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ABSTRACT

On-line radiation monitoring is essential to the U.S. Department of Enerdy)(DO
Environmental Management Science Program for assessing the impact ofinated
media at DOE sites. The goal of on-line radiation monitoring is to quicklytdates| or
abrupt changes in activity levels in the presence of a significant ambékgirband. The
focus of this research is on developing effective statistical algorithmedbthe goal of
on-line monitoring based on time-interval (time-difference between two cainge
radiation pulses) data. Compared to the more commonly used count data which are
registered in a fixed count time, time-interval data possess the potemgdltce the
sampling time required to obtain statistically sufficient information teaehanges in
radiation levels. This dissertation has been formulated into three sectiedsoethree
statistical methods: sequential probability ratio test (SPRT), Baysttistics, and
cumulative sum (CUSUM) control chart. In each section, time-interval sinddgsed on
one of the three statistical methods was investigated and compared to conlventiona
analyses based on count data in terms of average run length (ARL or average time t
detect a change in radiation levels) and detection probability with both memeal and
simulated data. The experimental data were acquired with a DGF-4CI{X)Asystem
in list mode. Simulated data were obtained by using Monte Carlo techniques to obtain a
random sampling of a Poisson process. Statistical algorithms were develogethes
statistical software package R and the programming function built in thewdalysis

environment IGOR Pro. 4.03.



Overall, the results showed that the statistical analyses based on Bmelidata
provided similar or higher detection probabilities relative to other statisthalyses
based on count data, but were able to make a quicker detection with fewer pulses at
relatively higher radiation levels. To increase the detection probadmidyurther reduce
the time needed to detect a change in radiation levels for time-intervades)aly
modifications or adjustments were proposed for each of the three chosertatatisti
methods. Parameter adjustment to the preset background level in the SPRTdest coul
reduce the average time to detect a source by 50%. Enhanced reset modification and
moving prior modification proposed for the Bayesian analysis of time-intelesldted
in a higher detection probability than the Bayesian analysis without modifisaaind
were independent of the amount of background data registered before a radioactive
source was present. The robust CUSUM control chart coupled with a modified runs rule
showed the ability to further reduce the ARL to respond to changes in radiatia level
and keep the false positive rate at a required level, e.g., about 40% shorter than the
standard time-interval CUSUM control chart at 10.0cps relative to a background count
rate of 2.0cps.

The developed statistical algorithms for time-interval data analysesndémate
the feasibility and versatility for on-line radiation monitoring. The spquioperties of
time-interval information provide an alternative for low-level radiation noomig. These
findings establish an important base for future on-line monitoring applications whe

time-interval data are registered.
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CHAPTER 1

INTRODUCTION

In the United States, radioactive contamination at Department of Ene@fy) (D
sites is a persistent health and safety issue. During World \&ad ithe Cold War, the
United States developed a complex of nuclear industrial facilities whiahloeated at
over 100 sites across 30 states and territories. Most activities conductedElanD@s
predecessor agencies (the Atomic Energy Commission, and Energy Research and
Development Administration) in these sites have been related to production argldésti
nuclear weapons. As the result of nuclear weapon-related activities, sz ardi
radioactive contaminants were introduced into the environment through a variety of
pathways, such as the release of process effluents to seepage badmstahapills, and
leaks from storage tanks and waste transfer lines. (Young and MacDonell 1999;
Palmisano and Hazen 2003).

With the end of the Cold War in the early 1990s and subsequent shutdown of
nuclear weapon production reactors, the DOE mission changed markedly to tiemedia
decommissioning and decontamination of contaminated media (including soil, sediment,
groundwater and surface water) on and around DOE sites. In 1989, the DOE'’s
environmental management science program was created by thE€dodress to reduce
threats to health and safety posed by the contaminants at DOE sites (Young and

MacDonell 1999; Palmisano and Hazen 2003; U.S. DOE 1997, 2000).



Environmental radiation monitoring at DOE sites is essential to the envinbame
management program. In the processes of cleaning up contaminated medid)yepecia
subsurface contamination, monitoring is used to support the development of conceptual
and predictive models of contaminant behavior, to demonstrate the effectiveness of
remediation actions, and to gain regulatory approval. In addition, such monitoring
information can be employed to understand the contaminant fate and transport, and can
be used to validate and revise conceptual and predictive models. Thereforateffidie
effective on-line or in-situ monitoring systems over the long term areree(w.S. DOE
2000, 2004).

Generally, the detection decision whether a radioactive source is peesade
based on a specific statistical method. The ideal goal of radiation moni®tmgiake a
decision with a zero false positive ratg Or a zero false negative raf®,(but this is
unrealistic. It is well recognized that radioactive decay is a randoregz@chich is
commonly characterized as a Poisson process when the number of nuclei is large and the
observation time is short compared with the half-life of the radioactive specie
Consequently, any radiation measurement is subject to some degree ofadtatistic
uncertainty. The inherent uncertainty in measurement results, togethshaititount
time, long distance from source to detector, and attenuation effects causelailavoi
error rates in any final decision. In practice, a proper statistietdod or technique is
chosen to minimize both types of error rate (Knoll 2010; DeVol et al. 2009). Many
statistical methods have been used for radiation monitoring. Among them, the single

interval test (SIT) which is in a form of the Shewhart control chart isntb& commonly



employed radiation monitoring procedure (Montgomery 2001). In the case of migtecti
small changes in the background radiation level, other relatively more sopédstica
methods, such as the cumulative sum (CUSUM), Bayesian statistics, and séquentia
probability ratio test (SPRT) are used (Montgomery 2001; Hughes and DeVol 2008;
Attardo 2007; Jarman et al. 2004). The focus of this research is on developing effective
statistical algorithms for the analysis of time-interval infororatwhich can be applied

to the long-term on-line radiation monitoring.

Statistical Methods for On-Line Radiation Monitoring

Single Interval Test (SIT)

For a single interval test (SIT), radiation pulses are collectedixed-fength
count time regardless of the strength of the radiation level. Then the result of the
observation--- the total or net number of pulses in this case --- is comparsithgtea
critical level (detection limit) to decide whether a radiation sourcetected. For the
comparison of net number of pulses, a commonly used detectioh dipopularized by

Currie (1968) is given by

L =ko

C a0 !

(1. 1)

wherek,, is the le. percentile of the standardized normal distribution corresponding to
the probability ofo, andoy is the standard deviation of the net signal. For example, if
a=0.05, therk,~1.65 is the 98 percentile.

If the total number of pulses is used, the detection limit is given by

3



LL=No+ L, (1. 2)

whereN is the total number of pulses coming from the background radiation level
(Jarman et al. 2004).

For on-line radiation monitoring, SIT is often performed in terms of the Shewhart
control chart on which each observed result is plotted and compared with control limits.

The chart has a center line representing the background radiation level, an uppér cont

limit which is equal toL. orL/, and a lower control limit if it is necessary. One major

disadvantage of the SIT method is that only the information contained in the newdt rec
data point is considered, and the information contained in previous data points is
disregarded. As a result, the SIT method is relatively insensitive to smiadjeshin
radiation levels while it readily detects large shifts (Montgomery 20Gardd 2007,

Walpole and Myers 1997).

Sequential Probability Ratio Test (SPRT)

The sequential probability ratio test (SPRT) is a specific method of seqjuent
analysis, developed by Abraham Wald (1952). A distinctive feature of SPRT thehat
number of observations required by the test procedure is not determined in advance.
When it is applied to statistical hypothesis testing, SPRT requires ardiddistdewer
number of observations than an equally reliable testing based on a predeterminad numbe

of observations (Wald 1952).



With a traditional hypothesis testing, such as the SIT method, after an observation
is obtained, one of two possible actions is made: accept the null hypdtiyemesccept
the alternative hypothesk4;. In other words, a final decision has to be made on the
observation no matter if the evidence is strong or ambiguous. Unlike traditional
hypothesis testing, there is a third possible action for SPRT: additional olses\at
taken until the evidence can strongly support one of the two hypotheses (Ghosh and Sen
1991).

In low-level radioactivity monitoring, a simple hypothesis test is often dedig
as: the null hypothesi#lg) that a sequence of measurements is from the background
levelrg against the alternative hypothedit Y that the measurements are from an alarm
level (background plus sourcg) For this hypothesis testing the sequential probability
ratio test is defined as follows: Ik, r;) denote the distribution of the measurement
variablex (counts or time-interval) under a certain processi(r1). For a sequence of
independent observations, X, ... X,, the probability that the n observations are

obtained whett; is true is given by

P = TOGLR) F 06, 1) (%, m) (1.3)

And the probability for the n observations obtainederH, is given by

Pon = 1t(Xyro)f(Xz’ro)---f(xn’ro ) 1.4)

At each stage of the experiment, the probabilityna/pon is computed and compared

to thresholds to make a decision. For purposeasitimal computation, the natural



logarithm of the probability ratio is commonly calated, so that the individual ratios are

additive.

In(&j = In( f(xl'rl)jﬂn( f(Xz'rl)j+...+ln(—f (X”’rl)j : (1.5)
Pon f (%, %) F (%2, 1) (% To)

Let z denote thé™ term of the ratio,

[ fO01)
z _In[f()(i’ro)j . (1. 6)

Then the sum of the ratiog, = Z z is compared to two thresholdsandB, where
i=1

B<A, to make a decision.
Ik, > A, Ho is rejectedK; is accepted),
ik, < B, Ho is accepted,
and ifB< A, < A, the test continues by taking additional obseovetiuntil a decision can

be made or the maximum observatiddgax is reached.
A andB are related to the desired false positive rateand false negative rat&,

by the following inequalities,

2
B> m(l ] . @7



These two inequalities give an upper limit foand a lower limit foB, and these limits
are commonly used as thresholds in practice. Ubiege thresholds, the actual error rates
a andp are not identical to the desired error ratgandfo. Since the desired error rates
ap andpo are normally small in practical application, tteéual error rates will be very
close to desired values (Wald 1952).

Implemented in the 1980s, the SPRT method hasdqmaied to radiation
monitoring of vehicles, personnel and packagestotear safeguards and homeland
security. SPRT has been shown to be an effectatststal method for detecting illicit
nuclear materials, such as special nuclear magd@NM) that may be used for
terrorisms (Jarman et al. 2004; York and Fehlaw188hlau et al. 1983; Fehlau 1993;
Coop 1985). In these applications, SPRT has shbevalility to shorten decision times
and improve detection probabilities. Yuan and Kar(2006) suggested that SPRT is a
promising algorithm for quick determination of fleladiation levels. With this method,
the sample size for high radiation region is redumed therefore the exposure to field
radiation surveyors could be reduced. In additidummenik and Gross (1990, 1991)
examined the properties of SPRT for rapid survedéaof off-normal operations of

nuclear plant components.

Bayesian Statistics

In the 18 century, a Presbyterian minister, Thomas Bayssdiscovered the
theorem that now bears his name (Bolstad 2007). Bayes’ theorem is experiencing a

renaissance in fields of science ranging from gstysics to genomics and in real-world



applications such as the change-point detectiguatity control system and testing of
new drugs (Malakoff 1999).

Bayesian probability statement about the underlpagmeter (mean count rate
in this case) given the datdegins with a model providing a joint probability

distribution forr andx, p(r, x) (Gelman 2004; Ellison 1996). The joint probabilityass

or density function can be written as a produdtrvaf probabilities,
P(Y p(r[ ¥ = p(r,¥= p(n) (¥ 1. (1.8)

Rearranging terms in equation (1. 8) yields anesgion fomp(r | x), the

posterior probabilitygonditional probability of obtaining the parametegiven the data

X is

p(r|x)= o(%)

This expression is known as Bayes’ theorem. In this ege,p(r) is the prior

probability of observing that is expected by the investigator before the experiment is
conducted. It is the quantitative description of what the investig@lieves based on

previous experience and knowledge. The distribupioq r)is the likelihood function

(conditional probability which defines the probability to obtain a measuremeenr.

The denominatomp(x) is referred to as the marginal distribution of the data. Iicdise of
discreter, p(x) = Z p(r) p( x| r), and for continuous, p(X) =J' p(r) p( x| r)dr. The

denominatop(x) acts as a scaling constant that normalizes the sum or intéginal area



under the posterior probability distribution. Since the denomimatatains no
information about and is a constant, it is enough to think of Bayes’ theordts in

proportional form as

p(r [ x)ec p(x] r)- p(r)- (1. 10)

And the conceptual form of Bayes’ theorem is

posterior probability oc likelihoodx prior probability .

The posterior probability is the goal of a Bayesian analifssssimmarizes the
investigator’s knowledge of the parameter given the pribefend the subsequent data
(Cherry et al. 2002).

In the case of a series of independent measuremexyssign analysis can be
conducted sequentially (Bolstad 2007; Bochud et al. 20Gfiglan appropriate
likelihood and prior probability, the posterior probability is cédted for the first
observation. For subsequent measurements, the existiegipos used as a prior and a
new posterior is computed from the Bayes’ theorem. Inthig the Bayesian inference
incorporates the new information at each measurement tbeupaiastate of knowledge
of the parameter. The result of the sequential estimation irgadept to the outcome of
the Bayesian estimate with one data containing the whole infiormfar all sequential
measurements. For both estimations, the prior has a funtiEmae since it can

potentially bias the whole Bayesian analysis process (Bd&xdd, Lee 2004).



Statistical inference can be conducted either through a cleagmaach which is
often referred to as the frequentist approach, or thrthegBayesian approach. The
primary differences between the two methods of statistic iméere in their
interpretations of concepts of probability, data, parameterfidence/credible intervals
and conclusions.

Different viewpoints of probability are the fundamental distincbetween the
two approaches. Frequentist probability is always interpretéohg-run relative
frequency: the probability of an event is the proportion oésiit would occur if the
experiment was repeated an infinite number of repetitions usheletical conditions.
Therefore, probability is calculated based on all possiborarsamples that could have
occurred, not based on the actual sample that did occlst#B@007). In contrast,
probability statements made in Bayesian framework must bgieted as “degree of
belief” based on the actual occurring data. Bayesian apprallows the state of
knowledge about anything unknown to be described in thelpyia probability
distribution. Our belief about parameters is updated throughBtheorem after the
data have been acquired (Bolstad 2007; Gelman 2004s€eboad major difference
between the two methods is about the numerical characteabtlus population
parameters. In frequentist statistics, parameters are assuimedixed but unknown
constants (Bolstad 2007). The statistical inference by freéigtemethods is based on the
statistic of random samples. For example, the mean of glisgrdistribution is used as
an unbiased estimator for the true parameter value. Ontiary, the Bayesian

approach treats parameters as unknown random variabtéthe Bayesian posterior
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distribution is calculated based on the sample data that actoallyred (Bolstad 2007).

Therefore, probability statements are allowed to be associatsdly with parameters,

which give the relative weights to each possible parameteg.vBiible 1.1 summarizes

the differences between frequentist and Bayesian statistics.

Table 1.1 Fundamental differences between frequentist Bayésian statistical

inferences. (adapted from Ellison 1996 and Moshirpour)L99

concept/term Frequentist Statistics Bayesian Statis
1.) Probability of an event: result of an 1.) Probability statement: the degree of
babil infinite series of trials under identice ~ belief about parameter(s) in light of
Hgtozilliyy conditions the data
2.) A subjective prior is not allowed 2.) A subjective prior is allowed
Parameter(s) Fixed unknown constant(s) Random wumkivariable(s)
Data Random (representative) sample Fixed

k % interval

Treatment of

nuisance paramete maximum likelihood estimate

Conclusion

Confidence interval: include the true Credible interval: k% of the possible
value of a given parameter kb of all parameter values will fall within the
possible sample intervals interval

Conditions on sufficient statistics or .
Integrates over all possible values

p(x[6) p(61x)

note: x is the data of a measuremehts the underlying true parameter(s) &id a real number.

A prior distribution that gives our belief about the possible \wbigarameters is

needed before any data are collected. There are agitae methods to assign the

prior distribution, namely, “noninformative” prior, “natural gogate” prior and

“empirical Bayes” prior (Lee 2004). The “noninformativeiqy is used when we don't

have any information and experience about the system imastigation (Bolstad

2007). The rationale for using noninformative prior distritnasics to let the data speak

11



for themselves (Gelman 2004). The second method ofingfihe prior probability is
from the natural conjugate family. Bayes’ theorem defihasthe posterior distribution
is the product of the likelihood function and the prior praligblf the posterior
distribution has the same parametric form as the prior disbiuhis property is called
conjugacy. A prior from the conjugate family makes the egton of the posterior
distribution mathematically tractable and convenient in that teeepor distribution
follows a known parametric form (Gelman 2004). With thetimod, some estimation
about the posterior inference, such as the mean and tidustaleviation for a given
problem, can be calculated directly (Lee 2004). “Empiafes” prior is the third
method of determining the prior distribution. An empirical prieambines any prior
information and the data from previous experiments (Led)20be advantage of this
method is its flexibility in using methods such as probability plgtind goodness-of-fit
tests to define the prior distribution.

Bayesian statistics has been discussed in health physics f#ezapecially in the
past two decades. A common problem in health physics ecidelwhether a
measurement differs from background when the activitgtefest is low in the presence
of dominant background. This type of decision can beenhaded on different rules
(Strom and MacLellan 2001). Bayesian statistics, which allowshe inclusion of prior
knowledge, provides a promising solution to this problem. L({1i882) first investigated
the use of Bayesian theorem in health physics. He condidareunting situation where
the net count rate can be negative using frequentist statistimgdgeof random

fluctuations, but the true result should be non-negative. Wsprgpr distribution with
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zero probability for negative results, Bayesian analysie gasitive estimates of net
rates and probability intervals which are coherent and mgfahifiittle 1982). At the
Los Alamos National Laboratory (LANL), innovative work emptty Bayes’ theorem
has been undertaken by Guthrie Miller, Harry Martz andrstf&rom 1998). Miller et al
(2002) extended the work of Little (1982) using exact maigied Poisson likelihood
functions for counting measurement processes involvinglgbaund subtraction. With
an empirical marginalized likelihood function containing more miation of the
measurement, Bayesian analysis produced a higher queditlf and avoided the work
dealing with problems associate with a negative net count (Millel 2002). In
addition, Miller et al. (1993) recommended a new analysthadebased on the
principles of Bayesian inference to determine whether as&yameasurement should be
interpreted as “positive” or “zero”. They investigated the@! of the prior distribution
on the estimates and interpretations of internal dosimetry apoged some models for
determining appropriate priors according to the availabilifgrmir knowledge (Miller et
al. 1993, 2001).

As in the field of health physics, Bayesian statistics has &eggoited in other
nuclear fields. Bayesian statistics has been applied to theiresesnt of activities of
radioactive samples (Laedermann et al. 2005; Groer ai®2®). Groer and Lo (1996)
discussed the derivation of the posterior density for thermie5'*Po concentration
based on Bayes’ theorem. From this posterior densitynéaa and variance of the
airborne’*®Po concentration were calculated. In the study, they useRbikson

distribution to characterize the buildup and decai%fo on a filter paper. Laedermann
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et al. (2005) analyzed the measurements of radioactivelessauomsing a prior determined
by assuming that the number of radiation particles emittedietedted follows the
Poisson distribution. The result from the Bayesian apprisaglways positive and a
credible interval can be easily calculated from the whole digioib of the parameter. In
addition, the result showed that the Bayesian and classicahesgimere practically
indistinguishable at higher activities. Bochud et al. (2007) illtesdrehe use of Bayesian
statistics in estimating the activity of a decaying nuclide with dtaftlife. Bayesian
statistics can produce coherent estimates and confidencealatetth less number of
measurements. In contrast, the activity estimated by the mtowal method has higher
uncertainty and is less meaningful.

Because of the ability of taking into account all sourcesoétainty, such as
random and systematic effects, Bayesian statistics hasibeéno give more accurate
estimates of uncertainties of radiation measurements (BergjiNlidfiord 2000; Kaeker
and Jones 2003; Weise et al. 2006). Using Bayesian NGarte analysis, Bergin and
Milford (2000) analyzed the data of ozone concentratidheir case studies and showed
that the estimated uncertainty at the peak concentrationfieatvely reduced. Based
on Bayes’ theorem, Weise et al. (2006) calculated Baye$iaracteristic limits such as
the detection limit and the decision threshold, which took intowadcall sources of
uncertainty. They suggested a revision of some par8®@f(International Organization
for Standardization) guide in which characteristic limits areecuily determined based

on frequentist statistics. For the expression of uncertaintyeasurements in the ISO
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guide, Kacker and Jones (2003) proposed new evaluagtimods from Bayesian
viewpoint to make the expression of uncertainty consistent.

Bayesian techniques have also been applied for redwalseggositive rates in
low-level radioactivity measurements (DeVol et al. 2009; StochMacLellan 2001).
Strom and MacLellan (2001) evaluated the actual false posdtigs for eight decision
rules as a function @ priori false positive rate and background mean. The results
indicated that Currie’s decision rule gives the poorest resdlitrenBayesian rule works
much better. DeVol et al. (2009) compared false positivdasd negative rates of
radiological data for the classical and Bayesian statistical [graoesrol chart
techniques. The results showed that the Bayesian methogay&hirRoberts (S-R)
control chart (Kenett and Pollak 1996), was the best mdtnambntrolling the number of
false positives (DeVol et al. 2009).

Additionally, Bayesian techniques have been used for ragitalbsource
detection and estimation (Morelande and Ristic 2009). Morelandédistic proposed an
algorithm based on Bayes’ theorem that can detect andadelguestimate the parameters

such as location and intensity of up to four sources.

Cumulative Sum (CUSUM) Control Chart

The CUSUM control chart was first introduced by Page 4185 an alternative
to the Shewhart chart for quality control and improvementanufacturing processes.
Instead of considering the most recent data point, the CU&M incorporates all the

information contained in the sequence of data points byradating deviations of data
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points over time. For this reason, the CUSUM chart is niteetare than Shewhart
control chart to detect small process shifts (Montgomerit 200

The CUSUM control chart is often calculated and plotted im fof the tabular
(or algorithmic) CUSUM, which is called the two-sided CUSUdirol chart. The
tabular CUSUM works by adding up deviations from a targktesthat are above target
with a statisticC", and adding up deviations from a target value that are balget
with another statisticC". The statisticC" is called one-sided upper CUSUM statistic and
C is called one-sided lower CUSUM statistic. For a process, lietthe™ observation
that has a mean valugwhen the process is in control. The mean veliseoften

referred to the target value. The statis@ésandC are given by

C" =max[0,x — k+ G, ] ()1

C =max[0k-x+ G, ] ()

where the starting values for the standard CUSUM conteot eneC, = C, =0, kis the

reference value and is also called the allowance or sldw& (dontgomery 2001). The
reference valu& is chosen carefully to optimize the response to a shift &o in-control
mean value, to an out-of-control mean valug (Attardo 2007; Holdbrook 2001). For
the case of normally distributed observations, it is oftes@mabout the halfway

betweerr,andrg;

(1. 13)
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At each observation, after calculating @& andC;", a decision interval valué, is
needed to make a decision whether the process is outtodicdf eitherC;" or G’

exceedd, the process is considered to be out of control (Montgp2@01).

In practice, people prefer to standardize the varialidgx _X7h whereo is
o

the standard deviation of the process.
C'=max[0,X - K+ C,] (1. 14)

C =max[0K — X+ C,] (1. 15)

wherek is the reference value for the standardized CUSUM. Tihgaeship between
k' andkisk = k/o . Here, the decision interval value is defined th’handh = h/ o .
For radiation monitoring, the most commonly used applicatiotieisletection of
an increase in count rate or the detection of a decrediseesinterval. Thus, a one-sided
CUSUM control chart is often employed. The CUSUM contralrtks usually evaluated
by calculating its average run length (ARL), which is the ayemumber of observations
taken before an out-of-control signal is triggered. Ide#tly, ARL should be long when
the process is in control and short when the process & oantrol (Lucas 1985).
Because of its effectiveness to detect small shifts, particitarsample size of
n=1, and relative simplicity, the CUSUM control chart is a goandidate for
environmental monitoring. For instance, it has been applieeélicowreservoir
monitoring for chemical contaminants in groundwater and seifater (Gibbons 1999;

Manly and MacKenzie 2000). In 1977, Marshall suggeitedise of cumulative sum
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charts for monitoring the background radiation level froradiachemical counter.
According to the study, the CUSUM charts could detect @lwhgnges in the count rate
of the order of one standard deviation (Marshall 197 %) cBant data such as the number
of radiation interactions registered in a detector, Lucas j198%ided more detailed
information about the implementation of the CUSUM control chitis paper, a

Poisson CUSUM in which the number of counts per sampliregMal is modeled by the
Poisson distribution, and time-between-events CUSUM weragfied in terms of
determining thé& andh values for general scenarios. He suggested that time-dyetwe
events CUSUM could be used when it is possible to recorddtigrence time for each
event (Lucas 1985). Most recently, the CUSUM chartiessn exploited for on-line
radiation monitoring of low level radioactivity in environmentdusions, and
unauthorized nuclear materials for homeland security ifesignd DeVol 2008; Attardo
2007). To improve the sensitivity of the CUSUM for the psxcthat an out-of-control
situation occurs at start-up, Lucas and Crosier (1982@&etkthe fast initial response
(FIR) CUSUM. The FIR CUSUM sefts, equal to some nonzero value instead of zero in
the standard CUSUM (Lucas and Crosier 1982a). In additiozas and Crosier (1982hb)
proposed the robust CUSUM by using the two-in-a-row rubectmunt for the extreme

observations obtained in count data (Lucas and Crosi@b).98

Time-Interval Distribution

The Poisson distribution characterizes the random natuegliofactive decay

when the probability of decay of a single atom during oladiem is much less than one.

18



For a Poisson process, the probabH{yn)for observingndecaysif=0, 1, 2, ...)ina

time intervalt is given by (Evans 1955; ICRU 1994)

wm:%%iw . (1. 15)

The term ‘time-interval’ refers to the time difference betweemconsecutive
pulses. In time-interval distribution analysis the time-interval itherft), is usually
employed to characterize the distribution. The probability ohthe event taking place
in dt after a delay of timeésince the last event is denoted(@®slt. For the Poisson

distribution, the probability for the next event to occudiis:
f (t)dt =re "dt (1. 16)

wheree " is the probability of no events during time from time 0 tartf80 (ICRU
1994).By taking the effect of dead time into account, a theoretiqgaiession of the
time-interval density for non-paralysable spectrometer witaonary source has been

established,
f(t)dt=U(t—7)re " "dt (1.17)

in which U (t) is a unit step function, andis the dead time (Pomme 1999).

From equation (1. 16), the average time interval is,
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j:’tf (t)dt i j:tre’”dt 1

f= 1
| : f (t)dt 1 r (1.18)

As expected, the average time interval is equal to the reaipybthe count rate. Shown
in Figure 1.1 are three theoretical time-interval densities fterdiit mean count rates,
We note that short time-interval has a higher probability thanof relatively long time-
interval and a higher count rate results in a higher pilityatf short time intervals. The
short time-interval results in a larger difference in time-infesteasities between two

count rates.
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Figure 1.1. Theoretical time-interval densities (eq. 1.16)rektlcounting processes,
2 cps, 4cps and 8 cps.
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From equation (1. 16), time-interval probabilipft) for the Poisson distribution
is derived. The distributiop(t) gives the probability of a time-interviain which one or

more radiation pulses can be observed:

pit)=1-e™". (1. 19)

Figure 1.2 shows the theoretical time-interval probabilities feetkifferent count rates.
We can see that time-interval distribution patterns are similar $e ttwown in Figure
1.1. The probability of short time-intervals is higher than dféng time intervals for

all counting processes.
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Figure 1.2. Theoretical time-interval probability distributions (8d.9) of three
counting processes, 2c¢ps, 4cps and 8cps.

When a digital “scaler” is employed to produce one outpuepuhdy afteiN

input pulses have been registered, the time-interval betweestaied output pulses is
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called a “scaled” time-interval. The distribution of scaled timerirals for the Possion

process is

(rt) N—1e—rt

1, (t)-dt= N

r-dt, (1. 20)

in whichN is the number of input pulses in the time inteauadlt is the time needed to
record these pulses (Evans 1955). Figure 1.3 shavexample of the distributions of

scaled time-intervals.

0.40
035 ; , . \ .... ........... S 2 Cps

030 [ ° N .
025 [+ &\ N=2
0.20 [, ; \ A
0.15 l N
0.10 §;
0.05

0.00 S N I A S A B A I A B L. . BT S T A S I )

In(t)/r

r=s
7/

T

0 200 400 600 800 1000 1200 1400 1600 1800

scaled time interval (ms)

Figure 1.3. The scaled time-interval distributioithaN=2 for count rate 2cps and
5cps, respectively.

In radiation monitoring, data can be collectedesithy integrating the number of
pulses registered by the detector during a givemicmterval or by recording the arrival
time stamp of each registered pulse. The formehaoakis widely used because of its

simplicity.
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When a radioactive source is present, it wouldltésa significant change in the
time-interval distribution at the background lewespecially for short time-intervals. This
special property of time-interval distribution Haeen applied to several problems. By
limiting time-intervals to a pre-assigned rangeaddjelovic et al. (2002) developed an
algorithm for preset count digital-rate meter tpmess statistical fluctuations of mean
count rate measurements. Baeten et al. (1998)eabine-interval analysis to neutron
multiplicity measurements which offers high sensiyifor the assay of Pu-bearing waste
drums. Dowdy et al. (1978) devised a neutron detexttitcase based on S-fold time-
interval measurements to detect transients of aetgmitting radioactive materials.

In our research, we focus on using time-intervednmation derived from the
arrival times of each registered pulse for radratiwonitoring. Three statistical methods,
SPRT, Bayesian statistics, and CUSUM, are applietrfee-interval analyses.
Advantages and disadvantages of the three timevaitmethods will be compared to the
commonly used count information in a fixed countdi In addition, the performances of
the three methods based on time-interval datacargared to the classical SIT method

in terms of ARL, false positive and false negatiates.

Research Objectives

The overall objective of this research projecbisi¢velop time-interval based
statistical methods and techniques for on-lineatan monitoring. Registering time-
interval data possesses the potential to reducsatimg@ling time required to obtain

sufficient information to detect abrupt changesadiation levels. The research proposed
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herein is divided into three sections. Based orfuhdamental experimental study of the
time-interval distribution, three statistical metlsd SPRT, Bayesian statistics, and
CUSUM) are applied to time-interval data analysegddiation monitoring. The three
methods for time-interval analyses are chosen baséldeir common characteristics of
incorporating previous information into the decrsimaking. The potential advantages of
collecting time-interval information for radiationonitoring will be evaluated for the
three methods and compared to a conventionaltstatimethod. The details for each

section are listed as following.

Objective 1. Apply the sequential probability ratio (SPRT) tesbn-line radiation
monitoring by using the scaled time-interval asralependent variable, and evaluate its
advantages/disadvantages relative to conventidPBITSn which observations are
obtained in a fixed count time.

Utilization of scaled time-interval in SPRT is irstiggated as an alternative to
conventional fixed count time analysis with expesntal and simulated data. SPRT is
used as the decision-making algorithm because @fetl-known property to minimize
the average sampling size (i.e. decision timeyémuentially acquired observations. The
performance of the scaled time-interval based SiBRValuated in terms of estimated
time to decision and detection probability f}-against commonly used single-interval
test (SIT) and SPRT with a fixed count time. Fumthere, adjustments of parameters in
SPRT are investigated to give better performanceesting the specified statistical

requirements.
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Objective 2: Analyze time-interval observations using Bayeseahniques and
investigate advantages of time-interval informafiondistinguishing small changes in
the background radiation level for on-line monibgyi

Bayesian statistics is fundamentally different frbra frequentist statistics.
Bayesian inference treats parameters as randonownkwariables, and uses a
probability density to reflect the state of knowdedabout plausible parameter values.
Bayesian approach allovespriori information about the parameter, such as theottc
rate and background, to be included in statistidalence. Data are collected to update
or modify the prior distribution to obtain the pesor distribution for the unknown
parameter based Bayes’ theorem. By analyzing titexvals of on-line monitoring data,
it is expected that a change in the backgroundeastetected with low false positive

rate.

Objective 3. Use the cumulative sum (CUSUM) method to analyne4interval data for
on-line radiation monitoring and compare its adages to those of CUSUM with count
data and Shewhart control chart.

The CUSUM method is a classical technique that delyiused for industrial
guality control. The major property of the CUSUMthned is the ability to incorporate
information contained in a previous sequence oéotaions. The CUSUM tracks
cumulative sums of the deviations of the obserwstioom a target value (the
background, for example) to detect an abrupt changee background. This method is
promising for low-level radiation monitoring in wal a small and steady increase in

radiation level happens in the presence of a sagmf ambient background.
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Overview

Time-interval analyses based on each of the tHresan statistical methods were
investigated with experimental data and simulatd.dThe results are presented in the
next three chapters as individual papers and tther @f presentation follows the order of
the research objectives. In chapter 2, the studseguential probability ratio test (SPRT)
of scaled time-interval data are summarized. A p&iped “Sequential probability ratio
test using scaled time-intervals for environmerddiation monitoring” by P. Luo, T. A.
DeVol, and J. L. Sharp has been published inHig= Transactions on Nuclear Science
vol. 57, No. 3 (2010) 1556-1562. Chapter 3 presttr@sesults of Bayesian analysis of
time-interval data. A paper titled “Bayesian anaysf time-interval data for
environmental radiation monitoring” by P. Luo, J.8harp, and T. A. DeVol has been
submitted tdEEE Transactions on Nuclear Scierfoe review. Chapter 4 summarizes
the results of cumulative sum (CUSUM) analysesrogtinterval data for radiation
monitoring. A paper titled “CUSUM analysis of timetérval data for on-line radiation
monitoring” by P. Luo, T. A. DeVol, and J. L. Shdras been submitted to the Health
Physics Journal. Finally, a brief summary of thganfindings in this research is
provided in chapter 5 with a prospective plan ¢fifa work on time-interval analyses.
Other results that are not included in the mainybafdhe dissertation are given in the
appendices, as well as experimental data relatiexperimental results and a part of

important computer code developed for this research
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CHAPTER 2

SEQUENTIAL PROBABILITY RATIO TEST USING SCALED
TIME-INTERVALS FOR ENVIRONMENTAL RADIATION

MONITORING

Abstract

Sequential probability ratio test (SPRT) of scdletk-interval data (time to
recordN radiation pulses), SPRT_scaled, was evaluateshstggsmmonly used single-
interval test (SIT) and SPRT with a fixed countintgrval, SPRT _fixed, on experimental
and simulated data. Experimental data were acquitda DGF-4C (XIA, Inc) system
in list mode. Simulated time-interval data wereaifd using Monte Carlo techniques to
perform a random radiation sampling of the Poig#istribution. The three methods (SIT,
SPRT_fixed and SPRT_scaled) were compared in tefmstection probability and
average time to make a decision regarding the safrcadiation. For both experimental
and simulated data, SPRT_scaled provided simil@cten probabilities as other tests,
but was able to make a quicker decision with fepudses at relatively higher radiation
levels. SPRT_scaled has a provision for varyingstirapling time depending on the
radiation level, which could further shorten thedineeded for radiation monitoring.
Parameter adjustments to the SPRT_scaled methatcfeased detection probability are

discussed.
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Introduction

Subsurface contamination by anthropogenic radioteglat United States
Department of Energy (DOE) sites is a persistedtvaxing problem for the DOE’s
Environmental Management Science Program. As agratied component, on-line
environmental radiation monitoring is essentiaht® environmental management
program. In the processes of cleaning up contaeuhatedia, long-term environmental
radiation monitoring is required to support thee@lepment of conceptual and predictive
models of contaminant behavior, to demonstratetteetiveness of remediation actions,
and to gain regulatory approval (U.S. DOE 2000,20The goal of on-line
environmental radiation monitoring is to quicklytelet small changes in activity levels in
the presence of a significant ambient backgrourydsdhsing the gradual or abrupt
change in the radiation level, a final decision \wé made to conclude whether a
radiation source is present. Ideally, we want t&ermdecision with no false positives
(Type | error) or false negatives (Type Il errdmyf this is unrealistic. It is well
recognized that radioactive decay is a random goaich is commonly characterized
by the Poisson distribution or Gaussian distributiGonsequently, the inherent
uncertainty in measurement causes unavoidable rates in any final decision (Knoll
2010; ICRU 1994). In practice, a proper statistrnathod or technique is chosen to
minimize both Type | and Type Il errors.

A typical statistical method used in radiation monng is the single-interval test
(SIT) (Jarman et al. 2004). SIT accumulates raaliatounts over a fixed-length counting

interval, and compares the resulting counts or tmates to a single critical level. SIT
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can be conducted easily, but it is relatively irssegve to small changes in radiation
levels. Therefore, more sophisticated statisticathmods or techniques have been
developed and adopted to detect small changesliatian levels. For example, Marshall
suggested the use of cumulative sum control c@ttssUM) for monitoring the
background radiation level from a radiochemicalrdeu (Marshall 1977).
Apostolopoulos employed maximum likelihood techms|as an on-line statistical
processing method to improve the response of iadiaite meters (Apostolopoulos
2008). Fehlau, Jarman and Coop applied the sealipndbability ratio test (SPRT) in
portal monitors (Jarman et al. 2004; York and Fell@d97; Coop 1985).

SPRT is a specific statistical method of sequeatialysis developed by
Abraham Wald. A distinctive feature of SPRT is ttret number of observations required
by the test procedure is not determined in advanten SPRT is applied to statistical
hypothesis testing, SPRT requires a substantiediief number of observations than an
equally reliable test based on a predetermined euwifobservations (Wald 1952).
Implemented in the 1980s, SPRT has been applietitation monitoring of vehicles,
personnel and packages for nuclear safeguardsanédland security. SPRT is an
effective statistical method for detecting illiaticlear materials, such as special nuclear
materials (SNM) (Jarman et al. 2004; York and Fehl@@i7; Fehlau et al. 1983; Fehlau
1993; Coop 1985). In these applications, SPRT kas Bhown to have the ability to
shorten decision times and improve detection pritibab. Yuan and Kernan suggested
that SPRT is a promising algorithm for quick deteration of radiation levels in the field

(Yuan and Kernan 2006). With this method, the samspe for high radiation region is
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reduced and therefore the exposure to field ramhagurveyors could be reduced. In
addition, Humenik and Gross examined SPRT for rapideillance of off-normal
operations of nuclear plant components (Humenik@rass 1990; Gross and Humenik
1991).

When applying a statistical method to analyze tazhadata from a detector
system, there are two distinct ways to look atdé: either the radiation counts
registered in a fixed counting interval or the ticiference between adjacent pulses
(time-interval) is used for the analysis. The fornmethod is technically easier to handle
and it is the most common way to analyze radiadiaa. Time-interval distribution has
been applied to several problems. By limiting tim&rvals to a pre-assigned range,
Arandjelovic et al. developed an algorithm for gtesount digital-rate meters to suppress
statistical fluctuations of mean count rate measeards (Arandjelovic et al. 2002).
Baeten et al. applied time-interval analysis totreumultiplicity measurements which
offered high sensitivity for the assay of Pu-begivaste drums (Baeten et al. 1998).
Dowdy et al. devised a neutron detection systeracaa S-fold time-interval
measurements to detect transients of neutron-egutidioactive materials (Fehlau et al.
1983; Dowdy et al. 1978).

Registering counts in a fixed counting interval aegistering time-intervals
provide us with two different data sampling metholdse time needed to record a
statistically significant number of pulses couldd®rter than counting for a fixed
counting interval. Therefore, registering time-mtds possesses the potential to reduce

the sampling time required to obtain sufficienbmmhation to detect abrupt changes in
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radiation levels. In this study, we investigate tharacteristics of time-interval
distributions, and use time-interval informatiorctinduct the SPRT of on-line radiation
monitoring data. In addition, we evaluate advandaayed disadvantages of the time-
interval based SPRT (SPRT _scaled) compared tootimenonly used SIT and traditional

SPRT with a fixed counting interval (SPRT_fixed).

Theory and Methods

Time-interval Distribution

The Poisson distribution characterizes the randatura of radioactive decay
when the probability of decay of a single atom dgmbservation is much less than one.
For a Poisson process, the probabM{yn)for observingn decaysif=0, 1, 2, ...) in a
time intervalt is given by

P(m)zﬂe’” : (2. 1)
m!

wherer is the mean count rate (Knoll 2010; ICRU 1994).

The term ‘time-interval’ refers to the time diffeee between two consecutive
pulses. In time-interval distribution analysis thee-interval densityi(t), is usually
employed to characterize the distribution. The pllity of the next event taking place
in dt after a delay of timésince the last event is denoted(@®sdt. For the Poisson

distribution, the probability for the next eventdocur indt is:

f(t)dt=re"dt |, (2.2)
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wheree " is the probability of no events from time Ott@ndr, t > 0 (Knoll 2010; ICRU
report 52 1994).

When a digital “scaler” is employed to produce ongut pulse only afteX
input pulses have been registered, the time-intéetaveen two scaled output pulses is
called a “scaled” time-interval. The distributiohscaled time-intervals for the Possion

process is,

(rt)Nflefrt

|, (t)-dt= N

rodt (2. 3)

in which N is the number of the input pulses in the timerirdgkandt is the time needed
to record these pulses (Knoll 2010). Figure 2..nshan example of the distributions of

scaled time-intervals.
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Figure 2.1. The scaled time-interval distributioithwN=2 input pulses for mean
count rate 2 cps and 5 cps, respectively.
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Single Interval Test

Single interval test (SIT) is a typical method ugedadiation detection. For SIT,
radiation pulses are collected in a fixed countmgrval regardless of the strength of the
radiation level. The result of the observatiothe total or net number of pulses --- is
compared to a single critical level to decide wketlhradiation source is detected. If the
net number of radiation pulses is used for thesil@eimaking, the critical level is given
as:

L. =k, o, , (2. 4)

wherek, is the le. percentile of the standardized normal distributorresponding to

probabilitya,, andoy is the standard deviation of the net signal. dftittal number of
pulses is used, the critical level is given by

Ll =N,+L, , (2. 5)
whereNp is the total number of radiation pulses comingrfiihe background level
(Jarman et al. 2004). In this study, the desirézkfpositive ratey is set at 0.05. Thus,
k,, ~1.645.

For on-line radiation monitoring, SIT is often pmrhed in terms of the Shewhart
control chart on which each observed result istptband compared with control limits.
The chart has a line representing the backgroutidtian level, an upper control limit at
L/, and a lower control limit if necessary. One majsiadvantage of the Shewhart chart

is that only the information contained in the m@stent data point is considered, and the

information contained in previous data points seljarded. As a result, the SIT method
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is relatively insensitive to small changes in rédialevels while it readily detects large

shifts (Montgomery 2001).

Sequential Probability Ratio Test (SPRT)

With traditional hypothesis testing, such as the @kethod, after an observation
is obtained, one of two possible actions is madeejat the null hypotheses {fbr accept
the alternative hypothesis {HIn other words, a final decision is made on the
observation no matter if the evidence is strongrbiguous. Unlike traditional
hypothesis testing, there is a third possible adiwo the SPRT: additional observations
will be taken until the evidence can strongly suppoe of the two hypotheses (Ghosh
and Sen 1991). The sequential probability ratibitedefined as follows. Le¢ represent
the result (counts in a fixed counting time, foample) for the™ observation, anti(x;)
denote the probability density of the variakl€;(x) = P(k) as given in equation (2.1),
for example) under the hypothesgsjHO or 1 (background vs. alarm, for example). At
each observation, a probability rati@«)/ fo(x) is calculated. The sum of the probability
ratios from previous observations is compared wttwesholds to make a decisiéor
simplicity, a natural logarithm of the probabilitgtio is commonly calculated for the
tested quantity, so that the individual ratiosadditive. Letz denote the natural
logarithm of the ratio,

2 - |[f<>j (2. 6)

fo ()

34



Then the sum of the ratiog, _ g 2 1S compared to two thresholdsandB, where
n . 1
=1

B<A, to make a decision.
Ifx, > A, Holis rejected.
If A, <B, Hois accepted.
If B<2, <A, the test continues by taking additional obseovetiuntil a decision can be
made or the maximum observatioNg,y is reached.
ThresholdsA andB are related to the desired false positive satand false

negative rat@, (Wald 1952). They are given by

A '”[1;50] . 2.7)

These two inequalities give an upper limit foand a lower limit foB, and these
limits are commonly used as thresholds in practitseng the limits as the thresholds, the
actual error rateg andp are not identical to the desired error ratgandpo, but they are
very close to the desired values (Wald 1952).

In radiation monitoring, SPRT tests the hypothé@dig that a sequence of
measurements is from the background leyeinly against the hypothesis)Hhat the
measurement sequence is from an alarm lgyelhich indicates the presence of a

radiation source. Here, the alarm level is setlavel that the false negative ratis

which is given by (2.5) based on the desimg@ndpo. When SPRT _fixed is conducted,
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the observation is the count of registered radigpiolsesg, in a fixed counting interval.

Thus, the natural logarithm of the ragas calculated by

z; = ¢ -In(ry/ro) + (ro — 1)t (2.8)

wheret is the length of the counting interval for eaclsefvation.
When scaled time-intervals are used for SPRT_scHiedbservation is the time-

interval,t;, for observingN input radiation pulses. Consequen#yis given by

z,=(N=DIn(r,/rg) +(ro =)t - 3.9

Compared to (2.8), the difference in calculating pinobability ratios at each observation
is that the observable variation is different fog two sequential tests. Single interval

test (SIT) is a typical quantification method usedadiation measurements.

Experimental Instruments and Simulation

Figure 2.2 shows the schematic diagram of the tiadiacquisition system used
for experimental data. Beta radiation fronff@&r%f source (~3700 Bq each,
Ena=0.55MeV/2.3 MeV) was detected using a G-M detectbe dutput from an
amplifier (ORTEC model 572) was sent to a DGF-4QGlate (XIA, Inc) where it was
digitized at a rate of 40 MHz with 16-bit precisidrhe DGF-4C module was connected
to a Pentium 1V, 2.3 GHz host computer throughravdg 73A crate controller and
controlled through a graphical user interface, D&&Fviewer 3.05. The DGF-4C viewer

3.05 runs specifically under an interactive prograng and data analysis environment,
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IGOR Pro. 4.03 (XIA 2004; Chandrikamohan and DeX@07; Skulski and Momayezi
2001). Using list mode, a binary output file contag time stamp information was
prepared by the DGF-4C module for off-line analy$ise time resolution is 25ns. Based
on a special built-in function in the IGOR Prog tbsolute time stamp of each input
pulse was extracted from the list mode data. Tinmbervals or scaled time-intervals were
obtained to conduct SPRT. By adjusting the distdrara the source to the detector,
experimental data for low level radiation (2-10cp®ye acquired. At each radiation
level, about 25,000 radiation pulses were regidtemgrovide for a good general

comparison among the methods.

High Voltage TEKTRONIX Model 465

CAMAC
Crate

Jorway 73A

Figure 2.2. Schematic diagram of CAMAC module base-interval acquisition
system.

In addition, a Monte Carlo method was employed nausate a random radiation

sampling based on the density function of timeriwrdkdistributions. The simulation is
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conducted through a program written in IGOR Prahksimulation, the arriving time of
each pulse is a random process governed by thantereal distribution described in
(2.2). According to the arriving time informatiosimulated scaled time-intervals were
extracted for the SPRT test. At each radiationl|eM@ random pulses were simulated.
Compared to experimental acquisition, simulatioa rapid and convenient means to
compare the three methods. To registérrafliation pulses at low count rate levels, the
simulation can be done within a few minutes, wihie experimental data collection takes
hours to days depending on the count rate.

The same experimental and simulated data setsuserkto evaluate the SIT,
SPRT_fixed, and SPRT_scaled methods. The fixedtcauimterval is 6s for SIT and 1s
for SPRT_fixed. The performances of the three nathwere evaluated in terms of
estimated time to decision and detection probagklit 3), wherep is the actual false
negative rate. It should be noted that the fixaghtiog time for SIT and SPRT _fixed are
arbitrary. A proper fixed counting time should ketefmined based on a real application.
Since time-intervals and counts in a fixed countimtgrval provide two distinct ways for
radiation data analyses, a fair comparison betv@#RT_scaled and SPRT _fixed is not
practical. In this study, we provide insight on #tvantages and disadvantages of these

two methods.

Results and Discussion

Experimental results were used to study the chamatits of scaled time-

intervals and the SPRT with scaled time-intervdiiievthe simulated radiation data were
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used to investigate the possibilities and effet{sapameter adjustments on the results

from the SPRT_scaled method.

Experimental SPRT Results

The experimental detection probabilities [§)for different radiation levels are
shown in Figure 2.3. The average background caiatis 2.0cps. The probabilitieg
andppare set at 0.05. Correspondingly, the alarm rauidevel for the SPRT testing is
4.35cps. Based on (2.A52.94 andB=-2.94 are used for the two thresholdg«=16 for
both types of SPRT methods. Unless otherwise spdcihese are the parameters used in
all analyses presented in this paper. For the ddetree-interval based SPRT telNt4
and 6 input pulses are presented.

Generally, SPRT_scaled has similar performanchabdf SIT and SPRT _fixed.
For radiation levels around the background levBeR$_scaled results in a very low
detection probability relative to other methodst &xample, at the mean count rate of
about 2cps, the detection probability is about #2f6r SIT, 3.3% for SPRT_fixed, and
0.04% for SPRT_scaled. At greater than 2.5 times#tkground count rate, all three
methods have essentially the same detection prdegbiFor a count rate between the
background and 2.5 times the background, the detegtobability of SPRT_scaled is

relatively lower than that of others.
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Figure 2.3. Detection probability for experimentkita. Each point is obtained by
analyzing about 25,000 registered pulses.

Figure 2.4 shows the average time to make a decismg SPRT_fixed and
SPRT_scaled. This time is fixed at 6s for the SBthod. For a low radiation level,
SPRT_scaled needs more time than that of SPRT_fixethke a decision. As the
radiation level reaches a higher level, the avedmgesion time needed for SPRT_scaled
is close to that of SPRT _fixed. In addition, themge decision time varies with the size
of scaled pulsed$y. In the low radiation range, more time is needethéke a detection

decision for higheN.
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Figure 2.4. Average decision time for experimedtdh. The decision time for SIT is
always 6s in this case.

Simulated SPRT Results

Figure 2.5 and Figure 2.6 illustrate the detecfiobability and average decision
time obtained from simulated data. Results fromusated data are consistent with the
results from the experimental data. The simulaetdaion probability results presented
in Figure 2.5 indicate that simulation is a reasdmavay to study the sensitivity of scaled
time-intervals for radiation monitoring. In Figu2e6, when the radiation level reaches a
certain high level (>10 cps with this data), therage decision time for SPRT_scaled
becomes less than that of SPRT_fixed.

In the study of parameter adjustments, we use siedildata to investigate the
effects ofNmax A, andB on the detection probability and the average tionmake a

decision focusing on the SPRT_scaled method. Nast&dent is performed for
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SPRT_fixed. SPRT_fixed is used as a referencestalize the effects of parameter

adjustments to SPRT_scaled.
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Figure 2.5. Detection probability for simulated alaEach point is obtained by
analyzing 18 simulated registered pulses.
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Figure 2.6. Average decision time for simulatedaddihe decision time for SIT is
always 6s in this case.
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Parameter Adjustments

Figures 2.4 and 2.6 show that the average dedisianfor radiation levels
between the background and the alarm level of BRRTS scaled method is longer than
that of SPRT _fixed and SIT methods. And the deiagtrobabilities in this range are
lower than that of SIT and SPRT _fixed. For the sasavhich higher detection
probabilities and shorter decision times are th@any concerns, an improvement is
needed.

In the practice of the SPRT testing, a truncattoaitegy is commonly used to
reduce the average decision time. That is, thesaecusing SPRT is forced when the test
has not reached a decision by a given time or ginenber of observationbl,.x (Jarman
et al. 2004). The choice of a propérax depends on the time limit that can be tolerated in
the practice.

Figure 2.7 gives the results of the truncationsgyaby setting the maximum
observationsNmax at 4.Nma=4 is less than the average number of observatieeded for
SPRT method to make a decision at a radiation lest@leen the background and the
alarm level. In previous resultdnaxwas set at 16. Compared to Figure 2.6, it is alsvio
that the average time to make a decision is redwsgecially in the range of low radiation
levels. However, the detection probabilities carb@trastically improved as shown in

Figure 2.8.
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Figure 2.7. Average detection time for truncatitmtegy whemNno=4. SPRT _fixed
is the same as in Figure 2.6 and it is used afeeeree.
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Figure 2.8. Average decision time of SPRT_scaleith W=6 input pulses for two
different maximum observationSi,,=4 andNmna=16.

ThresholdsA andB can be adjusted to give desired error rates hlieutxact

determination of thresholds is usually laboriousa(fV1952). Figure 2.9 shows an example
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of the detection probability for adjusting threshal With a smalleA value, the actual

error ratef} at the alarm level is reduced while the actuareateo at the ground level is
increased. Even though the detection probabilitydeeased, the detection probability of
SPRT_scaled is still lower than that of SIT and $PRed. On the contrary, when a larger

B value is used as the threshold, the adiwalthe alarm level is increased while the actual

ratea at the background level is reduced.
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Figure 2.9. Detection probability for the adjustmehA from 2.9 to 1.0 = 4 input

pulses). SIT and SPRT_fixed are the same as inéigb, and they are
used as references.

An adjustment ofry (2.9) was investigated to consider the changehef detection
probability and the average decision time. Herés treated as a parameter only in the
SPRT algorithm, not a variable in a real experiméjures 2.10 and 2.11 illustrate an

example of the adjustment of the preset backgrdewed (o). The hypothesis is that if one
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can shift the detection probability curve to thi tee detection probability will increase.
With ro=2 cps,a was much lower than expected wifllevas higher than expected. Figure
2.10 shows the effect of theadjustment with different values fbi= 6 input pulses. With

a smallerr; value to replace the pregegt the detection probability curve is further shifte
to the left. This means that the detection prolighd higher, especially for relatively low
radiation levels. Figure 2.11 shows the averagasidectime for SPRT_scaled with
differentN whenro=1.0 cps is used to replace the preset backgroyn®,0 cps. Except
for the radiation level around the background,aterage decision time for SPRT_scaled
is less than that of SPRT_fixed. As shown in Fig@rg&0, the error ratex for this
adjustment is also increased with the shift ofdeeection curve. This implies that there is a
compromise between the amount of the shift anddleeable error rates. Thus,andf
can be made closer to the expected value of 0.0fhéadjustment ofy in the SPRT

algorithm.
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Figure 2.10. Detection probabilities of the adjuestits of 5 in the SPRT algorithm for
ratio calculations wherny= 0.5 cps, 1.0 cps and 1.5 cps, respectivigty (
6). The SPRT_fixed method is the same as in Figiie
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Figure 2.11. Average time withy= 1.0 cps in the ratio calculation for SPRT_scaled
with N=4 and 6 input pulses.
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Conclusion

For radiation monitoring in which radiation dat@ abtained sequentially, the
time difference between two consecutive pulsesales outputs can be extracted easily.
The specific features of time-interval distributiprovide an alternative way to analyze
on-line sequential data. With a proper statistiocathod, time-interval information can
provide another effective way for on-line radiatimonitoring. According to this study,
the SPRT with scaled time-interval information Isadilar performance to SIT and the
SPRT with a fixed counting interval at lower couatties, but delivered a faster response
when the count rate reached a certain high lemeddtlition, parameters in SPRT are able
to be adjusted for different specifications. Conéd investigation of the use of the time-

interval distribution by applying other statisticakthods or techniques is valuable.
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CHAPTER 3

BAYESIAN ANALYSIS OF TIME-INTERVAL DATA FOR

ENVIRONMENTAL RADIATION MONITORING

Abstract

Time-interval (time difference between two consa®upulses) analysis based on
the principles of Bayesian inference was compargh fnrequentist methods to determine
the method with the highest detection probabilitg ¢he best average run length. Using
experimental and simulated data, Bayesian anabysime-intervals (Bayesian (ti)) was
compared with Bayesian and frequentist analyseswfits in a fixed count time
(Bayesian (cnt) and 1.65respectively). Experimental data were acquired WiGF-4C
(XIA, Inc) system in list mode. Simulated data wel#ained using Monte Carlo
techniques to obtain a random sampling of the Boigsstribution. All statistical
algorithms were developed using R (R Core Develaprieam, 2010). Detection
probabilities and average run lengths for the tine¢hods were compared. Bayesian
analysis of time-interval information provided angar detection probability as Bayesian
analysis of count information, but was able to makkecision with fewer pulses at
relatively higher radiation levels. In additionr the cases with very short presence of the
source (< count time), time-interval informatiomi®re sensitive to detect a change than
count information since the source data is averagdtie background data in the entire
count time. The relationships of the source tinmange points and modifications to the

Bayesian approach for increasing detection proibglhite presented.
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Introduction

On-line environmental radiation monitoring is ess@ro the U.S. Department of
Energy (DOE) Environmental Management Science Pnodoa cleaning up
contaminated media at DOE sites (U.S. DOE 2004did&an monitoring also plays an
important role in monitoring the presence of unautted nuclear materials and locating
a lost or stolen radioactive source (Panofsky 200B¢ goal of on-line radiation
monitoring is to quickly detect small or abrupt ngas in activity levels in the presence
of significant ambient background. An on-line rdaia monitoring system should satisfy
the following basic requirements: i) perform roetimonitoring properly in the long-term
with the least number of false positives; ii) quyctetect changes in radiation levels with
the least number of false negatives; iii) haverglaverage run length (ARL) when the
radiation level is at the background level and@tsARL when the radiation level
changes to an elevated level. In the case of loetledioactivity, two factors make
distinguishing between a radioactive source andrabbackground particularly difficult.
First, because of the random nature of the radiwgadecay, the number of emitted
particles and the number of particles registereal detector follows the Poisson
distribution, resulting in inherent uncertaintythe number of recorded counts. Second,
radiation monitoring is usually performed in a matbackground that also involves
counts from natural radionuclide in the environmemd cosmic radiation (Laedermann
et al. 2005). Radiation monitoring becomes evenencomplex as a radioactive source is
contained in a moving medium, shielded by non-ractive materials, or occurs at a

relatively long distance away from the detectorn§&muently, there is a finite probability
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that unavoidable errors are associated with amgctleh decision. In practice, a proper
statistical method or technique is chosen to minenthe rates of each type of error.

A conventional radiation monitoring method basectlassical statistics involves
setting a decision leveD() for a given false positive rate). A monitoring result
(counts or count rate) is then compared to thesawtievel. If the value of the result is
greater than the decision level, then one makedehision that there is activity present
above the background. Strom and MacLellan (200udised eight different rules for
setting a decision level. They evaluated the adals¢ positive rates for eight decision
rules as a function & priori false positive rate and background mean. A comynosed
decision level developed by Currie (1968) is giasbL=Kk 00, Wherek,, is the le.
percentile of the standardized normal distributhetin corresponding probability (e.qg.
for a false positive rate =5%,k,~1.645), andy, is the standard deviation of the
background counts. The conventional monitoring mettean be conducted easily, but
one major disadvantage is that only informationtamed in the latest data point is
exploited, and the information contained by tharergequence of data points is
disregarded. Therefore, more sophisticated staisthethods or techniques have been
developed and adopted in the field of health plsygianake a more reliable and coherent
radiation monitoring decision. Among them, Bayesiathods provide a promising
framework for making a more accurate decision w+level activity monitoring by
providing direct probability statements about tineerlying parameter (e.g. mean count

rate,r) based on prior information and actual data.
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Unlike classical statistical procedures (often mefé to as frequentist statistics),
Bayesian statistical methods permit the formal ipocation of prior subjective
knowledge, belief and information beyond that cov@d in the observed data in the
inference process via Bayes’ theorem. As in otieédd of physical sciences, Bayesian
statistics has been discussed in health physastitre as an alternative to classical
statistical methods for analyzing low-level raditaty in the presence of background
counts. Little (1982) first investigated the useéBafyes’ theorem in health physics to
address the situation where estimates of net chtastivity can be negative when
frequentist statistics are used. Using a priorrithigtion with zero probability for negative
values, Bayesian analyses give meaningful posgstenates of net rates. Miller et al.
(1993, 2001, 2002) extended Little’s work in esti@saand interpretations of internal
dosimetry and environmental monitoring applicatiddayesian techniques have also
been applied to estimate the low-level activitiedecaying nuclides with short half-lives
(Bochud et al. 2007; Groer and Lo 1996). Becaugbefbility to take into account
sources of uncertainty, Bayesian statistics haea lbsed to give more accurate estimates
of uncertainty of radiation measurements. Weisd.€R006) calculated Bayesian
characteristic limits such as the detection limidl #he decision threshold by taking into
account sources of uncertainty. Weise et al (2806yested a revision of some parts of
the ISO (International Organization for Standart@g guide in which characteristic
limits are currently determined based on frequéstatistics. Kacker and Jones (2003)
proposed new evaluation methods for the expresdiancertainty of measurements in

the ISO guide from a Bayesian viewpoint to maleoitsistent. Additionally, Bayesian
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techniques have been applied for reducing falséip®sates in low-level radioactivity
monitoring (DeVol et al. 2009; Strom and MacLell&02). DeVol et al. (2009)
compared false positive and false negative rgesf(time series radiological data for
classical control chart and Bayesian statisticatpss control chart known as the
Shiryayev-Roberts (S-R) control chart. The ressitswed that the Bayesian method was
the best for controlling the false positive ratelsitive to the Shewhart @ and the
cumulative sum (CUSUM) control charts.

There are two distinct ways to record the radiatlata: either the radiation
counts registered in a fixed count time or thevatriime of each registered pulse.
According to the arrival time, the time differentene-interval) between two
consecutive pulses can be extracted. The formdrades technically easier to handle
and it is the most common way to analyze radiatia@. Utilization of time-interval
information in radiation measurements has beenudsst by several authors. By limiting
time intervals to a pre-assigned range, Arandjeletial. developed an algorithm for
preset count digital-rate meters to suppress statiluctuations of mean count rate
measurements (Arandjelovic et al. 2002). Dowdyl.edevised a portable neutron
detection system to search for neutron-emittingoeadive materials based on S-fold
time-interval measurements (Dowdy et al. 1978).

The time needed to record a statistically signiftaaumber of pulses could be
shorter than counting for a fixed count time. Tlere registering time-intervals
possesses the potential to reduce the sampling@iquared to obtain sufficient

information to detect abrupt changes in radiatewels, and avoids the work of
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determining an appropriate fixed count time. Tim&=ival information can result in a
quick response to the change in radiation levelska®p the false positive rate at a low
level. In this study, we investigate the charast&s of time-interval distributions, and
apply Bayesian statistics to the analysis of timtesival data from on-line radiation
monitoring. In addition, we evaluate advantagesaisddvantages of the time-interval
based Bayesian analysis (Bayesian (ti)) comparduetérequentist method (1.6pand
traditional Bayesian analysis with a fixed coumntdi(Bayesian (cnt)). We also modify
the updating of the prior distribution with preveounformation to reduce the effect of the

background, which can improve the performance @fBhyesian analysis.

Theory and Methods

Time-interval Distribution

The random nature of radioactive decay is charaeidias a Poisson process
when the number of nuclei is large and the obsenvaime is short compared with the
half-life of the radioactive species. The probdpik(m)for observingn decays =0, 1,
2, ...)in atime interval is given by the Poisson distribution,

P(m)=we*“ , (3.1)
m!

wherer is the mean count rate.
The time-interval density(t), is usually employed to characterize the time-

interval distribution. The probability of the nextent taking place idt after a delay of
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timet since the last event is denoted@®slt. For the Poisson process, the probability for

the next event to occur wt is:
f(t)dt=re"dt , (3.2)

wheree " is the probability of no events from time 0 torida, t > 0. The density

function expressed in (3.2) is commonly referredgdhe exponential distribution (Knoll

2010).

Bayes’ Theorem

Let us consider a radioactive decay process desthip an underlying mean
count rater, and letx denote the observed value (e.g., time-intervatadiation

measurements. The mathematical form of Bayes’ #meas defined as

pOdr)pU),

3.3
p(x) -9

p(r [x) =

wherep(r|x) is the posterior probability distribution of thekinown parametargiven

the datax andp(x|r) is the likelihood function which is given by a cem probability
model, such as the Poisson distribution and therexputial distribution (Bolstad 2007;
Gelman 2004). The prior probability distributionrak given a(r); this is a
guantitative description of our belief abautased on previous experience and
knowledge before the experiment is conducted. Em@uohinatop(x) is referred to as the

marginal distribution of the data which normalizles posterior probability distribution.
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The goal of a Bayesian analysis is to obtain tretgymr probability which summarizes
our knowledge of the parametergiven the prior belief and the observed data,

In the case of a series of independent measureroktamed over time in
radiation monitoring, Bayesian analysis can be ootetl sequentially (Bolstad 2007).
Using a designated initial prior probability ankiiihood function, the posterior
probability is calculated for the first observatiéior a subsequent measurement, the
existing posterior probability is used as a newipin combination with the newly
available data to give an updated posterior. IsWay, the Bayesian estimate of the
parameter incorporates the new information at each measunetoaipdate our state of
knowledge about.

A prior probability that gives our belief about thessible values of parameters is
needed before data collection. A prior from a cgaje family can make the estimation
of the posterior mathematically tractable and come in that the posterior will follow
the same parametric form as the prior (Gelman 2004his study, a conjugate
distribution known as the Gamma distribution iS@®sd to be the prior in both the count
data (Bayesian (cnt)) and time-interval data (Bayegi)) Bayesian analyses. For the
likelihood that is given by the Poisson distribatiand the exponential distribution, the
Gamma distribution is used to assign a conjugate (Belman 2004). Therefore, the
posterior probability can also be expressed irfdha of the Gamma distribution. The

general probability density function of the Gamnmribution, Gamma (a, h)is given

by
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Gammda,b) :%;)ra‘le‘br , 3.64)

wherea is the shape parametéris the reverse scale parameter, &i(d) is the Gamma

function. The parameteris the true count rate of the process that cagsbmated based
on the measured count rate.

For the count information in a fixed count timeahbed inn independent

observationsg=(c1, &, ... ¢), the likelihood is given b _(%qe*“c , Wheret, is the

fixed count time for each observation. In this gtutie fixed count time was set at 1

second. Based on Bayes’ theorem, the posterioapilidy of r is given as

p(ric)e p(clr)p(r)=Gammg &> ¢ b p). (3.5)

When the time-intervals obtainednnndependent observatioris(t, t, ... t),

are used for Bayesian inference, the likelihoogiven by:Hire*f‘l . Accordingly, the

posterior distribution is given by

p(r|t)ec p(t|r)p(r)=Gammg a n bz D . (3. 6)

For the time-interval information, an assumptiomade that the time
information of each registered radiation pulseeedrout one at a time, and the run time
of a radiation detection system is the sum of ithe-intervals that are incorporated into

the Bayesian inference.
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In the situation of on-line radiation monitoringetfirst posterior is calculated for
the first available data point (counts in a fixedict time or a time-interval) by assigning
an initial prior. From the posterior probabilitysttibution, the probability that the true
parameter is above the predetermined backgroundan be inferred. Using a similar
method as that in frequentist statistics, a detadimit can be set to the outcome from
the posterior probability distribution. For exampedetection limit is set at 95% for the
posterior probability distribution. A detection @gon is made when the outcom&om
the posterior probability distribution is 95% ogher to be above the. If the decision
regarding the presence of a source cannot be raady data point will be acquired to
update the posterior by using the current postasaa new prior. In this way, the
Bayesian inference incorporates the new informagiogach observation to update our
state of knowledge of the parameter until a deteddiecision is made or a sequence of
observations is terminated. All statistical alfums for the Bayesian inference were

developed using R (R Development Core Team 2010).

Modifications to Bayesian Analysis

In the Bayesian analysis described above, the [@igpdated passively whenever
a new data point is available. When an excessivauatrof data from the background
level are included in the prior, a potential draako#or the prior update is to delay the
detection or fail to detect change if the changauczover a limited time. To quantify
the amount of background data that are incorponat&ayesian inference, we borrow

the term “change point” that is common in statatlterature (Kenett and Zacks 1998).
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A change point is the length of time that the baclkgd is counted before the count rate
changes to an elevated level.

In this study, two modifications, enhanced reset m@oving prior, were proposed
to address the effect of the change point in thgeBian analyses. Figure 3.1 shows the
methodology of the enhanced reset modification. drineciple of the enhanced reset
method is to discard the previous information wttenposterior shows a distribution that
is consistent with the background. The enhancest medification sets a two-stage limit
for the maximum number of data points used forBagesian inference and sets a
discriminator to determine whether the existingteosr probability distribution is
consistent with the background. The discriminasagstablished at a given probability
that the parameterfrom the posterior distribution is above the backmd level. When
the number of data points in the current postgrnobability reaches the first stage of the
limit (e.g. 10 pulses), the discriminator will bsadl to determine whether the previous
data are combined into the next step of the Bagasfarence. If the current posterior
shows that the truehas a higher probability than the discriminatobéoabove the
background, the information contained in the pastevill be incorporated into the next
step of the Bayesian inference. Our knowledge diiggr is continuously updated by
combining new data points until a final detecti@tidion is made or the total number of
data points included in the latest posterior prdhiglbeaches the second stage of the
limit (e.g., 20 pulses). Otherwise, the process start over from a new observation with

the designated initial prior.
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Figure 3.1. The methodology of the enhanced reseifroation.

The moving prior modification relies on the lategbrmation to calculate the
posterior probability by updating the prior prodapiwith each new data point. A fixed
length for the vector of data is set for the maximmumber of data points contained in
the prior probability distribution. Starting frorhé first data point, the prior accumulates
information one data point at a time. When a filetjth of data is accumulated, the
prior will keep the same length of data (e.g., U@s) and shift forward to update its

information with new data points.

Experimental Instruments and Simulation

Figure 3.2 shows the schematic diagram of the tiadiacquisition system used
for experimental data. Gamma radiationp €E1173.2 keV and 1332.5 keV) fron?%Co
source (~14,000 Bq) was detected using a Nal(Thtiation detector. The output from
a preamplifier (ORTEC model 113) was sent to a BI@HAnodule (XIA, Inc) where it

was digitized at a rate of 40 MHz with 16-bit prémns The DGF-4C module was
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controlled through a graphical user interface, DA&Fviewer 3.05, which runs under an
interactive programming and data analysis enviraitmi&OR Pro. 4.03 (XIA 2004; Luo
et al. 2010). Using list mode, a binary output &@ntaining time stamp information was
prepared by the DGF-4C module for off-line analy3dse time resolution is 25 ns.
Based on a program written in IGOR Pro., time-wves were extracted from the list
mode data for Bayesian analyses. By adjusting idtartte from the source to the
detector, experimental data for low-level radiatf@rlO cps for the 1332.5 keV peak)
were acquired. At each level, abouf t&diation pulses were registered to provide for a
good general comparison among the methods. Foriengr&tal data analysis, three
regions of interest (ROI) were set to look at psiksgthin a specific energy range. One
ROI was set to include both cobalt-60 full energgks, and the other two ROIs were set
for each full energy peak, respectively.

In addition, a Monte Carlo method was employed taugate a random radiation
sampling based on the time-interval density fumcgoven in (3.2). The simulation was

conducted in IGOR Pro. At each radiation levef, tEhdom pulses were simulated.
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Figure 3.2. Schematic diagram of CAMAC module batse-interval acquisition
system.

The same experimental and simulated data setsuserkto evaluate the
Bayesian (cnt), Bayesian (ti) and the frequentisthod, 1.66. A fixed count time (1s)
was used for both Bayesian (cnt) and &.6%thods which analyze count information.
The performances of the three methods were evalimaterms of average run length
(ARL) and detection probability (13). To compare the three methods easily, ARL is
defined here as the average time needed to issalkaran following an increased signal.
One thing to be noted is that the detection prdivgbit the background level is the false
positive rate. For radiation levels above the bamlgd, a higher detection probability is
equivalent to a lower false negative rate. ARL waisulated based on a sequence 8f 10
experimental pulses or 18imulated pulses at each radiation level. Detactio
probabilities were calculated for several detectoenarios that were fabricated based on

experimental or simulated data. The most used scamas simulated in the following
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manner: after a detector system registered 5s bawkd data, 8Co source was placed
at a predetermined count rate (distance) for &%) the source was removed and the
detector continued another 5s background countising the same manner,“liials
were tested at each level. In this study, we p®imdight to the advantages and
disadvantages of Bayesian analyses relative treeentist method for two distinct

ways for radiation data analyses — time-intervat$ @ounts in a fixed count time.

Results and Discussion

Experimental data were used to study the charatit=riof time-intervals in a
specified ROI of gamma spectrum, while the simalatata were used to investigate the
effects of possible factors and modifications ty&aan approaches for improving

detection probabilities.

Bayesian Analysis without Modifications

In the analysis of experimental data, three ROIlewset to look at radiation
pulses from th&°Co source. Average run lengths were calculatedaftiation levels
within each ROI. Figure 3.3 shows the ARLs of thieé methods for radiation pulses
within the 1332.5 keV ROI. The frequentist detectionit was set at a level which gave
a=0.05. The detection limit for both Bayesian anadys/as set at a level where the
parameter from the posterior probability distribution had%%®r higher probability to
be above the preset background level. Based omopieisackground measuremernigs~(

2 cps within the 1332.5 keV ROl in this case),ithigal prior probability was assigned as
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Gamma (2, 1) which is equivalent to 2 counts ok 1s count time. Thus, this prior
distribution provides 1s of information for the B&yan analysis. Gamma (2, 1) was
always used as the initial prior for the first datant in a sequence of observations
through the study. After that, the prior was upddiased on the newly available data.
The rationale for using a prior with less infornoatis to let the actual, most recent data

dictate the prior distribution. Based on our stugkperimental data from all the three

ROls resulted in similar results.
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Figure 3.3. Experimental average run lengths (ABL}he three methods for the
radiation pulses within the 1332.5 keV ROl ¥€o0. ARLs for the
radiation levels between 3.5 cps to 10 cps are rdam (b). Gamma (2,
1) is assigned for the initial prior in the Bayesanalyses for both types
of data. Standard deviations are smaller thanytimdels.

At the background level, no detection decision masle for either Bayesian

method based on 2.9¥1€econds of data, which indicates that the Bayesignoach has
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much longer ARLSs than the frequentist method. AgEmARL when there is no source
present implies a lower false positive rate. Feqgrentist statistics, the false positive rate
can be calculated by =1/ ARL (Montgomery 2001). When the radiation level insesa
the ARLs for the Bayesian methods decrease quatkdlyare close to that of the
frequentist method. At relatively higher radiatiemels (> 4.5cps), Bayesian (ti) has a
shorter ARL than other methods. Therefore, timeridl information has the ability to
quickly detect a change of radiation levels. Thertgr ARL implies that the Bayesian
analysis with time-interval information is more siive to a change in radiation levels
than the Bayesian analysis with count informatind the frequentist method.

In Figure 3.4, the detection probability (3)}-for a scenario based on experimental
data in the 1332.5 keV ROI (5s background + 5seotir5s background) is shown. The
manner to simulate the scenario is the same aaiaeplin section Ill. Overall, Bayesian
analyses for both count data and time-intervalslr@s a similar detection probability. At
the background level (2.0cps), both types of Bayeanalyses have lower detection
probabilities. In other words, the Bayesian metbodld have lower false positive rates
than the frequentist method. When radiation leaedshigher (~7.0 cps), the three
methods show similar detection probabilities. Fatiation levels between the
background and the higher level, Bayesian anahgsssa lower detection probability than
the frequentist method. The reason for this is Bagtesian analysis incorporates the
background data and prior information into its dex while the frequentist method only

considers the information in the latest data point.
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Figure 3.4. Experimental detection probabilitiesha three methods for the scenario

(5s background + 5s source + 5s background) ubiegadiation pulses
within the 1332.5 keV ROI.

Figure 3.5 illustrates the average run length atdaion probability obtained
from simulated data. To be consistent with the gemknd level of the experimental
observation in the 1332.5 keV ROI, the backgrowwell of simulated data was set at
2.0cps throughout the study. At the backgroundl]erdy one decision was made for
both types of Bayesian analyses in 6.00° seconds of simulated data. The Bayesian
(cnt) method made a decision at 9453 second, apesim (ti) method made a decision
after 8961 seconds of data. This indicates thaeBiay analyses have a long ARL at the
background level. Results from simulated data ansistent with results from the
experimental data. Therefore, simulation is a neaBle way to conduct a general study
on the properties of Bayesian analysis. Our cusardy focuses on developing an
algorithm to use time-interval information fromesific ROI or a full spectrum with a

low count rate.
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Figure 3.5. Average run length (a) and detectiavbability (b) of the scenario (5s
background + 5s source + 5s background) for theetimethods from
simulated data. The background level is 2.0 cpe $ame detection
limits and initial prior were used. Standard dewias are smaller than
the symbols.

Factors Affecting Detection Decisions

Based on simulated data, three factors, source tatection limit, and change
point, are investigated to find possible effectvays to improve detection decisions for
on-line radiation monitoring. Source time is defirfeere as the length of time the source
produces the prescribed count rate in the detector.

In Figure 3.6, the detection probabilities of theee methods for a special
scenario with only 0.5s source time is shown. Stheefixed count time is 1s for the
frequentist and Bayesian (cnt) methods, the 0.6ecealata is followed by 0.5s
background data to make it comparable to a measuneobtained in one second. As

indicated in the average run length estimate, fimerval information shows its
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advantage in radiation detection when radiatioeleveach a higher level. When source
time is limited (< count time), Bayesian (ti) coutssult in a higher detection probability
than Bayesian (cnt) since the time-interval metheeds less time to collect sufficient
data to make a detection than other methods d@ivelahigh radiation levels. For
counting in a fixed count time, even radiation pslérom the source are registered at a
significant count rate during its prompt presencedunt time), the overall count
information obtained in the entire fixed count timenot significantly different from the
background. As the result, the detector systers taibletect the source.

Figure 3.7 shows the relationship of the source tmd the detection probability
for four different source times: 2s, 5s, 20s ansl 9he background counts are still 5s
before and after the presence of the source. Witle reource data available, probabilities
that rise with source intensity for both types afyBsian analyses approach the
probabilities found with the frequentist methodisTimdicates that Bayesian analysis has
the ability to reduce the false negative fatghen more data from the source are
included into the decision while still keeping flaése positive rate. at a low level. With
more data from the source, the weight of the garobability and the background counts
on the posterior probability are diminished. On ditleer hand, when the amount of
source data is less than that of background dagar@3.7(a)), the posterior is
dominantly determined by the background informatiss a result, the detection
probabilities of both Bayesian analyses are reduceaddition, for the cases in which a
large amount of source data are available, theradga of time-interval information to

respond to the change quickly becomes less imgotianit is still the better option than
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count information when the time to make the detecits one of the concerns for

radiation monitoring.
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Figure 3.6. Detection probabilities of the threetimes for the scenario with only
0.5s source time. After the source count, 0.5s dpackd count is
followed to make it as a 1s measurement. Standariatibns are smaller
than the symbols.
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Figure 3.7. Detection probabilities of the threetimés for scenarios: (a) 2s, (b) 5s,
(c) 20s, and (d) 50s source time. Background coargsss before and
after the designated source time. Standard demmfoe smaller than the
symbols.

One example illustrating the effect of detectionitiis shown in Figure 3.8 when

the detection limit for the Bayesian analyses weamnged from 95% to 60%. The

scenario being analyzed is the same as that comdsyg with the data being presented

in Figure 3.7(c). Compared to the result shownigufe 3.7(c), the performance of

Bayesian analyses are improved by adjusting thecten limit to a lower level. With the
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new detection limit, Bayesian analyses have theedaise negative rates as the
frequentist method but with lower false positiveesathan the frequentist method. When
60% detection limit was used, the ARL for the Bagmsnethods was an order of
magnitude greater than the frequentist methodeab#tkground level. For the elevated
radiation levels above the background, the ARLhefBayesian methods is below that
for the frequentist method. The choice of the detadimit to adjust the false positive
rate and false negative rate is based on peopiefergnce or special needs for the

radiation monitoring.
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Figure 3.8. Detection probabilities of the threetmoes for scenario with 20s source
data (5s background + 20s source + 5s backgrouhdihe detection
limit for Bayesian analyses was set at a level wlike parametarfrom
the posterior probability distribution was 60% oonma to be above the
preset background. Standard deviations are sntaflerthe symbols.

The effect of the change point was investigatatie@tradiation level of 4.0 cps
and shown in Figure 3.9. The level of 4.0 cps ésrttedian level between the background

level and the level where the three methods wiliehthe same detection probabilities.
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The scenario consists of an amount of backgroutal(ffam Os to 20s) followed by 5s of
source data at 4.0 cps, then followed by anothé&aBkground. The change point
determines the amount of background data thateiihcluded in Bayesian inferences.
The greater contribution of the background datanishe detection decision when more
background data are incorporated. When sourceadatabundant, the effect of the
change point can be eventually diminished, but#tection decision would be delayed.
For the cases where source data are limited, tieetden decision will be deteriorated.
Therefore, a modification to the Bayesian analissiseeded to alleviate the effect of the
change point.

Modified Bayesian Analysis

Using the modified method described in the theewstien to update the prior, the
detection probabilities of modified Bayesian anab/for the same scenarios in Figure 3.9
are shown in Figure 3.10 and Figure 3.11. Figut® 3hows the results for Bayesian
analyses of count information and Figure 3.11 shivesesults for Bayesian analyses of
time-interval information. The detection limit footh modified Bayesian analyses was
again set at 95%. The two-stage limit is set @46 s for count information, and 10
pulses/20 pulses for time-interval information. Thecriminator is established at 70%
for both types of data. For the scenario with 5skjeound data (2.0 cps), there are about
20% of trials with the parameter from the postedistribution having more than 70% to
be above the preset background level. In contitastscenario with 5.0s of 2.5 cps data,
50% of trials pass the discriminator. The fixedggnof data for the moving prior method

is set at 5 s for count data and 10 pulses for-tntexval data.
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As designed, both modified Bayesian analysis methmesulted in a higher
detection probability (lower false negative ratibs)n the Bayesian analyses without
modifications. The performances of the two modiimethods are independent of the
change point relative to the Bayesian analysesowttmodifications. The detection
probability of the enhanced reset method showsiageal fluctuation when count
information is utilized. In contrast, the fluctuati only shows up at the beginning when
the change point happens earlier for time-intethaah. This difference results from the
different settings of the two-stage limit and diffiet random number of data points

between count data and time-interval data.
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Conclusion

Bayesian analysis has the ability to include presidata into detection decisions,
which results in lower false positive rate than fileguentist method, and has the
possibility to reduce false negative rate with mdaéa collected. The main difficulties
that could discourage people to use Bayesian titatere the conceptual understanding,
and the complexity and heavy load of the computafithe special features of time-
intervals provide an alternative for low-level ratibon monitoring. When Bayesian
methods are applied for on-line time series datee-interval information shows a
similar performance as count information. In tteaion where the source data are
limited (source time < count time), time-intervafdrmation is more sensitive to detect
the change than the count information acquiredieratire count time. Without
considering other factors (e.g. detection systethaaralyzing process) that may affect
the time needed for detection decision, time-irdemformation has the potential to
respond quickly at relatively higher radiation lsv@ he proposed modified Bayesian
analyses are relatively independent of the chaong# pt which the radiation level is
changed from the background to an elevated lewele-interval information is preferred
if other factors are the same.
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CHAPTER 4

CUSUM ANALYSIS OF TIME-INTERVAL DATA FOR ON-

LINE RADIATION MONITORING

Abstract

Three statistical control charts methods were igated to determine the one
with the highest detection probability and the l@&trage run length (ARL). The three
control charts include: the Shewhart control cbh&dount data, cumulative sum
(CUSUM) analysis of count data (Poisson CUSUM) @uSUM analysis of time-
interval (time difference between two consecutaiation pulses) data (time-interval
CUSUM). The time-interval CUSUM control chart wasrquared with the Poisson
CUSUM and the Shewhart control charts with experiialeand simulated data. The
experimental data were acquired with a DGF-4C (X&) system in list mode.
Simulated data were obtained by using Monte Cadbrigues to obtain a random
sampling of a Poisson process. All statistical atgms were developed using R (R Core
Development Team, 2010). Detection probabilitied ARLs for the three methods were
compared. The time-interval CUSUM control chart heglin a similar detection
probability as that of the Poisson CUSUM controlrghaut had the shortest ARL at
relatively higher radiation levels, e.g., about 4886rter than the Poisson CUSUM at
10.0cps. Both CUSUM control charts resulted inghar detection probability than that
of the Shewhart control chart, e.g., 100% gredaan the Shewhart control method at

4.0cps. In addition, when time-interval informatias used, the CUSUM control chart
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coupled with a modified runs rule (mrCUSWMshowed the ability to further reduce the
time needed to respond to changes in radiatiodeard keep the false positive rate at a

required level.

Introduction

On-line radiation monitoring is essential to th&UDepartment of Energy (DOE)
Environmental Management Science Program for clgammnmedia contaminated with
anthropogenic radionuclides (U.S. DOE 2004). Thal gbon-line radiation monitoring
is to quickly detect small changes in radioactil@yels in the presence of a significant
ambient background. In the case of low-level okigasund-dominant radioactivity, two
factors make it difficult to distinguish betweemnaalioactive source and natural
background. First, the random nature of radioad®@ay results in an inherent
uncertainty in the number of registered radiatiartiples in a detector. It is well
recognized that the number of emitted particlestaerchumber of particles registered in a
detector are Poisson distributed. Second, radi&taon natural radionuclides in the
environment and cosmic radiation are involved thgross counts registered by the
detector (Laedermann et al. 2005). Generally, #wstbn regarding whether or not a
radioactive source is present is made based oadispstatistical method. In practice, a
proper statistical method is chosen to minimizef#h&e negative ratg (or maximize the
detection probability, 18) while holding the false positive rateat a desired level.

The Shewhart control chart is a classical stasibtitrethod that is commonly used

in radiation monitoring. It is also referred tothe single-interval-test (Jarman et al.
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2004). The Shewhart control chart monitors the nradration level based on the
radiation counts registered in a fixed-length cdime and a detection limiDL) that is
set for a given false positive rate. One majordirsatage of the Shewhart method is that
only the information contained in the latest datanpis exploited, and the information
contained by the entire sequence of data poirtdisiegarded. As a result, the Shewhart
method is relatively insensitive to small changesadiation levels while it readily
detects large shifts (Montgomery 2001). Thereforerensophisticated statistical methods
have been developed and adopted to detect smaljeban radiation levels. The
cumulative sum (CUSUM) control chart is one of thestreffective charts for detecting
small shifts in radiation levels since the CUSUMTttlh@as a shorter average run length
(ARL) than the standard Shewhart control chart @eand Zacks 1998). ARL is
generally defined as the average number of obsengtaken before a shift is detected
and an out-of-control alarm is issued.

The CUSUM control chart was first introduced by Péf#b4) as an alternative
to the Shewhart control chart for quality controtlamprovement in manufacturing
processes. Instead of considering the most reegatpbint, the CUSUM control chart
incorporates all of the information contained iseguence of data points by
accumulating deviations of data points over tina. this reason, the CUSUM chart is
more effective than the Shewhart control chartdteck small shifts (Montgomery 2001).
Because of its effectiveness to detect small shifss CUSUM control chart is a good
candidate for environmental radiation monitoringe\@! et al. 2009; Hughes and DeVol

2008; Marshall 1977). Marshall (1977) suggestedueeof the CUSUM control chart for
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monitoring the background radiation level from dioghemical counter. According to
Marshall’s study, the CUSUM control chart could detdarupt changes of the order of
one standard deviation. Hughes and DeVol (2008uated the performance of the
CUSUM control chart compared to the 3-sigma Shewdraitthe exponentially weighted
moving average (EWMA) control charts. The comparisas conducted based on time
series radiation counter data from flow cells. Tésults showed that the CUSUM
method was suitable to detect the radioactivitydmuiring less solution volume and
gave the best estimation of sample concentratiroadtlition, the study by DeVol et al.
(2009) showed that the CUSUM control chart had diveocanparable performance to
control the false negative rate relative to the@tyiev-Roberts control chart.

For count data such as the number of radiatiorepuisgistered in a detector,
Lucas (1985) provided detailed descriptions abloeitkesign and implementation
procedures of the CUSUM control chart. In his studg,Poisson CUSUM control chart
and the “time-between-events CUSUM” control charntengiscussed in terms of
determining the reference valk@nd the decision interval valbeFor the Poisson
CUSUM method, the number of counts recorded in gofaginterval is modeled by the
Poisson distribution. Accordingly, the time betwd@n consecutive events of concern
follows the exponential distribution. In the radat monitoring and measurement
process, ‘event’ is a radiation interaction regiestiein a detector, and ‘time’ is the time
difference (time-interval) between two consecuta@iation pulses. In this study, the
time-between-events CUSUM control chart is refeteceds the “time-interval CUSUM”

control chart. To improve the sensitivity of the UM control chart for the process that
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an out-of-control situation occurs at start-up, &siand Crosier (1982a) devised the fast
initial response (FIR) CUSUM (FIRCUSUM). In additidrucas and Crosier (1982b)
proposed the robust CUSUM (rCUSUM) by coupling theib CUSUM with a runs rule
(two-in-a-row rule whereby two observations in & mccur outside of a preset control
limit) to guard against an out-of-control signatoaing for reasons other than a true
process shift. Recently, time-between-events CUSOMrol charts have drawn
increasing interest as an alternative to traditiopatrol charts for monitoring the
occurrence rate of rare events, such as the ooma e industrial accidents and
congenital malformations (Vardeman and Ray 1986;dtial. 2006; Cheng and Chen
2010; Xie et al. 2010)). The general measure @ctiffeness for a control chart is the
average run length (ARL) where the ARL is as therage time needed to make a
decision to alarm following a change point. Thef@@nances of the Poisson CUSUM
control chart and the time-interval CUSUM controhdhare evaluated on the basis of
ARL.

In radiation detection and monitoring, count infatron in a fixed count time is
commonly recorded for further analyses since téchnically easier to handle.
Utilization of time-interval information in radi@n measurements has been discussed by
several authors. By limiting time-intervals to @{assigned range, Arandjelovic et al.
(2002) developed an algorithm for preset counttdigate meters to suppress statistical
fluctuations of mean count rate measurements. Datdy. (1978) devised a portable
neutron detection system to search for neutront@gitadioactive materials based on S-

fold time-interval measurements. Sakaue et al. {2@6sembled a portable system to
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monitor artificial radionuclides in airborne dusting time-interval distribution from
correlated decay events.

The objective of this study was to investigatettiree-interval CUSUM for its
applicability towards on-line radiation monitoringdvantages and disadvantages of the
time-interval CUSUM control chart were comparedhat of the Poisson CUSUM and
the Shewhart control chart. Registering countsfired count time and registering time-
intervals provide us with two different data samglmethods. Since the time needed to
record a statistically significant number of pulsesid be shorter than counting for a
fixed count time, time-interval information possesshe potential to reduce the sampling
time and respond quickly to abrupt changes in temhdevels. In addition, a robust
CUSUM based on time-interval information coupledwatmodified runs rule
(mrCUSUM;) was proposed to improve the performance of CUSdiMeses for the
radiation monitoring. The runs rule applied in thigdy is the two-in-a-row rule which is
similar to that by Lucas and Crosier (1982b). Wttenruns rule was coupled with time-
interval CUSUM, a modification was made to incorpenaore previous information into

the decision-making.

Theory and Methods

Time-interval Distribution

The random nature of radioactive decay is charaetdias a Poisson process
when the number of nuclei is large and the obsenvaime is short compared with the

half-life of the radioactive species. The probapik (m)for observingn decays 10, 1,
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2, ...)in atime interval is given by the Poisson distribution,

p(m) =" gn | 4. 1)
m!

wherer is the mean count rate.

The time-interval density(t), is usually employed to characterize the time-
interval distribution. The probability of the nextent taking place idt after a delay of
timet since the last event is denoted@glt. For the Poisson process, the probability for

the next event to occur dt is:

f(t)dt=re"dt , 4. 2)

wheree " is the probability of no events from time Ottdor t > 0. The density function

expressed in (4.2) is commonly referred to as ¥p@rential distribution (Knoll 2010).

Review of CUSUM Control Charts

The CUSUM control chart is obtained by accumulatimgdifference between an
observed valug and a reference vallewith a statisticC;. If the process is in control,
the statisticC; will consist of a random walk around the mean gajfithe process, but if
Ci is continuously increasing or decreasing, a chamgjge process is indicated. An out-
of-control alarm is triggered if the statis@¢ equals or exceeds a preassigned decision
interval valueh. The most widely used application in radiationedébn and monitoring

is the detection of an increase in count rate. Wioamt information is used to estimate
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the strength of the radiation level, the PoissorSOM statistic at thé" observation is

determined by

Ccnt,i = maX(O’cht i - kcnt + Ccnt 1 )’ . 3)

where max4,b) is the maximum o& andb, “cnt” denotes the observed count data
(number of the radiation pulses registered in edigount time) which is Poisson
distributed. When the count time is set as a urtite (e.g., 1 second), the reference

valuek:: recommended by Lucas (1985) is given by

k., =(r,—r)/(n(r)—=Inc) , 4. 4)

wherer, is the acceptable mean count rate when the radiatrength is at background
level andrgy is the mean count rate when the radiation streisgththe level that the
CUSUM scheme is to detect quickly. If the count titgeis not a unit of time, count rate
r (ra andrg) will be substituted by count data observetl iior certain level, and

k! =k, xt.Afterkeis determined, the decision interval vahdg is chosen on the

cnt

basis of ARLs in combination with the referenceuealo provide good ARL
performance (Lucas 1985). The valuéehgf should give an appropriately large ARL
when the radiation level is at the background I€*&Lo), and give an appropriately
small ARL when the radiation level changes to @l¢lat should be detected quickly.
When time-interval information is used to monitoe tstrength of the radiation
level, the most common application is to deteceeelase in time-interval. For this case,

the time-interval CUSUM statistic at tif® observation is given by

87



C,,=max(0k — %, + G, ) (4.5)

where ti” denotes that the CUSUM control chart is designedhi® time-interval
information that follows the exponential distritani The reference vallg

recommended by Lucas (1985) is given by

k, = (In(r,)=In(r,))/(r,-r.) - (4. 6)

Similarly, the decision interval valug for the time-interval CUSUM is selected to give
appropriate ARLs as designed.

For a standard CUSUM (CUSUMr CUSUM () control chart, the starting value
of the statisticC is typically zero Co=0). When the FIR feature is implemented
(FIRCUSUM; orFIRCUSUM.) to respond rapidly to an initial out-of-contraiustion,
an initial positive “head start” value is used, Is@as,Co=h/2 (Lucas 1985; Lucas and
Crosier 1982a). The decision interval valhgg or h; will be substituted foh. In this
study, all statistical algorithms for the CUSUM amhtcharts were developed using the

statistical software package R (R Development Ge@an 2010).

Time-Interval CUSUM with Runs Rules

In this study, a runs rule (called the two-in-a-mue) is incorporated into the
time-interval CUSUM control chart (rCUSUMto increase the sensitivity when time-
interval information is used to monitor the radiatstrength. With the two-in-a-row rule,

whenever two successive time-interval observatibascould result in an out-of-control

88



signal are observed, an alarm signal is issuedabgs of whether or not the CUSUM

statistic C, ; has accumulated strong enough evidence to indicab@nge in the

background radiation level. A control limit is pssggned to determine if a time-interval
observation could trigger an out-of-control sigridle control limit is set based on the
background radiation level and the time-intervalgability density. For example, when
the control limit is set at 10ms, whenever two timgervals that are both less than 10ms
are observed consecutively, an alarm signal idskor a background level of 2.0cps,
there is about 0.04% probability to observe twoseautive time-intervals that are less
than 10ms.

In general, the use of two-in-a-row rule can insesthe sensitivity of the
CUSUM control chart, but may also produce more falsstives when the radiation
level is at the background level (Cheng and Che®R0ro hold the required false
positive rate constant, a modified runs rule ippsed for the time-interval CUSUM
(mrCUSUM) in this study. For the modified runs rule, whesretwo successive time-
intervals that could result in an out-of-contrgjrsal are observed, a number of most
recent time-intervals including the current oneiaxestigated to see if these
measurements are consistent with the backgrounduantify the consistency, an
instantaneous count rate is calculated based amdise recent time-intervals that are
measured. An instantaneous count rate limjtis set based on the background count rate
and compared with the measured instantaneous catentf the measured instantaneous

count rate is higher tham, an alarm is issued even though the CUSUM statigtjchas

not accumulated sufficient evidence to issue ammal&or example, when two time-

89



intervals that could result in an out-of-contrajrsal are observed consecutively, an
instantaneous count rate is calculated as 5.5qedaan the most recent five time-

intervals. If the limitz is set at 4.0cps, an alarm is issued since thantaeous count

rate is higher tham,.

According to different settings for the startindueCy and the runs rule, there are
two types of Poisson CUSUM and four types of timemal CUSUM that were applied
to this study. To help readers differentiate défartypes of CUSUM analyses applied in
this study, Table 4.1 lists the notation for eagletof CUSUM analysis andvalues for
count and time-interval data for the situation wiflr 2.0cps andy =4.0cps. Thdy
values were determined based on a ghgivalue: both CUSUM,;and CUSUM gave
approximately the same ARIfor a given monitoring situatiom4 rq). TheDL of the
Shewhart control chart was determined by usingrélai methodDL=8.0 listed in the
table is the detection limit of the Shewhart methlmdive the closest ARlas that of
CUSUM for the giverh.,=7. Using this methodology, the three control chart
theoretically have the same false positive rateR1p) at the background level. The
samehgn; Or hy; values were also used for other CUSUM control sh&tRCUSUM or

FIRCUSUM,, rCUSUM; and mrCUSUNM.
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Table 4.1. Types of CUSUM analyses for count dat@“interval data and values
for the situation of, = 2.0cps andy =4.0cps.

Count (cnt) data  Time-interval (ti) data

Methods Definition Notation (Poisson CUSUM) (Time-interval CUSUM)
Standard CUSUM Co,=0 CUSUM, or CUSUM_, h.=5, 7, 10 h,=1.9,2.7,3.7
CUSUM with FIR Co=h/2 FIRCUSUM, or FIRCUSUM,,,  h=5,7, 10 h,=1.9, 2.7, 3.7

Robustcusum _ codpled with rCUSUM, — hy=27
two-in-a-row rule
Modified Robust coupled with modified _
CUSUM two-in-a-row rule mreUSUM; o h=2.7
Shewhart a classical method — DL=8.0 —

Experimental Instruments and Simulation

Shown in Figure 4.1 is the schematic diagram of#dkation acquisition system
used to collect the experimental data. It is threesaystem that was used for our previous
studies on time-interval analyses (Luo et al. 2@01,1). Gamma radiation (E 1173.2
keV and 1332.5 keV) from ®Co source (~14,000 Bq) was detected using a Nal(Tl)
scintillation detector. The output from a preamplifORTEC model 113) was digitized
by a DGF-4C module (XIA, Inc) which was controllgntough a graphical user interface
running under IGOR Pro. 4.03 (XIA 2004). Using hsbde, a binary output file
containing time stamp information was preparednagy@GF-4C module for off-line
analyses. The time resolution is 25 ns. A regiomtarest (ROI) was set to study the
radiation pulses from a full energy peak. In thase; the 1332.5 keV peak was studied
mostly. By adjusting the distance from the souccthé detector, experimental data for
low-level radiation (2-10 cps for the 1332.5 ke\akewere acquired. At each level,
about 16 radiation pulses were registered to provide fgoad general comparison

among the methods.
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Figure 4.1. Schematic diagram of CAMAC module batse-interval acquisition
system.

In addition, a Monte Carlo method was employed nausate a random radiation
sampling based on the time-interval density fumcgioven in (4.2). The simulation was
conducted in IGOR Pro. At each radiation levef, tshdom pulses were simulated. To
be consistent with the background level of the expental observation in the 1332.5
keV ROI, the background level of simulated data s&tsat 2.0cps throughout the study.

The same experimental and simulated data setsuseckto evaluate the time-
interval CUSUM, the Poisson CUSUM and the Shewhartrobcharts. A fixed count
time (1s) was used for both the Poisson CUSUM aad&tiewhart methods which

analyzed count data. The performances of the thethods were evaluated in terms of

ARL and detection probability (33). One thing to be noted is that the detection
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probability at the background level is the falssipwee rate. For radiation levels above
the background, a higher detection probabilitygsiealent to a lower false negative rate.
Detection probabilities were calculated for seveegtkction scenarios that were
fabricated based on experimental or simulated ddt@.most used scenario was
simulated in the following manner: after a detestygstem registered 5s of background
data, &°Co source was placed at a predetermined counfdiatance) for 5s, then the
source was removed and the detector continued @ngshof background counting.
Using the same manner,*itfials were tested at each level. In this study provide
insight to the advantages and disadvantages oflistimct ways for radiation data
analyses — the time-interval CUSUM and the PoisddB8@M control charts relative to

the Shewhart control chart.

Results and Discussion

Performances of CUSUM, CUSUM;, FIRCUSUM,,, FIRCUSUM;,
rCUSUM;, and mrCUSUM were investigated primarily based on simulatedatazh
data in terms of ARLs and detection probabilitEesperimental data were used to

validate the result obtained from simulated data.

Standard CUSUM and CUSUM Charts with FIR

To visually compare ARLs among the three typesootiol charts, the ratios of

the ARL of other types of CUSUM schemes (e.g., CUg@kd rCUSUM) or the
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Shewhart control chart versus that of CUSIHMere calculated at each radiation level.
Figure 4.2 shows the ratios, ARRRL ¢ and ARLghewnadARLcnt, fOr three differenben
values at the situation wity = 2.0cps andy =4.0cps. ARk is the ARL of any type of

the time-interval CUSUM, AR/ is the ARL of any type of the Poisson CUSUM, and
ARLshewhartlS the ARL of the Shewhart control chart, respatyi. Unless otherwise
specified, the situation with, = 2.0cps andy =4.0cps is the same for other results shown

in this paper. Thé value was chosen for each of 5, 7, 10, and thespondindy;

values were chosenlaf=1.9, 2.7 and 3.7, respectively.
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Figure 4.2. ARK/ARL.y for three differenthy, values, 5, 7, and 10, and
ARLshewhadARLcnt for hen=7. ARLy is the ARL of any type of the time-
interval CUSUM, ARl is the ARL of any type of the Poisson
CUSUM, and ARlshewnartis the ARL of the Shewhart control chart,
respectively. ARL ratios for the radiation levelstlween 5.5cps and
10.0cps are zoomed in the inset. Standard deve&tos smaller than the

symbols.
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Overall, both CUSUM and CUSUM, have shorter ARLs than that of the
Shewhart control chart over the relatively low editin levels £ 8.0cps), especially for
the levels from 2.5cps to 5.0cps. Shorter ARLsdat# that both the CUSUM control
charts are more sensitive to a small increaseam#tkground radiation level than the
Shewhart method. Compared to CUSLIMhe ARL of CUSUM is relatively shorter
than that of CUSUM,, and monotonically decreases with the increaskeofadiation
level. At 10.0cps, the ARLs of CUSUMire 20%-40% shorter than that of CUSJNbr
the corresponding differehtvalues. The comparison implies that the time-irgker
information can further improve the sensitivitythé CUSUM control chart to detect a
change in the background radiation level. Our s&layws very similar results for other
situations with both higher and lower alarm levels,

In Figure 4.3, the ARL ratios between FIRCUSMMFIRCUSUM.; and
CUSUM for three differenhg,: values are shown. Threvalues for CUSUM control
charts with or without the FIR feature were the eas used for the study shown in
Figure 4.2. ARk R, cnerepresents the ARL of FIRCUSUM while ARLg Rt represents

the ARL of FIRCUSUM.
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Figure 4.3. ARL Ratios for CUSUM analyses with FIReature,
FIRCUSUM/CUSUM,y and FIRCUSUMN./CUSUM.. ARLERcnt
represents the ARL of FIRCUSUMcnt, while ARk represents the
ARL of FIRCUSUM,;. Standard deviations are smaller than the symbols.

Generally, both FIRCUSUMand FIRCUSUN,; result in a more rapid response
to changes in radiation levels than does CUSMBut FIRCUSUM and FIRCUSUM;;
show large differences in the patterns of their ARtios. First, FIRCUSUMhas shorter
ARLs to detect the change than FIRCUSEMVANd the difference in their ARL ratios
increases with the increase of the radiation le\@&gond, the ARL ratio of FIRCUSUM
continuously decreases with the increase of thiatiad levels, while the ARL ratio of
FIRCUSUM,; decreases first, and minimizes around the radid¢eel of 4.0cps, then
increases with the increase of the radiation levidie third difference lies in the ratios
for differenth values. For differerth values, the FIRCUSUM: shows larger differences

in the ratios than does FIRCUSWM he large difference indicates that the choicthef
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h values has a stronger effect on the performanteedPoisson CUSUM control chart
than that of the time-interval CUSUM control chart.

Figure 4.4 illustrates the detection probabili{iesp) of the CUSUM control
charts with or without the FIR feature and the Shanvcontrol chart for the scenario (5s
background + 5s source + 5s background) basedeasirtiulated data. The simulated
scenario was explained in the section of experialenstruments and simulation. All the
CUSUM control charts show the similar detection jatalities over different radiation
levels. But they have higher detection probabditigan that of the Shewhart method for
the radiation levels between 2.0cps and 8.0cp4.@kps, the detection probabilities of
the CUSUM control charts are 100% higher than théte Shewhart control chart. For
the radiation levels above 8.0cps, all the corthalrts have almost 100% detection

probabilities.
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Figure 4.4. Detection probabilities of the CUSUM tohcharts with or without the

FIR feature and the Shewhart method for the scerf&s background +

5s source + 5s background) based on the simulai¢al &tandard
deviations are smaller than the symbols.

Figure 4.5 shows the detection probabilities forST., CUSUM; and the
Shewhart control chart for four different scenariosvhich the radioactive source were
presented for different length of time: 2s, 5s, @0d 50s. The background counts are still
5s before and after the presence of the sourcalFbre scenarios, both CUSUMand
CUSUM; have greater detection probabilities than the ®laetwmethod. With the longer
time of source presence, the detection probalsilibe both the CUSUM and the
Shewhart control charts increase. The differendberdetection probabilities between
the CUSUM and the Shewhart control charts becomes apgparent, especially over

relative low radiation levels from 2.5cps to 6.0cps
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Figure 4.5. Detection probabilities of CUSWUMCUSUM; and the Shewhart control
chart for four different scenarios in which the mmu presented for
different length of time: (a) 2s, (b) 5s, (c) 28sd (d) 50s. Background
counts are still 5s before and after the designdie@ of source
presence. Standard deviations are smaller thasythbols.

CUSUM Chart with the Modified Runs Rule

The performance of rCUSUMvas studied for the cases in which time-interval
information was used. Based on a preset contrat (grg., 50ms), an alarm signal is

issued whenever two time-intervals (< 50ms) thatautside of the preset control limit
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are observedonsecutively. Figure 4.6a illustrates the ARLaatbf between rCUSUM
(at control limits: 50ms, 20ms and 10ms) and CUSAIMhe ARL ratio of CUSUM to
CUSUM is the same as shown in Figure 4.2. The correspgrtktection probabilities
of rCUSUM,; for the scenario (5s background + 5s source tabkdyound) based on the
simulated data are shown in Figure 4.6b. The nunmbive parentheses is the control
limit which is used to determine if a time-intengaluld result in an out-of-control signal
or not. The detection probability of CUSNs the same as shown in Figure 4.4.

The rCUSUM can reduce the ARLs over the whole range of tmatian levels.
Compared to ARLs for the radiation levels abovelthekground level, the ARLs
reduced to a larger extent. A short ARheans a high false positive rate at the
background level, which is shown in Figure 4.6berBfore, rCUSUM could improve its
performance at the expense of producing more faisgives. In addition, with the
increase of the control limit, the extent of thduetion of the ARLs for rCUSUMis
enlarged, and the false positives increase. Whedhtrol limit is set at 10ms, the ARLs
are just slightly reduced, except for the ARIf rCUSUM,;. Therefore, the control limit
should be set at an appropriate value (e.g., 5S@ms)e an apparent improvement in the
performance of rCUSUM However, for the purpose of achieving the appater
improvement, a modification is needed to keep #eefpositive rate at an acceptable

level.
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Figure 4.6. ARL ratios of rCUSUMto CUSUM, (a) and detection probabilities of
rCUSUM; (b). The number in the parentheses is the cohindi which
is used to determine if a time-interval could réesalan out-of-control
signal or not. The ARL ratio of CUSUMo0 CUSUMy is the same as
shown in Figure 4.2. The detection probability dd&JM; is the same
as shown in Figure 4.4. The detection probabilitiese calculated for
the scenario (5s background + 5s source + 5s bagkd)y based on the
simulated data. Standard deviations are smallerttisymbols.

Combined with the modified runs rule proposed mgkction of theory and
methods, the performance of mrCUSas investigated. For the modified runs rule,
when two successive time-intervals that are botkide the control limit were observed,
the instant count rate based on the five most teoae-intervals were calculated and
determined if these measurements were consistémthe background based on a
predetermined instant count rate limit, For the same situation as considered in Figure
4.6, the ARL ratios and detection probabilitiesrofCUSUM; were calculated and
presented in Figure 4.7. The control limit was 5@mndz; was chosen at 4.0cps, 8.0cps

and 12.0cps, respectively.
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Figure 4.7. ARL ratios of mrCUSUMto CUSUM,; (a) and detection probabilities
of mrCUSUM; (b). The control limit is 50ms. The number in the
parentheses is the instant count rate limit whechised to determine if
the most recent data are consistent with the baakgr or not. The ARL
ratio of CUSUMN, to CUSUM, is the same as shown in Figure 4.2. The
ARL ratio of rCUSUM; versus CUSUMy is the same as shown in
Figure 4.6a. The detection probability of CUSlJM the same as shown
in Figure 4.4 and the detection probability of rGUN; is the same as
shown in Figure 4.6b. The detection probabilitiegevcalculated for the
scenario (5s background + 5s source + 5s backgyob@sed on the
simulated data. Standard deviations are smallerttisymbols.

With the modified runs rule, the ARlof mrCUSUM,; is not reduced as much as
that for rCUSUM. As the result, the false positive rate is redu€enl ;4 =4.0cps, even
the ARLy is just 26% of ARk of CUSUM.,;, the false positive rate is decreased from
20% for rCUSUM to 6% for mrCUSUNM. In addition, with the increase of the radiation
levels, ARLs for mrCUSUM approaches to that of rCUS|MrIherefore, the modified
runs rule has the potential to enable the CUSUMrobobhart respond quickly to the

changes in radiation levels, and hold the falsétipegate at an acceptable level.
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Experimental Study of CUSUM Charts

Following the aforementioned studies of CUSUM anedysf time-interval
information, experimental studies were conductedal@ate the result from the
simulated data. In the experimental measurementRCd was set to look at radiation
pulses for the 1332.5 keV full energy peak from¥i@o source. The background
radiation level within the 1332.5 keV ROI was ab2uicps. Thé values, detection limit
of the Shewhart control chart, control limit andtamt count rate limit were set using the
same way discussed before. Experimental ARLs apdrerental detection probabilities
were calculated for CUSUM, CUSUM;, mrCUSUM;, and the Shewhart control charts.
The results are shown in Figure 4.8. The situagatill the same as befong:= 2.0cps,

rq =4.0cps, and the simulated scenario are 5s baskdré 5s source + 5s background.
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Figure 4.8. Experimental ARL ratios (a) and detsctprobabilities (b) of the
CUSUM control charts: CUSUM, CUSUM,;, mrCUSUM;, and the
Shewhart control chart. The control limit is 50mBhe detection
probabilities were calculated for the scenariol{&skground + 5s source
+ 5s background) based on the experimental dasadS&td deviations

are smaller than the symbols in (a).

Overall, the experimental results are consistettt thie results from the simulated
data. Time-interval information is beneficial ftiet CUSUM control chart to detect
changes in radiation levels and the modified ruihe can further improve the

performance of the CUSUM control chart.

Conclusion

The CUSUM control chart has the ability to incorgerarevious information into
radiation detection decisions, which results inuecker response to changes in radiation
levels than the Shewhart control chart, and hasdnigetection probabilities than the

Shewhart method for relatively low radiation lev@lle special features of time-intervals
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provide an alternative for low-level radiation mimmning. When the CUSUM control
chart is applied for on-line time series data, timerval information shows a similar
detection probability to the count information, asdapable of detecting changes in
radiation levels with the shortest ARL. Without satering other factors (e.g. detection
system and analyzing process) that could affectithe needed for detection decision,
time-interval information has the potential to resg@ quickly at relatively higher
radiation levels. Use of the modified runs ruleQdSUM; could further improve the
performance of the CUSUM control chart by holding thlse positive rate at an
acceptable level. When the FIR feature is impleesgEIRCUSUN outperforms
FIRCUSUM.. Radiation monitoring based on time-interval as@lys preferred if other
factors are the same since registering time-interm@uld reduce the sampling time

required to obtain sufficient information to detebfanges in radiation levels.
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CHAPTER 5

CLOSURE

Summary

This research presents the study of the time-iatemwalysis based on three
statistical methods for radiation monitoring wittperimental and simulated data. The
experimental data were acquired with a DGF-4C (X&) system in list mode.
Simulated data were obtained by using Monte Cadbortigues to obtain a random
sampling of a Poisson process. All statistical atgms were developed using R (R Core
Development Team, 2010). The three statisticahous that were specifically applied to
time-interval analyses are sequential probabititjortest (SPRT), Bayesian statistics,
and cumulative sum (CUSUM) control chart. The resfitim this study show that the
special features of time-intervals provide a goleraative for on-line low-level
radiation monitoring. When time-interval data wased, all three methods resulted in a
similar detection probability as that of count digistered in a fixed count time, and a
faster response to changes in radiation levels¢bant data. To improve the
performance of time-interval based on-line radratiwonitoring, modifications were
proposed for each of the three standard statistietthods.

For SPRT method, the effects of the threshoddan(dB) and truncation strategy
on the detection probability and the average tin@ake a detection decision were
investigated based on scaled time-interval inforomatWith a smalleA value, the actual

false negative rat@ is reduced while the actual false positive rais increased. On the
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other hand, when a largBrvalue is used, the actyals increased while the actualis
reduced. The truncation strategy applied to SPRUiaed the average time to make a
detection decision, which resulted in a similaregdbn probability as that for SPRT
without the truncation strategy. The adjustmernth®preset background levglin the
SPRT algorithm showed the ability to increase thiection probability at relatively low
radiation levels and reduce the average time ¢gér an alarm when scaled time-interval
data were used for radiation monitoring.

For the Bayesian analyses of time-interval infororgteffects of factors such as
source time, detection limit and change point v&uelied to find possible effective ways
to improve detection decisions for on-line radiatioonitoring. When source time is
limited (< count time), Bayesian analysis of tinmeerval information could result in a
higher detection probability than Bayesian analg$isount information since the overall
count information obtained in the entire fixed cbtime could be averaged out by
background counts. The change point determinearttfwint of background data that are
incorporated into the prior. When a large amourtiaafkground data is included into the
Bayesian inference, the detection decision woulddieriorated or delayed. To reduce
the effect of the change point, the enhanced rasdification and moving prior were
introduced. The results showed that both modifiagie8ian analysis methods had higher
detection probabilities than the Bayesian analystgsout modifications. The
performances of the two modified methods are indéget of the change point.

The study of the time-interval CUSUM control chdrowed that time-interval

information had the shortest ARL compared to thissdm CUSUM and Shewhart
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control charts. Both the time-interval CUSUM and Basson CUSUM are more
sensitive to small changes in radiation levels tienShewhart control chart. When the
FIR feature was incorporated, the time-interval C¥5was superior to the Poisson
CUSUM since the ARL of the time-interval CUSUM conitiusly decreased with the
increase of radiation levels and is insensitivtheodecision interval values. When time-
interval CUSUM is coupled with a modified two-in-aw rule, it has the potential to
further reduce the time to detect changes in riahid¢vels and hold the false positive
rate at a required level.

The time-interval analyses based on the three adwtséistical methods show that
time-interval information results in a quicker dgten than count information, while
providing a similar detection probability. The siéngy of time-interval based statistical
methods could be beneficial to the applicationshich a fast detection of radioactive
sources is essential, such as portal monitoringa@ating a lost radioactive source.

By using time-interval information, all the threatsstical methods can be
operated in a continuous mode in which a detectemision is sequentially updated
whenever new radiation pulses are registered. Battesian statistics and CUSUM can
update their statistics and detection decisionmtgrporating one radiation pulse at a
time; while SPRT can only start its updating uhtidigital scaler) pulses have been
registered. Compared to SPRT and Bayesian stati€5ldSUM is the easiest one to
implement because it is conceptually easy to utaledsand it has the least
computational load for statistics updating. Ondbatrary, Bayesian techniques are

relatively more difficult to understand and it Hhe most computational load for its
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complex posterior calculation, but resulted in mlartger ARL than the other
techniques investigated in this dissertation.

The SPRT, Bayesian, and CUSUM (without modificat)Jdmee-interval methods
were compared with the Shewhart control chart ursil@ilar conditions and revealed
that the time-interval methods resulted in appr@atety the same false positive rate, but
a lower false negative rate (higher detection podibg with shorter average run lengths.
Compared to the Shewhart control chart in whicty ahé information contained in the
latest data point is exploited, all the three statl methods proposed for time-interval
analyses have the ability to incorporate additionfrmation contained in previous data
points. When time-interval data are analyzed ormi@he, it will take less time to
collect statistically sufficient information to r&athe same detection decision than that
for count data analyses. The comparison amonghtiee imethods (SPRT, Bayesian, and
CUSUM) relative to the Shewhart control chart wasduted for a simulated scenario
(5s background + 5s source + 5s background). Tkeciien probability and ARL (or
average time) for each standard method (withoutifications) were investigated. For
each method, the parameters were adjusted to Ippvexamately the same false positive
rate at the background level. According to the ltsgigshown in Figure 5.1 and 5.2), all
the three methods are superior to the Shewhartadathterms of the detection probably
and ARL. When time-interval information is used, 8UM has the highest detection
probability (e.g. 25% higher than that for SPRT &aesian statistics at the level of
4.0cps). SPRT and Bayesian statistics have simdgection probabilities. For the ARLs

of the three methods, CUSUM has the longest ARU€ewels above background relative
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to SPRT and Bayesian statistics, especially overdtv radiation range from 2.0cps to
4.0cps (e.g. two times the ARL of Bayesian statssét the level of 2.5cps). One thing to
be noted is that the average time of SPRT is cedfiny the parametéd . On the
contrary, there is no constraint on the numberaté ghoints that are utilized to update the
detection decision. In practice, which method isdut® analyze time-interval information
for on-line monitoring should be determined basednvestigator's knowledge about the
three methods, the difficulty to implement the nogthand requirements on detection

probability or ARL.
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Figure 5.1. Detection probabilities of the thremdtinterval analyses by SPRT,
Bayesian statistics and CUSUM relative to the amalgg Shewhart control
chart. The simulated scenario is 5s background sobsce +5s background
based on simulated data. Standard deviations aabesrthan symbols.
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Figure 5.2. ARLs of the three time-interval anatydsy SPRT, Bayesian statistics
and CUSUM relative to the analysis by Shewhart @bnthart. The
simulated scenario is 5s background + 5s sourceb&abkground based on
simulated data. Standard deviations are smallergimbols.

Recommendations for Future Work

For a potential application in portal monitoringdesearching for lost radioactive
sources, one may design a laboratory experimetitese practical applications to further
exploit the benefits of time-interval data for ratthn monitoring. For the design of the
laboratory experiment, one needs to specify th&dracnd level, alarm level to be
detected quickly, fixed count time, and full enepak from the radioactive source that
is monitored, etc.

The radiation detection for the situation in whachadioactive source is present

for very short time (< count time) has been coneddtased on Bayesian inference. The
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results showed that time-interval information haghkr detection probability than count
information. This interesting finding is a poteh@avantage to detect a radioactive
source contained in a moving media. An extendedlystn the situations in which source
time is extremely short relative to the count tisieeeded to check the feasibility and
sensitivity to use time-interval data for radiatimonitoring. The study will focus on the
detection probabilities at a variety of combinati@i source strength, the time length of
the source presence, and fixed count time.

A further study can be conducted to investigateefiects from different prior
probabilities on the Bayesian inference. In thiglgt a natural conjugate prior was used
as the initial prior which was assigned based ewipus background measurements. A
prior that is given based on a measurement witlptesence of a radioactive source
could improve the detection probability when a seus present, while it could increase
the false positive rate at the background leveaddition, the effects from a
“noninformative” or “empirical” prior should be emaned and compared to a conjugate
prior.

Derived from Bayesian statistics, Shiryayev-RobgtfR) control chart (Kenett
and Zacks 1998) has been applied by DeVol et @09pfor reducing false positive rates
in low-level radioactivity monitoring based on coumformation. One may develop a
new algorithm based on S-R control chart to analyme-interval information and
compare the performance of S-R control chart withBayesian approach used in this

study which is based on the fundamental Bayes'rdmo
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For the time-interval CUSUM control chart, a modifieins rule was proposed to
increase the sensitivity of the control chart. Traiss rule could also be applicable in
combination with SPRT and Bayesian methods. Itagthwhile to investigate the
advantages/disadvantages of SPRT and Bayesiastistatir other methods by coupling
with the runs rule to detect changes in radiatevels.

For the situation in which the sample size34, individual moving range (IMR)
control chart has been used to help identifyingreloe when a process shift has
occurred (Montgomery 2001). A study on the time+wvaéanalysis combining an IMR
control chart with the CUSUM control chart or otlséatistical methods should be a
worthwhile endeavor.

In this study, the detection probabilities of Bagasand CUSUM methods were
calculated based on a series of simulated scen#amitdsese scenarios, an abrupt change
in radiation strengths was assumed. In a real egapin, the change in radiation strength
varies with time and distance. An experiment oinautated scenario based on a real
application could be designed to further studysesitivity of time-interval data for
radiation monitoring.

An extended study is needed for the situationshiclwbackground level is
different from the level utilized in this study. iStdissertation presents significant data
and analyses for a detection system with a backgrcount rate of 2.0 cps. With that
information it is problematic to extrapolate théselings to detection systems with
higher or lower background count rates. For themdéd study, ARLs and detection

probabilities of the three time-interval methodsilddbe calculated for a series of
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situations with different count rates from very leavel (e.g., 0.01cps) to very high level
(e.g., 100cps). If it is possible, the preassidiaésk positive rate should be set at the
same level. A good solution for these situatiorte igrovide a general table of ARL and

detection probability by scaling other levels tbaekground level for different situations.
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Appendix A

Other Related Results Obtained from This Study

Experimental Time-Interval Distribution
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Figure A.3. Experimental and theoretical time-imgdrprobability distributions. In
the parentheses are the mean count rates. Stamtdsdtions of
experimental data are smaller than the symbols.

Currie’s Detection Limit () Based on Time-Interval Data

In the course of radiation monitoring for the pbtsipresence of radioactive

contaminants, aa priori limit of detection], , introduced by Currie (1968) is given by

L, =L.+k,o (A. 1)

a0

whereL, =k,o,, o,_Is the standard deviation of the net signal whesdéoactive source
is present, andk, is the critical value of the standard normal disttion that has the
probability of. k, is the ler percentile of the standardized normal distribution
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corresponding to the probability af andoy is the standard deviation of the net signal
when the radioactive source is not present. Foatiad monitoring,L, can be

interpreted as the minimum number of radiation ¢emeeded from the radioactive
source such that the false negative rate is ngétahan and the false positive rate is

not larger tham. For a case with a 5% false positive rate and d88@ negative rate

that are commonly usedl,, is appropriately given as following (Currie 1968),
L, =2.706+ 4.653, . (A. 2)

The time-interval distribution shown in Figure Aatlicates that a change of time-
interval distribution in the shorter time-intervrahge will be observed if the mean count
rate increases as the result of the presenceanfi@active source. Based on the property
of the time-interval distribution, a neavpriori detection limity, , can be determined
from the number of time-intervals. For a radiatit@tection process with a mean count
rater, the number of time-intervals that are shortenthaiven length of timd, is

calculated by

N.., =(N

t<to

-H(a-e™), (A. 3)

total

whereNq is the total number of pulses registered in trekgeund measurement.

Accordingly, the limit of detectiorl,;, , for the time-intervalsN, _, is

Ly, =2.706+ 465/N,., | (A. 4)
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Therefore, the count rate at the alarm leyelcan be calculated based thg using the

follow relationship,
(rf, ~D)(A-e"™)=N_ +L; , (A. 5)
wheret, is the count time. The improvement of the new cteia limit is defined as,

"l 100% (A. 6)

rl

wherer=r ¢+Lp/t; is the count rate at the alarm level based ontaaformation, and

is the mean count rate of the background levelhdythe Solver function in the Microsoft
Office Excel, the detection limits with differenas of time-intervals for the mean
background count rates of 2.0cps and 20 cps acalatdd and shown in Figure A.2 and
Figure A.3, respectively. The results show thatdégection limit based on time-interval
information are lowered in most range of valuesirag-interval length, and minimized at
certain value. For the 2.0cps background, the detekkmit is lowest at the value around
0.5s. And the minimum detection limit for the 2@8dackground happens at about
0.05s. So, a value that is close to the averageitierval value can result in a minimum

detection limit.
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Figure A.4. The detection limit based on the numbktime-intervals less than
preassigned valudp, for the background mean of 2.0cps. The count
time, t;, is 100s.
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Figure A.5. The detection limit based on the numbktime-intervals less than
preassigned valudg, for the background mean of 20.0cps. The count
time, t;, is 100s.
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Figure A.4 shows the effect of the background cdume to the minimum
detection limit. It implies that the improvemeninslependent of the background count
time except for the short count time. At the shoctunt time range, the improvement
decreases with the count time increases. In pgaloort count time will result in a large
uncertainty in the results. A proper count timewtidoe chosen within a reasonable
range depending on the strength of radiation, tietesystem, expected uncertainty, and

other factors.
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Figure A.6. The effect of the count time to theed#ibn limit based on time-interval
information.
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Detection Probabilities of SPRT for Different EriRates ¢,[3)
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Figure A.7. Detection probabilities of SPRT forabrdifferent error rate paire,3).

Experimental Average Run Length of Bayesian Analyse
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Figure A.8. Experimental average run lengths ofd3ggn analyses for the radiation
pulses within the 1173.2keV ROI ¥Co.
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Experimental Average Run Length of Bayesian Anayse Sum
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Figure A.9. Experimental average run lengths ofd3ggn analyses for the radiation
pulses within the ROI containing 1173.2keV and 1888V of°°Co.
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Figure A.10. Average run lengths of Bayesian aredyshen the detection limit is
set at 60%.
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Effect on the Bayesian Analyses from the InitiabPr
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Figure A.11. Effect on the Bayesian analyses froeninitial prior.
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Detection Probabilities of CUSUM for Differeh
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Figure A.13. Detection probabilities of CUSUM faiffdrent h; values when time-
interval data are used.
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Appendix B

Development of the Igor Pro. Codes and R Programmin

Igor Pro. Code for Experimental Time-Intervals

#pragma rtGlobals=1 /l Use modern global acceshade
/[For 101 runs, extracting real time and energgaafh event for arbitrary number of events in a/run/
/lget rid of the time-interval between two runs//

Function Time_Int()
/ldeclare variables
variable energyindex, trigtimeindex, n, i, j, klaw, t_high, real_high, w, m, m1
/I energyindex is the index for energy array
[ftrigtimeindex is the index for Trigtime arrayjsithe index of new waves//
I/l iis the index of waveO for inner loop conditjq is the index of waveO for another new run.
/I k is the index for the total number of spillsistused to control the inner loop
/I t_low is the index for EVT_TIMELO word, t_higk the index for EVT_TIMEHI
/I real_high is the index for CHAN_REALTIMEHI
/lw, m, and m1 are the indexes for waves usedttaexime stamps and time-intervals
wave Event_No // this wave is created by loadieggeneral text file (.dat )
variable num_wave=numpnts(Event_No), hum_spill§=60
/I ***these two values have to be input before rtit*
variable E_low= 39200, E_high=45350 //*** set the ROI region for the first poa
/I create waves in which information of each everstored
wave wave0 // this wave is generated by loadieggeneral binary file (.bin)
/[ENERGY, TRIGTIME, TIMELO, TIMEHI, REALTIMEHI, REATIME, TIMEINTERVAL,
INTERREALT, ENERGYI are contained in waveO//
/I High word is REALTIMEHI, middle word is TIMEHIlow word is TIMELO or TRIGTIME
make/R/O/N=(num_wave) ENERGY1, TRIGTIME, TIMELDIMEHI, REALTIMEHI,
REALTIME, INTERREALT
/[Above waves are used to extract time stampsdoh eadiation pulse and time-intervals
make/R/O/N=(num_wave) TIMEINTERVAL= -10, ENERGY2£0
Redimension/D/N= (num_wave) ENERGYRIGTIME, TIMELO, TIMEHI, REALTIMEHI,
REALTIME, INTERREALT, TIMEINTERVA, ENERGY2
energyindex=11
trigtimeindex=10
t low=8
t_high=7
real_high=17
i=0
k=0
j=wave0(0)
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Do
ENERGY1[n]=waveO[energyindex]
TRIGTIME[n]=waveO[trigtimeindex]
TIMELO[n]=waveO[t_low]
TIMEHI[n]=waveO[t_high]
REALTIMEHI[n]=waveOQ[real_high]

REALTIME[n]=(TIMELO[n]+TIMEHI[n]*(2"16)+REALTIMEHI [n]*(2"32))*25/(10"6) //ms
if (ENERGY1[n]>= E_low) && (ENERGY1[n]<= E_hil))
/I for interest energy range, the low limit and epfimit of energy need to input before run thisie!! //
INTERREALT[mM]=REALTIME[n]
ENERGY2[m1]=ENERGY1[n]
if (m>=1)
TIMEINTERVAL[W]=INTERREALT[mM]-INTERREALT[m-1]
w+=1
endif
m+=1
ml+=1
endif
energyindex+=12
trigtimeindex+=12
t_high+=12
real_high+=12
t low+=12
n+=1

while (n<(wave0[i]-6)/12)

energyindex=j+11

i

trigtimeindex=j+10

t_high=j+7

real_high=j+17

t low=j+8

j+=waveO0(i)

k+=1

while (k<num_spills)

/I the following progamming removes the non-positkalues in the timeinterval wave//

variable i1, t1, i2

i1=0

t1=0

i2=0

Do
if (TIMEINTERVAL]Ji1]>0)

i2+=1
t1+=TIMEINTERVAL]Ji1]

endif
i1+=1

while (il<num_wave)

make/R/O/N=(i2) selectedti

variable j1

j1=0

Do
selectedti[j1][=TIMEINTERVAL[j1]
j1+=1

while (j1<i2)
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variable cr //count rate (cps)
cr=(i2+1)/t1*1000
print "count rate=", cr, "live time=", t1
print "total timeintervals=", i2
print E_low, E_high

End

SPRT Analyses of Simulated Data

#pragma rtGlobals=1 /l Use modern global acceshade
Function pulse_generate()
/I generate a time series containing time inforomatf each registered pulse //
setrandomseed 0.05
variable n1, CR
CR=2 /***the count rate in 'cps' of thensilated counting process ***//
n1=10"6 // *number of pulses that are simatat**//
make/R/D/O/N=(n1) radomnum=enoise(0.5)+0.5 efiarate random numbers between 0 and 1 //
make/R/D/O/N=(n1) timeinterval=0, timestamp=0
variable n2
n2=0
Do
timeinterval[n2]=(-LN(1-radomnum[n2])/CR)*1000 /l in unit of ms//
if (n2==0)
timestamp[n2]=timeinterval[n2]
else
timestamp[n2]=timestamp[n2-1]+timeinterval[n2]
endif
n2+=1
while (n2<n1)
end

[T SIT test using counts in single cotime /////11TTTTHTTHIII
Function SIT _test()
variable delta_t =6 /I *** in unit of 'ghis is the fixed counting interval for SIT tegt#
variable m1=10"6 /[ *** the number of sitated pulses ***//
variable LC=17.70 [/l *** Discriminator leVfor SIT test ***//
variable pulse_num /I use this index to w@rothe runing time
variable m2, m3, m4  // m2 is the number d&dwoint for SIT test//

wave timestamp /I this wave is generaethe above function //
m2=floor(timestamp[m1-1]/1000/delta_t) // number of SIT counting time intervals //
make/R/D/O/N=(m2) SIT_counts=0 / cdunts in each SIT counting time //
m3=0

pulse_num=0

Do

m4=pulse_num
Do
if (timestamp[m4]>(m3*delta_t*1000) && timestampi@]<=((m3+1)*delta_t*1000))
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SIT_counts[m3]+=1
endif
m4+=1
while(timestamp[m4]<=(m3+1)*delta_t*1000)
pulse_num=m4-1
m3+=1
while(m3<m2)
variable m5, alarm, alarm_ratio
m5=0
alarm=0
Do
if (SIT_counts[m5]>=LC)
alarm+=1
endif
m5+=1
while (m5<m2)
alarm_ratio=100*alarm/m2
print alarm_ratio

TN SPRT test using counits fixed counting time /TN
Function SPRTF_test()
variable fixed_t=1 /I *** in unit of, ghis is the fixed counting interval for SPRT t&st/
variable k1=10"6 /[ *** the numbefr mulated pulses ***//
variable R0O=2, R1=4.35 //*** background leveldaalarm level ***//
variable LA=2.9444, LB=-2.9444 /| *** two tegtresholds ***//

variable Nmax=16 /[ *tfie maximum steps for the test ***//
variable pulse_numF /I Use index to shorten the runing time
variable k2, k3, k4 /I msZhe number of data point for sit test//
wave timestamp /thiave is generated by the above function //

k2=floor(timestamp[k1-1]/1000/fixed_t)
make/R/D/O/N=(k2) fixed_counts=0

k3=0
pulse_numF=0
Do
kd=pulse_numF
Do
if (timestamp[k4]>(k3*fixed_t*1000) && timestampf]<=((k3+1)*fixed_t*1000))
fixed_counts[k3]+=1
endif

k4+=1

while(timestamp[k4]<=(k3+1)*fixed_t*1000)
pulse_numF=k4-1
k3+=1

while(k3<k2)

/I check the number of pulses that are used fertést

variable totalcounts=0, k5

k5=0

do
totalcounts+=fixed_counts[k5]
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k5+=1
while (k5<k2)
print totalcounts
/Iratio calculation and decision making
variable x, zi, k6, stepn
make/R/O/D/N=(k2) sigalarm=0, backg=0, forces=bcé&b=0
k6=0
zi=0
stepn=0
Do
stepn+=1
x=fixed_counts[k6]
zi+=(LN(R1/R0))*x+(R0O-R1)*fixed_t
if (zi>= LA)
sigalarm[k6]=stepn
zi=0
stepn=0
elseif (zi<=LB)
backg[k6]=stepn

zi=0
stepn=0
elseif (stepn==Nmax)
if (zi>0)
forces[k6]=Nmax
zi=0
stepn=0
else
forceb[k6]=Nmax
zi=0
stepn=0
endif
endif
k6+=1

while (k6<k2)
/[decision results analyses
variable gg1, gg2, gg3, gg4, detp, N_alarm=0,l8arc0, N_fs=0, N_fb=0, Totalsteps_a=0,
Totalsteps_b=0
variable avgstep_a=0, avgstep_b=0, totalavg_6&tep=
g91=0
Do
If (sigalarm[ggl1]>=1)
N_alarm+=1
Totalsteps_a+=sigalarm[ggl]
endif
ggl+=1
while (ggl<k2)
992=0
Do
If (backg[gg2]>=1)
N_clear+=1
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Totalsteps_b+=backg[gg2]

endif
ggz+:1
while (gg2<k2)
gg3=0
Do
If (forces[gg3]>=1)
N_fs+=1
endif
gg3+=1
while (gg3<k2)
gg4=0
Do
If (forceb[gg4]>=1)
N_fb +=1
endif
gg4+=1

while (gg4<k2)
avgstep_a = (totalsteps_a + N_fs*NMax)/(N_alarid_+s)
avgstep_b = (totalsteps_b + N_fb*NMax)/(N_cleax +b)
totalavg_step=(totalsteps_a+totalsteps lsMNIMax+N_fb*NMax)/(N_alarm+N_clear+N_fs+N_fh)
detp= (N_alarm+N_fs)/(N_alarm+N_fs+id\ear+N_fb)*100
/Istatistical anlayses

print detp, N_alarm, N_clear, N_fs, N_fb, avgstepavgstep_b, totalavg_step
make/R/O/D/N=(k2) total_Fwave=0, total_FalarmatoFclear
total_Fwave=sigalarm+backg+forces+forceb
total Falarm=sigalarm+forces
total_Fclear=backg+forceb
variable total_Fdecision=N_alarm+N_clear+N_fs+N _fb
variable total_FNalarm=N_alarm+N_fs
variable total_FNclear=N_clear+N_fb
make/R/O/D/N=(total_Fdecision) F_decision=0
make/R/O/D/N=(total_FNalarm) F_Dalarm=0
make/R/O/D/N=(total_FNclear) F_Dclear=0
variable th5, th6
th5=0
th6=0
Do

if(total_Fwave[th5]!=0)

F_decision[th6]=total Fwave[th5]
th6+=1

endif

th5+=1
while (th5<k2)
wavestats/Q F_decision
variable F_stddev=V_SDev, F_meanT=V_avg
print "Ftddev=", F_stddev
print "F_meanT=", F_meanT

variable th7, th8
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th7=0
th8=0
Do
if(total_Falarm[th7]!=0)
F_Dalarm[th8]=total_Falarm[th7]
th8+=1
endif
th7+=1
while(th7<k2)

variable alarm_std, alarm_mean

if (total_FNalarm<2)
alarm_std=0
alarm_mean=0

else
wavestats/q F_Dalarm
alarm_std=V_SDev
alarm_mean=V_avg
endif

print "alarm_std=", alarm_std
print "alarm_mean=", alarm_mean
variable th9, th10
th9=0
th10=0
Do
if(total_Fclear[th9]!=0)
F_Dclear[th10]=total_Fclear[th9]
th10+=1
endif
tho+=1
while(th9<k?2)

variable clear_std, clear_mean

if(total_FNclear<=1)
clear_std=0
clear_mean=0

else
wavestats/q F_Dclear
clear_std=V_SDev
clear_mean=V_avg
endif

print "clear_std=", clear_std
print "clear_mean=", clear_mean
End

TS PRT using scaled timetervals /TN
Function SPRTS_test()
variable num_pulses= 10”6 /I num ahslated pulses ***//
variable scale N =4 /I ***muof scaled pulses ***//
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variable BO, B1, LLA, LLB, SNMax

B0=2 I**f background level ***//
B1=4.35 H+alarm level ***//
LLA=2.9444

LLB=-2.9444

SNmax=16

variable s1, scaled_num

scaled_num=floor(num_pulses/scale_N)

make/R/O/D/N=(scaled_num) scaled_TI=0, S_alarn$=®ackg=0, S_forceS=0, S_forceB=0 ,
T _alarm=0, T_backg=0, T_forceS=0, Tcé&B=0

wave timestamp /I this wave is geteatdy the function, pulse_generate() //
s1=0
Do
if (s1==0)
scaled_TI[s1]=timestamp[(s1+1)*scale N-1]
else
scaled_TI[s1]=timestamp[(s1+1)*scale N-1]-tineesp[sl*scale_N-1]
endif
sl+=1

while (sl<scaled_num)
/I ratio calculation and decision making
variable x1, zzi, Sstepn, s2, sti
s2=0
sti=0
zzi=0
Sstepn=0
Do
Sstepn+=1
x1=scaled_TI[s2]
sti+=x1 // record the the time needed to makeasibn//
zzi+=LN(B1/B0)*(scale_N-1)+(B0-B1)*x1/1000
if (zzi>=LLA)
S_alarm[s2]=Sstepn
T_alarm[s2]=sti
sti=0
zzi=0
Sstepn=0
elseif (zzi<=LLB)
S_backg[s2]=Sstepn
T_backg[s2]=sti
sti=0
zzi=0
Sstepn=0
elseif (Sstepn==SNmax)
if (zzi>0)
S_forceS[s2]=SNmax
T forceS[s2]=sti
sti=0
zzi=0
Sstepn=0
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else
S_forceB[s2]=SNmax
T_forceB[s2]=sti

sti=0
zzi=0
Sstepn=0
endif
endif
s2+=1

while(s2<scaled_num)
/[Decision results analyses
variable hhl, hh2, hh3, hh4, SN_alarm=0, SN_cleasN_fs=0, SN_fb=0, STotalsteps_a=0,
STotalsteps_b=0
variable Savgstep_a=0, Savgstep_b=0, S_det=&I&tgt step=0
hh1=0
Do
If (S_alarm[hh1]>=1)
SN_alarm+=1
STotalsteps_a+=S_alarm[hh1]
endif
hhl+=1
while (hhl<scaled_num)
hh2=0
Do
If (S_backg[hh2]>=1)
SN_clear+=1
STotalsteps_b+=S_backg[hh2]
endif
hh2+=1
while (hh2<scaled_num)
hh3=0
Do
If (S_forceS[hh3]>=1)
SN_fs+=1
endif
hh3+=1
while (hh3<scaled_num)
hh4=0
Do
If (S_forceB[hh4]>=1)
SN_fb +=1
endif
hh4+=1
while (hh4<scaled_num)
Savgstep_a = (Stotalsteps_a + SN_fs*SNMax)/(SNnataSN_fs)
Savgstep_b = (Stotalsteps_b + SN_fb*SNMax)/(SNarcleSN _fb)
Stotalavg_step=(Stotalsteps_a+Stmfads b+SN_fs*SNMax+SN_fb*SNMax)/(SN_alarm+SN_fs
+SN_cle8N-_fb)
S det=100*(SN_alarm+SN_fs)/(SN_alarm+SN_fs+SN reigal_fb)
print SN_alarm, SN_clear, SN_fs, SN _fb, Savgstefaagstep_b, Stotalavg_step
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print s_det
variable ST_alarm=0, ST_backg=0, f6ficeS=0, ST_forceB=0
variable thl, th2, th3, th4, AvgTamh=0, AvgT_backg=0, Stotalavg_t=0

th1=0
Do
If (T_alarm[th1]!=0)
ST _alarm+=T_alarm[th1]
endif
thl+=1
while (thl<scaled_num)
th2=0
Do
If (T_backg[th2]'=0)
ST _backg+=T_backg[th2]
endif
th2+=1
while (th2<scaled_num)
th3=0
Do
If (T_forceS[th3]!=0)
ST _forceS+=T_forceS[th3]
endif
th3+=1
while (th3<scaled_num)
th4=0
Do

If (T_forceB[th4]'=0)
ST_forceB+=T_forceBJ[th4]
endif
th4+=1
while (thd<scaled_num)

AvgT_alarm= (ST_alarm+ST_forceS)/(@urm+SN_fs)/1000
Stotalavg_t=(ST_alarm+ST_forceS+STkhaST forceB)/(SN_alarm+SN_fs+SN_clear
+SN_fb)/1000

print AvgT_alarm, AvgT_backg, Stotalavg_t

/Istatistics calculation
make/R/O/D/N=(scaled_num) total_Twave=0, total afial, total_Tclear
total_ Twave=T_alarm+T_backg+T_forceS+T_forceB
total Talarm=T_alarm+T_forceS
total_Tclear=T_backg+T_forceB
variable total_Tdecision=SN_alarm+SN_clear+SN_f¢+B
variable total_Dalarm=SN_alarm+SN_fs
variable total_Dclear=SN_clear+SN_fb
make/R/O/D/N=(total_Tdecision) T_decision=0
make/R/O/D/N=(total_Dalarm) T_Dalarm=0
make/R/O/D/N=(total_Dclear) T_Dclear=0
variable th5, th6
th5=0
th6=0
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Do
if(total_Twave[th5]!=0)
T_decision[th6]=total_Twave[th5]
th6+=1
endif
th5+=1
while (th5<scaled_num)
wavestats/Q T_decision
variable S_stddev=V_SDev, S_meanT=V_avg
print "Stddev=", S_stddev
print"S_meanT=", S_meanT
variable th7, th8
th7=0
th8=0
Do
if(total_Talarm[th7]!=0)
T_Dalarm[th8]=total_Talarm[th7]
th8+=1
endif
th7+=1
while(th7<scaled_num)
variable alarm_std, alarm_mean
if (total_Dalarm<2)
alarm_std=0
alarm_mean=0

else
wavestats/q T_Dalarm
alarm_std=V_SDev
alarm_mean=V_avg
endif

print "alarm_std=", alarm_std
print "alarm_mean=", alarm_mean
variable th9, th10
th9=0
th10=0
Do
if(total_Tclear[th9]!=0)
T_Dclear[th10]=total_Tclear[th9]
th10+=1
endif
tho+=1
while(th9<scaled_num)
variable clear_std, clear_mean
if(total_Dclear<=1)
clear_std=0
clear_mean=0
else
wavestats/q T_Dclear
clear_std=V_SDev
clear_mean=V_avg
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endif
print "clear_std=", clear_std
print "clear_mean=", clear_mean

End
Igor Pro. Code for SPRT with Scaled Time-Intenfals
Experimental Data
#pragma rtGlobals=1 /' Use modern global accedhade

/I This function is designated for SPRT analysisgisimulated scaled time-intervals//
Function pulses_analysis()
variable max_num= 209, spill_num= 120  //*** input these two value before run ***//
variable ScaledN=4 [**number of pulsed thakeascaled***//
variable t_low, t_high, real_high, i, h,jkn, start_hi, start_mi, start_lo
/I t_low, t_high, real_high are the low word, middvord and high word for the realtime of each pulse
/ start_lo, start_mi, start_hi are the low wordgdhte word and high word for the start time of eagh for
data acquisition;
/l'i is the index to check the number of wordsha BUF_NDATA!' of the list mode data;
/I h is used to control the inner "do... while" fjp@nd k is used to control the outer "do... whitep;
/I n'is index for the realtime waves, timelo, timekaltimehi;
/lj is the index of wave0, which is a temporaryerdhat is used to transfer values for 'i".
wave wave0O // waveO is data wave fromcthmmand ' GBLoadWave' function in IGOR.//
/I create waves and arrays that are going to ke fasebtaining the timestamp of each signal.
make/R/O/D/N=(max_num?*spill_num) timelanghi, realtimehi
make/R/D/O/N=(max_num, spill_num) timestantp
/ltimestamp contains the absolute time informatibaach pulse that is registered.
make/R/O/D/N=(spill_num) start_time=0 //&tart point of each run//
t low=8
t_high=7
real_high=17
start_hi=3
start_mi=4
start_lo=5
i=0
k=0
n=0
j=wave0(0)
Do
start_time[k]=(waveOQ[start_lo] + waveO[start Jf{2"16) + waveOQ[start_hi]*(2"32))*25/(10"6)
/[ run start time
h=0

Do

If (waveO[i] <18)
break

endif
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timelo[n]=waveO0[t_low]
timehi[n]=waveO[t_high]
realtimehi[n]=waveO[real_high]
timestamp[h][k]=(timelo[n]+timehi[n]*(2"@)+realtimehi[n]*(2"32))*25/(1076) // in unit ahs
/I timestamp is the array that contains the realtinformation for each signal.
t_high+=12
t low+=12
real_high+=12
n+=1
h+=1
while (h<(waveO[i]-6)/12)
i=j
t_high=j+7
t low=j+8
real_high=j+17
start_hi=j+3
start_mi=j+4
start_lo=j+5
j+=waveO[i]
k+=1
while (k<spill_num)
Duplicate/D/O timestamp realtime_stamp
killwaves timestamp
/[ 'Duplicate’ and 'killwaves' commands are useghade sure that contents in each arrays are cleared
before a new operation.
/[This part produce time-intervals of scaled pulses
variable n1, n2
/lused for do... while loops control.
variable num_scale
num_scale=max_num/ScaledN
make/R/O/D/N=(num_scale, spill_num) relatine=0, scaledTI=0
n1l=0
Do
n2=0
Do
relativetime[n2][n1]=realtime_stp[(n2+1)*scaledN-1][n1]-start_time[n1]
n2 +=1
while (n2+1 <= num_scale)
nl+=1
while (n1<spill_num)
variable n3, n4
n3=0
DO
n4=0
Do
if (n4==0)
scaledTlI[n4][n3]=relativetime[n4][h3
else
scaledTI[n4][n3]=relativetime[n4Hhrelativetime[n4-1][n3]
endif
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n4+=1
while (n4<num_scale)
n3+=1
while (n3<spill_num)
variable n5, n6, scaleindex
make/R/O/D/N=(nhum_scale*spill_num) scale_sklds0
scaleindex=0
n5=0
Do
n6=0
Do
if (scaledTI[n6][n5]>0)
scale_selected[scaleindex]=scaledT ][

endif
scaleindex+=1
n6+=1
while (n6<=num_scale-1)
n5+=1
while (n5<spill_num)

End
Il After this step, a similar programming codse that for simulated scaled time-intervals is ufed
experimental scaled time-intervals contained invtage scale_selected//////

Igor Pro. Code for SPRT with a Fixed Count Time for
Experimental Data

#pragma rtGlobals=1 /' Use modern global accedhade
Function Poisson_analysis()
variable max_num= 209, spill_num= 128*/input these two value before run ***//
variable delta_t=1 //&&&&& in unit of', the fixed time interval, input this value &&&&&
variable t_low, t_high, real_high, i,Ky,j, n, start_hi, start_mi, start_lo
/I t_low, t_high, real_high are the low word, middlord and high word for the realtime of each signa
/I start_lo, start_mi, start_hi are the low wordgdhte word and high word for the start time of each for
data collection;
/l'iis the index to check the number of wordshie BUF_NDATA' of the list mode data;
/I h is used to control the inner do... while loapd k is used to control the outer do... whilgtoo
/I n is index for the realtime waves, timelo, timekaltimehi;
/lj is the index of wave0, which is a temporaryardhis is used to transfer values for 'i".
wave wave0  // waveO is data wave ftbencommand ' GBLoadWave' function in IGOR.
/I create waves and arrays that are going to ket fasebtaining the relative timestamp of each algn
make/R/O/D/N=(max_num*spill_num) timelanghi, realtimehi
make/R/D/O/N=(max_num, spill_num) timestamgimestamp
/ltimestamp contains the absolute time informativet each event is registered; r_timestamp isithe t
information
/Irelative to the start point of the corresponding.
make/R/O/D/N=(spill_num) start_time //ttiars point of each run
make/R/O/D/N=(spill_num) signal_num // themtber of registered events for each run.
t_low=8
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t_high=7
real_high=17
start_hi=3
start_mi=4
start_lo=5
i=0
k=0
n=0
j=wave0(0)
Do
start_time[k]=(waveOQ[start_lo] + wavetrt_mi]*(2"16) + waveO[start_hi]*(2"32))*25/(1079
signal_num[k]=(wave0[i]-6)/12
h=0
Do
If (waveQ[i] <18)
break
endif
timelo[n]=waveO[t_low]
timehi[n]=waveO[t_high]
realtimehi[n]=waveO[real_high]
timestamp[h][k]=(timelo[n]+timehi[n{2"16)+realtimehi[n]*(2"32))*25/(10"9)
r_timestamp[h][k]=timestamp[h][k]-statime[K]
/l time is in unit of s
/I timestamp is the array that contains the realtinformation for each signal,
/Ir_timestamp is the array that contains the nedatiime information to its run start time.
t_high+=12
t low+=12
real_high+=12
n+=1
h+=1
while (h<(wave0[i]-6)/12)
i5j
t_high=j+7
t low=j+8
real_high=j+17
start_hi=j+3
start_mi=j+4
start_lo=j+5
j+=waveO[i]
k+=1
while (k<spill_num)
WaveStats/q signal_num
printV_avg, V_min, V_max, V_sdev /I stdits for the number of events in a fixed time rindd
Duplicate/D/O timestamp realtime_stamp
Duplicate/D/O r_timestamp relativetime
killwaves timestamp, r_timestamp

// 'Duplicate’ and 'killwaves' commands are useghdke sure that contents in each arrays are dleare

I/ before the next new operation
[T This part is used to analyze themof signals that are observed in a fixed counetitt//////
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variable n1, n2, n3, lastp, t n2
/Il used for do... while loops control, lastp idéx for the last event for each run in the waveaignum.
wave countswave // output wave
variable runtime=180, rownum //&&&& umit of 's' &&&&&&//
rownum=runtime/delta_t + 10
make/R/O/N=(rownum, spill_num) countsea
make/R/O/N=(spill_num) deltat_ num=0
n1=0
Do
n2=0
Do
n3=0
Do
if (relativetime[n3][n1]>(n2*deltd) && relativetime[n3][nl]<=((n2+1)*delta _t))
countswave[n2][n1] +=1
endif
n3+=1
while (n3<signal_num[n1])
/[controlled by the number of events for each run.
n2 +=1
lastp=signal_num[n1]-1
T _n2=n2*delta_t
while (T_n2 <= relativetime[lastp][n1])

/[controlled by the relative time of the last e/far each run
deltat_num[nl]=n2-1 /// the number okfiktime intervals for each run
nl+=1
while (nl<spill_num)

Duplicate/D/O countswave, countobserve
Killwaves countswave
End

/Il After this step, a similar programming cods that for simulated data is used for experimeatditd

contained in the wave countobserve////l/

R Code for Average Run Length Calculation for Bages
Analysis with Time-Interval Data

#R code for Bayesian analysis. Posterior distribbuts created by "rgamma” function
#This code is used for time-interval information

setwd("C:/Peng's Bayesian/Bugs tests") #set wgrdlirectory

alphal <-2  #prior parameter

betal <-1  #prior parameter
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nnn<-10000 #number of simulation sampfitagn the posterior distribution

thetaO <- 2 #the background count rate
DL<-0.95 #the detection limit

timeint <- read.table("C:/Peng's Bayesian/runlertgta/timeinterval-8.0cps-2.txt", head=T)
x<-timeint$timeinterval
J<-nrow(timeint) #total number of data points

runlength<-c()
decisiontime<-c()
nl<-1 #data point index
n2<-1 # index to record the number oadatints for a decision making
timetodecision<-0 #to record the time to make eisien
while (n1<=J) {
X.r=x[n1]/1000
timetodecision<-timetodecision+x.r
if (n2==1) {
alpha2<-alphal+1
beta2<-betal+x.r

post.gam<-rgamma(nnn,afpbata?) #posterior calculation
mean.theta<-mean(post.gam) #mean of the posterior
probtheta<-round(sum(mmet>=theta0)/nnn,3)  #the probability that the tgaer is
above the background

if (probtheta>=DL) {

runléing-c(runlength,n2)

decidine<-c(decisiontime,timetodecision)

n2<-1

timetmision<-0

} elge

n2<-ri2+
}
}else {
alpha2<-alpha2+1
beta2<-beta2+x.r
post.gam<-rgamma(nnn,afpbata?) #posterior calculation
mean.theta<-mean(post.gam) #mean of the posterior
probtheta<-round(sum(mmet>=theta0)/nnn,3)  #the probability that the tpaesr is
above the background
if (probtheta>=DL) {
runléing-c(runlength,n2)
decidine<-c(decisiontime,timetodecision)
n2<-1
timegamision<-0
} elge

n2<-ri2+
}
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}

nil<-nl+1

}

#summary of the runlength
runlength<-as.matrix(runlength)
totaldecision<-nrow(runlength)
averageRL<-mean(runlength)
RL.std<-(var(runlength))*(1/2)
totaldecision

averageRL

RL.std

#summary of the decisiontime

J

nl

n2

probtheta
decisiontime<-as.matrix(decisiontime)
totaldecision2<-nrow(decisiontime)
averageDT<-mean(decisiontime)
DT.std<-(var(decisiontime))*(1/2)
totaldecision2

averageDT

DT.std

summary(decisiontime)

R Code for Detection Probability Calculation fory®aian
Analysis with Time-Interval Data

#R code for Bayesian analysis. Posterior distribbuts created by "rgamma” function
#This code is used for the detection probabilityimi-interval information

#The data are simulated for different conditiongyIrsource+bkg2
setwd("C:/Peng's Bayesian/Bugs tests") #set wgrdirectory

alphal <- 2 #prior parameter

betal <-1 #prior parameter

nnn<-10000 #number of simulation sampfitagn the posterior distribution
thetaO <- 2 #the background count rate

DL<-0.95 #the detection limit

bkgl<-5 #the counting time of the backgmbbefore the presence of the source

timeint <- read.table("C:/Peng's Bayesian/simulat@dnditions-5-5-5/simulatedtimeinterval-4.0cps-
2.txt" head=F) #data
Jl<-nrow(timeint) #total number of sub-data sets
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decmatrix<-rep(-1,J1)
tmat<-rep(0,J1)
J2<-ncol(timeint)
i1<-1 #indext for the number of sub-dat sets
while(il<=J1) {
x<-timeint[il,]
nl<-1 #data point index
n2<-1 # index to record the numiifedata points for a decision making
timetodecision<-0 #to record the time tdkma decision
probtheta<-0
while (n1<=J32) {
if(probtheta>=DL && timetodecision>kl) break
X.r=x[n1]/1000
X.r=as.numeric(x.r)
if((1000*x.r)==-100) break
timetodecision<-timetodecision+x.r
if (n2==1) {
alpha2<-alphal+1
beta2<-betal+x.r
post.gam<-rgamma(nnn,aZpheta?2) #posterior calculation
mean.theta<-mean(post.gam) #mean of the posterior
probtheta<-round(sum(pyin>=theta0)/nnn,3)
#the probability that the posterior is above thekigaound
if (probtheta>=DL) {
n2<-1
} elge
n2<-ri2+

}
}else {
alpha2<-alpha2+1
beta2<-beta2+x.r
post.gam<-rgamma(nnn,afpbata?) #posterior calculation
mean.theta<-mean(post.gam) #mean of the posterior
probtheta<-round(sum(mmetn>=theta0)/nnn,3)
#the probability that the posterior is above thekground
if (probtheta>=DL) {
# rundgin<-c(runlength,n2)
# deoigime<-c(decisiontime,timetodecision)
n2<-1
# timd&zision<-0
} elge
n2<-ri2+
}
}
ni<-nl+1

decmatrix[il]<-probtheta
tmat[il]<-timetodecision
i1<-i1+1

}
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detectionpro<-(sum(decmatrix>=DL))/J1
std.dectpro<-sgrt(sum(decmatrix>=DL))/J1
print(detectionpro,digits=3)

std.dectpro

R Code for Average Run Length Calculation for CUSUM
Analysis with Time-Interval Data

# CUSUM analysis of time-interval information
setwd("d:/profile.cu/My Documents/CUSUM") #set working directory

cr_b<-2 #the mean count rate of thekeound

cr_d<-5 #the mean count rate thatisded to detect quickly
k<-(log(cr_d)-log(cr_b))/(cr_d-cr_b) #theference value, nature log function
DL<-3.32 #the detection limit wetlger alarm should be issued

radti <- read.table("C:/Peng's Research/CUSUM aisligimulated data/runlength data/timeinterval-
10.0cps.txt",head=T) #data

x<-radti$timeinterval

J<-nrow(radti) #total numberdatta points

ci<-rep(-1,J) #matrix to caintthe cusum value for each data point
runlength<-c() #create an maxdoi contain rungth values
ci_value<-c() #matrix to coma&i values

decisiontime<-c() #matrix to contaiime to make a detection

C0<-0 #the startmgyalue

nl<-1

n2<-1

timetodecision<-0

while (n1<=J) {
X.r<-x[n1]/1000 # in unit of second (s)
timetodecision<-timetodecision+x.r

if (n2==1) {
c_sum<-k-x.r+CO
}else {
c_sum<-k-x.r+ci[n1-1]
}

ci[nl]<-max(0,c_sum)

if (ciln1]>=DL) {
runlength<-c(runlength,n2)
ci_value<-c(ci_value, ci[p1]
decisiontime<-c(decisiontitimaetodecision)
n2<-1
timetodecision<-0

}else {
n2<-n2+1

}

nl<-nl+1

146



}

#summary of the runlength
runlength<-as.matrix(runlength)
totaldecision<-nrow(runlength)
ARL<-mean(runlength)
RL.std<-(var(runlength))*(1/2)
totaldecision

ARL

RL.std

summary(runlength)

#summary of the decisiontime
decisiontime<-as.matrix(decisiontime)
totaldecision2<-nrow(decisiontime)
averageDT<-mean(decisiontime)
DT.std<-(var(decisiontime))*(1/2)
totaldecision2

averageDT

DT.std

k

DL

cr b

cr d

R Code for Detection Probability Calculation for SUM
Analysis with Time-Interval Data

# R code for CUSUM analysis to check the deteatificiency when time-interval information is used
setwd("C:/Peng's Research/CUSUM analysis/R cod#sgt working directory

cr_b<-2 #the mean count rate of the background

cr_d<-4 #the mean count rate that is needed &xtqtickly

k<-(log(cr_d)-log(cr_b))/(cr_d-cr_b) #the refecervalue, nature log function

DL<-2.66 #the detection limit whether an alafmosld be issued

bkgl=5 #the background measurement before tleepce of the source

timeint <- read.table("C:/Peng's Research/CUSUMIyaisSimulated data/simulated conditions-5-20-
5/simulatedtimeinterval-5.0cps.txt",head=F) #data

J1<-nrow(timeint) #total number of sub data sets

ci_value<-rep(-1,J1)

decisiontime<-rep(0,J1)

J2<-ncol(timeint)

i1<-1 #index for the number of sub data sets

while (i1<=J1) {

x<-timeint[il,]

nl<-1 # index to record the number of geatimts for a decision
timetodecision<-0 # to record the time takena decision
C0<-0 #the starting ci value
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ci<-rep(-1,J2)
while (n1<=J2) {
if (ci[n1-1]>=DL && timetodecision>=bkg1)reak
X.r<-x[n1]/1000
X.r<-as.numeric(x.r)
if ((1000*x.r)==-100) break
timetodecision<-timetodecision+x.r
if (n1==1) {
c_sum<-k-x.r+CO0
}else {
c_sum<-k-x.r+ci[n1-1]

ci[n1]<-max(0,c_sum)
nl<-nl+1
}
ci_valuelil]<-ci[n1-1]
if (ci_value[il]>=DL) {
decisiontime[il]<-timetodecision
}else {
decisiontime[il]<--1
}
il<-il+1
}
decisiontime<-decisiontime[decisiontime>0]
decisiontime<-as.matrix(decisiontime)
summary(decisiontime)
detectionpro<-(sum(ci_value>=DL))/J1
std.detectpro<-sqrt(sum(ci_value>=DL))/J1
print (detectionpro, digits=3)
std.detectpro
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Appendix C

Data Relative to Experimental Results

Table C.1. Experimental detection probabilities thie three methods: SIT,
SPRT_scaled and SPRT_scaled.

Detection Probability (%)

CR (cps) SIT (65) SPRT _fixed SPRT_scaled
(1s) N=4 N=6
1.87 10.19 2.14 0.09 0.06
2.02 11.97 3.31 0.04 0.32
2.07 7.65 1.74 0.00 0.00
2.25 16.74 5.94 0.09 0.53
2.38 23.03 7.86 0.05 0.39
2.52 26.18 13.73 0.11 0.85
3.08 58.36 52.27 3.51 11.00
3.39 77.97 77.40 7.14 26.68

4.90 99.62 99.37 95.07 98.37
5.51 99.96 99.85 99.28 99.78
7.42 100.00 100.00 100.00  100.00
9.23 100.00 100.00 100.00  100.00

Table C.2. Experimental average time for SIT, SPiX€d and SPRT_scaled.

Average Time (s)
CR(cps) SPRT fixed SPRT scaled

(1s) N=4 N=6
1.87 3.83 5.27 6.91
2.02 4.29 5.07 6.54
2.07 4.66 4.52 5.78
2.25 5.26 4.93 6.37
2.38 5.86 5.10 6.70
2.52 6.44 5.28 6.87
3.08 7.51 6.95 9.73
3.39 7.27 8.76 12.75
4.90 2.90 6.12 4.54
5.51 2.27 4.05 3.24
7.42 1.49 1.83 1.70
9.23 1.20 1.21 1.22
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Table C.3. Experimental average run length of Bayeanalyses for radiation pulses
within the 1332.5keV ROI d’Co.

Average Run Length (s)

CR (cps) , —
1.650 Bayesian (cnt) Bayesian (ti)
2.08 16.56 28657 28650
2.46 9.69 39.89 34.83
3.06 5.19 9.32 7.64
3.36 3.98 6.49 5.16
3.75 3.11 4.61 3.54
4.12 2.5 3.61 2.68
4.77 1.92 2.68 1.86
6.16 1.36 1.8 1.1
6.82 1.23 1.6 0.92
8.77 1.07 1.25 0.61
9.99 1.03 1.14 0.51

Table C.4. Experimental detection probabilitieBalyesian analyses for the scenario
(5s background + 5s source + 5s background) ubiegadiation pulses
within the 1332.5 keV ROI.

Detection Probability

CR (cps) . : :
1.650 std. Bayesian (cnt) std. Bayesian (ti) std.
2.08 0.266 0.007 0.0782 0.0039 0.0626 0.0035
2.46 0.419 0.009 0.139 0.0053 0.123 0.005
3.06 0.66 0.012 0.32 0.0086 0.303 0.0084
3.36 0.76 0.012 0.415 0.0091 0.394 0.0088
3.75 0.861 0.013 0.554 0.0105 0.543 0.0104
4.12 0.922 0.014 0.682 0.0117 0.671 0.0116
4.77 0.976 0.014 0.843 0.0131 0.844 0.0131
6.16 0.999 0.016 0.979 0.0156 0.975 0.0155
6.82 1 0.018 0.993 0.0178 0.992 0.0178
8.77 1 0.022 1 0.0217 1 0.0217
9.99 1 0.023 1 0.0231 1 0.0231
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Table C.5. Experimental ARL ratios of CUSUM anaby$er radiation pulses within
the 1332.5keV ROI of°Co.

ARL ratios
CR(PS) e USUM, mrCUSUM, (1u=8cps) Shewhart
210  1.00 0.86 1.20
250  1.00 0.90 2.80
310 098 0.93 3.50
340 09 0.91 3.70
380 094 0.90 3.20
410 093 0.88 2.80
48 091 0.84 2.00
620  0.86 0.74 1.30
680  0.84 0.69 1.10
880  0.79 0.58 0.89
1000 076 0.51 0.85

Table C.6. Experimental ARLs of CUSUM analyses rixtiation pulses within the
1332.5keV ROI of°Co.

ARL (s)
CR (cps)
CUSUM,,; CUSUM; mrCUSUM Shewhart
2.1 559.6 570.8 483.7 697.6
2.5 92.2 93.5 82.7 257.6
3.1 20.1 19.6 18.6 70.7
34 12.8 12.3 11.7 47.6
3.8 8.6 8.1 7.7 27.1
4.1 6.4 6.0 5.7 18.0
4.8 4.5 4.1 3.8 9.1
6.2 2.8 2.4 2.1 3.6
6.8 2.4 2.0 1.7 2.7
8.8 1.7 1.4 1.0 1.5
10.0 15 1.1 0.8 13
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Table C.7. Experimental detection probabilitiesGiSUM analyses for radiation
pulses within the 1332.5keV ROI ¥Co.

Detection Probability

CR (cps) CUSUM.,;  std. CUSUM std. mrCUSUM; (Lu=8cps) std. Shewhart std.
2.10 0.02 0.002 0.02 0.002 0.03 0.002 0.01 0.001
2.50 0.05 0.003 0.05 0.003 0.05 0.003 0.02 0.002
3.10 0.16 0.006 0.16 0.006 0.17 0.006 0.06 0.004
3.40 0.27 0.007 0.26 0.007 0.27 0.007 0.10 0.005
3.80 0.41 0.009 0.41 0.009 0.42 0.009 0.17 0.006
4.10 0.58 0.010 0.57 0.011 0.58 0.011 0.25 0.007
4.80 0.79 0.013 0.79 0.013 0.79 0.013 0.44 0.009
6.20 0.97 0.016 0.97 0.016 0.97 0.016 0.80 0.014
6.80 0.99 0.018 0.99 0.018 0.99 0.018 0.91 0.017
8.80 1.00 0.022 1.00 0.022 1.00 0.022 1.00 0.022
10.00 1.00 0.023 1.00 0.023 1.00 0.023 1.00 0.023
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Table C.8. Experimental time-interval distributions

time-interval (ms)

Time-Interval Probability

2.01cps std. 3.23cps std. 4.47cps std.

50 0.097 0.0010 0.144 0.0022 0.198 0.0031
100 0.101 0.0010 0.123 0.0020 0.160 0.0027
150 0.096 0.0010 0.110 0.0019 0.127 0.0024
200 0.091 0.0010 0.093 0.0017 0.102 0.0021
250 0.082 0.0009 0.081 0.0016 0.082 0.0019
300 0.071 0.0008 0.069 0.0015 0.066 0.0017
350 0.061 0.0008 0.059 0.0013 0.055 0.0015
400 0.051 0.0007 0.048 0.0012 0.043 0.0013
450 0.043 0.0006 0.042 0.0011 0.035 0.0012
500 0.037 0.0006 0.035 0.0010 0.028 0.0011
550 0.030 0.0005 0.029 0.0009 0.022 0.0009
600 0.026 0.0005 0.026 0.0009 0.018 0.0009
650 0.022 0.0005 0.023 0.0008 0.014 0.0007
700 0.019 0.0004 0.018 0.0007 0.009 0.0006
750 0.016 0.0004 0.015 0.0006 0.009 0.0006
800 0.014 0.0004 0.014 0.0006 0.006 0.0005
850 0.012 0.0003 0.011 0.0006 0.006 0.0005
900 0.011 0.0003 0.010 0.0005 0.005 0.0004
950 0.009 0.0003 0.008 0.0005 0.003 0.0004
1000 0.008 0.0003 0.005 0.0004 0.003 0.0004
1050 0.007 0.0003 0.007 0.0004 0.002 0.0003
1100 0.006 0.0002 0.004 0.0003 0.002 0.0003
1150 0.006 0.0002 0.004 0.0003 0.001 0.0002
1200 0.005 0.0002 0.004 0.0003 0.001 0.0002
1250 0.005 0.0002 0.003 0.0003 0.001 0.0002
1300 0.004 0.0002 0.002 0.0003 0.001 0.0002
1350 0.004 0.0002 0.003 0.0003 0.000 0.0001
1400 0.003 0.0002 0.002 0.0002 0.001 0.0002
1450 0.003 0.0002 0.001 0.0002 0.000 0.0001
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