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ABSTRACT 

On-line radiation monitoring is essential to the U.S. Department of Energy (DOE) 

Environmental Management Science Program for assessing the impact of contaminated 

media at DOE sites. The goal of on-line radiation monitoring is to quickly detect small or 

abrupt changes in activity levels in the presence of a significant ambient background. The 

focus of this research is on developing effective statistical algorithms to meet the goal of 

on-line monitoring based on time-interval (time-difference between two consecutive 

radiation pulses) data. Compared to the more commonly used count data which are 

registered in a fixed count time, time-interval data possess the potential to reduce the 

sampling time required to obtain statistically sufficient information to detect changes in 

radiation levels. This dissertation has been formulated into three sections based on three 

statistical methods: sequential probability ratio test (SPRT), Bayesian statistics, and 

cumulative sum (CUSUM) control chart. In each section, time-interval analysis based on 

one of the three statistical methods was investigated and compared to conventional 

analyses based on count data in terms of average run length (ARL or average time to 

detect a change in radiation levels) and detection probability with both experimental and 

simulated data. The experimental data were acquired with a DGF-4C (XIA, Inc) system 

in list mode. Simulated data were obtained by using Monte Carlo techniques to obtain a 

random sampling of a Poisson process. Statistical algorithms were developed using the 

statistical software package R and the programming function built in the data analysis 

environment IGOR Pro. 4.03.  
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Overall, the results showed that the statistical analyses based on time-interval data 

provided similar or higher detection probabilities relative to other statistical analyses 

based on count data, but were able to make a quicker detection with fewer pulses at 

relatively higher radiation levels. To increase the detection probability and further reduce 

the time needed to detect a change in radiation levels for time-interval analyses, 

modifications or adjustments were proposed for each of the three chosen statistical 

methods. Parameter adjustment to the preset background level in the SPRT test could 

reduce the average time to detect a source by 50%. Enhanced reset modification and 

moving prior modification proposed for the Bayesian analysis of time-intervals resulted 

in a higher detection probability than the Bayesian analysis without modifications, and 

were independent of the amount of background data registered before a radioactive 

source was present. The robust CUSUM control chart coupled with a modified runs rule 

showed the ability to further reduce the ARL to respond to changes in radiation levels, 

and keep the false positive rate at a required level, e.g., about 40% shorter than the 

standard time-interval CUSUM control chart at 10.0cps relative to a background count 

rate of 2.0cps. 

The developed statistical algorithms for time-interval data analyses demonstrate 

the feasibility and versatility for on-line radiation monitoring. The special properties of 

time-interval information provide an alternative for low-level radiation monitoring. These 

findings establish an important base for future on-line monitoring applications when 

time-interval data are registered. 
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CHAPTER 1  

INTRODUCTION 

In the United States, radioactive contamination at Department of Energy (DOE) 

sites is a persistent health and safety issue. During World War II and the Cold War, the 

United States developed a complex of nuclear industrial facilities which were located at 

over 100 sites across 30 states and territories. Most activities conducted by DOE and its 

predecessor agencies (the Atomic Energy Commission, and Energy Research and 

Development Administration) in these sites have been related to production and testing of 

nuclear weapons. As the result of nuclear weapon-related activities, hazardous and 

radioactive contaminants were introduced into the environment through a variety of 

pathways, such as the release of process effluents to seepage basins, accidental spills, and 

leaks from storage tanks and waste transfer lines. (Young and MacDonell 1999; 

Palmisano and Hazen 2003). 

With the end of the Cold War in the early 1990s and subsequent shutdown of 

nuclear weapon production reactors, the DOE mission changed markedly to remediation, 

decommissioning and decontamination of contaminated media (including soil, sediment, 

groundwater and surface water) on and around DOE sites. In 1989, the DOE’s 

environmental management science program was created by the 104th Congress to reduce 

threats to health and safety posed by the contaminants at DOE sites (Young and 

MacDonell 1999; Palmisano and Hazen 2003; U.S. DOE 1997, 2000).  
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Environmental radiation monitoring at DOE sites is essential to the environmental 

management program. In the processes of cleaning up contaminated media, especially the 

subsurface contamination, monitoring is used to support the development of conceptual 

and predictive models of contaminant behavior, to demonstrate the effectiveness of 

remediation actions, and to gain regulatory approval. In addition, such monitoring 

information can be employed to understand the contaminant fate and transport, and can 

be used to validate and revise conceptual and predictive models. Therefore efficient and 

effective on-line or in-situ monitoring systems over the long term are required (U.S. DOE 

2000, 2004).  

Generally, the detection decision whether a radioactive source is present is made 

based on a specific statistical method. The ideal goal of radiation monitoring is to make a 

decision with a zero false positive rate (α) or a zero false negative rate (β), but this is 

unrealistic. It is well recognized that radioactive decay is a random process which is 

commonly characterized as a Poisson process when the number of nuclei is large and the 

observation time is short compared with the half-life of the radioactive species. 

Consequently, any radiation measurement is subject to some degree of statistical 

uncertainty. The inherent uncertainty in measurement results, together with short count 

time, long distance from source to detector, and attenuation effects cause unavoidable 

error rates in any final decision. In practice, a proper statistical method or technique is 

chosen to minimize both types of error rate (Knoll 2010; DeVol et al. 2009). Many 

statistical methods have been used for radiation monitoring. Among them, the single 

interval test (SIT) which is in a form of the Shewhart control chart is the most commonly 
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employed radiation monitoring procedure (Montgomery 2001). In the case of detecting 

small changes in the background radiation level, other relatively more sophisticated 

methods, such as the cumulative sum (CUSUM), Bayesian statistics, and sequential 

probability ratio test (SPRT) are used (Montgomery 2001; Hughes and DeVol 2008; 

Attardo 2007; Jarman et al. 2004). The focus of this research is on developing effective 

statistical algorithms for the analysis of time-interval information, which can be applied 

to the long-term on-line radiation monitoring.  

 
 

Statistical Methods for On-Line Radiation Monitoring 
 

Single Interval Test (SIT) 

 
For a single interval test (SIT), radiation pulses are collected in a fixed-length 

count time regardless of the strength of the radiation level. Then the result of the 

observation--- the total or net number of pulses in this case --- is compared to a single 

critical level (detection limit) to decide whether a radiation source is detected. For the 

comparison of net number of pulses, a commonly used detection limit Lc popularized by 

Currie (1968) is given by  

                                                  0CL kασ=  ,                                                                               (1. 1) 

where kα is the 1-α percentile of the standardized normal distribution corresponding to 

the probability of α, and σ0 is the standard deviation of the net signal. For example, if 

α=0.05, then kα≈1.65  is the 95th percentile. 

If the total number of pulses is used, the detection limit is given by 
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                                            0C CL N L′ = +  ,                                                                     (1. 2) 

where N0 is the total number of pulses coming from the background radiation level 

(Jarman et al. 2004).  

For on-line radiation monitoring, SIT is often performed in terms of the Shewhart 

control chart on which each observed result is plotted and compared with control limits. 

The chart has a center line representing the background radiation level, an upper control 

limit which is equal to CL  or CL′ , and a lower control limit if it is necessary. One major 

disadvantage of the SIT method is that only the information contained in the most recent 

data point is considered, and the information contained in previous data points is 

disregarded. As a result, the SIT method is relatively insensitive to small changes in 

radiation levels while it readily detects large shifts (Montgomery 2001; Attardo 2007; 

Walpole and Myers 1997). 

 
 

Sequential Probability Ratio Test (SPRT) 

 
The sequential probability ratio test (SPRT) is a specific method of sequential 

analysis, developed by Abraham Wald (1952). A distinctive feature of SPRT is that the 

number of observations required by the test procedure is not determined in advance. 

When it is applied to statistical hypothesis testing, SPRT requires a substantially fewer 

number of observations than an equally reliable testing based on a predetermined number 

of observations (Wald 1952). 
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With a traditional hypothesis testing, such as the SIT method, after an observation 

is obtained, one of two possible actions is made: accept the null hypotheses H0 or accept 

the alternative hypothesis H1. In other words, a final decision has to be made on the 

observation no matter if the evidence is strong or ambiguous. Unlike traditional 

hypothesis testing, there is a third possible action for SPRT: additional observations are 

taken until the evidence can strongly support one of the two hypotheses (Ghosh and Sen 

1991).  

In low-level radioactivity monitoring, a simple hypothesis test is often designed 

as: the null hypothesis (H0) that a sequence of measurements is from the background 

level r0 against the alternative hypothesis (H1) that the measurements are from an alarm 

level (background plus source) r1. For this hypothesis testing the sequential probability 

ratio test is defined as follows: let f(x, ri) denote the distribution of the measurement 

variable x (counts or time-interval) under a certain process (r0 or r1). For a sequence of 

independent observations, x1, x2, … xn, the probability that the n observations are 

obtained when H1 is true is given by   

                                     ),()...,(),( 112111 rxfrxfrxfp nn =   .                                          (1. 3) 

And the probability for the n observations obtained under H0 is given by 

                                   ),()...,(),( 002010 rxfrxfrxfp nn =   .                                          (1. 4) 

At each stage of the experiment, the probability ratio p1n/p0n is computed and compared 

to thresholds to make a decision. For purpose of practical computation, the natural 
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logarithm of the probability ratio is commonly calculated, so that the individual ratios are 

additive.  

                 







++








+








=









),(

),(
ln...

),(

),(
ln

),(

),(
lnln

0

1

02

12

01

11

0

1

rxf

rxf

rxf

rxf

rxf

rxf

p

p

n

n

n

n  .                    (1. 5) 

Let zi denote the i th term of the ratio, 
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Then the sum of the ratios, ∑
=

=
n

i
in z

1

λ is compared to two thresholds, A and B, where 

B<A, to make a decision. 

                      If An ≥λ , H0 is rejected (H1 is accepted), 

                      if Bn ≤λ , H0 is accepted,  

and if AB n << λ , the test continues by taking additional observations until a decision can 

be made or the maximum observations, Nmax is reached. 

 A and B are related to the desired false positive rate, α0, and false negative rate, β0 

by the following inequalities, 
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These two inequalities give an upper limit for A and a lower limit for B, and these limits 

are commonly used as thresholds in practice. Using these thresholds, the actual error rates 

α and β are not identical to the desired error rates α0 and β0. Since the desired error rates 

α0 and β0 are normally small in practical application, the actual error rates will be very 

close to desired values (Wald 1952).  

Implemented in the 1980s, the SPRT method has been applied to radiation 

monitoring of vehicles, personnel and packages for nuclear safeguards and homeland 

security. SPRT has been shown to be an effective statistical method for detecting illicit 

nuclear materials, such as special nuclear materials (SNM) that may be used for 

terrorisms (Jarman et al. 2004; York and Fehlau 1997; Fehlau et al. 1983; Fehlau 1993; 

Coop 1985). In these applications, SPRT has shown the ability to shorten decision times 

and improve detection probabilities. Yuan and Kernan (2006) suggested that SPRT is a 

promising algorithm for quick determination of field radiation levels. With this method, 

the sample size for high radiation region is reduced and therefore the exposure to field 

radiation surveyors could be reduced. In addition, Humenik and Gross (1990, 1991) 

examined the properties of SPRT for rapid surveillance of off-normal operations of 

nuclear plant components. 

 
 

Bayesian Statistics 

 
In the 18th century, a Presbyterian minister, Thomas Bayes first discovered the 

theorem that now bears his name (Bolstad 2007). Now Bayes’ theorem is experiencing a 

renaissance in fields of science ranging from astrophysics to genomics and in real-world 
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applications such as the change-point detection in quality control system and testing of 

new drugs (Malakoff 1999). 

Bayesian probability statement about the underlying parameter r (mean count rate 

in this case) given the data x begins with a model providing a joint probability 

distribution for r and x, ( , )p r x  (Gelman 2004; Ellison 1996). The joint probability mass 

or density function can be written as a product of two probabilities, 

                        ( ) ( | ) ( , ) ( ) ( | )p x p r x p r x p r p x r= = .                                        (1. 8) 

Rearranging terms in equation (1. 8) yields an expression for ( | )p r x , the 

posterior probability (conditional probability) of obtaining the parameter r given the data 

x is 

                                 
( | ) ( )

( | )
( )

p x r p r
p r x

p x

⋅
= .                                                   (1. 9) 

This expression is known as Bayes’ theorem. In this expression, ( )p r  is the prior 

probability of observing r that is expected by the investigator before the experiment is 

conducted. It is the quantitative description of what the investigator believes based on 

previous experience and knowledge. The distribution( | )p x r is the likelihood function 

(conditional probability) which defines the probability to obtain a measurement x given r. 

The denominator )(xp is referred to as the marginal distribution of the data. In the case of 

discrete r, ( ) ( ) ( | )
r

p x p r p x r= ∑ , and for continuous r, ( ) ( ) ( | )p x p r p x r dr= ∫ . The 

denominator )(xp acts as a scaling constant that normalizes the sum or integral of the area 
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under the posterior probability distribution. Since the denominator contains no 

information about r and is a constant, it is enough to think of Bayes’ theorem in its 

proportional form as 

                                ( | ) ( | ) ( )p r x p x r p r∝ ⋅ .                                                   (1. 10) 

And the conceptual form of Bayes’ theorem is 

           yprobabilitpriorlikelihoodyprobabilitposterior ×∝ .          

The posterior probability is the goal of a Bayesian analysis. It summarizes the 

investigator’s knowledge of the parameter given the prior belief and the subsequent data 

(Cherry et al. 2002).       

In the case of a series of independent measurements, Bayesian analysis can be 

conducted sequentially (Bolstad 2007; Bochud et al. 2007). Using an appropriate 

likelihood and prior probability, the posterior probability is calculated for the first 

observation.  For subsequent measurements, the existing posterior is used as a prior and a 

new posterior is computed from the Bayes’ theorem. In this way, the Bayesian inference 

incorporates the new information at each measurement to update our state of knowledge 

of the parameter. The result of the sequential estimation is equivalent to the outcome of 

the Bayesian estimate with one data containing the whole information for all sequential 

measurements. For both estimations, the prior has a fundamental role since it can 

potentially bias the whole Bayesian analysis process (Bolstad 2007; Lee 2004).    
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Statistical inference can be conducted either through a classical approach which is 

often referred to as the frequentist approach, or through the Bayesian approach. The 

primary differences between the two methods of statistic inference lie in their 

interpretations of concepts of probability, data, parameter, confidence/credible intervals 

and conclusions.  

Different viewpoints of probability are the fundamental distinction between the 

two approaches. Frequentist probability is always interpreted as long-run relative 

frequency: the probability of an event is the proportion of times it would occur if the 

experiment was repeated an infinite number of repetitions under identical conditions. 

Therefore, probability is calculated based on all possible random samples that could have 

occurred, not based on the actual sample that did occur (Bolstad 2007). In contrast, 

probability statements made in Bayesian framework must be interpreted as “degree of 

belief” based on the actual occurring data. Bayesian approach allows the state of 

knowledge about anything unknown to be described in the prior by a probability 

distribution. Our belief about parameters is updated through Bayes’ theorem after the 

data have been acquired (Bolstad 2007; Gelman 2004). The second major difference 

between the two methods is about the numerical characteristics of the population 

parameters. In frequentist statistics, parameters are assumed to be fixed but unknown 

constants (Bolstad 2007). The statistical inference by frequentist methods is based on the 

statistic of random samples. For example, the mean of a sampling distribution is used as 

an unbiased estimator for the true parameter value. On the contrary, the Bayesian 

approach treats parameters as unknown random variables, and the Bayesian posterior 
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distribution is calculated based on the sample data that actually occurred (Bolstad 2007). 

Therefore, probability statements are allowed to be associated directly with parameters, 

which give the relative weights to each possible parameter value. Table 1.1 summarizes 

the differences between frequentist and Bayesian statistics. 

 

Table 1.1 Fundamental differences between frequentist and Bayesian statistical 
inferences. (adapted from Ellison 1996 and Moshirpour 1997) 

 
A prior distribution that gives our belief about the possible values of parameters is 

needed before any data are collected. There are basically three methods to assign the 

prior distribution, namely, “noninformative” prior, “natural conjugate” prior and 

“empirical Bayes” prior (Lee 2004). The “noninformative” prior is used when we don’t 

have any information and experience about the system under investigation (Bolstad 

2007). The rationale for using noninformative prior distributions is to let the data speak 

concept/term Frequentist Statistics Bayesian Statistics 

Probability 

1.) Probability of an event: result of an 
infinite series of trials under identical 
conditions 

2.) A subjective prior is not allowed 

1.) Probability statement: the degree of 
belief about parameter(s) in light of 
the data 

2.) A subjective prior is allowed 

Parameter(s) Fixed unknown constant(s) Random unknown variable(s) 

Data Random (representative) sample  Fixed 

k % interval 
Confidence interval:   include the true 
value of a given parameter in k% of all 
possible sample intervals 

Credible interval:   k% of the possible 
parameter values will fall within the 
interval 

Treatment of 
nuisance parameters 

Conditions on sufficient statistics or 
maximum likelihood estimate 

Integrates over all possible values 

Conclusion p(x|θ) p(θ|x) 

note:  x is the data of a measurement, θ is the underlying true parameter(s) and k is a real number. 
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for themselves (Gelman 2004). The second method of defining the prior probability is 

from the natural conjugate family. Bayes’ theorem defines that the posterior distribution 

is the product of the likelihood function and the prior probability. If the posterior 

distribution has the same parametric form as the prior distribution, this property is called 

conjugacy. A prior from the conjugate family makes the estimation of the posterior 

distribution mathematically tractable and convenient in that the posterior distribution 

follows a known parametric form (Gelman 2004). With this method, some estimation 

about the posterior inference, such as the mean and the standard deviation for a given 

problem, can be calculated directly (Lee 2004). “Empirical Bayes” prior is the third 

method of determining the prior distribution. An empirical prior combines any prior 

information and the data from previous experiments (Lee 2004). The advantage of this 

method is its flexibility in using methods such as probability plotting and goodness-of-fit 

tests to define the prior distribution.  

Bayesian statistics has been discussed in health physics literature especially in the 

past two decades. A common problem in health physics is to decide whether a 

measurement differs from background when the activity of interest is low in the presence 

of dominant background. This type of decision can be made based on different rules 

(Strom and MacLellan 2001). Bayesian statistics, which allows for the inclusion of prior 

knowledge, provides a promising solution to this problem. Little (1982) first investigated 

the use of Bayesian theorem in health physics. He considered a counting situation where 

the net count rate can be negative using frequentist statistics because of random 

fluctuations, but the true result should be non-negative. Using a prior distribution with 
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zero probability for negative results, Bayesian analysis gave positive estimates of net 

rates and probability intervals which are coherent and meaningful (Little 1982). At the 

Los Alamos National Laboratory (LANL), innovative work employing Bayes’ theorem 

has been undertaken by Guthrie Miller, Harry Martz and others (Strom 1998). Miller et al 

(2002) extended the work of Little (1982) using exact marginalized Poisson likelihood 

functions for counting measurement processes involving a background subtraction. With 

an empirical marginalized likelihood function containing more information of the 

measurement, Bayesian analysis produced a higher quality result and avoided the work 

dealing with problems associate with a negative net count (Miller et al. 2002). In 

addition, Miller et al. (1993) recommended a new analysis method based on the 

principles of Bayesian inference to determine whether a bioassay measurement should be 

interpreted as “positive” or “zero”. They investigated the effects of the prior distribution 

on the estimates and interpretations of internal dosimetry and proposed some models for 

determining appropriate priors according to the availability of prior knowledge (Miller et 

al. 1993, 2001).  

As in the field of health physics, Bayesian statistics has been exploited in other 

nuclear fields. Bayesian statistics has been applied to the measurement of activities of 

radioactive samples (Laedermann et al. 2005; Groer and Lo 1996). Groer and Lo (1996) 

discussed the derivation of the posterior density for the airborne 218Po concentration 

based on Bayes’ theorem. From this posterior density, the mean and variance of the 

airborne 218Po concentration were calculated. In the study, they used the Poisson 

distribution to characterize the buildup and decay of 218Po on a filter paper. Laedermann 
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et al. (2005) analyzed the measurements of radioactive samples using a prior determined 

by assuming that the number of radiation particles emitted and detected follows the 

Poisson distribution. The result from the Bayesian approach is always positive and a 

credible interval can be easily calculated from the whole distribution of the parameter. In 

addition, the result showed that the Bayesian and classical estimates were practically 

indistinguishable at higher activities. Bochud et al. (2007) illustrated the use of Bayesian 

statistics in estimating the activity of a decaying nuclide with short half-life. Bayesian 

statistics can produce coherent estimates and confidence intervals with less number of 

measurements. In contrast, the activity estimated by the conventional method has higher 

uncertainty and is less meaningful. 

Because of the ability of taking into account all sources of uncertainty, such as 

random and systematic effects, Bayesian statistics has been used to give more accurate 

estimates of uncertainties of radiation measurements (Bergin and Milford 2000; Kaeker 

and Jones 2003; Weise et al. 2006). Using Bayesian Monte Carlo analysis, Bergin and 

Milford (2000) analyzed the data of ozone concentration in their case studies and showed 

that the estimated uncertainty at the peak concentration was effectively reduced.  Based 

on Bayes’ theorem, Weise et al. (2006) calculated Bayesian characteristic limits such as 

the detection limit and the decision threshold, which took into account all sources of 

uncertainty. They suggested a revision of some parts of ISO (International Organization 

for Standardization) guide in which characteristic limits are currently determined based 

on frequentist statistics. For the expression of uncertainty of measurements in the ISO 
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guide, Kacker and Jones (2003) proposed new evaluation methods from Bayesian 

viewpoint to make the expression of uncertainty consistent. 

Bayesian techniques have also been applied for reducing false positive rates in 

low-level radioactivity measurements (DeVol et al. 2009; Strom and MacLellan 2001). 

Strom and MacLellan (2001) evaluated the actual false positive rates for eight decision 

rules as a function of a priori false positive rate and background mean. The results 

indicated that Currie’s decision rule gives the poorest result and the Bayesian rule works 

much better. DeVol et al. (2009) compared false positive and false negative rates of 

radiological data for the classical and Bayesian statistical process control chart 

techniques. The results showed that the Bayesian method, Shiryayev-Roberts (S-R) 

control chart (Kenett and Pollak 1996), was the best method for controlling the number of 

false positives (DeVol et al. 2009).  

Additionally, Bayesian techniques have been used for radiological source 

detection and estimation (Morelande and Ristic 2009). Morelande and Ristic proposed an 

algorithm based on Bayes’ theorem that can detect and accurately estimate the parameters 

such as location and intensity of up to four sources.  

 
 

Cumulative Sum (CUSUM) Control Chart 

 
The CUSUM control chart was first introduced by Page (1954) as an alternative 

to the Shewhart chart for quality control and improvement in manufacturing processes. 

Instead of considering the most recent data point, the CUSUM chart incorporates all the 

information contained in the sequence of data points by accumulating deviations of data 
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points over time. For this reason, the CUSUM chart is more effective than Shewhart 

control chart to detect small process shifts (Montgomery 2001).  

The CUSUM control chart is often calculated and plotted in form of the tabular 

(or algorithmic) CUSUM, which is called the two-sided CUSUM control chart. The 

tabular CUSUM works by adding up deviations from a target value that are above target 

with a statistic, C+, and adding up deviations from a target value that are below target 

with another statistic, C-. The statistic C+ is called one-sided upper CUSUM statistic and 

C- is called one-sided lower CUSUM statistic. For a process, let xi be the i th observation 

that has a mean value ra when the process is in control. The mean value ra is often 

referred to the target value. The statistics C+ and C- are given by 

                                  1max[0, ]i i iC x k C+ +
−= − +                                               (1. 11) 

                                 1max[0, ]i i iC k x C− −
−= − +                                                (1. 12) 

where the starting values for the standard CUSUM control chart are 0 0 0C C+ −= = , k is the 

reference value and is also called the allowance or slack value (Montgomery 2001). The 

reference value k is chosen carefully to optimize the response to a shift from an in-control 

mean value ra to an out-of-control mean value rd (Attardo 2007; Holdbrook 2001). For 

the case of normally distributed observations, it is often chosen about the halfway 

between ra and rd:  

                                       
2

d ar r
k

−
=                                                               (1. 13) 
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At each observation, after calculating the Ci
+ and Ci

-, a decision interval value, h, is 

needed to make a decision whether the process is out of control. If either Ci
+ or Ci

- 

exceeds h, the process is considered to be out of control (Montgomery 2001). 

In practice, people prefer to standardize the variable xi by i a
i

x r
x

σ
−

′ =  where σ is 

the standard deviation of the process. 

                           '

1max[0, ]i i iC x k C+ +
−

′= − +                                                     (1. 14) 

                          '

1max[0, ]i i iC k x C− −
−

′= − +                                                      (1. 15) 

where 'k is the reference value for the standardized CUSUM. The relationship between 

'k  and k is ' /k k σ= . Here, the decision interval value is defined to be'h , and ' /h h σ= . 

For radiation monitoring, the most commonly used applications is the detection of 

an increase in count rate or the detection of a decrease of time-interval. Thus, a one-sided 

CUSUM control chart is often employed. The CUSUM control chart is usually evaluated 

by calculating its average run length (ARL), which is the average number of observations 

taken before an out-of-control signal is triggered. Ideally, the ARL should be long when 

the process is in control and short when the process is out of control (Lucas 1985).  

Because of its effectiveness to detect small shifts, particularly for sample size of 

n=1, and relative simplicity, the CUSUM control chart is a good candidate for 

environmental monitoring. For instance, it has been applied to well or reservoir 

monitoring for chemical contaminants in groundwater and surface water (Gibbons 1999; 

Manly and MacKenzie 2000). In 1977, Marshall suggested the use of cumulative sum 
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charts for monitoring the background radiation level from a radiochemical counter. 

According to the study, the CUSUM charts could detect abrupt changes in the count rate 

of the order of one standard deviation (Marshall 1977). For count data such as the number 

of radiation interactions registered in a detector, Lucas (1985) provided more detailed 

information about the implementation of the CUSUM control chart. In his paper, a 

Poisson CUSUM in which the number of counts per sampling interval is modeled by the 

Poisson distribution, and time-between-events CUSUM were discussed in terms of 

determining the k and h values for general scenarios. He suggested that time-between-

events CUSUM could be used when it is possible to record the occurrence time for each 

event (Lucas 1985). Most recently, the CUSUM chart has been exploited for on-line 

radiation monitoring of low level radioactivity in environmental solutions, and 

unauthorized nuclear materials for homeland security (Hughes and DeVol 2008; Attardo 

2007). To improve the sensitivity of the CUSUM for the process that an out-of-control 

situation occurs at start-up, Lucas and Crosier (1982a) devised the fast initial response 

(FIR) CUSUM. The FIR CUSUM sets C0 equal to some nonzero value instead of zero in 

the standard CUSUM (Lucas and Crosier 1982a). In addition, Lucas and Crosier (1982b) 

proposed the robust CUSUM by using the two-in-a-row rule to account for the extreme 

observations obtained in count data (Lucas and Crosier 1982b). 

 
 

Time-Interval Distribution 
 

The Poisson distribution characterizes the random nature of radioactive decay 

when the probability of decay of a single atom during observation is much less than one. 
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For a Poisson process, the probability P(m) for observing m decays (m=0, 1, 2, …) in a 

time interval t is given by (Evans 1955; ICRU 1994) 

 

                                              
( )

( )
!

m
rtrt

P m e
m

−=      .                                           (1. 15) 

The term ‘time-interval’ refers to the time difference between two consecutive 

pulses. In time-interval distribution analysis the time-interval density, f(t), is usually 

employed to characterize the distribution. The probability of the next event taking place 

in dt after a delay of time t since the last event is denoted as f(t)dt.  For the Poisson 

distribution, the probability for the next event to occur in dt is: 

                                           dtredttf rt−=)(                                                           (1. 16) 

where rte− is the probability of no events during time from time 0 to t for t ≥ 0 (ICRU 

1994). By taking the effect of dead time into account, a theoretical expression of the 

time-interval density for non-paralysable spectrometer with a stationary source has been 

established,  

                            dtretUdttf tr )()()( ττ −−−=                                                     (1. 17) 

in which )(tU is a unit step function, and τ is the dead time (Pomme 1999). 

From equation (1. 16), the average time interval is, 
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As expected, the average time interval is equal to the reciprocal of the count rate. Shown 

in Figure 1.1 are three theoretical time-interval densities for different mean count rates, r. 

We note that short time-interval has a higher probability than that of relatively long time-

interval and a higher count rate results in a higher probability of short time intervals. The 

short time-interval results in a larger difference in time-interval densities between two 

count rates.  

 
Figure 1.1. Theoretical time-interval densities (eq. 1.16) of three counting processes, 

2 cps, 4cps and 8 cps. 
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From equation (1. 16), time-interval probability )(tp for the Poisson distribution 

is derived. The distribution )(tp gives the probability of a time-interval t in which one or 

more radiation pulses can be observed:  

                                          rtetp −−= 1)( .                                                                 (1. 19) 

Figure 1.2 shows the theoretical time-interval probabilities for three different count rates. 

We can see that time-interval distribution patterns are similar to those shown in Figure 

1.1. The probability of short time-intervals is higher than that of long time intervals for 

all counting processes.  

 
Figure 1.2. Theoretical time-interval probability distributions (eq. 1.19) of three 

counting processes, 2cps, 4cps and 8cps. 
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called a “scaled” time-interval.  The distribution of scaled time-intervals for the Possion 

process is 

                                 dtr
N

ert
dttI

rtN

N ⋅
−

=⋅
−−

)!1(

)(
)(

1

,                                                    (1. 20) 

 in which N is the number of input pulses in the time interval and t is the time needed to 

record these pulses (Evans 1955). Figure 1.3 shows an example of the distributions of 

scaled time-intervals.  

 

Figure 1.3. The scaled time-interval distribution with N=2 for count rate 2cps and 
5cps, respectively. 

 

In radiation monitoring, data can be collected either by integrating the number of 

pulses registered by the detector during a given count interval or by recording the arrival 

time stamp of each registered pulse. The former method is widely used because of its 

simplicity. 
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When a radioactive source is present, it would result in a significant change in the 

time-interval distribution at the background level, especially for short time-intervals. This 

special property of time-interval distribution has been applied to several problems. By 

limiting time-intervals to a pre-assigned range, Arandjelovic et al. (2002) developed an 

algorithm for preset count digital-rate meter to suppress statistical fluctuations of mean 

count rate measurements. Baeten et al. (1998) applied time-interval analysis to neutron 

multiplicity measurements which offers high sensitivity for the assay of Pu-bearing waste 

drums. Dowdy et al. (1978) devised a neutron detector suitcase based on S-fold time-

interval measurements to detect transients of neutron-emitting radioactive materials.   

In our research, we focus on using time-interval information derived from the 

arrival times of each registered pulse for radiation monitoring. Three statistical methods, 

SPRT, Bayesian statistics, and CUSUM, are applied for time-interval analyses. 

Advantages and disadvantages of the three time-interval methods will be compared to the 

commonly used count information in a fixed count time. In addition, the performances of 

the three methods based on time-interval data are compared to the classical SIT method 

in terms of ARL, false positive and false negative rates.  

 
 

Research Objectives 
 

The overall objective of this research project is to develop time-interval based 

statistical methods and techniques for on-line radiation monitoring. Registering time-

interval data possesses the potential to reduce the sampling time required to obtain 

sufficient information to detect abrupt changes in radiation levels. The research proposed 
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herein is divided into three sections. Based on the fundamental experimental study of the 

time-interval distribution, three statistical methods (SPRT, Bayesian statistics, and 

CUSUM) are applied to time-interval data analyses for radiation monitoring. The three 

methods for time-interval analyses are chosen based on their common characteristics of 

incorporating previous information into the decision-making. The potential advantages of 

collecting time-interval information for radiation monitoring will be evaluated for the 

three methods and compared to a conventional statistical method. The details for each 

section are listed as following. 

Objective 1: Apply the sequential probability ratio (SPRT) test to on-line radiation 

monitoring by using the scaled time-interval as an independent variable, and evaluate its 

advantages/disadvantages relative to conventional SPRT in which observations are 

obtained in a fixed count time. 

Utilization of scaled time-interval in SPRT is investigated as an alternative to 

conventional fixed count time analysis with experimental and simulated data. SPRT is 

used as the decision-making algorithm because of its well-known property to minimize 

the average sampling size (i.e. decision time) for sequentially acquired observations.  The 

performance of the scaled time-interval based SPRT is evaluated in terms of estimated 

time to decision and detection probability (1- β) against commonly used single-interval 

test (SIT) and SPRT with a fixed count time. Furthermore, adjustments of parameters in 

SPRT are investigated to give better performance at meeting the specified statistical 

requirements.   
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Objective 2: Analyze time-interval observations using Bayesian techniques and 

investigate advantages of time-interval information for distinguishing small changes in 

the background radiation level for on-line monitoring. 

Bayesian statistics is fundamentally different from the frequentist statistics. 

Bayesian inference treats parameters as random unknown variables, and uses a 

probability density to reflect the state of knowledge about plausible parameter values. 

Bayesian approach allows a priori  information about the parameter, such as the net count 

rate and background, to be included in statistical inference. Data are collected to update 

or modify the prior distribution to obtain the posterior distribution for the unknown 

parameter based Bayes’ theorem. By analyzing time-intervals of on-line monitoring data, 

it is expected that a change in the background can be detected with low false positive 

rate.   

Objective 3: Use the cumulative sum (CUSUM) method to analyze time-interval data for 

on-line radiation monitoring and compare its advantages to those of CUSUM with count 

data and Shewhart control chart. 

The CUSUM method is a classical technique that is widely used for industrial 

quality control. The major property of the CUSUM method is the ability to incorporate 

information contained in a previous sequence of observations. The CUSUM tracks 

cumulative sums of the deviations of the observations from a target value (the 

background, for example) to detect an abrupt change in the background. This method is 

promising for low-level radiation monitoring in which a small and steady increase in 

radiation level happens in the presence of a significant ambient background.  
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Overview 
 

Time-interval analyses based on each of the three chosen statistical methods were 

investigated with experimental data and simulated data. The results are presented in the 

next three chapters as individual papers and the order of presentation follows the order of 

the research objectives. In chapter 2, the study on sequential probability ratio test (SPRT) 

of scaled time-interval data are summarized. A paper titled “Sequential probability ratio 

test using scaled time-intervals for environmental radiation monitoring” by P. Luo, T. A. 

DeVol, and J. L. Sharp has been published in the IEEE Transactions on Nuclear Science, 

vol. 57, No. 3 (2010) 1556-1562. Chapter 3 presents the results of Bayesian analysis of 

time-interval data. A paper titled “Bayesian analysis of time-interval data for 

environmental radiation monitoring” by P. Luo, J. L. Sharp, and T. A. DeVol has been 

submitted to IEEE Transactions on Nuclear Science for review. Chapter 4 summarizes 

the results of cumulative sum (CUSUM) analyses of time-interval data for radiation 

monitoring. A paper titled “CUSUM analysis of time-interval data for on-line radiation 

monitoring” by P. Luo, T. A. DeVol, and J. L. Sharp has been submitted to the Health 

Physics Journal. Finally, a brief summary of the major findings in this research is 

provided in chapter 5 with a prospective plan of future work on time-interval analyses. 

Other results that are not included in the main body of the dissertation are given in the 

appendices, as well as experimental data relative to experimental results and a part of 

important computer code developed for this research. 
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CHAPTER 2  

SEQUENTIAL PROBABILITY RATIO TEST USING SCALED 

TIME-INTERVALS FOR ENVIRONMENTAL RADIATION 

MONITORING 

Abstract 
 

Sequential probability ratio test (SPRT) of scaled time-interval data (time to 

record N radiation pulses), SPRT_scaled, was evaluated against commonly used single-

interval test (SIT) and SPRT with a fixed counting interval, SPRT_fixed, on experimental 

and simulated data. Experimental data were acquired with a DGF-4C (XIA, Inc) system 

in list mode. Simulated time-interval data were obtained using Monte Carlo techniques to 

perform a random radiation sampling of the Poisson distribution. The three methods (SIT, 

SPRT_fixed and SPRT_scaled) were compared in terms of detection probability and 

average time to make a decision regarding the source of radiation. For both experimental 

and simulated data, SPRT_scaled provided similar detection probabilities as other tests, 

but was able to make a quicker decision with fewer pulses at relatively higher radiation 

levels. SPRT_scaled has a provision for varying the sampling time depending on the 

radiation level, which could further shorten the time needed for radiation monitoring. 

Parameter adjustments to the SPRT_scaled method for increased detection probability are 

discussed. 
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Introduction 
 

Subsurface contamination by anthropogenic radionuclides at United States 

Department of Energy (DOE) sites is a persistent and vexing problem for the DOE’s 

Environmental Management Science Program. As an integrated component, on-line 

environmental radiation monitoring is essential to the environmental management 

program. In the processes of cleaning up contaminated media, long-term environmental 

radiation monitoring is required to support the development of conceptual and predictive 

models of contaminant behavior, to demonstrate the effectiveness of remediation actions, 

and to gain regulatory approval (U.S. DOE 2000, 2004). The goal of on-line 

environmental radiation monitoring is to quickly detect small changes in activity levels in 

the presence of a significant ambient background. By sensing the gradual or abrupt 

change in the radiation level, a final decision will be made to conclude whether a 

radiation source is present. Ideally, we want to make a decision with no false positives 

(Type I error) or false negatives (Type II error), but this is unrealistic. It is well 

recognized that radioactive decay is a random process which is commonly characterized 

by the Poisson distribution or Gaussian distribution. Consequently, the inherent 

uncertainty in measurement causes unavoidable error rates in any final decision (Knoll 

2010; ICRU 1994). In practice, a proper statistical method or technique is chosen to 

minimize both Type I and Type II errors.  

A typical statistical method used in radiation monitoring is the single-interval test 

(SIT) (Jarman et al. 2004). SIT accumulates radiation counts over a fixed-length counting 

interval, and compares the resulting counts or count rates to a single critical level. SIT 
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can be conducted easily, but it is relatively insensitive to small changes in radiation 

levels. Therefore, more sophisticated statistical methods or techniques have been 

developed and adopted to detect small changes in radiation levels. For example, Marshall 

suggested the use of cumulative sum control charts (CUSUM) for monitoring the 

background radiation level from a radiochemical counter (Marshall 1977). 

Apostolopoulos employed maximum likelihood techniques as an on-line statistical 

processing method to improve the response of radiation rate meters (Apostolopoulos 

2008). Fehlau, Jarman and Coop applied the sequential probability ratio test (SPRT) in 

portal monitors (Jarman et al. 2004; York and Fehlau 1997; Coop 1985).  

SPRT is a specific statistical method of sequential analysis developed by 

Abraham Wald. A distinctive feature of SPRT is that the number of observations required 

by the test procedure is not determined in advance. When SPRT is applied to statistical 

hypothesis testing, SPRT requires a substantially fewer number of observations than an 

equally reliable test based on a predetermined number of observations (Wald 1952). 

Implemented in the 1980s, SPRT has been applied to radiation monitoring of vehicles, 

personnel and packages for nuclear safeguards and homeland security. SPRT is an 

effective statistical method for detecting illicit nuclear materials, such as special nuclear 

materials (SNM) (Jarman et al. 2004; York and Fehlau 1997; Fehlau et al. 1983; Fehlau 

1993; Coop 1985). In these applications, SPRT has been shown to have the ability to 

shorten decision times and improve detection probabilities. Yuan and Kernan suggested 

that SPRT is a promising algorithm for quick determination of radiation levels in the field 

(Yuan and Kernan 2006). With this method, the sample size for high radiation region is 
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reduced and therefore the exposure to field radiation surveyors could be reduced. In 

addition, Humenik and Gross examined SPRT for rapid surveillance of off-normal 

operations of nuclear plant components (Humenik and Gross 1990; Gross and Humenik 

1991). 

When applying a statistical method to analyze radiation data from a detector 

system, there are two distinct ways to look at the data: either the radiation counts 

registered in a fixed counting interval or the time difference between adjacent pulses 

(time-interval) is used for the analysis. The former method is technically easier to handle 

and it is the most common way to analyze radiation data. Time-interval distribution has 

been applied to several problems. By limiting time-intervals to a pre-assigned range, 

Arandjelovic et al. developed an algorithm for preset count digital-rate meters to suppress 

statistical fluctuations of mean count rate measurements (Arandjelovic et al. 2002). 

Baeten et al. applied time-interval analysis to neutron multiplicity measurements which 

offered high sensitivity for the assay of Pu-bearing waste drums (Baeten et al. 1998). 

Dowdy et al. devised a neutron detection system based on S-fold time-interval 

measurements to detect transients of neutron-emitting radioactive materials (Fehlau et al. 

1983; Dowdy et al. 1978).  

Registering counts in a fixed counting interval and registering time-intervals 

provide us with two different data sampling methods. The time needed to record a 

statistically significant number of pulses could be shorter than counting for a fixed 

counting interval. Therefore, registering time-intervals possesses the potential to reduce 

the sampling time required to obtain sufficient information to detect abrupt changes in 
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radiation levels. In this study, we investigate the characteristics of time-interval 

distributions, and use time-interval information to conduct the SPRT of on-line radiation 

monitoring data. In addition, we evaluate advantages and disadvantages of the time-

interval based SPRT (SPRT_scaled) compared to the commonly used SIT and traditional 

SPRT with a fixed counting interval (SPRT_fixed). 

 
 

Theory and Methods 
 

Time-interval Distribution 

 
The Poisson distribution characterizes the random nature of radioactive decay 

when the probability of decay of a single atom during observation is much less than one. 

For a Poisson process, the probability P(m) for observing m decays (m=0, 1, 2, …) in a 

time interval t is given by 

                                
( )

( )
!

m
rtrt

P m e
m

−=   ,                                                             (2. 1) 

where r is the mean count rate (Knoll 2010; ICRU 1994). 

The term ‘time-interval’ refers to the time difference between two consecutive 

pulses. In time-interval distribution analysis the time-interval density, f(t), is usually 

employed to characterize the distribution. The probability of the next event taking place 

in dt after a delay of time t since the last event is denoted as f(t)⋅dt.  For the Poisson 

distribution, the probability for the next event to occur in dt is: 

                          dtredttf rt−=)(   ,                                                                   (2. 2) 
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where rte− is the probability of no events from time 0 to t, and r, t ≥ 0 (Knoll 2010; ICRU 

report 52 1994). 

When a digital “scaler” is employed to produce one output pulse only after N 

input pulses have been registered, the time-interval between two scaled output pulses is 

called a “scaled” time-interval.  The distribution of scaled time-intervals for the Possion 

process is, 

                     dtr
N

ert
dttI

rtN

N ⋅
−

=⋅
−−

)!1(
)(

)(
1

  ,                                                       (2. 3) 

in which N is the number of the input pulses in the time interval and t is the time  needed 

to record these pulses (Knoll 2010). Figure 2.1 shows an example of the distributions of 

scaled time-intervals.  

 

Figure 2.1. The scaled time-interval distribution with N=2 input pulses for mean 
count rate 2 cps and 5 cps, respectively. 
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Single Interval Test 

 
Single interval test (SIT) is a typical method used in radiation detection. For SIT, 

radiation pulses are collected in a fixed counting interval regardless of the strength of the 

radiation level.  The result of the observation--- the total or net number of pulses --- is 

compared to a single critical level to decide whether a radiation source is detected. If the 

net number of radiation pulses is used for the decision-making, the critical level is given 

as: 

                                           0σαkLc =   ,                                                                     (2. 4) 

where αk  is the 1-α percentile of the standardized normal distribution corresponding to 

probability α, and σ0 is the standard deviation of the net signal. If the total number of 

pulses is used, the critical level is given by 

                                          cc LNL +=′ 0   ,                                                                     (2. 5) 

where N0 is the total number of radiation pulses coming from the background level  

(Jarman et al. 2004). In this study, the desired false positive rate α0 is set at 0.05. Thus, 

645.1
0

≈αk .  

For on-line radiation monitoring, SIT is often performed in terms of the Shewhart 

control chart on which each observed result is plotted and compared with control limits. 

The chart has a line representing the background radiation level, an upper control limit at

cL′ , and a lower control limit if necessary. One major disadvantage of the Shewhart chart 

is that only the information contained in the most recent data point is considered, and the 

information contained in previous data points is disregarded. As a result, the SIT method 
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is relatively insensitive to small changes in radiation levels while it readily detects large 

shifts (Montgomery 2001). 

 
 

Sequential Probability Ratio Test (SPRT) 

 
With traditional hypothesis testing, such as the SIT method, after an observation 

is obtained, one of two possible actions is made: accept the null hypotheses (H0) or accept 

the alternative hypothesis (H1). In other words, a final decision is made on the 

observation no matter if the evidence is strong or ambiguous. Unlike traditional 

hypothesis testing, there is a third possible action for the SPRT: additional observations 

will be taken until the evidence can strongly support one of the two hypotheses (Ghosh 

and Sen 1991). The sequential probability ratio test is defined as follows. Let xi represent 

the result (counts in a fixed counting time, for example) for the i th observation, and fj(xi) 

denote the probability density of the variable xi (fj(xi) = P(k) as given in equation (2.1), 

for example) under the hypotheses Hj, j=0 or 1 (background vs. alarm, for example). At 

each observation, a probability ratio f1(xi)/ f0(xi) is calculated.  The sum of the probability 

ratios from previous observations is compared to two thresholds to make a decision. For 

simplicity, a natural logarithm of the probability ratio is commonly calculated for the 

tested quantity, so that the individual ratios are additive. Let zi denote the natural 

logarithm of the ratio,  

                                   .
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Then the sum of the ratios, ∑
=

=
n

i
i

z
n

1
λ is compared to two thresholds, A and B, where 

B<A, to make a decision. 

         If An ≥λ , H0 is rejected. 

         If Bn ≤λ , H0 is accepted.  

If AB n << λ , the test continues by taking additional observations until a decision can be 

made or the maximum observations, Nmax, is reached.  

Thresholds A and B are related to the desired false positive rate α0 and false 

negative rate β0 (Wald 1952). They are given by 
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These two inequalities give an upper limit for A and a lower limit for B, and these 

limits are commonly used as thresholds in practice. Using the limits as the thresholds, the 

actual error rates α and β are not identical to the desired error rates α0 and β0, but they are 

very close to the desired values (Wald 1952).  

In radiation monitoring, SPRT tests the hypothesis (H0) that a sequence of 

measurements is from the background level r0 only against the hypothesis (H1) that the 

measurement sequence is from an alarm level r1, which indicates the presence of a 

radiation source. Here, the alarm level is set at a level that the false negative rate is β0, 

which is given by (2.5) based on the desired α0 and β0. When SPRT_fixed is conducted, 
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the observation is the count of registered radiation pulses, ci, in a fixed counting interval. 

Thus, the natural logarithm of the ratio zi is calculated by 

                                   trrrrcz ii )()ln( 1001 −+⋅=   ,                                                     (2. 8) 

where t is the length of the counting interval for each observation. 

When scaled time-intervals are used for SPRT_scaled, the observation is the time-

interval, ti, for observing N input radiation pulses. Consequently, zi is given by 

                                      .)()ln()1( 1001 ii trrrrNz ⋅−+−=   .                                           (2. 9) 

Compared to (2.8), the difference in calculating the probability ratios at each observation 

is that the observable variation is different for the two sequential tests.  Single interval 

test (SIT) is a typical quantification method used in radiation measurements. 

 
 

Experimental Instruments and Simulation 
 

Figure 2.2 shows the schematic diagram of the radiation acquisition system used 

for experimental data. Beta radiation from a 90Sr/90Y source (~3700 Bq each, 

Emax=0.55MeV/2.3 MeV) was detected using a G-M detector. The output from an 

amplifier (ORTEC model 572) was sent to a DGF-4C module (XIA, Inc) where it was 

digitized at a rate of 40 MHz with 16-bit precision. The DGF-4C module was connected 

to a Pentium IV, 2.3 GHz host computer through a Jorway 73A crate controller and 

controlled through a graphical user interface, DGF-4C viewer 3.05. The DGF-4C viewer 

3.05 runs specifically under an interactive programming and data analysis environment, 
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IGOR Pro. 4.03 (XIA 2004; Chandrikamohan and DeVol 2007; Skulski and Momayezi 

2001). Using list mode, a binary output file containing time stamp information was 

prepared by the DGF-4C module for off-line analysis. The time resolution is 25ns. Based 

on a special built-in function in the IGOR Pro., the absolute time stamp of each input 

pulse was extracted from the list mode data. Time-intervals or scaled time-intervals were 

obtained to conduct SPRT. By adjusting the distance from the source to the detector, 

experimental data for low level radiation (2-10cps) were acquired. At each radiation 

level, about 25,000 radiation pulses were registered to provide for a good general 

comparison among the methods. 

 

Figure 2.2. Schematic diagram of CAMAC module based time-interval acquisition 
system. 

 

In addition, a Monte Carlo method was employed to simulate a random radiation 

sampling based on the density function of time-interval distributions. The simulation is 
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conducted through a program written in IGOR Pro. In the simulation, the arriving time of 

each pulse is a random process governed by the time interval distribution described in 

(2.2). According to the arriving time information, simulated scaled time-intervals were 

extracted for the SPRT test. At each radiation level, 106 random pulses were simulated. 

Compared to experimental acquisition, simulation is a rapid and convenient means to 

compare the three methods. To register 106 radiation pulses at low count rate levels, the 

simulation can be done within a few minutes, while the experimental data collection takes 

hours to days depending on the count rate. 

The same experimental and simulated data sets were used to evaluate the SIT, 

SPRT_fixed, and SPRT_scaled methods. The fixed counting interval is 6s for SIT and 1s 

for SPRT_fixed. The performances of the three methods were evaluated in terms of 

estimated time to decision and detection probability (1- β), where β is the actual false 

negative rate. It should be noted that the fixed counting time for SIT and SPRT_fixed are 

arbitrary. A proper fixed counting time should be determined based on a real application.  

Since time-intervals and counts in a fixed counting interval provide two distinct ways for 

radiation data analyses, a fair comparison between SPRT_scaled and SPRT_fixed is not 

practical. In this study, we provide insight on the advantages and disadvantages of these 

two methods. 

 
 

Results and Discussion 
 

Experimental results were used to study the characteristics of scaled time-

intervals and the SPRT with scaled time-intervals while the simulated radiation data were 
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used to investigate the possibilities and effects of parameter adjustments on the results 

from the SPRT_scaled method. 

 
 

Experimental SPRT Results 

 

The experimental detection probabilities (1- β) for different radiation levels are 

shown in Figure 2.3. The average background count rate is 2.0cps. The probabilities α0 

and β0 are set at 0.05. Correspondingly, the alarm radiation level for the SPRT testing is 

4.35cps. Based on (2.7), A=2.94 and B=-2.94 are used for the two thresholds. Nmax=16 for 

both types of SPRT methods. Unless otherwise specified, these are the parameters used in 

all analyses presented in this paper. For the scaled time-interval based SPRT test, N=4 

and 6 input pulses are presented. 

Generally, SPRT_scaled has similar performance to that of SIT and SPRT_fixed. 

For radiation levels around the background level, SPRT_scaled results in a very low 

detection probability relative to other methods. For example, at the mean count rate of 

about 2cps, the detection probability is about 12.0% for SIT, 3.3% for SPRT_fixed, and 

0.04% for SPRT_scaled. At greater than 2.5 times the background count rate, all three 

methods have essentially the same detection probabilities. For a count rate between the 

background and 2.5 times the background, the detection probability of SPRT_scaled is 

relatively lower than that of others. 
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Figure 2.3. Detection probability for experimental data. Each point is obtained by 
analyzing about 25,000 registered pulses. 

 

Figure 2.4 shows the average time to make a decision using SPRT_fixed and 

SPRT_scaled. This time is fixed at 6s for the SIT method.  For a low radiation level, 

SPRT_scaled needs more time than that of SPRT_fixed to make a decision. As the 

radiation level reaches a higher level, the average decision time needed for SPRT_scaled 

is close to that of SPRT_fixed. In addition, the average decision time varies with the size 

of scaled pulses, N. In the low radiation range, more time is needed to make a detection 

decision for higher N. 
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Figure 2.4. Average decision time for experimental data. The decision time for SIT is 
always 6s in this case. 

 
 

Simulated SPRT Results 

 
Figure 2.5 and Figure 2.6 illustrate the detection probability and average decision 

time obtained from simulated data. Results from simulated data are consistent with the 

results from the experimental data. The simulated detection probability results presented 

in Figure 2.5 indicate that simulation is a reasonable way to study the sensitivity of scaled 

time-intervals for radiation monitoring. In Figure 2.6, when the radiation level reaches a 

certain high level (>10 cps with this data), the average decision time for SPRT_scaled 

becomes less than that of SPRT_fixed. 

In the study of parameter adjustments, we use simulated data to investigate the 

effects of Nmax, A, and B on the detection probability and the average time to make a 

decision focusing on the SPRT_scaled method. No adjustment is performed for 
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SPRT_fixed. SPRT_fixed is used as a reference to visualize the effects of parameter 

adjustments to SPRT_scaled.  

 

Figure 2.5. Detection probability for simulated data. Each point is obtained by 
analyzing 106 simulated registered pulses.  

 

Figure 2.6. Average decision time for simulated data. The decision time for SIT is 
always 6s in this case. 
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Parameter Adjustments 

 
Figures 2.4 and 2.6 show that the average decision time for radiation levels 

between the background and the alarm level of the SPRT_scaled method is longer than 

that of SPRT_fixed and  SIT methods. And the detection probabilities in this range are 

lower than that of SIT and SPRT_fixed. For the cases in which higher detection 

probabilities and shorter decision times are the primary concerns, an improvement is 

needed. 

In the practice of the SPRT testing, a truncation strategy is commonly used to 

reduce the average decision time. That is, the decision using SPRT is forced when the test 

has not reached a decision by a given time or given number of observations, Nmax (Jarman 

et al. 2004). The choice of a proper Nmax depends on the time limit that can be tolerated in 

the practice. 

Figure 2.7 gives the results of the truncation strategy by setting the maximum 

observations, Nmax, at 4. Nmax=4 is less than the average number of observations needed for 

SPRT method to make a decision at a radiation level between the background and the 

alarm level.  In previous results, Nmax was set at 16. Compared to Figure 2.6, it is obvious 

that the average time to make a decision is reduced, especially in the range of low radiation 

levels. However, the detection probabilities cannot be drastically improved as shown in 

Figure 2.8. 
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Figure 2.7. Average detection time for truncation strategy when Nmax=4. SPRT_fixed 
is the same as in Figure 2.6 and it is used as a reference. 

 

Figure 2.8. Average decision time of SPRT_scaled with N=6 input pulses for two 
different maximum observations: Nmax=4 and Nmax=16.  

 

Thresholds A and B can be adjusted to give desired error rates, but the exact 

determination of thresholds is usually laborious (Wald 1952). Figure 2.9 shows an example 
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of the detection probability for adjusting threshold A. With a smaller A value, the actual 

error rate β at the alarm level is reduced while the actual error rate α at the ground level is 

increased. Even though the detection probability is increased, the detection probability of 

SPRT_scaled is still lower than that of SIT and SPRT_fixed. On the contrary, when a larger 

B value is used as the threshold, the actual β at the alarm level is increased while the actual 

rate α at the background level is reduced. 

 

Figure 2.9. Detection probability for the adjustment of A from 2.9 to 1.0 (N= 4 input 
pulses). SIT and SPRT_fixed are the same as in Figure 2.5, and they are 
used as references. 

 

An adjustment of r0 (2.9) was investigated to consider the change of the detection 

probability and the average decision time. Here r0 is treated as a parameter only in the 

SPRT algorithm, not a variable in a real experiment. Figures 2.10 and 2.11 illustrate an 

example of the adjustment of the preset background level (r0). The hypothesis is that if one 
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can shift the detection probability curve to the left the detection probability will increase. 

With r0=2 cps, α was much lower than expected while β was higher than expected. Figure 

2.10 shows the effect of the r0 adjustment with different values for N= 6 input pulses. With 

a smaller r0
’
 value to replace the preset r0, the detection probability curve is further shifted 

to the left. This means that the detection probability is higher, especially for relatively low 

radiation levels. Figure 2.11 shows the average decision time for SPRT_scaled with 

different N when r0
’=1.0 cps is used to replace the preset background, r0=2.0 cps. Except 

for the radiation level around the background, the average decision time for SPRT_scaled 

is less than that of SPRT_fixed. As shown in Figure 2.10, the error rate α for this 

adjustment is also increased with the shift of the detection curve. This implies that there is a 

compromise between the amount of the shift and the tolerable error rates.  Thus, α and β 

can be made closer to the expected value of 0.05 by the adjustment of r0 in the SPRT 

algorithm. 

 



 

47 
 

 

Figure 2.10. Detection probabilities of the adjustments of r0 in the SPRT algorithm for 
ratio calculations when r0

’= 0.5 cps, 1.0 cps and 1.5 cps, respectively (N= 
6). The SPRT_fixed method is the same as in Figure 2.5.  

 

 

Figure 2.11. Average time with r0
’= 1.0 cps in the ratio calculation for SPRT_scaled 

with N=4 and 6 input pulses. 
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Conclusion 
 

For radiation monitoring in which radiation data are obtained sequentially, the 

time difference between two consecutive pulses or scaled outputs can be extracted easily. 

The specific features of time-interval distribution provide an alternative way to analyze 

on-line sequential data. With a proper statistical method, time-interval information can 

provide another effective way for on-line radiation monitoring. According to this study, 

the SPRT with scaled time-interval information had similar performance to SIT and the 

SPRT with a fixed counting interval at lower count rates, but delivered a faster response 

when the count rate reached a certain high level. In addition, parameters in SPRT are able 

to be adjusted for different specifications. Continued investigation of the use of the time-

interval distribution by applying other statistical methods or techniques is valuable.  
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CHAPTER 3   

BAYESIAN ANALYSIS OF TIME-INTERVAL DATA FOR 

ENVIRONMENTAL RADIATION MONITORING 

Abstract 
 

Time-interval (time difference between two consecutive pulses) analysis based on 

the principles of Bayesian inference was compared with frequentist methods to determine 

the method with the highest detection probability and the best average run length. Using 

experimental and simulated data, Bayesian analysis of time-intervals (Bayesian (ti)) was 

compared with Bayesian and frequentist analyses of counts in a fixed count time 

(Bayesian (cnt) and 1.65σ, respectively). Experimental data were acquired with DGF-4C 

(XIA, Inc) system in list mode. Simulated data were obtained using Monte Carlo 

techniques to obtain a random sampling of the Poisson distribution. All statistical 

algorithms were developed using R (R Core Development Team, 2010). Detection 

probabilities and average run lengths for the three methods were compared. Bayesian 

analysis of time-interval information provided a similar detection probability as Bayesian 

analysis of count information, but was able to make a decision with fewer pulses at 

relatively higher radiation levels. In addition, for the cases with very short presence of the 

source (< count time), time-interval information is more sensitive to detect a change than 

count information since the source data is averaged by the background data in the entire 

count time. The relationships of the source time, change points and modifications to the 

Bayesian approach for increasing detection probability are presented.  
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Introduction 
 

On-line environmental radiation monitoring is essential to the U.S. Department of 

Energy (DOE) Environmental Management Science Program for cleaning up 

contaminated media at DOE sites (U.S. DOE 2004). Radiation monitoring also plays an 

important role in monitoring the presence of unauthorized nuclear materials and locating 

a lost or stolen radioactive source (Panofsky 2003). The goal of on-line radiation 

monitoring is to quickly detect small or abrupt changes in activity levels in the presence 

of significant ambient background. An on-line radiation monitoring system should satisfy 

the following basic requirements: i) perform routine monitoring properly in the long-term 

with the least number of false positives; ii) quickly detect changes in radiation levels with 

the least number of false negatives; iii) have a long average run length (ARL) when the 

radiation level is at the background level and a short ARL when the radiation level 

changes to an elevated level. In the case of low-level radioactivity, two factors make 

distinguishing between a radioactive source and natural background particularly difficult. 

First, because of the random nature of the radioactive decay, the number of emitted 

particles and the number of particles registered in a detector follows the Poisson 

distribution, resulting in inherent uncertainty in the number of recorded counts. Second, 

radiation monitoring is usually performed in a nature background that also involves 

counts from natural radionuclide in the environment and cosmic radiation (Laedermann 

et al. 2005). Radiation monitoring becomes even more complex as a radioactive source is 

contained in a moving medium, shielded by non-radioactive materials, or occurs at a 

relatively long distance away from the detector. Consequently, there is a finite probability 
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that unavoidable errors are associated with any detection decision. In practice, a proper 

statistical method or technique is chosen to minimize the rates of each type of error. 

A conventional radiation monitoring method based on classical statistics involves 

setting a decision level (DL) for a given false positive rate (α). A monitoring result 

(counts or count rate) is then compared to the decision level. If the value of the result is 

greater than the decision level, then one makes the decision that there is activity present 

above the background. Strom and MacLellan (2001) discussed eight different rules for 

setting a decision level. They evaluated the actual false positive rates for eight decision 

rules as a function of a priori false positive rate and background mean. A commonly used 

decision level developed by Currie (1968) is given as DL=kασ0, where kα is the 1-α 

percentile of the standardized normal distribution with corresponding probability α (e.g. 

for a false positive rate α =5%, kα≈1.645), and σ0 is the standard deviation of the 

background counts. The conventional monitoring method can be conducted easily, but 

one major disadvantage is that only information contained in the latest data point is 

exploited, and the information contained by the entire sequence of data points is 

disregarded. Therefore, more sophisticated statistical methods or techniques have been 

developed and adopted in the field of health physics to make a more reliable and coherent 

radiation monitoring decision. Among them, Bayesian methods provide a promising 

framework for making a more accurate decision in low-level activity monitoring by 

providing direct probability statements about the underlying parameter (e.g. mean count 

rate, r) based on prior information and actual data.  
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Unlike classical statistical procedures (often referred to as frequentist statistics), 

Bayesian statistical methods permit the formal incorporation of prior subjective 

knowledge, belief and information beyond that contained in the observed data in the 

inference process via Bayes’ theorem. As in other fields of physical sciences, Bayesian 

statistics has been discussed in health physics literature as an alternative to classical 

statistical methods for analyzing low-level radioactivity in the presence of background 

counts. Little (1982) first investigated the use of Bayes’ theorem in health physics to 

address the situation where estimates of net rates of activity can be negative when 

frequentist statistics are used. Using a prior distribution with zero probability for negative 

values, Bayesian analyses give meaningful positive estimates of net rates. Miller et al. 

(1993, 2001, 2002) extended Little’s work in estimates and interpretations of internal 

dosimetry and environmental monitoring applications. Bayesian techniques have also 

been applied to estimate the low-level activities of decaying nuclides with short half-lives 

(Bochud et al. 2007; Groer and Lo 1996). Because of the ability to take into account 

sources of uncertainty, Bayesian statistics have been used to give more accurate estimates 

of uncertainty of radiation measurements. Weise et al. (2006) calculated Bayesian 

characteristic limits such as the detection limit and the decision threshold by taking into 

account sources of uncertainty. Weise et al (2006) suggested a revision of some parts of 

the ISO (International Organization for Standardization) guide in which characteristic 

limits are currently determined based on frequentist statistics. Kacker and Jones (2003) 

proposed new evaluation methods for the expression of uncertainty of measurements in 

the ISO guide from a Bayesian viewpoint to make it consistent. Additionally, Bayesian 
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techniques have been applied for reducing false positive rates in low-level radioactivity 

monitoring (DeVol et al. 2009; Strom and MacLellan 2001). DeVol et al. (2009) 

compared false positive and false negative rates (β) of time series radiological data for 

classical control chart and Bayesian statistical process control chart known as the 

Shiryayev-Roberts (S-R) control chart. The results showed that the Bayesian method was 

the best for controlling the false positive rates relative to the Shewhart (3-σ) and the 

cumulative sum (CUSUM) control charts.  

There are two distinct ways to record the radiation data: either the radiation 

counts registered in a fixed count time or the arrival time of each registered pulse. 

According to the arrival time, the time difference (time-interval) between two 

consecutive pulses can be extracted. The former method is technically easier to handle 

and it is the most common way to analyze radiation data. Utilization of time-interval 

information in radiation measurements has been discussed by several authors. By limiting 

time intervals to a pre-assigned range, Arandjelovic et al. developed an algorithm for 

preset count digital-rate meters to suppress statistical fluctuations of mean count rate 

measurements (Arandjelovic et al. 2002). Dowdy et al. devised a portable neutron 

detection system to search for neutron-emitting radioactive materials based on S-fold 

time-interval measurements (Dowdy et al. 1978).  

The time needed to record a statistically significant number of pulses could be 

shorter than counting for a fixed count time. Therefore, registering time-intervals 

possesses the potential to reduce the sampling time required to obtain sufficient 

information to detect abrupt changes in radiation levels, and avoids the work of 
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determining an appropriate fixed count time. Time-interval information can result in a 

quick response to the change in radiation levels and keep the false positive rate at a low 

level. In this study, we investigate the characteristics of time-interval distributions, and 

apply Bayesian statistics to the analysis of time-interval data from on-line radiation 

monitoring. In addition, we evaluate advantages and disadvantages of the time-interval 

based Bayesian analysis (Bayesian (ti)) compared to the frequentist method (1.65σ) and 

traditional Bayesian analysis with a fixed count time (Bayesian (cnt)).  We also modify 

the updating of the prior distribution with previous information to reduce the effect of the 

background, which can improve the performance of the Bayesian analysis. 

 
 

Theory and Methods 
 

Time-interval Distribution 

 
The random nature of radioactive decay is characterized as a Poisson process 

when the number of nuclei is large and the observation time is short compared with the 

half-life of the radioactive species. The probability P(m) for observing m decays (m=0, 1, 

2, …) in a time interval t is given by the Poisson distribution, 

                         
( )

( )
!

m
rtrt

P m e
m

−=  ,                                                                     (3. 1) 

where r is the mean count rate. 

The time-interval density, f(t), is usually employed to characterize the time-

interval distribution. The probability of the next event taking place in dt after a delay of 
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time t since the last event is denoted as f(t)dt.  For the Poisson process, the probability for 

the next event to occur in dt is: 

                        dtredttf rt−=)(   ,                                                                     (3. 2) 

where rte− is the probability of no events from time 0 to t, and r, t ≥ 0. The density 

function expressed in (3.2) is commonly referred to as the exponential distribution (Knoll 

2010). 

 
 

Bayes’ Theorem 

 
Let us consider a radioactive decay process described by an underlying mean 

count rate, r, and let x denote the observed value (e.g., time-interval) in radiation 

measurements. The mathematical form of Bayes’ theorem is defined as 
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)()|(
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xp

rprxp
xrp =  ,                                                           (3. 3) 

where p(r|x) is the posterior probability distribution of the unknown parameter r given 

the data x and p(x|r) is the likelihood function which is given by a chosen probability 

model, such as the Poisson distribution and the exponential distribution (Bolstad 2007; 

Gelman 2004). The prior probability distribution of r is given as p(r); this is a 

quantitative description of our belief about r based on previous experience and 

knowledge before the experiment is conducted. The denominator p(x) is referred to as the 

marginal distribution of the data which normalizes the posterior probability distribution. 
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The goal of a Bayesian analysis is to obtain the posterior probability which summarizes 

our knowledge of the parameter, r, given the prior belief and the observed data, x.  

In the case of a series of independent measurements obtained over time in 

radiation monitoring, Bayesian analysis can be conducted sequentially (Bolstad 2007). 

Using a designated initial prior probability and likelihood function, the posterior 

probability is calculated for the first observation. For a subsequent measurement, the 

existing posterior probability is used as a new prior in combination with the newly 

available data to give an updated posterior. In this way, the Bayesian estimate of the 

parameter r incorporates the new information at each measurement to update our state of 

knowledge about r.   

A prior probability that gives our belief about the possible values of parameters is 

needed before data collection. A prior from a conjugate family can make the estimation 

of the posterior mathematically tractable and convenient in that the posterior will follow 

the same parametric form as the prior (Gelman 2004). In this study, a conjugate 

distribution known as the Gamma distribution is assigned to be the prior in both the count 

data (Bayesian (cnt)) and time-interval data (Bayesian (ti)) Bayesian analyses. For the 

likelihood that is given by the Poisson distribution and the exponential distribution, the 

Gamma distribution is used to assign a conjugate prior (Gelman 2004). Therefore, the 

posterior probability can also be expressed in the form of the Gamma distribution. The 

general probability density function of the Gamma distribution, Gamma (a, b), is given 

by 
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where a is the shape parameter, b is the reverse scale parameter, and ( )aΓ is the Gamma 

function. The parameter r is the true count rate of the process that can be estimated based 

on the measured count rate. 

For the count information in a fixed count time obtained in n independent 

observations, c=(c1, c2, … cn), the likelihood is given by ( )

!

i
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c
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e

c
−∏ , where tc is the 

fixed count time for each observation. In this study, the fixed count time was set at 1 

second. Based on Bayes’ theorem, the posterior probability of r is given as  

     ( | ) ( | ) ( ) ( , )i c
i

p r c p c r p r Gamma a c b nt∝ = + +∑  .                                   (3. 5) 

When the time-intervals obtained in n independent observations, t=(t1, t2, … tn), 

are used for Bayesian inference, the likelihood is given by: irt

i
re−∏ . Accordingly, the 

posterior distribution is given by 

      ( | ) ( | ) ( ) ( , )i
i

p r t p t r p r Gamma a n b t∝ = + + ∑   .                                     (3. 6) 

For the time-interval information, an assumption is made that the time 

information of each registered radiation pulse is read out one at a time, and the run time 

of a radiation detection system is the sum of the time-intervals that are incorporated into 

the Bayesian inference.   
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In the situation of on-line radiation monitoring, the first posterior is calculated for 

the first available data point (counts in a fixed count time or a time-interval) by assigning 

an initial prior. From the posterior probability distribution, the probability that the true 

parameter r is above the predetermined background r0 can be inferred. Using a similar 

method as that in frequentist statistics, a detection limit can be set to the outcome from 

the posterior probability distribution. For example, a detection limit is set at 95% for the 

posterior probability distribution. A detection decision is made when the outcome r from 

the posterior probability distribution is 95% or higher to be above the r0. If the decision 

regarding the presence of a source cannot be made, a new data point will be acquired to 

update the posterior by using the current posterior as a new prior. In this way, the 

Bayesian inference incorporates the new information at each observation to update our 

state of knowledge of the parameter until a detection decision is made or a sequence of 

observations is terminated.  All statistical algorithms for the Bayesian inference were 

developed using R (R Development Core Team 2010).   

 
 

Modifications to Bayesian Analysis 

 
In the Bayesian analysis described above, the prior is updated passively whenever 

a new data point is available. When an excessive amount of data from the background 

level are included in the prior, a potential drawback for the prior update is to delay the 

detection or fail to detect change if the change occurs over a limited time.  To quantify 

the amount of background data that are incorporated in Bayesian inference, we borrow 

the term “change point” that is common in statistical literature (Kenett and Zacks 1998). 
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A change point is the length of time that the background is counted before the count rate 

changes to an elevated level. 

In this study, two modifications, enhanced reset and moving prior, were proposed 

to address the effect of the change point in the Bayesian analyses. Figure 3.1 shows the 

methodology of the enhanced reset modification. The principle of the enhanced reset 

method is to discard the previous information when the posterior shows a distribution that 

is consistent with the background. The enhanced reset modification sets a two-stage limit 

for the maximum number of data points used for the Bayesian inference and sets a 

discriminator to determine whether the existing posterior probability distribution is 

consistent with the background. The discriminator is established at a given probability 

that the parameter r from the posterior distribution is above the background level. When 

the number of data points in the current posterior probability reaches the first stage of the 

limit (e.g. 10 pulses), the discriminator will be used to determine whether the previous 

data are combined into the next step of the Bayesian inference. If the current posterior 

shows that the true r has a higher probability than the discriminator to be above the 

background, the information contained in the posterior will be incorporated into the next 

step of the Bayesian inference. Our knowledge regarding r is continuously updated by 

combining new data points until a final detection decision is made or the total number of 

data points included in the latest posterior probability reaches the second stage of the 

limit (e.g., 20 pulses). Otherwise, the process will start over from a new observation with 

the designated initial prior. 
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Figure 3.1. The methodology of the enhanced reset modification. 

 

The moving prior modification relies on the latest information to calculate the 

posterior probability by updating the prior probability with each new data point. A fixed 

length for the vector of data is set for the maximum number of data points contained in 

the prior probability distribution. Starting from the first data point, the prior accumulates 

information one data point at a time. When a fixed length of data is accumulated, the 

prior will keep the same length of data (e.g., 10 pulses) and shift forward to update its 

information with new data points. 

 
 

Experimental Instruments and Simulation 
 

Figure 3.2 shows the schematic diagram of the radiation acquisition system used 

for experimental data. Gamma radiation (Eγ = 1173.2 keV and 1332.5 keV) from a 60Co 

source (~14,000 Bq) was detected using a NaI(Tl) scintillation detector. The output from 

a preamplifier (ORTEC model 113) was sent to a DGF-4C module (XIA, Inc) where it 

was digitized at a rate of 40 MHz with 16-bit precision. The DGF-4C module was 
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controlled through a graphical user interface, DGF-4C viewer 3.05, which runs under an 

interactive programming and data analysis environment, IGOR Pro. 4.03 (XIA 2004; Luo 

et al. 2010). Using list mode, a binary output file containing time stamp information was 

prepared by the DGF-4C module for off-line analyses. The time resolution is 25 ns. 

Based on a program written in IGOR Pro., time-intervals were extracted from the list 

mode data for Bayesian analyses. By adjusting the distance from the source to the 

detector, experimental data for low-level radiation (2-10 cps for the 1332.5 keV peak) 

were acquired. At each level, about 105 radiation pulses were registered to provide for a 

good general comparison among the methods. For experimental data analysis, three 

regions of interest (ROI) were set to look at pulses within a specific energy range. One 

ROI was set to include both cobalt-60 full energy peaks, and the other two ROIs were set 

for each full energy peak, respectively. 

In addition, a Monte Carlo method was employed to simulate a random radiation 

sampling based on the time-interval density function given in (3.2). The simulation was 

conducted in IGOR Pro. At each radiation level, 106 random pulses were simulated. 
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Figure 3.2. Schematic diagram of CAMAC module based time-interval acquisition 
system. 

 
The same experimental and simulated data sets were used to evaluate the 

Bayesian (cnt), Bayesian (ti) and the frequentist method, 1.65σ. A fixed count time (1s) 

was used for both Bayesian (cnt) and 1.65σ methods which analyze count information. 

The performances of the three methods were evaluated in terms of average run length 

(ARL) and detection probability (1- β). To compare the three methods easily, ARL is 

defined here as the average time needed to issue an alarm following an increased signal. 

One thing to be noted is that the detection probability at the background level is the false 

positive rate. For radiation levels above the background, a higher detection probability is 

equivalent to a lower false negative rate. ARL was calculated based on a sequence of 105 

experimental pulses or 106 simulated pulses at each radiation level. Detection 

probabilities were calculated for several detection scenarios that were fabricated based on 

experimental or simulated data. The most used scenario was simulated in the following 
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manner: after a detector system registered 5s background data, a 60Co source was placed 

at a predetermined count rate (distance) for 5s, then the source was removed and the 

detector continued another 5s background counting. Using the same manner, 104 trials 

were tested at each level. In this study, we provide insight to the advantages and 

disadvantages of Bayesian analyses relative to the frequentist method for two distinct 

ways for radiation data analyses – time-intervals and counts in a fixed count time. 

 
 

Results and Discussion 
 

Experimental data were used to study the characteristics of time-intervals in a 

specified ROI of gamma spectrum, while the simulated data were used to investigate the 

effects of possible factors and modifications to Bayesian approaches for improving 

detection probabilities. 

 
 

Bayesian Analysis without Modifications 

 
In the analysis of experimental data, three ROIs were set to look at radiation 

pulses from the 60Co source. Average run lengths were calculated for radiation levels 

within each ROI. Figure 3.3 shows the ARLs of the three methods for radiation pulses 

within the 1332.5 keV ROI. The frequentist detection limit was set at a level which gave 

α=0.05. The detection limit for both Bayesian analyses was set at a level where the 

parameter r from the posterior probability distribution had 95% or higher probability to 

be above the preset background level. Based on previous background measurements (r0 ~ 

2 cps within the 1332.5 keV ROI in this case), the initial prior probability was assigned as 
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Gamma (2, 1) which is equivalent to 2 counts observed in 1s count time. Thus, this prior 

distribution provides 1s of information for the Bayesian analysis. Gamma (2, 1) was 

always used as the initial prior for the first data point in a sequence of observations 

through the study. After that, the prior was updated based on the newly available data. 

The rationale for using a prior with less information is to let the actual, most recent data 

dictate the prior distribution. Based on our study, experimental data from all the three 

ROIs resulted in similar results.  

 

Figure 3.3. Experimental average run lengths (ARL) of the three methods for the 
radiation pulses within the 1332.5 keV ROI of 60Co.  ARLs for the 
radiation levels between 3.5 cps to 10 cps are zoomed in (b). Gamma (2, 
1) is assigned for the initial prior in the Bayesian analyses for both types 
of data. Standard deviations are smaller than the symbols.  

 

At the background level, no detection decision was made for either Bayesian 

method based on 2.9×104 seconds of data, which indicates that the Bayesian approach has 
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much longer ARLs than the frequentist method. A longer ARL when there is no source 

present implies a lower false positive rate. For frequentist statistics, the false positive rate 

can be calculated by 1/ ARLα =  (Montgomery 2001). When the radiation level increases, 

the ARLs for the Bayesian methods decrease quickly and are close to that of the 

frequentist method. At relatively higher radiation levels (> 4.5cps), Bayesian (ti) has a 

shorter ARL than other methods. Therefore, time-interval information has the ability to 

quickly detect a change of radiation levels. The shorter ARL implies that the Bayesian 

analysis with time-interval information is more sensitive to a change in radiation levels 

than the Bayesian analysis with count information and the frequentist method. 

In Figure 3.4, the detection probability (1- β) for a scenario based on experimental 

data in the 1332.5 keV ROI (5s background + 5s source + 5s background) is shown. The 

manner to simulate the scenario is the same as explained in section III. Overall, Bayesian 

analyses for both count data and time-intervals result in a similar detection probability. At 

the background level (2.0cps), both types of Bayesian analyses have lower detection 

probabilities. In other words, the Bayesian method could have lower false positive rates 

than the frequentist method. When radiation levels are higher (~7.0 cps), the three 

methods show similar detection probabilities. For radiation levels between the 

background and the higher level, Bayesian analysis has a lower detection probability than 

the frequentist method. The reason for this is that Bayesian analysis incorporates the 

background data and prior information into its decision while the frequentist method only 

considers the information in the latest data point. 
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Figure 3.4. Experimental detection probabilities of the three methods for the scenario 
(5s background + 5s source + 5s background) using the radiation pulses 
within the 1332.5 keV ROI.  

Figure 3.5 illustrates the average run length and detection probability obtained 

from simulated data. To be consistent with the background level of the experimental 

observation in the 1332.5 keV ROI, the background level of simulated data was set at 

2.0cps throughout the study. At the background level, only one decision was made for 

both types of Bayesian analyses in 5.0 × 105 seconds of simulated data. The Bayesian 

(cnt) method made a decision at 9453 second, and Bayesian (ti) method made a decision 

after 8961 seconds of data. This indicates that Bayesian analyses have a long ARL at the 

background level. Results from simulated data are consistent with results from the 

experimental data. Therefore, simulation is a reasonable way to conduct a general study 

on the properties of Bayesian analysis. Our current study focuses on developing an 

algorithm to use time-interval information from a specific ROI or a full spectrum with a 

low count rate.  
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Figure 3.5. Average run length (a) and detection probability (b) of the scenario (5s 
background + 5s source + 5s background) for the three methods from 
simulated data. The background level is 2.0 cps. The same detection 
limits and initial prior were used. Standard deviations are smaller than 
the symbols.   

 
 

Factors Affecting Detection Decisions 

 
Based on simulated data, three factors, source time, detection limit, and change 

point, are investigated to find possible effective ways to improve detection decisions for 

on-line radiation monitoring. Source time is defined here as the length of time the source 

produces the prescribed count rate in the detector.  

In Figure 3.6, the detection probabilities of the three methods for a special 

scenario with only 0.5s source time is shown. Since the fixed count time is 1s for the 

frequentist and Bayesian (cnt) methods, the 0.5s source data is followed by 0.5s 
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advantage in radiation detection when radiation levels reach a higher level. When source 

time is limited (< count time), Bayesian (ti) could result in a higher detection probability 

than Bayesian (cnt) since the time-interval method needs less time to collect sufficient 

data to make a detection than other methods at relatively high radiation levels. For 

counting in a fixed count time, even radiation pulses from the source are registered at a 

significant count rate during its prompt presence (< count time), the overall count 

information obtained in the entire fixed count time is not significantly different from the 

background. As the result, the detector system fails to detect the source.  

Figure 3.7 shows the relationship of the source time and the detection probability 

for four different source times: 2s, 5s, 20s and 50s. The background counts are still 5s 

before and after the presence of the source. With more source data available, probabilities 

that rise with source intensity for both types of Bayesian analyses approach the 

probabilities found with the frequentist method. This indicates that Bayesian analysis has 

the ability to reduce the false negative rate β when more data from the source are 

included into the decision while still keeping the false positive rate α at a low level. With 

more data from the source, the weight of the prior probability and the background counts 

on the posterior probability are diminished. On the other hand, when the amount of 

source data is less than that of background data (Figure 3.7(a)), the posterior is 

dominantly determined by the background information. As a result, the detection 

probabilities of both Bayesian analyses are reduced. In addition, for the cases in which a 

large amount of source data are available, the advantage of time-interval information to 

respond to the change quickly becomes less important, but it is still the better option than 
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count information when the time to make the detection is one of the concerns for 

radiation monitoring.  

 

Figure 3.6. Detection probabilities of the three methods for the scenario with only 
0.5s source time. After the source count, 0.5s background count is 
followed to make it as a 1s measurement. Standard deviations are smaller 
than the symbols. 
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Figure 3.7. Detection probabilities of the three methods for scenarios: (a) 2s, (b) 5s, 
(c) 20s, and (d) 50s source time. Background counts are 5s before and 
after the designated source time. Standard deviations are smaller than the 
symbols. 
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new detection limit, Bayesian analyses have the same false negative rates as the 

frequentist method but with lower false positive rates than the frequentist method. When 

60% detection limit was used, the ARL for the Bayesian methods was an order of 

magnitude greater than the frequentist method at the background level. For the elevated 

radiation levels above the background, the ARL of the Bayesian methods is below that 

for the frequentist method. The choice of the detection limit to adjust the false positive 

rate and false negative rate is based on people’s preference or special needs for the 

radiation monitoring.    

 

Figure 3.8. Detection probabilities of the three methods for scenario with 20s source 
data (5s background + 20s source + 5s background) when the detection 
limit for Bayesian analyses was set at a level where the parameter r from 
the posterior probability distribution was 60% or more to be above the 
preset background. Standard deviations are smaller than the symbols. 

The effect of the change point was investigated at the radiation level of 4.0 cps 

and shown in Figure 3.9. The level of 4.0 cps is the median level between the background 

level and the level where the three methods will have the same detection probabilities. 
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The scenario consists of an amount of background data (from 0s to 20s) followed by 5s of 

source data at 4.0 cps, then followed by another 5s background. The change point 

determines the amount of background data that will be included in Bayesian inferences. 

The greater contribution of the background data is on the detection decision when more 

background data are incorporated. When source data are abundant, the effect of the 

change point can be eventually diminished, but the detection decision would be delayed. 

For the cases where source data are limited, the detection decision will be deteriorated. 

Therefore, a modification to the Bayesian analysis is needed to alleviate the effect of the 

change point.   

Modified Bayesian Analysis 

 
Using the modified method described in the theory section to update the prior, the 

detection probabilities of modified Bayesian analyses for the same scenarios in Figure 3.9 

are shown in Figure 3.10 and Figure 3.11. Figure 3.10 shows the results for Bayesian 

analyses of count information and Figure 3.11 shows the results for Bayesian analyses of 

time-interval information. The detection limit for both modified Bayesian analyses was 

again set at 95%. The two-stage limit is set as 5 s/10 s for count information, and 10 

pulses/20 pulses for time-interval information. The discriminator is established at 70% 

for both types of data. For the scenario with 5s background data (2.0 cps), there are about 

20% of trials with the parameter from the posterior distribution having more than 70% to 

be above the preset background level. In contrast, the scenario with 5.0s of 2.5 cps data, 

50% of trials pass the discriminator. The fixed length of data for the moving prior method 

is set at 5 s for count data and 10 pulses for time-interval data. 
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Figure 3.9. Detection probabilities of the three methods for scenarios with different 
change points. The source time for the scenarios is 5s at 4.0cps, followed 
by 5s background count. Standard deviations are smaller than the 
symbols. 

 

Figure 3.10. Detection probabilities of the modified Bayesian analyses with count 
information for scenarios with different change points for 4.0 cps level.  
Standard deviations are smaller than the symbols. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

1.65 σ
Bayesian (cnt)
Bayesian (ti)

de
te

ct
io

n 
pr

ob
ab

ili
ty

change point (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

1.65 σ
Bayesian (cnt)
Enhanced reset
moving prior

de
te

ct
io

n 
pr

ob
ab

ili
ty

change point (s)



 

76 
 

 

Figure 3.11. Detection probabilities of the modified Bayesian analyses with time-
interval information for scenarios with different change points for 4.0 
cps level. Standard deviations are smaller than the symbols. 

 

As designed, both modified Bayesian analysis methods resulted in a higher 

detection probability (lower false negative rates) than the Bayesian analyses without 

modifications. The performances of the two modified methods are independent of the 

change point relative to the Bayesian analyses without modifications. The detection 

probability of the enhanced reset method shows a periodical fluctuation when count 

information is utilized. In contrast, the fluctuation only shows up at the beginning when 

the change point happens earlier for time-interval data. This difference results from the 

different settings of the two-stage limit and different random number of data points 

between count data and time-interval data.   
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Conclusion 
 

Bayesian analysis has the ability to include previous data into detection decisions, 

which results in lower false positive rate than the frequentist method, and has the 

possibility to reduce false negative rate with more data collected. The main difficulties 

that could discourage people to use Bayesian statistics are the conceptual understanding, 

and the complexity and heavy load of the computation. The special features of time-

intervals provide an alternative for low-level radiation monitoring. When Bayesian 

methods are applied for on-line time series data, time-interval information shows a 

similar performance as count information. In the situation where the source data are 

limited (source time < count time), time-interval information is more sensitive to detect 

the change than the count information acquired in an entire count time. Without 

considering other factors (e.g. detection system and analyzing process) that may affect 

the time needed for detection decision, time-interval information has the potential to 

respond quickly at relatively higher radiation levels. The proposed modified Bayesian 

analyses are relatively independent of the change point at which the radiation level is 

changed from the background to an elevated level. Time-interval information is preferred 

if other factors are the same.     
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CHAPTER 4   

CUSUM ANALYSIS OF TIME-INTERVAL DATA FOR ON-

LINE RADIATION MONITORING 

Abstract 
 

Three statistical control charts methods were investigated to determine the one 

with the highest detection probability and the best average run length (ARL).  The three 

control charts include: the Shewhart control chart of count data, cumulative sum 

(CUSUM) analysis of count data (Poisson CUSUM) and CUSUM analysis of time-

interval (time difference between two consecutive radiation pulses) data (time-interval 

CUSUM). The time-interval CUSUM control chart was compared with the Poisson 

CUSUM and the Shewhart control charts with experimental and simulated data. The 

experimental data were acquired with a DGF-4C (XIA, Inc) system in list mode. 

Simulated data were obtained by using Monte Carlo techniques to obtain a random 

sampling of a Poisson process. All statistical algorithms were developed using R (R Core 

Development Team, 2010). Detection probabilities and ARLs for the three methods were 

compared. The time-interval CUSUM control chart resulted in a similar detection 

probability as that of the Poisson CUSUM control chart, but had the shortest ARL at 

relatively higher radiation levels, e.g., about 40% shorter than the Poisson CUSUM at 

10.0cps. Both CUSUM control charts resulted in a higher detection probability than that 

of the Shewhart control chart, e.g., 100% greater than the Shewhart control method at 

4.0cps. In addition, when time-interval information was used, the CUSUM control chart 
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coupled with a modified runs rule (mrCUSUMti) showed the ability to further reduce the 

time needed to respond to changes in radiation levels, and keep the false positive rate at a 

required level.  

 
 

Introduction 
 

On-line radiation monitoring is essential to the U.S. Department of Energy (DOE) 

Environmental Management Science Program for cleaning up media contaminated with 

anthropogenic radionuclides (U.S. DOE 2004). The goal of on-line radiation monitoring 

is to quickly detect small changes in radioactivity levels in the presence of a significant 

ambient background. In the case of low-level or background-dominant radioactivity, two 

factors make it difficult to distinguish between a radioactive source and natural 

background. First, the random nature of radioactive decay results in an inherent 

uncertainty in the number of registered radiation particles in a detector. It is well 

recognized that the number of emitted particles and the number of particles registered in a 

detector are Poisson distributed. Second, radiation from natural radionuclides in the 

environment and cosmic radiation are involved into the gross counts registered by the 

detector (Laedermann et al. 2005). Generally, the decision regarding whether or not a 

radioactive source is present is made based on a specific statistical method. In practice, a 

proper statistical method is chosen to minimize the false negative rate β (or maximize the 

detection probability, 1- β) while holding the false positive rate α at a desired level.  

The Shewhart control chart is a classical statistical method that is commonly used 

in radiation monitoring. It is also referred to as the single-interval-test (Jarman et al. 
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2004). The Shewhart control chart monitors the mean radiation level based on the 

radiation counts registered in a fixed-length count time and a detection limit (DL) that is 

set for a given false positive rate. One major disadvantage of the Shewhart method is that 

only the information contained in the latest data point is exploited, and the information 

contained by the entire sequence of data points is disregarded. As a result, the Shewhart 

method is relatively insensitive to small changes in radiation levels while it readily 

detects large shifts (Montgomery 2001). Therefore, more sophisticated statistical methods 

have been developed and adopted to detect small changes in radiation levels. The 

cumulative sum (CUSUM) control chart is one of the most effective charts for detecting 

small shifts in radiation levels since the CUSUM chart has a shorter average run length 

(ARL) than the standard Shewhart control chart (Kenett and Zacks 1998). ARL is 

generally defined as the average number of observations taken before a shift is detected 

and an out-of-control alarm is issued.  

The CUSUM control chart was first introduced by Page (1954) as an alternative 

to the Shewhart control chart for quality control and improvement in manufacturing 

processes. Instead of considering the most recent data point, the CUSUM control chart 

incorporates all of the information contained in a sequence of data points by 

accumulating deviations of data points over time. For this reason, the CUSUM chart is 

more effective than the Shewhart control chart to detect small shifts (Montgomery 2001). 

Because of its effectiveness to detect small shifts, the CUSUM control chart is a good 

candidate for environmental radiation monitoring (DeVol et al. 2009; Hughes and DeVol 

2008; Marshall 1977). Marshall (1977) suggested the use of the CUSUM control chart for 
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monitoring the background radiation level from a radiochemical counter. According to 

Marshall’s study, the CUSUM control chart could detect abrupt changes of the order of 

one standard deviation. Hughes and DeVol (2008) evaluated the performance of the 

CUSUM control chart compared to the 3-sigma Shewhart and the exponentially weighted 

moving average (EWMA) control charts. The comparison was conducted based on time 

series radiation counter data from flow cells. The results showed that the CUSUM 

method was suitable to detect the radioactivity by requiring less solution volume and 

gave the best estimation of sample concentration. In addition, the study by DeVol et al. 

(2009) showed that the CUSUM control chart had overall comparable performance to 

control the false negative rate relative to the Shiryayev-Roberts control chart.  

For count data such as the number of radiation pulses registered in a detector, 

Lucas (1985) provided detailed descriptions about the design and implementation 

procedures of the CUSUM control chart. In his study, the Poisson CUSUM control chart 

and the “time-between-events CUSUM” control chart were discussed in terms of 

determining the reference value k and the decision interval value h. For the Poisson 

CUSUM method, the number of counts recorded in a sampling interval is modeled by the 

Poisson distribution. Accordingly, the time between two consecutive events of concern 

follows the exponential distribution. In the radiation monitoring and measurement 

process, ‘event’ is a radiation interaction registered in a detector, and ‘time’ is the time 

difference (time-interval) between two consecutive radiation pulses. In this study, the 

time-between-events CUSUM control chart is referred to as the “time-interval CUSUM” 

control chart. To improve the sensitivity of the CUSUM control chart for the process that 
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an out-of-control situation occurs at start-up, Lucas and Crosier (1982a) devised the fast 

initial response (FIR) CUSUM (FIRCUSUM). In addition, Lucas and Crosier (1982b) 

proposed the robust CUSUM (rCUSUM) by coupling the basic CUSUM with a runs rule 

(two-in-a-row rule whereby two observations in a row occur outside of a preset control 

limit) to guard against an out-of-control signal occurring for reasons other than a true 

process shift. Recently, time-between-events CUSUM control charts have drawn 

increasing interest as an alternative to traditional control charts for monitoring the 

occurrence rate of rare events, such as the occurrence of industrial accidents and 

congenital malformations (Vardeman and Ray 1985; Liu et al. 2006; Cheng and Chen 

2010; Xie et al. 2010)). The general measure of effectiveness for a control chart is the 

average run length (ARL) where the ARL is as the average time needed to make a 

decision to alarm following a change point. The performances of the Poisson CUSUM 

control chart and the time-interval CUSUM control chart are evaluated on the basis of 

ARL.   

In radiation detection and monitoring, count information in a fixed count time is 

commonly recorded for further analyses since it is technically easier to handle. 

Utilization of time-interval information in radiation measurements has been discussed by 

several authors. By limiting time-intervals to a pre-assigned range, Arandjelovic et al. 

(2002) developed an algorithm for preset count digital-rate meters to suppress statistical 

fluctuations of mean count rate measurements. Dowdy et al. (1978) devised a portable 

neutron detection system to search for neutron-emitting radioactive materials based on S-

fold time-interval measurements. Sakaue et al. (2007) assembled a portable system to 
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monitor artificial radionuclides in airborne dust using time-interval distribution from 

correlated decay events.  

The objective of this study was to investigate the time-interval CUSUM for its 

applicability towards on-line radiation monitoring. Advantages and disadvantages of the 

time-interval CUSUM control chart were compared to that of the Poisson CUSUM and 

the Shewhart control chart. Registering counts in a fixed count time and registering time-

intervals provide us with two different data sampling methods. Since the time needed to 

record a statistically significant number of pulses could be shorter than counting for a 

fixed count time, time-interval information possesses the potential to reduce the sampling 

time and respond quickly to abrupt changes in radiation levels. In addition, a robust 

CUSUM based on time-interval information coupled with a modified runs rule 

(mrCUSUMti) was proposed to improve the performance of CUSUM schemes for the 

radiation monitoring. The runs rule applied in this study is the two-in-a-row rule which is 

similar to that by Lucas and Crosier (1982b). When the runs rule was coupled with time-

interval CUSUM, a modification was made to incorporate more previous information into 

the decision-making. 

 
 

Theory and Methods 
 

Time-interval Distribution 

 
The random nature of radioactive decay is characterized as a Poisson process 

when the number of nuclei is large and the observation time is short compared with the 

half-life of the radioactive species. The probability P(m) for observing m decays (m=0, 1, 
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2, …) in a time interval t is given by the Poisson distribution, 

                                
( )

( )
!

m
rtrt

P m e
m

−=  ,                                                              (4. 1) 

where r is the mean count rate. 

The time-interval density, f(t), is usually employed to characterize the time-

interval distribution. The probability of the next event taking place in dt after a delay of 

time t since the last event is denoted as f(t)dt.  For the Poisson process, the probability for 

the next event to occur in dt is: 

                             ( ) rtf t dt re dt−=   ,                                                                 (4. 2)   

where rte− is the probability of no events from time 0 to t, for t ≥ 0. The density function 

expressed in (4.2) is commonly referred to as the exponential distribution (Knoll 2010).  

 
 

Review of CUSUM Control Charts 

 
The CUSUM control chart is obtained by accumulating the difference between an 

observed value xi and a reference value k with a statistic Ci. If the process is in control, 

the statistic Ci will consist of a random walk around the mean value of the process, but if 

Ci is continuously increasing or decreasing, a change in the process is indicated.  An out-

of-control alarm is triggered if the statistic Ci equals or exceeds a preassigned decision 

interval value h. The most widely used application in radiation detection and monitoring 

is the detection of an increase in count rate. When count information is used to estimate 
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the strength of the radiation level, the Poisson CUSUM statistic at the i th observation is 

determined by 

                    , , , 1max(0, )cnt i cnt i cnt cnt iC x k C −= − + ,                                                (4. 3) 

where max(a,b) is the maximum of a and b, “cnt”  denotes the observed count data 

(number of the radiation pulses registered in a fixed count time) which is Poisson 

distributed. When the count time is set as a unit of time (e.g., 1 second), the reference 

value kcnt recommended by Lucas (1985) is given by 

                            ( ) (ln( ) ln( ))cnt d a d ak r r r r= − −  ,                                                         (4. 4) 

where ra is the acceptable mean count rate when the radiation strength is at background 

level and rd is the mean count rate when the radiation strength is at the level that the 

CUSUM scheme is to detect quickly. If the count time, tc, is not a unit of time, count rate 

r (ra and rd) will be substituted by count data observed in tc for certain level, and 

cnt cnt ck k t′ = × . After kcnt is determined, the decision interval value hcnt is chosen on the 

basis of ARLs in combination with the reference value to provide good ARL 

performance (Lucas 1985). The value of hcnt should give an appropriately large ARL 

when the radiation level is at the background level (ARL0), and give an appropriately 

small ARL when the radiation level changes to a level that should be detected quickly. 

When time-interval information is used to monitor the strength of the radiation 

level, the most common application is to detect a decrease in time-interval. For this case, 

the time-interval CUSUM statistic at the i th observation is given by 
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                              , , , 1max(0, )ti i ti ti i ti iC k x C −= − + ,                                                        (4. 5) 

where “ti”  denotes that the CUSUM control chart is designed for the time-interval 

information that follows the exponential distribution. The reference value kti 

recommended by Lucas (1985) is given by 

                             (ln( ) ln( )) ( )ti d a d ak r r r r= − −  .                                                          (4. 6) 

Similarly, the decision interval value hti for the time-interval CUSUM is selected to give 

appropriate ARLs as designed.  

For a standard CUSUM (CUSUMti or CUSUM cnt) control chart, the starting value 

of the statistic C is typically zero (C0=0). When the FIR feature is implemented 

(FIRCUSUMti  or FIRCUSUMcnt) to respond rapidly to an initial out-of-control situation, 

an initial positive “head start” value is used, such as, C0=h/2 (Lucas 1985; Lucas and 

Crosier 1982a). The decision interval value hcnt or hti will be substituted for h. In this 

study, all statistical algorithms for the CUSUM control charts were developed using the 

statistical software package R (R Development Core Team 2010).  

 
 

Time-Interval CUSUM with Runs Rules 

 
In this study, a runs rule (called the two-in-a-row rule) is incorporated into the 

time-interval CUSUM control chart (rCUSUMti) to increase the sensitivity when time-

interval information is used to monitor the radiation strength. With the two-in-a-row rule, 

whenever two successive time-interval observations that could result in an out-of-control 
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signal are observed, an alarm signal is issued regardless of whether or not the CUSUM 

statistic ,e iC has accumulated strong enough evidence to indicate a change in the 

background radiation level. A control limit is preassigned to determine if a time-interval 

observation could trigger an out-of-control signal. The control limit is set based on the 

background radiation level and the time-interval probability density. For example, when 

the control limit is set at 10ms, whenever two time-intervals that are both less than 10ms 

are observed consecutively, an alarm signal is issued. For a background level of 2.0cps, 

there is about 0.04% probability to observe two consecutive time-intervals that are less 

than 10ms. 

In general, the use of two-in-a-row rule can increase the sensitivity of the 

CUSUM control chart, but may also produce more false positives when the radiation 

level is at the background level (Cheng and Chen 2010). To hold the required false 

positive rate constant, a modified runs rule is proposed for the time-interval CUSUM 

(mrCUSUMti) in this study. For the modified runs rule, whenever two successive time-

intervals that could result in an out-of-control signal are observed, a number of most 

recent time-intervals including the current one are investigated to see if these 

measurements are consistent with the background. To quantify the consistency, an 

instantaneous count rate is calculated based on the most recent time-intervals that are 

measured. An instantaneous count rate limit, µI, is set based on the background count rate 

and compared with the measured instantaneous count rate. If the measured instantaneous 

count rate is higher than µI, an alarm is issued even though the CUSUM statistic ,e iC  has 

not accumulated sufficient evidence to issue an alarm. For example, when two time-
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intervals that could result in an out-of-control signal are observed consecutively, an 

instantaneous count rate is calculated as 5.5cps based on the most recent five time-

intervals. If the limit µI is set at 4.0cps, an alarm is issued since the instantaneous count 

rate is higher than µI.  

According to different settings for the starting value C0 and the runs rule, there are 

two types of Poisson CUSUM and four types of time-interval CUSUM that were applied 

to this study. To help readers differentiate different types of CUSUM analyses applied in 

this study, Table 4.1 lists the notation for each type of CUSUM analysis and h values for 

count and time-interval data for the situation with ra = 2.0cps and rd =4.0cps. The hti 

values were determined based on a given hcnt value: both CUSUMcnt and CUSUMti gave 

approximately the same ARL0 for a given monitoring situation (ra, rd). The DL of the 

Shewhart control chart was determined by using a similar method. DL=8.0 listed in the 

table is the detection limit of the Shewhart method to give the closest ARL0 as that of 

CUSUMcnt for the given hcnt=7. Using this methodology, the three control charts 

theoretically have the same false positive rate (1/ARL0) at the background level. The 

same hcnt or hti values were also used for other CUSUM control charts, FIRCUSUMti or 

FIRCUSUMcnt, rCUSUMti and mrCUSUMti. 
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Table 4.1. Types of CUSUM analyses for count data/time-interval data and h values 
for the situation of ra = 2.0cps and rd =4.0cps.  

 
 

 
 

Experimental Instruments and Simulation 
 

Shown in Figure 4.1 is the schematic diagram of the radiation acquisition system 

used to collect the experimental data. It is the same system that was used for our previous 

studies on time-interval analyses (Luo et al. 2010, 2011). Gamma radiation (Eγ = 1173.2 

keV and 1332.5 keV) from a 60Co source (~14,000 Bq) was detected using a NaI(Tl) 

scintillation detector. The output from a preamplifier (ORTEC model 113) was digitized 

by a DGF-4C module (XIA, Inc) which was controlled through a graphical user interface 

running under IGOR Pro. 4.03 (XIA 2004). Using list mode, a binary output file 

containing time stamp information was prepared by the DGF-4C module for off-line 

analyses. The time resolution is 25 ns. A region of interest (ROI) was set to study the 

radiation pulses from a full energy peak. In this case, the 1332.5 keV peak was studied 

mostly. By adjusting the distance from the source to the detector, experimental data for 

low-level radiation (2-10 cps for the 1332.5 keV peak) were acquired. At each level, 

about 105 radiation pulses were registered to provide for a good general comparison 

among the methods.  

Standard CUSUM C0= 0 CUSUMti or CUSUMcnt h cnt= 5, 7, 10

CUSUM with FIR C0=h/2 FIRCUSUMti or FIRCUSUMcnt h cnt= 5, 7, 10

Shewhart a classical method  DL =8.0

Methods Definition Notation
Count (cnt) data                

(Poisson CUSUM)
Time-interval (ti) data        

(Time-interval CUSUM)

h ti =1.9, 2.7, 3.7

h ti =1.9, 2.7, 3.7

Robust CUSUM
coupled with               

two-in-a-row rule
rCUSUMti  h ti = 2.7

Modified Robust 
CUSUM

coupled with modified 
two-in-a-row rule

mrCUSUMti  h ti =2.7


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Figure 4.1. Schematic diagram of CAMAC module based time-interval acquisition 
system. 

 

In addition, a Monte Carlo method was employed to simulate a random radiation 

sampling based on the time-interval density function given in (4.2). The simulation was 

conducted in IGOR Pro. At each radiation level, 106 random pulses were simulated. To 

be consistent with the background level of the experimental observation in the 1332.5 

keV ROI, the background level of simulated data was set at 2.0cps throughout the study. 

 The same experimental and simulated data sets were used to evaluate the time-

interval CUSUM, the Poisson CUSUM and the Shewhart control charts. A fixed count 

time (1s) was used for both the Poisson CUSUM and the Shewhart methods which 

analyzed count data. The performances of the three methods were evaluated in terms of 

ARL and detection probability (1- β). One thing to be noted is that the detection 
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probability at the background level is the false positive rate. For radiation levels above 

the background, a higher detection probability is equivalent to a lower false negative rate. 

Detection probabilities were calculated for several detection scenarios that were 

fabricated based on experimental or simulated data. The most used scenario was 

simulated in the following manner: after a detector system registered 5s of background 

data, a 60Co source was placed at a predetermined count rate (distance) for 5s, then the 

source was removed and the detector continued another 5s of background counting. 

Using the same manner, 104 trials were tested at each level. In this study, we provide 

insight to the advantages and disadvantages of two distinct ways for radiation data 

analyses – the time-interval CUSUM and the Poisson CUSUM control charts relative to 

the Shewhart control chart. 

 
 

Results and Discussion 
 

Performances of CUSUMcnt, CUSUMti, FIRCUSUMcnt, FIRCUSUMti, 

rCUSUMti, and mrCUSUMti were investigated primarily based on simulated radiation 

data in terms of ARLs and detection probabilities. Experimental data were used to 

validate the result obtained from simulated data.  

 
 

Standard CUSUM and CUSUM Charts with FIR 

 
To visually compare ARLs among the three types of control charts, the ratios of 

the ARL of other types of CUSUM schemes (e.g., CUSUMti and rCUSUMti) or the 
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Shewhart control chart versus that of CUSUMcnt were calculated at each radiation level. 

Figure 4.2 shows the ratios, ARLti/ARLcnt and ARLShewhart/ARLcnt, for three different hcnt 

values at the situation with ra = 2.0cps and rd =4.0cps. ARLti is the ARL of any type of 

the time-interval CUSUM, ARLcnt is the ARL of any type of the Poisson CUSUM, and 

ARLShewhart is the ARL of the Shewhart control chart, respectively. Unless otherwise 

specified, the situation with ra = 2.0cps and rd =4.0cps is the same for other results shown 

in this paper. The hcnt value was chosen for each of 5, 7, 10, and the corresponding hti 

values were chosen at hti=1.9, 2.7 and 3.7, respectively.  

 

Figure 4.2. ARLti/ARLcnt for three different hcnt values, 5, 7, and 10, and 
ARLShewhart/ARLcnt for hcnt=7. ARLti is the ARL of any type of the time-
interval CUSUM, ARLcnt is the ARL of any type of the Poisson 
CUSUM, and ARLShewhart is the ARL of the Shewhart control chart, 
respectively. ARL ratios for the radiation levels between 5.5cps and 
10.0cps are zoomed in the inset. Standard deviations are smaller than the 
symbols.  
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Overall, both CUSUMti and CUSUMcnt have shorter ARLs than that of the 

Shewhart control chart over the relatively low radiation levels (≤ 8.0cps), especially for 

the levels from 2.5cps to 5.0cps. Shorter ARLs indicate that both the CUSUM control 

charts are more sensitive to a small increase in the background radiation level than the 

Shewhart method. Compared to CUSUMcnt, the ARL of CUSUMti is relatively shorter 

than that of CUSUMcnt, and monotonically decreases with the increase of the radiation 

level. At 10.0cps, the ARLs of CUSUMti are 20%-40% shorter than that of CUSUMcnt for 

the corresponding different h values. The comparison implies that the time-interval 

information can further improve the sensitivity of the CUSUM control chart to detect a 

change in the background radiation level. Our study shows very similar results for other 

situations with both higher and lower alarm levels, rd. 

In Figure 4.3, the ARL ratios between FIRCUSUMti or FIRCUSUMcnt and 

CUSUMcnt for three different hcnt values are shown. The h values for CUSUM control 

charts with or without the FIR feature were the same as used for the study shown in 

Figure 4.2. ARLFIR, cnt represents the ARL of FIRCUSUMcnt, while ARLFIR,ti represents 

the ARL of FIRCUSUMti. 
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Figure 4.3. ARL Ratios for CUSUM analyses with FIR feature, 
FIRCUSUMti/CUSUMcnt and FIRCUSUMcnt/CUSUMcnt. ARLFIR,cnt 
represents the ARL of FIRCUSUMcnt, while ARLFIR,ti represents the 
ARL of FIRCUSUMti. Standard deviations are smaller than the symbols.  

 

Generally, both FIRCUSUMti and FIRCUSUMcnt result in a more rapid response 

to changes in radiation levels than does CUSUMcnt. But FIRCUSUMti and FIRCUSUMcnt 

show large differences in the patterns of their ARL ratios. First, FIRCUSUMti has shorter 

ARLs to detect the change than FIRCUSUMcnt. And the difference in their ARL ratios 

increases with the increase of the radiation levels. Second, the ARL ratio of FIRCUSUMti 

continuously decreases with the increase of the radiation levels, while the ARL ratio of 

FIRCUSUMcnt decreases first, and minimizes around the radiation level of 4.0cps, then 

increases with the increase of the radiation levels. The third difference lies in the ratios 

for different h values. For different h values, the FIRCUSUMcnt shows larger differences 

in the ratios than does FIRCUSUMti. The large difference indicates that the choice of the 
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h values has a stronger effect on the performance of the Poisson CUSUM control chart 

than that of the time-interval CUSUM control chart.  

Figure 4.4 illustrates the detection probabilities (1- β) of the CUSUM control 

charts with or without the FIR feature and the Shewhart control chart for the scenario (5s 

background + 5s source + 5s background) based on the simulated data. The simulated 

scenario was explained in the section of experimental instruments and simulation. All the 

CUSUM control charts show the similar detection probabilities over different radiation 

levels. But they have higher detection probabilities than that of the Shewhart method for 

the radiation levels between 2.0cps and 8.0cps. At 4.0cps, the detection probabilities of 

the CUSUM control charts are 100% higher than that of the Shewhart control chart. For 

the radiation levels above 8.0cps, all the control charts have almost 100% detection 

probabilities. 
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Figure 4.4. Detection probabilities of the CUSUM control charts with or without the 
FIR feature and the Shewhart method for the scenario (5s background + 
5s source + 5s background) based on the simulated data. Standard 
deviations are smaller than the symbols. 

 

Figure 4.5 shows the detection probabilities for CUSUMcnt, CUSUMti and the 

Shewhart control chart for four different scenarios in which the radioactive source were 

presented for different length of time: 2s, 5s, 20s and 50s. The background counts are still 

5s before and after the presence of the source. For all the scenarios, both CUSUMcnt and 

CUSUMti have greater detection probabilities than the Shewhart method. With the longer 

time of source presence, the detection probabilities for both the CUSUM and the 

Shewhart control charts increase. The difference in the detection probabilities between 

the CUSUM and the Shewhart control charts becomes more apparent, especially over 

relative low radiation levels from 2.5cps to 6.0cps. 
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Figure 4.5. Detection probabilities of CUSUMcnt, CUSUMti and the Shewhart control 
chart for four different scenarios in which the source presented for 
different length of time: (a) 2s, (b) 5s, (c) 20s, and (d) 50s.  Background 
counts are still 5s before and after the designated time of source 
presence. Standard deviations are smaller than the symbols. 
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are observed consecutively. Figure 4.6a illustrates the ARL ratios of between rCUSUMti 

(at control limits: 50ms, 20ms and 10ms) and CUSUMcnt. The ARL ratio of CUSUMti to 

CUSUMcnt is the same as shown in Figure 4.2. The corresponding detection probabilities 

of rCUSUMti for the scenario (5s background + 5s source + 5s background) based on the 

simulated data are shown in Figure 4.6b. The number in the parentheses is the control 

limit which is used to determine if a time-interval could result in an out-of-control signal 

or not. The detection probability of CUSUMti is the same as shown in Figure 4.4. 

The rCUSUMti can reduce the ARLs over the whole range of the radiation levels. 

Compared to ARLs for the radiation levels above the background level, the ARL0 is 

reduced to a larger extent. A short ARL0 means a high false positive rate at the 

background level, which is shown in Figure 4.6b. Therefore, rCUSUMti could improve its 

performance at the expense of producing more false positives. In addition, with the 

increase of the control limit, the extent of the reduction of the ARLs for rCUSUMti is 

enlarged, and the false positives increase. When the control limit is set at 10ms, the ARLs 

are just slightly reduced, except for the ARL0 of rCUSUMti. Therefore, the control limit 

should be set at an appropriate value (e.g., 50ms) to see an apparent improvement in the 

performance of rCUSUMti. However, for the purpose of achieving the appropriate 

improvement, a modification is needed to keep the false positive rate at an acceptable 

level. 
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Figure 4.6. ARL ratios of rCUSUMti to CUSUMcnt (a) and detection probabilities of 
rCUSUMti (b). The number in the parentheses is the control limit which 
is used to determine if a time-interval could result in an out-of-control 
signal or not. The ARL ratio of CUSUMti to CUSUMcnt is the same as 
shown in Figure 4.2. The detection probability of CUSUMti is the same 
as shown in Figure 4.4. The detection probabilities were calculated for 
the scenario (5s background + 5s source + 5s background) based on the 
simulated data. Standard deviations are smaller than the symbols. 

 

Combined with the modified runs rule proposed in the section of theory and 

methods, the performance of mrCUSUMti was investigated. For the modified runs rule, 

when two successive time-intervals that are both outside the control limit were observed, 

the instant count rate based on the five most recent time-intervals were calculated and 

determined if these measurements were consistent with the background based on a 

predetermined instant count rate limit, µI. For the same situation as considered in Figure 

4.6, the ARL ratios and detection probabilities of mrCUSUMti were calculated and 

presented in Figure 4.7. The control limit was 50ms and µI was chosen at 4.0cps, 8.0cps 

and 12.0cps, respectively. 
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Figure 4.7. ARL ratios of mrCUSUMti to CUSUMcnt (a) and detection probabilities 
of mrCUSUMti (b). The control limit is 50ms. The number in the 
parentheses is the instant count rate limit which is used to determine if 
the most recent data are consistent with the background or not. The ARL 
ratio of CUSUMti to CUSUMcnt is the same as shown in Figure 4.2. The 
ARL ratio of rCUSUMti versus CUSUMcnt is the same as shown in 
Figure 4.6a. The detection probability of CUSUMti is the same as shown 
in Figure 4.4 and the detection probability of rCUSUM ti is the same as 
shown in Figure 4.6b. The detection probabilities were calculated for the 
scenario (5s background + 5s source + 5s background) based on the 
simulated data. Standard deviations are smaller than the symbols. 

 

With the modified runs rule, the ARL0 of mrCUSUMti is not reduced as much as 

that for rCUSUMti. As the result, the false positive rate is reduced. For µI =4.0cps, even 

the ARL0 is just 26% of ARL0 of CUSUMcnt, the false positive rate is decreased from 

20% for rCUSUMti to 6% for mrCUSUMti. In addition, with the increase of the radiation 

levels, ARLs for mrCUSUMti approaches to that of rCUSUMti. Therefore, the modified 

runs rule has the potential to enable the CUSUM control chart respond quickly to the 

changes in radiation levels, and hold the false positive rate at an acceptable level. 
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Experimental Study of CUSUM Charts 

 
Following the aforementioned studies of CUSUM analyses of time-interval 

information, experimental studies were conducted to validate the result from the 

simulated data. In the experimental measurements, an ROI was set to look at radiation 

pulses for the 1332.5 keV full energy peak from the 60Co source. The background 

radiation level within the 1332.5 keV ROI was about 2.0cps. The h values, detection limit 

of the Shewhart control chart, control limit and instant count rate limit were set using the 

same way discussed before. Experimental ARLs and experimental detection probabilities 

were calculated for CUSUMcnt, CUSUMti, mrCUSUMti, and the Shewhart control charts. 

The results are shown in Figure 4.8. The situation is still the same as before: ra = 2.0cps, 

rd =4.0cps, and the simulated scenario are 5s background + 5s source + 5s background. 
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Figure 4.8. Experimental ARL ratios (a) and detection probabilities (b) of the 
CUSUM control charts: CUSUMcnt, CUSUMti, mrCUSUMti, and the 
Shewhart control chart. The control limit is 50ms. The detection 
probabilities were calculated for the scenario (5s background + 5s source 
+ 5s background) based on the experimental data. Standard deviations 
are smaller than the symbols in (a). 

 

Overall, the experimental results are consistent with the results from the simulated 

data. Time-interval information is beneficial for the CUSUM control chart to detect 

changes in radiation levels and the modified runs rule can further improve the 

performance of the CUSUM control chart. 

 
 

Conclusion 
 

The CUSUM control chart has the ability to incorporate previous information into 

radiation detection decisions, which results in a quicker response to changes in radiation 

levels than the Shewhart control chart, and has higher detection probabilities than the 

Shewhart method for relatively low radiation levels. The special features of time-intervals 
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provide an alternative for low-level radiation monitoring. When the CUSUM control 

chart is applied for on-line time series data, time-interval information shows a similar 

detection probability to the count information, and is capable of detecting changes in 

radiation levels with the shortest ARL. Without considering other factors (e.g. detection 

system and analyzing process) that could affect the time needed for detection decision, 

time-interval information has the potential to respond quickly at relatively higher 

radiation levels. Use of the modified runs rule, mrCUSUMti could further improve the 

performance of the CUSUM control chart by holding the false positive rate at an 

acceptable level. When the FIR feature is implemented, FIRCUSUMti outperforms 

FIRCUSUMcnt. Radiation monitoring based on time-interval analysis is preferred if other 

factors are the same since registering time-intervals could reduce the sampling time 

required to obtain sufficient information to detect changes in radiation levels. 
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CHAPTER 5  

CLOSURE 

Summary 
 

This research presents the study of the time-interval analysis based on three 

statistical methods for radiation monitoring with experimental and simulated data. The 

experimental data were acquired with a DGF-4C (XIA, Inc) system in list mode. 

Simulated data were obtained by using Monte Carlo techniques to obtain a random 

sampling of a Poisson process. All statistical algorithms were developed using R (R Core 

Development Team, 2010).  The three statistical methods that were specifically applied to 

time-interval analyses are sequential probability ratio test (SPRT), Bayesian statistics, 

and cumulative sum (CUSUM) control chart. The results from this study show that the 

special features of time-intervals provide a good alternative for on-line low-level 

radiation monitoring. When time-interval data were used, all three methods resulted in a 

similar detection probability as that of count data registered in a fixed count time, and a 

faster response to changes in radiation levels than count data. To improve the 

performance of time-interval based on-line radiation monitoring, modifications were 

proposed for each of the three standard statistical methods.  

For SPRT method, the effects of the thresholds (A and B) and truncation strategy 

on the detection probability and the average time to make a detection decision were 

investigated based on scaled time-interval information. With a smaller A value, the actual 

false negative rate β is reduced while the actual false positive rate α is increased. On the 
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other hand, when a larger B value is used, the actual β is increased while the actual α is 

reduced. The truncation strategy applied to SPRT reduced the average time to make a 

detection decision, which resulted in a similar detection probability as that for SPRT 

without the truncation strategy. The adjustment to the preset background level r0 in the 

SPRT algorithm showed the ability to increase the detection probability at relatively low 

radiation levels and reduce the average time to trigger an alarm when scaled time-interval 

data were used for radiation monitoring.  

For the Bayesian analyses of time-interval information, effects of factors such as 

source time, detection limit and change point were studied to find possible effective ways 

to improve detection decisions for on-line radiation monitoring. When source time is 

limited (< count time), Bayesian analysis of time-interval information could result in a 

higher detection probability than Bayesian analysis of count information since the overall 

count information obtained in the entire fixed count time could be averaged out by 

background counts. The change point determines the amount of background data that are 

incorporated into the prior. When a large amount of background data is included into the 

Bayesian inference, the detection decision would be deteriorated or delayed. To reduce 

the effect of the change point, the enhanced reset modification and moving prior were 

introduced. The results showed that both modified Bayesian analysis methods had higher 

detection probabilities than the Bayesian analyses without modifications. The 

performances of the two modified methods are independent of the change point.  

The study of the time-interval CUSUM control chart showed that time-interval 

information had the shortest ARL compared to the Poisson CUSUM and Shewhart 
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control charts. Both the time-interval CUSUM and the Poisson CUSUM are more 

sensitive to small changes in radiation levels than the Shewhart control chart. When the 

FIR feature was incorporated, the time-interval CUSUM was superior to the Poisson 

CUSUM since the ARL of the time-interval CUSUM continuously decreased with the 

increase of radiation levels and is insensitive to the decision interval values. When time-

interval CUSUM is coupled with a modified two-in-a-row rule, it has the potential to 

further reduce the time to detect changes in radiation levels and hold the false positive 

rate at a required level.  

The time-interval analyses based on the three chosen statistical methods show that 

time-interval information results in a quicker detection than count information, while 

providing a similar detection probability. The sensitivity of time-interval based statistical 

methods could be beneficial to the applications in which a fast detection of radioactive 

sources is essential, such as portal monitoring and locating a lost radioactive source.   

By using time-interval information, all the three statistical methods can be 

operated in a continuous mode in which a detection decision is sequentially updated 

whenever new radiation pulses are registered. Both Bayesian statistics and CUSUM can 

update their statistics and detection decisions by incorporating one radiation pulse at a 

time; while SPRT can only start its updating until N (digital scaler) pulses have been 

registered. Compared to SPRT and Bayesian statistics, CUSUM is the easiest one to 

implement because it is conceptually easy to understand and it has the least 

computational load for statistics updating.  On the contrary, Bayesian techniques are 

relatively more difficult to understand and it has the most computational load for its 
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complex posterior calculation, but resulted in much longer ARL0 than the other 

techniques investigated in this dissertation. 

The SPRT, Bayesian, and CUSUM (without modifications) time-interval methods 

were compared with the Shewhart control chart under similar conditions and revealed 

that the time-interval methods resulted in approximately the same false positive rate, but 

a lower false negative rate (higher detection probability) with shorter average run lengths. 

Compared to the Shewhart control chart in which only the information contained in the 

latest data point is exploited, all the three statistical methods proposed for time-interval 

analyses have the ability to incorporate additional information contained in previous data 

points. When time-interval data are analyzed one-at-a-time, it will take less time to 

collect statistically sufficient information to reach the same detection decision than that 

for count data analyses. The comparison among the three methods (SPRT, Bayesian, and 

CUSUM) relative to the Shewhart control chart was conducted for a simulated scenario 

(5s background + 5s source + 5s background). The detection probability and ARL (or 

average time) for each standard method (without modifications) were investigated. For 

each method, the parameters were adjusted to have approximately the same false positive 

rate at the background level. According to the results (shown in Figure 5.1 and 5.2), all 

the three methods are superior to the Shewhart method in terms of the detection probably 

and ARL. When time-interval information is used, CUSUM has the highest detection 

probability (e.g. 25% higher than that for SPRT and Bayesian statistics at the level of 

4.0cps). SPRT and Bayesian statistics have similar detection probabilities. For the ARLs 

of the three methods, CUSUM has the longest ARL for levels above background relative 
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to SPRT and Bayesian statistics, especially over the low radiation range from 2.0cps to 

4.0cps (e.g. two times the ARL of Bayesian statistics at the level of 2.5cps). One thing to 

be noted is that the average time of SPRT is confined by the parameter Nmax. On the 

contrary, there is no constraint on the number of data points that are utilized to update the 

detection decision. In practice, which method is used to analyze time-interval information 

for on-line monitoring should be determined based on investigator’s knowledge about the 

three methods, the difficulty to implement the method, and requirements on detection 

probability or ARL. 

 

 

Figure 5.1. Detection probabilities of the three time-interval analyses by SPRT, 
Bayesian statistics and CUSUM relative to the analysis by Shewhart control 
chart. The simulated scenario is 5s background + 5s source +5s background 
based on simulated data. Standard deviations are smaller than symbols. 
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Figure 5.2. ARLs of the three time-interval analyses by SPRT, Bayesian statistics 
and CUSUM relative to the analysis by Shewhart control chart. The 
simulated scenario is 5s background + 5s source +5s background based on 
simulated data. Standard deviations are smaller than symbols. 

 

 
 

Recommendations for Future Work 
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exploit the benefits of time-interval data for radiation monitoring. For the design of the 

laboratory experiment, one needs to specify the background level, alarm level to be 
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results showed that time-interval information had higher detection probability than count 

information. This interesting finding is a potential advantage to detect a radioactive 

source contained in a moving media. An extended study on the situations in which source 

time is extremely short relative to the count time is needed to check the feasibility and 

sensitivity to use time-interval data for radiation monitoring. The study will focus on the 

detection probabilities at a variety of combinations of source strength, the time length of 

the source presence, and fixed count time.  

A further study can be conducted to investigate the effects from different prior 

probabilities on the Bayesian inference. In this study, a natural conjugate prior was used 

as the initial prior which was assigned based on previous background measurements. A 

prior that is given based on a measurement with the presence of a radioactive source 

could improve the detection probability when a source is present, while it could increase 

the false positive rate at the background level. In addition, the effects from a 

“noninformative” or “empirical” prior should be examined and compared to a conjugate 

prior. 

Derived from Bayesian statistics, Shiryayev-Roberts (S-R) control chart (Kenett 

and Zacks 1998) has been applied by DeVol et al. (2009) for reducing false positive rates 

in low-level radioactivity monitoring based on count information. One may develop a 

new algorithm based on S-R control chart to analyze time-interval information and 

compare the performance of S-R control chart with the Bayesian approach used in this 

study which is based on the fundamental Bayes’ theorem. 
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For the time-interval CUSUM control chart, a modified runs rule was proposed to 

increase the sensitivity of the control chart. This runs rule could also be applicable in 

combination with SPRT and Bayesian methods. It is worthwhile to investigate the 

advantages/disadvantages of SPRT and Bayesian statistics or other methods by coupling 

with the runs rule to detect changes in radiation levels.  

For the situation in which the sample size is n=1, individual moving range (IMR) 

control chart has been used to help identifying where or when a process shift has 

occurred (Montgomery 2001). A study on the time-interval analysis combining an IMR 

control chart with the CUSUM control chart or other statistical methods should be a 

worthwhile endeavor.  

In this study, the detection probabilities of Bayesian and CUSUM methods were 

calculated based on a series of simulated scenarios. In these scenarios, an abrupt change 

in radiation strengths was assumed. In a real application, the change in radiation strength 

varies with time and distance. An experiment or a simulated scenario based on a real 

application could be designed to further study the sensitivity of time-interval data for 

radiation monitoring.  

An extended study is needed for the situations in which background level is 

different from the level utilized in this study. This dissertation presents significant data 

and analyses for a detection system with a background count rate of 2.0 cps.  With that 

information it is problematic to extrapolate these findings to detection systems with 

higher or lower background count rates. For the extended study, ARLs and detection 

probabilities of the three time-interval methods could be calculated for a series of 
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situations with different count rates from very low level (e.g., 0.01cps) to very high level 

(e.g., 100cps). If it is possible, the preassigned false positive rate should be set at the 

same level. A good solution for these situations is to provide a general table of ARL and 

detection probability by scaling other levels to a background level for different situations. 
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Appendix A  

Other Related Results Obtained from This Study 

Experimental Time-Interval Distribution 

 

Figure A.3. Experimental and theoretical time-interval probability distributions. In 
the parentheses are the mean count rates. Standard deviations of 
experimental data are smaller than the symbols. 

 
Currie’s Detection Limit (LD) Based on Time-Interval Data 

 
In the course of radiation monitoring for the possible presence of radioactive 

contaminants, an a priori limit of detection, DL , introduced by Currie (1968) is given by 

                                           
DD C NL L kβσ= +   ,                                                            (A. 1) 

where 0CL kασ= , 
DNσ is the standard deviation of the net signal when a radioactive source 

is present, and kβ is the critical value of the standard normal distribution that has the 

probability of β. kα is the 1-α percentile of the standardized normal distribution 
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corresponding to the probability of α, and σ0 is the standard deviation of the net signal 

when the radioactive source is not present. For radiation monitoring, DL can be 

interpreted as the minimum number of radiation counts needed from the radioactive 

source such that the false negative rate is not larger than β and the false positive rate is 

not larger than α. For a case with a 5% false positive rate and a 5% false negative rate 

that are commonly used, DL  is appropriately given as following (Currie 1968), 

                       02.706 4.653DL σ= +   .                                                             (A. 2) 

The time-interval distribution shown in Figure A-1indicates that a change of time-

interval distribution in the shorter time-interval range will be observed if the mean count 

rate increases as the result of the presence of a radioactive source. Based on the property 

of the time-interval distribution, a new a priori detection limit, DL′ , can be determined 

from the number of time-intervals. For a radiation detection process with a mean count 

rate r, the number of time-intervals that are shorter than a given length of time, t0, is 

calculated by 

                                  )1)(1( 0

0

rt
totaltt eNN −

≤ −−=  ,                                                      (A. 3) 

where Ntotal is the total number of pulses registered in the background measurement. 

Accordingly, the limit of detection,DL′ , for the time-intervals 
0ttN ≤ is 

                                  0
65.4706.2 ttD NL ≤+=′  .                                                          (A. 4) 
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Therefore, the count rate at the alarm level,1r ′ , can be calculated based the DL′  using the 

follow relationship, 

                               1 0

01( 1)(1 )r t

c t t Drt e N L′−
≤

′ ′− − = +   ,                                                        (A. 5) 

where ct  is the count time. The improvement of the new detection limit is defined as, 

                                       1 1

1

100%
r r

r

′−
×   ,                                                                     (A. 6) 

where r1=r 0+LD/tc is the count rate at the alarm level based on count information, and r0 

is the mean count rate of the background level. Using the Solver function in the Microsoft 

Office Excel, the detection limits with different parts of time-intervals for the mean 

background count rates of 2.0cps and 20 cps are calculated and shown in Figure A.2 and 

Figure A.3, respectively. The results show that the detection limit based on time-interval 

information are lowered in most range of values of time-interval length, and minimized at 

certain value. For the 2.0cps background, the detection limit is lowest at the value around 

0.5s. And the minimum detection limit for the 20.0cps background happens at about 

0.05s. So, a value that is close to the average time-interval value can result in a minimum 

detection limit.  
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Figure A.4. The detection limit based on the number of time-intervals less than 
preassigned value, t0, for the background mean of 2.0cps. The count 
time, tc, is 100s. 

 

Figure A.5. The detection limit based on the number of time-intervals less than 
preassigned value, t0, for the background mean of 20.0cps. The count 
time, tc, is 100s. 
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Figure A.4 shows the effect of the background count time to the minimum 

detection limit. It implies that the improvement is independent of the background count 

time except for the short count time. At the shorter count time range, the improvement 

decreases with the count time increases. In practice, short count time will result in a large 

uncertainty in the results. A proper count time should be chosen within a reasonable 

range depending on the strength of radiation, detection system, expected uncertainty, and 

other factors.  

 

Figure A.6. The effect of the count time to the detection limit based on time-interval 
information. 
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Detection Probabilities of SPRT for Different Error Rates (α,β) 

 

Figure A.7. Detection probabilities of SPRT for three different error rate pairs (α,β). 

 
Experimental Average Run Length of Bayesian Analyses for 

1173.2keV ROI 

 

Figure A.8. Experimental average run lengths of Bayesian analyses for the radiation 
pulses within the 1173.2keV ROI of 60Co.  
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Experimental Average Run Length of Bayesian Analyses for Sum 
Peak of 60Co 

 
Figure A.9. Experimental average run lengths of Bayesian analyses for the radiation 

pulses within the ROI containing 1173.2keV and 1332.5keV of 60Co. 

 
Average Run Length of Bayesian Analyses for 60% Detection 

Limit 

 

Figure A.10. Average run lengths of Bayesian analyses when the detection limit is 
set at 60%. 

0

5

10

15

20
2000
3000

0 5 10 15 20 25

1.65 σ
Bayesian (cnt)
Bayesian (ti)

av
er

ag
e 

ru
n 

le
ng

th

mean count rate (cps)

0

5

10

15

20

200

0 2 4 6 8 10

1.65 σ
Bayesian (cnt)
Bayesian (ti)

av
er

ag
e 

ru
n 

le
ng

th

mean count rate (cps)



 

125 
 

Effect on the Bayesian Analyses from the Initial Prior 

 

Figure A.11. Effect on the Bayesian analyses from the initial prior. 

 
Average Run Length for Situations with Different rd 

 

Figure A.12. Average run length of CUSUM for different situations with different rd. 
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Detection Probabilities of CUSUM for Different hti 

 

Figure A.13. Detection probabilities of CUSUM for different hti values when time-
interval data are used. 
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Appendix B  

Development of the Igor Pro. Codes and R Programming 

 

 
Igor Pro. Code for Experimental Time-Intervals 

 
#pragma rtGlobals=1  // Use modern global access method. 
//For 101 runs, extracting real time and energy of each event for arbitrary number of events in a run// 
//get rid of the time-interval between two runs// 
 
Function Time_Int() 
//declare variables 
 variable energyindex, trigtimeindex, n, i, j, k, t_low, t_high, real_high, w, m, m1 
// energyindex is the index for energy array 
 //trigtimeindex is the index for Trigtime array, n is the index of new waves// 
 // i is the index of wave0 for inner loop condition, j is the index of wave0 for another new run. 
// k is the index for the total number of spills, h is used to control the inner loop 
// t_low is the index for EVT_TIMELO word, t_high is the index for EVT_TIMEHI 
// real_high is the index for CHAN_REALTIMEHI 
//w, m, and m1 are the indexes for waves used to extract time stamps and time-intervals 
 wave Event_No   // this wave is created by loading the general text file (.dat ) 
 variable num_wave=numpnts(Event_No), num_spills=600  
// ***these two values have to be input before run***// 
               variable E_low= 39200, E_high=45350          //*** set the ROI region for the first peak// 
// create waves in which information of each event is stored 
 wave wave0  // this wave is generated by loading the general binary file (.bin) 
//ENERGY, TRIGTIME, TIMELO, TIMEHI, REALTIMEHI, REALTIME, TIMEINTERVAL, 
INTERREALT, ENERGYI are contained in wave0// 
// High word is REALTIMEHI, middle word is TIMEHI, low word is TIMELO or TRIGTIME  
 make/R/O/N=(num_wave)  ENERGY1, TRIGTIME, TIMELO, TIMEHI,  REALTIMEHI,  
                                                            REALTIME, INTERREALT 
//Above waves are used to extract time stamps for each radiation pulse and time-intervals 
 make/R/O/N=(num_wave) TIMEINTERVAL= -10, ENERGY2= -10 
              Redimension/D/N= (num_wave)  ENERGY1, TRIGTIME, TIMELO, TIMEHI, REALTIMEHI,  
                                                                     REALTIME, INTERREALT, TIMEINTERVAL, ENERGY2 
 energyindex=11 
 trigtimeindex=10 
 t_low=8 
 t_high=7 
 real_high=17 
 i=0 
 k=0 
 j=wave0(0) 
         W=0 
         m1=0 
 Do 
  n=0 
  m=0 



 

128 
 

  Do 
   ENERGY1[n]=wave0[energyindex] 
   TRIGTIME[n]=wave0[trigtimeindex] 
   TIMELO[n]=wave0[t_low] 
   TIMEHI[n]=wave0[t_high] 
   REALTIMEHI[n]=wave0[real_high] 
 REALTIME[n]=(TIMELO[n]+TIMEHI[n]*(2^16)+REALTIMEHI [n]*(2^32))*25/(10^6) //ms  
   if ((ENERGY1[n]>= E_low) &&  (ENERGY1[n]<= E_high)) 
// for interest energy range, the low limit and upper limit of energy need to input before run this code!!!! // 
   INTERREALT[m]=REALTIME[n] 
   ENERGY2[m1]=ENERGY1[n] 
      if (m>=1) 
      TIMEINTERVAL[w]=INTERREALT[m]-INTERREALT[m-1] 
        w+=1 
      endif 
   m+=1 
   m1+=1 
   endif 
   energyindex+=12 
   trigtimeindex+=12 
   t_high+=12 
   real_high+=12 
   t_low+=12 
   n+=1 
  while (n<(wave0[i]-6)/12) 
  energyindex=j+11 
  i=j 
  trigtimeindex=j+10 
  t_high=j+7 
  real_high=j+17 
  t_low=j+8 
  j+=wave0(i) 
  k+=1 
 while (k<num_spills)   
// the following progamming removes the non-positive values in the timeinterval wave// 
 variable i1, t1, i2 
 i1=0 
 t1=0 
 i2=0 
 Do 
  if  (TIMEINTERVAL[i1]>0) 
   i2+=1 
   t1+=TIMEINTERVAL[i1] 
  endif 
  i1+=1 
 while (i1<num_wave) 
 make/R/O/N=(i2) selectedti 
 variable j1 
 j1=0 
 Do 
  selectedti[j1]=TIMEINTERVAL[j1] 
  j1+=1 
 while (j1<i2) 
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 variable cr   //count rate (cps) 
 cr=(i2+1)/t1*1000 
 print "count rate=", cr, "live time= ", t1 
 print "total timeintervals=", i2 
 print E_low, E_high 
End 
 

 
 

SPRT Analyses of Simulated Data 

 
#pragma rtGlobals=1  // Use modern global access method. 
Function pulse_generate() 
// generate a time series containing time information of each registered pulse // 
 setrandomseed 0.05 
 variable n1, CR 
 CR= 2        //***the count rate in 'cps' of the simulated  counting process ***// 
 n1=10^6    // ***number of pulses that are simulated ***// 
 make/R/D/O/N=(n1) radomnum=enoise(0.5)+0.5    // generate random numbers between 0 and 1 // 
 make/R/D/O/N=(n1) timeinterval=0, timestamp=0 
 variable n2 
 n2=0 
 Do 
  timeinterval[n2]=(-LN(1-radomnum[n2])/CR)*1000           // in unit of ms// 
  if (n2==0) 
  timestamp[n2]=timeinterval[n2] 
  else 
  timestamp[n2]=timestamp[n2-1]+timeinterval[n2] 
  endif 
  n2+=1 
 while (n2<n1) 
end 
 
////////////  SIT test using counts in single count time //////////////////// 
Function SIT_test() 
 variable delta_t = 6        // *** in unit of 's', this is the fixed counting interval for SIT test ***// 
 variable m1=10^6          // *** the number of simulated pulses ***// 
 variable LC=17.70         // *** Discriminator level for SIT test ***// 
 variable pulse_num       // use this index to shorten the runing time  
 variable m2, m3, m4      // m2 is the number of data point for SIT test// 
 wave timestamp            // this wave is generated by the above function // 
 m2=floor(timestamp[m1-1]/1000/delta_t)            // number  of SIT counting time intervals // 
 make/R/D/O/N=(m2) SIT_counts=0                   // counts in each SIT counting time // 
 m3=0 
 pulse_num=0 
 Do 
  m4=pulse_num 
  Do 
  if (timestamp[m4]>(m3*delta_t*1000) && timestamp[m4]<=((m3+1)*delta_t*1000)) 



 

130 
 

                     SIT_counts[m3]+=1  
  endif 
  m4+=1 
  while(timestamp[m4]<=(m3+1)*delta_t*1000) 
  pulse_num=m4-1 
  m3+=1 
 while(m3<m2) 
 variable m5, alarm, alarm_ratio 
 m5=0 
 alarm=0 
 Do  
  if (SIT_counts[m5]>=LC) 
       alarm+=1 
  endif 
  m5+=1 
 while (m5<m2) 
 alarm_ratio=100*alarm/m2 
 print alarm_ratio 
 
 
/////////////////////////// SPRT test using counts in fixed counting time //////////////////////////////////////////////// 
Function SPRTF_test() 
 variable fixed_t= 1            // *** in unit of s, this is the fixed counting interval for SPRT test ***// 
 variable k1=10^6               // *** the number of simulated pulses ***// 
 variable R0=2, R1=4.35   //***  background level and alarm level ***// 
 variable LA=2.9444, LB=-2.9444    // *** two test thresholds ***// 
 variable  Nmax=16                          // *** the maximum steps for the test ***// 
 variable pulse_numF                       // use this index to shorten the runing time  
 variable k2, k3, k4                          // m2 is the number of data point for sit test// 
 wave timestamp                              // this wave is generated by the above function // 
 k2=floor(timestamp[k1-1]/1000/fixed_t) 
 make/R/D/O/N=(k2) fixed_counts=0 
 k3=0 
 pulse_numF=0 
 Do 
  k4=pulse_numF 
  Do 
  if (timestamp[k4]>(k3*fixed_t*1000) && timestamp[k4]<=((k3+1)*fixed_t*1000)) 
      fixed_counts[k3]+=1  
  endif 
                             k4+=1 
  while(timestamp[k4]<=(k3+1)*fixed_t*1000) 
  pulse_numF=k4-1 
  k3+=1 
 while(k3<k2) 
// check the number of pulses that are used for this test 
 variable totalcounts=0, k5 
 k5=0 
 do  
  totalcounts+=fixed_counts[k5] 
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  k5+=1 
 while (k5<k2) 
 print totalcounts 
//ratio calculation and decision making 
 variable x, zi, k6, stepn 
 make/R/O/D/N=(k2) sigalarm=0, backg=0, forces=0, forceb=0 
 k6=0 
 zi=0 
 stepn=0 
 Do 
  stepn+=1 
  x=fixed_counts[k6] 
  zi+=(LN(R1/R0))*x+(R0-R1)*fixed_t 
  if (zi>= LA) 
   sigalarm[k6]=stepn 
   zi=0 
   stepn=0 
  elseif (zi<=LB) 
   backg[k6]=stepn 
   zi=0 
   stepn=0 
  elseif (stepn==Nmax) 
   if (zi>0) 
    forces[k6]=Nmax 
    zi=0 
    stepn=0 
   else 
    forceb[k6]=Nmax 
    zi=0 
    stepn=0 
   endif 
  endif 
  k6+=1 
 while (k6<k2) 
//decision results analyses    
 variable  gg1, gg2, gg3, gg4, detp, N_alarm=0, N_clear=0, N_fs=0, N_fb=0, Totalsteps_a=0,  
                             Totalsteps_b=0 
 variable  avgstep_a=0, avgstep_b=0, totalavg_step=0 
 gg1=0 
 Do 
  If (sigalarm[gg1]>=1) 
   N_alarm+=1 
   Totalsteps_a+=sigalarm[gg1] 
  endif 
  gg1+=1 
 while (gg1<k2) 
 gg2=0 
 Do 
  If (backg[gg2]>=1) 
   N_clear+=1 
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   Totalsteps_b+=backg[gg2] 
  endif 
  gg2+=1 
 while (gg2<k2) 
 gg3=0 
 Do 
  If (forces[gg3]>=1) 
   N_fs+=1 
  endif 
  gg3+=1 
 while (gg3<k2) 
 gg4=0 
 Do 
  If (forceb[gg4]>=1) 
   N_fb +=1 
  endif 
  gg4+=1 
 while (gg4<k2) 
 avgstep_a = (totalsteps_a + N_fs*NMax)/(N_alarm + N_fs) 
 avgstep_b = (totalsteps_b + N_fb*NMax)/(N_clear + N_fb) 
        totalavg_step=(totalsteps_a+totalsteps_b+N_fs*NMax+N_fb*NMax)/(N_alarm+N_clear+N_fs+N_fb) 
               detp= (N_alarm+N_fs)/(N_alarm+N_fs+N_clear+N_fb)*100 
//statistical anlayses 
 print detp, N_alarm, N_clear, N_fs, N_fb, avgstep_a, avgstep_b, totalavg_step  
  make/R/O/D/N=(k2) total_Fwave=0, total_Falarm, total_Fclear 
 total_Fwave=sigalarm+backg+forces+forceb 
 total_Falarm=sigalarm+forces 
 total_Fclear=backg+forceb 
 variable total_Fdecision=N_alarm+N_clear+N_fs+N_fb 
 variable total_FNalarm=N_alarm+N_fs 
 variable total_FNclear=N_clear+N_fb 
 make/R/O/D/N=(total_Fdecision) F_decision=0 
 make/R/O/D/N=(total_FNalarm) F_Dalarm=0 
 make/R/O/D/N=(total_FNclear) F_Dclear=0 
 variable th5, th6 
 th5=0 
 th6=0 
 Do 
  if(total_Fwave[th5]!=0) 
   F_decision[th6]=total_Fwave[th5] 
   th6+=1 
  endif 
  th5+=1 
 while (th5<k2) 
 wavestats/Q F_decision 
 variable F_stddev=V_SDev, F_meanT=V_avg 
 print "Ftddev=", F_stddev 
 print "F_meanT=", F_meanT 
 
 variable th7, th8 
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 th7=0 
 th8=0 
 Do 
  if(total_Falarm[th7]!=0) 
   F_Dalarm[th8]=total_Falarm[th7] 
   th8+=1 
  endif 
  th7+=1 
 while(th7<k2) 
 
 variable alarm_std, alarm_mean 
 if (total_FNalarm<2) 
  alarm_std=0 
  alarm_mean=0 
 else 
  wavestats/q F_Dalarm 
  alarm_std=V_SDev 
  alarm_mean=V_avg 
 endif 
 print "alarm_std=", alarm_std 
 print "alarm_mean=", alarm_mean 
 variable th9, th10 
 th9=0 
 th10=0 
 Do 
  if(total_Fclear[th9]!=0) 
   F_Dclear[th10]=total_Fclear[th9] 
   th10+=1 
  endif 
  th9+=1 
 while(th9<k2) 
 
 variable clear_std, clear_mean 
 if(total_FNclear<=1) 
  clear_std=0 
  clear_mean=0 
 else 
  wavestats/q F_Dclear 
  clear_std=V_SDev  
  clear_mean=V_avg 
 endif 
 print "clear_std=", clear_std 
 print "clear_mean=", clear_mean 
End 
 
 
///////////////////////////SPRT using scaled time-intervals ///////////////////////////////////// 
Function SPRTS_test()          
 variable num_pulses= 10^6           //*** num of simulated pulses ***// 
 variable scale_N = 4                     // *** num of scaled pulses ***// 
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 variable B0, B1, LLA, LLB, SNMax 
 B0=2                                             //***  background level ***// 
 B1=4.35                                       //***  alarm level ***// 
 LLA=2.9444 
 LLB=-2.9444 
 SNmax=16 
 variable s1, scaled_num 
 scaled_num=floor(num_pulses/scale_N) 
 make/R/O/D/N=(scaled_num) scaled_TI=0, S_alarm=0, S_backg=0, S_forceS=0, S_forceB=0 ,  
                                                                T_alarm=0, T_backg=0, T_forceS=0, T_forceB=0 
 wave timestamp              // this wave is generated by the function, pulse_generate() // 
 s1=0 
 Do  
  if (s1==0) 
   scaled_TI[s1]=timestamp[(s1+1)*scale_N-1] 
  else 
   scaled_TI[s1]=timestamp[(s1+1)*scale_N-1]-timestamp[s1*scale_N-1] 
  endif 
  s1+=1 
 while (s1<scaled_num) 
// ratio calculation and decision making  
 variable x1, zzi, Sstepn, s2, sti 
 s2=0 
 sti=0 
 zzi=0 
 Sstepn=0 
 Do 
  Sstepn+=1 
  x1=scaled_TI[s2] 
  sti+=x1 // record the the time needed to make a decision// 
  zzi+=LN(B1/B0)*(scale_N-1)+(B0-B1)*x1/1000 
  if (zzi>=LLA) 
   S_alarm[s2]=Sstepn 
   T_alarm[s2]=sti 
   sti=0 
   zzi=0 
   Sstepn=0 
  elseif (zzi<=LLB) 
   S_backg[s2]=Sstepn 
   T_backg[s2]=sti 
   sti=0 
   zzi=0 
   Sstepn=0 
  elseif (Sstepn==SNmax) 
   if (zzi>0) 
    S_forceS[s2]=SNmax 
    T_forceS[s2]=sti 
    sti=0 
    zzi=0 
    Sstepn=0 
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   else 
    S_forceB[s2]=SNmax 
    T_forceB[s2]=sti 
    sti=0 
    zzi=0 
    Sstepn=0 
   endif 
  endif 
  s2+=1 
 while(s2<scaled_num) 
//Decision results analyses 
 variable hh1, hh2, hh3, hh4, SN_alarm=0, SN_clear=0, SN_fs=0, SN_fb=0, STotalsteps_a=0,  
                             STotalsteps_b=0 
 variable Savgstep_a=0, Savgstep_b=0, S_det=0, Stotalavg_step=0  
 hh1=0 
 Do 
  If (S_alarm[hh1]>=1) 
   SN_alarm+=1 
   STotalsteps_a+=S_alarm[hh1] 
  endif 
  hh1+=1 
 while (hh1<scaled_num) 
 hh2=0 
 Do 
  If (S_backg[hh2]>=1) 
   SN_clear+=1 
   STotalsteps_b+=S_backg[hh2] 
  endif 
  hh2+=1 
 while (hh2<scaled_num) 
 hh3=0 
 Do 
  If (S_forceS[hh3]>=1) 
   SN_fs+=1 
  endif 
  hh3+=1 
 while (hh3<scaled_num) 
 hh4=0 
 Do 
  If (S_forceB[hh4]>=1) 
   SN_fb +=1 
  endif 
  hh4+=1 
 while (hh4<scaled_num) 
 Savgstep_a = (Stotalsteps_a + SN_fs*SNMax)/(SN_alarm + SN_fs) 
 Savgstep_b = (Stotalsteps_b + SN_fb*SNMax)/(SN_clear + SN_fb) 
              Stotalavg_step=(Stotalsteps_a+Stotalsteps_b+SN_fs*SNMax+SN_fb*SNMax)/(SN_alarm+SN_fs 
                                         +SN_clear+SN_fb) 
 S_det=100*(SN_alarm+SN_fs)/(SN_alarm+SN_fs+SN_clear+SN_fb) 
 print SN_alarm, SN_clear, SN_fs, SN_fb, Savgstep_a, Savgstep_b, Stotalavg_step 
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 print s_det 
               variable ST_alarm=0, ST_backg=0, ST_forceS=0, ST_forceB=0 
               variable th1, th2, th3, th4, AvgT_alarm=0, AvgT_backg=0, Stotalavg_t=0 
               th1=0 
 Do 
  If (T_alarm[th1]!=0) 
   ST_alarm+=T_alarm[th1] 
  endif 
  th1+=1 
 while (th1<scaled_num) 
 th2=0 
 Do 
  If (T_backg[th2]!=0) 
                  ST_backg+=T_backg[th2] 
  endif 
  th2+=1 
 while (th2<scaled_num) 
 th3=0 
 Do 
  If (T_forceS[th3]!=0) 
   ST_forceS+=T_forceS[th3] 
  endif 
  th3+=1 
 while (th3<scaled_num) 
 th4=0 
 Do 
  If (T_forceB[th4]!=0) 
   ST_forceB+=T_forceB[th4] 
  endif 
  th4+=1 
 while (th4<scaled_num) 
 
              AvgT_alarm= (ST_alarm+ST_forceS)/(SN_alarm+SN_fs)/1000 
              Stotalavg_t=(ST_alarm+ST_forceS+ST_backg+ST_forceB)/(SN_alarm+SN_fs+SN_clear 
                                    +SN_fb)/1000 
print AvgT_alarm, AvgT_backg, Stotalavg_t 
//statistics calculation 
 make/R/O/D/N=(scaled_num) total_Twave=0, total_Talarm, total_Tclear 
 total_Twave=T_alarm+T_backg+T_forceS+T_forceB 
 total_Talarm=T_alarm+T_forceS 
 total_Tclear=T_backg+T_forceB 
 variable total_Tdecision=SN_alarm+SN_clear+SN_fs+SN_fb 
 variable total_Dalarm=SN_alarm+SN_fs 
 variable total_Dclear=SN_clear+SN_fb 
 make/R/O/D/N=(total_Tdecision) T_decision=0 
 make/R/O/D/N=(total_Dalarm) T_Dalarm=0 
 make/R/O/D/N=(total_Dclear) T_Dclear=0 
 variable th5, th6 
 th5=0 
 th6=0 
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 Do 
  if(total_Twave[th5]!=0) 
   T_decision[th6]=total_Twave[th5] 
   th6+=1 
  endif 
  th5+=1 
 while (th5<scaled_num) 
 wavestats/Q T_decision 
 variable S_stddev=V_SDev, S_meanT=V_avg 
 print "Stddev=", S_stddev 
 print "S_meanT=", S_meanT 
 variable th7, th8 
 th7=0 
 th8=0 
 Do 
  if(total_Talarm[th7]!=0) 
   T_Dalarm[th8]=total_Talarm[th7] 
   th8+=1 
  endif 
  th7+=1 
 while(th7<scaled_num) 
 variable alarm_std, alarm_mean 
 if (total_Dalarm<2) 
  alarm_std=0 
  alarm_mean=0 
 else 
  wavestats/q T_Dalarm 
  alarm_std=V_SDev 
  alarm_mean=V_avg 
 endif 
 print "alarm_std=", alarm_std 
 print "alarm_mean=", alarm_mean 
 variable th9, th10 
 th9=0 
 th10=0 
 Do 
  if(total_Tclear[th9]!=0) 
   T_Dclear[th10]=total_Tclear[th9] 
   th10+=1 
  endif 
  th9+=1 
 while(th9<scaled_num) 
 variable clear_std, clear_mean 
 if(total_Dclear<=1) 
  clear_std=0 
  clear_mean=0 
 else 
  wavestats/q T_Dclear 
  clear_std=V_SDev  
  clear_mean=V_avg 
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 endif 
 print "clear_std=", clear_std 
 print "clear_mean=", clear_mean 
End 

 
 
 

Igor Pro. Code for SPRT with Scaled Time-Intervals for 
Experimental Data 

 
#pragma rtGlobals=1  // Use modern global access method. 
// This function is designated for SPRT analysis using simulated scaled time-intervals//  
Function pulses_analysis() 
        variable max_num= 209, spill_num= 120             //*** input these two value before run ***// 
        variable ScaledN=4                                               //***number of pulsed that are scaled***// 
        variable  t_low, t_high, real_high, i, h, k, j, n, start_hi, start_mi, start_lo 
// t_low, t_high, real_high are the low word, middle word and high word for the realtime of each pulse;  
// start_lo, start_mi, start_hi are the low word, middle word and high word for the start time of each run for 
data acquisition; 
// i is the index to check the number of words in the 'BUF_NDATA' of the list mode data; 
// h is used to control the inner "do... while" loop, and k is used to control the outer "do... while" loop; 
// n is index for the realtime waves, timelo, timehi, realtimehi; 
//j is the index of wave0, which is a temporary index that is used to transfer values for 'i'. 
        wave wave0   // wave0 is data wave from the command ' GBLoadWave' function in IGOR.// 
// create waves and arrays that are going to be used for obtaining the timestamp of each signal. 
        make/R/O/D/N=(max_num*spill_num) timelo, timehi, realtimehi 
        make/R/D/O/N=(max_num, spill_num) timestamp =0 
//timestamp contains the absolute time information of each pulse that is registered. 
       make/R/O/D/N=(spill_num) start_time=0  //the start point of each run// 
       t_low=8 
       t_high=7 
       real_high=17 
      start_hi=3 
      start_mi=4 
      start_lo=5 
      i=0 
      k=0 
      n=0 
      j=wave0(0) 
     Do 
    start_time[k]=(wave0[start_lo] + wave0[start_mi]*(2^16) + wave0[start_hi]*(2^32))*25/(10^6) 
// run start time 
    h=0 
     
          Do 
          If (wave0[i] <18) 
          break 
          endif 
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                    timelo[n]=wave0[t_low] 
          timehi[n]=wave0[t_high] 
          realtimehi[n]=wave0[real_high] 
          timestamp[h][k]=(timelo[n]+timehi[n]*(2^16)+realtimehi[n]*(2^32))*25/(10^6)   // in unit of ms 
// timestamp is the array that contains the realtime information for each signal. 
          t_high+=12 
          t_low+=12 
          real_high+=12 
          n+=1 
          h+=1 
         while (h<(wave0[i]-6)/12) 
          i=j 
          t_high=j+7 
          t_low=j+8 
          real_high=j+17 
          start_hi=j+3 
          start_mi=j+4 
          start_lo=j+5 
          j+=wave0[i] 
          k+=1 
         while (k<spill_num) 
         Duplicate/D/O timestamp realtime_stamp 
         killwaves timestamp 
// 'Duplicate' and 'killwaves' commands are used to make sure that contents in each arrays are cleared 
 before a new operation. 
//This part produce time-intervals of scaled pulses 
         variable n1, n2 
//used for do... while loops control. 
        variable num_scale 
        num_scale=max_num/ScaledN 
        make/R/O/D/N=(num_scale, spill_num) relativetime=0, scaledTI=0 
        n1=0 
        Do 
          n2=0 
          Do 
                  relativetime[n2][n1]=realtime_stamp[(n2+1)*scaledN-1][n1]-start_time[n1] 
                   n2 +=1 
          while (n2+1 <= num_scale) 
       n1+=1 
      while (n1<spill_num) 
       variable n3, n4 
       n3=0 
       DO 
         n4=0 
         Do  
              if (n4==0) 
               scaledTI[n4][n3]=relativetime[n4][n3] 
              else 
                scaledTI[n4][n3]=relativetime[n4][n3]-relativetime[n4-1][n3] 
              endif 
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               n4+=1 
            while (n4<num_scale) 
      n3+=1 
      while (n3<spill_num) 
     variable n5, n6, scaleindex 
     make/R/O/D/N=(num_scale*spill_num) scale_selected=0 
     scaleindex=0 
     n5=0 
     Do 
       n6=0 
       Do 
           if (scaledTI[n6][n5]>0) 
           scale_selected[scaleindex]=scaledTI[n6][n5] 
           endif 
           scaleindex+=1 
           n6+=1 
        while (n6<=num_scale-1) 
       n5+=1 
  while (n5<spill_num) 
End 
///////After this step, a similar programming code as that for simulated scaled time-intervals is used for 
experimental scaled time-intervals contained in the wave scale_selected////// 

 

Igor Pro. Code for SPRT with a Fixed Count Time for 
Experimental Data 

 
#pragma rtGlobals=1  // Use modern global access method. 
Function Poisson_analysis() 
          variable max_num= 209, spill_num= 120  //*** input these two value before run ***// 
          variable delta_t=1   //&&&&& in unit of 's', the fixed time interval, input this value &&&&&// 
          variable  t_low, t_high, real_high, i, h, k, j, n, start_hi, start_mi, start_lo 
// t_low, t_high, real_high are the low word, middle word and high word for the realtime of each signal;  
// start_lo, start_mi, start_hi are the low word, middle word and high word for the start time of each run for 
data collection; 
// i is the index to check the number of words in the 'BUF_NDATA' of the list mode data; 
// h is used to control the inner do... while loop, and k is used to control the outer do... while loop; 
// n is index for the realtime waves, timelo, timehi, realtimehi; 
//j is the index of wave0, which is a temporary index this is used to transfer values for 'i'. 
        wave wave0      // wave0 is data wave from the command ' GBLoadWave' function in IGOR. 
// create waves and arrays that are going to be used for obtaining the relative timestamp of each signal. 
        make/R/O/D/N=(max_num*spill_num) timelo, timehi, realtimehi 
        make/R/D/O/N=(max_num, spill_num) timestamp, r_timestamp  
//timestamp contains the absolute time information that each event is registered; r_timestamp is the time 
information 
//relative to the start point of the corresponding run. 
       make/R/O/D/N=(spill_num) start_time  //the start point of each run 
       make/R/O/D/N=(spill_num) signal_num // the number of registered events for each run. 
       t_low=8 
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       t_high=7 
       real_high=17 
       start_hi=3 
       start_mi=4 
       start_lo=5 
       i=0 
       k=0 
       n=0 
       j=wave0(0) 
      Do 
            start_time[k]=(wave0[start_lo] + wave0[start_mi]*(2^16) + wave0[start_hi]*(2^32))*25/(10^9) 
            signal_num[k]=(wave0[i]-6)/12 
            h=0 
           Do 
               If (wave0[i] <18) 
               break 
              endif 
              timelo[n]=wave0[t_low] 
              timehi[n]=wave0[t_high] 
              realtimehi[n]=wave0[real_high] 
              timestamp[h][k]=(timelo[n]+timehi[n]*(2^16)+realtimehi[n]*(2^32))*25/(10^9)  
              r_timestamp[h][k]=timestamp[h][k]-start_time[k] 
// time is in unit of s 
// timestamp is the array that contains the realtime information for each signal;  
//r_timestamp is the array that contains the relative time information to its run start time. 
             t_high+=12 
             t_low+=12 
             real_high+=12 
             n+=1 
             h+=1 
       while (h<(wave0[i]-6)/12)   
       i=j 
       t_high=j+7 
       t_low=j+8 
       real_high=j+17 
       start_hi=j+3 
       start_mi=j+4 
       start_lo=j+5 
       j+=wave0[i] 
       k+=1 
       while (k<spill_num) 
       WaveStats/q signal_num 
       print V_avg, V_min, V_max, V_sdev   // statistics for the number of events in a fixed time interval. 
       Duplicate/D/O timestamp realtime_stamp 
       Duplicate/D/O r_timestamp relativetime 
       killwaves timestamp, r_timestamp 
  
 // 'Duplicate' and 'killwaves' commands are used to make sure that contents in each arrays are cleared 
 // before the next new operation 
//////////////  This part is used to analyze the num of signals that are observed in a fixed count time ////////// 
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            variable n1, n2, n3, lastp, t_n2  
/// used for do... while loops control, lastp is index for the last event for each run in the wave signal_num. 
            wave countswave // output wave 
            variable runtime=180, rownum //&&&& in unit of 's' &&&&&&// 
            rownum=runtime/delta_t + 10 
           make/R/O/N=(rownum, spill_num) countswave=0 
           make/R/O/N=(spill_num) deltat_num=0 
          n1=0 
          Do 
             n2=0 
             Do 
                n3=0 
                Do 
                if (relativetime[n3][n1]>(n2*delta_t)  && relativetime[n3][n1]<=((n2+1)*delta_t)) 
                countswave[n2][n1] +=1 
                endif 
                n3+=1 
               while (n3<signal_num[n1])  
//controlled by the number of events for each run. 
             n2 +=1 
             lastp=signal_num[n1]-1 
            T_n2=n2*delta_t 
            while (T_n2 <= relativetime[lastp][n1]) 
 //controlled by the relative time of the last event for each run 
        deltat_num[n1]=n2-1   /// the number of fixed time intervals for each run 
        n1+=1 
       while (n1<spill_num) 
       Duplicate/D/O countswave, countobserve 
       Killwaves countswave 
       End 
///////After this step, a similar programming code as that for simulated data is used for experimental data 
contained in the wave countobserve////// 

 

 

R Code for Average Run Length Calculation for Bayesian 
Analysis with Time-Interval Data 

 
#R code for Bayesian analysis. Posterior distribution is created by "rgamma" function 
#This code is used for time-interval information 
 
setwd("C:/Peng's Bayesian/Bugs tests")  #set working directory 
 
alpha1 <- 2     #prior parameter 
 
beta1 <- 1      #prior parameter 
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nnn<-10000          #number of simulation sampling from the posterior distribution 
 
theta0 <- 2        #the background count rate 
DL<-0.95           #the detection limit 
 
timeint <- read.table("C:/Peng's Bayesian/runlength data/timeinterval-8.0cps-2.txt", head=T) 
x<-timeint$timeinterval 
J<-nrow(timeint)    #total number of data points 
 
runlength<-c() 
decisiontime<-c()  
n1<-1           #data point index 
n2<-1           # index to record the number of data points for a decision making 
timetodecision<-0  #to record the time to make a decision 
while (n1<=J) { 
              x.r=x[n1]/1000 
              timetodecision<-timetodecision+x.r 
              if (n2==1) { 
                         alpha2<-alpha1+1 
                         beta2<-beta1+x.r 
                         
                         post.gam<-rgamma(nnn,alpha2,beta2)     #posterior calculation 
                         mean.theta<-mean(post.gam)             #mean of the posterior 
                         probtheta<-round(sum(post.gam>=theta0)/nnn,3)   #the probability that the posterior is 
above the background 
                         if (probtheta>=DL) { 
                                            runlength<-c(runlength,n2) 
                                            decisiontime<-c(decisiontime,timetodecision) 
                                            n2<-1 
                                            timetodecision<-0 
                                            } else { 
                                             
                                            n2<-n2+1 
                                            } 
                          } else { 
                          alpha2<-alpha2+1 
                          beta2<-beta2+x.r 
                         post.gam<-rgamma(nnn,alpha2,beta2)     #posterior calculation 
                         mean.theta<-mean(post.gam)             #mean of the posterior 
                         probtheta<-round(sum(post.gam>=theta0)/nnn,3)   #the probability that the posterior is 
above the background 
                         if (probtheta>=DL) { 
                                            runlength<-c(runlength,n2) 
                                            decisiontime<-c(decisiontime,timetodecision) 
                                            n2<-1 
                                            timetodecision<-0 
                                            } else { 
                                             
                                            n2<-n2+1 
                                            } 
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                                     } 
                  n1<-n1+1 
                  } 
  
 
#summary of the runlength 
runlength<-as.matrix(runlength) 
totaldecision<-nrow(runlength) 
averageRL<-mean(runlength) 
RL.std<-(var(runlength))^(1/2) 
totaldecision 
averageRL 
RL.std 
 
#summary of the decisiontime 
J 
n1 
n2 
probtheta 
decisiontime<-as.matrix(decisiontime) 
totaldecision2<-nrow(decisiontime) 
averageDT<-mean(decisiontime) 
DT.std<-(var(decisiontime))^(1/2) 
totaldecision2 
averageDT 
DT.std 
summary(decisiontime) 

 
 

 

R Code for Detection Probability Calculation for Bayesian 
Analysis with Time-Interval Data 

 
#R code for Bayesian analysis. Posterior distribution is created by "rgamma" function 
#This code is used for the detection probability of time-interval information 
#The data are simulated for different conditions, bkg1+source+bkg2 
setwd("C:/Peng's Bayesian/Bugs tests")  #set working directory 
alpha1 <- 2            #prior parameter 
beta1 <- 1              #prior parameter 
nnn<-10000          #number of simulation sampling from the posterior distribution 
theta0 <- 2            #the background count rate 
DL<-0.95             #the detection limit 
bkg1<-5          #the counting time of the background before the presence of the source 
timeint <- read.table("C:/Peng's Bayesian/simulated conditions-5-5-5/simulatedtimeinterval-4.0cps-
2.txt",head=F)           #data 
J1<-nrow(timeint)    #total number of sub-data sets 
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decmatrix<-rep(-1,J1) 
tmat<-rep(0,J1) 
J2<-ncol(timeint) 
i1<-1 #indext for the number of sub-dat sets 
while(i1<=J1) { 
        x<-timeint[i1,] 
        n1<-1           #data point index 
        n2<-1           # index to record the number of data points for a decision making 
       timetodecision<-0  #to record the time to make a decision 
        probtheta<-0 
              while (n1<=J2) { 
              if(probtheta>=DL && timetodecision>=bkg1) break 
              x.r=x[n1]/1000 
              x.r=as.numeric(x.r) 
              if((1000*x.r)==-100) break 
              timetodecision<-timetodecision+x.r 
              if (n2==1) { 
                         alpha2<-alpha1+1 
                         beta2<-beta1+x.r 
                         post.gam<-rgamma(nnn,alpha2,beta2)     #posterior calculation 
                         mean.theta<-mean(post.gam)                   #mean of the posterior 
                         probtheta<-round(sum(post.gam>=theta0)/nnn,3)    
#the probability that the posterior is above the background 
                         if (probtheta>=DL) { 
                                            n2<-1 
                                            } else { 
                                            n2<-n2+1 
                                            } 
                          } else { 
                          alpha2<-alpha2+1 
                          beta2<-beta2+x.r 
                         post.gam<-rgamma(nnn,alpha2,beta2)     #posterior calculation 
                         mean.theta<-mean(post.gam)                   #mean of the posterior 
                         probtheta<-round(sum(post.gam>=theta0)/nnn,3)   
 #the probability that the posterior is above the background 
                         if (probtheta>=DL) { 
                                           # runlength<-c(runlength,n2) 
                                           # decisiontime<-c(decisiontime,timetodecision) 
                                            n2<-1 
                                           # timetodecision<-0 
                                            } else { 
                                            n2<-n2+1 
                                            } 
                                     } 
                                    n1<-n1+1 
                  } 
 decmatrix[i1]<-probtheta 
 tmat[i1]<-timetodecision 
i1<-i1+1 
} 
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detectionpro<-(sum(decmatrix>=DL))/J1 
std.dectpro<-sqrt(sum(decmatrix>=DL))/J1 
print(detectionpro,digits=3) 
std.dectpro 

 
 
 

R Code for Average Run Length Calculation for CUSUM 
Analysis with Time-Interval Data 

 
# CUSUM analysis of time-interval information 
setwd("d:/profile.cu/My Documents/CUSUM")            #set working directory 
cr_b<-2              #the mean count rate of the background 
cr_d<-5              #the mean count rate that is needed to detect quickly 
k<-(log(cr_d)-log(cr_b))/(cr_d-cr_b)           #the reference value, nature log function 
DL<-3.32               #the detection limit wether an alarm should be issued 
radti <- read.table("C:/Peng's Research/CUSUM analysis/Simulated data/runlength data/timeinterval-
10.0cps.txt",head=T)          #data 
x<-radti$timeinterval 
J<-nrow(radti)                    #total number of data points 
ci<-rep(-1,J)                       #matrix to contain the cusum value for each data point 
runlength<-c()                    #create an maxtrix to contain rungth values 
ci_value<-c()                     #matrix to contain ci values 
decisiontime<-c()              #matrix to contain time to make a detection 
C0<-0                                #the starting ci value 
n1<-1 
n2<-1 
timetodecision<-0 
while (n1<=J) { 
      x.r<-x[n1]/1000 # in unit of second (s) 
      timetodecision<-timetodecision+x.r 
      if (n2==1)  { 
         c_sum<-k-x.r+C0 
                  } else { 
                    c_sum<-k-x.r+ci[n1-1] 
                          } 
       ci[n1]<-max(0,c_sum) 
       if (ci[n1]>=DL) { 
                       runlength<-c(runlength,n2) 
                       ci_value<-c(ci_value, ci[n1]) 
                       decisiontime<-c(decisiontime,timetodecision) 
                       n2<-1 
                       timetodecision<-0 
                         
                       } else { 
                              n2<-n2+1 
                               } 
   n1<-n1+1 
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              } 
#summary of the runlength 
runlength<-as.matrix(runlength) 
totaldecision<-nrow(runlength) 
ARL<-mean(runlength) 
RL.std<-(var(runlength))^(1/2) 
totaldecision 
ARL 
RL.std 
summary(runlength) 
#summary of the decisiontime 
decisiontime<-as.matrix(decisiontime) 
totaldecision2<-nrow(decisiontime) 
averageDT<-mean(decisiontime) 
DT.std<-(var(decisiontime))^(1/2) 
totaldecision2 
averageDT 
DT.std 
k 
DL 
cr_b 
cr_d 

 
 
 

R Code for Detection Probability Calculation for CUSUM 
Analysis with Time-Interval Data 

 
# R code for CUSUM analysis to check the detection efficiency when time-interval information is used 
setwd("C:/Peng's Research/CUSUM analysis/R codes")  #set working directory 
cr_b<-2  #the mean count rate of the background 
cr_d<-4  #the mean count rate that is needed to detect quickly 
k<-(log(cr_d)-log(cr_b))/(cr_d-cr_b)   #the reference value, nature log function 
DL<-2.66    #the detection limit whether an alarm should be issued 
bkg1=5   #the background measurement before the presence of the source 
timeint <- read.table("C:/Peng's Research/CUSUM analysis/Simulated data/simulated conditions-5-20-
5/simulatedtimeinterval-5.0cps.txt",head=F) #data 
J1<-nrow(timeint) #total number of sub data sets 
ci_value<-rep(-1,J1) 
decisiontime<-rep(0,J1) 
J2<-ncol(timeint) 
i1<-1 #index for the number of sub data sets 
while (i1<=J1) { 
 
       x<-timeint[i1,] 
       n1<-1  # index to record the number of data points for a decision 
       timetodecision<-0  # to record the time to make a decision 
       C0<-0        #the starting ci value 
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       ci<-rep(-1,J2) 
       while (n1<=J2) { 
          if (ci[n1-1]>=DL && timetodecision>=bkg1) break 
          x.r<-x[n1]/1000 
          x.r<-as.numeric(x.r) 
          if ((1000*x.r)==-100) break 
          timetodecision<-timetodecision+x.r 
          if (n1==1)  { 
                    c_sum<-k-x.r+C0 
                  } else { 
                    c_sum<-k-x.r+ci[n1-1] 
                          } 
         ci[n1]<-max(0,c_sum) 
         n1<-n1+1 
                       } 
ci_value[i1]<-ci[n1-1] 
if (ci_value[i1]>=DL) { 
              decisiontime[i1]<-timetodecision  
                      } else { 
               decisiontime[i1]<--1 
                              } 
i1<-i1+1 
                } 
decisiontime<-decisiontime[decisiontime>0] 
decisiontime<-as.matrix(decisiontime) 
summary(decisiontime) 
detectionpro<-(sum(ci_value>=DL))/J1 
std.detectpro<-sqrt(sum(ci_value>=DL))/J1 
print (detectionpro, digits=3) 
std.detectpro 
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Appendix C 

Data Relative to Experimental Results 

Table C.1. Experimental detection probabilities of the three methods: SIT, 
SPRT_scaled and SPRT_scaled.  

 

 
 

Table C.2. Experimental average time for SIT, SPRT_fixed and SPRT_scaled. 

 

1.87 10.19 2.14 0.09 0.06

2.02 11.97 3.31 0.04 0.32

2.07 7.65 1.74 0.00 0.00

2.25 16.74 5.94 0.09 0.53

2.38 23.03 7.86 0.05 0.39

2.52 26.18 13.73 0.11 0.85

3.08 58.36 52.27 3.51 11.00

3.39 77.97 77.40 7.14 26.68

4.90 99.62 99.37 95.07 98.37

5.51 99.96 99.85 99.28 99.78

7.42 100.00 100.00 100.00 100.00

9.23 100.00 100.00 100.00 100.00

CR (cps)

Detection Probability (%)

SIT (6s)
SPRT_fixed 

(1s)

SPRT_scaled          

N=4             N=6

CR (cps)

1.87 3.83 5.27 6.91

2.02 4.29 5.07 6.54

2.07 4.66 4.52 5.78

2.25 5.26 4.93 6.37

2.38 5.86 5.10 6.70

2.52 6.44 5.28 6.87

3.08 7.51 6.95 9.73

3.39 7.27 8.76 12.75

4.90 2.90 6.12 4.54

5.51 2.27 4.05 3.24

7.42 1.49 1.83 1.70

9.23 1.20 1.21 1.22

SPRT_fixed 

(1s)

SPRT_scaled          

N=4             N=6

Average Time (s)
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Table C.3. Experimental average run length of Bayesian analyses for radiation pulses 
within the 1332.5keV ROI of 60Co. 

 

 
 

Table C.4. Experimental detection probabilities of Bayesian analyses for the scenario 
(5s background + 5s source + 5s background) using the radiation pulses 
within the 1332.5 keV ROI. 

 

 
 
 
 
 

1.65 σ Bayesian (cnt) Bayesian (ti)

2.08 16.56 28657 28650

2.46 9.69 39.89 34.83

3.06 5.19 9.32 7.64

3.36 3.98 6.49 5.16

3.75 3.11 4.61 3.54

4.12 2.5 3.61 2.68

4.77 1.92 2.68 1.86

6.16 1.36 1.8 1.1

6.82 1.23 1.6 0.92

8.77 1.07 1.25 0.61

9.99 1.03 1.14 0.51

Average Run Length (s)
CR (cps)

1.65 σ std. Bayesian (cnt) std. Bayesian (ti) std.

2.08 0.266 0.007 0.0782 0.0039 0.0626 0.0035

2.46 0.419 0.009 0.139 0.0053 0.123 0.005

3.06 0.66 0.012 0.32 0.0086 0.303 0.0084

3.36 0.76 0.012 0.415 0.0091 0.394 0.0088

3.75 0.861 0.013 0.554 0.0105 0.543 0.0104

4.12 0.922 0.014 0.682 0.0117 0.671 0.0116

4.77 0.976 0.014 0.843 0.0131 0.844 0.0131

6.16 0.999 0.016 0.979 0.0156 0.975 0.0155

6.82 1 0.018 0.993 0.0178 0.992 0.0178

8.77 1 0.022 1 0.0217 1 0.0217

9.99 1 0.023 1 0.0231 1 0.0231

Detection Probability
CR (cps)
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Table C.5. Experimental ARL ratios of CUSUM analyses for radiation pulses within 
the 1332.5keV ROI of 60Co. 

 

 

Table C.6. Experimental ARLs of CUSUM analyses for radiation pulses within the 
1332.5keV ROI of 60Co. 

 

 
 
 
 

CUSUMti mrCUSUMti (µI=8cps) Shewhart

2.10 1.00 0.86 1.20

2.50 1.00 0.90 2.80

3.10 0.98 0.93 3.50

3.40 0.96 0.91 3.70

3.80 0.94 0.90 3.20

4.10 0.93 0.88 2.80

4.80 0.91 0.84 2.00

6.20 0.86 0.74 1.30

6.80 0.84 0.69 1.10

8.80 0.79 0.58 0.89

10.00 0.76 0.51 0.85

ARL ratios
CR (cps)

CUSUMcnt CUSUMti mrCUSUMShewhart

2.1 559.6 570.8 483.7 697.6

2.5 92.2 93.5 82.7 257.6

3.1 20.1 19.6 18.6 70.7

3.4 12.8 12.3 11.7 47.6

3.8 8.6 8.1 7.7 27.1

4.1 6.4 6.0 5.7 18.0

4.8 4.5 4.1 3.8 9.1

6.2 2.8 2.4 2.1 3.6

6.8 2.4 2.0 1.7 2.7

8.8 1.7 1.4 1.0 1.5

10.0 1.5 1.1 0.8 1.3

CR (cps)
ARL (s)
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Table C.7. Experimental detection probabilities of CUSUM analyses for radiation 
pulses within the 1332.5keV ROI of 60Co. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CUSUMcnt std. CUSUMti std. mrCUSUMti (µI=8cps) std. Shewhart std.

2.10 0.02 0.002 0.02 0.002 0.03 0.002 0.01 0.001

2.50 0.05 0.003 0.05 0.003 0.05 0.003 0.02 0.002

3.10 0.16 0.006 0.16 0.006 0.17 0.006 0.06 0.004

3.40 0.27 0.007 0.26 0.007 0.27 0.007 0.10 0.005

3.80 0.41 0.009 0.41 0.009 0.42 0.009 0.17 0.006

4.10 0.58 0.010 0.57 0.011 0.58 0.011 0.25 0.007

4.80 0.79 0.013 0.79 0.013 0.79 0.013 0.44 0.009

6.20 0.97 0.016 0.97 0.016 0.97 0.016 0.80 0.014

6.80 0.99 0.018 0.99 0.018 0.99 0.018 0.91 0.017

8.80 1.00 0.022 1.00 0.022 1.00 0.022 1.00 0.022

10.00 1.00 0.023 1.00 0.023 1.00 0.023 1.00 0.023

Detection Probability
CR (cps)



 

153 
 

Table C.8. Experimental time-interval distributions. 

 
 

 

2.01cps std. 3.23cps std. 4.47cps std.

50 0.097 0.0010 0.144 0.0022 0.198 0.0031

100 0.101 0.0010 0.123 0.0020 0.160 0.0027

150 0.096 0.0010 0.110 0.0019 0.127 0.0024

200 0.091 0.0010 0.093 0.0017 0.102 0.0021

250 0.082 0.0009 0.081 0.0016 0.082 0.0019

300 0.071 0.0008 0.069 0.0015 0.066 0.0017

350 0.061 0.0008 0.059 0.0013 0.055 0.0015

400 0.051 0.0007 0.048 0.0012 0.043 0.0013

450 0.043 0.0006 0.042 0.0011 0.035 0.0012

500 0.037 0.0006 0.035 0.0010 0.028 0.0011

550 0.030 0.0005 0.029 0.0009 0.022 0.0009

600 0.026 0.0005 0.026 0.0009 0.018 0.0009

650 0.022 0.0005 0.023 0.0008 0.014 0.0007

700 0.019 0.0004 0.018 0.0007 0.009 0.0006

750 0.016 0.0004 0.015 0.0006 0.009 0.0006

800 0.014 0.0004 0.014 0.0006 0.006 0.0005

850 0.012 0.0003 0.011 0.0006 0.006 0.0005

900 0.011 0.0003 0.010 0.0005 0.005 0.0004

950 0.009 0.0003 0.008 0.0005 0.003 0.0004

1000 0.008 0.0003 0.005 0.0004 0.003 0.0004

1050 0.007 0.0003 0.007 0.0004 0.002 0.0003

1100 0.006 0.0002 0.004 0.0003 0.002 0.0003

1150 0.006 0.0002 0.004 0.0003 0.001 0.0002

1200 0.005 0.0002 0.004 0.0003 0.001 0.0002

1250 0.005 0.0002 0.003 0.0003 0.001 0.0002

1300 0.004 0.0002 0.002 0.0003 0.001 0.0002

1350 0.004 0.0002 0.003 0.0003 0.000 0.0001

1400 0.003 0.0002 0.002 0.0002 0.001 0.0002

1450 0.003 0.0002 0.001 0.0002 0.000 0.0001

Time-Interval Probability
time-interval (ms)
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