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ABSTRACT 

The annual global consumption of petroleum-based plastics is approximately 280 

million tons and is impacting the sustainability of our planet and prosperity of future 

generations.  One solution is the development of bio-based polymer materials with 

advanced properties for commercial applications. Therefore, the ultimate goal of this 

dissertation is to investigate the properties of new bio-based materials for broader 

applications. This dissertation includes two research areas: cellulose nanocomposites, and 

CO2 extractions of rendered fat. In the first half, cellulose nanocrystals (CNCs), which 

exhibit excellent mechanical and optical properties, were investigated for the 

reinforcement of a biodegradable polymer.  The properties of these nanocomposites were 

studied to intellectually contribute to the understanding of the reinforcement mechanisms 

of CNC nanocomposites. In the second half, a more efficient and greener extraction of fat 

from rendered materials (RMs) was explored to broaden their potential applications, 

which include protein-based polymers and biofuels. 

Since CNCs are hydrophilic, surface modification with various surfactants was first 

accomplished in this research, increasing the dispersion stability in non-polar solvents by 

at least a month. Only 1 wt.% of surfactant with respect to CNCs was needed to afford a 

significant increase in the CNC stability, representing a much lower percentage than the 

values reported in the literature. Moreover, these CNCs showed the ability to self-

assemble into local liquid crystal structures, a potential advantage for polymer 

reinforcement. CNCs were subsequently investigated as an additive for polylactic acid 

(PLA), which is the most widely used synthetic biopolymer in the market.  CNC addition 
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yielded a 61% increase in toughness at 1 wt.% CNC load. The tensile strength and 

modulus were not affected by the CNC addition, addressing one of the most frequent 

issues in the toughening of polymers. In addition, polarized microscopy revealed self-

assembly formation of the enhanced composites indicating that the reinforcement was 

influenced by the CNC nanoscale structure on the matrix. These structures were found to 

be distributed in different directions along the extrusion line, suggesting that an angled 

CNC orientation favored a higher toughness as observed in natural cellulose fibers. PLA 

was also modified by grafting polyacrylic acid (PAA), which provided a stiffer and more 

hydrophilic surface for the addition of unmodified CNCs. In this case, the toughness of 

the PLA copolymer decreased with CNC concentration, while the tensile modulus 

increased. This effect was attributed to an increase of polymer crystallinity upon addition 

of CNCs, probably due to an enhanced compatibility provided by the PAA chains. 

For the purpose of obtaining a more efficient separation of proteins and fats from 

RMs, liquid and supercritical CO2 (LCO2 and SCCO2) were explored as solvents for the 

extraction, demonstrating the ability to extract up to 97% of the fat in the RMs. Higher fat 

solubilities in LCO2 were obtained compared to SCCO2, a result attributed to a retrograde 

phenomenon. These results are advantageous for the separation of rendered fats at 

relatively low temperatures and pressures, obtaining higher yields than screw pressing 

currently used in the industry. However, this extraction requires high amounts of CO2 due 

to low fat solubilities. This issue was addressed using CO2-assisted mechanical 

extraction, resulting in yields up to 81%, representing a 98% increase compared to 

conventional extraction, and significantly reducing the amount of CO2 for the extraction.  
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND  

 The technological and industrial developments of the last half century have led to 

an increasing consumption of resources and generation of waste, impacting the 

sustainability for the future generations.1  This situation has raised awareness among 

governments, businesses and research institutions, all of which have increasingly invested 

more resources in sustainable development.  In particular, the area of plastics and 

materials has taken an important role in this philosophy of sustainability and green 

chemistry by focusing on a wide variety of new bio-based materials for advanced and 

commercial applications.2, 3  These types of materials are derived from or composed 

totally or partially by biological matter derived from biomass,4 meaning they are 

produced from renewable resources and are generally regarded as biodegradable, 

biocompatible, and exhibit low toxicity as they degrade.5 

Bio-based materials are of interest not only because of the interest on sustainable 

materials, but also because of their potential application in the fabrication of novel 

advanced functional materials.6  Such advanced materials must possess a combination of 

properties that can outperform conventional materials. These characteristics range from 

common mechanical and thermal properties (strength, toughness, density, thermal 

degradation) to novel properties including shape memory, optical properties, stimuli-

responsiveness, and others. Among these materials, biopolymers such as cellulose and 
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polylactic acid, which are widely known for various applications, represent a focus of the 

current research.  

Cellulose Nanocrystals 

 Cellulose is the most abundant biopolymer on earth and is produced by plants, 

trees, bacteria, and animals, such as tunicates, via the condensation polymerization of 

glucose.7  It is a polycarbohydrate composed of a series of cellubiose units, formed by 

two anhydroglucose subunits as shown in Figure 1.1, and it has the unique property that it 

cannot be synthesized from or hydrolyzed into monosaccharaides.8  This unique property 

is a result of the structure of the cellulose and its intricate hydrogen bond network, which 

prevents this biopolymer from melting or dissolving in common solvents.9  This network 

is also responsible for the high mechanical properties of cellulose that are important for 

its function in nature, as well as making it suitable for composite reinforcement 

applications.8      

 
Figure 1.1. Chemical structure of cellulose. 

Since its discovery in 1832, the physical and chemical properties of cellulose have 

been widely studied,10 leading to a current worldwide production in excess of 1010 tons 

each year, primarily used in paper, textile, materials and chemical industries.11 However, 
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it was not until approximately 60 years ago that stable colloidal dispersions of crystalline 

cellulose were first reported and identified as needle-shaped.12, 13 The first investigation 

of this cellulose as a reinforcement material was published in 1995,14 leading to an area 

of increasing research interest in the advanced bio-based materials field.8  

 
Figure 1.2.  Schematic representation of the structure of cellulosic materials:  from the 
cellulose sources to the cellulose molecules. Reprinted with permission from ref 11. 
Copyright 2012 Elsevier.       

These needle-shaped particles, which exhibit high crystallinity, are isolated usually 

through acid hydrolysis, removing the amorphous cellulose regions from the elementary 

units, or microfibrils, which form the so-called microfibrillated cellulose as observed 

schematically in Figure 1.2.11 These microfibrillated fibers form a larger pack called 

cellulosic fiber, which also forms the cell walls of plant matter. The dimensions of these 
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units are dependent on the source of cellulose (Table 1.1), ranging in values below 50 nm 

wide and between 35 and 3000 nm long.10 These crystalline elementary structures are 

also referred to as cellulose nanocrystals, nanowhiskers, whiskers, nanofibers or micro-

crystallites,7 and for the purpose of this research they will be referred to as cellulose 

nanocrystals (CNCs).  

Table 1.1. Dimensions of CNC from different sources.10 

Cellulose Source Length (nm) Width (nm) 

Bacterial 100 – 1000 10 - 50 

Cotton 150 – 210 5 - 11 

Microcrystalline cellulose 35 – 265 3 - 48 

Ramie 150 – 250 6 - 8 

Sisal 100- 500 3 - 5 

Soft Wood 100 – 150 4 - 5 

Hard Wood 140 – 150 4 - 5 

Tunicate 1000 – 3000 15 - 30 

Tunicate --- 8.8 x 18.2 

Valonia >100 14 - 18 
 

CNCs have received significant research attention due to their low toxicity, 

abundance, and renewability, but more importantly, due to their high strength (10 GPa),15 

high modulus (143 GPa),16 and low density (1.6 g/mL). CNCs have a higher elastic 

modulus than Kevlar and higher tensile strength than steel wire, while having only a 

fraction of the weight (Table 1.2).17 As a result of these properties, CNCs have significant 

potential as reinforcement fillers for nanocomposites; however, the proper surface 

functionalization has to be conducted to make them compatible with the matrices.  
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Table 1.2. Mechanical properties of several reinforcement materials and crystalline 
cellulose.17  

Material ρ (g/cm3) σf  (GPa) EA  (GPa) 

Kevlar-49 Fiber 1.4 3.5 124-130 

Carbon Fiber 1.8 1.5-5.5 150-500 

Steel Wire 7.8 4.1 210 

Clay Nanoparticles --- --- 170 

Carbon Nanotubes --- 11-63 270-950 

Boron nanowhiskers --- 2-8 250-360 

Crystalline Cellulose 1.6 7.5-7.7 110-220 

ρ = density, σf = tensile strength, EA = tensile modulus in axial direction. 
 

CNC Preparation and Surface Functionalization  

Native cellulose is hydrophilic due to the abundance of hydroxyl groups on its surface 

and furthermore the intermolecular forces between CNCs are significant. Therefore, the 

appropriate isolation and surface modification has to be conducted to increase the CNC 

dispersion forces (steric or electrostatic) in solution or compatibility with other matrices 

(hydrophilic or hydrophobic). CNCs are primarily isolated through controlled acid 

hydrolysis from a variety of sources as exemplified in Table 1.1. This reaction involves a 

rapid protonation of glucosidic oxygen by protons from the acid (Figure 1.3), which will 

preferentially hydrolyze the amorphous regions of the cellulose fiber due to a better 

accessibility compared to the crystalline regions.10  
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Figure 1.3. Schematic representation of the isolation of CNCs by acid hydrolysis using 
sulfuric, hydrochloric, and acetic acid. a) Hydrolysis mechanism; b) esterification of 
cellulose surface; and c) macro-scale representation of the CNC isolation from pure 
cellulose, showing the crystalline and amorphous regions.  
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The functionality of the CNCs is initially determined by the nature of the reactant 

used for this isolation as observed in Figure 1.3. For instance, isolation with sulfuric acid, 

one of the most common in the literature, introduces charged sulfate groups,18 while 

synthesis with hydrochloric acid (HCl) yields hydroxyl groups on the surface.19 These 

two modifications do not reduce the hydrophilicity of CNCs; however, other methods 

such as the reaction with acetic acid will reduce hydrogen bonding and thus also the 

hydrophilicity. This method proposed by Braun and Dorgan,20 which is based on a Fisher 

esterification, is a one-step hydrolyzation that combines a carboxylic acid (acetic acid) 

with a small amount of an acid catalyst such as hydrochloric acid. This reaction produces 

acetylated CNCs that can be dispersed in water and some organic polymers.   

Surface modification of CNCs is challenging to alter only the surface of the crystals, 

thus preserving their morphology and integrity. Many successful surface modifications 

have been reported in the literature, such as silylation, polymer grafting, acetylation, 

oxidation and non-covalent modification including the absorption of surfactants.10 A 

widely known modification is the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-

mediated oxidation, which is a reaction that introduces negatively charged carboxyl 

entities (-O-COO-) according to the mechanism shown in Figure 1.4, and induces 

electrostatic stabilization of CNCs in water.21-23 However, CNCs obtained using this 

method and sulfuric acid synthesis exhibit low thermal stabilities, a disadvantage for the 

melt processing of polymer nanocomposites.24-26 For this reason, there is the need for 

alternative modifications that do not compromise the morphology and thermal stability of 

CNCs.  
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Figure 1.4. Reaction mechanism of the TEMPO-mediated oxidation of  CNCs. Reprinted 
with permission from ref. 23.  Copyright 2008 Springer.   

The addition of surfactant is another feasible option among these possibilities due to 

the simplicity of the addition and the inalterability of the CNC structure. The use of 

surfactants coupled with an alternative isolation method that maintains the CNC thermal 

properties, such as acetylation using acetic acid,20 are used in this work.    

Optical Properties and Self-assembly of Cellulose 

It is well-known that rod-shaped particles spontaneously self-assemble to form 

ordered anisotropic structures or liquid crystals (LC) above a critical concentration.27 In 

the case of CNC suspensions, display of birefringence was first observed by 

Marchessault et al. in 1959,28 but it was not until the early 1990s that Revol et al.29 

observed the chiral nematic structure of sulfuric acid synthesized CNCs.  
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A birefringence (“bi” refraction) can be observed when light passing through a LC 

material is refracted into two rays traveling at different velocities. These rays vibrate 

parallel to the axes of the LC (n1 and n2) and at right angles of each another (Figure 1.5). 

When a birefringent or anisotropic material is placed between cross-polarized films, the 

vibrating rays are filtered in the direction of the second polarizer (also called the 

analyzer), resulting in a retardation effect between the rays displayed as a bright or 

colored phase. Often, a retardation filter is inserted between the sample and the analyzer 

to study the specific orientation of the axis of the LC. A first order (full wave) plate 

introduces a relative retardation of one wavelength, allowing visibility of the colors blue 

and yellow for LC material oriented at 45° and -45°, and magenta for the 0, 90° and 

disoriented material.     

 

 
Figure 1.5. Schematic of the optical birefringence observation with cross-polarized 
films.30 
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The formation of LCs, among other factors, is an indication of a good CNC 

dispersion in and compatibility with solvents or polymer matrix, resulting in interesting 

optical and structural properties.31, 32 LCs are structures that can flow as a liquid but have 

the order of a solid. There are two main types: thermotropic, for which the order is altered 

by temperature; and lyotropics, which are formed in suspensions and their organization is 

affected by concentration and temperature.32 LCs are also classified depending on their 

structure as (i) nematic, (ii) chiral nematic, or cholesteric, and (iii) smectic. The first is 

characterized by the orientation of the rods along a director; the second is the nematic 

structure twisted along an axis perpendicular to the director, and the third exhibits both a 

directional and positional order as seen in Figure 1.6. 

 

 
Figure 1.6 Types of liquid crystals: nematic, smectic and cholesteric.33  
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The formation of lyotropic LC phases occurs at a certain critical CNC volume 

concentration (ΦI), which is dependent of both the nanocrystal aspect ratio (length to 

diameter) and solvent quality.32 At dilute concentrations, the nanocrystals move freely in 

the solvent; however, increasing concentration inhibits their movements as depicted in 

the schematic in Figure 1.7. When a certain critical concentration is reached, some of the 

CNCs form an anisotropic phase in equilibrium with an isotropic one to form a biphasic 

system in equilibrium. As the concentration continues to increase, the suspension 

becomes fully anisotropic at a second critical concentration (ΦA). However, in some 

cases, the viscosity of the suspensions increases rapidly with the concentration, reducing 

phase separation rate and inhibiting the formation of the full anisotropic LC phase.31 This 

effect is commonly observed for the stable suspensions of CNCs lacking electrostatic 

repulsions, as in the case of acetylated CNCs as shown in Figure 1.8.  

 

 
Figure 1.7. Phase behavior of fluid dispersed rods. Reprinted with permission from ref. 
32.  Copyright 2004 American Chemical Society.       

Sulfuric acid synthesized CNCs are known to exhibit excellent colloidal stability and 

readily organize into chiral nematic phases, which are considered to be the most 
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organized structure.29, 34 This type of assembly is revealed by the appearance of 

“fingerprint” patterns observed under polarized microscopy, due to optical rotatory power 

and the helicoidally packing of the CNCs.7, 10 It was initially believed this chiral nematic 

behavior occurred only in the presence of surface charges.29 However, it was later found 

that this LC phase was achieved in toluene by screening out the surface charge via the 

addition of surfactants.35 This modification resulted in better packing than for sulfate-

charged CNCs in water probably due to the attractive forces between the solvent and the 

cellulose. It was later confirmed that the origin of this spontaneous self-assembly was due 

to the helicoidal structures of CNCs, which are also observed in cellulosic materials in 

nature.10 On another hand, when the cholesteric phase is not reached, a nematic lyotropic 

suspension is often observed perhaps due to the reduced interfacial interactions, CNC 

morphology and the increased viscosity of the suspension. These two scenarios are 

depicted in Figure 1.8. Further research in this phase behavior in organic solvents is 

important in order to diversify the use of CNCs, more specifically in the nanocomposites 

field where many polymers are compatible with organic solvents. 
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Figure 1.8 Phase behavior of CNC suspensions. (a) Sulfuric acid-synthesized CNC 9.5 % 
(w/v) cholesteric LC phase separation and polarized microscopy. Reprinted with 
permission from ref. 36.  Copyright 2012 Taylor and Francis. (b) Acetic acid-synthesized 
CNC 8.5% (w/v) nematic LC suspended phase and polarized microscopy  

Cellulose Nanocrystals as a Reinforcement Filler 

The first fiber-reinforced materials were developed at the beginning of the 1900s 

using cellulose in phenolic and urea.37 However, it was not until 20 years ago that the 

first investigation using nanocellulose for polymer reinforcement was proposed by Favier 

et al.14 Since then, much research attention has been placed on exploring the reinforcing 

mechanisms, cost-effective production, broadening the range of applications, and 
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developing modifications to take advantage of the excellent mechanical properties of 

cellulose.2, 8, 38-41 

The advantages of using cellulose nanocrystals over other nanorod fillers, such as 

carbon nanotubes and nanoclays, include the attractive mechanical properties of the 

CNCs as presented previously in Table 1.2, as well as the renewability, biocompatibility, 

biodegradability and abundance of cellulose.2, 8, 39, 40, 42  However, nanocelullose may not 

be able to compete with nanoclays and carbon nanotubes in some areas of application. 

For example, carbon nanotubes have shown to increase, among other properties, the 

flame retardation and electromagnetic shielding of nanocomposites, which are of interest 

for a variety of applications from consumer electronic devices to security products.42 For 

nanoclay composites, their increased UV protection and gas and vapor barrier properties 

provide to this filler an advantage in the food packaging fields.43 Although previous 

research in this area has demonstrated the ability of CNC to reduce gas permeability;44 

nanoclays have been found to be more effective for polymers than nanocellulose fillers.45 

CNCs can provide such added advantages as good transparency and optical properties, 

both of which are advantageous properties in the packaging field, as well as for electronic 

devices including displays, solar cells and organic light emitting diodes.42, 46  

Furthermore, cellulose biocompatibility and biodegradability increase potential 

applicability in the biomedical and tissue engineering fields.47   
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Figure 1.9 Schematic representation of the reinforcement mechanisms for CNC 
composites with low aspect ratios. E= modulus; σ=strength; ε=elongation at break. Red 
color indicates poor adhesion with the matrix. *Network may form at higher 
concentrations; **Network may phase separate if extremely incompatible, resulting in 
reduction of properties. Low loads: <~10%; high loads: 10%-30% 
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Reinforcement Mechanisms  

The mechanical properties of CNC composites vary depending on a number of factors 

such as functionality, polydispersity, nanocrystal morphology, and the processing 

conditions.10  The two possible mechanical enhancements produced by CNCs reported in 

the literature are on one hand the strength and modulus, and in the other the elongation at 

break and toughness.8  The reinforcement mechanisms for each case seem to be 

dependent, among other variables such as the viscoelasticity of the polymer,48 on the 

filler-filler and filler-matrix interactions as illustrated in Figure 1.9.  

Influence of CNC functionality  

Tensile strength and elastic modulus typically increase at high CNC filler 

concentration (>~10% depending of the aspect ratio) due to a percolation network 

formed.8  The percolation is a statistical theory that applies to species that are likely to 

connect with one another.  The goal of this theory is to predict the behavior of this set of 

objects by taking into account various parameters such as particle interaction, orientation, 

and aspect ratio.49 The concentration at which the percolation network forms is referred 

to as the percolation threshold or the critical percolation volume fraction (XPN). This 

concentration depends mainly on the aspect ratio of the fillers, but is also influenced by 

the filler-matrix interactions. Favier et al.50 proposed an equation to estimate this volume 

fraction for cylindrical-shaped particles as a function of their aspect ratio, XPN=0.7/A, 

where A=L/w (length/width). As an example, CNCs with an average length of 250 nm 

and width of 30 nm, begins the network formation at approximately 8.4 vol.%.  
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If the percolation network is formed for CNCs, the strong filler-filler interactions, 

resulting from the hydrogen bonding of the cellulose, are responsible for the stress 

transfer, increasing the strength and modulus even when low filler-matrix interactions 

exist.10  However, CNCs with only hydroxyl groups on the surface tend to form 

agglomerates due to the strong attractive interactions.  In contrast, partially surface-

charged CNCs have shown to exhibit good balance between electrostatic repulsion and 

hydrogen bonding for the percolation network to form without significant 

agglomerations. On the negative side,  composites with this reinforcement mechanism 

exhibit reduced toughness due to the rigid nature of both CNCs and the percolation 

network. 

However, if the filler-matrix interactions are of the same order or stronger than the 

filler-filler interaction, an enhancement of the elongation at break and toughness of 

composites at low filler contents is usually observed.10 At higher concentrations (~5%), 

this reinforcement effect can decrease due to the formation of agglomerates,51, 52 which is 

an effect that has been attributed to a lack of surface charge.53 This behavior is primarily 

observed in hydrophobic composites since steric repulsions are required for improved 

compatibility, rather than electrostatic interactions. For surface-charged particles, 

toughening can occur at higher concentrations (10-15%) without agglomerations but 

before the critical percolation network.  Many theories have been proposed explaining the 

toughening of polymers with rigid nanorods. Among these are the formation of 

microvoids,54 crack bifurcation and crack path alteration,55 interfacial debonding,56 and 
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shear yielding resulting from the difference between the Young’s moduli of the filler and 

the matrix.57  

Influence of the CNC morphology  

As shown in Table 1.2, the modulus of CNC is much higher than other fillers and 

polymeric materials. Therefore, it is expected that the modulus of the nanocomposites 

may also be increased. The modulus enhancement depends significantly on the aspect 

ratio of the filler and on the strong filler-matrix interactions, resulting in an efficient 

stress transfer. According to the Halpin-Tsai model,58 only nanorods with aspect ratios 

larger than 50 can guarantee an efficient reinforcement effect on the composites. CNC 

aspect ratios vary depending on the source and the type of synthesis as presented in Table 

1.1. As this table shows, the aspect ratios for most nanocrystals are less than 40, 

indicating that the addition of CNCs may not have a significant impact on the modulus of 

the composite at low concentrations.   

The nanofiller morphologies are determining factors in the enhancement of 

nanocomposites mechanical properties. Recent studies have demonstrated that higher 

aspect ratios, or nanofibers compared to nanocrystals, can increase the three properties of 

tensile strength, modulus and toughness.56, 59 The increase of the modulus was attributed 

to the long aspect ratios with strong filler-matrix interactions that effectively transferred 

the stresses. On the other hand, higher tensile strength and elongations at break were 

attributed to relatively dispersed entanglements (below 7%) that were shown to bridge 

and craze at multiple locations, thus dissipating the energy at break. However, for the 
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same functionality, nanocrystals were shown to increase the elongation at break more 

than the nanofibers.56 

Influence of the processing method 

The processing method also plays a significant role in determining the properties of 

the nanocomposites. Film casting with evaporation yields the best performance when the 

goal is to form the percolating network, since CNCs have adequate time to interconnect 

during this slow evaporation process. In contrast, when hot pressing is used, the high melt 

viscosities may reduce the random movements of CNCs, limiting the formation of the 

network. In addition, the shear stresses that occur during extrusion processing induce 

filler alignments in the matrix and further limit the interconnections of the CNCs, 

retarding the formation of the percolation network.60 Therefore, in addition to considering 

the filler-matrix interactions and CNC morphology, the correct processing method must 

also be chosen to target the enhancement of specific properties.       

Biomimicry 

Another important parameter for the reinforcement of composites is the nanoscale 

structural orientation of cellulose. Previous research in our group has found that the 

mechanical properties can be influenced by a spiral orientation of the CNCs in the 

composite.36 This behavior was found to be similar to the nanostructures observed in 

natural cellulose fibers, which also seem to control the strength and flexibility of various 

trees and plants.61 Studying these structure-property relationships are of significant 
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interest in tailoring the nanofiller assembly for the development of composites with 

processing-induced tunable properties.   

 
Figure 1.10. Examples of colors observed in nature due in part or completely to ordered 
structures. (a) Butterfly wings; (b) mantis shrimp eyes and exoskeleton; (c) peacock 
feathers; (d) moth eyes.  

This concept of seeking motivation and insight from nature is referred to as 

biomimicry (from bios, meaning life, and mimesis, meaning to imitate) and includes the 

emulation of nature, its systems, models, processes, and elements to solve human 

problems. There are many every day examples of this in science, including the emulation 

of shark skin in the fabrication of swimming suits or the burr structure in the invention of 

Velcro, among others. Another interesting property that nature offers is a variety of 
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optical effects due to arrangements and structures of materials ranging from the nano- to 

macroscale level and that are produced by physical and chemical methods.6 Examples of 

these structures are presented in Figure 1.10. For instance, the colors in butterfly wings 

and moth eyes are produced by either thin-film interference or diffraction, both of which 

depend on ordered microstructures. In thin-film interference, coloration is due to 

alternating layers of high and low refractive index materials.62 This behavior is also 

observed in other animals such as peacocks and mantis shrimp, which is considered one 

of the animals best able to perceive light.  

The self-assembly of CNCs has been shown to exhibit such optical properties due to 

the micro-scale arrangements in suspension and nanocomposites. These optical properties 

and structural color appear to emulate those found in nature, and therefore, it becomes 

important to study the structures that nature has perfected for many years and learn from 

them in order to design new materials with analogous properties. Some of the potential 

applications of these new materials can range from security papers to decorative coatings. 

Nanocomposites having such nanoscale structures produced with bio-based, 

biodegradable matrices have the potential to offer added advantages for the development 

of sustainable advanced materials.             

Biodegradable Polymers 

Although petroleum-based polymers are an invaluable invention that have 

revolutionized our society over the last century, a result is an annual production of 

approximately 280 million tons of plastic for a variety of applications (Figure 1.11).63 
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The resistance of these synthetic polymers to chemical, physical and biological 

degradation has raised concerns in the medical, agricultural and environmental fields, due 

to the amount of waste and degradation issues. This has provided motivation for the use 

of and research on alternative materials that can satisfy the conditions of 

biodegradability, low toxicity degradation products and biocompatibility without 

compromising on performance.5  

Biodegradable polymers are by definition polymeric substances susceptible to 

degradation though biological activity that lowers the molecular weight of the 

macromolecules forming the material.4 However, this definition has been broadened to 

include other polymers that undergo complete degradation by other means such as 

hydrolysis.  

 

 
Figure 1.11. End-use applications of plastics in Europe in 2011.63   
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The market for biodegradable polymers has been gradually increasing because of the 

various improvements and modifications over the last twenty years. In 2011, the 

production of biodegradable polymers reached approximately 490,000 metric tons, a 64% 

increase from the 2010 production.64 Even though these numbers appear to be significant, 

the total bioplastic production only represents approximately 0.2% of the total market of 

synthetic plastics worldwide in 2011.63 Polylactic acid is the most widely used 

biopolymer, accounting for 38% of the biopolymers market in the same year.64 

Polylactic Acid   

Polylactic acid (PLA), a biodegradable, aliphatic polyester derived from lactic acid,65 

has received much research attention as a potential alternative to traditional petroleum-

based plastics due to its high tensile strength and tensile modulus, both of which are 

comparable to conventional polymers such as PET (Table 1.3 ).66 In addition, PLA has 

been confirmed to naturally degrade in soil and compost, resulting in non-toxic 

degradation products.67    

PLA was first developed in 1893 and was first marketed in 1954 for medical 

applications such as sutures and implants. The commercial production of PLA began in 

1992 in Japan by Kanebo Gohsen, Ltd., under the name Lactron, followed by other 

countries such as France and the US. In 2002, Cargill Dow, LCC, began commercial 

production of PLA from starch in the USA.69 Later in 2005, this segment of Cargill Dow 

became NatureWorksTM, and is currently the major PLA manufacturer in the world.70 The 
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approximately 187,00 tons of PLA produced worldwide are primarily used in short-lived 

applications such as packaging, bottles and disposable cups and plates.64  

Table 1.3. Representative properties of common petroleum-based polymer and PLA.68 

Polymer Density Tensile 
Modulus 
(GPa) 

Tensile 
Strength 
(MPa) 

Elongation at 
Break (%) 

Polyethylene 
(LDPE) 

0.92 0.2-0.3 8-30 100-900 

Polyethylene 
(HDPE) 

0.96 0.8-1.5 28-32 10-300 

Polypropylene 0.9 1.1-1.5 25-33 50-300 
Polystyrene (general 
purpose) 

1.05 3.3-3.4 34-36 1-2 

PVC (unplasticized) 1.4 2.8-3.0 50-55 60 

PET 1.4 3.0 50-75 60-300 
Nylon 6/6  
(PA 6.6) 

1.1 2.9 60-80 60-80 

ABS 1.04 2.1-2.4 20-55 8 
Polycarbonate 1.2 2.3-2.4 60-110 100-110 
PLA 1.24 3.0-3.5 26-144 3.5-8.1 

 
PLA offer many advantages, including i) the production through fermentation of 

renewable sources such as corn; ii) non-toxic degradation products and the ability to 

recycle back to lactic acid through hydrolysis; iii) reduction of landfill volume; iv) the 

ability to tailor physical properties through material modifications; v) a reduction of the 

manufacturing energy needed compared to conventional polymers; and vi) the reduction 

of net greenhouse gas emissions.71 PLA decreases the net emissions of CO2 to the 

environment, which is believed to be the most important contributor to global climate 

change.72  The net greenhouse gas emission, calculated as the total emissions from the 

cradle to factory gate minus  the CO2 needed for the corn production, is negative for the 
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current PLA production.73 This value is estimated to be approximately (-) 0.7 kg of CO2 

eq./kg of polymer compared to the (+) 2.0 and higher for conventional polymers.74 In 

addition, its production requires 25-55% less energy than petroleum-based polymers 

because of its relatively lower melting temperature, resulting in important economic 

benefits as well.69, 75 

Modification of Polylactic Acid  

Despite many advantages, PLA production and applications are still limited by its 

brittleness and low gas barrier properties.76 To solve these problems, a number of 

additives and modifications have been applied to PLA in recent years such as 

plasticizers77, 78, fillers 41, 79 and grafted polymers.80, 81 Frequently, one type of 

modification may enhance one property but decrease another one. For instance, the 

addition of plasticizers is known to significantly improve the elongation at break and 

toughness, but it also reduces the tensile strength and modulus. Finding an appropriate 

combination is key for the reinforcement of the mechanical properties without the 

significant reduction of the others.  Furthermore, retaining the biodegradable and 

biocompatible properties is highly desirable.   

The combination of PLA with nanorod fillers has been shown to significantly 

increase the PLA properties needed for food packaging, medical and tissue engineering 

applications.72 Nanoclays, carbon nanotubes and cellulose nanocrystals are among the 

most explored materials, and as discussed before, each offers different advantages. PLA-

CNC composites may exhibit advantages compared to other fillers due to complete 
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biodegradability, biocompatibility, and desirable optical properties, among others. CNCs 

have been shown to increase various properties depending on their morphology.  Among 

these properties are tensile strength and modulus,82-84 toughness,59 crystallinity, 83, 85  and 

gas barrier.86  The use of CNC in the reinforcement of PLA is still an area of opportunity 

and much research is needed to obtain a fundamental understanding of the structure-

property relationships as well as more efficient CNC incorporation, reduction of 

agglomerates in the composite, and improved compatibilities.87 New findings in the area 

of nanocomposites are of significant importance for the advancement of biopolymers in a 

very competitive polymer market.   

Biomaterials Obtained from Animal By-products 

Biopolymers can not only be synthesized from carbohydrates such as corn in the case 

of PLA, but also from proteins due to the repeating amino acid sequence.88 Although 

protein-based polymers are not studied in this work, a more efficient separation of fat 

from proteins obtained from inedible animal parts is explored. The inedible by-products 

of animals are used for a variety of applications ranging from biofuels and fertilizers to 

consumer and industrial products: thus more efficient separations are of interest to the 

rendering industry.   

CO2 Extraction of Rendered Materials  

Rendered materials (RM) are produced from the inedible parts of animals produced 

for human consumption, which constitutes one third to one half of the total animal 
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mass.89 In 2009, for example, the US produced 33 million cattle, 113 million hogs, 245 

million turkeys and 8.6 billion chickens for human consumption. The inedible parts were 

processed in more than 200 rendering plants in North America, producing approximately 

18 billion pounds of RMs,  composed of 52% fats and the remaining 48% representing 

protein meals such as meat-and-bone and poultry meals.90, 91 The prices of these value-

added materials have increased significantly since 2006 due to higher demands in the pet 

food and biofuels industry.78 For example, meat and bone meal, which has the highest 

meal production, increased in price by 125% between 2006 and 2011, while inedible fats 

increased approximately 196% in the same period.91, 92         

RMs are used primarily as animal feed ingredients with 85% of the total production, 

including a fraction of the extracted fats, used for this purpose. The rest is used in a 

diversity of industries with nearly 3,000 applications identified.89 Much of the fat not 

used for animal feed is used in the manufacture of soaps and personal care products; 

however, since 2010 the biofuels industry, which has shown record production, has 

placed a significant demand on the fat from the rendering industry, more than doubling 

the amount of rendered fats used for biodiesel production and thus driving up the price.92 

In addition to bringing economic benefits to the meat industry, the rendering of 

inedible materials is also considered a green and environmentally friendly industry. This 

rendering process reduces the amount of waste, and recycles carbon and energy into 

valuable feed ingredients instead of ending in the landfills.91 93 The disposal and 

accumulation of unprocessed animal waste also represents a large source of potential 
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hazards for animal and public health, thus providing another significant benefit of the 

rendering industry. 

 
Figure 1.12 Schematic diagram of the current industrial production of rendered material 
and fat separation (blue) and the proposed methods investigated in this dissertation 
(green) 

Rendering Industry Process  

The current rendering process involves the application of heat, the extraction of 

moisture, and the separation of fat as depicted in Figure 1.12.90  First, the raw materials 

are ground to a consistent size and cooked with steam at temperatures ranging from 

115°C to 145°C for 40 to 90 min.90 Moisture is boiled off, and the fat associated with the 

solids is then mechanically removed by screw presses while the moisture associated with 

the extracted fat is separated using centrifuges in the fat clean-up. The two primarily 
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products of this process are the fats (greases, tallow, lard and poultry fat) and the protein 

meals, which contain 8-15% residual fat.   

Screw press separations offer the advantages of producing uncontaminated fats and 

low capital and operational costs, but this process has limited efficiencies, leaving 

valuable residual fat in the protein matrix. Extraction with organic solvents, e.g., hexane, 

is a well-known method for separating fats with more than 99% extraction yields, but 

produces low quality fat due to remaining traces of solvent, requiring refining for feed 

ingredients, and thus increasing costs and lowering the gate quality.94 Developing 

methods to increase extraction yields of high quality fat and protein meals can bring 

important economic benefits to the industry, especially with the increasing demand for fat 

for biofuels. Moreover, these low fat content proteins can potentially broaden 

applications, which include organic fertilizers, protein-based polymers, and low-fat pet 

foods.  

An alternative method attracting considerable attention for the separation of fats, oils, 

and other organic compounds is extraction with liquid or supercritical carbon dioxide 

(LCO2 or SCCO2).95-97 Past research has shown that SCCO2 extraction of flaxseed oil 

yields approximately 28% more fat than screw expression and only 9% less than hexane 

extraction.98 CO2 has the added advantages of facile CO2 recycling and complete fat 

separation with an FDA approved solvent, which leads to high-quality products for a 

diversity of value-added products.  
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Extractions with High Pressure CO2  

CO2 is a non-toxic, non-flammable, and relatively inexpensive solvent that has been 

used for a wide variety of applications including separations, reactions, and materials 

processing.97, 99 For example, the use of supercritical fluids in the food industry is widely 

established.99-101 The first commercial supercritical CO2 extraction was performed in 

1978 by Hag A.G in Germany to decaffeinate green coffee beans.102 Since then, 

commercial extractions with CO2 have expanded to decaffeination of tea, extraction of 

natural colors, natural flavorings, antioxidants, nutraceuticals, and hops, as well as the 

extraction of lipids and cholesterol from egg yolks, milk fat, beef and pork.99 The 

supercritical extraction of fats for the production of biodiesel is also a promising and 

expanding research area.96, 103   

 

Figure 1.13. Density of CO2 as a function of pressure. Critical point: 73.8 bar and 31.1 °C. 
Data obtained from NIST Chemistry Webbook. 104 
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SCCO2 is more frequently used than LCO2 because of the potentially better transport 

properties. The diffusivity of SCCO2 is one to two orders of magnitude higher than the 

liquid and the viscosity is on the order of a gas. Moreover, the density of SCCO2 is on the 

order of a liquid at pressures well above the critical pressure (Pc) as seen in Figure 1.13. 

The diffusivity and viscosity allow for better penetration throughout the matrices while 

the density, together with the fat volatility, determines the solubility of the fat in CO2. 

However, when there are no mass transfer limitations in the systems, i.e., SCCO2 and 

LCO2 have the same power of penetration, the extraction yields are primarily controlled 

by the fluid density and solute volatility.  

For many supercritical extraction systems, a retrograde solubility phenomenon may 

occur, where decreased solubility of the solute occurs at elevated temperatures for a given 

pressure. This phenomenon, which occurs below a pressure referred to as the “cross-

over” point, is the result of reduced solvent strength caused by reduced density in the 

high compressibility region of the fluid (i.e., close to the critical point) as seen in Figure 

1.13. The increased solute volatility due to the higher temperatures cannot compensate 

for the reduced solvation power due to lowered densities of certain types of solutes,102 

resulting in higher solubility at the lower temperatures. This phenomenon affords the 

advantage of using LCO2 at lower temperatures and pressures for extractions, a benefit 

for capital and operating costs as well as for the recovery of volatile and thermally labile 

components.105  
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Despite the advantages, high pressure CO2 extractions generally require a large 

volume of fluid because of the relatively low fat solubilities, between 0.491 to 6.474 g/L 

for rendering fats depending on pressure and temperature.106 To further increase the 

extraction efficiency, a process that combines mechanical pressure with high pressure 

CO2 has been shown to significantly reduce the required amount of this green solvent.95 

Gas-assisted mechanical expression (GAME) was first introduced by Venter et al. for the 

separation of cocoa butter.107 

 In GAME, a gas-expanded liquid is formed by saturating CO2 in the oil or fat, 

significantly reducing the viscosity of the mixture compared to pure fat.108 This reduction 

in the viscosity allows for an increase in the expression yield compared to conventional 

mechanical pressing, as the fats are drained more easily through the compressed bed.109 

Moreover, this reduction in viscosity is also accompanied by a reduction in the energy 

required for the pressing process.95 This process has been shown to have higher yields 

than conventional expression95 and requires less CO2 since the solubility of CO2 in the 

oils have been observed to be up to 50% higher than the solubility of oil in CO2.110, 111  

The schematic in Figure 1.12 shows schematically two proposed additions/ 

modifications to the current rendering process for a more efficient extraction of fat based 

on the two methods, LCO2 and SCCO2 extractions (P2), and GAME (P1), which are 

investigated in this dissertation.   
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Dissertation Outline  

The goal of this dissertation is to investigate the properties of new bio-based materials 

for the production of advanced materials with novel properties, intellectually contributing 

to the understanding of CNC reinforcement of conventional and bio-derived polymers. 

This area of CNC nanocomposites is a field of expanding opportunities, and much 

research is needed to obtain efficient CNC incorporation, reduction of agglomerates and 

improved compatibilities. The investigation of the structure-property relationships can 

also provide insight on the reinforcement mechanisms of these nanocomposites, all 

aspects covered in this work. Furthermore, in the second half of this dissertation 

(Chapters 5 and 6), two methods using high pressure CO2 are reported for a more 

efficient and greener fat separation of rendered materials, potentially opening new areas 

of application for these bio-based materials with new characteristics. 

As a first step, Chapter 2 reports on the surface functionalization of hydrophilic CNCs 

by surfactants in order to increase the compatibility with non-polar matrices. The 

surfactants decylamine, cetyltrimethyl-ammonium bromide (CTAB) and tetrahexyl-

ammonium bromide (THAB) were investigated in different organic solvents. These 

surfactants have been used with other nanomaterials such as in the stabilization of gold 

nanoparticles,112 but they have not been fully investigated for the stabilization of 

acetylated CNC. The goal of the surfactant is to reduce the CNC hydrophilicity for easier 

incorporation and enhanced compatibility with hydrophobic solvents and polymers. The 

dispersion stability and self-assembly of modified CNCs in these solvents were 



 34 

examined, obtaining important information about the molecular interactions and the 

degree of stability, knowledge which may be a key for the prediction of the reinforcement 

of polymers upon CNCs addition.  

The second step was to add the surface-modified CNCs to a biodegradable polymer to 

enhance its mechanical properties and to understand the effect of the CNC functionality. 

As discussed in this introduction, PLA is a versatile polymer with properties that need to 

be improved such as toughness to broaden its applications. In Chapter 3, surface-

modified CNCs were compounded with PLA in concentrations between 1 and 10 wt.% 

and the nanocomposite mechanical properties were tested. Decylamine- and CTAB-

modified CNC were used for the reinforcement of the PLA because of their good stability 

in organic solvents. The orientation of the CNCs on the PLA films was studied under 

polarized-light microscopy. The results obtained through these observations contribute to 

the understanding of the effect of the orientation of CNC on the mechanical properties of 

the composites.  

To further understand the reinforcement mechanisms of CNCs and to find other 

alternatives for the enhancement of PLA, a stiff and more hydrophilic polymer, 

polyacrylic acid (PAA), was grafted onto PLA and the effects of CNC addition were 

investigated. These results are presented in Chapter 4 for CNC concentrations between 1 

and 5 wt.% in the nanocomposite films. In addition, high molecular weight polyethylene 

glycol (PEG) was also added to PLA-PAA to compare the plasticizing effects obtained 

by using both modifying agents. Mechanical testing and polarized-light microscopy were 
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used again to study their properties. Differential scanning calorimetry was also conducted 

on these polymers obtaining their crystallinity percentage and the shift in glass transition 

temperature (Tg). 

In Chapter 5, liquid and supercritical CO2 were used for the extraction of the 

remaining fat from rendered poultry meal. This extraction offers higher efficiencies with 

potential ecological and economic benefits for the rendering industry. A continuous-flow 

extraction unit was used to investigate the effect of pressure (69-345 bar), temperature 

(25˚C, 40˚C and 50˚C), flow rate, and mass of CO2 on the extraction yield and the fat 

solubility. High fat extraction yields were obtained, and liquid CO2 was observed to be 

more effective than supercritical CO2 for the extraction of rendered fats under the 

conditions tested.  

For the purpose of decreasing the amount of CO2 used in the extraction and to better 

suit to the process already used in the industry, gas-assisted mechanical expression 

(GAME) is explored in Chapter 6. A combination of mechanical pressure (300 to 2,000 

bars), temperature (25 to 100°C), and high pressure CO2 (69 to 241 bar) were evaluated 

and compared to conventional mechanical expression.   

Lastly, work that is currently under investigation and that has a significant potential 

for future research is presented in Chapter 7. The application of CNCs as a substitute of 

silicon for the fabrication of microelectromechanical devices is proposed, and the 

preliminary results are included in this chapter. In addition, PLA composites with high 

concentrations of CNCs were found to display a colorful birefringence when observed 
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between cross-polarized films, and these colors were found to vary as a function of 

thickness or number of film layers. These findings have potential applications for security 

papers, decorative coatings, and materials that required optical properties. 
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CHAPTER TWO 

PHASE BEHAVIOR AND DISPERSIBILITY OF SURFACE MODIFIED 

CELLULOSE NANOCRYSTALS IN ORGANIC SOLVENTS BY MEANS OF 

SURFACTANTS  

Introduction  

Cellulose nanocrystals (CNCs) have attracted much attention for a diversity of 

applications such as nanocomposites, smart coatings, pharmaceutical applications, and 

electronic materials, due to their unique chemical, mechanical and optical properties.1 

They can be isolated via acid hydrolysis from a variety of sources including cotton, 

tunicate, and bacteria.2 Through this process, disordered regions of cellulose are 

preferentially hydrolyzed, while the crystalline regions resist the acid catalyzed 

hydrolysis, resulting in a crystalline, high performance material with nanoscale 

dimensions and unique morphology. These characteristics and others such as low density, 

low toxicity, abundance, and renewability make CNCs a prime material for advanced 

materials applications.2 

One of these applications is as potential reinforcement filler for polymeric matrices, 

which has attracted much attention in the last two decades due to the notable mechanical 

properties, high aspect ratios, and surface areas of the CNCs.3-7 CNCs, theoretically, have 

a higher elastic modulus than Kevlar and higher tensile strength than steel wire, while 

only having a fraction of the weight.8 Nanocomposites are a potential market for the 

production of cellulose, which is estimated to be between 1010  to 1011 tons each year, 
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which is mainly destined for  paper, textiles, construction materials and chemical 

industries.9 Evidence of the potential increase in the field of cellulose nanomaterials is the 

opening of the first nanocellulose plant in the U.S. in 2012, which is predicted to 

contribute $600 billion to the economy by 2020.10 However, some challenges still exist 

for the application of CNCs in different areas. One of these challenges is the reduction of 

the hydrophilicity of cellulose for a better compatibilization and dispersion of CNCs in 

non-polar polymeric matrices. 

The surface functionality of CNCs is initially determined by the nature of the acid 

used for the isolation of the nanocrystals. For instance, isolation with sulfuric acid, which 

is one of the most used in the literature, introduces charged sulfate groups,11 while a 

synthesis with hydrochloric acid only yields hydroxyl groups on the surface.12 

Functionalization after the isolation process presents the challenge of only altering the 

surface of the crystals and preserving the morphology and integrity of them. Many 

surface modifications have been successfully conducted in the literature, such as 

silylation, polymer grafting, acetylation, oxidation, and non-covalent modification, i.e. 

adsorption of surfactants.2 

A widely studied modification is the TEMPO-mediated oxidation which introduces 

negatively charged carboxyl entities that provide electrostatic stabilization of the CNCs 

in water.13, 14 Despite their stable dispersion in aqueous media, CNCs obtained by the 

TEMPO and sulfuric acid synthesis show low thermal stabilities, which are a 

disadvantage for the processing of nanocomposites.15-17 An alternative modification was 
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recently proposed by Braun and Dorgan who isolated CNCs by a combination of acetic 

and hydrochloric acid, producing more hydrophobic CNCs while maintaining a high 

thermal stability.18 These acetylated CNCs have a moderate stability in organic solvents 

that can be further increased by the addition of surfactants. 

The use of surfactants offers advantages such as ease of addition and inalterability 

of the nanocrystal morphology. The hydrophilic headgroup of the surfactant interacts 

with the surface of the cellulose while the hydrophobic tail has affinity for the organic 

solvent. The steric repulsion of the surfactant, coupled with the hydrophobic properties, 

make the cellulose more stable in non-polar substances. This concept was first introduced 

by Heux et al.,19 using esters of phosphoric acid as surfactants for cellulose microcrystals, 

obtaining improved dispersibility and self-organization in toluene and cyclohexane. Other 

modifications with surfactants were later conducted successfully.20-23 More recently, 

alkylamines17 and different quaternary salts24 have been absorbed into TEMPO-oxidized 

CNCs, obtaining good dispersions in non-polar and aprotic solvents. However, the 

fractions of these surfactants added to CNCs are usually high, ranging from 0.5:1 to 4:1 

(surfactant to CNC ratio). It is believed that high amounts of these additives can 

potentially affect the properties of the polymer matrix; therefore it is crucial to find better 

alternative surfactants.20 21 

The dispersion stability or phase behavior of CNCs in organic media is a key 

aspect for the understanding of the interactions of cellulose with both hydrophilic and 

hydrophobic matrices, and for the prediction of the enhancements to the mechanical 
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properties of nanocomposites. For example, Rojas et al. found that the addition of 

surfactants to CNCs enhanced the dispersion in THF and it correlated with favorable 

dispersions in polystyrene.21 The phase behavior of the CNC suspensions depends on 

many parameters such as polydispersity, surface functionality and aspect ratio. 

Acetylated CNCs with low degrees of substitution have the tendency to aggregate due to 

intermolecular hydrogen bonding25 and lack of surface charge.26 The addition of 

surfactants will alter the surface functionally and increase the steric repulsion, thus 

reducing the degree of flocculation. 

On the other hand, the ability of CNCs to self-assemble is also important for 

composite applications, and it is an indication of a favorable dispersion and solvent 

compatibility. There is an appreciable volume of literature that focuses on the self-

assembly of sulfuric acid and TEMPO-synthesized CNCs, which exhibit chiral-nematic 

ordering above a critical concentration.11, 27-29 However, further investigation is needed 

for other types of environmentally-friendly, thermally-stable CNC synthesis in order to 

understand their phase behavior and self-organization in organic media. 

In this work, the dispersibility of acetylated CNCs (CNC-AA) was investigated in 

three different solvents: tetrahydrofuran (THF), chloroform and ethyl acetate. 

Furthermore, decylamine (DA), cetyltrimethyl-ammonium bromide (CTAB) and 

tetrahexyl-ammonium bromide (THAB) surfactants were used to increase the dispersion 

stability of CNCs in the organic solvents. The amount of surfactant found to be required 

for the stabilization of CNC-AA was much lower than the surfactants that have been 
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utilized in the literature. The self-assembly of CNC-AA in organic solvents was 

investigated by visual examination of bulk samples in 2 mm path length cuvettes and 

using polarized microscopy with a red plate filter. CNCs showed the ability to self-

assemble in the stationary and shearing states when dispersed in organic solvents. 

Materials and Methods  

Materials 

Cotton ashless clippings filter aids from WhatmanTM were used as the cellulose 

source for the CNC synthesis. Glacial acetic acid, hydrochloric acid 37% w/v (HCl), 

tetrahydrofuran (THF), chloroform and ethyl acetate were all ACS grade products 

obtained from VWR. The surfactants decylamine (95% purity) and tetrahexyl-ammonium 

bromide (THAB) (99% purity) were ACS grade reagents obtained from Sigma Aldrich, 

and high purity grade cetyltrimethyl-ammonium bromide (CTAB) was obtained from 

Amresco. 

Synthesis of Cellulose Nanocrystals  

CNCs were isolated by both acid hydrolysis with HCl (CNC-HCl), and with a 

mixture of HCl and acetic acid (CNC-AA) as described in the literature.18 In the latter, a 

Fischer esterification reaction occurs between the hydroxyl groups and the acetic acid 

during the hydrolysis, introducing carbonyl groups onto the surface of the cellulose and 

resulting in the acetylated CNCs. In short, 15 g of cotton was soaked overnight in either 

300 mL of deionized water (DI) to prepare CNC-HCl or in 338 mL of acetic acid to 
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prepare CNC-AA.  For the CNC-HCl, 79.5 mL of 37% HCl was added to obtain a 

concentration of 2.5 M of HCl, and the mixture was heated to 103 °C for 60 min. For 

CNC-AA, 36.8 mL of DI water and 1.2 mL of 37% HCl was added and heated for 10 h at 

105 °C. When the reaction was finished, the mixtures were cooled in an ice bath and 

poured into 50 ml centrifuge tubes for a washing process. Three washes with DI water 

were carried out via centrifugation using 8,600 rpm for 3 min to completely precipitate 

the cellulose. These suspensions were recombined and sonicated in an ice bath with a 

Fisher Scientific 550 Sonic Dismembrator for 35 min (7 min pulse, 2 min rest, 5 cycles). 

The suspensions were washed again two more times or until a cloudy supernatant 

appears. This supernatant and the supernatant from a 2nd and 3rd additional 

wash/centrifugation steps are kept as the dispersed nanocrystals. The residue at the 

bottom of the tubes is discarded at the end of the separations. 

In order to transfer the CNCs to an organic solvent, aqueous suspension of CNC were 

precipitated at 14,000 rpm for 10 min and washed with acetone twice. For each wash, the 

cellulose precipitate was agitated in acetone using a vortex mixer (Vortex-Genie 2 

Scientific Industries, Inc.) until the CNCs re-suspended in acetone and then centrifuged. 

After the third precipitation, the desired solvent was added, and the suspension was 

vortex mixed for about 40 min until all of the CNCs were well dispersed. The surfactant 

was added at the desired concentration, and the suspensions were agitated again until no 

agglomerations were observed. For CNCs without surfactant, it would usually take longer 

periods of time to completely disperse in the organic solvent. CNC suspensions at higher 
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concentrations were made by evaporating the solvent to the desired volume to reach 

specific concentrations. 

Transmission Electron Microscopy (TEM) 

TEM images were obtained using a Hitachi 7600 with an accelerating voltage of 120 

kV. TEM samples were prepared using a nebulizer to spray 10 times diluted CNC 

suspensions (~0.01% w/v) onto a formvar carbon coated copper TEM grid (Ted Pella), 

followed by air drying at ambient conditions. 

Thermal stability  

Thermal gravimetric analysis (TGA) was performed on different cellulose 

materials using a TA instruments SDT Q600 at a heating rate of 10 °C/min. CNCs 

were first heated to 110°C for 25 min to eliminate any residual water and cooled 

again to 80 °C before ramping to 650°C. The run was carried out under nitrogen 

atmosphere (100mL/min) and then switched to oxygen for a ramp from 650°C to 

800°C. 

Determination of the Dispersion Stability  

Suspensions of 1% (wt/vol) of CNC-AA were prepared and placed in scintillation 

vials to study the phase separation over time. This was determined by visual examination, 

taking pictures periodically over the course of 4 weeks and measuring the relative height 

of the separated phase. Different concentrations of surfactant ranging from 1 to 20 wt. % 
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were added to the CNC suspensions in order to evaluate the effect of the surfactant 

concentration on the dispersion stability. This effect was studied by both visual 

examination and gravimetric analysis of the supernatant, or stable suspension, after 

centrifugation at 29 xg for 90 min.  

CNC Self-Assembly 

Imaging of bulk samples between cross-polarized films at various concentrations of 

CNC-AA were performed on suspensions held in 2 mm path length sealed cuvettes. An 8 

Watt fluorescent light box was used as the light source in a dark room for a better quality 

of the images. Shear-induced liquid crystals were studied using diluted concentrations of 

CNC-AA in scintillation vials and sheared with a magnetic stir bar.  The CNC-AA 

suspensions and dried films were also characterized with an Olympus BX-60 optical 

microscope using polarized filters and a 530 nm first order red plate (U-TP530). The 

suspensions were introduced in flat-sided capillary tubes (0.2 mm path length and 4 mm 

wide) obtained from Electron Microscopy Sciences and sealed with PVA-based glue. 

Results and discussion  

Morphology of isolated CNC 

The nanoscale dimensions of the CNCs are very important for many applications 

including the mechanical reinforcement of polymers. Figure 2.1 shows a TEM 

micrograph of CNCs dried from THF after the addition of DA, where the isolation of 

nanocrystals can be observed. The size distribution cannot be estimated due to the 
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agglomerate nature of the CNCs as observed in Figure 2.1, but an approximate average 

size was estimated to be 250 nm long and 35 nm wide. This result is close to the average 

crystal size (269 nm x 45 nm) reported in the literature for acetylated CNCs in aqueous 

suspension.18 The cellulose network formed after drying is expected to be reduced in 

suspensions if a good compatibility with the solvent is achieved. In general, it can be 

observed that the synthesis of CNCs was conducted successfully and that the addition of 

surfactants did not alter the morphology. 

 
Figure 2.1. TEM micrograph of decylamine stabilized CNC-AA. Scale bar: 500 nm 

Thermal stability  

The thermal stability of cellulose is an important parameter for the production of 

CNC-based materials, especially in the reinforcement of thermoplastic polymers.30 Figure 

2.2 shows the TGA analysis of various types of CNCs compared to un-hydrolyzed 

cellulose. The degradation temperature did not decrease significantly after the reaction 

with acetic and hydrochloric acid compared to un-hydrolyzed cellulose, which has a 
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degradation temperature of 339.24 °C. The addition of surfactants did not affect the 

thermal stability of cellulose, showing a degradation temperature of approximately 331°C 

with the addition of DA. On the other hand, CNCs synthesized via sulfuric acid showed a 

very low degradation temperature as is reported elsewhere, and it was shown to vary 

depending of the degree of sulfate group surface modification.16 Degradation 

temperatures as low as 120 °C have been reported for this type of modification.31 

Significant reduction of the degradation temperature for the TEMPO-oxidized CNCs has 

also been reported elsewhere,15 and it has been attributed to the decarbonation of 

previously formed anhydroglucuronic acid groups.17 From these results (Figure 2.1 and 

Figure 2.2), it can be demonstrated that the integrity of CNC-AA does not vary and that 

the high thermal stability of native cellulose is retained, which is requisite for the 

reinforcement of nanocomposites undergoing melt processing.  

 
Figure 2.2. Thermal gravimetric analysis of unhydrolyzed cellulose (solid line), 
acetylated CNC (long dash), acetylated CNC modified with surfactant (dash dot) and 
sulfuric acid synthesized CNC (dots) 
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Figure 2.3. Effect of the fraction of surfactant on the stability of CNC-AA suspensions in 
THF. (a) visual examination after 4 weeks; and (b) concentration of the CNC-AA 
supernatant (stable suspension) after 90 min of centrifugation at 29 x G where initial total 
concentration was 0.56% (w/v) 

Suspension Stability  

Initially the surfactants were added to both CNC-HCl and CNC-AA to determine the 

increased stability in organic solvents. CNC-HCl contains only hydroxyl groups on the 

surface while CNC-AA contains carbonyl groups introduced by the reaction with acetic 

acid. It was found that the surfactants did not improve the stability of CNC-HCl in 

organic solvents perhaps because of to the strong interactions and agglomerations 

resulting from the hydrogen bonding of the hydroxyl groups.25 Thus, the results of the 

CNC-HCl suspensions are not shown, and the phase behavior was not further 

investigated. On the other hand, CNC-AA showed a significant improvement in the 

(a) 

(b) 
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suspension stability upon the addition of surfactants. It is believed that the carbonyl 

groups attached to the CNC-AA surface reduces the hydrogen bonding and allows the 

surfactant to be adsorbed more effectively on the surface.  

The amount of surfactant was varied from 0 to 20 wt.% with respect to cellulose in 

order to determine the effect of the surfactant concentration on the stability and the 

minimum amount required for stabilization.  Figure 2.3 demonstrates that as little as 1.0 

wt.% DA was required to significantly enhance the CNC-AA stability in organic 

solvents. The enhanced suspensions remained visually stable for a period of weeks, while 

CNC-AA without surfactant started phase separating after the first few hours. This 

behavior was also demonstrated by determining the concentration of the stable 

supernatant after centrifugation at 29 xg for 90 min as it can be observed in Figure 2.3b. 

The use of a small amount of surfactant provides an advantage over other systems that 

use higher proportions of surfactants to increase the stability of cellulose in organic 

solvents.21, 32 

The settling rate of the CNC-AA was studied using three types of surfactants and 

three solvents in order to understand the behavior and the interactions with different 

organic media. For all of the suspensions, the degree of sedimentation (F) was measured.  

F is defined as the height of the flocculated suspension after a time t divided by the initial 

height of the suspension. Figure 2.3 shows the degree of sedimentation (F) for the 

different combinations studied in this work. A stable suspension in Figure 2.4 has an F= 

1, which means that no settling is observed and the separated phase occupies the entire 
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volume of the suspension. This stable suspension is assumed to be close to equilibrium in 

terms of flocculation, and it is considered to be a stable form. This is sometimes referred 

as the “sedimentation paradox” because this definition is in some way in contradiction 

with colloidal science, which considers flocculated suspensions as unstable.33  

Figure 2.4 shows the settling behavior of the suspensions using the 3 different 

surfactants. DA surfactant provides the greatest enhancement of suspension stability of 

CNCs in both THF (Figure 2.4a) and ethyl acetate (Figure 2.4b). CTAB and THAB 

surfactants also increased the stability of these suspensions to a certain extent compared 

to pure CNCs but not as much as DA. On the other hand, Figure 2.4c shows that CTAB 

makes CNCs the most stable in chloroform compared to CNCs without surfactant. THAB 

did not have any effect, while DA in this case reduced the stability of CNCs in 

chloroform.  

THF and ethyl acetate are polar, aprotic solvents while chloroform is a non-polar, 

protic solvent. CNC-AA has a predominant H-acceptor surface due to the carbonyl 

groups. Hence, CNC-AA would tend to have a higher stability in chloroform than in 

aprotic solvents as shown in the phase separation results in Figure 2.4. The addition of 

the surfactants, all proton donors, improved the stability of CNCs in all of the cases, 

except when using DA with chloroform. The reason for the reduction upon addition of 

DA can be attributed to the reduction of the small electrostatic attraction that existed 

initially between CNCs and chloroform. On the other hand, the addition of DA introduces 

steric stabilization between CNCs and the aprotic solvent, where there were initially no 

favorable interactions. 
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Figure 2.4. Phase separation of CNC-AA 1 wt/v% suspensions in: a) THF; b) ethyl 
acetate and c) chloroform.  CNC-AA  without surfactant;  with DA;  with CTAB 
and with THAB. 
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CNC Self-Assembly 

The self-assembly of CNCs was studied using DA as a surfactant in THF and 

ethyl acetate suspensions, while CTAB was added in the chloroform ones as these were 

the most stable combinations according to the results presented above.  Bulk observation 

of the CNC suspensions through crossed polarized films (Figure 2.5) does not show the 

strong, uniform bright phase that is frequently observed in chiral-nematic formations but 

rather shows birefringent patterns when using THF and chloroform solvents. In the case 

of THF, the birefringence patterns are clearly evident at 2.0 wt. % CNCs with and 

without surfactant, while for chloroform the onset of weaker birefringence is observed at 

higher CNC concentration. These patterns indicate that CNCs are locally organized into 

oriented domains likely with a nematic organization.34, 35 The birefringence domains 

remained stable for at least two weeks in the 2 mm path length cuvettes, indicating a 

good stability of the ordered structures. For ethyl acetate suspensions, no visible 

birefringence patterns were observed but a slight bright phase can still be seen through 

the cuvette, indicating the existence of smaller ordered domains in suspensions. 

The characteristic fingerprint texture was not observed in the CNC-AA 

suspensions under polarized microscopy, indicating that chiral-nematic order was not 

observed. The chiral-nematic liquid crystals are commonly characteristic and well-

studied for the sulfuric acid and TEMPO-synthesized CNCs.11, 24, 27, 28 However, other 

syntheses such as the HCl and acetic acid may not produce this organization but rather 

birefringence patterns of locally ordered liquid crystals, demonstrating partial orientation 
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of the CNCs.12 Among the possible reasons of not achieving chiral-nematic organization 

are high polydispersity of CNC dimensions, high viscosity of the suspensions, low 

colloidal stability, and synthesis does not produce a screw shaped nanocrystal.13, 36 The 

flocculated nature of CNC-AA may also prevent the unrestricted CNC organization into 

the more ordered structures. The viscosity of the CNC-AA suspensions seems to increase 

rapidly, achieving a maximum concentration of approximately 7 wt.%  before gelling. 

This is compared to the 20 wt.% for sulfuric acid synthesized CNCs in water.11  

 

 
Figure 2.5. Birefringence of CNC-AA suspensions in THF (a, b), ethyl acetate (c, d), and 
chloroform (e, f); Suspensions are also without surfactant (a, c, e) and with 1 wt. % 
surfactant with respect to cellulose (b, d, f). The concentrations in each image from left to 
right are 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % CNCs. 
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Figure 2.6. Polarized microscopy of 4% CNC-AA suspensions in THF (a, b), ethyl 
acetate (c, d), and chloroform (e, f). Left micrographs are CNC-AA without surfactant (a, 
c, e) and the right micrographs are CNC-AA with surfactant (b, d, f). Length of the longer 
side of each image: 1.5 mm  

Polarized microscopy revealed the appearance of organized domains without 

significant agglomerations in THF and ethyl acetate suspensions with and without 

surfactants. These domains are microscopically very similar to each other as observed in 

Figure 2.6. However, for ethyl acetate these domains were not observed in the cuvettes, 

indicating that they are not long-range enough for visual observation of birefringence 

patterns. For the suspensions in chloroform, some agglomerates can be observed in the 

bulk suspensions and with polarized microscopy (Figure 2.6e-f). Since some 

birefringence patterns were observed a 3% or higher concentrations in the macro-scale, it 
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may indicate that the organized domains in chloroform exist and grow with 

concentration, but the agglomerations may delay their visible appearance. This 

appearance of agglomerates may be due to residual water present on the CNCs that 

cannot be dispersed because of the insolubility with chloroform.  

The dispersion stability of CNCs does not seem to be strongly related to the 

appearance of birefringence as it has been shown previously in the literature.17 CNC-AA 

without any modification shows a birefringence pattern in THF but it phase separates 

within a few hours. Stabilization with DA increased the stability but did not affect the 

birefringence significantly. The observation of these patterns is very qualitative, and 

therefore, it becomes difficult to estimate small enhancements on the self-organization. It 

seems that the assembly of CNC-AA is more affected by the morphology of CNCs and 

the type of solvent than by the addition of the surfactants. 

Another important parameter that suggests the favorable interactions of CNC-AA 

with the solvents is the appearance of flow birefringence. This occurs when liquid 

crystals form upon shearing at relatively low concentrations of CNC suspensions. Figure 

2.7 shows that CNC-AA has the ability to assemble into liquid crystals when the 

suspensions are stirred. Flow birefringence was observed with higher intensity in THF 

suspensions, followed by ethyl acetate and lastly by chloroform, which showed the 

lowest intensity. The modification with surfactants does not significantly impact the flow 

birefringence observed as was the case with stationary birefringence. Chloroform 

suspensions did show some birefringence patterns in the stationary observation, but it did 
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not with the application of shear. This may be due to the degree of agglomeration, 

reducing the amount of single crystals that have the ability to align with the flow at lower 

CNC concentration. 

 
Figure 2.7. Flow birefringence of 0.1% CNC-AA suspensions. Left micrographs: CNC-
AA without surfactant (a,c,e); right micrographs: CNC-AA with surfactant (b,d,f). 
Solvents: (a and b) THF; (c and d) Ethyl acetate; (e and f) chloroform 
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Conclusions 

The addition of surfactants to acetylated cellulose nanocrystals (CNC-AA) 

increased the dispersion stability in organic solvents. DA surfactant was successful in 

increasing the stability in THF and ethyl acetate solvents while cetyltrimethyl-ammonium 

bromide (CTAB) surfactant increased the stability of CNC-AA in chloroform. The 

minimum amount of surfactant shown to enhance the stability of CNC-AA in organic 

solvents was only 1wt.% with respect to cellulose weight. The suspensions remained 

stable in the solvent for weeks until phase separation was observed, in contrast to non-

surfactant-modified CNCs, which would phase separate within a few hours after 

dispersion. CNC-AA showed the ability to self-assemble in specific organic solvents in 

the stationary and shearing state. For both states, the addition of surfactants did not affect 

the self-assembly of CNCs significantly.  

The chiral-nematic assembly was not observed for any of the suspensions but 

birefringence patterns were observed in THF and chloroform suspensions. These patterns 

were stable with time and are thought to be organized domains that are produced by the 

assembly of non-agglomerated CNC-AA.  Suspensions in ethyl acetate did not show 

these patterns but it showed assembly in the microscopic level, indicating that the 

organized domains were too small to be observed as birefringence patterns. Finally, the 

flow birefringence showed the ability for CNC-AA to assemble upon shearing for 

suspension in THF and ethyl acetate. These results are of great significance for the 

nanocomposite field, since an improved compatibility of CNCs plus the ability to align 
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upon shear can potentially enhance the mechanical and optical properties of hydrophobic 

polymeric matrices.  
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CHAPTER THREE 

REINFORCEMENT OF POLYLACTIC ACID FILMS WITH SURFACE MODIFIED 

CELLULOSE NANOCRYSTALS 

Introduction  

Polylactic acid (PLA) is a biodegradable polymer that has the potential to serve as 

a sustainable alternative to petroleum-derived plastics, becoming one of the most widely 

used biopolymers on the market.1 The production of PLA, which represents 38% of the 

bioplastic total market, increased 64% from 2010 to approximately 187,000 metric tons 

in 2011 and is estimated to climb to 271,000 metric tons by 2015.2  PLA is synthesized 

from lactic acid made from corn starch or sugar cane,3 and its production requires 25 -

55% less energy than petroleum-based polymers due to its relatively lower melting point 

(Tm),4, 5 therefore reducing the net CO2 emission to the environment compared to these 

polymers.6, 7 Moreover, PLA has received much research attention in the last two decades 

due to its high tensile properties, transparency, and low toxicity, resulting in an improved 

material at a reduced cost that has emerged in a highly competitive polymer market.8-12 

On the other hand, its brittleness and low vapor and gas barrier are potential limitations in 

extending its applications, thus representing areas of current development.1 

One alternative for addressing these limitations is the reinforcement of PLA with 

cellulose nanocrystals (CNCs). This nanofiller has attracted attention as a polymer 

reinforcement material due to its exceptional mechanical properties, ability for surface 

functionalization, abundance, and renewability.13 Similar to other nanofillers, CNCs 
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exploit properties not found in macro-sized materials, specifically their high surface 

areas, aspect ratios, and multi-functionalities. These nanocrystals can be isolated from a 

variety of sources such as cotton, wood pulp, tunicate, or bacteria usually by acid 

hydrolysis.14 Through this process, non-crystalline regions of the cellulose are 

hydrolyzed, while the highly crystalline ones resist acid attack, resulting in a crystalline, 

high performance material. Crystalline cellulose has been estimated to possess a higher 

elastic modulus than Kevlar and higher tensile strength than steel wire, with 80% less 

weight.15, 16 However, to incorporate the mechanical property benefits of CNCs in 

polymer nanocomposites, the CNC surface needs to be modified to enhance compatibility 

with the desired polymer matrix.  

Surface modifications such as acetylation, silylation, oxidation, polymer grafting, 

and absorption of surfactants, among others have been reported in the literature.14 For 

example, a single-step method for the acetylation of CNCs, proposed by Dorgan and 

Braun,17 is one method for successful dispersion of CNCs in organic solvents. Moreover, 

it is believed that CNC acetylation enhances the adsorption of surfactants, promoting a 

better dispersion of CNCs in an organic matrix without compromising the cellulose 

degradation temperature. Recent research suggests that the adsorption of surfactants and 

long-chain molecules have shown to be effective in the compatibilization of CNCs with 

hydrophobic polymers, increasing the toughness of the composites.14 However, it is 

usually observed that a high amount of surfactant addition ranging from 0.5:1 to 4:1 

surfactant to CNC mass ratio is required for compatibilization, thus restricting the 

nanocomposite properties and performance.18 For this reason, it is important to explore 
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surfactants having similar effects but that required lower proportions.  In this study, we 

investigate decylamine (DA) and cetyltrimethyl-ammonium bromide (CTAB) for 

solution compatibilization within PLA-CNC film nanocomposites.  

The reinforcement of polymers varies as a function of the nanocrystal 

morphology, functionality, polydispersity, and processing conditions.14 Therefore, the 

results reported in the literature differ considerably, suggesting that future research is 

needed to identify the variables and the mechanisms of reinforcement. Past research 

indicates that good dispersibility of CNCs within the matrix is important for composite 

reinforcement.19 Interestingly, some hydrophobic matrices have been reinforced using 

hydrophilic CNCs,20 while in other cases, surface-modified CNCs have not exhibited the 

expected enhancement in the mechanical properties that would be expected from 

enhanced compatibility with rigid fillers.21 These behaviors can be attributed to different 

stress transfer mechanisms. A percolating network can be formed at a critical filler 

concentration, in which stress transfer is facilitated by filler-filler interactions, usually 

increasing the tensile strength and modulus of the composites.22 On the other hand, at low 

filler concentrations the stress transfer is mainly through filler-matrix interactions, for 

which good compatibility usually results in increased toughness.14 Additionally, fillers 

with larger aspect ratios tend to increase the tensile properties, while smaller sizes, such 

as the nanocrystals, have been observed to enhance toughness.23  

The aim of this work is to enhance the toughness of PLA by the addition of 

acetylated CNCs that had been further modified with surfactants. We have previously 
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shown that the introduction of surfactants improves the CNCs stability and self-assembly 

in organic solvents, indicating a good dispersion of nanocrystals in the solvents. For this 

work, PLA-CNC nanocomposite films (0, 1, 3, 5 and 10 wt.% CNCs) were extruded and 

mechanically tested using an Instron testing machine. An increase in toughness was 

observed at low CNCs concentrations when using DA surfactant, while the tensile 

strength and modulus remained constant compared to neat PLA. The crystallinity of 

nanocomposites was not significantly affected, allowing the improvement of toughness 

and limiting the typical reduction of strength and modulus. The CNC orientation and 

nanocomposite self-organization was studied using polarized-light microscopy, 

demonstrating significant organization which was observed to increase with CNC 

concentration.  

Materials and Methods  

Materials  

Commercially available PLA from NatureWorks 2003D (95% L-PLA and 5% D-

PLA) was used as the polymer matrix. Ashless clippings filter aids from WhatmanTM 

were used as the starting material for the CNC synthesis. The reactants used for the 

synthesis (glacial acetic acid and hydrochloric acid 37% w/v) were ACS grade chemicals 

obtained from VWR. Chloroform and decylamine were ACS grade reagents obtained 

from Sigma Aldrich. High purity grade cetyltrimethyl-ammonium bromide (CTAB) was 

obtained from Amresco. 
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Synthesis and characterization of CNCs 

CNCs were synthesized by the method of Dorgan17 and following the steps 

provided here in brevity. This isolation reaction introduces carbonyl groups on the CNC 

surface, reducing the hydrogen bonding and thus increasing the ability to disperse in 

organic solvents. CNCs were reacted with a mixture of hydrochloric acid and acetic acid 

for 10 h at 105 °C. Cellulose cotton filters (10 g) were soaked overnight with 225 mL of 

acetic acid. A total of 0.8 mL of hydrochloric acid (37%) and 24.5 mL of deionized water 

were added and the reaction time started when the final temperature was reached.  After 

the reaction, a purification step was performed to remove excess acid and separate the 

unhydrolyzed cellulose. This procedure consisted of the precipitation of cellulose by 

centrifugation, removal of supernatant, addition of deionized water and vigorous mixing 

for redispersion. After 3 purification steps, CNCs were sonicated using a Fisher Scientific 

550 Sonic Dismembrator for 5 cycles of 7 min in an ice bath. The suspensions were 

purified again until a cloudy supernatant was observed. The aqueous suspension of 

isolated acetylated CNCs was obtained by combining the following 2 - 3 supernatants. 

The nanocrystals were transferred to an organic solvent by separating the water via 

centrifugation and washing the precipitates with acetone at least twice. Vigorous mixing 

was performed using a Vortex-Genie 2 (Scientific Industries, Inc.). At least 40 min of 

mixing is required to minimize visible signs of agglomeration in the resulting suspension. 

The desired surfactant (decylamine or CTAB) was subsequently added to the suspension 

and mixed for 5 – 10 min. (See complete procedure in Appendix B.1) 
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The nanocrystals dimensions were measured by Transmission Electron 

Microscopy (TEM) using a Hitachi 7600 TEM with an accelerating voltage of 120 kV. 

CNCs samples were prepared by nebulizing a diluted CNC suspension of about ~0.01% 

(w/v) onto a formvar carbon coated copper grid (Ted Pella). Thermal gravimetric 

analysis (TGA) (TA instruments SDT Q600) was performed to determine the 

degradation temperature of CNC. A sample from the organic suspension was dried 

and the remaining powder was placed in the TGA alumina pans. The nanocrystals 

were first heated to 110 °C for 25 min to minimize any residual solvent and cooled 

again to 80 °C before ramping at heating rate of 10 °C/min to 650°C. The TGA run 

was carried out under nitrogen atmosphere (100 mL/min) and then switched to 

oxygen from 650 °C to 800 °C. 

Preparation of PLA-CNC Nanocomposites  

PLA nanocomposites were made by blending a 5% (w/v) solution of PLA in 

chloroform with a 1% (w/v) CNC suspension using an overhead stirrer. These PLA-CNC 

solutions, with CNC contents of 1, 3, 5 and 10 wt.%, were allowed to dry overnight at 

room conditions in a Pyrex container. The films were placed under vacuum at 70 °C for 

12 h and then raised to 120 °C for 1 h to remove any residual solvent. Approximately 15 

g of nanocomposite films were diced and extruded using a DSM Xplore co-rotating twin-

screw microcompounding extruder. The composite was fed and compounded for about 10 

min at a temperature of 195 °C. The extruder was set to a constant force at the die of 500 

N, allowing the equipment to vary the screw rotation to obtain a constant melt flow. The 
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polymer melt was then extruded through a rectangular cross-sectional shape die while it 

was cooled with ambient nitrogen gas and collected on a chill roll with a take-up speed of 

120 rpm. These films were cut into 95 mm x 12.5 mm strips using a hydraulic press and a 

custom-made metal die. A total of 6 to 8 samples were prepared for each CNC composite 

loading and type of surfactant. The thicknesses of the films were taken at 4 different 

sections of the films and an average of 0.18 ± 0.02 mm was obtained. Some of the 

nanocomposites prepared and their respective names in this work are displayed in Table 

3.1for an easier visualization. 

Nanocomposite characterization  

Tensile testing of the nanocomposites was performed using an Instron 1125 tensile 

testing instrument.  The initial grip separation was 45 mm and set to a separation rate of 4 

mm/min.  Information on displacement and force exerted in the stretching of the films 

was obtained in stress – strain curves and used to determine tensile strength, tensile 

modulus, and toughness of each film.  

Perkin-Elmer Pyris 1 differential scanning calorimetry (DSC) was used to determine 

the crystallinity of the nanocomposites. Between 5 and 6 mg of sample was carefully 

sealed inside an aluminum pan. The samples were heated to 210 °C at 20 °C/min under 

nitrogen atmosphere and maintained at a constant temperature for 2 min prior to cooling 

at a rate of 20 °C/min. The crystallinity of PLA-CNC films was calculated by measuring 

the areas under the melting and crystallization curves and using Eq.1 as follows,   
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   Eq. 1 

Where ΔHm and ΔHcc are the enthalpies of melting and crystallization, respectively, as 

measured by the DSC scans. XPLA is the fraction of PLA in the composites as described in 

the Table 3.1.20 The theoretical enthalpy of fusion of 100% crystalline PLA, ∆𝐻𝑚∞, was 

taken to be 93.0 J/g.24  

The optical properties of the films and orientation of the CNCs in the nanocomposite 

were studied using an optical polarized-light microscope (Olympus BX-60) in 

transmission mode with a polarizer in the bottom of the sample and the analyzer rotated 

90° in the top. The films were directly placed on glass slides and analyzed at 10X 

magnification without any further modification by rotating the stage from 0 to 135o. 

Observations were also made adding a first-order red plate inserted at 45° between the 

polarizer and analyzer. Adobe Photoshop was used to increase the contrast for display 

purposes and to measure the percentage of color.   

 

 

 

 

 

𝑋𝑐[%] =
∆𝐻𝑚 − ∆𝐻𝑐𝑐

(∆𝐻𝑚∞) ∗ 𝑋𝑃𝐿𝐴
∗ 100% 
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Table 3.1. Nomenclature and fractions of the PLA-CNC nanocomposites prepared in this 
work 

Sample Name CNC 
(%) 

PLA 
(%) 

Surfactant 
(1 wt. % with respect to 
CNC weight) 

PLA 0 100 - 
PLA-CNC(1%)-UM 1 99 - 
PLA-CNC(5%)-UM 5 95 - 
PLA-CNC(1%)-DA 1 99 Decylamine 
PLA-CNC(5%)-DA  5 95 Decylamine 
PLA-CNC(1%)-CTAB 1 99 CTAB 
PLA-CNC(5%)-CTAB 5 95 CTAB 

 

Results and Discussion 

Characterization of Cellulose Nanocrystals   

The nanoscale dimension and high aspect ratio of the CNCs are exceptionally 

important in the enhancement of mechanical properties of polymers. The high surface 

area to volume ratio enables good molecular level interactions with different matrices,17 

and a high aspect ratio ensures a enhanced stress transfer to the nanocrystals.19 Figure 3.1 

shows a representative TEM micrograph of CNCs dried from a THF suspension, 

confirming the successful isolation of the nanocrystals. These nanocrystals are observed 

to have the tendency to aggregate after drying which is likely due to the lack of surface 

charge for the acetylated CNCs.19 It is expected that the introduction of compatibilized 

CNCs into an organic media will reduce the tendency to agglomerate due to enhanced 

filler-matrix interactions. A rough estimate of the size of the isolated crystals was 
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measured to be around 250 nm long and 35 nm wide, which is in agreement to reported 

values in the literature.17  

 
Figure 3.1. TEM image of cellulose nanocrystals synthesized using acetic acid and 
stabilized with decylamine surfactant. Bar: 2 μm.  

The thermal stability of nanofillers is an important parameter for nanocomposite 

processing due to the relatively high melting point and temperatures required for melt 

compounding for most of the polymers. Figure 3.2 shows the degradation temperatures of 

CNCs without surfactant and with decylamine (DA), demonstrating the excellent thermal 

stability of the nanocrystals. The onset degradation temperature was observed to be 

approximately 331 °C for acetylated CNCs with and without surfactant, which is well 

above the processing temperature of the PLA (190 °C). This CNC modification, as shown 

by Dorgan,17 has the advantage of keeping the thermal stability of native cellulose, 

contrary to other common modifications which significantly reduce the degradation 

temperature of cellulose. 25-27  
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Figure 3.2. TGA weight loss as a function of temperature for the acetylated CNC without 
surfactant (solid line) and with decylamine surfactant (dashes).  

Mechanical Properties of the Nanocomposite Films 

The mechanical properties of the nanocomposite films calculated from the stress-

strain curves are presented in Figure 3.3. The energy at break or toughness of PLA-CNC 

nanocomposites exhibited a maximum enhancement at 1% CNC content before 

decreasing with increasing loading. This maximum enhancement occurred for the 

nanocomposites with DA surfactant and represented a 61% increase with respect to neat 

PLA.  For the 3% DA-modified CNC composites a slight enhance of 8% was exhibited, 

while for the 5 and 10% composites the toughness was decreased with respect to neat 

PLA. The unmodified (UM) and CTAB-modified nanocomposites exhibited a decreased 

toughness compared to PLA and to PLA-CNC-DA at each CNC concentration. The 

composites at 10% CNC load were more brittle, demonstrating a reduced toughness up to 

95% less of that for the PLA. The decrease in toughness in nanocomposites has been 
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attributed to large agglomerations of nanofillers.19, 28 These agglomerations can act as 

stress concentrators, which facilitates spreading of the defects generated at the interface. 

These defects can grow larger than the critical crack size, resulting in film failure.  

A maximum in the reinforcement of toughness is frequently observed when good 

dispersions occur at low filler concentrations29, 30 as it was found for the PLA-CNC(1%)-

DA composites. This improvement can therefore be the result of favorable dispersions 

and better interfacial compatibility of CNC-DA with PLA compared to UM- and CTAB-

modified CNCs.31 32 There are a few toughening mechanisms with rigid fillers discussed 

in the literature; however, this discussion seems inconclusive for CNC nanocomposites. 

Toughening mechanisms include the formation of microvoids,33 crack bifurcation and 

crack path alteration,34 interfacial debonding,23 assembly into spiral orientation,35 and 

shear yielding resulting from the difference on the Young’s moduli of the filler and the 

matrix.36 In our previous work (Chapter 2), the addition of DA improved the CNC 

compatibility with aprotic solvents compared to plain CNC, which agrees with the 

enhanced mechanical properties obtained when using this surfactant in the present work.     

The tensile strength and modulus of the composites followed similar trends as it can 

be observed in Figure 3.3b-c, remaining fairly constant up to 3% CNC load but 

decreasing drastically after 5%. At a 10% load, the mechanical properties were 

deteriorated obtaining at best a 45% and 32% reduction for the strength and modulus, 

respectively. This behavior follows the same trend as the energy at break for the 10% 

films and may be indicative of CNC agglomeration. 
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Figure 3.3. Mechanical Properties of PLA-CNC composites using different surfactants. 
, -UM; ●, -DA; ▲, -CTAB 
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It has been demonstrated that one mechanism occurring in the reinforcement of 

the tensile properties of CNC nanocomposites is the formation of a percolating network, 

which transfers the stresses effectively throughout the nanocomposite when high 

concentrations of filler are added.14, 22 This mechanism has been often observed with 

hydrophilic or surface-charged CNC when the filler-filler interactions are stronger than 

the filler-matrix ones and they do not tend to easily aggregate.37, 38 In non-surface-

charged nanocrystals, such as the acetylated CNCs in this work, a percolating network is 

more difficult to form without the formation of agglomerates, introducing defects and 

thus reducing polymer reinforcement.19 Therefore, the reinforcement exhibited at low 

filler concentrations can be attributed to the stress transfer through filler-matrix 

interactions. However, the relatively low aspect ratios of the CNCs, which are estimated 

to be approximately 6 to 12, may not enable a perfect transfer of the stresses, reducing the 

effect of the good compatibility provided by the surfactant.22 According to the Halpin-

Tsai model for short-fiber composites, only nanofillers with aspect ratios larger than 50 

can guarantee an efficient reinforcement of the elastic modulus.39  

The addition of surfactants does not seem to significantly affect the tensile strength 

and modulus of the films as observed in Figure 3.3b-c. However, DA-modified 

composites possess overall slightly higher values compared to the other two modified 

composites, which may also confirm the enhancement of the filler-matrix interactions. 

Even though these tensile properties were not significantly increased, they were not 

reduced for the toughened composites (PLA-CNC(1%)-DA), which is frequently a 

disadvantage in the toughening of polymers. These tensile properties are already good for 
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PLA compared to other petroleum-based polymers; therefore enhancing toughness 

without compromising other properties becomes an integral step in the reinforcement of 

PLA.  

 
Figure 3.4. Polarized-light microscopy images demonstrating the agglomeration level on 
the 3% CNC nanocomposites. a) UM; b) DA; c) CTAB. Length of the longest side of 
each image: 1.5mm  

Alignment of CNC and agglomerations  

The level of CNC agglomeration in the all of the 3% CNC loaded nanocomposites 

was observed by employing polarized-light microscopy (Figure 3.4). All of the 

composites appear to have relatively large agglomerates; however, for PLA-CNC(3%)-

UM (Figure 3.4a) these agglomerates are considerably more than for DA (Figure 3.4b), 

but less than the CTAB composites (Figure 3.4c). This confirms that using DA enhances 

the interfacial interaction and increases the nanocrystal dispersion in the composite. 

Moreover, this also endorses the proposed idea that the detriment of the mechanical 

properties occurs due to agglomerations forming at high concentrations as a result of 

insufficient compatibility. PLA-CNC(3%)-DA also displayed white bands that are 

attributed to liquid crystal formation which may be due to local CNC alignment within 

the composite.    
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Figure 3.5. Polarized-light microscopy images of PLA-CNC-DA composites at different 
CNC loads:  a, 0; b, 1; c, 3; d,5; and e, 10% CNC. At different rotating angles 0°, 45°, 
90° and 135°. Images demonstrate the increasing formation of liquid crystals in the 
composites. Length of the longest side of each image: 1.5mm 

The alignment and self-assembly of the nanocomposite films was studied using 

polarized-light microscopy. Figure 3.5 provides evidence of liquid crystal formation in 

the PLA composites at different CNC loads and rotation angles. A liquid crystal or 

anisotropic phase is formed when molecules or crystals assemble into a semi-organized 

structure, changing the refraction of the incident light and allowing the transmission of 

light between crossed polarized films. The brightness or birefringence observed on the 
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composites (especially at 45° and 135°) in Figure 3.5, increases with CNC concentration, 

indicating a higher level of crystal organization in the films. In this case, the polarizer and 

analyzer are fixed at 0° and 90°, respectively as observed in Figure 3.6. Crystals aligned 

in the 0° or 90° direction (or non-oriented crystals) will not diffract light since they 

possess the same angle of the polarized light. As a result, a bright phase will appear when 

crystals are oriented at 45° or 135° from the polarizer. For example, at 45° rotation angles 

in Figure 3.5, the bright phase indicates that the crystals are oriented either at 45° and 

135°, indicating that the crystals are oriented parallel or perpendicular to the film 

extrusion.   

 
Figure 3.6. Schematics of the filter orientations in the polarized-light microscope. A) 
polarizer (P), analyzer (A) and first order red plate (red slow direction); and B) colors 
observed when liquid crystals are oriented in the corresponding angles of rotation.  

A first order red plate was added between the polarizer and analyzer (Figure 3.6) 

in order to better elucidate the direction of the crystals, also called sign of the 

birefringence. The direction of the slow red axis of the filter is oriented at 135° as shown 
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in Figure 3.6. Therefore, liquid crystals oriented at 135° will appear blue due to the added 

effects resulting from coincidence of the angles of the slow axes of the liquid crystal (or 

larger refractive index) and the red plate. Crystals oriented in the 45° direction will 

appear yellow due to the lower interference colors resulting from the slow axes being 

perpendicular. On the other hand, crystals oriented in at 0° and 90°, as well as non-

oriented crystals, will appear magenta as discussed above for polarized microscopy. The 

red order first plate is designed for low retardation crystals which appear as gray scale in 

crossed polars. This will rule out the possibility to properly analyze the 5% and 10% 

CNC composites since their brightness is strong as shown in Figure 3.5.  

Figure 3.7 shows the polarized-light microscopy images with the red plate for neat 

PLA and the composites at 3% CNC load. As discussed above, the level of agglomeration 

for the UM- and CTAB-modified composites are evident, correlating also with the low 

crystal assembly on the films. On the other hand, DA films clearly display a change of 

color between the angles of rotation, indicating that the crystals are oriented in varying 

directions. As an example, for the DA composites at 0° rotation, blue and yellow indicate 

a crystal orientation of 45° and 135°, respectively, while magenta would be non-oriented, 

0°, and 90° orientation. When the sample is rotated 45°, yellow indicates crystals oriented 

perpendicular to the direction of the extrusion (45°), while blue will be perpendicular 

(135°). Therefore, the total area occupied by the oriented crystals can be calculated 

theoretically by adding the colors blue and yellow from the 0° and 45° angle images.   
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Figure 3.7. Polarized-light microscopy images of the 3% CNC loaded nanocomposites 
using a first order red filter;  a, Neat PLA; b, UM; c, DA; d, CTAB.  At 0°, 45°, 90° and 
135° rotation angles. Length of the longest side of each image: 1.5mm 

Image analysis was performed using Photoshop in order to quantify the 

percentage of colors magenta, blue and yellow from the entire area of the images. The 1 

and 3% CNC loaded composites were analyzed at 0° and 45° angles as observed in Table 

3.2. The estimated oriented area was calculated by adding the blues and yellows at 0° and 

45°. For neat PLA, the orientation is negligible resulting in 0% oriented area. However, 

as the CNC load increases the total calculated oriented area increases in different 

proportion for each of the composites. For example, the orientation in the DA composites 

goes from ~97% to ~100%, while for the UM goes from ~70% to ~100% (108% was 

actually measured) with increasing CNC content. Such results indicate a better 
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organization for DA composites at low concentrations as discussed above. The assembly 

of crystals for the CTAB composites is the lowest among all (0% and 8% for PLA-

CNC(1%)-CTAB and PLA-CNC(3%)-CTAB, respectively), correlating correctly with 

the poor mechanical properties obtained for those composites.  

The high level of assembly for the DA composites does not necessarily mean 

well-oriented filler in the direction of the extrusion. Indeed, the DA composites only have 

~26% of their organized crystals oriented parallel to the extrusion of the flow, ~14% 

perpendicular, and around 60% is distributed between 45° and 135° with respect to the 

extrusion direction. In the case of UM composites, an unexpected high orientation of the 

crystals was observed in the direction of extrusion (~89% for PLA-CNC(3%)-UM). Poor 

oriented crystals cannot necessarily be translated to poor mechanical properties. It has 

been suggested in the literature that a lower degree of CNC orientation may enhance the 

nanocomposite toughness, although a reduced tensile modulus is accompanied.35 

Therefore, it can be thought that this distribution of crystal orientation may change the 

path of the crack sufficiently enough to dissipate energy and increase toughness. The 

ability for acetylated CNCs to self-assemble in organic media in stationary and shear 

states was studied in our previous work, agreeing with the self-assembly observed in the 

nanocomposites in the present study. 
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Table 3.2. Approximate Percentage of colors of PLA-CNC composites observed under polarized-light microscopy with a first 
order red plate.  

 0° 45° Estimated  
oriented area 

 Magenta Yellow Blue Magenta Yellow Blue 

PLA  100% 0% 0% 100% 0% 0% 0% 

PLA-CNC(1%)-UM 53% 42% 5% 77% 22% 1% 70% 

PLA-CNC(3%)-UM 92% 3% 5% 0% 89% 11% 100% 

PLA-CNC(1%)-DA 43% 23% 34% 59% 26% 14% 97% 

PLA-CNC(3%)-DA 40% 38% 21% 60% 26% 14% 100% 

PLA-CNC(1%)-CTAB 100% 0% 0% 100% 0% 0% 0% 

PLA-CNC(3%)-CTAB  97% 1% 2% 95% 2% 3% 8% 

92 
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Figure 3.8. Crystallinity of PLA-CNC composites estimated by DSC. , -UM; ●, -DA; 
▲, -CTAB 

Crystallinity of Nanocomposite Films 

PLA-CNC nanocomposite crystallinity was determined by DSC, and the results 

are shown in Figure 3.8. Neat PLA was determined to have low crystallinity, which is 

likely due to the enantiomer composition, L (95%) and D (5%). It is observed that the 

addition of CNCs did not significantly affect PLA crystallinity, which is advantageous to 

the enhancement of toughness and elongation at break. However, the slightly highest 

crystallinity occurs for the DA composites, which were observed to be the least 

agglomerated and most oriented of the 3 modifications studied in this work. DSC analysis 

also revealed a double melting peak for PLA which occurs at specific conditions of 

cooling and heating rates.40 The double peaks have been attributed to a melting-

recrystallization mechanism of PLA, in which small and imperfect crystallites change 

into more stable crystals during the melting of the polymer.41  
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Transparency 

The transparency of some of the nanocomposite films decreased with CNC addition 

as observed in Figure 3.9. However, even at 5% loads there is significant optical 

transparency compared to neat PLA. Transparency is an important property for food 

packaging applications among others, and it may be enhanced with other additives. 

    
Figure 3.9. Example of the transparency of PLA-CNC-DA composites 

Conclusions  

Surfactant-modified CNCs were added into PLA as reinforcement fillers, 

resulting in enhanced mechanical and optical properties of extruded films. The toughness 

of the PLA composites was enhanced 61% compared to neat PLA when using 1% of DA-

modified CNCs. As the CNC concentration increased higher than 1%, toughness 

gradually decreased to very low values for 10% CNCs. For unmodified and CTAB-

modified CNCs, toughness decreased with concentration worsening the properties of 

PLA. The increase in toughness was attributed to a relatively good dispersion and good 

interfacial adhesion between the CNC and the matrix. Tensile strength and modulus 

remained fairly similar compared to neat PLA, but as CNC concentration increased these 
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properties decreased more than 45% for the 10% CNC composites. The relatively low 

aspect ratio of the CNC may not enable a perfect stress transfer and therefore reducing 

the effect on the modulus. The lack of surface charge also forbids CNC to form a 

percolating network that has been shown to greatly increase the tensile properties. 

Polarized-light microscopy images revealed liquid crystal formation of the CNC 

nanocomposites, which was found to be oriented in different directions within the 

polymeric matrix. It was shown that a better dispersion of CNC would present a higher 

organization in the composites, especially in the ones modified with DA. However, the 

degree of alignment was found to be relatively low with CNC orientation pointing along 

multiple directions around the extrusion line for the toughened composites, which can be 

attributed to the inherent spiral assembly of cellulose as reported in the literature.35 The 

crystallinity of the nanocomposites was not increased by the addition of the CNCs, which 

also facilitated the toughening of the composites by the addition of the filler. Overall, this 

work shows the ability to increase PLA toughness without compromising the good 

strength and modulus of PLA by the addition of a low percentage of acetylated CNCs 

further functionalized with surfactants.   

References 

1. Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in 
polylactide (PLA) research. Bioresource Technology. Nov 2010;101(22):8493-
8501. 

2. Bioplastics E. Bioplastics facts and figures Available at: http://en.european-
bioplastics.org/. Accessed 06/06/2013, 2013. 



 96 

3. Pang X, Zhuang X, Tang Z, Chen X. Polylactic acid (PLA): research, 
development and industrialization. Biotechnology Journal. 2010;5(11):1125-
1136. 

4. Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Prog Polym 
Sci. 2010;35(3):338-356. 

5. Auras RA, Lim L-T, Selke SE, Tsuji H. Poly (lactic acid): synthesis, structures, 
properties, processing, and applications. Vol 10: Wiley; 2011. 

6. Bogaert JC, Coszach P. Poly(lactic acids): A potential solution to plastic waste 
dilemma. Macromol Symp. Mar 2000;153:287-303. 

7. Vink ETH, Rabago KR, Glassner DA, Gruber PR. Applications of life cycle 
assessment to NatureWorks (TM) polylactide (PLA) production. Polym Degrad 
Stabil. Jun 2003;80(3):403-419. 

8. Ahmed J, Varshney SK. Polylactides-Chemistry, Properties and Green Packaging 
Technology: A Review. Int J Food Prop. 2011;14(1):37-58. 

9. Balakrishnan H, Hassan A, Imran M, Wahit MU. Toughening of Polylactic Acid 
Nanocomposites: A Short Review. Polym-Plast Technol Eng. 2012;51(2):175-
192. 

10. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly-Lactic Acid: 
Production, Applications, Nanocomposites, and Release Studies. Compr Rev 
Food Sci Food Saf. Sep 2010;9(5):552-571. 

11. Liu HZ, Zhang JW. Research Progress in Toughening Modification of Poly(lactic 
acid). Journal of Polymer Science Part B-Polymer Physics. Aug 
2011;49(15):1051-1083. 

12. Ray SS. Polylactide-Based Bionanocomposites: A Promising Class of Hybrid 
Materials. Accounts of Chemical Research. Nov 2012;45(10):1710-1720. 



 97 

13. Ramires EC, Dufresne A. A review of cellulose nanocrystals and nanocomposites. 
Tappi J. Apr 2011;10(4):9-16. 

14. Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: Chemistry, Self-
Assembly, and Applications. Chemical Reviews. Jun 2010;110(6):3479-3500. 

15. Sturcova A, Davies GR, Eichhorn SJ. Elastic modulus and stress-transfer 
properties of tunicate cellulose whiskers. Biomacromolecules. Mar-Apr 
2005;6(2):1055-1061. 

16. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials 
review: structure, properties and nanocomposites. Chem Soc Rev. 
2011;40(7):3941-3994. 

17. Braun B, Dorgan JR. Single-Step Method for the Isolation and Surface 
Functionalization of Cellulosic Nanowhiskers. Biomacromolecules. Feb 
2009;10(2):334-341. 

18. Kim J, Montero G, Habibi Y, et al. Dispersion of Cellulose Crystallites by 
Nonionic Surfactants in a Hydrophobic Polymer Matrix. Polymer Engineering 
and Science. Oct 2009;49(10):2054-2061. 

19. Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ. Stress Transfer in 
Cellulose Nanowhisker Composites-Influence of Whisker Aspect Ratio and 
Surface Charge. Biomacromolecules. Apr 2011;12(4):1363-1369. 

20. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ. Characterisation of solution 
cast cellulose nanofibre - reinforced poly(lactic acid). Express Polym Lett. Jan 
2010;4(1):26-31. 

21. Grunert M, Winter WT. Nanocomposites of cellulose acetate butyrate reinforced 
with cellulose nanocrystals. Journal of Polymers and the Environment. Apr 
2002;10(1-2):27-30. 

22. Eichhorn SJ, Dufresne A, Aranguren M, et al. Review: current international 
research into cellulose nanofibres and nanocomposites. Journal of Materials 
Science. Vol 45; 2010: 1-33. 



 98 

23. Xu XZ, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP. Cellulose 
Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their 
Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl Mater 
Interfaces. Apr 2013;5(8):2999-3009. 

24. Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased 
nucleation agents in poly(L-lactide) (PLLA) - Crystallization and mechanical 
property effects. Composites Science and Technology. May 2010;70(5):815-821. 

25. Johnson RK, Zink-Sharp A, Glasser WG. Preparation and characterization of 
hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose. Dec 
2011;18(6):1599-1609. 

26. Roman M, Winter WT. Effect of sulfate groups from sulfuric acid hydrolysis on 
the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 
2004;5(5):1671-1677. 

27. Kim DY, Nishiyama Y, Wada M, Kuga S. High-yield carbonization of cellulose 
by sulfuric acid impregnation. Cellulose. 2001;8(1):29-33. 

28. Hossain KMZ, Ahmed I, Parsons AJ, et al. Physico-chemical and mechanical 
properties of nanocomposites prepared using cellulose nanowhiskers and 
poly(lactic acid). Journal of Materials Science. Mar 2012;47(6):2675-2686. 

29. Ng CB, Ash BJ, Schadler LS, Siegel RW. A study of the mechanical and 
permeability properties of nano- and micron-TiO2 filled epoxy composites. Adv 
Compos Lett. 2001;10(3):101-111. 

30. Bulota M, Vesterinen AH, Hughes M, Seppala J. Mechanical behavior, structure, 
and reinforcement processes of TEMPO-oxidized cellulose reinforced poly(lactic) 
acid. Polym Compos. Feb 2013;34(2):173-179. 

31. Urena-Benavides EE, Kitchens CL. Cellulose Nanocrystal Reinforced Alginate 
Fibers-Biomimicry Meets Polymer Processing. Molecular Crystals and Liquid 
Crystals. 2012;556:275-287. 



 99 

32. Bulota M, Kreitsmann K, Hughes M, Paltakari J. Acetylated microfibrillated 
cellulose as a toughening agent in poly(lactic acid). Journal of Applied Polymer 
Science. Oct 25 2012;126:E448-E457. 

33. Knauert ST, Douglas JF, Starr FW. The effect of nanoparticle shape on polymer-
nanocomposite rheology and tensile strength. Journal of Polymer Science Part B-
Polymer Physics. Jul 2007;45(14):1882-1897. 

34. Kim JK, Robertson RE. Toughening of thermoset polymers by rigid crystalline 
particles. Journal of Materials Science. Jan 1992;27(1):161-174. 

35. Urena-Benavides EE, Kitchens CL. Wide-Angle X-ray Diffraction of Cellulose 
Nanocrystal-Alginate Nanocomposite Fibers. Macromolecules. May 
2011;44(9):3478-3484. 

36. Liang JZ, Li RKY. Rubber toughening in polypropylene: A review. Journal of 
Applied Polymer Science. Jul 2000;77(2):409-417. 

37. Tang LM, Weder C. Cellulose Whisker/Epoxy Resin Nanocomposites. ACS Appl 
Mater Interfaces. Apr 2010;2(4):1073-1080. 

38. Urena-Benavides EE, Brown PJ, Kitchens CL. Effect of Jet Stretch and Particle 
Load on Cellulose Nanocrystal-Alginate Nanocomposite Fibers. Langmuir. Sep 
2010;26(17):14263-14270. 

39. Halpin JC, Kardos JL. Halpin-tsai equations - review. Polymer Engineering and 
Science. 1976;16(5):344-352. 

40. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the 
double-melting behavior of poly(L-lactic acid). Journal of Polymer Science Part 
B-Polymer Physics. Jan 2004;42(1):25-32. 

41. Tang ZB, Zhang CZ, Liu XQ, Zhu J. The crystallization behavior and mechanical 
properties of polylactic acid in the presence of a crystal nucleating agent. Journal 
of Applied Polymer Science. Jul 2012;125(2):1108-1115. 

 



 100 

CHAPTER FOUR 

CELLULOSE NANOCRYSTALS VERSUS POLYETHYLENE GLYCOL AS 

TOUGHENING AGENTS FOR POLY(LACTIC ACID)-POLY(ACRYLIC ACID) 

GRAFT COPOLYMER 

Introduction  

Polylactic acid (PLA) is a biodegradable, bioabsorbable polymer derived from 

renewable resources that offers promising alternatives to traditional petroleum-based 

plastics.1 PLA, which accounts for 38% of the bioplastics market,2 is utilized for 

applications ranging from medical devices to food packaging.3  PLA has a comparable 

tensile strength and elastic modulus to commodity polymers such as polyethylene 

terephthalate (PET); however, it has a very low toughness and elongation at break, 

limiting its widespread application.4 To address these disadvantages, many additives and 

modifications such as plasticizers,5, 6 fillers, 7, 8 and graft copolymers 9, 10 have been 

investigated for PLA.   

One of the primary challenges in the toughening of polymers is the corresponding 

reduction of tensile strength and modulus of the material, making them impractical for 

many of the intended applications.4 In addition, many plasticizers are hydrophilic, 

representing issues of incompatibility with non-polar matrices. Several approaches have 

received recent research attention, including a reactive modification of PLA with 

polyacrylic acid (PAA) and subsequent blending with polyethylene glycol (PEG), which 

successfully increased toughness without a significant loss in the tensile properties.11 
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PEG, a hydrophilic, non-toxic, polymer, is a common plasticizer that has been shown to 

increase the flexibility and ductility of polymers including PLA.12, 13 However, the 

chemical incompatibility between PEG and PLA leads to low molecular weight PEG 

migrating and phase separating from the matrix with time, while the high molecular 

weight structure results in an immiscible blend.14 The miscibility of PEG in PLA can be 

improved by the grafting of PAA, which is more hydrophilic,11 potentially allowing 

improved miscibility with higher molecular weight PEG. Despite best attempts to 

increase toughness without compromising tensile properties by enhancing chemical 

compatibility, the common tradeoff between these two properties cannot be avoided 

when using PEG as a toughening agent. An alternative approach to enhance toughness 

without compromising tensile strength and modulus may be through the addition of 

cellulose nanocrystals.15 

Cellulose nanocrystals (CNC), also known as cellulose nanowhiskers, have been 

widely investigated as reinforcement fillers for polymeric matrices due to their 

remarkable mechanical properties and high aspect ratios.16-18 These fillers usually 

increase the modulus of the matrix through the addition of a rigid material and the 

formation of a percolating network; however, some research has reported an 

improvement in toughness without compromising other mechanical and thermal 

properties.19, 20 In addition, research has also shown improved crystallinity and gas barrier 

properties for PLA with the addition of CNCs,21, 22 increasing the potential applications to 

encompass from food packaging to biomedical applications. One of the greatest 

challenges in the utilization of CNCs as a reinforcement filler for hydrophobic matrices is 



 102 

the hydrophilicity of native cellulose.23 One approach to addressing this challenge is 

through the surface functionalization of the nanocrystals, either by covalent modification 

or the use of a surfactant compatibilizer.24  

In this work, the modulus and toughness of PLA were improved by grafting PAA at 

10 wt % concentration in order to increase the stiffness and hydrophilicity, making PLA 

more compatible with the plasticizers. Increasing proportions of either CNCs (1, 3, and 5 

wt. %) or high molecular PEG (10, 20 and 30 wt.%) were added to the PLA-PAA 

copolymer. CNCs were isolated from cotton and functionalized by a combination of 

acetic acid and hydrochloric acid. The plasticizing efficiency of PEG was evaluated by 

the shift of glass transition temperature (Tg). The mechanical, thermal, and optical 

properties of the nanocomposites and the blends were subsequently analyzed. 

Materials and Methods 

Materials 

Polylactic acid (PLA) 2002D was purchased from NatureWorks LLC (Mw ≈ 198 kDa 

and Mn ≈76 kDa).25 Benzyl peroxide was purchased from Fluka. Acrylic acid 99% and 10 

kDa polyethylene glycol (PEG) (OH-terminated) were obtained through Aldrich. Cotton 

ashless powder from Whatman was used as the source of cellulose. All other solvents and 

reactants in this work were ACS grades obtained from VWR.  
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Cellulose Nanocrystals Preparation  

Cellulose nanocrystals were isolated by acid hydrolysis with a mixture of 

hydrochloric acid (HCl) and acetic acid (AA) as developed by Dorgan and co-workers.26  

In this reaction, a Fischer esterification reaction occurs between the hydroxyl groups and 

the acetic acid during the hydrolysis, introducing methylesters onto the CNC surface. For 

the isolation, 10 g of cotton were soaked for approximately 12 h in a round bottom flask 

with 225 mL of AA. The next day, 24.5 mL of DI water and 0.8 mL 37% HCl were 

added. The reaction was performed for 10 h at 105 °C with constant stirring. The reaction 

was quenched by immersing the flask in an ice bath. Three washes with DI water were 

carried out by sequential centrifugation (8,600 rpm for 3min) and vortex mixing to 

remove the remaining acid from the cellulose. The suspension was combined and ultra-

sonicated in an ice bath using a Fisher Scientific 550 Sonic Dismembrator for 35 min (5 

cycles of 7 min pulse, 2 min rest) at a power level of 7.5. The suspension was washed 

again two more times and the resulting supernatant was combined and stored as the CNC 

master suspension. To transfer the CNCs to an organic solvent, the supernatant was 

precipitated by centrifugation at 14,000 rpm for 10 min, washed twice with acetone to 

remove bound water, and transferred to chloroform. The suspension was agitated 

vigorously in a vortexer until no CNC agglomerates were observed. (The complete 

synthesis procedure is detailed in Appendix B.1)   
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PLA Reactive Modification and Blending 

PLA reactive modification was performed in a  1 L Parr reactor, where PAA side 

chains were grafted from the PLA polymer chains using benzoyl peroxide as an initiator 

as described by Rasal and Hirt.11 Initially, the reactor was loaded with 100 g of PLA and 

dissolved in 750 mL of chloroform with constant agitation at 100 rpm.  Benzoyl peroxide 

totaling 1% of the mass of PLA was added to the initial solution in the reactor. The 

reactor was sealed and heated to 60°C for 60 minutes. The heater was turned off and 10 g 

of acrylic acid was added to the solution. The reactor was resealed and heated to 100°C 

for 10 minutes. The heater was shut off and the reactor was allowed to cool to below 

60°C before the solution was drained from the bottom of the reactor. This solution was 

then separated into specific portions before the desired amount of cellulose nanocrystals 

or PEG was added to the mixture. This solution was thoroughly blended with an 

overhead impeller for 10 min and then poured out in a Pyrex dish. The chloroform was 

allowed to evaporate in a hood overnight followed by 24 h at 80°C under vacuum. The 

resulting films were cut into approximately 5 mm squares in preparation for extrusion.  

Film Extrusion 

The polymer films were extruded using a twin-screw micro-compounder extruder 

(DSM Xplore) operating in co-rotating mode with 170 mm long tapered screws and a 

barrel volume of 15 cm3. The polymer was compounded for approximately 10 min at 

180°C with the motor force set to 500 N and the rate of co-rotating screws controlled by 

the instrument. The polymer melt was extruded through a rectangular cross-sectional 
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shape die and cooled by ambient nitrogen. The resulting films were approximately 0.1 

mm thick and collected on a chill roll at a take-up speed between 110 to 130 rpm 

depending of the viscosity of the melt. These films were diced into uniform strips 95 mm 

long and 12.5 mm wide on a USM hydraulic machine press by means of a metal die. The 

thickness of each film was measured at 4 different points with a film thickness gauge 

(Digimacro ME-50HA).  

Characterization of the films 

Tensile testing of the polymer film strips was conducted using an Instron 1125 

universal testing instrument.  The initial grip separation was set to 45 mm and a 

crosshead speed of 4 mm/min. The stress-train curves were analyzed with Origin® 

software in order to determine the tensile strength, tensile modulus, and toughness of 

each film.  

Differential Scanning Calorimetry (DSC) (TA DSC 2920) was used to measure the 

thermal transitions: glass transition temperature (Tg), crystallization temperature (Tc), 

melting temperature (Tm), and the heat of crystallization (ΔHcc) and melting (ΔHm)), and 

percent crystallinity of the films (Xc). Aluminum pans were carefully loaded and sealed 

with 4 to 6 mg of the polymer sample and heated to 200 °C at a constant rate of 10°C/min 

under a nitrogen purge. At the end of the run, the samples were quench cooled using a 

metal bar previously submerged liquid nitrogen. A second run was immediately 

conducted on these samples under the same conditions. Tg, Tc, Tm ΔHcc and ΔHm, were 
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taken from the second run after quenching. The Xc of the nanocomposites was 

determined from the first run before quenching using equation 4.1, 

   Eq. 4.1 

where XPLA is the fraction of PLA in the composites, and ∆𝐻𝑚∞ is the theoretical enthalpy 

of fusion of 100% crystalline PLA, which was taken to be 93.0 J/g. 21 

Optical polarized-light microscopy was performed using an Olympus BX-60 in 

transmission mode with a polarizer in the bottom of the sample and the analyzer rotated 

90° in the top. A first order red plate (U-TP530) was also used to study the specific 

direction of the oriented crystals. The samples were placed on a glass microscope slide 

without further preparation and pictures were taken at rotating angles of 0, 45, 90 and 

135° using 13X magnification.   

Results and Discussion 

PLA was reactively modified with acrylic acid by means of the initiator benzyl 

peroxide as detailed in the literature.11 The reaction took place at elevated temperatures in 

a sealed reactor, producing a graft copolymer with 10 wt. % poly-acrylic acid (PAA), 

hereafter referred as PLA-PAA(10%).  The copolymer was analyzed to verify the 

covalent attachment of PAA onto PLA using FTIR analysis after microwave extraction of 

the PLA-PAA(10%) in water. CNCs or PEG were added in the desired concentrations 

and physically mixed in solution to form the nanocomposites or polymer blends, 

𝑋𝑐[%] =
∆𝐻𝑚 − ∆𝐻𝑐𝑐

(∆𝐻𝑚∞) × 𝑋𝑃𝐿𝐴
× 100% 
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respectively. Nanocomposites of pure PLA were also prepared in order to compare the 

effects with the graft copolymer.  

PLA and PLA-PAA Nanocomposites  

Mechanical properties    

Figure 4.1 shows the energy at break (or toughness), tensile strength, and tensile 

modulus of the PLA and PLA-PAA nanocomposites films. The addition of CNCs to the 

PLA films results in increased toughness of as observed in Figure 4.1: increasing from 

1.1 MJ/m3 for neat PLA to a maximum of 2.5 MJ/m3 (125% increase) at 1% CNC load. 

At higher CNC loadings, the toughness progressively decreased to a lowest value of 1.6 

MJ/m3 for 5% CNC, which still represented a 46% increase over the neat PLA. For the 

PLA-PAA, the toughness decreased as the CNC load increased, obtaining a lowest value 

at 5% CNC load, which represented a 75% decrease. The tensile properties (Figure 4.1b-

c) for both composites possessed increasing trends with the addition of CNC 

concentrations studied. The tensile strength and modulus of the PLA-CNC composites 

were approximately the same for the 3 concentrations but increased compared to neat 

PLA. For the PLA-PAA nanocomposites, the strength showed a modest increase at 3% 

loading followed by a subsequent reduction at 5% CNCs. The modulus, on the other 

hand, was enhanced for all of the grafted polymer films upon the addition of CNCs, 

having an optimum increase at 3% CNC which represents a 159% increase.  
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Figure 4.1. Mechanical properties of PLA and PLA-PAA CNC nanocomposites. (a) 
toughness, (b) tensile strength; and (c) tensile modulus.  

The interfacial interactions between CNCs and the matrix play a very important 

role in the reinforcement of the mechanical properties, especially in the toughness, which 

has been shown to increase due to strong filler-matrix interactions in CNC 

nanocomposites. On the other hand, a lower compatibility between CNCs and the matrix 

allows the filler to associate with itself, forming a rigid percolating network which can be 

responsible for the enhancement in composite modulus.24 This network is frequently 

formed when there is a balance of surface charge and hydrogen bonding, since strong 

electrostatic attractions aid the formation of agglomerates.27 In addition, the theoretical 

critical volume fraction at which the network would begin to form is 9 vol.% (11 wt.%) 
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for the CNCs isolated here, as predicted by Favier et al for cylindrical shaped particles.28 

Therefore, it is unlikely that the modulus reinforcement of the PLA-PAA nanocomposites 

is due to such a network.  

Another possibility for the increase of the PLA-PAA modulus is due to higher 

crystallinities obtained when CNCs are added to the copolymer. Several publications 

have reported increase of crystallinity upon addition of nanocelullose to polymers 

including PLA, resulting in higher tensile strength and modulus.21, 29 Pei et al. reported 

that surface-modified CNCs promoted higher crystallinities and tensile properties than 

unmodified CNC in PLA.21  

Thermal properties of nanocomposites 

The results in Figure 4.2 show an increase in PLA-PAA crystallinity from 32% 

for neat copolymer to 48% at 3% CNC load before suffering a slight reduction at 5% 

CNCs. These results correlate well with the enhancement of modulus as discussed above. 

Hence, the grafting of the hydrophilic PAA into PLA increases the compatibility with 

CNC,30 which results in improved CNC dispersion and the nanocrystals acting as 

effective nucleating agents for the copolymer.  
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Figure 4.2. Crystallinity of PLA and PLA-PAA loaded with CNCs; Xc obtained from the 
first run DSC curves.  

The DSC results obtained from the second run after quenching are shown in Figure 

4.3. For PLA composites (Figure 4.3a), the exothermic peak attributed to the cold 

crystallization gradually decreased in area with increasing CNC concentration, while the 

peak for the PLA-PAA composites increases (Figure 4.3b). The melting temperature (Tm) 

and the glass transition temperature (Tg) tend to increase with CNC concentration in both 

cases. The values of these thermal transitions are shown in Table 4.1. The slight increase 

in the Tg of the PLA nanocomposites could be evidence of reduced mobility of the chains 

either due to increased crystallinity in the polymer or chain entanglements on the 

nanofiller.31 However, since the crystallinity of PLA composites did not increase, the 

latter chain entanglements are potentially occurring, which would require higher energies 

to obtain the same mobility of the polymer under stress. This result is in agreement with 

the higher toughness obtained for PLA composites as shown in Figure 4.1a.  
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Figure 4.3. Second run DSC scan curves of PLA (a) and PLA-PAA (b) loaded with 
cellulose nanocrystals. The plots are offset for clarity. 

The reduced mobility of PLA chains upon addition of CNCs is also reflected in the 

significant reduction of the second run heat of crystallization, and consequently in the 

heat of melting for the PLA composites.  This is contrary to the PLA-PAA copolymers 

which increased their mobility due to an improved crystallization as observed in Table 

4.1. This difference in the crystallization between both types of polymers may be based 

on the strength of the interactions and the starting state of the material. As observed in 

Table 4.1, the heat of crystallization for neat PLA is much higher than for the PLA-

PAA(10%). The addition of CNCs actually disrupts the initial mobility of PLA chains, 

while for hydrophilic PLA-PAA, CNCs  enhance the initially low crystallization of this 

copolymer due to an increased compatibility. Liu et al. also found that the crystallization 
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of PLA was more effective in the amorphous than in the crystalline composites upon the 

addition of CNCs.29 

Table 4.1. Thermal properties of PLA and PLA-PAA loaded with cellulose nanocrystals 

Polymer  CNC 
(wt.%) 

Tg  
(°C) 

Tcc 
(°C) 

Tm 
(°C) 

ΔHcc 
(J/g) 

ΔHm 
(J/g) 

PLA/CNC 0 55.5 122.1 149.9 26.6 26.6 
1 55.8 123.6 150.4 26.4 26.4 
3 58.1 132.6 153.4 3.3 3.3 
5 57.9 134.9 153.3 2.9 2.8 

PLA-PAA/CNC 0 56.9 132.2 147.7 6.4 6.4 
1 57.2 132.9 152.1 7.7 7.7 
3 57.1 131.2 152.3 10.7 10.7 
5 56.3 132.3 152.0 6.5 6.5 

 
Optical Properties  

Previous research has shown that the nanostructure of CNCs in nanocomposites are 

deterministic of the mechanical properties.32 A spiral formation was shown to contribute 

to the increase of toughness in the composites (for sulfuric acid synthesized CNCs), 

similar to the behavior observed in the fibers of plants and trees. 33For this reason, the 

optical properties of the films were studied using polarized-light microscopy in the 

present work. The polarizer, which was placed under the sample, was aligned along the 

0° angle (north-south direction), while the analyzer, which is above the sample, was at 

the 90° angle (east-west). Figure 4.4 shows the polarized micrographs of the PLA and 

PLA-PAA composites rotated at 0°, 45°, 90° and 135° angles. For the PLA composites, a 

bright phase or birefringence can be observed at 45° and 135° angles, indicating the 

formation of liquid crystals in either parallel or perpendicular to the direction of 

extrusion. The birefringence is significantly brighter for the 3% CNC in PLA indicating 
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the formation of a highly ordered liquid crystalline phase, and therefore a greater degree 

of CNC self-assembly within the matrix. The formation of an oriented phase in a matrix 

is usually a good indication of non-agglomerated nanocrystals, 34, 35 which agrees with 

the increase in toughness observed in this work. On the other hand, an oriented phase is 

not observed for the PLA-PAA nanocomposites, which may be attributed to CNCs 

associating with the PAA grafts and being surrounded by stiffer PLA crystallites that 

inhibit orientation or self-assembly of the nanocrystals. 

 
Figure 4.4. Polarized-light microscopy of PLA  (a and b) and PLA-PAA  (c and d) loaded 
with cellulose nanocrystals. (a and c) 1%; and (b and d) 3% CNC loaded nanocomposites. 
Length of the longer side of each image: 1.5 mm 
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A first order red plate was used to determine the specific orientation of the assembled 

crystals and the results are shown in Figure 4.5. The slow axis of the plate was placed 

parallel to the 135° angle (northwest-southeast), and the direction of the extrusion of the 

films was always parallel to the rotation angle. The appearance of the color magenta, 

yellow, and blue can be observed indicating the different orientations. CNCs oriented in 

the 135° angle will present a color blue, while the assemblies oriented in the 45° will be 

yellow. Magenta colors indicate the alignment at 0°, 90°, and also the un-oriented 

nanocrystals. Hence, the total theoretical oriented area of the films can be obtained by 

adding the percentage of both yellow and blue from 2 consecutive angles of rotation.  

The percentage of the oriented area estimated from a centered region of the analyzed 

images increased from 85% to 100% for the 1% and 3% CNC loads, respectively, for the 

PLA composites. For the PLA-PAA composites, the oriented area only increased from 

2% to 4% at 1% and 3% CNC, respectively. The directions of the crystal assemblies are 

predominately parallel to the direction of the extrusion, which it is demonstrated for the 

amount of yellow for the 45° rotation angle. For the PLA/CNC 1% films, approximately 

75% of the CNCs is estimated to be oriented parallel to the line of extrusion, while for the 

PLA/CNC 3% the orientation is apparently more than 100%. This > 100% value 

however, lacks of significant meaning other than very high alignment because the 

birefringence of this composite is too bright as observed in Figure 4.4, and the red plate is 

not capable of working with this level of retardation. This relationship between the 

directions of the crystals and the toughness observed for the 1 and 3% CNC films, may 
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support the theory of the effect of the spiral formation on the increase of toughness as 

observed by Urena-Benavides and Kitchens in alginate fiber composites.36 

 
Figure 4.5. Polarized-light microscopy PLA (a and b) and PLA-PAA (c and d) loaded 
with cellulose nanocrystals using a first order red filter. (a and c) 1%; and (b and d) 3% 
CNC loaded nanocomposites.  Doted squared in the picture represents the size of the area 
used for the color quantification. Length of the longer side of each image: 1.5 mm 

PLA-PAA copolymer blends  

PEG was added to the graft copolymer in solution immediately after the reaction 

of acrylic acid with PLA. Neat PLA blended with PEG was not prepared since it has been 

already studied in the literature.13, 37-40 The study of low molecular weight (< 2 kDa) PEG 

is commonly studied because at high molecular weights phase separation13 and tensile 
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properties reduction41 occurs due to immiscibilities. However, low molecular weight 

plasticizers have the tendency to migrate from the host polymer due to a slow phase 

separation and the crystallization of PEG at room temperature.14, 42 This problem could be 

addresses by increasing the compatibility by the grafting of PAA into the hydrophobic 

PLA matrix.11 PAA and PEG are both hydrophilic polymers and are more compatible 

with each other than with PLA. Previous research investigated this reactive-blend 

modification using a low molecular weight PEG (Mn=1.5kDa), obtaining a significant 

increase in toughness without compromising the tensile properties of the films.11 In this 

work, a higher molecular weight PEG (10 kDa) was blended with the graft copolymer to 

explore the enhancement of PLA properties with possible reduced migration rates of the 

plasticizer. 

Mechanical properties 

The toughness of the PLA-PAA/PEG blends (0, 10, 20 and 30% PEG), which 

were determined by measuring the area under the stress-strain curve, are shown in Figure 

4.6. It can be observed that the toughness was greatly increased as the percentage of PEG 

was increased in the formulation. The highest toughness was reached at 30% PEG, 

increasing 3497.3% with respect to neat PLA from 1.1±0.1 to 39.9±7.4 MJ/m3. For 10% 

and 20% PEG, the toughness was increased by 925.2% and 2376.4%, respectively.  
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Figure 4.6. Mechanical properties of PLA-PAA/PEG blends. (a) toughness, (b) tensile 
strength; and (c) tensile modulus.  

The tensile properties of the blends are shown in Figure 4.6b-c. PAA grafting 

increased the strength and the modulus of the graft copolymer by 6.7% and 48%, 

respectively, due to the higher stiffness of PAA. The addition of PEG decreased both the 

tensile strength and modulus of the films with similar trends. The tensile strength was 

reduced to as low as 48.5% for the 20% PEG, while the modulus decreased as low as 

30.1% for the 30% PEG content, which is commonly observed in the plasticization of 

polymers.  
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Figure 4.7. Second run DSC curves of PLA-PAA/PEG blends 

Thermal properties  

The DSC plots for the PLA-PAA/PEG blends are shown in Figure 4.7.  The plots 

show the endothermic melting peaks in all of the blends and an increasing endothermic 

crystallization peak with increasing PEG concentration. A double peak can be observed 

during the melting region for the 30% PEG blend, which has been attributed to lamellar 

rearregement during crystallization of PLA.43 The efficiency of plasticization can be 

evaluated by the Tg decrease  from 56.9 °C for neat PLA-PAA to 30.9 °C for a 30% PEG 

formulation as observed in the Table 4.2. Moreover, a reasonable miscibility of the blend 

is suggested by the appereance of a single Tg transition and its lowering with increasing 
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plasticizer content. The heat of crystallization and melting increases with the addition of 

PEG, demonstrating increased mobility of the PLA chains due to the plasticizing effect of 

PEG.6  This result also indicates higher crystallization rates, which are beneficial for the 

increase of the slow crystallization kinetics of PLA when it is cooled from the melt.44 

Table 4.2. Thermal properties of PLA-PAA blends 
PEG  
(wt.%) 

Tg  
(°C) 

Tcc 
(°C) 

Tm 
(°C) 

ΔHcc 
(J/g) 

ΔHm 
(J/g) 

Xc  
(%) 

0 56.9 132.22 147.7 4.022 6.4 32.4 
10 56.4 133.09 153.3 2.403 2.3 48.0 
20 50.2 123.93 150.1 14.86 14.2 36.9 
30 30.9 112.05 152.3 24.26 25.5 38.2 

 

Conclusions  

The toughening of PLA was studied by the addition of either acetylated CNCs or 

PEG, and both were shown to act as toughening agents for PLA. Polyacrylic acid (PAA) 

was grafted to PLA to increase the hydrophilicity of the polymer and to improve the 

compatibility of the reinforcements. CNCs increased the toughness of PLA by 125% with 

an optimum loading of 1% without compromising the tensile properties. For the PLA-

PAA composites the toughness decreased, while the modulus increased significantly with 

CNC concentration. This behavior was attributed to an increase of crystallinity of the 

PLA-PAA composites as a result of increased compatibilization between CNCs and the 

PAA chains.  

The thermal properties of these nanocomposites revealed a lower mobility of the 

PLA chains as reflected by the slight increase of Tg. This reduced mobility was attributed 
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to the increase of crystallinity in the PLA-PAA composites, while for PLA, it was 

attributed to polymer chain entanglements on the nanocrystals. These two effects 

correspond correctly with the enhancement of mechanical properties observed in both 

types of polymers. PLA composites exhibited a greater degree of CNC orientation 

compared to PLA-PAA as observed under polarized microscopy, suggesting the self-

assembly and improved alignment of the CNCs in PLA. This assembly was found to be 

less oriented for the 1% CNC films, which exhibited enhanced toughness, than for the 3% 

CNC composites of PLA. 

High molecular weight PEG greatly increased the toughness of PLA-PAA 

copolymer by approximately 3500%, decreasing the tensile strength and tensile modulus 

only 49% and 30%, respectively for the same PEG content. The Tg was decreased by 26 

°C demonstrating effective plasticization when using 30% PEG. Moreover, the 

appearance of single Tg transition indicates favorable miscibility in the blends. It can be 

expected that tuning the concentrations of PLA, PLA-PAA, CNCs, and PEG will enable 

the design of a polymer composite with desired combinations of mechanical, optical, and 

thermal properties, thus expanding potential application for this bio-based composite.  
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CHAPTER FIVE 

LIQUID AND SUPERCRITICAL CO2 EXTRACTION OF FAT FROM RENDERED 

MATERIALS 

Introduction 

Rendered materials (RM) are produced from the inedible parts of animals produced 

for human consumption, which constitutes one third to one half of the total animal mass.1 

In 2009, for example, the U.S produced 33 million cattle, 113 million hogs, 245 million 

turkeys, and 8.6 billion chickens for human consumption. These animal by-products were 

processed in the 250 rendering facilities in North America, producing approximately 18 

billion pounds of RM. 2, 3 Of this total production, 52% is a combination of fats and 

greases, with the remaining 48% representing protein meals composed of meat-and-bone, 

poultry, and feather meals.3 Fats are non-polar soluble biomolecules consisting of 

triglycerides and fatty acids that, unlike oils, are solid at room temperature due to the 

high content of saturated fatty acids.  

Approximately 85% of all RMs, including a fraction of the fats, are produced for 

animal feed ingredients. The rest is used in a diversity of industries with nearly 3,000 

applications identified.1 A large fraction of the fat not used for animal feed is used in the 

manufacture of soaps and personal care products; however, since 2010 the biofuels 

industry, which has shown record production, has placed a significant demand on the fat 

from the rendering industry, more than doubling the amount of rendered fats used for the 

biodiesel production.4 The processing of the inedible raw materials and the use of the by-
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products not only make an important economic contribution to this industry but also 

contribute to environmental and public health since rendering offers a more sustainable 

solution and a lower carbon footprint than other disposal methods.5 

The rendering process involves the application of heat, the extraction of moisture, and 

the separation of fat. First the raw materials are ground to a consistent size and cooked 

with steam at temperatures ranging from 115°C to 145°C for 40 to 90 min.2 Moisture is 

then boiled off, and the fat associated with the solids is mechanically removed by screw 

presses while the moisture associated with extracted fat is separated using centrifuges. 

The two main products of this process are the fats (greases, tallow, lard and poultry fat) 

and the protein meals, which can contain 8-15% residual fat. Current market trends for 

inedible fats have resulted in prices of $0.46 per pound in 2011, representing a 96% 

increase since 2009 and a 330% increase since 2001.3, 4 Thus, it is desirable to find 

alternative methods that are sustainable and economically viable for a fat selective 

extraction of rendered materials.   

While mechanical extraction offers quite low initial and operational costs and 

produces uncontaminated oil, it results in relatively low extraction yields, which may or 

may not be desired depending on the end product. Solvent extraction using organic 

solvents results in high extraction yields (>99%) but produces a low quality oil that 

requires refining.6 An alternative solvent that has attracted considerable attention for fat 

extraction is liquid or supercritical carbon dioxide (LCO2 or SCCO2). Past research has 

shown that SCCO2 extraction of flaxseed oil yields approximately 28% more fat than 
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screw expression and just 9% less than hexane extraction.7 CO2 offers the advantages of 

ease of complete separation of the fat with no residual solvent in the matrix or the lipids, 

and the potential for CO2 recycling. 

 CO2 is a non-toxic, non-flammable, and relatively inexpensive solvent that has been 

used for a wide variety of applications that include separations, reactions, and material 

processing.8, 9 The use of supercritical fluids in the food industry is widely established.9-11  

The first commercial supercritical extraction was performed in 1978 by Hag A.G in 

Germany for the decaffeination of green coffee beans.12 Commercial applications at 

present include decaffeination of coffee and tea, extraction of natural colors, natural 

flavorings, antioxidants, nutraceuticals, and hops, as well as extraction of lipids and 

cholesterol from egg yolks, milk fat, beef, and pork.9 The supercritical extraction of lipids 

for the production of biodiesel is also a promising and expanding research area.13, 14  

Extraction of specialty oils has received a great deal of interest due to the expanding 

demand for bioactive lipid components and the capability of CO2 to preserve the flavors 

and aromas.15 This is the primary reason LCO2 is commonly used in the extraction of 

flowers.16   

SCCO2 can be advantageous over LCO2 for extractions from certain matrices when 

mass transfer limitations exist. This occurs because the density of SCCO2 is on the order 

of a liquid while the diffusivity is one to two orders of magnitude higher than the liquid 

and the viscosity is on the order of a gas. For many supercritical extraction systems a 

retrograde solubility phenomenon may occur, where decreased solubility of the solute 
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occurs at elevated temperatures. This phenomena, which occurs below a pressure referred 

to as the “cross-over” point, is the result of reduced solvent strength as a result of reduced 

density in the high compressibility region of the fluid (i.e., close to the critical point). The 

density effect on solubility is not compensated by the increased solute volatility with 

increased temperature.12 This effect results in the fat having a higher solubility at the 

lower temperatures of LCO2 as compared to SCCO2 at an equivalent pressure. This 

phenomenon affords the advantage of using LCO2 at lower temperatures and pressures 

for extractions, which are advantageous for capital and operating costs, as well as for the 

recovery of volatile and thermally labile components.17  

In this work, LCO2 and SCCO2 were investigated in a semi-batch configuration for 

the extraction of the residual fat from rendered poultry meal from the last stage of the 

rendering plant process.  The effect of the temperature (25 ˚C, 40˚C and 50 ˚C), pressure 

(69 to 345 bar), flow rate (5 to 25 mL/min), and mass of CO2 on the extraction yield and 

the fat solubility were investigated. The composition of fatty acids in the fat was 

determined by gas chromatography.  Solubility data were estimated from the extraction 

curves and correlated as a function of temperature and density using the Chrastil model. 

The maximum extraction yields and solubilities of the fat in LCO2 and SCCO2 were 

compared. LCO2 was found to be more effective for the extraction of fat at the conditions 

studied in this work. 



 130 

Materials and Methods 

Materials and Chemicals 

Pet food grade poultry meal donated by Carolina By-Products and Valley Proteins in 

Ward, South Carolina, was used as the rendered material as provided with no further 

sample preparation. The composition of this material was 14.2 ± 0.2 wt. % fat with 

approximately 7% moisture and 63% crude protein content.  The size of agglomerated 

particles of the poultry meal was 100-300 µm. ACS grade n-hexane was purchased from 

VWR and industrial grade Carbon Dioxide was purchased from Airgas. 

LCO2 and SCCO2 Extractions of Rendered Fats 

The extraction of fat from rendered materials was accomplished using a laboratory-

scale semi-batch unit presented schematically in Figure 5.1. A Teledyne Isco 500HD 

syringe pump connected to a heating bath was used to continuously deliver CO2 at a 

desired temperature and pressure while monitoring the volumetric flow rate. A heating 

column behind the extraction column was used when the extraction was performed at 

supercritical conditions in order to maintain the CO2 at the desired temperatures of 

extraction. This extraction column accommodated approximately 4 g of RM and 

consisted of ½” stainless steel tubing with 10 micron metal frits at both ends of the 

column. The CO2 flow rate was controlled using a heated back pressure regulator (BPR) 

at the end of the system, and the temperature was monitored using multiple K-type 

thermocouples and manually controlled with variable transformers connected to heating 
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tapes. Pressure was monitored with a pressure transducer and indicator connected to the 

outlet of the extraction tube.  A recovery flask was filled with hexane to collect the fat at 

the end of the system. The extracted RM was sent to the Agricultural Laboratory at 

Clemson University to determine the remaining fat by a Soxlet hexane extraction. 

 
Figure 5.1. Schematic diagram of the semi-batch liquid and supercritical extraction 

The extractions were performed at 25°C for LCO2 and at 40°C and 50°C for SCCO2 

at pressures ranging from 69 to 345 bar. The flow rate utilized in each of these 

experiments was 5 mL/min (mass flow rates ranged from 3.7 to 4.9 g/min depending of 

the temperature and pressure). Since for SCCO2 pressures below 210 bar required an 

exceedingly large amount of CO2 to complete the extractions, they were not conducted. 

Fat solubility for each condition was obtained from a linear regression of the slope of the 

extraction curves and correlated with the Chrastil model as a function of density and 

temperature.18 The effect of the flow rate on the fat extraction was also investigated for 

LCO2 at 25˚C. The volumetric flow rates were varied between 5 to 25 mL/min, which 

corresponded to mass flow rates from as low as 3.7 g/min at 69 bar to as high as 23.0 

g/min at 207 bar. The solubility was obtained from triplicate runs at a single CO2/RM 
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ratio for each pressure and determined at a 50% extraction yield. The density of CO2 at 

each temperature and pressure was found in the National Institute of Standards and 

Technology (NIST) Chemistry WebBook.19   

Gas Chromatography Analysis 

The fatty acid composition of the fat before and after the extraction with LCO2 and 

SCCO2 was determined by an Agilent 5975C Series GC/MSD with a Flame Ionization 

Detector (FID) and using a GLC-90 column. First, the fats were methyl esterified with 

the following procedure: 20µl of fat sample was reacted for 90 min at 70˚C with 700 µl 

of KOH 10 N and 6.30 mL of methanol. The same was performed with 60 µl of 

methylation blank sample of mystiric acid. Samples were cooled down and reacted with 

700 µl of H2SO4 24N for 60 min at 70˚C. After the reaction, the samples were mixed with 

4.5 mL of hexane and subsequently centrifuged at 1100 xg for 5 min.  The supernatant 

was 20 times diluted in hexane for the GC injection. The volume of injected sample was 

1 µL.  

Results and Discussion  

The extraction of fat from rendered poultry meal with LCO2 and SCCO2 at 

temperatures of 25°C, 40°C, and 50°C and pressures of 69 to 345 bar gave maximum 

extraction yields ranging from 87.3% to 96.5% (Table 5.1); where the extraction yield is 

defined as the fat extracted as a mass percentage of the original fat in the RM. The 

extraction yields did not show any significant dependence with pressure or temperature. 
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The minimum amount of CO2 required for complete extraction among all the conditions 

tested occurred for LCO2 at the highest pressure (Figure 5.2a) due to a high solubility of 

fat at these conditions. For the complete extraction, the lowest fat content remaining after 

extraction was 1.0±0.3 wt% for all the conditions tested as shown in Figure 5.2a-c. 

 
Figure 5.2. Fat extraction curves. (a-c) Fat content in rendered poultry meal after 
extraction and (d-f) extraction yields as a function of the amount of CO2.  (a and d) 
Liquid CO2 at 25˚C; (b and e) Supercritical CO2 at 40˚C; and (c and f) Supercritical CO2 
at 50˚C.  , 69 bar; , 103 bar; , 138 bar; , 207 bar; , 276 bar; , 345 bar 
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The Effect of Temperature, Pressure and Flow Rate on Fat Extraction  

LCO2 and SCCO2 extractions curves in Figure 5.2 present the amount of fat 

remaining in the rendered poultry meal after extraction (Figure 5.2a-c) and the extraction 

yield (Figure 5.2d-f) as a function of the CO2 used at different temperatures and 

pressures. The extraction curves show the three regions usually found in natural product 

extractions: constant extraction rate period (first part), which is governed by the 

equilibrium solubility of the fat in CO2; the falling rate period (transition); and the 

diffusion-controlled rate period, which is observed in some of the curves at the end of the 

run. The slope of the lines observed in the constant extraction period increases with 

pressure due to an increase of CO2 solvation power. Although not observed clearly in 

Figure 5.2, these slopes also increase with decreasing temperature. The solvation power 

of the CO2 depends mainly on the CO2 density and the volatility of the solute (fat), which 

are directly impacted by pressure and temperature. Due to the high compressibility of 

CO2 in the vicinity of the critical pressure, density is more dominant than solute volatility 

when the conditions are close to this region.  

As mentioned above, pressure increases the solvent power of CO2 due to the increase 

of density which is more noticeable at pressures near the critical point where the CO2 is 

more compressible. As an example, for LCO2 between 103 and 69 bar (Figure 5.2a), the 

difference in the CO2 ratios required for complete extraction is about 80, while for the 

extractions between 345 and 207 bar this value is only about 35. It can also be observed 

that as the pressure increases to 345 bar, the slope of the curves become closer to each 
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other for the 3 temperatures studied. Although it was not studied in this work, it is 

expected that they will converge at the “cross-over” pressure, which may occur in this 

system at around 400 bar. 

The temperature effect on the solvation power of CO2 has a competing effect caused 

by both density and solute volatility. Increasing temperature under constant pressure will 

decrease density but increase volatility and vice versa. If the conditions are below the 

aforementioned “crossover” pressure, density will dominate over the solute volatility, 

thus solubility decreases with increasing temperature. This effect is commonly termed as 

retrograde solubility phenomenon which occurs in the regions of high compressibility, 

which is the case for this work. Once the crossover pressure is reached, the change of 

density with pressure becomes smaller and the volatility becomes dominant.    

 
Figure 5.3. Solubility of fat at different liquid CO2 flow rates with pressures of , 69 bar; 
, 103 bar; , 138 bar; and , 207 bar; corresponding to CO2/ RM ratios of 80, 60, 40 
and 20, respectively.   
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Variation of CO2 flow rates between 5 and 25 mL/min had no significant effect on the 

solubility of fat (total fat extracted per liter of CO2) as observed in Figure 5.3. These 

results indicate that the extraction reaches the equilibrium solubility concentration and 

that the intraparticle diffusion resistance is negligible for the flow rates investigated. If 

the intraparticle diffusion resistance were more dominant, SCCO2 may prove to be more 

effective for the extraction than LCO2 due to the high diffusivity which would allow 

easier access through the particle pores. The lack of diffusion resistance is likely due to 

the particle size of the finely-ground rendered poultry meal and the degraded matrix 

consistency achieved during cooking in the rendering process.20 The particle size of the 

rendered material also decreases by an order of magnitude after the extraction from 

around 200 µm to about 20µm on average, as observed in Figure 5.4. This can also be 

another influencing factor on the high extraction yields obtained since the particle size 

decreases as the extraction is carried out. It should be mentioned that the decreased 

particle size can lead to material handling issues.  

 
Figure 5.4. Optical Microscope image of RM. Scale bar: 100 µm. (a) Before the CO2 
extraction; and (b) After CO2 extraction.  
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Table 5.1. Solubilities and extraction yield of rendered fat in LCO2 and SCCO2 

 

T P CO2 
density 

Fat 
solubility 

Solubility 
Std. Error 

Extraction 
Yield 

  ˚C bar g/L g/L g/L (%) 

LCO2 25 

69 738.2 0.491 0.020 90.8 
103 823.0 1.252 0.036 93.6 
138 865.0 1.973 0.074 93.6 
207 918.6 3.957 0.086 90.8 
276 955.6 5.651 0.082 93.6 
345 984.6 6.474 0.442 92.9 

SCCO2 

40 
207 846.0 2.563 0.229 93.6 
276 896.0 4.054 0.408 94.3 
345 932.4 5.694 0.622 92.9 

50 
207 792.4 1.638 0.078 87.3 
276 854.1 3.717 0.323 93.6 
345 896.5 5.647 0.630 96.5 

 

Solubility Calculation and Correlation with the Chrastil Model  

The fat solubility was determined from the linear trend observed in the extraction 

curves of Figure 5.2a-c.  This represents the extraction region that is governed by the 

solubility equilibrium of the components as proved in the flow rate experiments. The 

slope of the extraction curve (fat extracted versus amount of CO2) can be defined as the 

solubility of the fat in the solvent, c (g/L), and calculated as described by Reverchon.21 

The equation is modified in this work to be applied to the axis plotted in Figure 5.2 as 

follows:  

   

Eq.5.1
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Where me is the mass of fat extracted, Vs is the volume of CO2 used in the extraction, 

Y is the extraction yield, mo is the initial mass of fat in the RM, d is the CO2 density, and 

M is the slope of the extraction curve. M was obtained by a linear regression of each 

extraction curve using the OriginPro7 software, and d from the NIST Chemistry 

WebBook.19 The solubility data and the CO2 densities are presented in Table 5.1. As 

discussed before, the solubility of fat is higher for LCO2 than for SCCO2 due to the 

retrograde phenomena which makes solubility decrease with temperature, as observed in 

Figure 5.5a. As the pressure reaches 345 bar, the solubility isotherms get closer to each 

other and will likely converge to the “cross-over” pressure. Figure 5.5b shows the single 

effect of the fat volatility on the solubility in CO2, where at constant density the fat 

solubility in CO2 increases with increasing temperature.    

The Chrastil model18 was used to correlate the solubility of the fat as a function of the 

CO2 density and temperature. The model is based on the hypothesis that one molecule of 

solute A (fat component) can be associated with k molecules of solvent B (CO2). This 

association forms a complex molecule ABk that is in equilibrium with the solvent. The 

Chrastil equation is given as follows: 

 

        

Eq. 5.2

 
 

ln 𝑐 = 𝑘 ln𝑑 +
𝑎
𝑇

+ 𝑏  
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Figure 5.5. Solubility dependence of (a) pressure and (b) density.  , 25 ˚C; , 40˚C; , 
50˚C  

Where k, a and b are constants to be determined by fitting the data. The constant k 

accounts for the solvation, which is the slope of the solubility isotherm and reflects the 

density dependence of the solubility.  The constant, a, represents the heat of solvation and 
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heat of vaporization of the solute and is also a measure of the temperature dependence of 

the solubility at constant density. Parameter b is dependent on the solute and solvent 

molecular weights and the association constant.  A nonlinear regression was performed 

on the fat solubility data using Polymath 5.1 obtaining the following equation:  

     

Eq. 5.3 

The solubility prediction can be observed in Figure 5.6, which displays the estimated 

natural logarithms of the solubility versus density. The correlation accuracy was 

evaluated with the average absolute relative deviation (AARD) obtaining a value of 

5.56% under the conditions studied in this investigation.  

The modified Chrastil equation proposed by Sun and Li22 was also evaluated to 

correlate the solubility in order to improve the results over the simple Chrastil model. 

This modified Chrastil equation is as follows: 

      

Eq. 5.4

 

This modification includes the additional parameters k1 and a1 to account for any 

nonlinear correlation with CO2 density. The constants were estimated but the AARD 

obtained was only 5.58%, which shows no improvement over the simple Chrastil 

equation shown above. 
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Figure 5.6. Plot of lnc vs lnd using Chrastil model for the experimental data at pressures 
between 69 and 345 bar and temperatures: , 25 ˚C; , 40˚C; , 50˚C. Lines represent 
the results from the Chrastil model: –, 25 ˚C; -∙∙- 40˚C; --, 50˚C.  

 

Fatty Acid Composition 

Analysis of the fatty acid fractions of the fat extracted from the rendered poultry meal 

with hexane and CO2 was conducted using gas chromatography (GC).  A total of 6 fatty 

acids were identified with a higher proportion of unsaturated fats than saturated as 

observed in Table 5.2. Most of the fatty acids present in the poultry fat 2  were identified 

in the GC analysis except for very small fractions of myristic (C14:0), margaric (C17:0), 

and α-linoleic (C18:3) acids. The fraction of lauric acid (C12:0) observed in the analysis 

was significantly higher than the reported literature.  The difference observed in the fatty 

acid fractions between the hexane and the CO2 extraction was not very significant.  
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However, the percentages of unsaturated fatty acids are in general higher for the CO2 

extraction as observed in Table 5.2. Literature shows that unsaturated fatty acids are more 

soluble than saturated ones in pressurized CO2, up to around three times higher for 

linoleic (C18:2) than stearic (C18:0) acids.23 These results also indicate that all the fatty 

acids extracted with hexane (>99% extraction yield) are also very soluble in CO2 and that 

the residual 1% of fat after the CO2 extraction could be inaccessible fat that may require 

other conditions to be extracted.      

Table 5.2. Fatty acid mass fraction of extracted fats 

Compound 
Wt.% 

CO2 extraction Hexane extraction 
Lauric (C12:0) 11.44 11.58 
Palmitic (C16:0) 22.98 23.69 
Palmitoleic (C16:1) 5.24 4.25 
Stearic (C18:0) 6.56 9.85 
Oleic (C18:1) 34.71 34.34 
Linoleic (C18:2) 17.31 14.45 
Unknown 1.77 1.84 
Saturated 40.97 45.12 
Unsaturated  57.26 53.04 

 

Conclusions 

LCO2 and SCCO2 were used for the extraction of fat from rendered poultry meal at 

different pressures (69-345 bar) and temperatures (25˚C, 40˚C and 50˚C), obtaining 

maximum extraction yields between 87% and 97% for all the conditions. The starting 

material had a fat content of 14.2±0.2% which is residual from the mechanical press and 

cooking in the rendering plant from which the material was obtained. After the 
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extractions, the fat content in the samples was reduced to a minimum value of 1.0±0.1% 

demonstrating the ability of the CO2 to efficiently extract the fat from rendering 

materials. The fat analysis yielded a total of 6 fatty acids, which were identified in 

agreement with the literature. These fatty acids were present in similar proportions to the 

fat extracted with hexane and CO2, showing an overall higher percentage of unsaturated 

fatty acids for CO2.      

Solubilities of the fat in CO2 were calculated from the slope of the extraction curves 

at all the conditions tested. This estimation was possible because at the conditions of the 

extractions, the system reached the equilibrium solubility as proved by the flow rate 

experiments. These solubilities ranged from 0.491 g/L to 6.474 g/L for LCO2 at 69 bar 

and 345 bar, respectively, and the solubility in SCCO2 were intermittent between these 

values.  It was observed that SCCO2 at all pressures had lower solubilities than LCO2 at 

the same pressures due to the retrograde solubility phenomena. The solubilities were 

successfully correlated with the Chrastil model obtaining an AARD of 5.56%. It was 

shown in this investigation that LCO2 is more efficient than SCCO2 in the extraction of 

fat since the maximum extraction yields were the same, but less CO2 is required for the 

liquid phase due to the higher solubility.  
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CHAPTER SIX  

CO2 ASSISTED MECHANICAL EXPRESSION OF FAT FROM RENDERED 

MATERIALS 

Introduction 

The rendering industry converts the by-products or inedible parts from the animals 

produced for human consumption into value-added products, commonly known as 

rendered materials (RM).1 There are 250 rendering facilities in North America that 

annually produce 18 billion pounds of RM per year, representing an important 

contribution to society and the economy of the food industry.2, 3 This industry is also 

green and environmentally beneficial, reducing the amount of waste while recycling 

carbon and energy into valuable feed ingredients and biofuels.3 The RMs are constituted  

of approximately 50% fats, which are commonly used by soap and personal care products 

manufactures and as a biofuel feedstock.3 This fat is separated from the protein matrix via 

screw press, which can leave 8 to 15% fat remaining in the protein meals.4 Thus, new 

methods for more efficient fat isolation are desired, especially since the fat is a higher 

value product.    

Screw pressing offers the advantages of producing uncontaminated oil  with low 

initial and operational costs, however, the low separation efficiencies in the current 

rendering process produces a material with 8-15% residual fat.1 It is well know that 

extraction with organic solvents, such as hexane, yield higher efficiencies (>99%), but 

produces contaminated oil that requires refining.5 High pressure CO2 is a greener 
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alternative extraction solvent for a clean and selective separation of fats that has been 

widely used in the extraction of seeds, decaffeination of green coffee beans, and other 

areas in the food industry.6-9 Past research has shown that extraction of flaxseed oil with 

supercritical CO2 yields approximately 28% more fat than screw pressing and just 9% 

less than hexane extraction.4 Liquid and supercritical CO2 were also recently used for the 

extraction of fat from rendering materials, reducing the fat content to less than 1%.10 This 

process offers the advantages of separating a clean fat and the possibility of facile solvent 

recycling. However, the amount of CO2 needed is relatively high due to the low fat 

solubilities ranging between 0.5 to 6.5 g/L depending on pressure and temperature.10    

GAME (Gas-Assisted Mechanical Expression) is a process that combines mechanical 

pressures and the presence of CO2 as a solvent to dissolve into oils and enhance the 

pressing operation.  This enables higher fat recoveries using only a fraction of CO2 

compared to the aforementioned traditional CO2 extraction. This is possible because the 

solubility of CO2 in oils can be 50% higher than the solubility of oil in CO2.11, 12 This 

process was first introduced by Venter et al. for the separation of cocoa butter.13 In 

GAME, a gas-expanded liquid is formed by saturating CO2 in the oil or fat, significantly 

reducing the viscosity of the mixture compared to pure lipids.14 This reduction of the 

viscosity allows for an increase in expression yield compared to conventional mechanical 

expression, since the lipids are drained more easily through the compressed bed.15 

Moreover, this reduction in viscosity is also accompanied by a reduction of energy 

required for the separation process.16 Other possible factors affecting the enhanced 

separation are the freeing of oil due to disruption of the oil cell walls, and a reduction of 
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interfacial tension of the oil.16 Additionally, it is possible that the undissolved CO2, which 

is in equilibrium with the oil-CO2 mixture, displaces the oil-CO2 mixture contained in the 

filter cake.17 This behavior can be attributed to a higher density of the oil compared to 

supercritical CO2, which actually increases when it is saturated with CO2.18  

The aim of this work is to increase the fat extraction yield from rendered materials 

using CO2 assisted mechanical expression. This method is expected to reduce the amount 

of CO2 utilized compared to the liquid and supercritical CO2 extractions in Chapter 5, and 

also to reduce the energy requirement compared to conventional mechanical pressing. In 

this study, mechanical pressures between 300 and 2000 bars and CO2 pressures between 

69 and 241 bars were evaluated and compared to conventional expression. The effect of 

temperature (25, 40, 60 and 100°C) on the yield was also studied in this work.  

Materials and Methods  

Materials 

Feed grade poultry by-product meal was used as the rendered material (RM) in our 

testing and was kindly donated by Valley Proteins Inc.  The rendered material was used 

as received without any sample modification. The composition of the material was 12.1 

wt.% fat and 7.0 wt.% moisture content. Carbon dioxide used in the experiments was 

purchased from Airgas and ACS grade n-hexane was purchased from VWR.  A 10 ton 

hydraulic press (Torin™ Big Red jack model #T51003) was purchased from Northern 

Tools. The extraction cell (piston, upper cylinder, lower cylinder, cylinder stand, and 
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sieve plate) were designed in Solidworks and manufactured by Clemson Machining and 

Technical Services. Buna-nitrile O-ring with 2 backup rings was used on the piston 

assembly to seal the cylinder.   

Experimental Set-up 

The separation of fat from the rendered material was performed in batch mode using 

the designed high pressure cell with mechanical pressing capability, equipped with a 

hydraulic press as seen schematically in Figure 6.1. A Teledyne Isco 500HD syringe-

pump connected to a recirculating heating bath was used to deliver the CO2 at the desired 

pressure and temperature. A total amount of 5.0 g of RM was used in each experimental 

run. Heating tapes were wrapped around the top and lower cylinders were connected to 

an Omega CSC32 temperature controller in conjunction with a Payne Engineering 18TP 

variable voltage controller. K-type thermocouples provided feedback to the controllers. 

Before each experimental run, the cylinders were allowed to equilibrate at the specified 

temperature. The piston was lowered on top of the sample in each run to provide an 

initial compaction of the material.  

High pressure CO2 was introduced into the extraction cylinder for specific periods of 

time to reach equilibrium with the RM and fat. After this equilibrium time, the 

mechanical pressure was raised over the course of one minute to the desired force and 

held constant for a specific period of time. The expressed lipids passed through a 10 μm 

frit filter and sieve plate to the collection chamber while the RM remained in the upper 

cylinder. The cylinder was then depressurized over the course of 1 min and the extracted 
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fat was collected in a recovery flask filled with n-hexane. The extracted RM was 

collected and analyzed by the Agricultural Laboratory at Clemson University to 

determine the remaining fat content by a Soxhlet hexane extraction. 

Experimental procedure 

The fat separation runs have two time-dependent parameters that can influence the 

yield of lipid expression. The equilibrium time is required before the mechanical pressure 

to allow the CO2 to dissolve and equilibrate with the fat. The correct pressing time will 

allow a complete drainage of the fat-CO2 mixture from the RM cake. To evaluate the 

equilibrium times on the extraction yield, the samples were allow to equilibrate for 0, 5, 

10, 20, and 40 min at 40 °C and CO2 pressure of 172 bar before applying the mechanical 

pressure for the extraction for 10 min. In another set of experiments at a fixed equilibrium 

time, different pressing times in the same range (0 to 40 min) and conditions (40°C and 

CO2 pressure of 172) as the previous experiment were evaluated. According to the results 

obtained, 20 min of equilibrium and 20 min of pressing were sufficient for equilibrium to 

be reached and used in the remaining experiments.    

The effects of the effective mechanical pressure (Peff) (70-1880 bar) and CO2 pressure 

(0, 69, 103, 172, and 241 bar) on the extraction yield were studied at 40°C. Peff is defined 

as the mechanical pressure exerted by hydraulic pump on the RM material minus the 

pressure of CO2 inserted in the extraction cell. For these experiments, the CO2 was 

introduced at the desired pressures and allowed to equilibrate before exerting specific 

forces (1, 2, 4.5, 6 US ton) that were converted to the Peff in units of pressure (bars).  The 
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effect of temperature on the rendered fat extraction was studied at a constant mechanical 

force of 4.5 ton (1410 bar). These experiments were conducted at temperatures ranging 

between 25 to 100 °C using 103, 172, and 241 bars of CO2 pressure.  

 

 
Figure 6.1. Schematic diagram of the CO2 assisted mechanical expression of rendered 
materials. (1) Hydraulic Ram; (2) Piston assembly; (3) Upper Cylinder; (4) Heating tape; 
(5) Rendered Material; (6) Sieve Plate and 10 μm frit filter; (7) Lower Cylinder; (8) 
Collection Chamber; (9) Cylinder Stand; (10) Inlet CO2 valve; (11)Outlet CO2/lipid 
valve; (F) Mechanical Force gauge; (P) Pressure sensor; (T) Thermocouple. 
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Results and discussion 

Optimum experimental conditions  

The necessary time to allow CO2 to dissolve in the rendered materials was determined 

by experiments conducted at 40°C and CO2 pressure of 172 bars. Equilibrium times up to 

40 min demonstrated that at least 5 min are needed to reach equilibrium as observed in 

Figure 6.2. After 5 min, the expression time does not influence the yields, where yield is 

defined as the fat extracted as a mass percentage of the original fat in the RM. An 

equilibrium time of 5 min is relatively low compared to other gas-assisted expressions of 

oilseeds which were reported to be higher than 30 min.5 Similar behavior was found in 

our previous work (Chapter 5), where CO2 was able to easily penetrate the material and 

dissolve the fat,  because the RM is finely ground with high porosities and particle sizes 

less than 100 μm after extraction of fat.10 

Figure 6.2 also shows the effect of pressing time on the yield, which is more 

dependent on the pressing time, requiring a minimum of 20 min of pressing. Previous 

research report times of around 10 min for the extraction of vegetable oils.5, 13 This 

behavior could be explained by the lower viscosities compared to animal fats, resulting in 

faster times for the fat to drain from the cake.  For the purpose of this work, the extraction 

at different pressures and temperatures will be conducted for 20 min for both the 

equilibrium and pressing times. 
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Figure 6.2. Effects of the equilibrium time () and pressing time () on the extraction 
yields of rendered fats. 

Effect of CO2 pressure and effective mechanical pressure  

The influences of CO2 pressure and Peff on the expression yield are shown in Figure 

6.3. The yields are observed to increases with CO2 pressures, obtaining a highest value of 

81% at CO2 pressure of 241 bar and Peff of 390 bar. On the other hand, the lowest 

extraction yields were obtained for the conventional expression which showed at best a 

41.3% yield. The separations conducted at the lowest CO2 pressure, 69 bar, had a 27% 

higher absolute yield than conventional expression with no CO2, while increasing the 

CO2 pressure from 69 to 241 bar only increased the yields by approximately 12%.  

The trend of the extraction yields as a function of Peff in Figure 6.3 exhibit a 

maximum value at around Peff = 500 bar. This behavior also occurs with the conventional 

separation without the use of CO2 and can be explained by understanding the variables 
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involved in the drainage of the fat through the compressed cake. The superficial velocity 

of the fat (𝑣�𝐹), or fat drainage, is described by the one dimensional version of the Darcy’s 

law19 as follows  

𝑣�𝐹 =  − 𝐵
𝜂𝐹

𝑑𝑃
𝑑𝑧

      Eq. 6.1  

where B is permeability, 𝜂𝐹 is the dynamic viscosity of the fluid, and dP/dz is the 

gradient of fluid pressure. As the mechanical pressure is exerted on the material, the oil 

pressure (the driving force) increases, while the permeability decreases, leading to a 

further increase of the oil pressure. However, at some point the permeability becomes so 

low that it disrupts the fat drainage and reduces the extraction yields.16 For this system, 

this point seems to occur at some pressure around 630 bar for the conventional 

expression, and it may be the reason why some gas assisted expressions of oils reported 

in the literature are usually conducted at pressures not higher than 550 bar.5, 13 This 

optimum pressure cannot be accurately determined from Figure 6.3, but it is in the range 

of Peff = 600 bars.    

According to Darcy’s equation, a reduction of the viscosity increases the drainage of 

the fat. The dissolution of CO2 in oils has been shown to reduce the viscosity to 10% of 

the original oil viscosity at a CO2 pressure of 150 bar.20 However, other studies have 

shown that above ~150 bar the viscosity of the oil-CO2 mixture does not vary 

significantly.14, 20  This can explain why in Figure 6.3 the extraction yields between 172 

and 241 bar are essentially the same. Hence, it is not advantageous to conduct the RM 

pressing at CO2 pressures higher than 150 bar or Peff greater than 600 bar.  
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Figure 6.3. Extraction curves at different CO2 pressures and 40°C as a function of 
effective mechanical pressure. (a) Extraction yields and (b) fat contents after extraction.  
Δ, 0 bar; ♦, 69 bar;  □, 103 bar; ,172 bar; , 241 bar. 
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Temperature effect 

The effect of temperature on the expression yield was evaluated at pressures of 103, 

172, and 241 bar (Figure 6.4). For the lowest pressure, the temperature was observed to 

have a more pronounced influence, increasing the yield by 20% going from 25°C to 

40°C. However, the overall trend suggests that temperature slightly reduces the extraction 

yield as observed in Figure 6.4. This behavior can be explained by the reduced solubility 

of supercritical CO2 in liquids as temperature is increased when the pressure is below a 

determined critical value.16    

 
Figure 6.4. Temperature effect on the extraction yield at different pressures.♦, 103 bar;  
□, 172 bar; , 241 bar.  
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Conclusions 

CO2 assisted mechanical expression of fats from rendered material was successfully 

conducted in this work, obtaining a highest yield of 81% compared to 41% achieved with 

conventional expression. This yield represents a reduction of the remaining fat content 

from the initial 12.1% to 2.3%. The minimum equilibrium time before the extraction was 

found to be 5 min, demonstrating a fast CO2 dissolution into the fat component of the 

rendered material. An optimum effective mechanical pressure was observed at around 

600 bar, which can be attributed to a reduced permeability of the CO2-fat mixture through 

the RM matrix at high mechanical pressures, as described by Darcy’s law. The CO2 

pressure increases the extraction yields; however, at pressures higher than 172 bar, the 

change becomes negligible possibly due to the viscosity of the oil-CO2 mixture, which 

has been reported not to decrease significantly beyond such pressure.14, 20  Overall, it was 

demonstrated that high extraction yields can be achieved when conducting a gas assisted 

extraction on RM, utilizing only a fraction of the amount of CO2 used for CO2-only 

extractions.  
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CHAPTER SEVEN 

FUTURE WORK 

Introduction  

The purpose of this chapter is to report significant findings, not included in previous 

sections of this dissertation, in the research areas of cellulose nanocrystals (CNCs) and 

their properties when added to polylactic acid. These two areas are currently under 

investigation in my research group and will continue due to their promising applications. 

The first half of this chapter deals with use of CNCs for the fabrication of 

microelectromechanical systems (MEMS).  Due to the similar properties of CNCs 

compared to silicon, the goal is to use cellulose as a drop-in replacement for silicon.  The 

second half reports enhanced optical properties of PLA composites upon the addition of 

CNCs as a result of self-assembly and orientation of the nanocrystals.     

 Processing and properties of cellulose nanocrystals films for MEMS applications 

Introduction 

Cellulose nanocrystals (CNCs) have been demonstrated to exhibit great mechanical, 

optical, and electrical properties that can be applied in different advanced applications.1 

In addition, research has shown that cellulose can be used to fabricate “smart” materials 

that can react intelligently under environmental stimuli.2, 3 In light of this, exploring 

CNCs for new applications can lead to production of novel materials with innovative 

properties.  
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The objective of this work is to investigate the use of CNCs for the fabrication of 

films that can be applied for the fabrication of microelectromechanical systems (MEMS). 

This idea is motivated by the need for inexpensive, facile, abundant, renewable, and 

biodegradable alternatives to silicon.4 Silicon is facing increasing supply constraints due 

to the parallel growth of the microdevice/microelectronic and solar energy industries. In 

addition, the processing of silicon is often regarded as expensive and environmentally 

harmful due to high energy requirements and the use of harsh chemicals. These factors 

make many potential “lab on a chip” applications (i.e., one time use or point of care 

devices) based on silicon technology cost prohibitive. The surface chemistry of cellulose 

is similar to hydrophilic silicon oxide, since it has an abundance of hydroxyl groups on its 

surface, which make CNCs a potential alterntive for MEMS devices among other 

reasons. CNCs have bending strength of 10 GPa5 and Young’s Modulus of 143 GPa,6 

which are comparable to silicon and within an order of magnitude of those of carbon 

nanotubes.7 More recently and in conjunction with our collaborators at Auburn 

University, we have found that CNC films can be etched using current lithographic 

techniques used in commercial silicon MEMS.  Furthermore, CNC has the added 

potential to align through liquid crystalline self-assembly and/or upon shearing, opening 

the possibility to make MEMS with anisotropic properties, which is not achievable with 

silicon materials.8  

Our research group has focused on the study of the CNC properties in aqueous and 

organic solvents. The phase behavior, self-assembly, and the formation of thin films over 

silicon wafers have been investigated. The thin films will be treated and processed to 
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fabricate the MEMS devices.  CNCs isolated by hydrochloric acid (CNC-HCl) and with 

acetic acid (CNC-AA) were utilized for this purpose and were isolated as detailed in the 

Appendix B.1. Sulfuric acid synthesized CNCs (CNC-SA) have also been used in this 

work for thin film deposition, but the phase behavior has not been studied intensively 

here since it is widely known in the literature.9, 10  

 
Figure 7.1. Degree of flocculation of CNC suspension at different concentrations. (a) 
CNC-OH and (b) CNC-AA.  

CNC phase behavior in water  

CNC suspensions in water are studied for the preparations of MEMS devices since 

the use of organic solvents can strip the photoresist, which is the mold for the fabrication 

of the devices. However, CNCs also have to exhibit good compatibility with the 

substrate, which is also hydrophobic, in order to attach themselves to the photoresist. In 

this collaborative project, our group is focusing on of the synthesis and properties of 
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CNCs in water for the successful deposition of films on silicon wafers, while the other 

groups are working in the fabrication of the MEMS devices. 

 
Figure 7.2. Birefringence of CNC-HCl (a) and CNC-AA (b) suspensions in 2mm path 
length cuvettes between cross polarized films indicating the formation of liquid crystals.  

The phase behavior of CNC suspensions was studied by preparing increasing 

concentrations of CNC-HCl and CNC-AA and they were studied by visual examination 

of between crossed polarizers. Figure 7.1 shows the phase separation with concentration 

for both types of suspensions. The behavior for the CNC-AA suspensions seems to 

display a better trend with concentration. This can be attributed to the reduced hydrogen 

bonding due to the introduction of the carbonyl groups. For this reason, CNC-HCl, which 

possesses only hydroxyl groups on the surface, had the tendency to settle faster than for 

CNC-AA. The concentrations of each of the phases were calculated by means of UV-vis 



 165 

spectrometry and gravimetric analysis and the detailed results are presented in Appendix 

D.   

CNCs can assemble spontaneuosly into liquid-crystal phases. This assembly may be 

important for the development of MEMS devices that require mechanical stiffness in 

different directions. Figure 7.2 shows the self-assembly of both CNC types in water at 

concentrations between 0.1% and 6.0%. Birefringence patterns can be clearly observed 

indicating the formation of liquid crystals, probably a nematic phase. For CNC-AA the 

birefringence begins at a lower concentration than for CNC-HCl and also display higher 

intensities, which is also believed to be as a result of a better dispersion.  

For the MEMS fabrication, well-dispersed aqueous suspensions of CNC are needed 

for a smooth and strong film. However, observation under polarized microscope of CNC 

suspensions in water showed agglomeration at various CNC concentrations after the 

isolation process (Figure 7.3). The process of removing the agglomerations effectively is 

a current work in the research group, and results suggest that a combination of 10-15 min 

of sonication and 5 min of centrifugation can reduce these agglomerates significantly. 

Although agglomeration can be clearly observed, an appearance of bright phase at high 

concentrations is indicative of liquid crystal formation as shown in Figure 7.3. There is 

not a significant amount research in the study of liquid crystals formed by these types of 

CNCs, which is reason why this is a current research area in our research group.    
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Figure 7.3 Polarized microscopy of CNC-HCl suspensions, displaying bright phases and 
agglomerates (white dots). Length of the longest side of each image: 1.5mm  

CNCs films were deposited on round silicon wafers using spin-coating (Appendix 

B.4). The wafers were treated with N-(6-aminohexyl) aminopropyl-trimethoxysilan in 

order to change the surface chemistry for better compatibility with future steps in the 

fabrication of MEMS. The film quality was studied by visual examination and by atomic 

force microscopy (AFM). In addition to CNC-HCl and CNC-AA, sulfuric acid 

synthesized CNC (CNC-SA) was also evaluated. As observed in Figure 7.4, the most 

uniform films were form when using CNC-AA, which is the least hydrophilic of the 

nanocrystals used. This was also demonstrated by measuring the height through AFM, 

which indicated that CNC-AA films had a thickness of approximately 1.5 μm. CNC-HCl 
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and CNC-SA on the other hand, showed a thickness in the order of 0.2 μm. The ideal 

thickness for the fabrication of MEMS is around 3 μm, while smooth surfaces are also 

required. The CNC-SA films showed the smoothest surfaces compared to the other 

nanocrystals, probably due to the high dispersibility of CNC-SA as a result of the surface 

charge. CNC-AA and CNC-HCl have the tendency to agglomerate as discussed above, 

but with the appropriate removal of agglomeration, CNC-AAs are a promising material 

for the fabrication of MEMS.  

 
Figure 7.4. Picture of the CNC films deposited over silicon wafers.  

Nanocomposites with optical properties   

PLA-CNC nanocomposites were prepared to test the mechanical properties and to 

study the optical properties provided by the self-assembly of CNCs. In Chapter 3, 

polarized microscopy of the films demonstrated the increase of nanocrystal self-assembly 

with concentration. The nanocomposites with 10% CNC, which is the highest 

concentration prepared, showed a colorful arrangement between crossed polars especially 

when their thickness was varied by overlapping the films as shown in Figure 7.5. In this 

figure, the composites with surfactant decylamine (DA) are presented, and in Figure 7.6 

the images at the different rotation angles are presented.  
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Figure 7.5. Overlapping layers of nanocomposites of PLA and 10% DA-modified CNC 
showing optical properties (a) normal light, and (b) between crossed polars 

 
Figure 7.6. PLA with 10% CNCs modified with DA rotated between crossed polars at 0°, 

45°, and 90°.  

The orientational alignment observed in the films at lower concentrations in Chapter 

3 appears to be predominantly in the direction of the extrusion as observed in Figure 7.6. 
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At 0° and 90°, CNC alignment in the composite will not create retardation because they 

will be either parallel or perpendicular to the polarized filter. However, at 45°, the 

composite creates retardation that is dependent on the thickness of the sample, displaying 

the different colors. Figure 7.7 shows an image of the sample obtained from the polarized 

microscope for a closer observation of the birefringent colors.  

 
Figure 7.7. Low magnification polarized-light microscopy of the nanocomposites of PLA 
with 10% CNCs showing colored optical properties 

The samples were prepared with the modified CNCs (DA and CTAB) and also with 

unmodified CNCs. These colors began to be noticeable for the 5% CNC films, and the 

colors varied depending on the CNC functionality as observed in Figure 7.8. The films 

with more color intensity were the unmodified and DA-modified films, which also 

demonstrated less agglomeration as reported in Chapter 3. CTAB-modified CNC 

composites were less transparent and although they showed some color, they were not as 

bright as the other modifications. This self-assembly may also be in accord with results 

presented in Chapter 2, where CNC-DA showed a better organization within organic 

solvents in a stationary state and upon shearing. In addition, the CNC-DA films also 
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exhibit the best mechanical properties, increasing toughness by 61% compared to neat 

PLA.  

 
Figure 7.8 PLA composites films with unmodified CNCs (a); DA-modified CNCs (b); 
and CTAB-modified CNCs (c). 

Although, the 10% CNC films demonstrated poor mechanical properties, their 

intricate optical properties make them potential materials for applications such as 

decorative coatings, security papers, displays, specialty textiles and defense applications 

among others. Current and future research of these films in our research group will 

explore the specific origin of the structural color in terms of nanoscale structure, as well 

as the conditions that result in the formation of the liquid crystal structures including 

processing method, CNC functionality and concentration within the composite, and also 
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the nature of the matrix. The formations may be analyzed by polarized microscopy, 

AFM, TEM and X-ray scattering in order to determine the specific orientation of the 

nanocrystals that arises in these unique properties.  
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CHAPTER EIGHT 

CONCLUSIONS AND RECOMMENDATIONS  

Conclusions 

This dissertation explores two research areas, cellulose nanocomposites and CO2 

extraction of rendered fat, with the ultimate goal of developing new bio-based materials 

for advanced and commercial applications. In the first half, a comprehensive study of the 

properties of surface-modified CNCs for the reinforcement of biodegradable polymers is 

provided, while in the second, more efficient and greener fat extractions using CO2 are 

conducted on rendered materials to broaden their applications.   

Surface modification of CNCs is required to obtain good dispersions in non-polar 

organic solvents and polymeric matrices. Although surfactants are an easy and effective 

way to increase this dispersibility, high concentrations are frequently required for the 

stabilization, causing a potential reduction of composite performance.1, 2  In the 

investigation reported here, the functionalization of CNCs was successfully achieved by 

the addition of surfactants at only 1 wt% with respect to the CNC weight, increasing the 

stability in organic solvents and the toughness of PLA composites. The reason for the 

effectiveness of the addition of surfactants is believed to be due to the prior acetylation of 

CNCs, a process which reduces hydrogen bonding and, therefore, also the 

agglomerations.   

Decylamine-modified CNCs in THF were the most stable suspensions observed, 

remaining without significant phase separation for at least a month. This modification of 
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CNCs was also responsible for the highest increase in toughness (61% higher than neat 

PLA) observed in the PLA composites using a 1% CNC loading. In addition, these CNC 

systems, dispersions and composites demonstrated self-assembly when observed under 

polarized light. Birefringence patterns were observed in the stationary state and under the 

influence of shear, indicating a possible nematic phase formation as it was also confirmed 

by the lack of fingerprint textures, characteristic of cholesteric assemblies, when 

observed through polarized microscopy. The ability of decylamine modified-CNCs to 

assemble suggests the presence of well-dispersed crystals due to enhanced interactions 

with the solvent and with the polymer. This low degree of agglomeration was observed 

by studying the samples under a polarized microscope.  

 Higher degrees of agglomeration in the composites, obtained at higher CNC 

concentrations or incompatible functionalities, produced a significant reduction in 

toughness. The formation of agglomerates, even for the most compatible modification in 

this work, caused the nanocomposites to exhibit an optimum reinforcement at a low CNC 

loading, as is frequently reported in the literature. The addition of low concentrations of 

CNCs not only increased the toughness of PLA but also maintained the already good 

tensile strength and modulus. These improvements are promising from an economic 

perspective because of the  low amounts of CNCs and surfactant required for these 

enhancements. Additionally, PLA was further enhanced by grafting polyacrylic acid 

(PAA), which provided a stiffer and more hydrophilic surface for the addition of the 

CNCs and polyethylene glycol. The nanocrystals decreased the toughness of PLA-PAA 
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copolymer but increased the modulus in this case, an effect that was attributed to an 

increase in the crystallinity of the polymer upon addition of CNC.   

The nanoscale structure of nanocomposites has been shown to play an important role 

in the determination of their mechanical properties. The orientation of these structures 

studied through polarized microscopy demonstrated the self-assembly of CNCs in the 

composites, which was observed to be more prominent for the least agglomerated CNCs 

and for high concentrations. Similar to the behavior observed in cellulose fibers in nature,  

the alignment of CNCs was observed to be more randomly distributed in different angles 

along the extrusion line of the toughened composite.3 This finding is important for 

understanding the toughening mechanisms of CNC composites. This analysis of films 

though polarized microscopy, a less intensive method compared to others such as x-ray 

diffraction, has not been widely used in studying the orientation of CNC composites.  

In the second half of this dissertation, liquid and supercritical CO2 (LCO2 and 

SCCO2) were used for the extraction of fat from rendered poultry meal with the goal of 

producing a low fat content material. These extractions reduced the fat content to as low 

as 1.0±0.1% with extraction yields as high as 97%. The extraction curves revealed 

significantly higher fat solubilities in LCO2 than in SCCO2 due to a retrograde 

phenomenon. The high diffusivities of SCCO2 had almost no effect on the yields, perhaps 

because of the small particle size and porosity of the grounded rendered material. These 

findings are advantageous for the separation of rendered fats at low temperatures and 

relatively low pressures resulting in higher yields than the screw pressing currently used 
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in the industry. However, this extraction requires high amounts of CO2 due to low fat 

solubilities. This issue was addressed here using the CO2-assisted mechanical expression, 

resulting in yields up to 81%, compared to 41% obtained through conventional 

mechanical separation, and significantly reducing the amount of CO2 used compared to 

the LCO2 extraction. 

Recommendations  

Recommendations for Future Research 

CNC nanocomposites 

One of the limiting factors in this research is the tendency of CNCs to form 

agglomerates even after the addition of surfactants. In recent experiments not included in 

this work, the research group has shown that these agglomerates in water can be broken 

by a combination of ultra-sonication, which breaks most of the agglomerates, and 

precipitation by means of centrifugation, which separates the biggest, unbroken 

agglomerations. One of the first recommendations for this work is to find the best way to 

easily break up the agglomerates from the organic suspensions either by sonication and 

centrifugation. This was one of the limitations of this work since mixing by means of a 

vortexer for extended periods of time, usually around an hour, were needed to visually 

reduce the agglomerates. Also, the effect of the agglomerations on the phase behavior in 

suspension and in nanocomposites of CNCs can be evaluated and compared to this work 

if better dispersions can be achieved. A better dispersion may provide significantly higher 

enhancements of the composite toughness and a better assembly of CNCs.  
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It is important to evaluate the damage that can be caused to the CNCs by sonication in 

the breaking of agglomerates. This strong process may contribute to the delamination of 

CNCs, removing the surface-modified layers and exposing more hydroxyl groups. FTIR 

after sonication and centrifugation can be a good analysis to determine any reduction of 

the functionality of the carbonyl group on the CNCs, and thus evaluating the CNC 

susceptibility to sonication. 

After mixing CNCs and PLA in a solvent, in this case chloroform, some limitations 

were encountered in this investigation. First, it was found that excess solvent (~5%) was 

remaining after drying at ambient pressure for 8-10 h in a vacuum oven at 70 °C. In an 

effort to reduce the remaining solvent, the films were additionally heated to 120 °C for a 

90 min. This produced stiffer films not only due to the lack of solvent but also from a 

higher crystallization induced by the temperature, resulting in difficulties in the 

compounding of the composite in the extruder. This high-temperature drying is not 

frequently found in literature, suggesting that this residual chloroform may not affect 

significantly the properties of some films. Therefore, it is recommended to dry the films 

at a slightly higher temperature than the Tg of the polymer and the boiling point of the 

solvent. Furthermore, sufficient mass of composite has to be prepared (~20 g) since 

extrusion can have a startup/finishing period that will produce non-uniform films at the 

beginning and the end of the process. At least 10 films (90 mm x 10 mm) have to be 

obtained from extrusion since tensile testing of films may exhibit high variability.        
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For the purpose of further improving the toughness of PLA without reducing tensile 

strength and modulus, it is recommended to continue the investigation on the PLA-PAA 

copolymer using various proportions of both PEG and CNCs. Acetylated CNCs may 

provide the stiffness needed due to enhanced crystallization, while toughness can be 

significantly increased by the addition of PEG.  

Wide-angle X-ray diffraction (WAXD) has been used previously in our research 

group for the analysis of the nanoscale structure of CNCs in polymers.4 It would be 

interesting to determine the nanocrystal orientation within the films using WAXD and to 

compare these results to the analysis with polarized microscopy. Similar results may 

confirm the practical use of microscopy for the determination of the oriented material as 

it was done in this dissertation. In addition, the further study of the nanoscale structures 

and their relationship with the increase in toughness (especially after removing 

agglomerations) seems an important and promising explanation for the toughening 

mechanism of composites filled with rigid nano-rods.  

Another potential enhancement after the addition of CNCs is the reduction of the 

permeability of PLA as it has been reported in the literature.5 Permeability experiments 

can be performed on nanocomposites to determine if the surface-modified CNCs can 

improve the gas barrier properties of the films, since the high permeability is one of the 

disadvantages that need to be addressed in PLA.  
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Fat separation from rendered materials  

On the fat extraction of rendered material using CO2, it would be interesting to study 

the effect of supercritical CO2 on the fat solubility above the crossover point, where no 

retrograde phenomenon occurs and where CO2 may be more effective than liquid CO2 for 

the fat extractions. The proper design has to be taken in to account to securely reach 

pressures above 400 bar and temperatures up to 100°C.  

It was found in Chapter 5 that a maximum in the fat extraction was reached at all 

experimental conditions, leaving a minimum fat content of approximately 1%. This fat is 

likely to be inaccessible by the CO2 at the conditions studied in this work. The fat could 

be extracted perhaps with higher diffusivities resulting from the high temperatures and 

pressures of SCCO2, such as in the experiment suggested above. This may not be 

economically viable since it is only 1% of fat but it is interesting from a scientific 

perspective. Furthermore, it is recommended to do a better analysis on the fat and to 

determine the free fatty acid concentrations, since they would be expected to have a 

significantly lower solubility than the fat and could also be the un-extracted material 

obtained after the CO2 extractions.     

Recommendations for Additional research  

An interesting study proposed here as further research involves the preparation of 

different CNC functionalities and the evaluation of their reinforcement in PLA. For 

instance, composites with surface-charged CNCs and steric-stabilized CNCs, such as the 

surfactant modifications used here, can be prepared at increasing concentrations of CNCs 
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between 1 and 25%. However, the issue becomes that for most surface-charged 

nanocrystals, the thermal degradation is too low for a melt extrusion of the polymer. 

There are two options for addressing this concern: solvent casting or solvent spinning of 

fibers. The solvent-casting method may favor the formation of the percolation network, 

while the forces involved in the wet spinning may reduce it. These two options and 

different types of surface-modified CNCs can significantly contribute to the 

understanding of the reinforcement effect of CNCs in PLA. Furthermore, PLA fibers can 

be prepared, and the CNC structure and orientation can be studied. It would be interesting 

to compare fibers and films involving various proportions of the surface-modified 

nanocrystals. A spiral structure could be formed more easily in fibers than in films, 

allowing for a greater increase in toughness and further orientation-dependent properties 

that can be controlled by the fiber-processing parameters.  
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Appendix A 

Additional Polarized Microscopy Images 

 
Figure A.1. Polarized Microscopy of CNC-AA-DA suspensions in THF at different 
concentrations: a) 0.5%, b) 1%, c) 2%, d) 3%, e) 4%, f) 5%. 

 

 
Figure A.2. Polarized Microscopy of dried CNC films over glass slides. Top 
micrographs: Plain CNC-AA; bottom micrographs: CNC-AA using surfactant. Solvents: 
(a and d) THF; (b and e) Ethyl acetate; (c and f) chloroform.   
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Figure A.3. Polarized microscopy of PLA-CNC-DA films at different CNC loads using a 
first order red plate (5% and 10% were not presented in Chapter 3)   
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Figure A.4. Polarized microscopy of PLA-CNC films with and without surfactant at 1 
and 3% CNC loads using a first order red plate 

  



 186 

Appendix B 

Experimental Methods 

B.1 Detailed synthesis procedure for CNC-AA and CNC-HCl  

Preconditioning of Cellulose 

• Soak 15 grams of cotton ashless powder/filter clippings in a round-bottom flask 

overnight in either 337.5 milliliters (mL) of acetic acid to form CNC-AA or in 

200 milliliters (mL) of deionized (DI) water to prepare CNC-HCl 

• Prepare the set-up as observed in Figure B.1. Attach a reflux column to the round-

bottom flask with the soaked cellulose with a previously placed stir bar. Connect a 

temperature controller to a heating mantle to keep a constant temperature (ensure 

heating mantle is not yet plugged in until reaction begins). Position a stirring plate 

(≥ 750 rpm) under the heating mantle. 

 
Figure B.1. Set-up for the synthesis of CNC-HCl and CNC-AA 
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Reaction of CNC-AA 

• Add 36.75 mL of DI water and 1.2 mL of 36-38% HCl 

• Heat the mixture in the heating mantel at 105 ºC for 10 hours 

Reaction of CNC-OH 

• Add 53 mL of 36% HCl to the cellulose (previously soaked in DI water) to obtain 

an HCl concentration of 2.5 M 

• Heat the mixture at 103 ºC for 60 minutes 

Both Reactions 

• Cool the mixture after reaction in an ice bath for 15 minutes 

• Pour the mixture into centrifuge tubes (~30 mL per tube) 

• Centrifuge at 8,600 rpm for 3 minutes and after collecting the precipitate pour 

remaining acid liquid into a container for posterior treatment 

• Pour DI water (~30 mL) into tubes and mix thoroughly in vortex to wash 

• Centrifuge and wash two more times, adding only 10 mL of water for last wash 

• Combine the suspensions in a plastic beaker 

• Sonicate for 35 minutes at a power of ~7.5-8.0 (7 minute pulse, 2 minute rest, 5 

cycles) 

• Add water in order to approximately double the volume and do two more washes; 

in the third wash (possibly the second wash if supernatant is observed) recover the 

supernatant after centrifugation (8,600 rpm for 3 minutes) 
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• Add more water and repeat the process until no supernatant can be recovered (3 or 

4 times) 

• Combine supernatant and evaporate water if desired to increase the CNC 

concentration 

• Measure the concentration of the CNC water suspension using weighting plates 

 a. Place 3-5 mL of sample onto weighing boats/vessels 

 b. Weigh empty vessels and vessels with sample and record results 

 c.  Vacuum dry and then weigh vessel with dry cellulose sample 

 d. Calculate CNC concentration and record results 

 

B.2 Procedure for Polarized Optical Microscopy Olympus Light Microscope BX60 

1. Turn on the microscope light using the switch on the machine behind the 

microscope, ensuring that the switch is flipped so light source is below platform and light 

is at full (12) power. 

4. Take lens cap off the microscope and fully rotate the ring (A) counter-clockwise. 

Adjust the focus using the rotating handles (B) until a hexagon is clearly outlined when 

looking through the eye pieces (C). 

5. Center the hexagon that is observed through the eye piece (C) using the metallic 

screws D and E. 
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Figure B.2. Polarized microscope parts 

6. Open the ring A clockwise so that the entire field of view is filled with light – the 

hexagon encompasses the entire view through the eyepiece (C) 

7. Place the polarizer (Olympus U-POT) (F) on the lens of the light source (G) and 

the analyzer (U-ANT) (P) in the position indicated in Figure B.2. Rotate the polarizer 

until the field of view becomes dark (extinction position). For the study of the specific 

liquid crystal orientations insert the first order red plate (530 nm U-TP530) within the 

analyzer holder.   
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8. If using an external camera (DSLR) to obtain the polarized images follow this 

procedure. Remove the lens from the DSLR camera and connect the adaptor (H) for the 

Sony alpha 55 camera. Remove eye pieces from the microscope and place the camera on 

the left eyepiece socket. Usually, a single microscope slide does not provide enough 

distance for focusing in the sample. To address this, place two blank, clean slides on 

platform with the mechanism (I) in Figure 3, and then place sample slide on top of them. 

10. Focus on the sample carefully without letting the lens touch the glass slide. Adjust 

shutter speed, magnification and ISO of camera to acquire picture of sample. Automatic 

mode may not adjust the right light level for the polarized images.    

11. Move the sample using the screws J and K. The stage can be rotated every 45° to 

observed the liquid crystals at different angles. Make sure the stage is centered before this 

step by adjusting the metallic screws L and M and rotating the sample so that the center 

of rotation is on the center of the field of view.  

 
Figure B.3. Rotating stage of polarized microscope 
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12.  At the end of the observations, remove slides from platform and lower stage 

using the focusing knobs (B). Place polarizer (F) and lens adapter (H) back into drawer 

(N). Make sure that the analyzer is out of the slot. Turn off microscope, place cover back 

on entire instrument, and sign out with the proper exit time 

Notes 

• Remember to record all results using the number of picture taken with the camera 

• Use lens paper (VHR Scientific Products, Cat. No. 52846-001, Size: 4 x 6 inches) 

(O) to clean any dusty slides or lenses 

• Use proper petri dishes (R) to hold micro-slides to avoid dust accumulation. 

 

B.3 Image analysis of liquid crystal structures 

Image analysis was used to quantify the colors in the PLA-CNC composite films 

when observed through the polarized-light microscope. The analysis used in this 

dissertation and described in this appendix is based on the software Photoshop; however, 

other software can such as GIMP (free and open source) and ImagePro Plus can also be 

used. The procedure consists in two main steps, an image correction and the 

quantification of colors, and this is described below.  

1. Image levels adjustment. This manipulation corrects the tonal range and color 

balance of an image by adjusting intensity levels of image shadows, midtones, and 

highlights. Open Photoshop and open the picture that is to be analyzed.  
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2. Select the region of interest with the marquee tool   from the tool bar as 

shown in Figure  B.2.  

3. Click on ImageAdjustments  Levels or Ctrl+L. A dialogue box as in Figure  

B.2 will appear and click on “Auto” and then “OK”. The levels of the selected area should 

now be adjusted (Figure 3) 

4. Quantifying color. First, the total number of pixels on the selected area has to be 

counted. Click on Window  Histogram. A window with information including the total 

number of pixels of the area will appear. Record the pixels. 

 

 
Figure  B.4. Screenshot of selected area for image analysis of films and window to adjust 
the color levels.  
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Figure B.5. Selected area with the level adjusted automatically. 

 
5. To count the colored pixels click on SelectColor Range. On the dialogue box 

(Figure 4) select the specific color to be quantified (e.g. Magentas) and then click “OK”.  

6. Open the Histogram window again and refresh the information with the icon: .  

Record the count of pixels of that specific color and divide this value by the total pixels 

recorded earlier to determine to the percentage of the area.  

7. For easier manipulation, click on Edit  Undo color range. Repeat step 5 and 6 

for another color and determine the percentage.  
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Figure B.6. Screenshot of the color range selection window.   

8. Alternatively for step 5, the colors to be analyzed can be picked from the image 

with the “sampled colors” option from the drop-down list. After this, go to step 6 to obtain 

the pixels.   
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B.4 Spin Coating with Round Silicon Wafers  

Piranha pretreating: Be sure to wear heavy gloves, safety glasses, lab coat, and 

perform all steps under a working hood.  Piranha solution is extremely corrosive and 

releases fumes.  

1. Make a piranha solution of 7:3 of sulfuric acid and hydrogen peroxide, 

respectively.  Place this in a glass container that can accommodate the wafer to be coated.   

2. Place the wafer in the piranha solution.  Sonicate for 30 min at about 70 °C in 

water.  Remove the wafers from the piranha with metal tweezers. If modifying the wafer 

with an amine, go to step 3. Rinse liberally with deionized water and then dry with 

nitrogen.  Place in clean, dry disposable petri dish.   

 3. If coating with an amine, rinse with deionized water followed by drying with 

nitrogen.  Soak in 2% amine solution in ethanol (reagent alcohol used in our case) for 

about 10-20 minutes.  Rinse further with ethanol to remove excess amine.  Dry with 

nitrogen and place in plastic petri dish.  

On the Computer:   

4. Open the software on the computer program Spin3000.  Check to make sure the 

computer and the spin coater are connected.  Refresh the program to view all programs.  

To make a new one, fill in proper velocity, time, and acceleration into the spreadsheet 

and save new program.  Then refresh the program to move from the computer to the spin 
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coater.  Note that the acceleration should be equal to the difference between initial speed 

and final speed. Usually start with 10 s at 300 rpm followed by 30 seconds at 600 rpm. 

On the Spin Coater:   

5. Press the “Process/Select” button.  Then highlight the program desired and press 

“run mode”.   

6. Check the highlighted status bar.  (“CDA” = clean dry air)  Turn on the vacuum 

switch behind the machine but do not run the vacuum in the spin coater yet.  Turn on the 

nitrogen supply.    

7. Place the wafer so that it is as close to the center as possible.  Close the lid making 

sure it is latched.   

8. Activate the “Vacuum” button on the machine.   

9. Using a clean pipette, place the amount of CNC suspension desired for spin 

coating.   

10. Push the green “Start” button and the spin coater will start. Once finished, remove 

wafer. 

Drying Procedure:   

11. Place wafers on a paper towel in the vacuum oven and heat at 100-120 °C with 

and 25 inHg.  Leave for 30 minutes to 1 hour depending on prior moisture of the wafers.   

Remove and let cool before placing in a disposable, clean plastic petri dish.  
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Appendix C  

Extraction of other rendered materials and characterization  

 
Figure C.1. Fat content in meat and bone meal after CO2 extractions (c=solubility)  

 

Figure C.2. Fat content in feather meal after CO2 extractions (c=solubility) 

0%

2%

4%

6%

8%

10%

12%

14%

0 10 20 30 40

Fa
t c

on
te

nt
 (%

) 

Ratio CO2/meal [g/g] 

Meat and Bone Meal 

0%

1%

2%

3%

4%

0 10 20 30 40

Fa
t c

on
te

nt
 (%

) 

Ratio CO2/ meal [g/g] 

Feather Meal 

c =3.54 g /L 

c = 3.17 g/L 



 198 

 
Figure C.3. Fat content in blood meal after CO2 extractions (c=solubility) 

 

 
Figure C.4. Fat content in sludge after CO2 extractions at different pressures 
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Characterization of Rendered Materials 

Table C.1. Rendered Materials Composition  

As-sampled  Fat Protei
n 

Ash Moistur
e 

Total 

Poultry Meal  13.6 65.9 11 7.4 97.9 
Plain Prime Poultry  11.9 66.6 10.7 6.4 95.6 
Plain Poultry Meal low 
ash 

 13.2 69.1 8.2 6.9 97.4 

Meat and bone meal  8.4 52.3 28.8 6.6 96.1 
 

Table C.2. Sludge Composition  

Sludge sample    Fat Protein Ash Moisture Total 
Sample 1   36.6 3.6 0.8 58.7 99.7 
Sample 2    39.9 6.4 0.4 52.2 98.9 
Sample 3   29.2 6.4 2 61.8 99.4 

 

Table C.3. Extracted Rendered Materials Composition  

Extracted RM   Fat Protei
n 

Ash Moistur
e 

Total 

CO2 poultry meal  0.9 77.3 13.5 - 91.7 
Hexane poultry meal  0.1 75.8 12.7 - 88.6 
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Appendix D 

Phase behavior of CNC-HCl and CNC-AA in water  

Determination of phase concentrations by UV-Vis Spectrometer 

Ultraviolet-Visible Spectrophotometer (UV-Vis) was used to determine the 

concentrations of the top phases of suspensions of CNC-AA and CNC-HCl since they 

presented too low concentrations to be determined by gravimetrical methods.  First, a 

calibration curve was prepared with known low concentrations of both types of CNC in 

water. The range of wavelength examined was between 650 nm to 350 nm and the 

absorbance of each sample was taken at a wavelength of 500nm. The concentrations were 

obtained by using the regressed equation obtained from the calibration curve.  

 
Figure D.1. Example of the absorbance of CNC-OH suspensions 
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Figure D.2. Calibration curve for CNC-OH suspensions at low concentrations. 

 

 
Figure D.3. Calibration curve for CNC-AA suspensions at low concentrations.   
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Figure D.4.  Concentration of the top phase of phase separated CNC-OH suspensions. 

 

 
Figure D.8. Top phase volume of various CNC-OH suspensions.  
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Figure D.5. Concentration of the bottom phase of various CNC-OH suspensions obtained 
based on the top concentration and the separated bottom phase volume at each 
concentration. 

 

  
Figure D.6. Concentration of the top phase of phase separated CNC-AA suspensions. 
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Figure D.9. Top phase volume of various CNC-AA suspensions. 

 
Figure D.7. Concentration of the bottom phase of various CNC-AA suspensions obtained 
based on the top concentration and the separated bottom phase volume at each 
concentration. 
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CNC films preparation over silicon wafers 

 

Figure D.10. Atomic force microscopy of CNC-SA, CNC-AA and CNC-OH films over 
silicon wafers. 
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