants had washed downstream to Lake 

Hartwell decades earlier, and a recent report indicated that the residual PCB mass 

represented only 0.12-0.22 % of the original contamination (CH2MHILL, 2012). Water 

quality parameters such as turbidity showed temporary increases during and immediately 

after dam removal, but these changes were temporary and unlikely to have long-term 

consequences (Whitener, 2013).  
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Although we observed dam-specific differences in the degree of fish assemblage 

recovery in former impounded areas, and in the severity of negative assemblage impacts 

in free-flowing sites downstream, our general observations of fish assemblage structural 

changes were similar to findings from previous dam removal studies (Bednarek, 2001;  

Doyle et al., 2005; Gregory, Li & Li, 2002; American Rivers, 2002). We generally 

observed a shift from a lentic-dominated to lotic-dominated assemblage in both former 

impoundments (Woodside I Above, Woodside II Above), with decreases in native 

centrarchid densities at both former impoundments, and increases in benthic invertivore 

density at Woodside II Above, and increases in total density, benthic invertivore density, 

insectivorous cyprinid density, and round-bodied sucker density at Woodside I Above. 

This pattern generally reflects the findings of others which have shown decreases in 

tolerant species such as centrarchids, and increases in intolerant habitat specialists such as 

darters, catostomids, and insectivorous cyprinids in formerly impounded areas after dam 

removal (Catalano, Bozek & Pellett, 2007; Kanehl & Lyons, 1997). Both Woodside Dam 

removals quickly restored high-quality large substrates in former impoundments, and 

restored natural riffle-run sequences that have improved the habitat quality for benthic 

species such as darters, which prefer coarse substrates and fast moving water (Page, 

1983). However, benthic-oriented taxa were also the most negatively affected in 

downstream free-flowing sites after dam removal. Increased fine sediment deposition is 

known to decrease the fitness, reproduction, and food sources for benthic fishes (Waters, 

1995), and our study indicated that the recovery of benthic taxa densities may take more 

than 2.5 -years, even in high-gradient systems (Maloney et al., 2008).  
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Our study indicated that our choice of statistical analyses, and which fish metrics 

we examine may influence our interpretation of the timing and extent of biological 

recovery after dam removal. Our NMDS analyses provided insight into the timing of the 

bulk of fish assemblage changes among sites after dam removal. The bulk of assemblage 

changes occurred at Woodside I Above within 6-months of the removal of the Woodside 

I Dam, and Woodside I Below showed negligible assemblage changes associated with 

dam removal. In contrast, the bulk of assemblage changes occurred at Woodside II 

Above within 1-1.5 years after the removal of the Woodside II Dam, and Woodside II 

Below exhibited dramatic assemblage changes, the bulk of which attenuated after 1-year. 

Multiple studies have cited the approximate 1-year timeframe as the post-dam removal 

duration to biological recovery in high-gradient systems (Catalano, Bozek & Pellett, 

2007; Kanehl & Lyons, 1997; Sethi et al., 2004; Stanley et al., 2002), and our NMDS 

results generally supported this timeframe. However, our fish metric BA analyses 

revealed more detailed information and insight into the variation of species responses and 

timing to fish assemblage recovery. We found that certain metrics such as benthic 

invertivore density were more sensitive to dam removal than others (e.g. richness), and 

indicated a much longer timeframe of biological recovery than interpreted form our 

NMDS analysis (2.0-2.5 – years versus 0.5-1.5 – years). Catalano et al. (2007) and 

Maloney et al. (2008) similarly found that only a subset of metrics showed sensitivity to 

dam removal. A combination of taxonomic, functional, and assemblage level analyses 

may be required to discern the timing to recovery and full suite of impacts on fish 

assemblages resulting from dam removal.  
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Dam Removal and the Restoration of Aquatic Connectivity 

A primary goal of dam removal is to restore aquatic connectivity. Dam removal 

assists vagile and migratory species by increasing the length of movement corridors and 

opening up critical habitats (Bowman, 2001; Catalano, Bozek & Pellett, 2007; Estes, 

Myers & Mantini, 1993; Hill, Long & Hardin, 1994; O'Donnell et al., 2001; Shuman, 

1995; Smith et al., 2000; Winter, 1990). Fish whose movements were formerly 

obstructed by dams may begin to move into formerly impounded and blocked reaches 

within days after dam removal (Hart et al., 2002). The removal of the two Woodside 

Dams on Twelvemile Creek restored aquatic connectivity within to the lower stretch of 

Twelvemile Creek, but also opened the river to Lake Hartwell, an artificial man-made 

reservoir. The lower-most dam on Twelvemile Creek (Woodside II Dam) was 

constructed in 1895 when the Savannah River System flowed unimpeded, and nearly 65 

years prior to the construction of Lake Hartwell. Therefore, dam removal established a 

novel connection between two substantially different hydrological habitats that was 

unrepresentative of pre-dam(s) conditions.  

Reservoirs have known impacts on riverine fish assemblages, including the 

extirpation of obligate lotic species (Martinez et al., 1994), increased tolerant habitat 

generalists (Ruhr, 1957), and increased abundances of native and introduced piscivores 

(Gido, Schaefer & Falke, 2009; Martinez et al., 1994). However, surprisingly little is 

known about the effects of southeastern reservoirs on fishes in upstream free-flowing 

tributary streams that are not directly altered by impoundment (Franssen & Tobler, 2013; 

Pringle, 1997). River and reservoir systems share a common water course, but offer 
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substantially different habitat conditions for biota. While reservoirs are not an absolute 

migratory barrier, they likely impart migratory resistance on many riverine fish species, 

who may find reservoir habitats unsuitable aquatic corridors for movement (Hudman & 

Gido, 2013; Skalski et al., 2008). However, reservoirs are often favorable habitat 

corridors for native and introduced piscivorous fishes, which in turn serve as source 

populations and may increase densities in upstream free-flowing tributary habitats (Gido, 

Schaefer & Falke, 2009). 

We observed a sharp increase in non-native species density beginning at 1-month 

after the removal of the downstream-most Woodside II Dam. This increase was driven by 

captures of Micropterus henshalli (Alabama spotted bass), a piscivorous non-native 

species which had never been captured in any of our samples prior to dam removal. Our 

capture pattern appeared to indicate that Micropterus henshalli migrated in an upstream 

direction from Lake Harwell into the newly restored Twelvemile Creek section, however 

may alternatively reflect problems with probability of detection (MacKenzie et al., 2002). 

Regardless, this capture pattern persisted for approximately 1-year after the removal of 

the Woodside II Dam, and then attenuated over time. The upstream movement of spotted 

bass posed an ecological concern because Micropterus henshalli readily hybridize with 

and deplete the genetic integrity of Micropterus coosae (redeye bass), a fish native to 

water bodies of the Savannah River drainage (Bangs, 2011). The presence of Micropterus 

henshalli is well documented in the major reservoirs of the Savannah River, but little is 

known about their distribution in tributary systems. Prior to their removal, it is possible 

that the Woodside Dams acted as protective barriers to an upstream invasion of 
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Micropterus henshalli from Lake Hartwell. A third dam (Easley-Central Dam) remains 

on Twelvemile Creek and effectively blocks the upper reaches from the upstream 

movement of fish. To date, we have not genetically verified the capture of any pure strain 

Micropterus henshalli or hybrids above the Easley-Central Dam. Our study highlights the 

potential for dam removal to inadvertently open up rivers to non-native colonization of 

previously unavailable stream sections, an ecological hazard that may be particularly 

relevant in southeastern U.S. states, where artificial impoundments and reservoir density 

is high.  

Our study demonstrates that dam removal can reverse many of the negative 

impacts that dams have on fish assemblages, primarily through the restoration of high-

quality lotic habitats required by the native suite of riverine species. However, we also 

demonstrated that dam removal can have short-term ecological trade-offs, such as 

sediment impacts, that vary given the unique characteristics of the dam removal(s), 

underlying geomorphological conditions, and fish assemblage attributes (Poff & Hart, 

2002; Stanley & Doyle, 2003). Regardless, we believe dam removal as a restoration tool 

is unlikely to have long-term negative impacts on fish assemblages in high-gradient 

southeastern U.S. systems, as populations are likely to recover once habitat disturbances 

and sediment loads are fully reduced (Thomson et al., 2005), and if highly vulnerable or 

sensitive species are not at risk (Sethi et al., 2004).   
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Table 3.1. Pre- and post- dam removal mean values (± SE) of habitat variables among BA pairwise comparisons. Values in  1 

bolded italics indicate a significant difference from the BA analysis at P < 0.05. 2 

 3 

Comparison Average Depth Average Velocity D50 Average Width Turbidity 

US pre • US post 0.51(0.09) • 0.54(0.08)  0.34(0.117) • 0.35(0.10) 3.77(6.55) • 0.50(0.01) 19.00(1.21) • 18.43(1.25) 12.48(1.21) • 6.88(1.25) 

      
WSI Above pre • WSI Above post 0.41(0.16) • 0.50(0.05) 0.11(0.06) • 0.42(0.08) 2.98(3.51) • 481.42(451.89) 42.50(3.53) • 33.18(6.35) 7.77(4.12) • 6.22(1.81) 

WSI Below pre • WSI Below post 0.49(0.05) • 0.51(0.03) 0.39(0.11) • 0.36(0.06) 279.65(208.46) • 388.41(342.73) 22.85(4.08) • 22.95(3.74) 10.52(5.01) • 6.743(1.86) 

WSI Above pre • WSI Below pre 0.41(0.16) • 0.49(0.05) 0.11(0.06) • 0.39(0.11) 2.98(3.51) • 279.65(208.46) 42.50(3.53) • 22.85(4.08) 7.77(4.12) • 10.52(5.02) 

WSI Above post • WSI Below post 0.50(0.05) • 0.51(0.03) 0.42(0.08) • 0.37(0.06) 481.41(451.89) • 388.41(342.73) 33.18(6.35) • 22.95(3.75) 6.22(1.81) • 6.74(1.86)  

      
WSII Above pre • WSII Above post 0.44(0.09) • 0.49(0.04) 0.14(0.07) • 0.42(0.05) 0.57(0.16) • 248.80(302.23) 40.30(11.38) • 19.10(4.25) 12.86(11.38) • 6.59(4.25)  

WSII Below pre • WSII Below post 0.46(0.06) • 0.46(0.07) 0.43(0.06) • 0.43(0.05) 320.79(171.51) • 277.05(277.19) 22.41(2.23) • 21.10(2.57) 10.83(4.52) • 6.75(0.60) 

WSII Above pre • WSII Below pre 0.44(0.09) • 0.46(0.06) 0.14(0.08) • 0.43(0.06) 0.57(0.16) • 320.79(171.51) 40.30(11.38) • 22.41(2.23) 12.86(7.31) • 10.83(4.53)  

WSII Above post • WSII Below post 0.49(0.04) • 0.46(0.07) 0.41(0.05) • 0.43(0.04) 248.80(302.80) • 277.05(277.19) 19.10(4.25) • 21.10(2.57) 6.59(1.56) • 6.75(0.60) 

      
DS pre • DS post 0.48(0.06) • 0.44(0.06) 0.32(0.03) • 0.35(0.07) 4.81(4.01)  • 0.50(0.0) 24.48(5.39) • 27.57(4.47) 7.99(3.44) • 8.05(2.06) 
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Table 3.2. Pre- and post- dam removal mean values (± SE) of fish metrics among BA pairwise comparisons. Values in bolded 

italics indicate a significant difference from the BA analysis at P < 0.05. 

 

Comparison Total Density Richness 

Benthic Invertivore 

Density 

Insectivorous Cyprinid 

Density 

Round-Bodied Sucker 

Density 

Native Centrarchid 

Density 

US pre • US post 4.96(1.09) • 3.85(2.16)  11.25(1.25) • 12.50(1.04) 1.85(1.40) • 0.5(0.35) 0.86(0.64) • 1.71(1.4) 0.5(0.31) • 0.42(0.24) 0.51(0.33) • 0.39(0.14) 

       
WSI Above pre • WSI Above post 2.22(1.02) • 10.24(7.62)  7.5(2.12) • 10.5(3.02) 0.03(0.035) • 1.75(1.45) 0.4(0.56) • 3.44(2.52) 0.18(0.25) • 2.61(2.19) 2.95(0.49) • 0.12(0.16) 

WSI Below pre • WSI Below post 12.98 (1.58) • 10.19(5.63)  14.5(0.58) • 13.8(3.43) 4.43(1.61) • 2.00(0.96) 3.59(0.88) • 3.53(2.48) 1.73(0.66) • 1.48(1.22) 0.51(0.30) • 0.37(0.42) 

WSI Above pre • WSI Below pre 2.23(1.02) • 12.98(1.58) 7.5(2.12) • 14.5(0.58) 0.03(0.04) • 4.44(1.61) 0.40(0.56) • 3.59(0.88) 0.17(0.25) • 1.73(0.66) 2.95(0.49) • 0.51(0.30) 

WSI Above post • WSI Below post 10.24(7.62) • 10.19(5.63)  10.5(3.02) • 13.83(3.43) 1.75(1.46) • 2.00(0.96) 3.44(2.52) • 3.53(2.48) 2.61(2.19) • 1.48(1.22) 0.12(0.16) • 0.36(0.42)  

       
WSII Above pre • WSII Above post 5.70(3.17) • 4.19(2.73)  11.00(3.37) • 11.4(1.67) 0.04(0.05) • 0.54(0.31) 0.74(0.62) • 2.3(2.7) 0.24(0.27) • 0.33(0.14) 2.11(0.90) • 0.21(0.22) 

WSII Below pre • WSII Below post 18.85(7.2) • 5.27(2.18) 14.4(1.67) • 11.00(1.58) 2.42(0.99) • 0.93(0.69) 8.63(8.73) • 3.04(1.70) 0.41(0.20) • 0.27(0.27) 5.95(6.61) • 0.09(0.04) 

WSII Above pre • WSII Below pre 5.70(3.17) • 18.85(7.20) 11.0(3.37) • 14.4(1.67) 0.04(0.05) • 2.4(0.99) 0.74(0.62) • 8.63(8.73) 0.24(0.28) • 0.41(0.20) 2.11(0.90) • 5.95(6.61) 

WSII Above post • WSII Below post 4.19(2.73) • 5.27(2.17)  11.4(1.67) • 11.0(1.58) 0.54(0.31) • 0.93(0.69) 2.31(2.72) • 3.04(1.70) 0.33(0.14) • 0.27(0.27) 0.21(0.22) • 0.09(0.04) 

       
DS pre • DS post 11.99(6.81) • 9.14(4.08)  14.2(2.17) • 13.4(3.85) 0.80(0.56) • 0.38(0.19) 6.77(4.42) • 6.21(1.25) 0.54(0.54) • 0.14(0.09) 2.27(1.14) • 1.84(2.58) 

 

 

 



130 

 

 

 

 

Figure 3.1. Locations of Twelvemile Creek, the two Woodside Dams, the Easley-Central 

Dam (E-C Dam), and 6 sampling sites. A) Twelvemile Creek watershed shaded in grey 

within state of South Carolina. B) Locations of sampling sites indicated by red circles. 

 



 131 

 

 

Figure 3.2. Changes in non-native fish density across all study sites over the 7-year study 

period. Vertical dashed lines indicate removals of the a) Woodside I Dam, and the b) 

Woodside II Dam. 
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Figure 3.3. Non-Metric Multidimensional Scaling (NMDS) ordination of fish 

assemblages by site. Points closer to one another in the ordination are more similar in 

assemblage structure. Upstream and Downstream coordinates are not shown but fall 

tightly around locations indicated by ‘Upstream’ and ‘Downstream’. Species names 

along axes refer to species that correlate strongly on each axis, whether positively or 

negatively. Habitat variables under arrows are parameters that were strongly correlated 

with each NMDS axis. Species correlations were inherent weights (i.e. the ordination is 

based on the species), whereas habitat correlations were post-hoc calculations.  
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