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ABSTRACT 

 

Conductive polymer composites have become alternative materials for providing 

electromagnetic and electrostatic shielding where metals are not suitable. Polymer 

composites prepared with carbon nanomodifiers are corrosion-resistant, light-weight, and 

easy to process. Moreover, due to their nano-scale, nanocomposites can be shaped into 

thin-walled forms such as micro-injection molded or micro-textured extruded parts and 

films. The composite community has devoted considerable effort to the study and 

development of such composites for enhanced electrical conductivity. However, the 

electromagnetic shielding effectiveness (EM SE) of composites consisting of carbon 

nanomodifiers with medium to high concentrations has not been thoroughly examined. 

Therefore, in this study, the effect of crystallinity, morphology, concentration and 

orientation of carbon nanomodifiers on the shielding provided by their polyethylene-

based composites has been investigated relative to their transport properties. 

First, the electrical properties and EM SE of composites consisting of heat-treated 

carbon nanofibers (Pyrograf®-III PR-19 CNF) in a linear low density polyethylene 

(LLDPE) matrix were assessed. Heat treatment (HT) of CNF at 2500°C significantly 

improved their graphitic crystallinity and intrinsic transport properties, thereby increasing 

the EM SE of the nanocomposites. Thus, twin-screw extruded composites containing 10 

vol% heat-treated PR-19 displayed a conductivity of about 10 S/m, about ten orders of 

magnitude better than that of the composites containing as-received nanofibers. Over a 

frequency range of 30 MHz to 1.5 GHz, nanocomposites containing PR-19 HT displayed 
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EM SE values of about 14±2 dB. Absorption was determined to be the main shielding 

component for the heat-treated CNF nanocomposites. The nanocomposites possessed a 

tensile modulus of 632±36 MPa (about twice of that of pure LLDPE).  Although the 

strain-to-failure was about one-third that of pure LLDPE, the absolute value of 180±98% 

indicates a significant retention of ductility.  

 Second, the influence of the morphology of carbon modifiers on the electrical, 

thermal and mechanical properties of their composites was investigated. Four heat-treated 

carbon modifiers were investigated: PR-19 HT carbon nanofibers, multi-walled carbon 

nanotubes (MWNT HT), helical multi-walled carbon nanotubes (HCNT HT), and pitch-

based P-55 carbon fibers (CF). These were melt-mixed with LLDPE in a Haake Rheomix 

600 batch mixer at 10 vol%. The EM SE of the composites exhibited dependence on the 

modifier morphology. Thus, MWHT HT, with the highest aspect ratio, led to the largest 

composite electrical and thermal conductivities (34 S/m, 1 W/m.K) and EM SE (~24 dB). 

In contrast, HCNT HT, due to their coiled shape and low aspect ratio, led to a non-

percolating microstructure in the composites, which produced poor EM SE (<1 dB). 

Nonetheless, HCNT HT composites displayed the highest ductility (~250%) and 

flexibility, which is probably owed to the matrix-modifier mechanical bonding 

(interlocking) provided by the helical morphology.  

Using the carbon modifiers that previously led to the best EM SE (i.e., PR-19 HT 

and MWNT HT), the influence of composite electrical properties on the plane-wave EM 

SE in the VHF-UHF bands was studied further. Both graphitic nanomodifiers were 

dispersed in LLDPE matrix to produce a nominally random in-plane modifier orientation. 
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For a concentration of 10 vol% nanomodifiers, EM SE values of 22 dB and 24 dB were 

obtained for PR-19 HT and MWNT HT nanocomposites (2.5-mm thick), respectively. At 

a high concentration of 40 vol%, EM SE values as high as 68 dB and 55 dB were 

respectively attained. Because such nanocomposites possess only moderate electrical 

conductivity, a model for generally-lossy materials was used to predict the plane-wave 

EM SE and its components. Based on the material properties of the nanocomposites, the 

predicted values of EM SE were found to be consistent with the experimental values. 

Finally, the electrical conductivity and EM SE of nanocomposites that contained 

10 vol% of oriented graphitic nanomodifiers (PR-19 HT and MWNT HT) in LLDPE are 

reported. Micro-filament spinning was used to generate flow-induced orientation of the 

carbon nanomodifiers. Consequently, the conductivity of the resulting nanocomposites 

exhibited anisotropy. Thus, the in-plane conductivity in the longitudinal direction (PR-19 

HT comp.: ~0.02 S/m; MWNT HT comp.: ~3 S/m) was at least an order of magnitude 

higher than that along the transverse direction. As measured with a rectangular 

waveguide (WR510, 1.45-2.2 GHz), the PR-19 HT and MWNT HT oriented 

nanocomposites (1-mm thick) displayed EM SE values of 0.7±0.4 dB and 3.0±0.8 dB, 

respectively, when the nanomodifiers were transversely oriented with the polarized 

electric field. In contrast, when the orientation of the nanomodifiers was parallel with the 

field, values of 3.2±1.0 dB and 9.0±1.0 dB were obtained, respectively. Therefore, as a 

result of this anisotropy, as analyzed by polarized electromagnetic waves, the composites 

displayed anisotropic shielding.  



v 

 

In summary, this study establishes the significance of the use of purified carbon 

nanomodifiers as suitable modifiers in polyethylene-based composites as multifunctional 

materials for enhanced electromagnetic shielding. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to conductive nanocomposites 

As illustrated in Figure 1.1, most polymers are insulating materials that possess 

very low electrical and thermal conductivities in the ranges of 10
-13

-10
-17

 S/m and 0.05-

1.0 W/m.K, respectively [1, 2]. Therefore, it is necessary to add conductive modifiers to 

these polymeric resins to produce composites with enhanced transport properties [3, 4]. 

Conductive compounds such as metallic and carbonaceous conductive modifiers have 

been added into these insulative matrices to increase their electrical and thermal 

properties [5-9]. Of particular interest are carbon materials due to their low density, high 

strength, and outstanding corrosion resistance as compared with metals [7, 8]. This opens 

an opportunity for different applications [10-13].  

During the 1990’s decade, the availability of carbon nanomodifiers opened further 

applications of electrically dissipative and conductive materials [14]. The ease of 

processing offered by melt-mixing of such nanomodifiers in thermoplastic polymers, and 

the possibility of producing very thin-walled nanocomposites structures such as films, 

fibers and micro-injected parts, have been the driving force for the utilization of 

nanomodifiers in niche applications [15]. These applications range from electrostatic 

dissipative packaging films and electromagnetic shielding enclosures and gaskets, to 

novel antennas and radio frequency ID devices [16].  
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Figure 1.1. General classifications of the conductivities of different materials and their 

type of applications [13]. 

 

Different thermoplastic and thermoset resins modified with various types of 

modifiers are currently being investigated and commercialized for numerous applications 

[17]. It has been reported that these advanced materials are used in applications estimated 

at about US$30 billion worldwide [18]. The industrial applications include automotive, 
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aerospace, energy, electronics, healthcare, and infrastructure [18]. Specifically, the global 

market of electro-conductive polymeric materials is expected to be of about US$ 3 billion 

by 2014, with about 85% of current demand being for conductive polymer composites 

[19]. 

Polyolefins, such as polyethylene and polypropylene, are currently one of the 

largest groups of commodity polymers [20]. Their versatile properties range from the 

flexibility and ductility of linear low density polyethylene (LLDPE) to the stiffness and 

strength of polypropylene (PP). Their chemical and thermal stability, low processing 

temperatures, and low cost, are great factors that promote their utilization. In 2009, about 

120 million tons of polyolefins were produced worldwide [20]. These economical and 

technical aspects motivate the search for advanced multifunctional composite materials 

that meet these requirements. Therefore, the present study was focused on investigating 

the transport properties of conductive composites made of graphitic carbon 

nanomodifiers and a ductile polyolefin matrix (linear low density polyethylene), in 

relation to their electromagnetic shielding effectiveness (EM SE). The following sections 

introduce these topics, and provide a review of the literature associated with this field of 

study. 

 

1.2 Carbon nanoforms 

With the discovery of carbon nanotubes by Iijima in 1991, a great deal of effort 

has been dedicated to the synthesis, modification, characterization, and application of 

different nano-sized carbon forms [21-27]. Carbon nano-whiskers, nano-cones, nano-
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polyhedral crystals, nanoplatellets, nano-onions, nanohorns, and mainly, multi-walled 

carbon nanotubes and vapor-grown carbon nanofibers have been investigated in various 

literature studies [24, 27, 28].   

 

1.2.1 Morphology of carbon nanoforms 

Carbon nanotubes (CNT) consist of axially aligned single or multiple concentric 

graphene layers with diameters of 1-100 nm and lengths as large as 10 µm [29]. Carbon 

nanofibers (CNF) are a form of discontinuous graphitic filament with their multiple 

graphene layers arranged at certain angles with respect to the fiber axis. CNF have 

diameters that range 100-300 nm and lengths from 1 to 50 µm [29]. 

The nano-scale and the outstanding transport and mechanical properties of carbon 

nanofibers and nanotubes have been the major driving force for their potential utilization 

[25, 26, 30, 31]. Such properties are a direct consequence of their graphitic crystalline 

structure and of a variety of morphologies including different shapes, surfaces and high 

aspect ratios (i.e, length/diameter ratio) [24, 32-34]. Figures 1.2 and 1.3 display electron 

micrographs showing different morphological features of commercial and experimental 

carbon nanofibers and carbon nanotubes, respectively. 
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Figure 1.2. Scanning transmission electron microscopy (STEM) micrographs of carbon 

nanofibers (a) PR-19 (Pyrograf III, Applied Science Inc.) and (b) PR-24 (Pyrograf III, 

Applied Science Inc.) and (c) experimental MJ (Myongji University) carbon nanofibers. 

The insets are transmission electron micrographs. Adapted from [33]. 
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Figure 1.3. Scanning electron micrographs of carbon nanotubes (a) straight multi-walled 

carbon nanotubes (CheapTubes Inc.), (b) helical multi-walled carbon nanotubes 

(CheapTubes Inc.), and (c) experimental multi-walled carbon nano-springs (Clemson 

University). 

(a) 

(b) 

(c) 
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1.2.2 Purification of carbon nanoforms 

Carbon nanoforms are typically produced by catalytic processes, such as chemical 

vapor deposition (CVD), at relatively low temperatures (<1000°C) [25, 34]. This leads to 

low graphitic crystallinity with many crystallographic defects. It also results in the 

generation of amorphous carbon and other residual catalytic impurities, which 

unfortunately reduce their properties [25, 35]. Nonetheless, it is widely known that in 

their highly purified state, nanoforms exhibit outstanding transport properties [25, 27, 32, 

35]. Therefore, chemical treatments are necessary to enhance the purity and graphitic 

crystallinity of these forms. For some carbonaceous materials, heat-treatment to 

graphitization temperatures (>2000°C) is conducted for the enhancement of their lattice-

dominated properties [27].  

Figure 1.4 is a schematic representation of the stages of the mechanism of 

graphitization as function of the heat-treatment temperature (HTT) of pitch-like carbon 

precursors. During stage 1 (< 1000°C), the basic graphitic structural units are isolated and 

unoriented. In stage 2 (1000°C -1500°C), densification takes place, making the basic 

graphitic structural units grow into isolated oriented columns. It is during this stage, that 

the elimination of heteroatoms produces pores. Between 1500°C and 2000°C, the stage 3 

occurs; the basic graphitic structural units grow and orient themselves forming distorted 

layers of turbostratic carbon. Finally, above 2000°C, the final stage perfects the graphitic 

structure forming planar layers, allowing the growth of crystals [27].  
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Figure 1.4. Schematic representation of the mechanism of graphitization. Adapted from 

[27]. 

 

The assessment of graphitic crystallographic characteristics of carbonaceous 

materials can be carried out by means of X-ray diffraction and Raman spectroscopy [35, 

36].  For graphitic carbon, X-ray diffractograms display prominent peaks at about 26°, 

42° and 44° Bragg’s angular positions (2θ) corresponding to reflections of the (002), 

(100) and (101) planes, respectively [27]. These angular positions and their intensities 

indicate the interlaying spacing between the graphene layers, the crystallites thickness 

and width, and their orientation [27].  

Raman spectroscopy is also sensitive to graphitic structures. The Raman 

scattering is the inelastic scattering of photons, generated by the vibrating molecular 

bonds [37]. In carbonaceous materials, the most important peaks occur at about 1300 cm
-

1
 and 1650 cm

-1
 and are known as the D (disordered) and G (graphitic) bands. The ratio 

of the integrated intensities of the D peak to the G peak (Raman ID/IG ratio) varies 
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inversely with the crystal width,   , and is a measure of the level of graphitic crystallinity 

[38, 39].   

 

1.2.3 Transport properties 

The electrical and thermal conductivities of graphitic carbon forms depend on 

different microstructural features, such as crystal structure, crystal size, crystallographic 

defects, aspect ratio, shape, and in the case of carbon nanotubes, their chirality [25, 27, 

32, 33, 39]. Due to such a large variety of features, a wide range of properties have been 

reported. For instance, carbon nanotubes can display either semi-metallic or metallic 

behavior depending on their chirality [28], and bulk electrical resistivities ranging from 

0.02 to 2 Ω∙cm (two orders of magnitude apart) have been reported for carbon nanofibers 

and nanotubes [35, 40, 41].  

The measurement of the transport properties in single carbon nanoforms is 

challenging. Therefore, measurements are conducted on aligned bundles of carbon 

nanoforms, and estimates worked out for single forms. Thus, Zhou et al. measured an 

electrical resistivity of about 2.4x10
-4

 Ω∙cm at 300K from a bundle of aligned single-

walled carbon nanotubes (SWNT) [28]. Similarly, an estimated value of ~10
-4

 Ω∙cm for a 

single SWNT and about 10
-3

 Ω∙cm from an aligned micro-bundle at room temperature 

have been reported [25]. Yang reported recently an axial resistivity of 3.5x10
-3

 Ω∙cm 

from aligned bundles of MWNT, and a transverse resistivity of 4.4x10
-3

 Ω∙cm at 300K 

[42]. Accordingly, for the same aligned bundle of MWNT, he reported a thermal 

conductivity of 30 W/m.K and 18 W/m.K for the axial and transverse measurements, 
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respectively [42]. For bulk MWNT foils a similar thermal conductivity of 20 W/m.K has 

been measured [43]. Thus, the bundle transport values are at least one order of magnitude 

smaller than those of the pure graphite (10
-4

 Ω∙cm, 2000 W/m.K) [44]. This means that 

the outstanding properties associated with single nanoforms are not as effective due to 

particle-particle contact resistance that limits the large-scale diffusion of electrons and 

phonons [25, 28]. Therefore, the knowledge of the bulk properties of these nanomaterials 

is more useful than that of single forms for their use in bulk composites. 

 

1.2.4    Mechanical properties 

 In theory, due to the strength associated with the C-C bond, carbon nanotubes 

should be the stiffest and strongest materials [28].  Individual carbon nanotubes also 

show extraordinary resilience properties, which allow them to sustain a great deal of 

elastic deformation [45, 46]. This premise, coupled with the low density of carbon 

materials, is the motivation for investigating carbon nanomodifiers as mechanical 

reinforcing agents in potential structural applications.  

 Average values of Young’s modulus of about 1 TPa and 30 GPa have been 

reported for arc-grown and catalytically CVD-grown multi-walled carbon nanotubes, 

respectively [26, 45]. These moduli values are about five times the modulus of steel. 

Moreover, tensile strength values as high as 60 GPa have also been reported for single 

MWNT, which is about 50 times greater than that of steel [26]. In a review, Al-Saleh and 

Sundararaj reported values of modulus and strength of vapor grown carbon nanofibers of 
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about 250 GPa and 3 GPa, respectively [47]. Koo reported moduli values of vapor grown 

carbon nanofibers (Pyrograf I and III) of 400 and 600 GPa for as-grown and heat-treated 

(3000°C) CNFs, respectively [29]. He also reported values of tensile strength of 2.7 and 7 

GPa, respectively [29]. The lower tensile properties of CNFs, when compared to CNTs, 

are a result of their discontinuous graphitic structure. However, these strength values are 

comparable to those of typical high-strength polyacrylonitrile-based carbon fibers [48]. 

 

1.3 Properties of carbon nanomodifier-based nanocomposites 

1.3.1 Nanocomposite transport properties 

Figure 1.5 is a schematic representation of the dependency of the electrical 

conductivity of typical composites with respect to the concentration of modifiers added. 

Initially, as conductive modifiers are added to the insulative matrix, little effect is 

observed on conductivity because the modifiers form isolated clusters that have almost no 

electrical interconnection with each other. At this stage, the modifiers have electrical 

connection only within the clusters, and the total electrical network that they form is 

highly capacitive [8].  

As more modifiers are incorporated, the composite reaches a critical 

concentration, ϕc, at which the modifiers form electrical connections, resulting in a 

conductive network. When this happens, the composite has reached the percolation 

threshold and clusters of “infinite” size are formed [8]. From there on, micro-conduction 

mechanisms take place and the electrons hop and/or tunnel from cluster to cluster across 



12 

 

the composite making the conductivity increase rapidly [8]. This percolation threshold 

displays an inverse dependency with mean modifiers cluster size, S. Finally, as more 

modifiers are added to the composite beyond the percolation threshold, the conductivity 

continues to increase but slowly.  
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Figure 1.5. Schematic of the typical nanocomposite conductivity and composite 

clustering microstructure as function of modifier concentration. 

 

Figure 1.6 displays the electrical resistivity (the inverse of conductivity) of 

LLDPE-based composites made of different CNF types that lead to different percolation 

thresholds [33]. The threshold has been found to be highly dependent on the intrinsic 

conductivity of the modifiers, their morphology and aspect ratio, as well as on the 

chemical nature of the polymeric matrix [33]. For polyolefin-based carbon nanofiber 

composites, typical percolation threshold ranges from 2.5 to 7.5 vol% [6, 39]. For 

MWNTs, percolation thresholds as low as 0.25 to 1 vol% in polypropylene (PP), 0.5-1.25 
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vol% in low density polyethylene (LDPE) and 0.5-2.5 vol% in high density polyethylene 

(HDPE)  have been reported [49].  

 

Figure 1.6. Volume resistivity of composites made of LLDPE matrix with three different 

carbon nanofiber types. Adapted from [33]. 

 

Literature studies have established that the electromagnetic shielding 

effectiveness (EM SE) of a composite is a strong function of its transport properties, and 

particularly of its electrical conductivity [6, 35, 50]. Figure 1.7 depicts a positive 

correlation between the EM SE (X-band: 8.2-12.4 GHz) and the conductivity of various 

grades of carbon-based ethylene-vinyl acetate/ethylene-propylene-diene rubber 

(EVA/EPDM) 50/50 vol% composites [51]. Moreover, since the conductivity of a 

composite depends on the concentration of the conductive modifiers, the EM SE also 

displays a dependency on concentration. Figure 1.8 displays a positive correlation 

between the X-band EM SE and the concentration of MWNT/poly(trimethylene 

terephthalate) (PTT) composites [52].  
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Figure 1.7. Correlation between the X-band EM SE and volume electrical conductivity 

of carbon-based EVA-EPDM. Adapted from [51]. 

 

Figure 1.8. Conductivity and electromagnetic shielding effectiveness of MWNT/PTT 

composites as function of their nanomodifier concentration. Adapted from [52]. 
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While the electrical conductivity accounts for the conductive loss effects, the AC 

electrical permittivity accounts for their dielectric lossy effects [35]. Figure 1.9 exhibits 

the relative AC permittivity of MWNT/epoxy composites from 0 to 20 wt% in the X-

band frequency range [16]. The real permittivity increases with the concentration due to 

an increase of surface area provided by the nanomodifiers, which increases the 

polarization in the composite [35]. The imaginary permittivity or polarization loss also 

increases with the modifier concentration, but this is due to an increase of enthalpic 

losses in the composite as the electric field varies with frequency [35].   

 

Figure 1.9. Relative AC electrical permittivity of carbon nanotube-based epoxy 

nanocomposites at various MWNT concentrations: (a) real permittivity and (b) imaginary 

permittivity. Adapted from [16]. 

 

Depending on the frequency range, different relaxation phenomena (interfacial, 

dipole, ionic, electronic) take place, and the dissipation due to dielectric losses depends 

on how close the frequency is to a relaxation peak [53, 54]. Thus, both permittivity 



16 

 

components depend on frequency, and this dependency becomes more prominent as the 

content of modifiers increases [55]. Although in a lesser proportion as compared to the 

conductive losses, these dielectric losses also contribute to the EM SE of these materials 

depending on the frequency of the waves [35]. 

Although the electrical and thermal conductivities are correlated for metals, the 

transport mechanism for phonons is fundamentally different from that of electrons [15]. 

This mechanistic difference is evident in the thermal conductivity of composites 

materials, because it is more sensitive to the matrix-modifier interface than is electrical 

conductivity. Thus, any interface will delay the interfacial phonon transport in the 

composites [56]. This is one of the reasons for the relatively small enhancement in 

thermal conductivity obtained by adding conductive modifiers, when compared with that 

attained in electrical conductivity. 

Figure 1.10 displays the thermal conductivity of CNF-based Nylon-11 injection-

molded composites as function of their concentration [57]. Rather than a power law 

relationship, an approximately linear relation is observed. At 7.5 wt%, the thermal 

conductivity (relative to pure Nylon-11) increased by only 0.05 W/m.K. Nonetheless, for 

higher concentrations of CNF in polycarbonate, a through-plane thermal conductivity 

value of about 0.8 W/m.K has been reported at 30 vol% [58].  

The thermal conductivity of nanocomposites reported in the literature greatly 

varies depending on the matrix and nanomodifier types. Thus, for polyolefin-based CNF 

nanocomposites, values of thermal conductivity ranging from 0.55 to 5.5 W/m.K for 
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composites with concentrations as high as 40 vol% have been reported [15]. King et al. 

reported a value of only 0.46 W/m.K for CNT/polypropylene composites at about 7.5 

vol% [59]. The thermal conductivity reached by these composites is important in 

shielding applications, because part of the shielded radiation is converted into heat [55]. 

Thus, for proper functioning of electronic devices, acceptable levels of heat dissipation 

are required. 

 

Figure 1.10. Concentration dependency of the through-plane thermal conductivity of 

CNF/Nylon-11 composites. Adapted from [57].  

 

1.3.2     Nanocomposite mechanical properties 

 The mechanical properties of nanocomposites are highly dependent on the 

quality of the matrix-modifier interfacial bonding [56]. The chemical compatibility 

between the matrix and nanomodifier surface, as well as the mechanical interlocking 



18 

 

between the matrix and the surface roughness/shape of the modifiers play a key role [33, 

56]. For polyolefin-based composites systems, there is an intrinsic chemical compatibility 

advantage as the matrix and the carbon modifiers are both hydrophobic (nonpolar). Thus, 

modifier shape and surface characteristics are more important. The mechanical 

performance will determine the type of application in which these can be utilized, i.e., 

structural enclosures, shielding tapes, gaskets, shielding foams or ESD films [35].  

Table 1.1 displays the (a) tensile modulus,    , (b) the tensile strength,   , and (c) 

the strain-to-failure,   , of composites made out of MWNT and a flexible/ductile low 

density polyethylene (LDPE) as a function of the modifier concentration [60].  

Additionally, in Figure 1.11 the stress-strain curves for the system MWNT/chitosan from 

pure chitosan to 2 wt% are displayed [61]. In both nanocomposite systems, the flexibility 

and ductility decrease with the concentration of nanomodifiers, while their strength 

increases. Nonetheless, a rapid deterioration of strength at higher concentrations usually 

takes place [55]. 

 

Table 1.1. Tensile properties of MWNT/LDPE composites. Adapted from [60]. 
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Figure 1.11. Stress-stress curves of chitosan-based carbon nanotube nanocomposites. 

Adapted from [61]. 

 

For different types of as-grown carbon nanofibers in LLDPE at ~15 wt%, Lee et 

al. reported values of elastic modulus at 300 MPa, strength of ~15 MPa, and ductility of 

~100%, whereas pure LLDPE has a strength of 30 MPa and a strain-to-failure of about 

700% [33]. Likewise, Morcon & Simon reported that melt-blended MWNT/polybutene 

composites at only 2 wt% led to a tensile strength of 19.5 MPa, which is ~40% less than 

that of pure polybutene [62]. Also, Zeng et al. reported that CNF (Pyrograf-III
TM

) in 

poly(methylmetacrylate) at concentrations no greater than 10 wt% exhibited a 

deterioration in flexibility, strength and ductility of 50, 20 and 35%, respectively [63]. 

Therefore, the maximization of the electrical properties of these materials is required, but 

such enhancement must be balanced against the deterioration of the mechanical 

properties. 
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1.3.3    Processing-structure-property relationships 

Polymer nanocomposites are mainly made by three different routes. In solution 

blending, the nanomodifiers are mixed with a polymer-solvent solution, and the polymer 

composite is obtained after the solvent is evaporated [20]. For in-situ polymerization, the 

modifiers are segregated with a low viscosity medium, mixed with the monomer, and 

then synthesized [20]. In melt-compounding, a molten thermoplastic polymer is 

intensively mixed by shear and extensional forces with the nanomodifiers [20].  

The first two routes often use different solvents, which in many cases are not 

environmentally friendly. Furthermore, the first route cannot be used with high molecular 

weight polyolefins which are practically insoluble in most organic solvents [20]. The 

third route is an economical way to produce nanocomposites and is also fast, continuous 

and scalable for industrial production.  

Figure 1.12 is a schematic representation of how the microstructure, modifier 

dispersion and electrical network vary with the level of mixing energy applied to a 

composite at a constant modifier concentration. At low levels of mixing energy, the 

nanomodifiers form isolated clusters with no electrical inter-connection. As the mixing 

energy is increased, the shearing forces in the melt are able to partially rupture the 

clusters, aggregating some modifiers that initiate the electrical connection of clusters 

[64]. In this stage of dispersion level, the modifiers start to form an electrical network.  

This process continues with mixing until a point where maximum network is 

reached, in which most modifiers are interconnected across the composite. Nonetheless, 

the dispersion level for this stage is still at an intermediate level. From this point of 
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maximum network, if more mixing energy is applied, the modifiers get more dispersed, 

to the point of being isolated from each other or even broken by excessive mixing that 

leads to reduced electrical connectivity [64]. Therefore, an optimization of the mixing 

conditions is desirable to maximize the electrical properties of the composites.  

 

Figure 1.12. Schematic representation of the influence of the mixing energy on the 

microstructure, dispersion and electrical network for a composite of fixed concentration. 

 

The energy of mixing basically depends on four parameters: (a) melt temperature; 

(b) mixing geometry; (c) mixing speed, with which energy of mixing scales with its 

second power; and (d) the mixing time, with which the energy of mixing keeps a 

proportional relationship [65].  
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Figures 1.13 and 1.14 respectively display the electrical resistivity and EM SE for 

CNF/HDPE composites at 7.5 vol% prepared by batch-mixing at different mixing speeds 

and mixing times [6]. It is worth noting that, for a given CNF concentration, high mixing 

times and mixing speeds increased the resistivity of the composites and reduced their EM 

SE. Thus, high mixing energy levels led to poor electrical networks, whereas softer 

mixing conditions produced good conductivity levels and shielding performance.  

 

 

Figure 1.13. Effect of melt-mixing conditions on the electrical resistivity of CNF/HDPE 

composites at 7.5 vol%. Adapted from [6]. 
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Figure 1.14. Effect of melt-mixing conditions on EM SE of CNF/HDPE composites at 

7.5 vol% a) 20 rpm, b) 50 rpm, c) 100 rpm. Adapted from [6]. 

a) 20 rpm 

b) 50 rpm 

c) 100 rpm 



24 

 

Different polymer processing techniques apply different levels of 

shear/elongational flow-fields to the modifiers, which results in a preferred orientation of 

the modifiers [66-68]. This preferred orientation leads to anisotropic properties of the 

composites [19, 55]. As shown in Figure 1.15, after increasing the injection speed from 8 

to 30 cm
3
/s, an increase of two orders of magnitude in the surface resistivity of the 

composites was found [19]. This change was attributed to the alignment gained by the 

CNTs due to the surface shearing during the injection [19]. In contrast, when the injection 

temperature was increased from 285 to 300°C a reduction of about 100 kΩ/sq was 

observed due to a more random distribution of the CNTs [19].  

 

 

Figure 1.15. Effect of injection speed and injection temperature on the surface resistivity 

of injection-molded polycarbonate/CNT nanocomposites. Adapted from [19].  

 

 

 

 

  



25 

 

1.4 Electromagnetic and electrostatic shielding  

1.4.1 Electromagnetic compatibility with  polymer composites 

The increasing miniaturization of electronic devices makes it necessary for 

diverse circuits to operate in close proximity to each other [69]. Frequently, these 

circuits/devices affect each other adversely due to electromagnetic, impedance or 

conductive coupling [69]. In computational and automation control systems, the mal-

functioning caused by these forms of electromagnetic interference (EMI) might make the 

systems fail catastrophically [70]. Thus, the development and proper application of 

electromagnetic compatibility strategies that prevent coupling problems and minimize 

noise and electrostatic discharges has become a major focus for circuit designers [69].  

Electromagnetic compatibility (EMC) is a field of engineering concerned with the 

operation and design of electrical/electronic systems in a manner that makes them 

immune to electromagnetic interference (EMI), and/or inoffensive to other susceptible 

devices [71].  This includes minimizing EMI generation at its source, reducing or 

eliminating coupling paths by proper circuit layout, shielding, filtering, and grounding 

practices for keeping the EMI emissions and discharges within specific limits to guaranty 

a safe operation [71, 72]. In these approaches, electromagnetic shielding effectiveness 

(EM SE) and electrostatic discharge (ESD) protection can be particularly important in 

EMC design.  

Traditionally, these compatibility requirements have been met by using metals. 

However, in recent years, the utilization of multifunctional electrically conductive 
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materials such as hybrid structures and advanced composite materials for electromagnetic 

shielding has been demonstrated [17, 71, 72]. It is in this area of specialized compatibility 

applications, where novel conductive carbon nanomodifier/polymer nanocomposites have 

taken a role as potential substitutes for traditional metallic materials [10, 35, 71, 72]. 

Recently, several studies have been devoted to the study of the EM SE 

performance of conductive carbon-based polymer composites [6, 10, 11, 66, 73]. For 

instance, Arjmand et al. obtained EM SE values of about 25 dB in the X-band frequency 

range for 1.85-mm thick composites made of MWNT/polycarbonate composites at only 5 

wt% [66]. For relatively low frequencies, Yang et al. reported EM SE values of 13, 16 

and 21 dB at 1.5 GHz for composites (1.5-mm thick) made with PR-24 CNF in liquid 

crystal polymer for the concentrations of 5, 10 and 15 %, respectively [73]. Janda et al. 

reported values of 13 dB at 1 GHz for 3.2-mm thick composites made of carbon fibers 

and Nylon-6,6 at 40 wt% [11]. For polyolefin-based composites, Al-Saleh and Sundararaj 

reported EM SE values of about 30 dB in the 30 MHz-1.5 GHz frequency range for 2-

mm thick composites consisting of graphitic carbon nanofibers and HDPE at 7.5 vol% 

[6]. They have also studied MWNT in isotactic PP, where EM SE values as high as 35 

dB in the X-band were reported for 7.5 vol% and 1-mm thick samples [10].  

 

1.4.2 Frequency bands 

Different electronic devices are designed to operate at different frequencies of the 

radio spectrum. The operating frequencies of such devices will determine in many 
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regards the type of applications in which are utilized [74]. Table 1.2 summarizes the 

different frequencies of the radio spectrum and their primary applications. Because of the 

broad range of frequencies, the microwave and radio engineers have created a 

nomenclature for the different radio frequencies, and have designated names to different 

bands [75]. Figure 1.16 places such radio frequency nominations and bands designations 

into the electromagnetic spectrum. For digital devices, radio frequencies higher than 30 

MHz are of interest [70]. Of particular relevance are frequencies up to 3 GHz that include 

the VHF and UHF bands in which many digital systems, TV and FM broadcasting, cell 

phones, radars and other systems operate [6, 70, 74]. 

Frequency is inversely related to wavelength [75]. Thus, a microwave with a 

frequency of 300 GHz will have a wavelength of only 1 mm, whereas some shortwave 

radio frequency can be as large as 100 m long [75]. The length-scale (physical size) of a 

device relative to the wavelength of the surrounding frequencies will determine in many 

cases its gain/performance and its functionality [75]. Thus, low-frequency devices require 

quite large elements, while high frequencies need relatively smaller ones. For instance, a 

half-wave dipole antenna will have a characteristic length associated with its wavelength. 

Thus, a small receiving antenna will work more efficiently at high frequencies [76].   
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Table 1.2. Individual bands of the radio spectrum and primary applications. Adapted from [74]. 

Band Frequency Applications 

Extreme High Frequency (EHF) 30-300 GHz Radar, advanced communication systems, remote sensing, radio astronomy 

Super High Frequency (SHF) 3-30 GHz Radar, satellite communication systems, aircraft navigation, radio 

astronomy, remote sensing 

Ultra High Frequency (UHF) 300 MHz-3 GHz TV broadcasting, radar, radio astronomy, microwave ovens, cellular 

telephones 

Very High Frequency (VHF) 30-300 MHz TV and FM broadcasting, mobile radio communications, air traffic control 

   
Medium Frequency (MF) 300 kHz-3 MHz AM broadcasting 

Low Frequency (LF) 30-300 kHz Radio beacons, weather broadcast stations for air navigation 

Very Low Frequency (VLF) 3-30 kHz Navigation and position location 

Ultra Low Frequency (ULF) 300 Hz-3 kHz Audio signals on telephone 

Super Low Frequency (SLF) 30-300 Hz Ionospheric sensing, electric power distribution, submarine communication 

Extreme Low Frequency (ELF) 3-30 Hz Detection of buried metal objects 

 <3 Hz Magnetotelluric sensing of the Earth’ structure 

 

2
3
6

 
2
3
6

 
2
8
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Figure 1.16. The electromagnetic spectrum. Adapted from [75] 
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1.4.3   Electromagnetic coupling problem 

The process of generation, transmission, and reception of electromagnetic energy 

in electronic systems is depicted in Figure 1.17 [70]. Here, the source (e.g., lightning, RF 

transmitters, high speed data trace, electric motors) emits electromagnetic energy, which 

is transferred through a coupling path (e.g., cables, antennas, ground), and received by 

another receptor (e.g., RF receivers, high speed data trace, integrated circuits, 

telephones). This process can be either intentional or unintentional. When this coupling 

process between two or more devices becomes unintentional, there is an electromagnetic 

compatibility problem [70]. This coupling process can be: a) either capacitive or 

inductive depending on whether the interfering field is the electric, E, or the magnetic, H; 

b) conductive, if electric currents are causing interference; or c) radiated, when 

electromagnetic waves are involved [69, 70]. Most cases are a combination of these 

processes. 

 

Figure 1.17. Basic decomposition of an EMC coupling process. Adapted from [70]. 

 

There are three approaches for preventing this undesired interference: a) 

suppression of the emission at the source, b) making the coupling path as inefficient as 

possible, and c) minimizing the susceptibility of the receptor [70]. The best approach is to 
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minimize the source, which is usually carried out by means of proper circuit design and 

layout [70]. The second approach, often used in addition to the first, consists of shielding 

and filtering strategies that reduce or change the characteristic of the coupling path. The 

third approach is difficult to achieve and can only be used in special cases [69, 70]. 

The emitted energy can be either conducted (wires) or radiated (wireless) 

depending on the coupling path type [70]. The current study is devoted to radiated 

emissions only. Thus, to turn the coupling path between the source and the receptor of 

radiating frequencies as inefficient as possible, shielding enclosures are necessary. 

Figure 1.18 is an illustration of the two main purposes of a shield. For case (a), the 

radiation generated by a source of noise is contained inside the shield, preventing the 

external antenna receptor from receiving such noise. For case (b), a susceptible device is 

protected from the external radiation. In either case, the coupling path has been reduced 

by the shield [70]. 

 

Figure 1.18. Illustration of the two purposes of a shield enclosure (a) contention of the 

field, and (b) exclusion of the field. Adapted from [70]. 
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The characteristics of an electromagnetic wave depend on the source and the 

distance from the source [69]. The space around the source can be divided in two zones 

as shown in Figure 1.19. Near the source, the EM-field can be very complex and the 

ratio of the electric field to the magnetic field (i.e., the wave impedance,      ) is 

determined by the characteristics of the source [69, 70]. At a distance greater than the 

angular wavelength,     , the wave impedance becomes constant and equals the 

characteristic impedance of the media in which it travels (in the vacuum or air    

      ), and the electric and magnetic fields are orthogonal forming a plane-wave [69]. 

The type of waves dealt in this study will be of the far-field type. 

 

Figure 1.19. Near and far field zones of the surroundings of a source of electromagnetic 

radiation. Adapted from [69]. 
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1.4.4 Shielding effectiveness 

The shielding effectiveness (SE) of a barrier can be specified in terms of the 

reduction of either electric ( ) or magnetic field strength ( ) caused by the barrier [69]. 

As depicted in Figure 1.20, SE is defined as a logarithmic ratio (decibel) of the field 

measured at a given point with the shield, to that measured at the same point in the 

absence of the shield [69, 72]. Thus, the electric shielding effectiveness is defined as: 

                                                                  |
   

    |                                               (1.1) 

where,     and      are the electric fields measured with the materials present 

(transmitted) and without the material present (incident), respectively. The magnetic 

shielding effectiveness is similarly defined as: 

                                                                  |
   

    |                                              (1.2) 

 The electromagnetic shielding effectiveness, which accounts for the attenuation of 

both fields, is analogously defined in terms of wave power,  , as: 

                                                                  |
   

    |                                              (1.3) 

For non-magnetic conductive materials, such as conductive carbon-based polymer 

composites, only electric shielding effectiveness is of interest. Moreover, if the incident 

field is a plane-wave and the intrinsic impedance of the material on both sides of the 

shield is the same (air in most cases), these three definitions can be interchangeably used. 

Nonetheless, the definitions in terms of electric field or power are the most standardized 

[70]. All shielding measurement methods are based on these basic definitions. 
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Figure 1.20. Representation of configuration (a) with the shield, and (b) without the 

shield for the evaluation of the shielding effectiveness. Adapted from [72]. 

 

1.4.5 Shielding mechanisms  

Figure 1.21 is a schematic diagram of the interaction of the electric field of a 

plane-wave with a shield made of an electrically thin material, i.e., specimen thickness 

<< skin-depth, which is typical of materials with low-to-intermediate conductivities [10, 

ASTM-D4935]. In this process, three basic shielding mechanisms can be identified: a) 

reflection of the incident wave at the first surface due to the change of wave impedance 

(    ), corresponding to  reflection loss,    
; b) absorption of the wave due to 

attenuation imparted by the lossy characteristics of the material along the material 

thickness, corresponding to absorption loss,    
; and c) internal multiple reflections that 

undergo subsequent attenuations and transmissions at both surfaces, and contribute to the 

primary reflection,    
, and transmission,    , at each side of the barrier.  

For electrically thick materials (i.e., specimen thickness >> skin-depth, typical of 

highly conductive materials), the primary reflection loss,    
, and absorption loss,    

, 
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greatly attenuate the amplitude of the field due to its highly lossy properties (i.e., 

conductivity, permittivity and permeability), and multiple reflections do not occur 

significantly [16, 55, 70]. 

 

Figure 1.21. Shielding mechanisms undergone by an electromagnetic wave in an 

electrically thin material. 

 

From the interaction of the field with the shield, three field components can be 

identified: the total reflected component,   ; the total absorbed component,   ; and the 

total transmission component,    [16]. Thus, the wave power balance (     ) of these 

three components is [10, 55]: 

                                                                                                       (1.4) 
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Dividing (1.4) by the incident wave power,   , it yields:     

                                                
  

  
 

  

  
 

  

  
                                              (1.5) 

where, R, A and T are defined as reflectance, absorbance and transmittance, respectively. 

These will determine the reflective, absorptive and total shielding components, 

respectively [10, 55].  

 

1.4.6 Electrostatic discharge (ESD) 

Another important EMC technique is electrostatic discharge (ESD) protection, 

which deals with the safe dissipation of electrostatic charge. Electrostatic discharge 

(ESD) occurs due to the separation of charges in non-conductive materials and results in 

intense electric fields [70]. This difference in electrical potential will be equilibrated as 

soon as the charge finds a conductive path to leak to the ground, or “arc”, when the 

voltage reaches the breakdown of the material [69]. If these transient discharges flow 

through the device itself, significant damage can occur for susceptible circuitry 

components [12, 72].  

Metals are typically used for protecting devices from ESD. However, for charge 

dissipation, such high conductivity levels are usually not needed. Table 1.3 displays a 

common classification of materials based on the bulk and surface resistivity ranges 

typically required for the different applications ranging from the shielding, conductive, 

static dissipation, antistatic to the purely insulative.  
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Table 1.3. Material classification based on surface and bulk resistivities. Adapted from 

[77]. 

 

 

Thus, resistivities ranging from 10
2
 to 10

9
 Ω.m (10

-9
 to 10

-2
 S/m) are commonly 

required for electrostatic dissipation [12, 33, 77]. Because of this conductivity range for 

ESD, conductive compounds such aliphatic amines, quaternary ammonium salts, amides 

and deposited metals are frequently used in antistatic coatings, foams, bags and 

conductive boxes [79, 79].  Moreover, the commercialization of conductive polymer 

composites, with low fractions of conductive modifiers, has recently been taking 

relevance in this area as potential substitutes of these materials [17]. In recent Clemson 

studies, Lee et al. reported that LLDPE composites made with experimental CNF at only 

~5 vol% (10
8
 Ω∙m) led to dissipate 99% of the applied charge in just 0.01 seconds [33]. 

 

1.4.7 EMC regulations 

Typically, 20-30 dB of shielding is considered a good level of attenuation for 

polymer composites [35, 66]. However, the actual level of attenuation required for a 



 

38 

 

specific application will depend on regulatory requirements for permissible 

electromagnetic emissions. These levels establish limits in terms of electric field for 

commercial and industrial digital devices at different frequency levels [70]. A digital 

device is defined as an unintentional radiator that generates frequencies higher than 9 

kHz and uses digital techniques in its circuitry [70].  

In the United States, the Federal Communication Commission (FCC) is the 

agency in charge of regulating these limits [69, 70]. Outside the United States, the 

International Special Committee on Radio Interference (CISPR) is in charge. Most 

countries follow CISPR recommendations, and the most utilized standard is the CISPR 

22, which is similar to that of FCC [70]. In this study, only the regulations for radiating 

devices are of interest. 

Table 1.4 contains the radiating emission limits for Class B digital devices (i.e., 

devices for residential environment) as specified by FCC. The electric field limits are 

expressed in µV/m and dBµV/m (i.e., 
    

 
        (

   

     
)) [70]. Thus, to comply 

with these limits, the electric field must be no greater than 40 dBµV/m as measured at 3 

m from the emitting device in a special shielded setup, known as semi-anechoic chamber. 

If during these measurements, a field of 60 dBµV/m is obtained, a shielding enclosure 

that provides at least 20 dB of EM SE would be required for the device to comply with 

the FCC limits. 
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Table 1.4. FCC emission limits for Class B digital devices at 3 m. Adapted from [69]. 

 

 

The ESD regulations used most frequently are the Military Standards Mil-B-

81705B and Mil-B-81705C [33, 80]. To qualify a material as ESD dissipative by this 

standard, 99% (1 % cut-off) of the initial induced charge must be dissipated is less than 2 

seconds, or 90% (10 % cut-off) in less than 0.5 seconds. 

   

1.4.8 EM SE characterization methodologies 

As illustrated in Figure 1.22, radiated emissions measurements in digital devices 

are typically made in semi-anechoic chambers that simulate open-field conditions [70]. 

This consists of a shielded room with special radio-frequency absorbing cones that 

prevent external fields and internal reflections from interfering with those emitted by the 

tested device. A special detecting antenna is used to measure the field at such position 

[70]. 
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Figure 1.22. Illustration of a semi-anechoic chamber for measuring radiated emissions 

from digital devices. Adapted from [70]. 

 

The testing of materials (rather than devices) for shielding applications is made by 

slightly different approaches, and most methods are based on the MIL-STD-285 and 

MIL-G-83528 [71]. These can be highly elaborated methods that require large 

installations such as dual chambers and special antennas. One of these methods is shown 

in Figure 1.23, where two shielded chambers are separated by a relatively small 

perforation in which the sample is placed. An antenna emits the radiating frequencies in 

one chamber. The receipting antenna located in the second chamber receives the portion 

of the fields that is able to pass through the sample. The relative amount of attenuation of 
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the field obtained with the material present to that attained without the material is thus 

measured. Signal generators are used to generate the fields and amplifiers are connected 

to the transmitting antenna, whereas spectrum and network analyzers are commonly used 

for measuring the fields. 

 

Figure 1.23. EM SE measurement according to Mil-STD-285. Adapted from [71]. 

 

Due to the large length-scale of the installations (   m) required by MIL-STD-

285, usually only frequencies greater than 500 MHz can be tested. Thus, slotted 

transmission lines with coaxial fixtures or special waveguides are alternatively used due 

to their wider frequency ranges, relatively lower cost, smaller physical size, and ease of 

assembly [6, 71, 81, ASTM D4935]. These methods also offer a good level of dynamic 

range (80-100 dB), a variety of wave propagation modes, and are based on standard tests 

methods such as ASTM D4935 [75, ASTM D4935]. They require shielding specimens of 

dimensions equal to those of the flange of the waveguides, thus smaller amounts of 

materials are required. Such specimens are inserted between the two halves of a split 
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transmission line, or placed into a slit in a continuous transmission line. The relative 

attenuation of the fields with and without the material is measured. Figure 1.24 is a 

schematic of a split coaxial line, which is the type of methodology used throughout this 

study to assess the EM SE of the carbon-based nanocomposites hereby developed.  

 

 

Figure 1.24. Split coaxial transmission line for EM SE measurements. Adapted from 

[81]. 

 

1.5 Objectives 

The literature review indicates that a considerable effort has been devoted to the 

study of conductive carbon modifiers-based nanocomposites for enhanced electrical 

conductivity. However, the electromagnetic shielding effectiveness (EM SE) of 

composites consisting of carbon nanomodifiers with medium to high concentrations has 

not been thoroughly investigated. Therefore, the primary goal of this research was to 

investigate the electromagnetic shielding performance of nanocomposites consisting of 

graphitic carbon nanomodifiers and a ductile linear low density polyethylene (LLDPE). 

For this study three different heat-treated carbon nanomodifiers were included. The EM 
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SE was investigated in relation with the electrical and mechanical properties of the 

composites, which are directly influenced by the microstructure and electrical network 

formed by the modifiers in the polymeric matrix. Therefore, the specific objectives of this 

research were to: 

1. investigate the effect of the level of graphitic crystallinity of carbon 

nanomodifiers on the electromagnetic shielding effectiveness of their LLDPE 

nanocomposites; 

2. determine the role of morphology of different carbon modifiers on the 

electromagnetic shielding of their LLDPE nanocomposites; 

3. model the influence of the composite electrical properties on the 

electromagnetic shielding of in-plane randomly oriented carbon nanomodifier-

based nanocomposites with intermediate and high nanomodifier 

concentrations; and 

4. investigate the influence of flow-induced carbon nanomodifier orientation on 

the electromagnetic shielding of polarized electromagnetic waves by the 

LLDPE nanocomposites. 

 

The outline of the remaining dissertation is as follows:  

Chapter 2 initially describes the effect of carbon nanofiber concentration on the 

conductivity of their LLDPE composites to determine the percolation threshold of this 

composite system. Next, it focuses on the influence of the level of graphitization of 
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carbon nanofibers on the electromagnetic shielding of their percolated nanocomposites. 

Highly graphitic CNFs, treated at temperatures greater than 2000°C, led to enhanced 

shielding in their composites. The results of this chapter have been published in reference 

[35]. 

Once the necessity of utilizing highly graphitic modifiers was established, the 

influence of different heat-treated carbon modifiers, with different morphologies (shapes 

and dimensions), on the electromagnetic shielding of composites prepared by a softer 

melt-mixing with LLDPE was studied in Chapter 3.  

In Chapter 4, the effect of high nanomodifier concentrations on the 

electromagnetic shielding of their nanocomposites was investigated. In addition, a 

theoretical understanding of the role that the composite electrical properties play on the 

EM SE of in-plane randomly oriented nanocomposites was performed and compared to 

the experimental results. The results presented in this chapter have been published in 

reference [55]. 

Because nanomodifier orientation also affects the shielding performance of 

composites, flow-induced nanomodifier orientation was used to prepare composites with 

a preferred modifier orientation and anisotropic electrical conductivity. The EM SE 

performance of such oriented nanocomposites as analyzed by polarized electromagnetic 

waves was assessed and discussed in Chapter 5.  

Finally, Chapter 6 summarizes the conclusions of this work, and provides 

recommendations for future studies. 
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CHAPTER 2 

EFFECT OF GRAPHITIC CRYSTALLINITY OF CARBON NANOFIBERS ON THE 

ELECTROMAGNETIC SHIELDING EFFECTIVENESS OF LINEAR LOW DENSITY 

POLYETHYLENE NANOCOMPOSITES 

 

2.1 Introduction 

As reviewed in various literature studies cited in Chapter 1, research on 

conductive carbon-based polymer composites for electromagnetic shielding is of topical 

interest [1-18], including nanocomposites obtained from carbon nanomodifiers [4, 5, 9, 

and 12]. Nanoforms such as carbon nanofibers (CNF) [10, 11, 13, 19, 20] may offer a 

size advantage to polymeric nanocomposite films because of their very small diameter 

(<0.5 μm), high aspect ratio and good electrical and mechanical properties when 

compared with traditional carbon fibers [7, 15, 19, 21, 22].  

For most carbon nanoforms, impurities such as amorphous carbon and catalysts 

generated during the production processes decrease their transport and mechanical 

properties as compared with their crystalline state [23-25]. Therefore, post-process 

chemical treatments are often carried out. Studies on nanocomposites made with purified 

CNF and amorphous polymers have been previously reported [23]; such nanocomposites 

possessed a strain-to-failure of less than 5%. In this chapter a linear low-density 

polyethylene (semicrystalline) matrix with a large strain-to-failure for potential use in 

ductile/flexible nanocomposite applications was investigated.  
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Specifically, the effect of ultra-high temperature heat treatment (2500°C) of CNFs 

on their graphitic crystallinity is reported in relation to the electrical properties and the 

electromagnetic shielding effectiveness of such nanofibers in a LLDPE matrix. Relative 

contributions from different shielding components were also assessed for the 

nanocomposites. The results of this chapter have been published as “Effect of Heat 

Treatment of Carbon Nanofibers on the Electromagnetic Shielding Effectiveness of 

Linear Low Density Polyethylene Nanocomposites” [26]. 

 

2.2 Experimental 

2.2.1 Materials 

Carbon nanofibers, Pyrograf® III PR-19 (Applied Science Inc.), were used as 

electrical modifiers. Such CNFs are made by chemical vapor deposition (CVD) from 

natural gas as precursor by using a Fe-sulfide catalyst at about 900 ºC and have a 

diameter of 148±60 nm, and lengths ranging from 10 to 100 µm [20, 25].The matrix 

polymer was Poly(ethylene-co-1-octene), Dowlex
TM

 2045 (Dow Chemical), a film grade 

linear low density polyethylene (LLDPE). It has a density of 0.920 g/cm
3
, DSC melting 

point of 122ºC, and melt flow index of 1 g/10 min (190°C/2.16 kg, ASTM D1238). 
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2.2.2 Processing 

A DSM Xplore 15 cc twin-screw micro-compounder (DSM) was used to prepare 

~10 vol% (20 wt%) nanocomposites for as-received PR-19 CNF at 190°C and 20 rpm for 

2 min in a co-rotating mode. One hour of ultra-high thermal treatment at 2500°C was 

carried out for PR-19 CNF in a Thermal Technology HP50-7010 furnace in helium 

atmosphere prior to compounding [24]. After heat treatment, PR-19 HT CNF were also 

compounded with LLDPE at 10 vol% (~20 wt%), following the same procedure as that 

used for untreated CNF-based nanocomposites. Such nanocomposites were processed by 

thermal compaction into circular sheets about 2.5 mm thick and 133 mm diameter 

utilizing a Carver laboratory press. Four replicates were made and tested for each 

composite type (i.e., n = 4). The influence of melt-mixing on the EM SE of composites 

consisting of 10 vol% PR-19 HT CNF in LLDPE matrix is documented in Appendix A. 

Finally, for assessing the thickness effect on the EM SE of the PR-19 HT nanocomposites 

at 10 vol%, 133-mm diameter samples were produced in two additional thicknesses: 0.25 

mm and 0.75 mm. Three replicates (n = 3) were prepared and tested for each thickness.  

 

2.2.3 Characterization 

Raman spectroscopy was conducted for the CNFs to analyze the disordered (D) 

and graphitic (G) bands observed in carbon materials at 1315 cm
-1

 and 1580 cm
-1

, 

respectively. A Renishaw micro-Raman spectroscope equipped with a 785 nm 

wavelength diode laser was used. The WiRE software, (version 3.2), was used to analyze 
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and integrate the peaks to determine the ID/IG Raman ratio [25]. Wide-angle X-ray 

diffraction (Rigaku-MSC, Houston, TX) was also conducted on the CNFs before and 

after the heat treatment using Cu target Kα radiation with a wavelength of 1.5406 Å [25]. 

The spectra were analyzed using Polar software version 2.6.7 from Stonybrook 

Technology and Applied Research (STAR). The X-ray source was operated at 45 kV and 

0.65 mA, and the sample exposure time was 1 hour.  

The bulk electrical resistivity (BER) of the CNF themselves, before and after heat 

treatment, was measured using a Keithley 196 System digital multi-meter (DMM) while 

compressing the CNFs at 50 MPa in an insulating fixture. The bulk electrical resistivity 

of the CNFs was computed from the measured resistance and sample geometry while 

being pressurized [27]. The DC volume electrical conductivity,   (S/m), of the 

nanocomposites was measured using a Keithley 6517B High Resistance Meter connected 

to a Keithley 8009 Resistivity Test Fixture (ASTM D257). The alternating polarity 

method was performed by means of the Keithley 6524 software. The relative humidity 

and temperature of the experimental area were monitored using a 6517-RH humidity 

probe and a 6517-TP thermocouple, respectively. For the very conductive 

nanocomposites (i.e.,        S/m), the conductivity was obtained from resistance 

measurements of sample specimens that were 12.5 mm wide, 2.5 mm thick  and with 

lengths of about 25 mm, using a Keithley 196 System DMM.  Silver paint was applied on 

the surfaces at each end of the samples and their resistance was measured. From the 

sample geometry and the resistance measurements, the conductivity was computed from 

four replicates (n = 4). 
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The static decay time was measured using an Electro-Tech Systems, Inc. 406D 

Static-Decay Meter that complies with the Federal Test Method 101D, Method 4046 and 

Military Standard Mil-B-81705C. This standard requires that 99% of the initial induced 

charge be dissipated is less than 2 seconds for qualifying material per Mil-B-81705C. The 

Static-Decay Meter was calibrated by the ESD Testing Laboratory of Electro-Tech 

Systems, Inc. (Glenside PA) prior to the measurements. Details on ESD measurements 

are documented in Appendix B. 

The complex electrical permittivity (real     and imaginary    ) of the 

nanocomposites, in their sheet form (2.5 mm thick), was measured utilizing an Agilent 

4291B RF Impedance/Material Analyzer and an Agilent 16453A Dielectric Material Test 

Fixture. Prior to the measurements, the analyzer was calibrated utilizing an Agilent 

calibration kit (short (0 Ω), open (0 S), load (50 Ω)). Short/open/load fixture 

compensation was also applied to increase the accuracy of the measurements. The 

analysis frequency range was 30 MHz to 1.5 GHz. Details about permittivity 

measurements are also documented in Appendix B. 

An Electro-Metrics EM-2107A coaxial transmission line test fixture was used to 

apply a far-field electromagnetic wave to the nanocomposite specimens (ASTM D4935). 

The electromagnetic shielding effectiveness (EM SE) was determined from the 

logarithmic ratio of the measured transmitted power with the material present,       ,  to 

the transmitted power without the material present,       , which is represented with the 

reference specimen [ASTM D4935, 21]: 
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                                                      𝑀           
     

     
                                          (2.1) 

The calibrated unit has a dynamic range greater than 80 dB. The accuracy of the 

calibration was checked by measuring a set of Mylar®-gold composite standard 

specimens. The EM-2107A test fixture was connected through coaxial cables to an 

Agilent Technologies N5230A PNA Series Network Analyzer that was calibrated with a 

85033D 3.5 mm calibration kit. For measuring EM SE, each circular nanocomposite 

specimen was aligned between the test fixtures and measured at frequencies from 30 

MHz to 1.5 GHz.  The sample diameter was 133 mm, and four replicates were tested for 

each nanocomposite type.  EM SE measurements details are documented in Appendix B. 

Finally, the dispersion level of the nanomodifiers within the LLDPE matrix was 

assessed by inspection of the cross-section of the cryo-fracturated nanocomposites 

(Hitachi S-4800, SEM). For each type of nanocomposite, four different macroscopic 

locations were investigated by SEM.  For each location, five different spots (micro-scale) 

were imaged. Representative SEM micrographs are presented in Figure 2.1. From 

approximately forty SEM micrographs thus obtained, not even one major cluster was 

positively identified in any of the micrographs.  Thus, it is believed that these twin-screw 

extruded nanocomposites possess acceptable level of dispersion and distribution of 

CNFs, which may result from the fact that both LLDPE and CNFs are hydrophobic 

entities.  



 

58 

 

    

 

Figure 2.1. Scanning electron micrographs (SEM) of nanocomposites at 10 vol%: (a) 

untreated PR-19, and (b) heat-treated PR-19. Insets display the microstructure at higher 

magnification. 
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2.3 Results and Discussion 

2.3.1 Carbon nanofibers: heat treatment and properties 

The ID/IG Raman ratio of carbonaceous materials is directly related to their 

graphitic disorder or “defects”. Hence, their ID/IG Raman ratio is inversely related to its 

level of graphitic crystallinity, which in turn controls its transport properties such as its 

intrinsic electrical and thermal conductivity [24, 25]. Representative Raman spectra for 

CNF are displayed in Figure 2.2. As-received PR-19 CNF displayed an ID/IG Raman 

ratio of 4.06±0.07, whereas the PR-19 HT CNF had an ID/IG Raman ratio of only 

0.96±0.04 (replicates n = 8 in both cases). Thus, after heat treatment, PR-19 underwent a 

significant reduction in its ID/IG Raman ratio, as result of its improved graphitic structure.  
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Figure 2.2. Raman spectra of untreated (PR-19) and heat-treated (PR-19 HT) carbon 

nanofibers. 
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Wide-angle X-ray diffraction was carried out for the as-received and heat-treated 

PR-19 CNF. Prior to the analyses, a silicon standard powder for X-ray diffraction 

(Standard Reference Material® 640d from the National Institute of Standards & 

Technology) was mixed with the CNF to assure the accuracy in locating the 2θ peak 

angle for the (002) graphene interlayer spacing. Representative X-ray diffractograms of 

the CNF are displayed in Figure 2.3.  The heat treatment not only increased the intensity 

of the (002) peak for the PR-19 HT CNF, but also increased the 2θ angles from 26.0º for 

as-received PR-19 to 26.2º for heat-treated PR-19 [24]. From these values of 2θ, the 

graphitic interlayer spacing (    ), which is related to the graphitic crystallinity of the 

CNF, was calculated using Bragg’s law. The as-received and heat-treated PR-19 showed 

interplanar      spacing of 0.3424 nm and 0.3397 nm, respectively. Using the      value 

of 0.3440 nm for turbostratic carbon and 0.3354 nm for perfect graphite the 

graphitization level of the as-received and heat-treated PR-19 CNFs was 18% and 50%, 

respectively. These results are consistent with the ID/IG Raman ratios previously 

discussed [20, 24]. 

The intrinsic transport properties of the CNFs were assessed, particularly its bulk 

electrical resistivity (BER) was measured at 50 MPa compaction pressure. As-received 

PR-19 CNF showed a bulk resistivity of 2.0±0.2 Ω·cm (n = 6), whereas the PR-19 HT 

CNF had a BER of only 0.03±0.01 Ω·cm (n = 6 in both cases) at 50 MPa, which means 

an enhancement in their bulk electrical conductivity of about two orders of magnitude 

upon heat treatment [20]. This is consistent with the Raman spectroscopy and X-ray 

diffraction results conducted for the CNFs. 
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Figure 2.3. Wide angle X-ray diffractograms of untreated (PR-19) and heat-treated (PR-

19 HT) carbon nanofibers.  A small quantity of NIST-calibration grade silicon was added 

to the samples for accurate determination of 2θ angles of various peaks. 

 

2.3.2 Nanocomposites 

The DC electrical conductivity   (i.e., the inverse of the DC electrical 

resistivity     
 ⁄ ) of the nanocomposites was measured at ~25 °C and ~50 % relative 

humidity. Initial results, displayed in Figure 2.4, showed that the conductivity of 

untreated PR-19 nanocomposites at a concentration of 3 vol% was 3.8±1.5x10
-14

 S/m (n 
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= 4). After increasing this concentration to 10 vol% (i.e. by half order of magnitude), 

untreated PR-19 nanocomposites crossed the percolation threshold (ϕc ~8 vol%). They 

displayed a conductivity of 4.4±0.7x10
-9

 S/m (n = 4) (compared with 7.0±1.1x10
-15

 S/m 

for pure LLDPE), and retained a great deal of the tensile properties of the pure resin, as 

shown in our previous work [19]. However, for the untreated PR-19 nanocomposites, 

even at fully percolated concentrations as high as 25 vol% (40 wt%), the conductivity 

only reached 6.5±3.0x10
-5

 S/m. In contrast, at only 3 vol%, the heat-treated PR-19 HT 

nanocomposites displayed a conductivity of 6.5±0.4x10
-4 

S/m (n = 4), which is an order 

of magnitude higher than that of the very-highly loaded untreated PR-19 nanocomposites 

at 25 vol%. Consequently, nanocomposites were prepared at only 10 vol% of PR-19 HT, 

which turned out to be in the fully percolated regime and retained tensile properties 

similar to those of the untreated PR-19 nanocomposites (10 vol%). At 10 vol%, PR-19 

HT nanocomposites displayed a conductivity of 1.0±0.1x10
1
 S/m as compared to 

4.4±0.7x10
-9

 S/m (n = 4) for their untreated counterparts. This means that the heat 

treatment provided an improvement in the conductivity of the nanocomposites of about 

ten orders of magnitude. The electrostatic discharge (ESD) characteristic of the 

nanocomposites was also measured. Both, PR-19 and PR-19 HT nanocomposites at 10 

vol% were ESD dissipative and complied with the Mil-B-81705C requirements.  
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Figure 2.4. Concentration dependence of electrical conductivity of nanocomposites 

prepared with as-received PR-19 carbon nanofibers.  

 

The complex electrical permittivity (         ), as measured with the Agilent 

16453A Dielectric Material Test Fixture, is displayed in Figure 2.5 as a function of 

frequency for the untreated and heat-treated CNF nanocomposites.   
 

    ⁄ represents the 

dimensionless real relative permittivity or dielectric energy storage, and   
  

   ⁄  the 

dimensionless imaginary relative permittivity or polarization loss. The permittivity of the 

vacuum    , is 8.85418x10
-12

 F/m. For the heat-treated PR-19 HT nanocomposites, the 

real and imaginary permittivity tend to decrease with frequency, whereas for the 

untreated CNF nanocomposites, both quantities are fairly frequency independent. The 

PR-19 HT nanocomposites exhibited an overall permittivity of (228±43)-(239±13)  at 
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100 MHz, decreasing to (3±2)-(11±6)  at 1.5 GHz (n = 4 in both cases). On the other 

hand, the untreated PR-19 nanocomposites displayed a permittivity of (13±2)-(0.5±0.1)  

at 100 MHz, and their magnitude remained practically unchanged up to 1.5 GHz (at 

(12±1)-(0.5±0.1) , (n = 4). These results establish that the heat treatment not only 

enhanced the capacitive behavior of the nanocomposites, but also increased the lossy 

component (i.e.,  
  

   ⁄ ). This is important, since   
  

   ⁄  along with the DC 

conductivity   , contributes to the electromagnetic absorption component of a material’s 

shielding effectiveness [13].  
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Figure 2.5. Complex relative electrical permittivity of representative PR-19 and PR-19 

HT nanocomposites at 20 wt% (10 vol%) CNFs over a frequency range of 30 MHz to 1.5 

GHz.  
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2.3.3 Electromagnetic shielding effectiveness (EM SE)  

The EM SE of PR-19 HT and untreated PR-19 nanocomposites measured using 

the ASTM D4935 test procedure is displayed in Figure 2.6. The error bars in Figure 2.6 

represent the 95% confidence intervals obtained from the statistical analysis of four 

replicates. Untreated PR-19 nanocomposites at 10 vol% (20 wt%) displayed an EM SE of 

only 1±0.2 dB, whereas the EM SE of PR-19 HT nanocomposites was 14±2 dB (n = 4 in 

both cases). Thus, the heat treatment of the CNF improved the EM SE of the 

nanocomposites by about 13 dB. This increase in EM SE corresponds to an increase in 

electrical conductivity of ten orders of magnitude (10
1
 vs. 10

-9
 S/m). The EM SE 

enhancement is accompanied by an increase in permittivity from (13±2)-(0.5±0.1) , n = 

4, to (228±43)-(239±13) , n = 4, at 100 MHz. This is 18 times the polarization and almost 

500 times greater polarization loss. In contrast to these results, conventional  P-55 pitch-

based short carbon fiber-LLDPE composites (2.5 mm thick), prepared at the same 

processing conditions, equipment and loading level, showed only 3 dB of total shielding 

for the same frequency range, as shown in our previous work [19]. These results are 

consistent with those reported in the literature [22] for short-carbon fiber/PE composites, 

prepared by batch mixing (for 5 min) at a similar volume fraction (20 wt%, 2.5 mm 

thick), which displayed a shielding effectiveness of only 4 dB in the S, C, X and Ku 

frequency bands (i.e., 2-18 GHz). 



 

66 

 

3.0x10
7

5.0x10
8

1.0x10
9

1.5x10
9

0

2

4

6

8

10

12

14

16

18

 

 

 

E
M

 S
E

 (
d

B
)

 PR-19 (~10
-9
 S/m)

 PR-19 HT (~10
1
 S/m)

Frequency (Hz)

10 vol% Nanocomposites

 

Figure 2.6. Electromagnetic shielding effectiveness (EM SE) of CNF-LLDPE 

nanocomposites over a frequency range of 30 MHz to 1.5 GHz. Nanocomposites were 

obtained from untreated (PR-19) and heat-treated (PR-19HT) carbon nanofibers at 20 

wt% (10 vol%); error bars represent 95% confidence intervals. 

 

The shielding ability of a homogeneous material is a function of its intrinsic 

impedance  . For an EM plane wave,   is the ratio of the magnitude of the electric field 

to that of the magnetic field that passes through the material [1]. The electrical 

conductivity  , electrical permittivity  , and magnetic permeability  , are related to the 

intrinsic impedance as [1]: 
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                                                        (2.2) 

where,   is the angular frequency of the radiation (rad/sec).  

For non-magnetic conductive materials (i.e.,         4π x      H/m and    

  ), the intrinsic impedance    of such materials is primarily dependent on the DC 

electrical conductivity    [1]. Hence, the electrical conductivity is of paramount 

importance for attaining high values of EM SE. However, at high frequencies and low 

conductivities, the overall “polarizability” of the material is better expressed as a 

complex electrical permittivity, which not only accounts for the dielectric storage, but 

also for the losses at high frequencies due to the phase lag between the applied electric 

field and the matrix-CNF interfacial dipole moments with respect to the frequency 

variation   [2, 13]. Thus, in nanocomposites, whose conductivity is not high compared to 

pure metals (i.e., ~10
6
-10

7
 S/m), the polarization loss     also plays a role in determining 

the EM SE, primarily in the absorptive component of shielding. This can be viewed as 

another entropic effect to be added to that of the DC conductivity (       ) [2]. 

 

2.3.4 Shielding mechanisms 

To determine the shielding components for the nanocomposites, the scattering 

parameters,    , and,    , were measured and corrected with the reference specimens as 

detailed in Appendix B. They respectively define transmittance,   , and reflectance,    

[28]: 
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                                             (2.4) 

The total shielding effectiveness (dB) and reflective shielding effectiveness (dB) 

were obtained as [3]:                                              

                                                        𝑀                                                           (2.5) 

                                                  𝑀             (   )                                         (2.6) 

The absorptive shielding effectiveness can then be computed from their difference 

as: 

                                                𝑀      𝑀     𝑀                                             (2.7) 

The absorptive and reflective shielding components for representative 

nanocomposites are shown in Figure 2.7. For PR-19 nanocomposites, the EM SE 

increases with frequency and reflection appears to be the dominant mechanism. In PR-19 

HT nanocomposites absorption  ( 𝑀    ) is the predominant component. In addition, 

both components are less sensitive to frequency for PR-19 HT nanocomposites than those 

of untreated nanocomposites.  The absorptive component of shielding  𝑀     depends 

on the entropic or “lossy” properties of the nanocomposites (i.e.,   𝑀      (      )) 

[2]. Thus, as the heat treatment increased the DC electrical conductivity,   , and 

polarization loss,     , of the nanocomposites, the absorptive component also improved.  
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In applications where external radiation must be kept from interfering with an 

electronic circuit, the overall shielding provided by the enclosure is of importance, 

regardless of the mechanism. In contrast, when an electronic circuit couples to other 

circuits in the same enclosure, an absorptive shielded enclosure is preferred. Reflective 

enclosures can cause large fields to build up internally, which can enhance unwanted 

coupling between circuits inside the enclosure. These results indicate that PR-19 HT 

nanocomposites are suitable materials for applications where absorptive shielding is 

required over the VHF and UHF frequency bands.  
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Figure 2.7. Representative spectra of total shielding effectiveness (EM SE) and reflective 

component (EM SER) over a frequency range of 30 MHz to 1.5 GHz for (a) PR-19 and 

(b) PR-19 HT nanocomposites at 20 wt% (10 vol%). The difference (EM SEA) represents 

the absorption component. 
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The effect of sample thickness on the EM SE of PR-19 HT nanocomposites was 

assessed at 10 vol% CNFs (three replicates per thickness, n = 3).  The measurements 

were conducted on sample thicknesses ranging from 0.25 to 2.5 mm (representing one 

order of magnitude difference) with an intermediate thickness of 0.75 mm. Figure 2.8 

indicates that, at 1.5 GHz, the EM SE is directly proportional to the sample thickness  , 

which would be expected for any homogeneous (or at least pseudo-homogeneous) 

material when the absorption component dominates. The reflective component of 

shielding can be estimated from the intercept of the linear regression of the EM SE and 

sample thickness data. The intercept of 4.3 dB is consistent with the experimentally 

measured  𝑀              of 4.9 dB displayed in Figure 2.7. These results are likely due 

to the microstructural uniformity of the nanocomposites from the perspective of EM SE 

properties. 
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Figure 2.8. Effect of sample thickness on the EM SE of PR-19 HT nanocomposites at 10 

vol% (20 wt%). Error bars represent 95% confidence intervals and the straight line 

represents linear least-squares regression fit. 

 

Finally, the effect of solid nanomodifiers on the tensile properties of the resulting 

composites was assessed using the ASTM D638 Type V technique (die-cut, dogbone-

shaped specimens of 25 mm of gauge-length, 3 mm of width and 1 mm of thickness) in 

an ATS Universal 900 tensile tester at across-head speed of 25 mm/min. At 10 vol%, PR-

19 HT nanocomposites displayed a tensile modulus of 632±36 MPa, tensile strength of 

14.2±1.5 MPa and strain-to-failure of 180±98 % (n = 6 in all cases). Thus, as compared 
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with pure LLDPE, which has a modulus of 325±85 MPa, strength of 30±5 MPa, and 

strain-to failure of 685±105% (n = 6), the modulus increased by about 100 %, but the 

strength decreased by about 50 %. Nonetheless, thin extruded nanocomposite films still 

displayed a very good level of flexibility. It is important to note that while the 

nanocomposites were generally less ductile as compared to the pure LLDPE, they still 

retained a fairly high strain-to-failure of 180±98 %, compared to about 2% displayed in 

typical carbon fiber/LLDPE composites at the same volume fraction, as shown in our 

previous work [19]. Coupled with an EM SE of about 14±2 dB, such nanocomposites 

indicate a potential in flexible packaging and micromolding applications.  
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2.4 Conclusions 

After an ultra-high temperature thermal treatment at 2500°C, PR-19 HT 

nanofibers showed a significant increase in their graphitic crystallinity and two orders of 

magnitude increase in their bulk electrical conductivity. Subsequently, nanocomposites 

containing 10 vol% (~20 wt%) PR-19 HT exhibited an outstanding improvement in their 

electrical conductivity (ten orders of magnitude) and electromagnetic shielding 

effectiveness (EM SE increase of ~13 dB) as compared to their untreated counterparts. 

Over a frequency range from 30 MHz to 1.5 GHz, the EM SE of the PR-19 HT 

nanocomposites at 10 vol% was about 14±2 dB (n = 4). These EM SE values were 

significantly larger than those measured for untreated PR-19 nanocomposites (~1±0.2 dB, 

n = 4). The total EM SE (dB) of PR-19 HT nanocomposites increased almost linearly 

with the thickness of the sample, and approached the EM SE target of 20 dB (for 

residential electronics applications) for the thickest ones. Absorption was the 

predominant shielding mechanism, which combined with their flexibility and ductility, 

make such nanomaterials promising alternatives for electromagnetic compatibility (EMC) 

applications.  

 

 

 

 



 

75 

 

2.5 References 

1. Paul CR. Introduction to Electromagnetic Compatibility. United States of America: 

John Wiley & Sons, Inc., 1992.  

2. Ramo S, Whinnery JR, Van Duzer T. Fields and Waves in Communication 

Electronics. United States of America: John Wiley & Sons, Inc., 1984.  

3. Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of 

CNT/polymer composites. Carbon 2009;47:1738-1746.  

4. Al-Saleh MH, Gelves GA, Sundararaj U. Copper nanowire/polystyrene 

nanocomposites: Lower percolation threshold and higher EMI shielding. 

Composites Part A 2011;42:92-97. 

5. Al-Saleh MH, Sundararaj U. Electrically conductive carbon nanofiber/polyethylene 

composite: effect of melt mixing conditions. Polym Adv Technol 2011;22:246-

253.  

6. Gelves G, Lin B, Sundararaj U, Haber J. Low Electrical Percolation Threshold of 

Silver and Copper Nanowires in Polystyrene Composites. Adv Func Mater 

2006;16: 2423-2430.  

7. Dani A, Ogale AA. Electrical Percolation Behavior of Short-fiber Composites: 

Experimental Characterization and Modeling. Compos Sci Technol 1996;56:911-

920. 

8. King JA, Morrison FA, Keith JM, Miller MG, Smith RC, Cruz M, Neuhalfen AM, 

Barton RL. Electrical Conductivity and Rheology of Carbon-Filled Liquid Crystal 

Composites. J App Polym Sci 2006;101:2680-2688.   

9. Keith JM, King JA, Miller MG, Tomson AM. Thermal conductivity of carbon 

fiber/liquid crystal polymer composites. J Appl Polym Sci 2006;102:5456-5462.   

10. Yang S, Lozano K, Lomeli A, Foltz HD, Jones R. Electromagnetic interference 

shielding effectiveness of carbon nanofiber/LCP composites. Composites Part A: 

Appl Sci Manuf 2005;36(5):691-697. 

11. Lozano K, Yang S, Zeng Q. Rheological analysis of vapor-grown carbon nanofiber-

reinforced polyethylene composites; J. Appl. Polym. Sci., 2004;93:155-162. 

12. King JA, Johnson BA, Via MD, Ciarkowski CJ. Effects of carbon fillers in thermally 

conductive polypropylene based resins. Polym Compos 2010;31:497-506.  



 

76 

 

13. Nanni F, Valentini M. Electromagnetic properties of polymer-carbon nanotube 

composites. In: McNally T, Pötschke P, editors. Polymer-carbon nanotube 

composites, Preparation, properties and applications. Cambridge, UK: Woodhead 

Publishing, 2011, pp. 329-346. 

14. Wang SF, Ogale AA. Continuum space simulation and experimental characterization 

of electrical percolation behavior of particulate composites. Compos Sci Technol 

1993;46:93-103.  

15. Dani A, Ogale AA. Percolation in Short-fiber Composites: Cluster Statistics and 

Critical Exponents. Compos Sci Technol 1997; 57:1355-1361.   

16. King JA, Via MD, Keith JM, Morrison FA. Effects of Carbon Fillers on Rheology of 

Polypropylene-based Resins. J Compos Mat 2009;43:3073-3089.   

17. Xiao KQ, Zhang LC, Zarudi I. Mechanical and rheological properties of carbon 

nanotube reinforced polyethylene composites. Compos Sci Technol 2007;67:177-

182. 

18. Kum CK, Sung Y, Han MS, Kim WN, Lee HS, Lee S, Joo J. Effect of Morphology 

on the Electrical and Mechanical Properties of the Polycarbonate/Multi-Walled 

Carbon Nanotube Composites. Macromol Res 2006;14:456-460.  

19. Villacorta BS, Ogale AA. Effect of Ultra-High Thermal Treatment of Carbon 

Nanofibers on EMI SE of LLDPE Nanocomposites. SPE ANTEC 2011, 

2011;11:0093. 

20. Lee S, Kim M, Ogale AA. Influence of Carbon Nanofiber Structure on Properties of 

Linear Low Density Polyethylene Composites. Polym Eng Sci 2010;50:93-99. 

21. Janda NB, Keith JM, King JA, Perger WF, Oxby TJ. Shielding-Effectiveness 

Modeling of Carbon-Fiber/Nylon-6,6 Composites. J Appl Polym Sci 2005;96:62-

69.  

22. Ling Q, Sun J, Zhao Q, Zhou Q. Microwave absorbing properties of linear low 

density polyethylene/ethylene–octene copolymer composites filled with short 

carbon fiber. Mater. Sci Eng B 2009;162:162-166. 

23. Jimenez GA, Jana SC. Electrically conductive polymer nanocomposites of 

polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. 

Composites Part A: Appl Sci Manuf 2007;38:983-93.  

24. Lee S, Da S, Ogale AA, Kim M. Effect of heat treatment of carbon nanofibers on 

polypropylene nanocomposites. J Phys Chem Solids 2008;69:1407-1410. 



 

77 

 

25. Lee S, Kim T, Ogale AA, Kim M. Surface and structure modification of carbon 

nanofibers. Synth Met 2007;157:644-650.  

26. Villacorta BS, Hubing TH, Ogale AA. Effect of Heat Treatment of Carbon 

Nanofibers on the Electromagnetic Shielding Effectiveness of Linear Low 

Density Polyethylene Nanocomposites. Polym Eng Sci  2013;53:417-423. 

27. Singjai P, Changsarn S, Thongtem S. Electrical resistivity of bulk multi-walled 

carbon nanotubes synthesized by an infusion chemical vapor deposition method. 

Mater Sci Eng A 2007;443:42-46.  

28. Park SH, Theilmann P, Yang K, Rao AM, Bandaru PR. The influence of coiled 

nanostructure on the enhancement of dielectric constant and electromagnetic 

shielding efficiency in polymer composites. Appl Phys Lett 2010;96:043115.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

78 

 

CHAPTER 3 

MORPHOLOGICAL INFLUENCE OF CARBON MODIFIERS ON THE 

ELECTROMAGNETIC SHIELDING OF THEIR LINEAR LOW DENSITY 

POLYETHYLENE COMPOSITES  

 

3.1 Introduction 

In Chapter 2, it was explained that electrically conductive modifiers are added to 

polymers to form electrical networks within the polymeric matrix [1-5]. This improves 

the lossy transport properties of the material, which directly influence the electromagnetic 

shielding [6]. Moreover, it was shown that the intrinsic transport properties of the 

modifiers themselves influence the composite transport properties and shielding. Thus, 

after significantly reducing the bulk electrical resistivity of a commercial grade carbon 

nanofiber by heat treatment at graphitization temperatures, the resulting composite 

conductivity and electromagnetic shielding (EM SE) displayed a very significant 

improvement. 

Literature studies indicate that for a given graphitic crystallinity of the modifiers 

and fixed melt-mixing conditions, the composite properties will also depend on the 

morphological features of the modifiers, such as aspect ratio, shape and diameter [7-11]. 

However, the effect of different carbon-based nano-morphologies on the electromagnetic 

shielding of their polyethylene nanocomposites has not been fully investigated. 

Therefore, this chapter explores the effect of three different heat-treated carbon-based 



 

79 

 

nanomodifiers on the EM SE of their composites prepared by melt-mixing with a flexible 

linear low-density polyethylene matrix. Mesophase pitch-based carbon fibers (P55) with 

a similar graphitic content were also included in this study with the purpose of comparing 

micro- vs. nano-morphologies. The microstructural, electrical, thermal, and mechanical 

properties of such composites are reported in relation to their electromagnetic shielding 

performance. 

 

3.2 Experimental 

3.2.1 Materials 

The matrix polymer used throughout this study was Poly(ethylene-co-1-octene), 

(Dowlex
TM

 2045), a film grade flexible linear low density polyethylene (LLDPE). It has a 

density of 0.920 g/cm
3
, DSC melting point of 122ºC, and melt flow index of 1 g/10 min 

(190°C/2.16 kg, ASTM D1238). Carbon nanofibers, Pyrograf
®
 III PR-19 (Applied 

Science Inc.), straight (MWNT), and helical multi-walled carbon nanotubes (HCNT) 

from CheapTubes Inc., were used as nanomodifiers. PR-19 CNFs are made by chemical 

vapor deposition (CVD) from natural gas as precursor by using a Fe-sulfide catalyst at 

about 900ºC, and have a specific surface area of 15-25 m
2
/g [12,13]. MWNT are also 

produced by CVD from methane with a Ni-Fe catalyst and have about 60 m
2
/g of specific 

surface area, whereas HCNT were made of C2H2 precursor by CVD at 500°C with a 

Fe2O3 catalyst and have a specific surface area of less than 30 m
2
/g [14].  With the 

purpose of comparing the performance of three different nano-morphologies with 
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traditional micro-fibers, mesophase pitch-based Cytec Thornel® P-55 short carbon fibers 

(CF) were also used (length: 0-2 mm, diameter ~10 μm). 

For the electrical composite properties, one of the most important factors is the 

intrinsic electrical conductivity of the modifier phase. This, in turn, is a strong function of 

its graphitic crystallinity, which can be increased by heat-treating the nanomodifiers to 

temperatures exceeding 2000°C as demonstrated in Chapter 2 and previous studies [12, 

13, 15]. Therefore, ultra-high thermal treatment (HT) at 2500 °C was carried out for the 

as-received nanomodifiers in a Thermal Technology HP50-7010 furnace in helium 

atmosphere prior to compounding [16].  

 

3.2.2 Processing  

As documented in Appendix A, high-shear mixing geometries (twin-screw 

extrusion) and long mixing times reduced the electrical network in 10 vol% PR-19 HT 

composites due to excessive mixing, which decreased the cluster-cluster electrical 

interconnection. In contrast, higher levels of conductivity and EM SE were attained by 

using softer mixing conditions (Brabender-type batch mixing) for the same concentration. 

Therefore, in this chapter, the nanocomposites were prepared by an optimized soft melt-

mixing of LLDPE with 10 vol% of each of the four types of modifiers in a Haake 

Rheomix 600 batch mixer (BM) at 190°C and 20 rpm for 2 min. The composites were 

processed by thermal compaction at 190°C into circular sheets about 2.5-3.0 mm thick 
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and 133 mm diameter utilizing a Carver laboratory press. Two specimens were 

independently mixed and compacted per concentration (true replicates, n = 2). 

 

3.2.3 Carbon modifier characterization  

Scanning electron microscopy (SEM Hitachi S-4800) was conducted on the heat-

treated modifiers. At least 10 different micrographs at different levels of magnification 

were captured per modifier type. From such high-magnification SEM micrographs, the 

length and diameter measurements of the modifiers were carried out using image analysis 

(ImagePro®). For each modifier type, a set of at least 150 representative imaged 

modifiers were measured. 

Raman spectroscopy was conducted for the modifiers to analyze the disordered 

(D) and graphitic (G) bands observed in carbon materials at 1315 cm
-1

 and 1580 cm
-1

, 

respectively. A Renishaw micro-Raman spectroscope equipped with a 785 nm 

wavelength diode laser was used. The WiRE software (version 3.2) was used to analyze 

the peaks to determine the ID/IG Raman area ratio [12]. A replication of 8 was used (n = 

8). 

Wide-angle X-ray diffraction (Rigaku-MSC, Houston, TX) was also conducted on 

the heat-treated carbon modifiers using Cu target Kα radiation with a wavelength of 

1.5406 Å [12]. The spectra were analyzed using Polar software version 2.6.7 from 

Stonybrook Technology and Applied Research (STAR). X-ray diffraction (XRD) was 
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also conducted on the modifier using a Rigaku Ultima IV X-ray diffractometer to 

corroborate the 2θ angle values. A Bragg’s angle sweep from 20° to 30° was used at a 

rate of 0.75°/min for all measurements, using also Cu target Kα radiation with a 

wavelength of 1.5406 Å. The Ultima IV X-ray source was operated at 40 kV and 44 mA. 

In addition, a small quantity of NIST-calibration grade silicon was added to the samples 

for accurate determination of 2θ angles of various peaks. A replication of 3 was used for 

all XRD experiments (n = 3) 

The bulk electrical resistivity (BER) of the pure modifiers was measured using a 

Keithley 196 System digital multi-meter (DMM) while compressing the modifiers in an 

insulating fixture. The bulk electrical resistivity of the modifiers was computed from the 

measured resistance and sample geometry at a compaction stress of 50 MPa [17].  

The bulk thermal diffusivity of the nanomodifiers was measured using a 

NETZSCH Laser Flash Analyzer LFA 447 (ASTM E1461). Compacted pellets of 2 mm 

thickness and 12.7 mm diameter made out of the nanomodifiers were prepared for the 

diffusivity analysis. The bulk thermal conductivity was calculated from the bulk thermal 

diffusivity, bulk density measurements and the heat capacity obtained from a simple 

mixing rule for the carbon modifiers and air. Two true pellet replicates (n = 2) were made 

for each nanomodifier. 
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3.2.4 Composites characterization 

The morphology of the resulting nanocomposites was assessed by inspection of 

the cross-section of the cryo-fracturated nanocomposites using scanning electron 

microscopy (Hitachi S-4800, Hitachi SU-6600). For each type of nanocomposite, five 

different macroscopic locations were investigated.  For each location, five different spots 

were imaged.  After a soft dilution of the 10 vol% composites with LLDPE to 1 vol%, 

carried out in the batch mixer at 20 rpm, 190°C for 2 min, the composites became 

transparent enough to conduct transmission optical microscopy (OM) using a BX60 

Olympus Optical Microscope.  Seven different locations on the surface of ~100-µm thick 

composite films were inspected for each composite type. For each location, two different 

magnifications were imaged (5X: nominally 4 mm
2
 of inspected area, and 10X: 

nominally 1 mm
2
 of inspected area). ImagePro® image analysis software was used to 

measure the average diameter and area of the clusters in an attempt to characterize their 

dispersion level.  

The DC in-plane volume electrical conductivity,   (S/m), of the nanocomposites 

was measured using a Keithley 6517B High Resistance Meter (current range: 1 pA - 20 

mA) connected to a Keithley 8002A Resistivity Test Fixture modified with external 

electrodes (ASTM D257). The measurements were performed with help of the Keithley 

6524 software by which a DC voltage of ± 5V was applied across the highly conductive 

composite samples and ± 50V across the less conductive samples. The relative humidity 

and temperature of the experimental area were monitored using a 6517-RH humidity 
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probe and a 6517-TP thermocouple, respectively. The conductivity was obtained from 

resistance measurements of die-cut specimens that were 12.5 mm wide, 2.5 mm thick and 

with lengths of about 20 mm.  Silver paint was applied on the surfaces at each end of the 

samples and their in-plane resistance was measured. From the sample geometry and the 

resistance measurements, the conductivity was computed from four replicates (n = 4). 

The measurements were performed on a 6-mm thick Teflon® sheet to insulate the area for 

accurate measurements. Documented details of the in-plane conductivity measurements 

are displayed in Appendix B. 

The NETZSCH Laser Flash Analyzer LFA 447 (ASTM E1461) was also use to 

measure the through-plane thermal diffusivity of the composites. Four square specimens 

of 10 mm x 10 mm and about 0.5 mm thick were cut per composite type (n = 4). From 

mixing rules the heat capacity and density of the composites were calculated, enabling 

the estimation of their composite thermal conductivity. 

The complex electrical permittivity (real     and imaginary    ) of the 

nanocomposites, in their sheet form (2.5 mm thick), was measured utilizing an Agilent 

4291B RF Impedance/Material Analyzer and an Agilent 16453A Dielectric Material Test 

Fixture. Prior to the measurements, the analyzer was calibrated utilizing an Agilent 

calibration kit (short (0 Ω), open (0 S), load (50 Ω)). Short/open/load fixture 

compensation was also applied to increase the accuracy of the measurements. The 

analysis frequency range was 30 MHz to 1.5 GHz. 
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The static decay time was measured using an Electro-Tech Systems, Inc. 406D 

Static-Decay Meter that complies with the Federal Test Method 101D, Method 4046 and 

Military Standard Mil-B-81705C. This standard requires that 99% of the initial induced 

charge be dissipated is less than 2 seconds for qualifying material per Mil-B-81705C. The 

Static-Decay Meter was calibrated by the ESD Testing Laboratory of Electro-Tech 

Systems, Inc. (Glenside PA) prior to the measurements. The relative humidity of the 

measuring area was monitored at about 50% and temperature of 25°C. 

An Electro-Metrics EM-2107A coaxial transmission line test fixture was used to 

apply a far-field electromagnetic wave to the nanocomposite specimens (ASTM D4935). 

The EM-2107A test fixture was connected through coaxial cables to an Agilent 

Technologies N5230A PNA Series Network Analyzer. The EM SE was determined as 

ten times the negative logarithmic ratio of the measured transmitted power with the 

material present (load specimen),       ,  to the transmitted power without the material 

present (reference specimen),       . In Appendix B, this ratio is equivalently defined as 

the corrected transmittance,  , expressed in dB. Thus, each circular nanocomposite 

specimen was aligned between the test fixtures and measured at frequencies from 30 

MHz to 1.5 GHz.  Two true replicates were tested (n = 2). The sample diameter was 133 

mm, whereas the thickness was 2.5 mm.   

Tensile tests were carried out for the nanocomposites using the ASTM D638 Type V 

technique at room temperature, which requires dogbone-shaped specimens of 25 mm of 

gauge-length and 3 mm of width. The specimens were of 1 mm in thickness and were 
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die-cut into the ASTM dogbone shape. An ATS Universal 900 tensile tester at across-

head speed of 25 mm/min was used to test six replicates per nanocomposite type. 

 

3.3 Results and Discussion 

3.3.1 Carbon modifiers morphology and properties 

 Figure 3.1 contains representative SEM micrographs displaying the morphologies 

of the four different heat-treated carbon modifiers used in this chapter for the preparation 

of the composites. P-55 CF, PR-19 HT and MWNT HT are straight-shaped fibers, but P-

55 CF have a diameter about two orders of magnitude greater than that of PR-19 HT, and 

PR-19 HT possess a diameter one about one order of magnitude larger than that of 

MWNT HT. HCNT HTs have a similar diameter to that of PR-19 HT; however, a 

predominantly helically coiled morphology is a distinctive feature of HCNT HT. The as-

received HCNT displayed a larger helical content, which was reduced by the heat 

treatment. 

Figure 3.2 contains histograms for the diameter and length distributions of the 

modifiers obtained from image analysis of their SEM micrographs.  PR-19 HT CNFs 

have a diameter of 119±8 nm and a length of 10±2 µm, whereas MWNTs HT have a 

diameter of 42±3 nm and length of 6±1 µm (i.e., average ± 95% confidence intervals). 

HCNTs HT have a nominal diameter of 210±15 nm and a length of 8.5±2.5 µm. P-55 

CFs have an average diameter of about 10 µm and lengths of about 100-500 µm. Thus, 
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the average aspect ratios for the modifiers are about 86, 146, 41 and 30 for the PR-19 HT, 

MWNT HT, HCNT HT and P-55 CF, respectively.  

Figure 3.3 displays representative SEM micrographs at low magnification for the 

heat-treated carbon nanomodifiers showing the initial level of clustering of the modifiers 

before melt-mixing. Clusters as large as 100 μm were observed for PR-19 HT, whereas 

the HCNT HT displayed smaller cluster size than did other nanomodifiers. 

 

     

     

Figure 3.1. Representative scanning electron micrographs (SEM) of the heat-treated 

carbon modifiers used to prepare the composites. 
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Figure 3.2. Results of the dimensional analysis of the carbon modifiers presented as 

histograms for the diameter and length distributions for (a, b) PR-19 HT, (c, d) MWNT 

HT, (e, f) HCNT HT and (g, h) P-55 CF. 
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Figure 3.3. Representative low-magnification scanning electron micrographs (SEM) of 

the heat-treated carbon nanomodifiers forming initial clusters. a) PR-19 HT, b) MWNT 

HT, c) HCNT HT. 
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Figure 3.4 exhibits the Raman spectra for the four types of carbon modifiers.  The 

Raman ID/IG ratios obtained from the relative areas under the D and G bands for the PR-

19 HT, MWNT HT and HCNT HT nanomodifiers were 0.96±0.04 and 0.78±0.11 and 

1.68±0.46, respectively. HCNT HT displayed a slightly higher ratio than that of the other 

nanomodifiers. However, due to the large variability in ID/IG ratio of HCNT HT, these 

ratios basically fall in the same category (ID/IG ~ 1). Only P-55 had an ID/IG ratio of 

2.92±0.08, which was significantly higher than that of the nanomodifiers. This indicates 

that the nanomodifiers have a similar level of graphitic crystallinity, whilst P-55 CF 

displayed a significant higher level of disorder content (i.e., lower crystallinity). 
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Figure 3.4. Raman spectra of the heat-treated carbon modifiers. The spectra have been 

vertically shifted for clarity. 
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Similar deductions can be drawn from the Bragg’s angle of the graphitic (002) peak 

obtained from wide angle X-ray diffraction of the modifiers. Figure 3.4 confirms that the 

2θ positions of the nanomodifiers are around 26.2° (graphitization level at about 50%), 

which are consistent with the Raman results. P-55 carbon fibers displayed a slightly 

lower 2θ position at 26.01° (graphitization level at about 20%), which corroborates their 

lower crystallinity level as compared with that of the rest of nanomodifiers. This is also 

consistent with the Raman results. 
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Figure 3.5. Wide angle X-ray diffractograms of the heat-treated carbon modifiers.  A 

small quantity of NIST-calibration grade silicon was added to the samples for accurate 

determination of 2θ angles of various peaks.  
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The intrinsic transport properties of the modifiers correlate very well with the 

graphitic content of the modifiers. Thus, the electrical resistivity of the modifiers in bulk 

was of 0.031±0.010 Ω∙cm, 0.028±0.015 Ω∙cm, 0.057±0.014 Ω∙cm and 0.116±0.036 Ω∙cm 

for the PR-19 HT, MWNT HT, HCNT HT and P-55 CF, respectively. Likewise, the bulk 

thermal conductivity of the nanomodifiers was of 0.295±0.010 W/m.K for PR-19 HT, 

0.473±0.007 W/m.K for MWNT HT and only 0.155±0.018 W/m.K for HCNT HT. These 

results indicate that differences in the crystallinity of the modifiers influence their 

transport properties. Nonetheless, all the transport properties of these modifiers are of the 

same order of magnitude. 

 

3.3.2 Composite morphology 

Figure 3.6 displays representative SEM micrographs for the composites at 10 

vol%. The PR-19 HT-, MWNT HT-, and P-55-based composites appear uniformly mixed 

and no significant clusters can be observed. In contrast, HCNT HT-based composites 

developed several HCNT HT clusters as large as 100 µm that can be observed by SEM. 

In fact, the cluster size developed in the HCNT HT composites is comparable to the size 

of the HCNT HT agglomerates before melt-mixing (i.e., < 100 μm) as observed in 

Figure 3.3 (c). This is likely a consequence of the helical morphology of the HCNT HT 

that resulted in more entanglements among themselves, which hinders modifier micro-

dispersion and led to a segregated microstructure with a similar cluster size prior and 

after mixing. 
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Figure 3.7 shows the optical micrographs (OM) of the diluted composites at 1 

vol%. In contrast to the SEM micrographs, optical microscopy, that covers a much larger 

inspected area (i.e., larger length-scale), displayed clusters of nanomodifiers for all three 

types of nanocomposites. Only a few clusters were observed for the diluted PR-19 HT- 

and MWNT HT-nanocomposites, although some were fairly large (~300 µm). In contrast, 

in the diluted HCNT HT nanocomposites, a larger number of relatively smaller clusters 

can be observed. These microstructural differences will play a major role in determining 

the electrical properties of the composites as seen further in this chapter.  Moreover, the 

diluted P-55 CF composites displayed a random in-plane distribution of the fibers, but 

there are still regions in which higher concentrations of CF are observed. Thus, the 

microstructural differences found between the two microscopy length-scales (SEM vs. 

OM) indicate that dispersion assessment must be done at different magnification levels 

for an appropriate characterization of the dispersed phase. 
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Figure 3.6. Representative scanning electron micrographs (SEM) of the cross-section of 

the composites at 10 vol% (a) PR-19 HT, (b) MWNT HT (c) HCNT HT and (d) P-55 CF. 

Insets display the microstructure at higher magnification. 
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Figure 3.7. Representative optical micrographs of the surface of the diluted composites at 

1 vol%, (a) PR-19 HT, (b) MWNT HT (c) HCNT HT and (d) P-55 CF. 

 

Figure 3.8 displays the corresponding average cluster size distribution of the 

nanomodifiers in the 1-vol% diluted composite films obtained by image analysis of their 

optical micrographs. The clusters in the PR-19 HT diluted composites had a diameter of 

20.7±15.4 µm. For the MWNT HT diluted composite films, a diameter of 21.5±12.9 µm 

was measured. The HCNT HT dilute nanocomposites displayed an average diameter of 

16.9±6.3 µm. These values are consistent with the visual assessment previously made. 
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Although, the coiled morphology of the HCNT HT favors clustering, the relatively 

smaller average cluster size in HCNT HT composites may be a consequence of the lower 

aspect ratio of the HCNT HT. 

A measure of the non-disperse phase can be obtained with the ratio of the total 

cluster area,    ,  to the total inspected area,     [19]. This ratio is proportional to the 

volume fraction of the clusters in the composite [19]. Thus, PR-19 HT, MWNT HT and 

HCNT HT diluted nanocomposites exhibited ratio values of 
   

  
⁄  of 0.379±0.075, 

0.378±0.042 and 0.207±0.064, respectively. Thus, even though the SEM micrographs for 

the HCNT HT nanocomposites at 10 vol% displayed clusters, their predominant cluster 

size and cluster area ratio were lower than those of the PR-19 HT and MWNT HT 

nanocomposites. These results quantitatively corroborate that a higher number of 

relatively smaller isolated clusters are present in the HCNT HT nanocomposites. 

Consequently, the smaller HCNT HT cluster size and the segregated microstructure thus 

attained hinder electrical interconnection at the micro-scale. This is not the case for the 

other nanomodifiers, whose larger aspect ratios and cluster sizes led to higher levels of 

inter-cluster connection. 
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Figure 3.8. Cluster size distributions in 1 vol% diluted nanocomposites. (a) PR-19 HT 

comp., (b) MWNT HT comp. and (c) HCNT HT comp. 
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3.3.3 Composite transport properties 

For polyolefin matrix nanocomposites, electrical percolation thresholds ranging 

from 2.5 to 7.5 vol% have been reported for CNFs and CNTs in literature studies [2, 16, 

20]. However, even though at the percolation threshold (e.g., 10
-5

 to 10
-2

 S/m) the 

conductivity of the composite is several orders higher than that of the pure resin (e.g., 10
-

17 
to 10

-15 
S/m), it is insufficient for shielding purposes. Therefore, for obtaining 

significant shielding effectiveness, it is necessary to increase loading levels beyond the 

percolation threshold. Because of this, and based on the results of Chapter 2, the batch-

mixed formulation of 10 vol% is better suited for a systematic evaluation of the shielding 

properties. 

Table 3.1 is a summary of the transport properties of the modifiers and their 

composites. The DC in-plane electrical conductivity   of the 10 vol% nanocomposites 

was measured at 33.5±5.6x10
0
 S/m, 20.4±3.3x10

0
 S/m, 3.7±1.6x10

-3
 S/m and 

5.0±1.8x10
0
 S/m (n = 4 in all cases) for the PR-19 HT, MWNT HT, HCNT HT and P-55 

composites, respectively. The composites were electrically percolated systems when 

compared with a conductivity of 7.0±1.1x10
-15

 S/m for pure LLDPE, which is 15 orders 

of magnitude lower than that of the composites. Similarly, the through-plane thermal 

conductivity of the composites (also shown in Table 3.1) was 0.855±0.029, 1.022±0.023, 

0.555±0.003, and 0.562±0.009 W/m∙K for the PR-19 HT, MWNT HT, HCNT HT and P-

55 composites, respectively.  

 



 

99 

 

Since all four types of modifiers have similar transport properties, and the 

processing conditions and concentration have been kept equal for the same polymeric 

matrix, the composite properties are solely dependent on the morphological features of 

the modifiers. Thus, the MWNT HT with the highest aspect ratio (L/D) led to composites 

with the highest conductivities; whereas HCNT HT, with a low aspect ratio and a helical 

morphology, prevented a good distribution/segregation within the matrix and led to the 

lowest conductivities. The PR-19 HT and P-55 CF conductivities fall in between these 

two extremes as do their aspect ratios. 
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Table 3.1. Intrinsic properties of four types of modifiers as compared with the conductivity of their batch-mixed composites at 

10 vol% modifier content. Ranges represent 95% confidence intervals.  

Modifier Raman ID/IG 

ratio 

Bragg’s 

angle 

(deg) 

Bulk 

electrical 

resistivity 

(Ω·cm) 

Bulk thermal 

conductivity 

(W/m.K) 

Aspect 

ratio 

(L/D) 

In-plane 

electrical 

conductivity  

(S/m) 

Composites 

10 vol% 

Through-plane 

thermal 

conductivity 

(W/m.K) 

Composites 

10 vol% 

PR-19 HT 0.96±0.04 26.25 0.031±0.010 0.295±0.010 63-108 20.4±3.3x10
0
 0.855±0.029 

MWNT  HT 0.78±0.11 26.12 0.028±0.015 0.473±0.007 111-180 33.5±5.6x10
0
 1.022±0.023 

HCNT HT 1.68±0.46 26.21 0.057±0.014 0.155±0.018 26-56 3.7±1.6x10
-
³ 0.555±0.003 

P-55 2.92±0.08 26.01 0.116±0.036 - 24-35 5.0±1.8x10
0
 0.562±0.009 
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Another transport property of relevance is the complex electrical permittivity of 

the nanocomposites (         ) displayed in Figure 3.9 from 30 MHz to 1.5 GHz. 

  

    ⁄ represents the dimensionless real relative permittivity or dielectric energy storage, 

and   
  

   ⁄  the dimensionless imaginary relative permittivity or polarization loss. The 

permittivity of vacuum    , is 8.85418x10
-12

 F/m. The real and imaginary permittivity of 

the nanocomposites displayed a generally decreasing behavior with respect to frequency. 

The MWNT HT nanocomposites exhibited an overall permittivity of (175±60)-(93±34)  

at 100 MHz, decreasing to (15±11)-(21±3)  at 1.5 GHz. PR-19 HT nanocomposites 

permittivity decreased from (100±65)-(63±46)  at 100 MHz to (17±7)-(18±12)  at 1.5 

GHz (n = 4 in both cases). In contrast, the permittivity of HCNT HT and P-55 composites 

was less frequency dependent at about (4±1)-(0.05±0.03)  and (12±2)-(3±1)  at 1.5 GHz, 

respectively. Once again, the composites made out of modifiers with larger aspect ratios 

displayed higher values of permittivity. Particularly low was the permittivity of the 

HCNT HT nanocomposites, which was only slightly higher than that of the pure LLDPE 

(     ⁄   2.3). Such a low permittivity also reflects the poor electrical interconnectivity 

between the HCNT HT clusters. 
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Figure 3.9. Relative (a) real and (b) imaginary electrical permittivity of representative 

composites. 
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3.3.4 Electrostatic dissipation and electromagnetic shielding 

The electrostatic discharge (ESD) characteristic of the nanocomposites in terms of 

the decay time for each nanocomposite type is displayed in Table 3.2 (1 % of cut-off). At 

10 vol%, all types of composites were ESD dissipative and complied with the Mil-B-

81705C requirements since they all were in the percolated regime. It is known that the 

electrostatic decay time increases as the conductivity of the material decreases [18, 21]. 

Only, HCNT HT composites displayed, a slightly higher, but still dissipative, decay time 

of 1.5 s, which is consistent with its low electrical conductivity of only ~0.004 S/m.  

 

Table 3.2. Static decay-times for electrostatic dissipation (ESD) of the composites, 

measured at 1 % cut-off and 50 % relative humidity. 

10 vol% Composites Decay time*  

(sec) 

PR-19 HT 0.01 

MWNT HT 0.01 

HCNT HT 1.50 

P-55 0.01 

                                                                                *1% cut-off 
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Figure 3.10 displays the electromagnetic shielding effectiveness (EM SE) of the 

composites. PR-19 HT nanocomposites displayed 24.7 dB of shielding, and MWNT HT 

nanocomposites a slightly larger value of 25.3 dB (at 1.5 GHz). P-55 composites 

exhibited 12.2 dB, whereas the lowest value of the set was of only 0.7 dB for the HCNT 

HT composites at 1.5 GHz. These results are consistent with the electrical conductivity 

and permittivity measurements as the greater the EM SE, the higher the “lossy” 

properties of the composite (i.e., electrical conductivity and imaginary permittivity). 

Figure 3.11 correlates the EM SE and the in-plane conductivity of the composites. A 

consistent increasing trend between the in-plane conductivity and the EM SE of the 

composites can be noted. This confirms the dependency of the EM SE of a material on its 

electrical conductivity. 
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Figure 3.10. Electromagnetic shielding effectiveness (EM SE) of representative 

composites over the frequency range of 30 MHz to 1.5 GHz, at 10 vol%. 
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Figure 3.11. Plot showing a positive correlation between the EM SE @ 1.5 GHz and the 

corresponding in-plane electrical conductivity of the different composites. Solid line 

represents a typical trend. 

 

3.3.5 Mechanical properties 

Table 3.3 displays the tensile properties of the different composites prepared in 

this study. At 10 vol%, PR-19 HT and MWNT HT nanocomposites displayed similar 

values for tensile modulus, strength, and ductility (measured as strain-to-failure). In 

contrast, HCNT HT composites behaved more flexible and more ductile that the other 

nanocomposites, while P-55 composites were much stiffer and less ductile than others. 

The higher ductility of the HCNT HT composites is brought about by the helical shape of 

the nanomodifier. This has been proven by Lee et al. when studying composites made of 
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similar modifier morphologies to that of the HCNT HT [22]. In comparison, pure LLDPE 

has a modulus of 325±85 MPa, strength of 30±5 MPa and strain-to failure of 685±105% 

(n=6). Although the nanocomposites were generally less flexible as compared to the pure 

LLDPE, they still retained a fairly high strain-to-failure of about 165%, compared to 

about only 30% displayed by the P-55 composites. This reduction in strength and 

ductility is consistent with that reported in other nanocomposites prior literature studies 

[19, 23] 

  

Table 3.3. Tensile properties for composites at 10 vol% modifier content. Ranges 

represent 95% confidence intervals.  

 PR-19 HT MWNT HT HCNT HT P-55 

Apparent 

Modulus 

(MPa) 

683±105 696±110 443±58 1079±88 

Yield Stress 

(MPa) 

16.5±1.8 18.3±1.8 13.3±0.3 20.0±1.5 

Tensile Strength 

(MPa) 

16.0±2.5 17.7±1.6 14.8±1.7 8.0±1.4 

Elongation-at-

break 

(%) 

128±49 114±43 254±62 32±8 
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3.4 Conclusions 

The microstructure of the composites was found to directly depend on the 

morphology of the carbon modifiers, which leads to the electrical network that the 

modifiers form within the matrix. The EM SE of the composites also exhibited a direct 

dependence on the modifier morphology.  As a result, MWHT HT, whose aspect ratio 

was the highest of the studied set, displayed the largest conductivity, permittivity and 

shielding effectiveness (~24 dB) in its composite form. In contrast, the HCNT HT, due to 

their coiled shape and low aspect ratio, led to non-percolating clusters in the composites, 

which resulted in poor EM SE (<1 dB). Nevertheless, HCNT HT composites exhibited 

the highest ductility and flexibility of the studied set of composites, which is owed to the 

mechanical matrix-modifier interlocking provided by their helical morphology. PR-19 

HT and P-55 CF, both with intermediate aspect ratios and straight-shape morphologies, 

led to composite properties that fell between the two extremes. Moreover, the larger 

dimensions of the P-55 CF (diameter 100 times larger than nanomodifiers) provided 

composites with very little ductility and poor flexibility when compared to those of the 

nanocomposites. 

Because the focus of this study is to mainly improve the electrical properties of 

the composites, HCNT HT will be discarded due to their poor shielding performance of 

their composites. Thus, in the following chapters, emphasis will be placed on PR-19 HT 

and MWNT HT as nano-modifiers for composites with enhanced shielding. 
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CHAPTER 4 

INFLUENCE OF COMPOSITE ELECTRICAL PROPERTIES ON THE 

ELECTROMAGNETIC SHIELDING CHARACTERISTICS OF POLYETHYLENE-

CARBON NANOMODIFIER COMPOSITES 

 

4.1. Introduction 

In previous chapters, the influence of the level of graphitic crystallinity (Chapter 

2) and modifier morphology (Chapter 3) on the electromagnetic shielding effectiveness 

(EM SE) of carbon modifier-based polymer nanocomposites for low to intermediate 

volume fractions was reported [1-17]. However, the higher concentrations of graphitic 

nanoforms in ductile semicrystalline matrices (to obtain higher EM SE) have not been 

fully studied yet.  

With regards to the theoretical predictions of the EM SE of the composites, 

several literature studies have accounted for departure from the purely conductive regime 

[3, 4, 14 and 16]. However, for moderately conductive materials (     S/m   

conductivity       S/m) [18], the role that the DC electrical conductivity and AC 

electrical permittivity play on the experimental EM SE has not been systematically 

reported in literature studies. Therefore, the major objectives of this chapter were: (i) to 

incorporate heat-treated carbon-based nanofibers and nanotubes (PR-19 CNF and 

MWNT) in LLDPE matrix at moderate-to-high nanomodifier contents (10 and 40 vol%) 
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to study their EM SE characteristics at VHF-UHF frequencies ranging from 30 MHz to 

1.5 GHz; and (ii) to establish quantitative relationships for the shielding of 

electromagnetic plane-waves resulting from the moderate effective conductivity of 

nanocomposites. The results presented in this chapter have been published as “Influence 

of Composite Electrical Properties on the VHF-UHF Electromagnetic Shielding 

Characteristics of Polyethylene-Carbon Nanoparticle Composites” [19]. 

 

4.2. Experimental 

4.2.1. Materials 

The matrix polymer used throughout this chapter was also poly(ethylene-co-1-

octene), (Dowlex
TM

 2045), a film grade linear low density polyethylene (LLDPE). It has 

a density of 0.920 g/cm
3
, DSC melting point of 122ºC, and melt flow index of 1 g/10 min 

(190°C/2.16 kg, ASTM D1238). Carbon nanofibers, Pyrograf
®
 III PR-19 (Applied 

Science Inc.), and multi-walled carbon nanotubes (MWNT) from CheapTubes Inc., were 

used as nanomodifiers. To compare the performance of nanocomposites with traditional 

carbon fiber composites, chopped mesophase pitch-based carbon fibers (Cytec Thornel® 

P-55 length: 0-2 mm, diameter ~10 μm) were also used as control specimens.  

Ultra-high temperature heat treatment (HT) at 2500°C was also carried out for the 

as-received nanomodifiers prior to compounding [17]. The heat-treated (HT) PR-19 HT 

nanofibers have a diameter of 119±8 nm and a length of 10±2 µm, whereas MWNTs HT 
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have a diameter of 42±3 nm and length of 6±1 µm for an aspect ratio (L/D) of about 85 

and 145,  respectively [15].  

 

4.2.2 Processing 

To melt-mix LLDPE with all three types of modifiers, a Haake Rheomix 600 

batch mixer (BM) was used at 190°C and 20 rpm for 2 min for concentrations of 10 vol% 

(~20 wt%) and 40 vol% (~60 wt%). These conditions were chosen after determining that 

they provide a more optimal EM SE performance exhibited by composites made out of 

PR-19 HT CNF melt-mixed with LLDPE at such conditions. Details of processing 

conditions are documented in Appendix A. The composites were processed by thermal 

compaction at 190°C into circular sheets about 2.5-3.0 mm thick and 133 mm diameter 

utilizing a Carver laboratory press. Two specimens were independently mixed and 

compacted per concentration (true replicates, n = 2). 

 

4.2.3 Rheology 

To assess the processability of the nanocomposites, shear viscosity measurements 

were conducted at 190ºC, the processing temperature used for obtaining all samples in 

this study.  For low shear rates (0.1-10 s
-1

), a TA Instruments Advanced Rheometric 

Expansion System (ARES) was used in conjunction with a 25-mm cone-and-plate 

geometry (0.1 rad cone angle), whereas for apparent shear rates from 30 to 10,000 s
-1

,  a 
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Rheometric Scientific, Inc. ACER 2000 capillary rheometer with an 1-mm diameter die 

(L/D = 30) was used.  

 

4.2.4 Microstructural characterization 

The microstructure of the composites was assessed by inspection of the cross-

section of the cryo-fracturated composites (Hitachi S-4800, SEM). For each type of 

composite, three different macroscopic locations were investigated by SEM.  In addition, 

thin films of ~100 µm in thickness were produced out of 1 vol% nanocomposites 

obtained by melt-diluting the 40 vol% nanocomposites with pure LLDPE by the same 

soft mixing protocol. These thin films could be assessed by transmission optical 

microscopy (OM, Olympus BX60) over a large sample area (~1 x 10
6
 μm

2
) for 

agglomerates statistics. ImagePro® image analysis software was used to measure the 

average diameter and area of the clusters in an attempt to characterize their dispersion 

level. Twenty different OM micrographs of different portions of the composite films 

(nominally 2 mm x 2 mm) were analyzed per composite type. 

To assess the overall orientation of modifiers in the processed composites, wide-

angle X-ray diffraction (Rigaku-MSC, Houston, TX) was conducted on the composites.  

A Cu target Kα radiation with a wavelength of 1.5406 Å (n = 3). The spectra were 

analyzed using Polar software version 2.6.7 from Stonybrook Technology and Applied 

Research (STAR). The X-ray source was operated at 45 kV and 0.65 mA, and the sample 

exposure time was 30 min. 
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4.2.5 Electrical properties 

The DC in-plane volume electrical conductivity,   (S/m), of the composites was 

measured using a Keithley 6517B High Resistance Meter connected to a Keithley 8002A 

Resistivity Test Fixture modified with external copper electrodes (ASTM D257). The 

conductivity was obtained from resistance measurements of die-cut specimens that were 

12.5 mm wide, 2.5 mm thick and with lengths of ~ 20 mm.  Silver paint was applied on 

the surfaces at each end of the samples and the in-plane resistance was measured. 

Likewise, the DC through-plane electrical conductivity was measured with the same 

meter, but using a Keithley 8009 Resistivity Test Fixture which sets the voltage across 

the thickness of the sample. The resistance measurements were performed using an 

alternating polarity DC voltage of ± 5V across the composites (n = 4).  

The complex electrical permittivity of the composites was measured at 1 Vrms 

utilizing an Agilent 4291B RF Impedance/Material Analyzer. The Agilent 16453A 

Dielectric Material Test Fixture was connected to the impedance head and the 

measurements were carried out on 25 mm x 25 mm specimens (n = 4) with a thickness of 

~2.5 mm. Prior to the measurements, the analyzer was calibrated utilizing an Agilent 

calibration kit. The analysis frequency range was 30 MHz to 1.5 GHz. 
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4.2.6 Electromagnetic shielding effectiveness (EM SE) 

An Electro-Metrics EM-2107A coaxial test fixture was used to apply an 

electromagnetic plane-wave to the composite specimens (ASTM D4935). The 

electromagnetic shielding effectiveness (EM SE) was determined as ten times the 

negative logarithmic ratio of the measured transmitted power with the material present, 

      ,  to the transmitted power without the material present,        [ASTM D4935, 16, 

17]. The accuracy of the fixture was checked by measuring a set of Mylar®-gold 

composite standard specimens. The EM-2107A test fixture was connected to an Agilent 

Technologies N5230A PNA Series Network Analyzer. For measuring EM SE, each 

circular composite specimen was aligned between the two halves of the test fixture and 

measured at frequencies from 30 MHz to 1.5 GHz.  Two true replicates were tested (n = 

2). The sample diameter was 133 mm, with a thickness of ~2.5-3.0 mm.  To determine 

the shielding components for the nanocomposites, the scattering parameters,       and, 

      were measured for the load and reference specimens, as detailed in Appendix B [17]. 

 

4.3 Results and Discussion 

4.3.1 Composite morphology 

Figure 4.1 displays representative optical micrographs (OM) of the 1 vol% 

diluted composite films and their corresponding cluster size distributions. The PR-19 HT 

and MWNT HT diluted nanocomposites had similar average cluster diameters of 
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22.0±15.4 µm and 20.6±16.2 µm, respectively. Based on the resolution of OM, clusters 

smaller than 1 µm are considered as the dispersed phase [20, 21]. A quantitative measure 

of the relative non-dispersed phase has been established in prior literature studies [21] as 

the ratio of the total cluster area,    ,  to the total inspected area,      . For PR-19 HT 

and MWNT HT diluted nanocomposites, 
   

    
⁄  ratios were 0.433±0.033 and 

0.428±0.032, respectively.  These values indicate that in both nanocomposites a similar 

dispersion level was reached. In our previous study, optical micrographs of ~10 μm thin 

nanocomposite films, made of the same nanomodifier types, identified cluster sizes under 

50 µm, which is about the same size of the clusters before melt-mixing [15].   

Representative SEM micrographs of the cross-section of the nanocomposites are 

presented in Figure 4.2. In contrast to OM, scanning electron microscopy revealed no 

major clusters. This level of dispersion is consistent with microstructure observations 

made in other literature studies in which the localized microstructure displays no clusters, 

but in a larger length-scale, such that provided by optical microscopy, the composites 

exhibit identifiable percolating clusters [20, 22]  

Figures 4.3 (a)-(d) display representative wide-angle x-ray diffractograms (2θ 

plots) of the composites and the corresponding azimuthal scans. In the composites, the 

graphitic peak associated with (002) layer planes of carbon modifiers appears at 

approximately 26°, whereas the (110) and (200) peaks corresponding to the orthorhombic 

crystallites of the LLDPE matrix appear at about 21.4° and 23.7°, respectively. 

Consistent with the composition, the relative intensity of the graphitic peak is higher in 
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the composites at 40 vol% carbon modifier, whereas the (110) peak for polyethylene is 

stronger for the composites containing larger content of PE (i.e., only 10 vol% carbon 

modifier). It is also evident from the azimuthal distribution of the graphitic (002) peak 

that there is no preferred angle of orientation for any of the carbon modifiers in the 

composites. Thus, a predominantly random orientation of the modifiers was observed in 

the plane. 
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Figure 4.1. Representative transmission optical micrographs of 100-µm thick 

nanocomposite films at 1 vol% diluted from the nanocomposites at 40 vol%, and their 

respective average cluster diameter distributions obtained by image analysis. (a, c) PR-19 

HT nanocomposites and (b, d) MWNT HT nanocomposites. 
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Figure 4.2. Representative scanning electron micrographs (SEM) of composites at 10 

vol% (a) PR-19 HT, (b) MWNT HT (c) P-55, and of those at 40 vol% (d) PR-19 HT, (e) 

MWNT HT (f) P-55. Insets display the microstructure at higher magnification. 
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Figure 4.3.  Representative wide-angle X-ray diffractograms of (a) the PR-19 HT and (b) 

MWNT HT nanocomposites at 10 vol%. X-ray diffractograms of the composites as 

function of (c) the 2θ and (d) azimuthal, φ, angles. Curves were shifted vertically along 

intensity axis to avoid overlap. 
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4.3.2 Nanocomposite rheology 

Figure 4.4 contains the viscosity measurements of the nanocomposites as a 

function of the true shear rates corrected by the Weissenberg-Rabinowitsch equation, 

together with the shear viscosity of the pure LLDPE [23]. The measurements conducted 

by rotational shear viscosity at 190°C at a shear rate of 1 s
-1

 exhibited a steady shear 

viscosity of 7268±255 Pa.s for pure LLDPE, and 17248±1031 Pa.s and 18405±832 Pa.s, 

for PR-19 HT- and MWNT HT-based nanocomposites, respectively. This means that the 

viscosity of these composite formulations is about 2.5 times higher than that of its pure 

matrix at 1 s
-1

. Nonetheless, the capillary rheological measurements confirm that, at an 

apparent shear rate of 10
4
 s

-1
, the LLDPE viscosity was 33 Pa.s, whereas that of the PR-

19 HT- and MWNT HT-based nanocomposites was only about 36 Pa.s. These results 

confirm that at 10 vol%, the nanocomposites are processable because typical polymer 

processing operations such as extrusion and injection molding are feasible at such 

viscosity levels.   
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Figure 4.4. Steady shear viscosity of nanocomposites (BM, 10 vol%, 190°C and 20 rpm 

for 2 min) at 190°C. 

 

4.3.3 Composite electrical properties 

Table 4.1 summarizes the DC in-plane and through-plane conductivities of the 

different composites (replicates, n = 4 in all cases). At 40 vol%, the nanocomposites 

displayed in-plane DC conductivity much greater than that at 10 vol%; the in-plane 

values were an order of magnitude higher, whereas the through-plane values were larger 

by a factor of 2-3. The through-plane conductivity values were significantly smaller than 

those of their corresponding in-plane values (about 3 orders of magnitude), which means 
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that the composites displayed anisotropic conductivity. The composites were electrically 

percolated systems when compared with a conductivity of 7.0±1.1x10
-15

 S/m for pure 

LLDPE, which is 15 orders of magnitude lower than that of the composites.  

At the percolation threshold (e.g., 10
-5

 to 10
-2

 S/m), although the conductivity of 

the composite is much higher than that of the pure matrix (e.g., 10
-17 

to 10
-15 

S/m), it is 

typically not high enough for electromagnetic shielding purposes. Therefore, to attain EM 

SE, it is necessary to increase filler concentrations significantly beyond the percolation 

threshold. Unfortunately, the higher concentrations are often limited to such levels where 

the processability and mechanical properties can still be retained. Thus, the selection of 

10 vol% modifier content used in this study was based on the Chapter 2, whereas the 40 

vol% was chosen for exploring the upper, practical limits of shielding performance. 

 

Table 4.1. DC in-plane and through-plane volume conductivity of composites at 25°C 

and ~ 50 % relative humidity. Ranges represent 95% confidence intervals.  

Modifier DC in-plane  

volume conductivity  (S/m) 

DC through-plane  

volume conductivity (S/m) 

10 vol% 40 vol% 10 vol% 40 vol% 

PR-19 HT 20.4±3.3 344.8±81.3 1.0±0.9x10
-3

 3.3±0.2x10
-3

 

MWNT HT 33.5±5.6 250.0±59.9 1.2±0.5x10
-3

 2.0±0.4x10
-3

 

P-55 5.0±1.8 6.9±1.5 2.1±1.9x10
-4

 4.7±3.3x10
-4
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The complex electrical permittivity of the nanocomposites (         ) is 

displayed in Figure 4.5, where   
 

    ⁄ represents the real relative permittivity (or 

dielectric storage), and   
  

   ⁄  the imaginary relative permittivity (or dielectric loss). The 

permittivity of vacuum     is set at 8.85418x10
-12

 F/m. The real and imaginary 

permittivity of the nanocomposites displayed a generally decreasing behavior with 

respect to frequency. At 10 vol%, the permittivity of PR-19 HT nanocomposites 

decreased an order of magnitude from 100 MHz to 1.5 GHz. The MWNT HT 

nanocomposites exhibited an overall permittivity of (175±60)-(93±34)  at 100 MHz, 

decreasing ten-fold at 1.5 GHz. In contrast, the permittivity of P-55 composites showed 

less frequency dependency. Likewise, for the composites at 40 vol%, the permittivity of 

PR-19 HT composites rapidly decreased from (504±155)-(4755±1200)  at 100 MHz to 

only (6±1)-(13±2)  at 1.5 GHz, and for the MWNT HT nanocomposites from (135±44)-

(2595±800)  at 100 MHz to (7±2)-(15±6)  at 1.5 GHz. However, once again, the P-55 

composites were relatively less frequency dependent at about (80±25)-(76±32) . Thus, 

the most conductive composites also displayed the highest dielectric losses. This is 

important because the DC as well as the AC “lossy” effects contribute to the entropic 

characteristics of the material such as its electromagnetic shielding. 
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Figure 4.5. Representative spectra of the AC permittivity of nanocomposites: (a) real 

relative permittivity of nanocomposites at 10 vol% and 40 vol%, and (b) imaginary 

relative permittivity at 10 vol% and 40 vol%. 



 

126 

 

4.3.4 Electromagnetic shielding effectiveness (EM SE) 

Figure 4.6 displays the EM SE for (a) 10 vol% and (b) 40 vol% composites. At 

10 vol%, PR-19 HT nanocomposites displayed 24.7±0.3 dB of total shielding at 1.5 GHz, 

whereas MWNT HT nanocomposites displayed a slightly larger value of 25.3±0.2 dB. In 

contrast, P-55 composites provided only 12.2±0.1 dB of shielding. At 40 vol%, PR-19 

HT, MWNT HT and P-55 composites displayed EM SE values of 68.2±0.8, 55.2±1.1 and 

16.4±0.4 dB, respectively. These EM SE results are consistent with their corresponding 

conductivity and permittivity measurements; the composites that displayed the highest 

EM SE were those with the highest dielectric loss and conductivity. 

The absorptive and reflective shielding components of the composites obtained 

from the EM SE measurements are displayed in Figure 4.7. The reflective components of 

both 10 vol% nanocomposites were about 7 dB, whereas the absorptive components were 

approximately 15 dB.  For P-55 composites, the absorptive component is significantly 

lower (than that of its nanocounterparts) and comparable to the reflective one (about 5-6 

dB). At 40 vol%, nanocomposites had a reflective component of ~10 dB and absorption 

of ~40 dB; P-55 composites had a reflection of ~7 dB and absorption of ~8 dB. Thus, for 

all nanocomposites, the absorptive component was dominant.  
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Figure 4.6. Electromagnetic shielding effectiveness (EM SE) of representative (a) 10 

vol% and (b) 40 vol% composites, over the frequency range of 30 MHz to 1.5 GHz. 
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Figure 4.7. Measured reflective (EM SER) and absorptive (EM SEA) components of 

shielding for (a, b) 10 vol% and (c, d) 40 vol% composites. 
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4.3.5 Prediction of the electromagnetic shielding 

The plane wave EM SE provided by polymer nanocomposites cannot be 

accurately predicted from the assumption that the material is purely conductive or purely 

dielectric. For non-magnetic, linear, isotropic, materials of intermediate conductivity, one 

must account for the fact that the AC electrical transport has two components: (1) the free 

electron/hole transport brought about by the conductivity,           , which is the 

predominant component, and (2) the bound electron dielectric displacement implied in 

the permittivity,            [2]. The real component of permittivity,    , is related to 

the level of polarization that the applied electric field confers to the molecules and atoms, 

whereas the imaginary component,     , to losses associated with the dielectric damping 

that the bound electrons in the dipoles undergo due to the varying electric field at an 

angular frequency,    [24]. Hence, the current density,   , set by an electric field,   , will 

be      (         
  

 
 

   

 
)   [2]. However, the imaginary conductivity,     , is 

negligible up to the microwave range (freq. < 300 GHz), which makes           [2]. 

Thus,      (    (    
 

 
)) , where the term  (    

 

 
)  scales with that of the 

“effective conductivity”, (      ), which combines the conductive and  dielectric 

losses [25]. Moreover, the intrinsic impedance,   , and propagation constant,   , of an 

electromagnetic wave are determined by the material properties through which it travels. 

Thus, 

                                                            √
 

   (    
 

 
) 

                                                   (4.1) 
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                                                                                                                           (4.2) 

where    and   are defined as the attenuation and phase constants, respectively [1]. For 

non-magnetic materials, the magnetic permeability,   , is that of the vacuum at        

4π x      H/m. For a generally lossy medium, the attenuation constant can be 

analytically derived [26]:  

                                             √
   

 
(√  [

(
 

 
    )

  
]

 

  )                                     (4.3) 

Figure 4.8 is a schematic representation of how the plane wave, in terms of 

electric field, interacts with an isotropic conductive medium with finite thickness,  . The 

incident field,     , travels in air in which the intrinsic impedance is basically that of 

vacuum          Ω. When the field strikes the surface, the first reflection,     
, 

occurs due to the mismatch in impedance, because the wave impedance becomes   . Part 

of this field is transmitted through the thickness of the specimen,   , and as it travels, it is 

attenuated,       [1]. When the field reaches the second surface, a similar phenomenon 

takes place, leading to the transmitted field,     . The part that is reflected back into the 

material experiences a series of subsequent partial reflections and transmissions while 

being attenuated along the path, and constitutes the multiple reflection loss [1]. Thus, the 

total transmitted field,    , and total reflected field,    ,  are:       

                                        ∑    

 
    

   

  (      )
  

            

  (      )
                               (4.4)  
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  (      )
       

 
            

      

  (      )
             (4.5) 

where,    
  

    
 and    

    

    
 are respectively the transmission and reflection 

coefficients for the plane wave traveling in the vacuum     and striking on a surface of 

impedance   ; whilst,      
 

   

    
 and     

 
    

    
 are respectively the transmission and 

reflection coefficients for the plane wave traveling in the material medium of impedance  

  and re-entering a vacuum     [1].  

 

Figure 4.8. Schematic representation of the shielding mechanisms in terms of the electric 

field    in a generally lossy isotropic specimen. For the sake of clarity, the incident plane 

wave, which propogates perpendicular to the sample surface, has been depicted with 

oblique incidence, so that the multiple reflections can be readily represented. 
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The wave power density is proportional to the square of the electric field, 

i.e.,       [1]. The transmittance,  , and reflectance,  , are defined as the ratio of the 

transmitted power density,    , and reflected power density,    , to that of the incident 

power density,     [1, 17]:  
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Then, dividing equations (4.4) and (4.5) by the incident electric field     and 

using the transmission and reflection coefficient substitutions: 
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Based on the definitions of total shielding   𝑀              and reflective 

shielding   𝑀               (   ), the following expressions are obtained for the 

total and reflective shielding effectiveness: 
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|                      (4.11) 

The absorptive component of shielding is readily obtained as   𝑀         

 𝑀       𝑀        . Moreover, since only magnitudes are needed in these 

calculations, and  |  |  |     |  |     |    , the terms |     | and |    | can be 

substituted by |     | and  |    |, respectively. Therefore, equations (4.10) and (4.11) 

along with the intrinsic impedance   (eqn. 4.1) and attenuation constant   (eqn. 4.3) 

expressions can be used to estimate the shielding of an intermediately lossy and isotropic 

material of thickness,  , by knowing only its electrical conductivity,   , and complex 

permittivity,   , over the frequency range of interest.  

Even though the nanocomposites developed in this study have different in-plane 

and through-plane properties, they present fairly isotropic properties in the plane due to a 

random orientation of the nanomodifiers. In addition, because the in-plane conductivity is 

the one that interacts with the electromagnetic plane-wave, they can be modeled as 2-D 

quasi-isotropic materials [27]. Thus, the theoretical background previously discussed for 

lossy isotropic materials can be used to estimate the shielding of nanocomposites from 

their in-plane composite electrical properties.  

Figure 4.9 displays the experimental EM SE and EM SER of the nanocomposites 

at 10 vol% as compared with the predictions based on equations (4.1), (4.3), (4.10) and 

(4.11). The inputs for the model are the previously reported average in-plane 
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conductivity, permittivity and thickness of the nanocomposite specimens. Thus, at 1 GHz, 

EM SE values of 22.0±2.2 dB and 24.2±2.3 dB were measured for PR-19 HT and 

MWNT HT nanocomposites at 10 vol%. The corresponding predicted values were 

consistent with the measured ones. Similarly, the reflective components of shielding were 

respectively about 7.5 dB and 7.7 dB for PR-19 HT and MWNT HT nanocomposites at 1 

GHz, as compared with estimated values of 6.2 dB for PR-19 HT and 7.2 dB for MWNT 

HT nanocomposites. Interestingly, when using the through-plane conductivity as input in 

the modeling equations, EM SE values of only 2.9 dB and 3.5 dB are predicted for PR-19 

HT and MWNT HT nanocomposites, respectively. This demonstrates that, due to the 

plane-wave propagation of the electric field, the conductivity that interacts with such a 

field is that parallel to the plane (i.e., in-plane).  

Figure 4.10 compares the experimental vs. the predicted EM SE and EM SER 

values for the nanocomposites at 40 vol%. EM SE values of 58.0±4.8 dB and 53.4±3.5 

dB were respectively measured for PR-19 HT and MWNT HT nanocomposites at 1 GHz. 

The predicted values were 57.2 dB and 52.3 dB, respectively. PR-19 HT nanocomposites 

displayed a predicted EM SER value of 12.8 dB, which is consistent with the actual EM 

SER. For 40 vol% MWNT HT nanocomposites, values of reflective EM SE of 10.6±4.7 

dB and 12.3 dB were obtained experimentally and theoretically. Thus, based on 

independent measurements of in-plane conductivity and permittivity, the predicted EM 

SE values and shielding components were consistent with the experimental values.  
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Figure 4.9. Comparison of the experimental total and reflective EM SE vs. the theoretical 

prediction from the experimental electrical transport properties of the 10 vol% a) PR-19 

HT and b) MWNT HT nanocomposites. Error bars calculated based on two true 

replicates. 
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Figure 4.10. Comparison of the experimental total and reflective EM SE vs. the 

theoretical prediction from the experimental electrical transport properties of the 40 vol% 

a) PR-19 HT and b) MWNT HT nanocomposites. Error bars calculated based on two true 

replicates 
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Finally, the tensile properties of the nanocomposites were assessed using the 

ASTM D638 Type V technique (die-cut, dogbone-shaped specimens of 25 mm gauge-

length, 3 mm width and 1 mm thickness) in an ATS Universal 900 tensile tester at a 

cross-head speed of 25 mm/min. At 40 vol%, PR-19 HT modified nanocomposites 

displayed a tensile modulus of 1,256±101 MPa, tensile strength of 3.5±0.4 MPa and 

strain-to-failure of 1.5±0.3 % (n = 6 in all cases). Likewise, at 40 vol%, MWNT HT 

nanocomposites displayed a tensile modulus of 1,177±95 MPa, strength of 4.1±0.7 MPa 

and strain-to-failure of 2.0±0.4 % (n = 6).  In comparison, pure LLDPE has a modulus of 

325±85 MPa, strength of 30±5 MPa, and strain-to failure of 685±105% (n = 6). As 

expected in a highly concentrated dispersion of percolated solids in a composite, the 

modulus increased by about 400%, but the strength decreased by about 87 % and the 

ductility was reduced by over 99% of that of the LLDPE matrix. At an intermediate 

concentration of 10 vol%, PR-19 HT nanocomposites exhibited intermediate properties: a 

modulus of 683±105 MPa, strength of 16.0±2.5 MPa and strain-to-failure of 128±49 % (n 

= 6). Similarly, at 10 vol%, MWNT HT nanocomposites possessed a modulus of 

696±110 MPa, strength of 17.7±1.6 MPa and strain-to-failure of 114±43 % (n = 6). Thus, 

as compared with pure LLDPE, the overall modulus of the 10 vol% nanocomposites was 

about twice, and they retained about 50 % and 20% of the LLDPE strength and ductility, 

respectively.  These values, coupled with EM SE results presented earlier, represent a 

fairly wide range of properties attainable within the conducting regime of carbon 

nanomodifier modified polyethylene composites. 
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4.4 Conclusions 

Over a frequency range of 30 MHz to 1.5 GHz, LLDPE-based nanocomposites 

containing 10 vol% of in-plane randomly oriented carbon nanotubes/nanofibers exhibited 

shielding effectiveness values over 20 dB, whereas the very-highly filled 40 vol% 

nanocomposites displayed EM SE values as high as 68 dB and 55 dB for PR-19 HT and 

MWNT HT nanocomposites, respectively. Thus, graphitic nanomodifier-based LLDPE 

composites can provide an EM SE performance of up to 25 dB/mm. Both types of 

nanocomposites displayed a predominantly absorptive shielding component. In contrast, 

short-carbon-fiber composites showed significantly lower EM SE, and the reflective 

component was similar to absorption.  Modeling of the shielding mechanisms in 

generally lossy materials was used to predict the EM SE and its components from the 

electrical and dielectric properties of the nanocomposites. For the studied frequency 

range, predictions were consistent with the experimental EM SE values. Both types of 

nanocomposites hold potential promise as alternative materials for electromagnetic 

shielding applications in the VHF and UHF bands.  
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CHAPTER 5 

EFFECT OF ELECTRICAL ANISOTROPY ON THE POLARIZED-WAVE 

ELECTROMAGNETIC SHIELDING OF CARBON NANOMODIFER-BASED 

LINEAR LOW DENSITY POLYETHYLENE COMPOSITES 

 

5.1 Introduction 

In prior Chapters 2-4, the effects of graphitic crystallinity and modifier 

morphology on the EM SE of LLDPE-based nanocomposites were studied for a large 

range of volume fractions of carbon nanomodifiers. In addition, modeling of the shielding 

mechanisms in generally lossy materials was conducted in Chapter 4 [8]. It was found 

that, when shielding an electromagnetic plane wave, the electric field interacts with the 

in-plane conductive and dielectric lossy properties of the material, and in particular with 

its in-plane conductivity [1-8]. Thus, this in-plane conductivity was found to be virtually 

brought about by the random in-plane orientation of the nanomodifiers in the 

nanocomposites, which indicates that modifier orientation is another important variable 

[8].  

Many industrial polymer processing techniques such as cast-film, blown-film and 

injection molding induce different levels of modifier orientation in composites [9-11]. 

Due to the possibility of producing composites with very thin-walls, such as films and 

micro-injection molded parts (as thin as 25 µm), the study of the shielding performance 
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of composites made of oriented nanomodifiers (diameter < 0.5 µm) is relevant for thin 

applications [12]. The orientation effect of carbon-based conductive modifiers such as 

nanofibers, nanotubes and fibers in polymer composites on their electrical properties have 

been previously reported [9, 11, 13 and 14]. Modifier alignment produces an anisotropic 

electrical network in the composites, which typically reduce their EM SE [15]. However, 

when shielding polarized electromagnetic waves, the electrically anisotropic composites 

can also display anisotropic EM SE behavior, which may be attractive for novel filtering 

and compatibility applications such as mode-selective waveguide structures or antenna 

radomes. Therefore, the electromagnetic shielding effectiveness of polarized waves in the 

VHF-UHF frequency range by nanocomposites containing flow-induced carbon 

nanofibers/nanotubes (PR-19 CNF & MWNT) and LLDPE matrix is reported in this 

chapter. The results presented in this chapter have been submitted to Polymer 

Engineering and Science as “Polarized-wave Electromagnetic Shielding of Anisotropic 

Carbon Nanoparticle-based LLDPE Composites” [16].  

 

5.2 Experimental 

5.2.1. Materials 

The matrix polymer used for the nanocomposites was again poly(ethylene-co-1-

octene), (Dowlex
TM

 2045), a film grade linear low density polyethylene (LLDPE). It has 

a density of 0.920 g/cm
3
, DSC melting point of 122ºC, and melt flow index of 1 g/10 min 

(190°C/2.16 kg, ASTM D1238). Carbon nanofibers, Pyrograf
®
 III PR-19 (Applied 
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Science Inc.), and multi-walled carbon nanotubes (MWNT) from CheapTubes Inc., were 

used as nanomodifiers. To evaluate the behavior of completely oriented materials, 

continuous carbon fiber composites (control specimens) were also made. Thus, precut 

unidirectional PAN-based carbon fiber plies (prepregs) were used to lay-up a three-ply 

unidirectional (0°) composite by the resin infusion method (24 hours of curing with 

vacuum) using EPON 828 resin from Miller-Stephenson Chemical Company Inc. and 

post-curing at 120 °C for 2 hours. The concentration of the unidirectional composites was 

gravimetrically determined at about 70 vol% and had a thickness of about 0.5 mm. 

Ultra-high temperature heat treatment (HT) at 2500°C was carried out for the as-

received nanomodifiers prior to compounding [6]. The heat-treated (HT) PR-19 HT 

nanofibers have a diameter of 119±8 nm and a length of 10±2 µm, whereas MWNTs HT 

have a diameter of 42±3 nm and length of 6±1 µm for an aspect ratio (L/D) of about 85 

and 145,  respectively [7].  

 

5.2.2 Processing 

A Haake Rheomix 600 batch mixer (BM) was used to melt-mix LLDPE with the 

nanomodifiers at 190°C and 20 rpm for 2 min at a concentration of 10 vol% (~20 wt%). 

To impart flow-induced orientation in the nanomodifiers, the resulting composites were 

post-processed in a DSM Xplore 15 cc twin-screw micro-compounder (DSM), in co-

rotating mode, at 230°C and 100 rpm for 10 min and micro-filament composites of about 

100 µm in diameter were spun through a 300-µm-holes spinneret. The resulting micro-



 

145 

 

filaments were arranged into oriented strips and sintered at 115°C. The sintered strips 

were, in turn, compacted at 190°C into sheets about 1.0 mm thick and 180 mm x 180 mm 

utilizing a Carver laboratory press. Thus, a parallel assembly of the oriented strips 

produced oriented composite sheets, whereas randomly arranged micro-filaments 

produced unoriented composite sheets. Two specimens were independently mixed and 

compacted per composite type (true replicates, n = 2).  

 

5.2.3 Microstructural characterization 

The dispersion level of the modifiers in the oriented nanocomposites was assessed 

by inspection of optical micrographs (OM, Olympus BX60) of 1 vol% diluted 

nanocomposite films of 5-12 µm in thickness. For this purpose, the 10 vol% oriented 

nanocomposites were softly diluted by twin-screw extrusion (20 rpm, 190°C and 2 min) 

with pure LLDPE. ImagePro® image analysis software was used to measure the average 

diameter and area of the clusters to characterize the nanomodifier dispersion level. Ten 

different optical micrographs of different portions of the diluted composite films, each of 

a length-scale encompassing about 2 mm, were analyzed per composite type. 

The microstructure of the oriented nanocomposites was assessed by inspection of 

the cross-sections of the cryo-fracturated composites sheets (Hitachi S-4800, SEM). Both 

cross-sections were inspected: perpendicular to the filament direction (transversal view) 

and along the filament direction (longitudinal view). For each type of composite, five 
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different macroscopic locations were investigated in each direction. At least 4 

micrographs were taken per location.  

To assess the local orientation of nanomodifiers in the processed nanocomposites, 

image analysis (ImagePro®) of the SEM micrographs was carried out. The apparent 

aspect ratio of the nanomodifier cross-section (Lmax/Lmin) may be used to calculate a 

quantitative orientation parameter. A combination of Lmax/Lmin = 1 in the transverse view 

and Lmax/Lmin = ∞ in the longitudinal view signifies a perfect orientation. At least five 

high-magnification SEM micrographs were used for this task, which correspond to about 

100-300 nanomodifiers analyzed for each cross-sectional view. Also, to evaluate the 

overall orientation of the nanomodifiers in the oriented composites, wide-angle X-ray 

diffraction (Rigaku-MSC, Houston, TX) was conducted on the composites.  A Cu target 

Kα radiation with a wavelength of 1.5406 Å (n = 3) was used. The spectra were analyzed 

using Polar software version 2.6.7 from Stonybrook Technology and Applied Research 

(STAR). The X-ray source was operated at 45 kV and 0.65 mA, and the sample exposure 

time was 30 min. 

 

5.2.4 Electrical conductivity 

The DC in-plane volume electrical conductivity (S/m), of the composites was 

measured using a Keithley 6517B High Resistance Meter connected to a Keithley 8002A 

Resistivity Test Fixture modified with external copper electrodes (ASTM D257). The 

conductivity was obtained from resistance measurements of specimens that were 30 mm 
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wide, 1 mm thick and with lengths of ~ 20 mm.  Silver paint was applied on the surfaces 

at each end of the samples and the in-plane resistance was measured. Measurements, 

using an alternating polarity DC voltage of ± 10V, along the longitudinal direction (LD) 

and the transverse direction (TD) were carried out for each composite type with a 

replication of 5 in each direction. Likewise, the DC through-plane electrical conductivity 

was measured with the same device, but using a Keithley 8009 Resistivity Test Fixture 

(alternating polarity DC voltage of ± 5V across the composites (n = 5)).  

 

5.2.5 Electromagnetic shielding effectiveness (EM SE) 

The electromagnetic shielding effectiveness (EM SE) was determined from the 

logarithmic ratio of the measured transmitted power with the material present,      ,  to 

the transmitted power without the material present,       , which is represented with a 

reference specimen as described below (see also Appendix B) according to the ASTM 

D4935:  

                                                     𝑀          
    

     
                                             (5.1) 

Thus, the shielding effectiveness can be measured by subtracting the frequency 

dependent decibel magnitudes of the     scattering parameter of the reference specimen 

from that of the load specimen [6]. As explained in Appendix B, a load specimen is a 

sheet of the actual material that fully covers the waveguide flange, which is clamped 

between the gap separating the two halves of the transmission line. A reference specimen 
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is a sample of the same material and thickness of the load specimen cut out in the shape 

of the metallic flange at the gap interface (see Figures B.3 and C.1 (b)). The purpose of 

this reference specimen is to correct for capacitive coupling effects between the disjoint 

metallic interfaces of the flange. Scattering parameters are typically determined using 

vector network analyzers. In this work, a Hewlett Packard 8753ES Network Analyzer 

was used to measure the magnitude of the     scattering parameter. Open-short-load 

calibration was performed using the Agilent 85033D calibration kit. The sample size of 

the load specimens for each test setup was 180 mm x 180 mm, with a thickness of ~1 

mm. Two true replicates were tested (n = 2) per composite type. The references 

specimens were die-cut from the load specimens after the load measurements were 

carried out to keep the very same thickness and material for an accurate correction. 

  An Electro-Metrics EM-2107A which complies with the standard ASTM D4935 

setup consisting of an air-core coaxial transmission line was first used to measure the EM 

SE of the specimens. This coaxial setup applies a radially polarized transverse 

electromagnetic (TEM) wave to the composite specimens from 30 MHz to 2 GHz and 

was measured to have a dynamic range of 80-100 dB. Additionally, in order to obtain a 

measure of anisotropic shielding effectiveness, rectangular waveguides were also used 

[17].  The frequencies used for these waveguides caused the TE10 mode of propagation to 

be applied to the composite specimens. In the TE10 mode of propagation, the electric field 

is transversely polarized in one direction [18]. In this chapter, the vertical direction of a 

waveguide is defined as perpendicular to the larger transverse dimension of the 

rectangular waveguide. This vertical direction is equivalent to the electric field 
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polarization in the TE10 mode. Two different waveguides from Space Machine & 

Engineering Corp. were used in order to test the specimens at different frequencies. For 

frequencies from 1.45-2.2 GHz a WR510 waveguide was used (129 mm width x 64 mm 

height). For frequencies from 2.2-3.3 GHz a WR340 waveguide was used (86 mm width 

x 43 mm height). 

In addition, a FOCUS Microwave Inc. PTJ-2-APC7 slotted micro-strip 

transmission line (dynamic range: 30-40 dB) was used to test the anisotropic loss of the 

nanocomposite specimens from 100 MHz to 2.5 GHz. A micro-strip geometry imposes 

an electromagnetic field orientation where the electric field is principally polarized 

downward from the trace to the underlying ground plane. This mode of EM wave 

propagation is known as quasi transverse-electromagnetic (quasi TEM) [18]. Thus, like 

the rectangular waveguides, but unlike the coaxial transmission line due to its radial 

electric field polarization, this micro-strip structure is useful for testing the anisotropic 

attenuation characteristics of the oriented composite specimens. This micro-strip 

transmission line has a characteristic impedance of 50 Ω and consists of an 

approximately 3 mm wide metallic trace about 1 mm above a metallic block serving as a 

ground plane. There is an adjustable gap that divides the micro-strip into two halves for 

the insertion of the sample specimen. Due to the small height of the trace above the 

ground plane, measuring truly EM SE with this setup was impractical. However, the 

measurements of attenuation of the specimen relative to attenuation of an equal thickness 

air gap were obtained by subtracting their corresponding      scattering parameter decibel 

magnitudes. Henceforth in this chapter, the relative attenuation of the samples tested with 
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the micro-strip structure will refer to this ratio of power received with the material 

present to that received with an airgap of the same thickness. This measurement is similar 

to EM SE except that it does not correct for the capacitive coupling through the material 

between the disjoint metallic surfaces at the gap. Thus, although these measurements are 

not comparable to the EM SE measurements made with other setups, they are still useful 

for comparing between the differently oriented specimens for purposes of demonstrating 

effects of composite orientation on the electromagnetic properties. The reader can find in 

Appendix C documented details about the different wave propagation modes supported 

by the transmission lines used in this chapter. 

 

5.2.6 Tensile test 

Tensile test was carried out for the oriented nanocomposites using the ASTM 

D638 Type V technique at room temperature, which requires dogbone-shaped specimens 

of 25 mm of gauge-length and 3 mm of width. The specimens were about 1 mm in 

thickness and were die-cut into the ASTM dogbone shape. An ATS Universal 900 tensile 

tester at across-head speed of 25 mm/min was used. Five replicates in the longitudinal 

direction (LD, direction aligned with modifier orientation) and five in the transverse 

direction (TD, direction perpendicular to modifier orientation) were tested per 

nanocomposite type. 
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5.3 Results and Discussion 

5.3.1. Composite morphology 

Representative optical micrographs (OM) of the 1 vol% diluted composite films 

and their corresponding cluster size distributions are displayed in Figure 5.1. The PR-19 

HT and MWNT HT diluted nanocomposites had similar cluster diameters of 14.4±5.4 

µm and 14.9±4.8 µm, respectively. By optical microscopy, clusters smaller than 1 µm 

can be considered in the dispersed phase [19]. A measure of the non-disperse phase can 

be obtained with the ratio of the total cluster area,           ,  to the total inspected area, 

       , which, in thin films, is essentially a measurement of  the volume fraction of the 

clusters (agglomerates) in the composite      [19]. Thus, PR-19 HT and MWNT HT 

diluted nanocomposites exhibited values of       of 0.0157±0.0065 and 0.076±0.0033, 

respectively.  

Pegel et al. have defined the optical degree of dispersion,     , as: 

                                          
         

     
⁄                                           (5.2) 

where,        is the volume fraction of modifiers in the composites (i.e., 0.01 or 1 vol%) 

and        is the volume fraction of modifiers in the clusters [19]. The bulk density of the 

nanomodifiers was measured at 0.1664 g/cm
3 

for PR-19 HT, and at 0.1846 g/cm
3
 for 

MWNT HT. The true density of the nanomodifiers was estimated at ~2.2 g/cm
3
. 

Therefore, the optical degree of dispersion was determined at 0.892±0.044 and 
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0.942±0.025 for PR-19 HT nanocomposites and MWNT HT nanocomposites, 

respectively. These values are consistent with other dispersed composite systems reported 

by Kasaliwal et al. at about 0.80 for different MWNT types in polycarbonate matrix at 1 

wt% [20]. 

Representative SEM micrographs of the oriented and unoriented nanocomposites, 

displayed in Figure 5.2, show no clusters, and the modifiers appear uniformly 

distributed.  Figures 5.2 (a) and (c) display the transverse cross-sectional areas of the 

oriented nanocomposites, i.e., also the cross-section of the original micro-filaments. The 

nanomodifiers are primarily normal to the viewed plane, which shows a preferred 

orientation in the direction of flow (also normal to the viewing plane). This was 

confirmed by the low values of the apparent aspect ratios of the modifiers (Lmax/Lmin), 

which were 1.6±0.1 and 1.9±0.2 for the PR-19 HT and MWNT HT nanocomposites, 

respectively. On the other hand, Figures 5.2 (b) and (c) show the longitudinal view (i.e., 

along the micro-filament direction) of the cross-sections of the nanocomposites. The 

nanomodifiers also seem to be oriented in the direction of flow (i.e., along the micro-

filament direction) and their corresponding apparent aspect ratios were 7.3±1.1 and 

6.5±1.2 for the PR-19 HT and MWNT HT oriented nanocomposites, respectively. These 

apparent aspect ratios values are respectively about 4 and 3 times greater than those 

obtained for the transversal view, which confirms a preferred local orientation of the 

nanomodifiers in the direction of flow. Figures 5.2 (e) and (f) display the micrographs 

corresponding to the cross-sections of the unoriented PR-19 HT and MWNT HT 
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nanocomposites, respectively. By SEM, no preferred orientation was observed for any of 

the unoriented nanocomposites. 

Figure 5.3 contains a representative X-ray diffractogram for the unidirectional 

continuous CF-epoxy composites (highly oriented control sample) and its corresponding 

2θ and azimuthal scans. The peak associated with the (002) graphene layer planes in the 

graphitic structure of the fibers is at about 25° and a high intensity region in the form of 

an arc suggests a high level of orientation in the composites. The corresponding in-plane 

Herman’s orientation factor,     〈     〉   , for the azimuthal angle distribution of 

the (002) peak was about 0.67, indicating a high level of orientation. At 2θ values less 

than 20° the amorphous halo of epoxy can also be appreciated. The (100) and (101) 

graphene planes are overlapped in a peak at about 43° [21]. 
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Figure 5.1. Representivative transmission optical micrographs and their corresponding 

cluster diameter distributions of ~10-μm thick films made of diluted nanocomposites at 1 

vol%. (a, c) PR-19 HT diluted nanocomposites, (b, d) MWNT HT diluted 

nanocomposites. 
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Figure 5.2. Representative scanning electron micrographs (SEM) of the cross-sections of 

the nanocomposites at 10 vol% (a) PR-19 HT oriented comp. transverse view, (b) PR-19 

HT oriented comp. longitudinal view; (c) MWNT HT oriented comp. transverse view, (d) 

MWNT HT oriented comp. longitudinal view, (e) PR-19 HT unoriented comp., (f) 

MWNT HT unoriented comp. 
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Figure 5.3.  Representative wide-angle X-ray diffractogram of (a) unidirectional 

continuous CF-Epoxy composites at ~70 vol%, and its corresponding (b) 2θ and (c) 

azimuthal, ϕ, scans.  
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Figures 5.4 (a)-(f) display representative diffractograms of the oriented and 

unoriented nanocomposites, and the corresponding 2θ and azimuthal scans. In the 

nanocomposites, the graphitic peak associated with (002) layer planes of carbon 

nanomodifiers appears at approximately 26°, whereas the (110) and (200) peaks 

corresponding to the orthorhombic crystallites of the LLDPE matrix appear at about 

21.4° and 23.7°, respectively. It is also evident from the azimuthal distribution of the 

graphitic (002) peak that there is a predominant fraction of nanomodifiers with a 

preferred angle of orientation in the oriented PR-19 HT and MWNT HT nanocomposites, 

with values of 0.49 and 0.39 measured for Herman’s orientation factors, respectively. 

This is consistent with the apparent aspect ratio (Lmax/Lmin) measurements. In contrast, a 

predominantly random orientation of the modifiers was observed in the plane of the 

unoriented nanocomposites as their azimuthal scans showed no angular dependency 

(basically flat curve) with both Herman’s orientation factors of only about 0.16. These 

differences in orientation can also be qualitatively appreciated in the diffractograms, 

which show a higher intensity portion (darker arc) of the (002) graphitic diffraction lines 

around 90° for the oriented composites. In contrast, for the unoriented nanocomposites, 

the intensity of their (002) graphitic diffraction lines had a uniform intensity for all 

azimuthal angles. 
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Figure 5.4.  Representative wide-angle X-ray diffractograms of nanocomposites at 10 

vol% (a) PR-19 HT Oriented comp., (b) PR-19 HT Unoriented comp. and (c) MWNT HT 

Oriented comp., (b) MWNT HT Unoriented comp. X-ray diffractograms of the 

composites as function of (c) the 2θ and (d) azimuthal, ϕ, angles. Curves were shifted 

vertically along intensity axis to avoid overlap. 
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5.3.2 Composite electrical conductivity 

Table 5.1 summarizes the DC in-plane and through-plane conductivities of the 

different composites at 10 vol% (replicates, n = 5 in all cases). For the oriented 

composites, the in-plane conductivity in the micro-filament direction (LD) was at least an 

order of magnitude higher than that in the transverse direction (TD), which means that 

the composites displayed anisotropic conductivity. In addition, the through-plane values 

were smaller by several orders of magnitude when compared to their respective in-plane 

values. This was particularly noticeable in the continuous CF-epoxy unidirectional 

composites, our highly oriented control, which showed the highest electrical anisotropy. 

Thus, the direction of greater conductivity was LD for all oriented composite types. 

Overall, the CF-epoxy composites displayed in-plane conductivity values higher than 

those of MWNT HT oriented nanocomposites, and these, higher than those of the PR-19 

HT oriented nanocomposites. This conductivity trend is consistent with the infinite true 

aspect ratio (L/D) of CF, followed by that of the MWNT HT at 145 and by that of the 

PR-19 HT at 85, which establishes a direct relationship between the modifier aspect ratio 

and the conductivity of the composite. 
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Table 5.1. DC in-plane and through-plane volume conductivity of composites at 25°C 

and ~ 50 % relative humidity. Ranges represent 95% confidence intervals. 

Composite DC in-plane 

volume conductivity   

(S/m) 

DC through-plane 

volume conductivity  

(S/m) 

Longitudinal 

direction 

(LD) 

Transverse 

direction 

(TD) 

 

CF-Epoxy 

Unidirectional
ǂ
 

4.0±1.8x10
2
 1.1±0.4 x10

1
 7.5±1.5x10

-6
 

PR-19 HT-LLDPE 

Oriented* 

1.7±0.7x10
-2

 1.1±0.4x10
-3

 6.0±1.5x10
-6

 

MWNT HT-LLDPE 

Oriented* 

3.1±1.4 x10
0
 1.7±0.2 x10

-1
 2.3±0.8x10

-4
 

PR-19 HT-LLDPE 

Unoriented* 

6.2±1.7x10
-2

 1.4±0.7x10
-4

 

MWNT HT-LLDPE 

Unoriented* 

5.0±1.0x10
0
 6.3±1.6x10

-4
 

ǂ
70 vol%, *10 vol% 
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The unoriented nanocomposites, though, displayed in-plane conductivity values 

about 2-3 times higher than their respective counterparts in the LD. This is expected due 

to a more random distribution of the modifiers, which leads to higher likelihood of 

electrical percolation in the electrical networks within the composites [22]. The through-

plane conductivity of the unoriented composites was also 4 to 6 orders of magnitude 

smaller than their respective in-plane values. This difference in conductivity is due to the 

2D in-plane random orientation of the modifiers in the composite specimen. In the plane, 

the carbon nanomodifiers use their radial electrical conductivity to conduct electrons 

through the thickness of the specimen, which, as in many carbon materials, is much less 

that their axial conductivity [8, 23]. All composites types were electrically percolated 

systems when compared with a conductivity of 7.0±1.1x10
-15

 S/m for pure LLDPE, 

which is, at least, 9 orders of magnitude lower than that of the composites.  

 

5.3.3 Electromagnetic shielding effectiveness (EM SE) 

Figure 5.5 displays the EM SE of the oriented composites obtained by the coaxial 

line. The EM SE was measured with the LD of the composite at 0°, 45° and 90° angles 

from an arbitrary angular reference position on the flange of the gapped coaxial line.  The 

EM SE was found to be independent on the angle of orientation as all three responses 

overlapped each other for each oriented composite type. This is consistent with the fact 

that, in a coaxial line, the main electromagnetic field propagation mode has its electric 

field radially polarized. Thus, the composite specimen will provide a level of attenuation 
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independent of the specimen’s angular position due to the axial symmetry of the electric 

field imposed by the coaxial geometry. Moreover, it is important to note that the EM SE 

of the composites increases with the conductivity of the composites as the CF-Epoxy 

composites displayed about 20 dB (for 1 mm of thickness), the MWNT HT oriented 

nanocomposites about 7 dB, and the PR-19 HT oriented composites about 1 dB, all 

values at 2 GHz.  

Figure 5.6 displays the EM SE of the unoriented nanocomposites obtained by the 

coaxial line. Three different relative angular positions were also evaluated at 0°, 45° and 

90° angles. As expected, no orientation dependency was found as the EM SE was 

independent of the angular position. Furthermore, since the in-plane conductivity of the 

unoriented nanocomposites was higher than that of the maximum in-plane conductivity 

of the oriented ones, the unoriented nanocomposites also displayed higher values of EM 

SE at about 5 dB and 9 dB, respectively for PR-19 HT and MWNT HT unoriented 

nanocomposites at 2 GHz. 

Figure 5.7 contains the EM SE results for the unidirectional CF-epoxy 

composites obtained  by the rectangular waveguides as function of the angle between the 

direction of electric field polarization in the dominant wave propagation mode (TE10) and 

the direction of maximum conductivity of the composites (i.e., fiber or longitudinal 

direction, LD). As the direction of maximum conductivity went from 90° (i.e., LD 

perpendicular to the E-field polarization) to 45°, and from 45° to 0° (i.e., LD parallel with 

the E-field polarization), the EM SE respectively varied from 11±2 dB to 20±3 dB, and 
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from 20±3 dB to 59±4 dB for the WR510 waveguide. Likewise, for the WR340 

waveguide, the EM SE increased from 11±1 dB to 19±2 dB, and from 19±2 dB to 70±4 

dB, respectively. This means an increase in EM SE of about 50 dB after changing the 

composite LD orientation from perpendicular to parallel, relative to the direction of 

polarization. Thus, in vertically polarized waves the anisotropic conductivity of the 

composites will also infer differences in electromagnetic shielding, depending of the 

relative angle of alignment between the direction of polarization and that of the 

maximum conductivity of the composite. This electromagnetic anisotropy will lead the 

oriented composites to mostly shield the polarizations of the wave parallel to the 

direction of maximum conductivity and let the orthogonal polarizations pass through. 

This behavior is similar to what occurs in typical AM/FM and VHF/UHF receptor 

antennas in which the orientation of the antenna relative to that of the wave polarization 

plays an important role for proper signal reception. 

Figure 5.8 displays the EM SE of the oriented nanocomposites obtained by 

measurements with both rectangular waveguides as described in the experimental section. 

This figure shows two extreme cases: i) maximum conductivity direction (LD) 

perpendicular to the E-field polarization (90°); and ii) maximum conductivity direction 

(LD) parallel with the E-field polarization (0°). When the LD was aligned with the E-

field polarization, the PR-19 HT oriented nanocomposites displayed EM SE values of 

3.2±1.0 dB when tested with the WR510 waveguide and 5.1±1.1 dB when tested with the 

WR340 waveguide.  For the perpendicular alignment (90°), the EM SE of the PR-19 HT 

oriented composited were measured to be only 0.7±0.4 dB when tested with the WR510 
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waveguide and 1.3±0.8 dB when tested with the WR340 waveguide. When the LD was 

parallel with the E-field polarization, the MWNT HT oriented nanocomposites displayed 

EM SE values of 9.0±1.0 dB for the WR510 tests and 11.1±1.1 dB for the WR340 tests. 

For the perpendicular alignment (90°) the EM SE of the MWNT HT oriented 

nanocomposites displayed EM SE values of only 3.0±0.8 dB for the WR510 tests and 

3.8±1.0 dB for the WR340 tests. Thus, differences in EM SE of 6 dB for the PR-19 HT 

oriented nanocomposites and 7.3 dB for the MWNT HT oriented nanocomposites were 

observed when the composite longitudinal direction (LD) was changed from 

perpendicular to parallel, relative to the polarization. 
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Figure 5.5. Electromagnetic shielding effectiveness (EM SE) of representative oriented 

composites obtained with the coaxial line as a function of the relative angular position (a) 

70 vol% PAN-based CF-epoxy unidirectional composites, (b) 10 vol% PR-19 HT 

oriented comp., (c) 10 vol% MWNT HT oriented comp. Frequency range from 30 MHz 

to 2 GHz. 
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Figure 5.6. Electromagnetic shielding effectiveness (EM SE) of representative 

unoriented nanocomposites obtained with the coaxial line as a function of the relative 

angular position (a) 10 vol% PR-19 HT comp., (b) 10 vol% MWNT HT comp. 

Frequency range from 30 MHz to 2 GHz. 
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Figure 5.7. Electromagnetic shielding effectiveness (EM SE) of representative 70 vol% 

CF-epoxy unidirectional composites as a function of the angle of alignment between the 

main wave polarization of the rectangular waveguide (TE10) and the direction of the 

highest conductivity of the composite: (a) WR510 and (b) WR340.  
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Figure 5.8. Electromagnetic shielding effectiveness (EM SE) of representative oriented 

nanocomposites as a function of the angle of alignment between the main wave 

polarization of the rectangular waveguide (TE10) and the direction of the highest 

conductivity of the composites: (a) PR-19 HT comp. by WR510; (b) PR-19 HT comp. by 

WR340; (c) MWNT HT comp. by WR510; (d) MWNT HT comp. by WR340. 
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Figure 5.9 shows the EM SE of the unoriented nanocomposites measured with 

the WR340 waveguide. The EM SE values for the PR-19 HT unoriented nanocomposites 

were 7.6±1.1 dB when the LD was perpendicular to the E-field polarization, and 7.4±1.0 

dB when the LD was parallel with the E-field polarization. For the MWNT HT 

nanocomposites, values of 12.6±1.2 dB and 12.8±1.3 dB were measured for the 

perpendicular alignment and parallel alignment of the LD with the E-field polarization, 

respectively. Thus, in contrast to the oriented composites, these nanocomposites showed 

no orientation dependency. 

Figure 5.10 displays the measurements of the relative attenuation of the oriented 

nanocomposites in the micro-strip test setup (relative to measurements with just the air 

gap as described in the experimental section), over the frequency range from 100 MHz to 

2.5 GHz. With the maximum conductivity direction (LD) placed perpendicular to the E-

field (90°), values of relative attenuation of about 1.5±0.6 dB and 5.3±1.3 dB were 

measured for the PR-19 HT and MWNT HT oriented nanocomposites respectively. For 

the parallel alignment of the LD and the E-field polarization (0°), the respective relative 

attenuation values were 4.6±0.8 dB and 11.0±1.1 dB.  

Figure 5.11 presents the relative attenuation of the unoriented nanocomposites 

obtained using the micro-strip for the same frequency range. Regardless the level of 

alignment between the LD and the direction of polarization, the values for the PR-19 HT 

and MWNT HT unoriented nanocomposites were about 10.5±0.7 dB and 15.0±1.0 dB, 

respectively. Once again, no orientation dependence was observed. Note that these 



 

170 

 

nanocomposites exhibited relative attenuation values higher than those of their oriented 

counterparts by at least 5 dB. The CF-epoxy composites were not analyzed by the micro-

strip due to the low dynamic range of this test set-up (30-40 dB). 
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Figure 5.9. Electromagnetic shielding effectiveness (EM SE) of representative 10 vol% 

unoriented nanocomposites obtained by the WR340 (a) PR-19 HT composites and (b) 

MWNT HT composites. 
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Figure 5.10. Relative attenuation of representative 10 vol% oriented nanocomposites as a 

function of the angle of alignment between the wave polarization of the micro-strip and 

the direction of the highest conductivity of the composite: (a) PR-19 HT oriented comp. 

and (b) MWNT HT oriented comp. Frequency range from 100 MHz to 2.5 GHz. 
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Figure 5.11. Relative attenuation of representative 10 vol% unoriented nanocomposites 

obtained by the micro-strip (a) PR-19 HT composites and (b) MWNT HT composites. 

Frequency range from 100 MHz to 2.5 GHz. 
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Figure 5.12 shows the correlation between the EM SE values measured in the 

rectangular waveguides (WR510 and WR340), and the in-plane conductivity of the 

composites. A strong dependency of the EM SE with respect to the conductivity aligned 

with the E-field was found. This dependency was especially remarkable when the 

parallely aligned modifiers with the E-field yielded composite conductivities greater than 

1 S/m, after which a sudden increment in EM SE was observed. 
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Figure 5.12. Correlation between the EM SE of the oriented composites and the in-plane 

electrical conductivity aligned with the E-field. EM SE from WR510 & WR340. 

Thickness of 1 mm was used for all samples. 0°: E-field aligned with the direction of 

maximum conductivity; 90°: E-field aligned with the direction of minimum conductivity 

of the composite. 
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5.3.4 Composite tensile properties 

Figure 5.13 contains the tensile data obtained for the oriented nanocomposite in 

the longitudinal (LD) and transverse (TD) directions. The pure LLDPE data is also shown 

as the range between the discontinuous lines for comparison purposes. In the longitudinal 

direction, both nanocomposites displayed an apparent modulus and ductility that are 

about twice and half of those of the pure LLDPE, respectively. The tensile strength for 

the PR-19 HT nanocomposites in LD was about 19 MPa, while that of the MWNT HT 

nanocomposites was slightly higher at 24 MPa, which is very close to the strength of the 

pure matrix. In contrast, in the transverse direction, both nanocomposites displayed a 

flexibility that is not significantly different from that of the pure matrix, a strength about 

half of the LLDPE, and a very poor ductility (<30%). It is evident from these data that the 

orientation of the nanomodifiers also led to anisotropic tensile properties. Thus, the 

properties measured in the direction of the orientation of the modifiers (LD) tend to yield 

stiffer, stronger and more ductile nanocomposites. This intrinsic anisotropy in the 

mechanical properties needs to be taken into account when determining what type of 

EMC application the composites can be utilized on. However, the mechanical 

performance of these nanocomposites is excellent when compared with traditional carbon 

fiber LLDPE composites [6]. 
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Figure 5.13. Tensile data for the oriented nanocomposites in the longitudinal (LD) and 

transverse (TD) directions. (a) apparent modulus, (b) tensile strength and (c) strain-to-

failure. 

 

 



 

177 

 

5.4 Conclusions 

WAXD analysis of the nanocomposites and microstructure observed by SEM and 

OM indicate a preferred orientation of the dispersed carbon nanomodifiers imparted by 

the combination of shearing and elongational flow-fields during filament spinning. These 

LLDPE-based nanocomposites containing 10 vol% of oriented carbon 

nanotubes/nanofibers exhibited anisotropic in-plane electrical conductivity. The highest 

conductivity was found to be in the direction of the micro-filaments (LD). The 

nanocomposites also displayed anisotropic shielding behavior when polarized 

electromagnetic waves were applied. The EM SE was a function of the angle of 

alignment between the direction of the maximum in-plane conductivity and that of the E-

polarization. Thus, the 1-mm thick MWNT HT oriented nanocomposites displayed EM 

SE values (measured using the WR340) of only ~4 dB for perpendicular alignment, but 

~11 dB for parallel alignment of modifiers and electric field. A positive correlation 

between the EM SE and the conductivity parallel to the E-field was observed for different 

composites. The oriented nanocomposites shield electromagnetic waves with electric-

field components parallel to the direction of modifier orientation more strongly than 

orthogonal polarizations. Furthermore, the tensile properties of such nanocomposites 

displayed anisotropy, with stiffer, stronger and more ductile behavior in the direction of 

modifier orientation; and retained a great deal the properties of the pure LLDPE. Such 

nanomaterials may be used for compatibility applications where electromagnetic-wave 

polarization filtering is required in the VHF/UHF frequency range. 
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CHAPTER 6 

CONCLUSIONS AND RECOMENDATIONS 

 

In this chapter, the most important concluding remarks of this research are stated. 

Conclusions from Chapters 2, 3, 4 and 5 are made based on their results, and 

recommendations are made to draw lines of continuity for this research field. 

 

6.1 Conclusions 

In Chapter 2, it was established that a 1-hour heat treatment at 2500°C of PR-19 

HT nanofibers led to significant increase in their graphitic crystallinity. Consequently, 

nanocomposites containing 10 vol% PR-19 HT exhibited an outstanding improvement in 

their electrical conductivity and EM SE as compared to their untreated counterparts. Over 

the VHF-UHF frequency, the EM SE of PR-19 HT twin-screw extruded nanocomposites 

(2.5-mm thick) was 12-16 dB, which was significantly larger than that measured for 

untreated PR-19 nanocomposites (~1 dB). Absorption was found to be the dominant 

shielding component of the heat-treated CNF-based composites.  

Next, in Chapter 3, composites containing carbon nanomodifiers with similar 

graphitic crystallinity, but with different morphologies, led to EM SE values directly 

dependent on the modifier morphology.  Thus, at 10 vol%, MWHT HT, whose aspect 

ratio was the largest, led to the greatest composite conductivity and EM SE (~24 dB). In 

contrast, the HCNT HT, due to their coiled shape and low aspect ratio, led to highly 
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segregated composite microstructures with little electrical percolation and low EM SE 

(<1 dB). Nevertheless, HCNT HT composites exhibited the highest ductility and 

flexibility, owing to the matrix-modifier interlocking provided by their helical 

morphology.  

In Chapter 4, LLDPE-based composites containing 40 vol% of in-plane randomly 

oriented carbon nanotubes/nanofibers exhibited EM SE values of up to 25 dB/mm in the 

VHF-UHF frequencies. Moreover, predictions of the far-field EM SE and its 

components, using a model for the shielding mechanisms in generally lossy materials 

(i.e., intermediately conductive), were consistent with the experimental values when the 

in-plane effective conductivity of the nanocomposites was employed.  

Finally, in Chapter 5, a preferred orientation of the dispersed carbon 

nanomodifiers in LLDPE by the combination of shearing and elongational flow-fields 

was induced. These composites containing 10 vol% of oriented carbon 

nanotubes/nanofibers exhibited anisotropic in-plane conductivity and tensile properties. 

The composites exhibited the highest conductivity in the direction of flow, and displayed 

shielding anisotropy when polarized electromagnetic waves were applied. Thus, oriented 

MWNT HT nanocomposites displayed EM SE values of only ~4 dB for perpendicular 

alignment, but ~11 dB for parallel alignment of modifiers and electric field (WR-340).  

In summary, the morphological and intrinsic transport properties of carbon 

nanomodifiers, their concentration, and the processing methodology are factors that 
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determine the microstructure and the transport properties of the composites, which, in 

turn, control their electromagnetic shielding performance. 

 

6.2. Recommendations for future work 

As discussed in Appendix A, it was found that shorter mixing times and less 

shearing mixing geometries led to a higher electrical conductivity and EM SE. However, 

to further optimize the modifier networks, more sophisticated mixing studies that include 

distributive and dispersive processing geometries/elements, and different mixing speeds 

and temperatures may be conducted.  

In Chapter 3, the influence of different carbon modifier morphologies on the EM 

SE of their composite was investigated. It was found that morphologies with large aspect 

ratio and straight-shape led to higher electrical interconnection, whereas helical shapes 

led to entanglements that led to a large amount of non-percolating clusters. However, 

morphologies such as single-walled carbon nanotubes (SWNT), with extraordinary large 

aspect ratios, were not investigated. These have potential of reaching high composite 

conductivities at much lower concentrations, although at a much higher cost relative to 

their multi-walled counterparts. Moreover, higher frequency bands such as X, Ku and K 

bands can be investigated for radar and satellite systems EMC applications.  

The effect of nanomodifier ultra-sonication on the EM SE of their composites was 

briefly studied [1]. The size of the modifier agglomerates was not significantly reduced 
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after 45 min of sonication in n-hexane, leading to essentially the same EM SE of that of 

composites made of unsonicated nanomodifiers. Possibly, a more detailed study on the 

effect of the initial state of aggregation of the modifiers and matrix before melt-mixing, 

with a focus on the modifier-matrix interfacial phenomena, is recommended.  

Chapter 5 dealt with the effect of anisotropic conductivities impressed by flow-

induced orientation. Further studies on the effect of modifier orientation using shearing 

flow-fields attained by scalable industrial processing techniques such as injection 

molding are also recommended. Moreover, the Center for Advanced Engineering Fibers 

and Films (CAEFF) possesses a custom-made biaxial stretching unit in which high levels 

of biaxial orientation can be attained in the composites.  

Finally, in an independent study, special micro-patterned films dies were studied 

to establish that micro-textured films can be produced by continuous cast-film extrusion 

[2]. As a follow-up of that project, carbon nanomodifiers, whose dimensions make them 

suitable for flowing through the micro-channels of the patterned dies, may be used to 

create conductive textured composite films.  These textured nanocomposites may help in 

various EMC applications such as in high-frequency resonant grating waveguide 

structures [3].  
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APPENDIX A 

MIXING CONDITIONS  

A.1 Mixing time effect 

Figures A.1 (a) and (b) are representative SEM micrographs displaying the 

microstructure of the nanocomposites prepared in a DSM Xplore conical twin-screw 

micro-compounder (DSM) at 190°C and 20 rpm for 20 min and 2 minutes of mixing 

time, respectively. At the length-scale provided by SEM, the microstructures appear 

similar for both mixing times, and no isolated clusters were identified in the 

nanocomposites. Nonetheless, the DC in-plane electrical conductivity of the 

nanocomposites prepared for 20 min was only 2.0±0.2 S/m, whereas that of the 

nanocomposites processed for 2 min was 5 times higher, at 10.0±1.0 S/m.  

Figure A.2 displays the effect of the mixing time on the EM SE of their 

nanocomposites in the frequency range of 30 MHz to 1.5 GHz. The EM SE of the 

nanocomposites mixed for only 2 min displayed values of 15±1.3 dB, whereas those 

mixed for 20 min exhibited only 6.6±1.4 dB. These results are consistent with the DC 

conductivity measurements. 
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Figure A.1. Representative scanning electron micrographs (SEM) of twin-screw 

extruded nanocomposites at 10 vol%, 190°C and 20 rpm for (a) 20 min and (b) 2 min of 

mixing time. Insets display the microstructure at higher magnification. 
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Figure A.2. Electromagnetic shielding effectiveness (EM SE) of twin-screw extruded 

nanocomposites at 10 vol%, 190°C and 20 rpm for 20 min and 2 min of mixing time. 
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A.2 Mixing geometry 

After determining that shorter mixing times led to higher electrical properties, a 

mixing geometry that applies less energy of mixing was investigated. Thus, the co-

rotational twin-screw geometry (continuous mode) that applies high levels of shear was 

changed to a Brabender-type geometry of a Rheomix 600 batch mixer (BM) (batch 

mode). The nanocomposites made in BM at 190°C and 20 rpm for 2 min displayed a DC 

in-plane conductivity of 20.4±3.3 S/m, which is twice of that of the twin-screw extruded 

(DSM) nanocomposites made at 190°C and 20 rpm for the same mixing time. The EM 

SE of the batch-mixed vs. that of the twin-screw-mixed nanocomposites, displayed in 

Figure A.3, shows that that the batch-mixed nanocomposites exhibited a higher shielding 

performance, reaching values as high as 24.7 dB at 1.5 GHz. Thus, a softer mixing led to 

composites with higher EM SE. 
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Figure A.3. Electromagnetic shielding effectiveness (EM SE) of twin-screw extruded 

(DSM) nanocomposites vs. that of the batch-mixed (BM) nanocomposites. Both prepared 

at 10 vol%, 190°C and 20 rpm for 2 min. 
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A.3 Melt-dilution 

Previous studies have established that melt-dilution can lead to higher levels of 

electrical network as higher levels of percolating clusters can be retained by certain 

composite systems [1]. Thus, the batch mixer (BM) was used to make a dilution of a 40 

vol% PR-19 HT master batch down to 10 vol%. Processing conditions were held constant 

at 190°C, 20 rpm, and 2 min for the dilution step. Figure A.4 displays SEM micrographs 

comparing the cross-sections of the direct batch and diluted batch. By SEM, the batch-

mixed nanocomposites displayed no identifiable clusters in their microstructure, and the 

CNFs appear to be uniformly distributed all over the matrix. In contrast, the diluted batch 

led to microstructures with clusters larger than 50 μm in diameter, as well as zones in 

which a very low concentration of CNF was observed. This indicates that, under these 

mixing conditions, the geometry of the batch mixer did not provide enough mixing 

energy to establish cluster interconnections. As a result of this segregated microstructure, 

the diluted batch of nanocomposites displayed a DC in-plane conductivity of only 

0.08±0.01 S/m, which is about two and a half orders of magnitude lower than that of the 

direct batch prepared by the same mixing conditions.  

Figure A.5 displays the EM SE of the diluted batch as compared with that of the 

direct batch. The diluted batch displayed EM SE values of only 2.8±1.1 dB, whereas the 

direct batch of 23.4±2.0 dB. Hence, the EM SE of the composites was dependent on the 

microstructure impressed by the different processing conditions. 
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Figure A.4. Representative scanning electron micrographs (SEM) of nanocomposites at 

10 vol%, and prepared at 190°C and 20 rpm for 2 min (a) direct batch (b) diluted batch. 

Insets display the microstructure at higher magnification. 
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Figure A.5. Electromagnetic shielding effectiveness (EM SE) of the diluted batch of 

nanocomposites vs. that of the direct batch. Both prepared at 10 vol%, 190°C and 20 rpm 

for 2 min. 
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APPENDIX B 

EXPERIMENTAL PROCEDURES 

B.1 Electromagnetic shielding effectiveness (EM SE) 

Figure B.1 is a representation of a specimen shielding an EM wave with incident 

power,    . When the wave strikes the material, due to the change in wave impedance, 

part of that power is reflected back,     [1]. Another part of that power passes through the 

material while being absorbed by the material and converted into heat,    , whereas the 

remainder gets transmitted,     [1]. [1, 2]. 

 

Figure B.1. Schematic representation of a shielding material interacting with an 

electromagnetic wave of incident power,   . 

 

Figure B.2 is a schematic that shows a slotted coaxial transmission line connected 

to a two-port network analyzer. The network analyzer sends a wave through the line from 

port 1 to port 2, passing through the material. The network analyzer measures the 

received power at the ports, relative to the incident power. These ratios are given by the 



 

194 

 

scattering parameters,      (i.e., reflection or scattering matrix), which relate the incident 

power to the powers reflected from the ports [1]. Thus,  |   |
  is the power ratio of the 

power received in port 2 to that sent from port 1, |
  

  
|  |   |

 .   |   |
  is the power ratio 

of the power received in port 1 to that sent from the same port 1, |
  

  
|  |   |

 . 

Therefore, the uncorrected   𝑀      and   𝑀       are respectively obtained from the 

scattering parameters obtained from the network analyzer by [2]: 

                                         𝑀           (|   |
 )                                       (B.1) 

                                                 𝑀            (  |   |
 )                                  (B.2) 

 

 

Figure B.2. Schematic representation of a coaxial transmission line connected to a 

network analyzer for the computation of the scattering parameters. 
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Because SE is defined as the attenuation relative to the situation when no 

shielding material is present, corrections must be made to the measurements shown in 

Eqns. (B.1) and (B.2). Figure B.3 displays the ASTM D4935 method that includes such 

corrections in a coaxial line measurement. The corrected values of SE are obtained by 

subtracting the attenuation measured with a “reference” specimen from that of the “load” 

specimen. This corrects for capacitive coupling effects and intrinsic absorptive and 

reflective characteristics of the transmission line as distorted by presence of the load 

specimen. In other words, the reference specimen measurement sets a base-line for the 

measurements.  Thus, two sets of data are measured: a) one for the test (also called 

“load”) specimen, b) and one for the reference specimen. 

The load specimen needs to be a planar sample of the material being tested with 

dimensions large enough to cover the whole fixture/waveguide flange (material 

measurement). The reference specimen has an aperture with the shape and dimensions of 

the flange of the fixture/waveguide (base-line measurement). The reference specimen is 

made of the same material and thickness than that of the load specimen.  

The subtraction of the measurements made with the specimens relative to the 

incident power,   , is mathematically equivalent to the shielding effectiveness definition 

as the logarithmic ratio of the transmitted power with the material present,          ,  to the 

transmitted power without the material present,           (Eqn. B.3). This concept is also 

depicted in Figure B.3. 

           𝑀    ( 𝐵)     𝑙𝑜𝑔
       

        

 (   𝑙𝑜𝑔
       

  
)  (   𝑙𝑜𝑔

        

  
)           (B.3)     
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Similarly, Eqn. B.4 defines the correction for the reflective EM SE measurement, 

(obtained from the reflected power with the material present,         ,  and the reflected 

power without the material present,          ), which is essentially based on the same 

concept of reference correction. Here, intrinsic reflective characteristics of the 

transmission line itself are similarly subtracted with the reference specimen 

measurement.  

                                                                             

           𝑀     ( 𝐵)     𝑙𝑜𝑔 (
          

           

) 

                                       (   𝑙𝑜𝑔 (  
       

  
))  (   𝑙𝑜𝑔 (  

        

  
))                (B.4)                                                                 

 

 

 

 

Figure B.3. ASTM type of measurements for EM SE including the reference correction. 
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Thus for the SE measurements, two set of measurements are recorded:  |   |
 
     

and |   |
 
      for the load specimen, and, |   |

 
     and |   |

 
    for the reference 

specimen. The following analysis will explain how the definitions from Eqn. B.3 and 

Eqn. B.4 are obtained from the scattering parameters.  

For the load and reference specimens, the respective power balances are [3]:  

                                                                                                   (B.5) 

                                                                                                    (B.6) 

which are equivalent to: 

            
          

  
 

          

  
 

          

  
                                    (B.7) 

                 
         

  
 

         

  
 

         

  
                                      (B.8) 

where       ,        and        are the transmittance, reflectance and absorbance for each 

specimen (spec) type.  

For the load specimen, the transmittance and reflectance are obtained (in dB) 

from the analyzer as:  

                                               |   |
 
 𝐵     𝑜  

        |
          

  
|                         (B.9) 

                         𝑜       𝐵  |   |
 
          

        |
 
      𝑜  

 𝑜
|                        (B.10) 

Similarly, for the reference specimen, the transmittance and reflectance (in dB) 

obtained respectively are: 

                                                  |   |
 
 𝐵       

        |
 
        

  
|                       (B.11) 



 

198 

 

                                     𝐵  |   |
 
         

        |
 
        

 𝑜
|                       (B.12) 

For the further analysis, the scattering parameters are needed in their fractional or 

decimal form. To obtain the fractional reflectance and transmittance for each specimen 

the antilog is used:    

                                 |   |
 
    

     
|   |

 
          

                                     (B.13) 

                                    |   |
 
    

     
|   |

 
          

                                 (B.14)      

                    |   |
 
   

     
|   |

 
         

                                       (B.15) 

                                |   |
 
   

     
|   |

 
         

                                      (B.16) 

 

The corrected EM SE is defined by: 

              𝑀    ( 𝐵)  (           )  (          )        
     

    
            (B.17) 

Defining   |   |
  

     

    
 as the corrected transmittance, the corrected EM SE 

is therefore: 

                                                     𝑀                                                              (B.18) 

which is equivalent to the definition of Eqn. B.3.  

Similarly, the corrected reflective EM SE is:  

    𝑀    ( 𝐵)  (      (       ))  (      (      ))        
(       )

(      )
     (B.19) 
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where, (   )    |   |
  

(       )

(      )
 or   

          

      
. Sometimes      is very 

small, then         . Therefore, the corrected reflective EM SE is: 

                                         𝑀           (   )                                    (B.20) 

which is equivalent to the definition of Eqn. B.4. 

The corrected absorptive EM SE can be calculated from the balance as: 

                                          𝑀      𝑀     𝑀                                             (B.21) 

These equations can be used not only for measurements in a coaxial line, but also 

for other waveguide shapes, such as rectangular/circular waveguides and micro-strip 

lines. Figure B.4 displays the different experimental set-ups by which the EM SE 

measurements were conducted for this study. Networks analyzers were used to generate 

and measure the fields by connecting the fixtures through coaxial cables. The EM SE was 

obtained by the method described above 
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Figure B.4. Experimental set-ups for: a) split coaxial line, b) split rectangular wave-

transmission line, c) split micro-strip line, and d) continuous micro-strip line. 

 

(a) 

(b) 

(c) 

(d) 
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B.2 Electrostatic decay (ESD) 

The static decay time was measured using an Electro-Tech Systems, Inc. 406D 

Static-Decay Meter that complies with the Federal Test Method 101D, Method 4046 and 

Military Standard Mil-B-81705C (Figure B.5). This standard requires that 99% of the 

initial induced charge be dissipated is less than 2 seconds for qualifying material per Mil-

B-81705C. The samples are placed inside of the Faraday’s cage and tested using the 

following procedure: 

1. Press the “POWER” button and set “HIGH VOLTAGE” off. 

2. Allow 15 min for warm-up. 

3. Place STM-1 test module in sample holder electrodes 

4. Insert white banana plug into jack on chassis. 

5. Cage cover is down and select “+ HIGH VOLTAGE”. 

6. Rotate “HIGH VOLTAGE ADJUST” for “+5KV” on “CHARGING 

VOLTAGE” meter. 

7. Select “MANUAL” mode and “10% CUTOFF”. 

8. “SAMPLE CHARGE” meter was set to "0" by adjusting “ZERO” control. 

9. Press “CHG” button and adjust “FULL SCALE” control (STM-1 position) for 

setting “+5KV” reading on “SAMPLE CHARGE” meter. 

10. Press “ZERO/STBY” button and recheck "0" setting. 

11. Press “CHG” button. When “SAMPLE CHARGE” meter reads “+5KV”, 

press “TEST” button. Decay time should equal time on STM-1±0.05 sec. 

12. Repeat steps 8-11 for -5KV. Measured decay time should be within 0.2sec of 

time measured at +5KV 

13. Select desired “CUTOFF” and press “CHG” button. 

14. Check “SAMPLE CHARGE” meter read "0". 

15. Place a 3" X 5" aluminum foil in test cage electrodes. 

16. Select “+5KV” and adjust “FULL SCALE” control (“NORM” position) for 

“+5KV” reading on “SAMPLE CHARGE” meter. 

17. Do not readjust this control when testing samples. 

18. Remove foil and place test sample in sample holder electrodes. 

19. Press “ZERO/STBY” button and adjust “ZERO” setting. 
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20. Press “CHG” button. When “SAMPLE CHARGE” meter reads full scale, 

press “TEST” button. 

21. Record measures decay time displayed on the screen. 

22. Repeat steps 14-21 for “-5KV”. 

 

 

Figure B.5. Picture displaying the static decay meter. 

 

B.3 DC electrical conductivity 

The DC electrical conductivity measurements were conducted according to the 

ASTM D257 standard with a Keithley 6517B High Resistance Meter (1 pA to 20 mA, 0 

to ±1000 Volts) as shown in Figure B.6. The alternating polarity method was applied 

with the Keithley 6524 software. To measure through-thickness conductivity, the 

Keithley 8009 Resistivity Test Fixture was used in conjunction of the Keithley 6517B.  

 

Decay Meter 
Faraday’s Cage 
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Figure B.6. Keithley 6517B High Resistance Meter and Keithley 8009 Resistivity Test 

Fixture. 

 

The measurements were carried out by the following steps: 

1. A sample with dimensions no larger than 75 mm x 75 mm x 3 mm is placed in 

the fixture.  

2. From Programs/Keithley/6517 Hi-R Test, the 6517 Hi-R Test.exe must be 

executed from the Keithley 6524 software. A dialogue box with preset 

numbers will pop up. (displayed in Figure B.6 in the computer’s monitor) 

3. The option for “volume resistivity” is chosen in the fixture and in the 6524 

software.  

4. The fixture is closed with the sample inside. Make sure the clamp is fully 

close for a proper contact of the sample and electrodes. 

5. In the software option “Geometries” the sample thickness is entered and the 

option for Keithley 8009 is chosen. By choosing this, the software will 

calculate the electrode area for resistivity computation. 

6. The alternating voltage is set in the dialogue box of the software (0 to ±1000 

V). Preset as 50 V. 
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7. The current range is chosen in the software (1 pA to 20 mA). Auto range can 

also be used but is less accurate than doing a set of trials to determine the most 

appropriate current range. 

8. The measure time is preset at 15 s. A different value can also be set by the 

user. 

9. The offset voltage is typically set as zero. A different value can also be set by 

the user. 

10. The number of readings to discard is preset as 3. A different value can also be 

set by the user. 

11. The number of readings to store is preset as 8. A different value can also be 

set by the user. 

12. The voltage is applied across the circular electrodes with the 6524 software by 

pressing “Run”. 

13. The progress of the measurement is shown in a set of plots and graphs and at 

the blank space of the option “Resistivity (Ohm.cm)”. 

14. The set of measurements can be save by pressing “Save/Load” 

 

 To measure the in-plane resistivity, the Keithley 8002A Test Fixture modified 

with external electrodes was used. Silver paint was applied at the opposite ends of the 

samples. The measuring procedure is the same as that with the 8009 fixture, with the 

exception that instead of selecting “Volume Resistivity”, the option for “Resistance” 

must be chosen in the software. Then the resistivity must be computed from the sample 

geometry and the measured resistance. 
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B.4 AC electrical permittivity 

The AC electrical permittivity was measured in an Agilent 4291B RF 

Impedance/Material Analyzer (Figure B.7) connected to an Agilent 16453A Dielectric 

Material Test Fixture (Figure B.7) using the following steps: 

1. Connect the High Impedance Head to the Agilent 4291B RF 

Impedance/Material Analyzer. 

2. Turn on the power button. Give the equipment about 30 minutes to warm up. 

3. Carry out the calibration of the analyzer. Thus, Open/Short/Load (50 Ω) 

calibration with the calibration quit. The equipment will ask for each 

calibration elements. 

4. After the calibration is done.  Connect the Agilent 16453A Dielectric Material 

Test Fixture to the Impedance Head. The permittivity fixture 16453 option 

must be selected. 

5. Input thickness of the Teflon specimen (0.5 mm). Provided by the equipment. 

6. Perform short fixture compensation. 

7. Perform open fixture compensation. 

8. Perform load (Teflon specimen) fixture compensation. 

9. Place the sample (MUT) to measured and enter its thickness. 

10. Format options of the results can be chosen as Cole-Cole plot, real and 

imaginary relative permittivity as functions of frequency and tan δ. 
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Figure B.7 Agilent 4291B RF Impedance/Material Analyzer and Agilent 16453A 

Dielectric Material Test Fixture. 
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APPENDIX C 

WAVE PROPAGATION MODES 

C.1 Wave Modes 

Figure C.1 exhibits (a) a typical coaxial line, (b) a rectangular waveguide, and (c, 

d) micro-strip lines in which the attenuation of the EM field by a sample can be 

measured. Different geometries in a transmission line develop different wave propagation 

modes. A transverse electromagnetic (TEM) wave propagation mode is that in which 

both fields, electric and magnetic, are perpendicular to the direction of wave propagation. 

A transverse electric (TE) wave is one where the electric field is perpendicular to the 

direction of propagation, but there is no restriction for the magnetic field, allowing 

magnetic field in the direction of propagation. A transverse magnetic (TM) wave is the 

opposite of a TE, allowing the electric field in the direction of wave propagation, but 

restricting the magnetic perpendicularly to the direction of propagation. 

A coaxial line will primarily develop TEM waves, whose electric and magnetic 

fields are perpendicular to the direction of wave propagation. It can also support other 

modes such as the TE11 but they are of less relevance [1]. Figure C.2 depicts the most 

important wave propagation modes in a coaxial line. A radial polarization is imposed by 

this geometry for the TEM mode. 
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Figure C.1. Transmission line fixtures for electromagnetic attenuation measurements (a) 

an Electro-Metrics EM-2107A split coaxial line 50Ω, (b) WR340 rectangular waveguide 

with representative load and reference specimens 50Ω, (c) a 50Ω FOCUS Microwave 

Inc. PTJ-2-APC7 slotted micro-strip transmission line and (d) a 50Ω custom-made 

continuous micro-strip transmission line. 

 

Figure C.2. Coaxial transmission line fields (a) TEM mode and (b) TE11 mode. Adapted 

from [1]. 

(a) (b) 

(c) (d) 
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For a micro-strip line, a quasi-TEM mode is primarily developed. Figure C.3 

displays the geometry and fields for a micro-strip line. Notice the vertical wave 

polarization for the region in between the conducting trace and the underlying ground 

plane. 

 

Figure C.3. Micro-strip line: (a) geometry and (b) field lines in a quasi-TEM mode [1]. 

 

The wave modes developed in a rectangular waveguide are far more complicated. 

Figure C.4 displays the different modes that a rectangular waveguide supports. The 

predominant modes are the TE10 and TE20 that display vertical wave polarizations 

(perpendicular to the largest dimension of the waveguide) [1]. 

 

C.2 References 

1. Pozar DM. Microwave Engineering. United States of America: Addison-Wesley 

Publishing Company, Inc., 1990, 2005. 

2. Ramo S, Whinnery JR, Van Duzer T. Fields and Waves in Communication 

Electronics. United States of America: John Wiley & Sons, Inc., 1984. 
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Figure C.4. Wave modes in a rectangular waveguide. Electric and Magnetic fields continuous and discontinuous, respectively. 

Adapted from [2].  
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