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ABSTRACT 
 
 

The research is comprised with three studies to implement statistical tools for 

examining two economic issues: the impact of a regional agricultural campaign on 

participating restaurants and efforts of U.S. Department of Agriculture (USDA) 

forecasting reports in agricultural commodity markets. 

The first study examined how various components of the Certified South Carolina 

campaign are valued by participating restaurants. A choice experiment was conducted to 

estimate the average willingness to pay (WTP) for each campaign component using a 

mixed logit model. Three existing campaign components—Labeling, Multimedia 

Advertising, and the “Fresh on the Menu” program were found to have a significant 

positive economic value. Results also revealed that the type of restaurant, the level of 

satisfaction with the campaign, and the factors motivating participation significantly 

affected restaurants’ WTP for the campaign components. 

The second study evaluated the revision inefficiencies of all supply, demand, and 

price categories of World Agricultural Supply and Demand Estimates (WASDE) 

forecasts for U.S. corn, soybeans, wheat, and cotton. Significant correlations between 

consecutive forecast revisions were found in all crops, all categories except for the seed 

category in wheat forecasts. This study also developed a statistical procedure for 

correction of inefficiencies. The procedure took into account the issue of outliers, the 

impact of forecasts size and direction, and the stability of revision inefficiency. Findings 

suggested that the adjustment procedure has the highest potential for improving accuracy 

in corn, wheat, and cotton production forecasts. 
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The third study evaluated the impact of four public reports and one private report 

on the cotton market: Export Sales, Crop Processing, World Agricultural Supply and 

Demand Estimates (WASDE), Perspective Planting, and Cotton This Month. The “best 

fitting” GARCH-type models were selected separately for the daily cotton futures close-

to-close, close-to-open, and open-to-close returns from January 1995 through January 

2012. In measuring the report effects, we controlled for the day-of-week, seasonality, 

stock level, and weekend-holiday effects on cotton futures returns. We found statistically 

significant impacts of the WASDE and Perspective Planting reports on cotton returns. 

Furthermore, results indicated that the progression of market reaction varied across 

reports. 
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CHAPTER ONE 
 

INTRODUCTION 
 

Overview and Objective 

The current research aims to implement statistical tools for examining two 

economic issues: the impact of a regional agricultural campaign on participating 

restaurants and efforts of U.S. Department of Agriculture (USDA) forecasting reports in 

agricultural commodity markets. Both the campaign and the forecasts are supported by 

governmental funding. Given the current market environment that federal and state 

budgets have been gradually pruned, addressing these two issues will help government 

officials to justify the expenditure of public funds. This research comprises three 

manuscripts including 1) the examination of the Certified South Carolina campaign, 2) 

the evaluation of accuracy and efficiency of the World Agricultural Supply and Demand 

Estimates (WASDE), a forecasting report by the U.S. Department of Agriculture 

(USDA), and 3) the assessment of public and private information effects on the cotton 

market.  

In the United States, regional agricultural campaigns, which promote locally 

grown products, have grown rapidly since the mid-1990s; by 2010, all 50 states had such 

campaigns in place (Onkenand Bernard, 2010). The Certified South Carolina campaign 

was launched on May 22, 2007. The “Fresh on the Menu” component, which promotes 

local restaurants preparing dishes with “Certified South Carolina” products, was added in 

February 2008. Most previous studies (e.g. Carpio and Isengildina-Massa, 2010; 

Patterson et al., 1999) analyzed the impact of locally grown campaigns focusing 
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exclusively on the benefits received by farmers, while the impact of such campaigns on 

local restaurants had been neglected. The objective of the first study is to examine the 

perceived economic value of various components of the Certified South Carolina 

campaign by the generally overlooked segment of participating restaurants and to explore 

the relationship between campaign valuation and characteristics of participating 

restaurants. This study is described in Chapter 2. 

Industry participants have relied on USDA forecasts to make production, 

marketing processing, and retailing decisions for many years. Recently, there have been 

concerns about the accuracy of USDA estimates. Releasing an incorrect forecast will 

mislead the markets and cause unnecessary price movements. In addition, errors in 

USDA price estimates may result in large changes in the payments to agricultural 

producers since some government payments are computed using these estimates 

(Isengildina-Massa, Karali, and Irwin, 2013). The USDA actually warns readers that its 

estimates are subject to revisions and sampling errors. The objective of the second study 

is to evaluate the monthly revision efficiency of all supply, demand, and price categories 

for U.S. corn, soybean, wheat, and cotton forecasts, published in the monthly WASDE 

reports, which are viewed as some of the most influential public reports. In addition, a 

statistical model is developed in this study, which takes into account outlier adjustment, 

the impact of other variables on inefficiency, and structural changes to correct for 

inefficiency and therefore improve the accuracy of WASDE forecasts. This study is 

described in Chapter 3. 
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The National Agricultural Statistics Service, part of the USDA, has a $156.8m 

budget for approximately 500 reports each year and 1,050 employees (Meyer, 2011). 

There is no doubt that releases of USDA reports move the markets. However, most 

previous studies evaluating the impact of USDA forecasting reports concentrated on one 

report at a time. In addition, while the USDA Crop Production, the World Agricultural 

Supply and Demand Estimates (WASDE), and other reports have been evaluated, the 

influences of many other reports, such as the Crop Process and Perspective Plantings, 

have been neglected. Furthermore, while we know which reports affect corn, soybean, 

wheat, livestock and hog markets, other commodities have been overlooked. Therefore, 

the objective of the third study is to estimate the impact of all major public and private 

reports on the cotton market. In measuring the report effects, we control for the day-of-

week, seasonality, stock level, and weekend-holiday effects on cotton futures returns. 

This study is described in Chapter 4. 

Chapter 5 summarizes the results from all three studies. 
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CHAPTER TWO 

VALUATION OF VARIOUS COMPONENTS OF A REGIONAL PROMOTION 

CAMPAIGN BY PARTICIPATING RESTAURANTS 

Introduction 

Government funded advertising campaigns play an important role in agricultural 

and food policy around the world. In the United States, regional promotion programs 

have grown rapidly since the mid-1990s. The number of states conducting such programs 

increased from 23 to 43 between 1995 and 2006 (Patterson, 2006), and by 2010 all 50 

states had such programs in place (Onken and Bernard, 2010). Previous studies 

evaluating regional promotion campaigns showed mixed evidence regarding campaign 

effectiveness (e.g. Carpio and Isengildina-Massa, 2010; Govindasamy et al., 2003; 

Patterson et al., 1999). Govindasamy et al. (2003) found that the Jersey Fresh program 

generated about $32 of returns for fruit and vegetable growers for every dollar invested. 

In other words, the $1.16 million campaign generated $36.6 million in sales for New 

Jersey produce growers and a total economic impact for the state economy of $63.2 

million in 2000. Carpio and Isengildina-Massa (2010) concluded that the Certified South 

Carolina campaign generated a return on investment of 618% or a benefit-cost 

(producers benefit / state government expenses) ratio of 6.18 in 2007. In contrast, 

Patterson (1999) found little evidence of an increase in local product sales due to the 

Arizona Grown campaign. 

Most previous studies analyze the impact of the locally grown campaigns 

focusing exclusively on benefits received by farmers (e.g., Carpio and Isengildina-Massa, 
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2010; Patterson et al., 1999). While farmers tend to be the primary beneficiaries of such 

campaigns, their benefits extend far beyond and include consumers, restaurants and 

farmers’ markets as well as the secondary effects on the rest of the economy 

(Govindasamy et al., 2003; Carpio and Isengildina-Massa, 2013). To the best of our 

knowledge, no studies of the impact of such campaigns on local restaurants have been 

conducted to date. Ignoring these additional effects of locally grown campaigns would 

lead to an underestimation of their impact, especially in cases where some of the 

campaign components focus exclusively on restaurants. Additionally, regional promotion 

campaigns have typically been analyzed as a whole, providing little guidance to policy 

makers about the value of separate campaign components. Given these limitations, the 

goals of the current study are twofold: 1) to examine the perceived economic value of 

various components of the Certified South Carolina campaign by the generally 

overlooked segment of participating restaurants, and 2) to explore the relationship 

between campaign valuation and characteristics of participating restaurants.  

 The Certified South Carolina campaign was launched on May 22, 2007 and was 

financed by special appropriations from the state legislature. The goal of the campaign 

was to increase consumer demand for the state produced food products and increase 

agribusiness profitability. Annual campaign expenditures averaged about $1.3 million 

during 2007-2010. Original campaign components included the design and distribution of 

labels and signage for “Certified South Carolina” products and advertisement of South 

Carolina food products on television, radio, magazines, newspapers and billboards. The 

“Fresh on the Menu” component, which promotes local restaurants preparing dishes with 
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“Certified South Carolina” products, was added in February 2008. In order to enroll into 

this free program, restaurants needed to complete an application form, pledging to offer a 

menu that includes at least twenty-five percent “Certified South Carolina” products such 

as fresh fruits, vegetables, meats and seafood as available in season. Participating 

restaurants take advantage of the South Carolina Department of Agriculture’s (SCDA) 

multimedia advertising and branding efforts, including kits and artwork for logos and 

online, radio, magazine, newspaper, and billboard advertisement promotions. When it 

was first introduced in 2008, 180 restaurants signed up for the “Fresh on the Menu” 

program. By July 2010, when the data for this study was collected, the campaign 

membership had increased to 288 restaurants.  

Since restaurants are not required to pay a participation fee for the campaign, this 

study used a choice-based conjoint analysis method to determine the perceived economic 

value that participating restaurants place on each campaign component. The data 

generated from a discrete choice experiment were analyzed using a mixed logit model, 

allowing us to estimate participating restaurants’ average willingness to pay (WTP) for 

each of the campaign components, which represents their respective economic values 

(Holmes and Adamowicz, 2003). In addition to the average WTP estimates for each 

campaign component, we estimated individual level WTP values which are in turn used 

as dependent variables in linear regression models to uncover how individual WTP for 

each component is affected by participating restaurants’ characteristics. The findings of 

this study could help policy makers and marketers determine which campaign 

components are more effective and could be used to guide future campaign fund 
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allocations. In an environment of decreasing state and federal funding it becomes 

increasingly important to have specific estimates of the effectiveness of alternative 

campaign investments. 

Data and Methods 

Survey Approach 

The data used for estimation in this study were collected via a survey of the 

managers of 288 restaurants that participated in the South Carolina “Fresh on the Menu” 

in July 2010. The survey was administered through a combination of internet (Qualtrics) 

and mail1 and included the entire population of participating restaurants. Every effort was 

made to obtain the highest possible response rate including the use of economic 

incentives, an invitation letter, the shortest possible survey instruments pre-tested using 

focus groups; the use of the Dillman survey method (with two reminders after the first (e-

)mailing); and the use of a mail survey to complement online surveys. The survey 

generated 71 usable observations for a response rate of about 25%, which is relatively 

high compared to a 13.4% average response rate in a study of 199 online surveys 

conducted by Hamilton (2003)2. In order to assess the representativeness of our sample, 

we compared the location of the restaurants in the population with that of the sample 

(location was the only known characteristic of the population). The proportion of 
                                                
1 The results of this study were not statistically different across the two survey formats. 
 
2 Although the relationship between low response rates and low survey accuracy has been  
2 Although the relationship between low response rates and low survey accuracy has been 
academically debated for a long time, several recent studies suggest a very weak or non-existent 
relation between the two (Keeter et al., 2000; Curtin et al., 2000; Brick et al., 2003; Keeter et al., 
2006; Holbrook et al., 2008). 
!
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restaurants from each region in the sample generally followed the corresponding 

proportion in the population except for one of ten regions considered: the Berkerly-

Charleston-Dorchester whose proportion in the sample (16.4%) was lower than the 

proportion in the population (30.9%).3   

Choice Experiment 

Various methods are available to elicit and estimate preferences for products or 

services or the value of changes in the qualities of existing products.  These methods 

include choice experiments  (e.g., Adamowicz et al., 1998; Louviere, Hensher, and Swait, 

2000), dichotomous choice questions  (e.g., Hanemann, Loomis, and Kanninen, 1991; 

Ready, Buzby, and Hu, 1996), and experimental auctions (e.g., Lusk et al., 2001; List and 

Shogren, 1998). Choice-based conjoint analysis or choice experiments (CE) have the 

advantage of closely mirroring typical choice experience--making one decision over 

several options--and allowing a researcher to estimate the trade-offs between several 

competing product attributes (Lusk and Hudson, 2004). Additionally, CE are easier to 

organize with no requirement for laboratory sessions and the need of an actual product 

(which is not realistic in the context of this project). Several studies also prove that 

hypothetical responses to CE are very consistent with revealed preferences (e.g., Carlsson 

and Martinsson, 2001; Adamowicz et al., 1997).  

CE are firmly rooted in the economic theory that the decision making process can 

                                                
3 A weighted maximum likelihood estimator was also used to explore the robustness of the results 
to the difference between the sampling and population proportions (Cameron and Trivedi, 2005). 
All the estimated coefficients were similar and had overlapping 95% confidence intervals except 
for the mean coefficient for SIGNAGE. This coefficient was significant in the model using 
weights. 
!
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be viewed as a comparison of indirect utility functions and analyzed within the random 

utility framework (McFadden, 1974).  The data obtained from CE can then be analyzed 

using discrete choice models and the results can be used to estimate WTP values for the 

various attributes of the good or product under study (Alfnes et al., 2006; Holmes and 

Adamowicz, 2003; Revelt and Train, 1998). In this study we use CE to examine 

restaurant managers’ preferences for each of the attributes (components) of the Certified 

South Carolina campaign. Thus restaurant managers are considered the consumers of the 

regional promotion campaign and choose the campaign profile (combination of various 

components) that allows them to reach the highest level of utility. Accordingly, the value 

of the campaign can be measured as the maximum amount of money restaurants would 

be willing to pay for a certain campaign profile. This approach allows us to estimate the 

economic value of the campaign, which is currently offered to participants free of charge. 

In order to determine the perceived economic value of each component of the 

Certified South Carolina campaign, the CE design incorporated four attributes 

corresponding to the components of the existing campaign: (1) Labeling (LABEL) which 

provides labels for “Certified South Carolina” products; (2) Point of Purchase Signage 

(SIGNAGE) which provides “Certified South Carolina” signs at food buying locations, 

such as supermarkets, farmers markets, and roadside stands; (3) Multimedia Advertising 

(MULTI), which funds television, radio, magazine, newspaper, and billboard 

advertisements promoting “Certified South Carolina” products; and (4) the “Fresh on the 

Menu” component (FOTM) which promotes local restaurants preparing and selling menu 

items that include “Certified South Carolina” products in season. Each choice was 
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associated with one of two payment methods (METHOD): membership fee or donation. 

These two options were selected because they are the most widely used methods for 

funding public and private programs that promote locally grown products. The payment 

amount was also added so that the WTP for each campaign component could be 

calculated. A pilot study of four randomly selected restaurants in the upstate region of 

South Carolina was conducted to determine the appropriate bid vector (following 

Ratcliffe, 2000). The payment levels (PAY) were identified as $20, $50, $100, $150, and 

$200. The combination of all the attributes and levels resulted in a total of 160 

(2*2*2*2*2*5) possible campaign profiles and a full factorial design consisting of 12,720 

(C2
160) possible choices. However, it was not feasible to include such a large number of 

scenarios in a CE. Hence, a fractional factorial design was applied to choose 18 scenarios 

by comparing the D-Efficiency of each combination. Having 18 scenarios within a single 

survey was still considered excessive. Therefore, the design was blocked into three 

versions of the questionnaire where each respondent was offered 6 scenarios with trinary 

choices. A series of SAS Macro programs were used to first generate the campaign 

profiles and then to construct the CE used in this study. Figure 2.1 provides an example 

of one of the 18 scenarios. In each case, the manager of the restaurant was asked to 

choose from campaign A, B, or no campaign at all with two types of funding and 5 

different funding levels. Having these options allowed the experimental design to fit an 

actual market situation without “forcing” a choice (Louviere, Hensher, and Swait, 2000). 

Average WTP Estimation, Mixed Logit Model 

The econometric choice model used in this study is the random parameter/mixed 
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logit model4 developed by Revelt and Train (1998). The mixed logit model was chosen 

because it allows efficient estimation of repeated choices by the same respondent within 

choice-based conjoint experiments. Moreover, this model relaxes the restrictive 

assumptions of the conditional logit model (Revelt and Train, 1998).  

Following Revelt and Train (1998), the random utility function of restaurant 

managers (Uni) is assumed to be comprised of a systematic ( ) and a random ( ) 

component: 

(2.1)  , i=1,…,I, , and n=1,…,N, 

where Uni is the true but unobservable indirect utility of restaurant n associated with 

campaign profile i. A restaurant chooses alternative i from choice set C only if , 

where n=1,…, N, alternative and . Accordingly, choices are made based on 

utility differences across alternatives and the probability of choosing i can be expressed 

as: 

(2.2) 
.
!  

In this study, restaurant managers need to make six choices in a row, so choice 

situations are defined using the index t (t=1, …, 6). Moreover, the indirect utility that 

restaurant manager n expects to obtain from alternative i in choice situation t is assumed 

to be linear-in-parameters (Revelt and Train, 1998):  

(2.3)  , 

where coefficient vector βn is the unobserved preference parameter associated with 
                                                
4 The results generated by applying a conditional logit model are available upon request. 

vni εni

Uni = v ni+εni i∈C

Uni >Unj

i, j ∈C i ≠ j

P(i |C) = P(Uni >Unj ) = P(vni + εni > vnj + εnj ) = P(vni − vnj > εnj − εni )
∀i, j ∈C, i ≠ j,n =1,...,N

Unit = βn
' xnit + εnit
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attribute xnit for each n and varies in the population with density f(βn|θ), in which θ are 

the true parameters of the distribution of βn; and εnit is an unobserved random term that is 

independent and identically distributed extreme value, independent of βn and xnit.. 

Conditional on βn, the probability that restaurant manager n chooses alternative i in 

period t is: 

(2.4) 

.

 

Denote i(n,t) as the campaign profile that restaurant manager n has chosen in period 

t, and let in=(i(n,1),…, i(n,T)) be restaurant manager n’s sequence of choices. Conditional on 

βn, the probability of respondent n's observed sequence of choices is: 

(2.5) 
.
 

Because the βn’s  are not observable, these conditional probabilities are integrated 

over all possible values of as: 

(2.6) 
 
Qn (in |θ ) = Pn (∫ in | β ) f (β |θ )dβ ,

 

where is the probability of restaurant n’s sequences of choices conditional on 

the parameters of the population distribution, .  

The parameter vector θ is estimated using the log-likelihood function:  

(2.7) 
.
 

Log-likelihood estimation procedures are used to estimate the parameters of the 

Lnit =
eβn

' xnit

eβn
' xnjt

j
∑

Pn (in | βn ) = Lni(n,t )t (βn )
t
∏

β

Qn (in |θ )

f (β |θ )

lnL(θ) = lnQn (in |θ)
n=1

N

∑
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distribution of βn. Since the integral in equation (2.6) cannot be calculated analytically, 

estimation of the population level parameters is carried out by using simulated maximum 

likelihood procedure following Revelt and Train (1998). The models were estimated 

using modified versions of Kenneth Train’s Matlab programs, which are available online 

at http://elsa.berkeley.edu/~train/software.html. The estimation was carried out using one 

thousand random draws for each sampled respondent.  

Individual Restaurant Managers’ WTP Estimation 

In order to estimate the relationship between campaign components and 

participating restaurants’ characteristics, individual restaurant managers’ WTP for each 

campaign component had to be recovered, which required knowledge of the individual βn 

parameters. Train (2003) showed that using Bayes’ rule, the density of each βn 

conditional on the individual’s sequence (in) of choices and the population parameters (θ) 

is given by: 

(2.8) 
,
 

and the simulated approximation to the individual’s expected preference is: 

(2.9) 

,

 

where βr is the r-th draw from the population distribution f (β |θ ) , which is assumed as 

given and  is the probability of restaurant mangers n’s sequence of choices 

conditional on the r-th draw. Individual restaurant managers’ WTP values were 

h(βn | in,θ ) =
Pn (in | β )* f (β |θ )

Qn (in |θ )

E(βn | in,θ ) =
β r *Pn (in | β

r )
r
∑

Pn (in | β
r )

r
∑

Pn (in | β
r )
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WTPk =α k + βk,iMOTIVATION +
i=1

4

∑ βk,5SATISFACTION + βk,iIMAGE +
i=6

12

∑ βk,13SIZE + εk

k = LABEL,SIGNAGE,MULTI,FOTM

calculated using estimates of βn. The estimated parameters ! were used instead of the 

population parameters θ.   

Factors affecting individual WTP, OLS method 

Four linear regression models estimated using the Ordinary Least Squares (OLS) 

method5 were used to explore how the individual WTP for each component is affected by 

participating restaurants’ characteristics. Hence, the dependent variables in the regression 

models were the individual restaurant managers’ WTPLABEL, WTPSIGNAGE, WTPMULTI, 

and WTPFOTM. The same set of explanatory variables was used in the four models and 

included:  restaurant image (IMAGE), size of the restaurant (SIZE), motivation to join 

the Certified South Carolina campaign (MOTIVATION), and satisfaction with the 

campaign (SATISFACTION) (as described in table 2.1). Because both the IMAGE, and 

MOTIVATION variables had several categories, they were included into the models as a 

set of dummy variables with MOTIVATION Category 4 (supporting South Carolina 

economy) and IMAGE category 6 (American cuisine) treated as base categories. The 

variable SIZE was recoded as small or big (base category) dummy variable by using 

$500,000 as the cutoff point since more than half of all restaurant sales exceeded 

$500,000. The following specification was used for the linear regressions: 

(2.10)  

.

 

                                                
5 Results of using OLS method is equivalent to the ones generated by Seemingly Unrelated 
Regression because the regressors on the right-hand-side are exactly the same for all four 
equations. 
!
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Results 

Descriptive Analysis   

Table 2.2 presents selected descriptive statistics of the participating restaurants. 

Almost all (94%) participating restaurants were locally owned. The largest response 

category for the image of participating restaurants was fine dining (30%), followed by 

American cuisine (23%). The average annual sales for year 2009 across all respondents 

was $385,0806 with about half of the restaurants having sales over $500,000. The average 

participating restaurant manager was 47 years old, male, with a college degree. The most 

commonly mentioned motivation to participate in the campaign was to support the South 

Carolina economy (35%) (similar to the findings for consumers reported by Carpio and 

Isengildina-Massa, 2009), followed by a desire to increase sales by attracting customers 

interested in South Carolina products (26%), and to improve the quality of ingredients 

(since South Carolina products are believed to be of better quality) (21%).  The most 

frequent way respondents learned about the Certified South Carolina campaign “Fresh on 

the Menu” program was through a direct contact from the SCDA (27%), followed by the 

“Fresh on the Menu” website (16%), and food service shows (14%).   

Perceived impacts of restaurant participation in the Certified South Carolina 

campaign “Fresh on the Menu” program are described in table 2.3. About 38.1% of 

respondents reported that their sales increased during the last year due to the campaign, 

and the estimated average reported increase for this group was 16.2%. About 31.7% of 

                                                
6 Since responses were given in the form of intervals, the means were calculated by applying a 
parametric approach following Bhat (1994) and Zapata et al. (2011). 
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respondents indicated that the number of clientele visiting their restaurant increased by an 

average of 16.4%. Approximately 55.7% of the restaurants reported that the cost of 

participation was less than $50. The cost was low because the restaurants were provided 

with promotional materials free of charge by the SCDA. About 36.5% of respondents 

believed that participating in the campaign had increased their ingredient costs by an 

average of 18%. On the other hand, around 11.1% of restaurants indicated that their 

ingredient costs had decreased by 9.6%. While about 23% of the restaurants indicated 

their profitability increased by about 15.2%, only 3.28% of the restaurants reported an 

average of 5% decrease.7  

Average Value of Campaign Components 

In this study, the variables included in the vector xnit of equation (2.3) were the 

campaign component variables, the method of payment, and the cost of the campaign. 

The campaign component variables LABEL, SIGNAGE, MULTI, and FOTM were 

introduced as dummy variables with the value of one if the component was included in 

the campaign, and zero otherwise. The two methods of payment were also treated as 

dummy variables, where the payment through membership took the value of zero, and the 

method donation was coded as one. The estimation of the mixed logit model required 

assumptions for the distributions of the parameters corresponding to LABEL, SIGNAGE, 

MULTI, FOTM, METHOD and PAY. The PAY coefficient was specified to be fixed to 

facilitate the estimation of the distribution of WTP (Revelt and Train, 1998; Train, 2003; 

                                                
7 Results of three Chi-square tests indicate the perceived changes in profit and costs are 
independent, while the perceived changes in profit are related with the perceived changes in sales 
and clientele. 
!
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Hensher, Shore and Train, 2005) while the other coefficients were allowed to vary in the 

mixed logit model. Some authors (e.g. Hasing et al., 2012; Revelt, 1999) have argued that 

a truncated normal distribution is a better assumption for dummy variable parameters, 

which also can be used to restrict the sign of the marginal effects in the model. However, 

this specification resulted in convergence difficulties and/or unreasonably high estimates 

for the standard deviations of the distributions; therefore, in the final specification of the 

mixed logit model, the normal distribution assumption was used for all coefficients 

related to non-cost attributes.  

Results of the mixed logit estimation shown in table 2.4 indicate that the 

estimated mean coefficients of LABEL, MULTI, and FOTM are positive and 

significantly different from zero at the significance level of 0.05, suggesting that these 

campaign components are positively valued by participating restaurants. The economic 

value of each component is measured as the average WTP for all participating restaurants 

which is computed by dividing the coefficient of the component of interest by the 

negative of the coefficient of the PAY attribute. For example, the average value of 

LABEL in the Certified South Carolina campaign is obtained as , where 

 is the estimated average scaled effect of LABEL on utility and -  is the 

estimated marginal utility of money. The results reveal that the FOTM component has an 

average WTP across restaurants of $217.14/year. This finding is not surprising given that 

restaurants are the most direct beneficiaries of this campaign component. The availability 

of multimedia advertising is also highly valued with an average WTP of $198.44/year. 

Multimedia advertising sends positive messages about locally grown products to 

−θ̂LABEL / θ̂PAY

ˆ
LABELθ θ̂PAY
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consumers with the goal of increasing consumer demand that would benefit all campaign 

participants. The relatively high WTP by restaurants for this campaign component 

supports the current campaign design where the majority of expenses is devoted to 

multimedia advertising.8 On the other hand, restaurants usually do not benefit directly 

from the point of purchase signage, which explains why the mean coefficient for this 

variable is not statistically significant. The significant positive coefficient for METHOD 

indicates that restaurants prefer to participate in the Certified South Carolina campaign 

by donating annually instead of paying a membership fee.9 Following Holmes and 

Adamowicz’s (2003) approach to calculating the compensating variation, our findings 

suggest that participating restaurants would be willing to pay an average annual 

membership fee of $532.82 or a donation of $613.43 to support a campaign that includes 

LABEL, MULTI, and FOTM components. 

The standard deviation coefficients for LABEL, MULTI, and FOTM are 

significantly different from zero at the 0.05 significance level. These coefficients allow us 

to calculate the population shares that place either a positive or negative value on each 

attribute.  For instance, the distribution of the coefficient of FOTM component has an 
                                                
8 Another mixed logit model was tested by adding the interaction effect between MULTI and 
FOTM. Results indicate restaurants’ WTP for having both the FOTM and MULTI components is 
$374.6 ($98.03+$116.81+$159.82), which is similar to the result of $415.58 ($198.44+$217.14) 
obtained in the model without the interaction effect.  
!
9 We checked the robustness of the mixed logit results by estimating models excluding, from one 
group at a time, individuals who responded “unsure” to question 2, 3, 4, and 5 in table 2.3. The 
sign, magnitude and statistical significance of the mean coefficients were generally consistent 
across specifications except for the statistical significance of the mean coefficients corresponding 
to the METHOD attribute. This coefficient was only significant in one of the three alternative 
specifications.  However, the samples used in the alternative specifications were significantly 
smaller than the original sample size. 
!
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estimated mean of 1.70 and an estimated standard deviation of 2.57, suggesting that 75% 

of respondents positively value this component within the Certified South Carolina 

campaign. Based on this interpretation, 76% of respondents have a positive WTP for the 

MULTI component, and 70% of respondents have a positive WTP for the LABEL 

component of the Certified South Carolina campaign.  

Factors Affecting Campaign Valuation 

Table 2.5 reports the mean values of the individual level preference parameters 

(!!) estimated using equation (2.9). As shown in the table, the mean values of individual 

parameters are very similar to those found for population parameters.10 As in the case of 

the population mean WTP, the individual restaurant WTP values for LABEL, SIGNAGE, 

MULTI, and FOTM were calculated dividing the estimated individual level parameters 

for each component by the negative of the coefficient estimate for PAY. The boxplots 

shown in figure 2.2 provide information about the distributional characteristics of these 

WTP values. Restaurant managers’ WTP for signage was estimated in a very narrow 

range, between $30.5 and $54.3, while the WTP for the FOTM component had the largest 

dispersion, between $-313.1 and $687.3. Half of the observations fell into the range of 

$28.7 to $213.2 for Labeling, $16.2 to $390.4 for Multimedia Advertising and $32.6 to 

$380.1 for the FOTM component. In all cases, more than 75% of restaurants were willing 

to pay a positive amount of money for having these campaign components. The numbers 

                                                
10 This finding is consistent with Train’s (2003) suggestion that the mean of individual-specific 
parameters derived from a correctly specified model should mirror closely the population 
parameters.  
!
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inside the boxplots are the mean values of individual WTP for each variable; these values 

are close to the median of WTP estimates (the vertical line inside the box), suggesting 

that distributions are fairly symmetric. Furthermore, the mean values are consistent with 

the population mean WTP estimates (reported in a previous section).  

The effects of participating restaurant characteristics on their individual WTP for 

campaign components reveal no significant difference in WTP for any component 

between big and small restaurants (SIZE) (table 2.6). Restaurants’ WTP for the LABEL 

component of the campaign is driven by their motivations and image. The coefficients of 

MOTIVATION2 (strong South Carolina pride) and MOTIVATION3 (increase the sales 

of my restaurant) are significant in the WTPLABEL equation, suggesting that, ceteris 

paribus, these motivations induce restaurants to pay more for the LABEL component of 

the campaign. Fast-food restaurants and bars-and-restaurants are willing to pay $124 and 

$24 less, respectively, for the LABEL component relative to American cuisine 

restaurants.  

 Motivations also affect restaurants’ WTP for the SIGNAGE component of the 

campaign, with restaurants that are trying to improve the quality of their ingredients or 

increase sales willing to pay about $6 more than the ones that joined the campaign to 

support the South Carolina economy. Fast-food restaurants, fine-dining restaurants and 

health-conscious restaurants are willing to pay $12, $4 and $3 more, respectively for the 

SIGNAGE component relative to American cuisine restaurants.  

 Participating restaurants’ WTP for the FOTM component is significantly affected 

by their motivations, satisfaction with the campaign and image. For example, restaurants 
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are willing to pay $217 and $204 more for the FOTM campaign if their motivations are to 

improve the quality of their ingredients and increase sales, respectively. The coefficient 

of the SATISFACTION variable suggests that restaurants are willing to pay $71 more for 

having the FOTM component when their satisfaction increases by one unit (on a five 

point scale shown in table 2.1). At the same time, fine-dining, family-oriented and bar-

and-restaurant types of restaurants are willing to pay $262, $299, and $364 more, 

respectively, for this campaign component compared to American cuisine restaurants, 

holding everything else constant. This finding likely reflects differences in the 

preferences of restaurants’ clientele 11  and the extent to which different types of 

restaurants use locally grown ingredients. Finally, none of the variables affect restaurant 

WTP for the MULTI component of the campaign. This result is not surprising given the 

very general nature of this component.  

The intercepts in the linear models are the WTP values for a large American 

cuisine restaurant, which is motivated to participate in the campaign mainly to support 

the South Carolina economy, but which is also dissatisfied with the campaign. Two of the 

intercepts are statistically different from zero (WTPSIGNAGE and WTPFOTM models). The 

estimated intercept value in the WTPFOTM model of -$267 provides another indication of 

the importance of this component since the “baseline” restaurant captured in the intercept 

has the lowest possible level of satisfaction. 

Overall, these findings can help SCDA market the campaign to potential 

participants.  For example, WTP for both FOTM and SIGNAGE components is 

                                                
11 For example, Carpio and Isengildina-Massa (2009) showed that consumer preferences for 
locally grown foods are affected by their age, income, and gender. 
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significantly positively affected by the motivation to increase sales. Our finding showing 

that the sales of the participating restaurants were believed to increase by 16% due to 

campaign participation can serve as a strong marketing tool for campaign promotion. 

Summary and Conclusions 

The first objective of this study was to estimate the perceived economic value of 

each of the four components of the Certified South Carolina campaign from the 

viewpoint of participating restaurants. A choice experiment was conducted as part of a 

restaurant manager survey to estimate average WTP for each campaign component using 

a mixed logit model. The four existing campaign components were treated as attributes in 

mixed logit model estimation, which also included the method of payment and the 

amount of payment for the campaign. Findings indicate that three existing campaign 

components--Labeling, Multimedia Advertising, and “Fresh on the Menu” have a 

significant positive economic value for restaurants participating in the program. The 

estimated mean WTP for the components are $117.24, $198.44, and $217.14 per year, 

respectively. These estimated WTP values could be used as a guide if a participation fee 

is imposed in the future. 

  The results suggest that restaurants prefer to participate in the Certified South 

Carolina campaign by donating annually instead of paying a membership fee. 

Nevertheless participating restaurants are willing to pay an average membership fee of 

$532.82 annually to support the campaign that includes Labeling, Multimedia 

Advertising, and “Fresh on the Menu” components. 
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 This study also sheds light on determinants of restaurants’ WTP for the campaign. 

We found that restaurants’ image, satisfaction with the campaign, and motivation for 

participation significantly affect their WTP for the “Fresh on the Menu”, Signage and 

Labeling campaign components. However, restaurants’ size does not affect WTP for any 

component. These findings can help the South Carolina Department of Agriculture 

marketing the campaign to potential participants. 

 Currently, the Certified South Carolina campaign is entirely funded by special 

appropriations from the state legislature. The economic value of the campaign 

demonstrated in this study may help government officials justify the expenditure of 

public funds on the operational costs associated with the campaign. Furthermore, our 

estimates of the economic value of each of the campaign components allow comparison 

of their relative benefits and provides information needed for possible re-allocation of 

funds towards the most valued uses. Although our results reflect the view of participating 

restaurants only, the framework and survey instruments developed in this study can be 

applied to other program participants and beneficiaries (e.g. farmers, farmer’s market 

vendors, grocery stores) to draw more general conclusions.   
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Table 2.1 Description of Variables Included in the OLS Method 

Variable Description Category 
Category 

Proportion 
MOTIVATION Which of the 

following reasons 
was the most 
important 
motivation for you 
to join the Certified 
South Carolina 
Campaign “Fresh 
on the Menu” 
Program? 

1=Improve the quality of 
ingredients since SC 
produces the better quality 
products 

20.69% 

2=Strong SC pride 15.52% 
3=Increase the sales of my 
restaurant by attracting 
customers interested in SC 
products 

27.59% 

4=Support SC economy 32.75% 
5=Reduce harmful 
environmental impact (carbon 
footprint) 

  3.45% 

SATISFACTION How would you 
rate your overall 
satisfaction with 
the campaign? 

0=Very dissatisfied 15.52% 
1=Dissatisfied 12.07% 
2=Neutral 29.31% 
3=Satisfied 18.97% 
4=Very satisfied 24.14% 

IMAGE How would you 
best describe the 
focus/image of 
your restaurant?   

1=Fine-dining 30.36% 
2=Fast-Food   1.79% 
3=Family-oriented 10.71% 
4=Bar and Restaurant   5.36% 
5=International Cuisine   3.57% 
6=American Cuisine 21.43% 
7=Health-Conscious   7.14% 
8=Other, please specify 19.64% 

SIZE Please describe the 
size of your 
restaurant business 
in 2009 in terms of 
total annual sales. 

1=$1,000-$9,999   3.64% 
2=$10,000-$49,999   0.00% 
3=$50,000-$99,999   5.45% 
4=$100,000-$249,000 16.36% 
5=$250,000-$499,000 23.64% 
6=$500,000 and over 50.91% 

Note: The response rate varies across questions with the minimum sample size of 55.  
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Table 2.2 Summary Statistics Describing the Characteristics of Restaurants Participating 
in the Certified South Carolina Campaign “Fresh on the Menu” Program  

Question Category Category 
Proportion Mean Standard 

Deviation 

Which of the 
following reasons was 
the most important 
motivation for you to 
join the Certified 
South Carolina 
campaign“ Fresh on 
the Menu” Program? 

1=Improve the 
quality of 
ingredients since 
South Carolina 
produces the better 
quality products 

20.97% 

  

2=Strong South 
Carolina pride 

14.52% 
  

3=Increase the sales 
of my restaurant by 
attracting customers 
interested in South 
Carolina products 

25.81% 

  

4=Support South 
Carolina economy 

35.48% 
  

5=Reduce harmful 
environmental 
impact (carbon 
footprint) 

  3.23% 

  

How did you learn 
about the campaign? 

1=Magazines   3.20%   
2=Direct Mailing   9.50%   
3=Food Service 
Food Show 

14.30% 
  

4=Direct contact 
from the SCDA  

27.00% 
  

5=Fresh on the 
Menu website 

15.90% 
  

6=Other Restaurants   6.40%   
7=Other 23.80%   

How would you best 
describe the 
focus/image of your 
restaurant?  

Fine-dining 30.00% 

    

Fast-Food   1.67% 
Family-oriented 11.67% 
Bar and Restaurant   5.00% 
International Cuisine   3.33% 
American Cuisine 23.33% 
Health-Conscious   6.67% 
Other 18.33% 
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Table 2.2 (Continued) 

Question Category Category 
Proportion Mean Standard 

Deviation 

Please describe the 
size of your restaurant 
business in 2009 in 
terms of total annual 
sales  

$1,000-$9,999   3.39% 

$385,080  $22,860  

$10,000-$49,999  $50,000-$99,999   5.08% 
$100,000-$249,000 15.25% 
$250,000-$499,000 23.73% 
$500,000 and over 52.54% 

How would you best 
describe the ownership 
of your restaurant? 

Locally Owned  93.55%   

Franchise   6.45%   

Age 

18-20 years  

47.03 years 1.47 years 

21-30 years   5.36% 
31-40 years 19.64% 
41-50 years 33.93% 
51-60 years 28.57% 
61-69 years 10.71% 
70 years or more   1.79% 

Gender Male 62.96%     Female 37.04% 

Highest Level of 
Education 

High School 
Diploma (including 
GED) 

23.21%   

College Degree 53.57%   
Post-Graduate or 
Professional Degree 23.21%     

Notes: The sample size for this table is different from the sample size in Table 2.1 and the 
minimum sample size is 54. Since responses were given in the form of intervals, the mean and 
standard deviation were calculated by applying the parametric approach following Bhat (1994) 
and Zapata et al. (2011). 
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Table 2.3 Summary Statistics Describing the Perceived Effects of Restaurant 
Participation in the Certified South Carolina Campaign “Fresh on the Menu” Program 

Question Category 
Category  

Proportion 
Parametric 

Meanc 
Standard 
Deviation 

1. Please describe the costs of 
your participation in the 
Certified South Carolina 
Campaign “Fresh on the Menu” 
Program in the last year. 

$0-$49 55.74% 

$129.42 $21.49 

$50-$99 13.11% 
$100-$249 11.48% 
$250-$499 11.48% 
$500 and 
over 

  8.20% 

2. How do you think the 
campaign affected your costs of 
purchasing ingredients and 
preparation in the last year?a 

Increase 36.50%   
Decrease 11.10%   
Unsure 14.30%   
No change 38.10%   

2-1. What percentage 
increase in the costs of 
purchasing ingredients and 
food preparation?d 

0-10% 36.84% 

17.97%     4.31% 
11-20% 42.11% 
21-30%  10.53% 
41-50%    5.26% 
81-90%    5.26% 

2-2. What percentage 
decrease in the costs of 
purchasing ingredients and 
food preparation?e 

0-10%   71.43% 

  9.56%    2.88% 11-20%   14.29% 
21-30%   14.29% 

3. How do you think the 
campaign affected your total 
sales during the last year?a 

Increase 38.10%   
Decrease   0.00%   
Unsure 38.10%   
No change 23.80%   

3-1. What percentage 
increase in total sales?d 

0-10% 43.48% 

16.19%     3.11% 

11-20% 34.78% 
21-30%     8.7% 
31-40%   4.35% 
41-50%   4.35% 
61-70%   4.35% 

4. How do you think the 
campaign affected the number 
of clientele visiting your 
restaurant in the last year?a 

Increase 31.70%   
Decrease   0.00%   
Unsure 41.30%   
No change 27.00%   

4-1. What percentage 
increase in the number of 
clientele?d 

0-10% 36.84% 

16.41%       2.92% 
11-20% 36.84% 
21-30%   15.79% 
31-40%   5.26% 
51-60%   5.26% 
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Table 2.3 (Continued) 

a Sample size is 63; 
b Sample size is 61; 
c Since responses were given in the form of intervals, the parametric mean and standard deviation 
were calculated by applying the parametric approach following Bhat (1994) and Zapata et al. 
(2011). 
d Questions only asked to individuals who selected “increase” in question 2, 3, 4 and 5, 
respectively;  
e Questions are responded to people who select “decrease” in question 2 and 5, respectively; 
 
 

 

Question Category 
Category  

Proportion 
Parametric 

Meanc 
Standard 
Deviation 

5. How do you think the 
campaign affected the 
profitability of your restaurant 
in the last year?b 

Increase 22.95%   
Decrease   3.28%   
Unsure 34.43%   
No change 39.34%   

5-1. What percentage 
increase in profitability?d 

0-10% 66.67% 

15.2%   4.94% 
11-20%   8.33% 
21-30%   8.33% 
41-50%   8.33% 
51-60%   8.33% 

5-2. What percentage 
decrease in profitability?e   0-10%    100% 5%       0% 



 33 

 Table 2.4 Mixed Logit Estimates 

Attributes Categories Coefficient 
Standard 

Error 
LABEL Mean Coefficient     0.9174** (0.3899) 

 
Standard Deviation 
Coefficient         1.7167*** (0.4742) 

 Willingness to Pay         $117.24  
SIGNAGE Mean Coefficient  0.3275 (0.2609) 

 
Standard Deviation 
Coefficient  0.2451 (0.4853) 

 Willingness to Pay  $41.85  
MULTI Mean Coefficient        1.5528*** (0.4295) 

 
Standard Deviation 
Coefficient        2.2200*** (0.4800) 

 Willingness to Pay    $198.44  
FOTM Mean Coefficient        1.6991*** (0.4774) 

 
Standard Deviation 
Coefficient         2.5734*** (0.5360) 

 Willingness to Pay     $217.14  
METHOD Mean Coefficient          0.6308** (0.2994) 

 
Standard Deviation 
Coefficient       0.9213** (0.4258) 

 Willingness to Pay   $80.61  
PAY Mean Coefficient        -0.0078*** (0.0023) 

    
Log Likelihood       -262.0784  
Log Likelihood from Conditional Logit (CL)    -317.192  
Chi-Square against CL       110.2272***  

Note: Single, double and triple asterisks (*,**,***) denote statistical significance at 10%, 5%,   
and 1% levels, respectively. 
 
 
 
Table 2.5 Comparison of Population Parameters and Means of Individual Parameters  

Attributes Population Parameters 
Mean of Individual 

parameters 
LABEL 0.9174 0.9391 
SIGNAGE 0.3275 0.3297 
MULTI 1.5528 1.5658 
FOTM 1.6991 1.7016 
METHOD 0.6308 0.6228 
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Table 2.6 The Effects of Participating Restaurant Characteristics on Their Individual WTP for Four Campaign Components  
Variable Category WTPLABEL WTPSIGNAGE WTPMULTI WTPFOTM 

   
Coefficient 

Standard 
Error 

 
Coefficient 

Standard 
Error 

 
Coefficient 

Standard 
Error 

 
Coefficient 

Standard 
Error 

Intercept      95.25 67.59    34.71*** 2.35   130.23 122.14 -267.05** 125.57 

MOTIVATION 

1=Improve the 
quality of 
ingredients 

    92.31 55.90    5.50*** 1.94  -101.13 101.02  216.83** 103.85 

2=Strong SC 
pride   164.22** 66.46        2.59 2.31      18.39 120.10  147.08 123.47 

3=Increase the 
sales of my 
restaurant 

  155.22*** 50.26    6.28*** 1.74      98.08   90.83  203.79**   93.37 

5=Reduce 
harmful 
environmental 
impact 

    -3.98 74.23        3.64 2.58      92.26 134.14 -170.10 137.90 

SATISFACTION       1.53 16.67       -0.07 0.58        3.84   30.12  71.27**   30.97 

IMAGE  

1=Fine-dinning -111.38 55.11    4.21** 1.91      75.95   99.59 262.14** 102.39 
2=Fast-Food -124.44*  142.47  12.33** 4.94     -85.18 257.45   238.68 264.67 
3=Family-
oriented -140.22 79.67        -0.25 2.76     -19.78 143.98 299.42** 148.01 

4=Bar and 
Restaurant   -23.75* 91.82         1.29 3.19       31.45 165.92  364.45*** 170.57 

5=International 
Cuisine    20.70   106.69        -2.58 3.70      213.36 192.79   235.09 198.20 

7=Health-
Conscious      9.45  90.49    2.70* 3.14      142.07 163.53     97.71 168.12 

8=Others   -41.11  66.09  4.51 2.29      -71.33 119.43 282.63** 122.78 
SIZE 1=Small     -9.64  41.18  1.12 1.43       16.00   74.42    -30.54   76.51 

Notes: Detailed variable description is shown in table 2.1. Single, double and triple asterisks (*,**,***) denote statistical 
significance at 10%, 5%, and 1% levels, respectively. 
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Scenario 1 

Campaign A Components/Costs Campaign B 

Not included Labeling Included 

Not included 
Point of Purchase 

Signage Not included 

Not included 
Multimedia 
Advertising Not included 

Included “Fresh on the Menu” Not included 
Annual membership fee 

of $20 Funding 
Annual donation of 

$100 
 

If you were given three choices: Campaign A, Campaign B, or not having a campaign at all, 
which would you choose? 

___Campaign A  ___Campaign B  ___Not campaign at all 
 
Figure 2.1 Example of One of the Scenarios from the Restaurant Survey 
 
 
 
 

 
Figure 2.2 Box Plot of WTP for LABEL, SIGNAGE, MULTI, and FOTM 
 



 36 

CHAPTER THREE 

ARE REVISIONS OF USDA’S COMMODITY FORECASTS EFFICIENT? 

Introduction 

Recent years have seen increased volatility in international commodity markets. 

Most major crops’ prices have spiked at least once since 2006; the OECD-FAO, Food 

and Agricultural Policy Research Institute, and the U.S. Department for Agriculture 

(USDA) drew a consistent conclusion that the prices would remain elevated in the next 

several years (European Commission: Agriculture and Rural Development, 2011). 

Financial market developments explain some of the volatility, as the global capital flows 

have been nearly unprecedented. Additionally, the increasing share of production in 

developing countries with higher yield variability results in unstable prices. Commodity 

markets’ increased volatility makes the USDA forecasting job harder than ever.  

World Agricultural Supply and Demand Estimates (WASDE), one of the most 

influential public sources of commodity forecasts, provides USDA’s comprehensive 

estimates of supply and demand for major U.S. and global crops and U.S. livestock. 

Industry participants have relied on these forecasts in making production, marketing 

processing, and retailing decisions for many years. Numerous studies have revealed the 

significant impact of the WASDE reports on commodity markets (e.g., Karali, 2012; 

Adjemian, 2012; Isengildina, Irwin, and Good, 2008; Isengildina, Irwin, and Good, 

2006a). With relatively low reserve stocks of commodities around the world, new 

information from various sources drives markets with much greater speed than in the 

past. Therefore, it is essential to assure the high standards of accuracy and efficiency for 
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WASDE reports. However, concerns have surfaced about the reliability of USDA 

forecasts. In December 2011, the Wall Street Journal reported that over the previous two 

years, USDA’s monthly forecasts of how much farmers will produce has been, “off the 

mark to a greater degree than any other two consecutive years in the last 15 [years].” 

Several recent studies examined the accuracy and efficiency of WASDE 

forecasts. Sanders and Manfredo (2002) found that beef and pork production forecasts 

inefficiently incorporated available information and showed the existence of positive 

serial correlation in errors of beef and poultry production forecasts. Sanders and 

Manfredo (2003) examined the WASDE price forecasts for cattle, hogs, and broilers and 

found overestimation in broiler price forecasts and inefficiency in a number of livestock 

price forecasts due to repeated forecast errors. Isengildina, Irwin, and Good (2004) 

evaluated corn and soybean price forecasts using interval accuracy tests and rejected 

forecast accuracy at the 95% level for both commodities. Botto et al. (2006) analyzed 

forecast accuracy of all categories for corn and soybeans, and they found inefficiency in 

soybean ending stocks and price forecasts. More recently, Isengildina-Massa, 

MacDonald, and Xie (2012) incorporated a variety of tests to evaluate the forecast 

performance of WASDE cotton forecasts for the U.S. and China. They discovered that 

the most pervasive rejection of efficiency across variables and countries occurred in tests 

of revision efficiency. Lewis and Manfredo (2012) concluded that the sugar production 

and consumption forecasts are less problematic as inefficiency was only found in a few 

cases. Although all of these studies demonstrated the inefficiency of WASDE across 
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different commodities, none of them provided guidance on how to improve forecast 

accuracy.  

Isengildina, Irwin, and Good (2006b) focused on forecast revision efficiency, 

which had been largely overlooked in the previous studies. The forecast revisions process 

is important to reveal how forecasts change across the forecasting cycle and how 

analyzing forecast revisions allows the detection of inefficiency due to systematic 

under/over-adjustments in forecasts. Isengildina, Irwin, and Good (2006b) found the 

existence of revision inefficiency in WASDE corn and soybean production forecasts and 

suggested a procedure based on Nordhaus’s (1987) approach to successfully correct for 

inefficiency in revisions. However, their procedure was rather simplistic and the results 

were limited to corn and soybean production forecasts.  

The goal of this study was to expand Isengildina, Irwin, and Good’s work to 

include 1) evaluation of monthly revisions efficiency of all supply, demand, and price 

categories for U.S. corn, soybean, wheat, and cotton forecasts, published in the monthly 

WASDE reports between 1984/85 through 2011/12; and 2) development of a new 

inefficiency correction procedure that takes into account adjusting for outliers, 

controlling for the impact of other variables on inefficiency, and considering structural 

changes.   

Data 

This study focused on monthly WASDE U.S. corn, soybean, wheat, and cotton 

forecasts from 1984/85 through 2011/12. Typically, WASDE reports were released 

between the 9th and 12th of each month. Prior to May 1994, WASDE reports were 
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published at 3:00 p.m. in the Eastern Time Zone of the U.S., but the report release time 

was changed to 8:30 a.m. between May 1994 and December 2012.  

Vogel and Bange (1999) describe that forecasts of U.S. crop production are 

independently prepared by the National Agricultural Statistics Services, while supply 

(other than production), demand, and price forecasts are developed jointly by several 

USDA agencies. The World Agricultural Outlook Board coordinates the high-security 

interagency process by chairing an Interagency Commodity Estimates Committee (ICEC) 

of leaders responsible for each commodity. Joint forecast preparation enables USDA 

analysts to incorporate all available resources and assures that the estimates are consistent 

across all USDA publications. 

WASDE supply and demand forecasts apply a full balance-sheet approach for 

each commodity, which means that the total supply must equal the demand. The total 

supply of a crop is comprised of beginning stocks, imports, and production. The demand 

side of the balance sheet includes domestic use, exports, and ending stocks. Domestic use 

is further subdivided into feed and residual, and food, seed and industrial for corn; 

crushings, seed, and residual for soybeans; and feed and residual, food, and seed for 

wheat.12 The ending stocks for a marketing year t become the beginning stocks for year 

t+1. While price forecasts are published in interval form, other categories’ forecasts are 

point estimates. To overcome this inconsistency and keep the analysis consistent across 

                                                
12 More detail on the balance-sheet nature of WASDE forecasts and the forecast generation 
procedure is given in Vogel and Bange (1999). 
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all categories, midpoints of the price forecast intervals are considered in our analysis.13  

WASDE are forecasted on a marketing year basis, which spans from September 

to August for corn and soybeans, from June to May for wheat, and from August to July 

for cotton. The first forecasts for all crops of each marketing year are published in May 

preceding the marketing year. Beginning stocks and production forecasts are typically 

finalized after the harvest time of each crop, by October for wheat and January for corn, 

soybeans, and cotton14. Estimates for other forecast categories are generally finalized by 

November after the marketing year. Therefore, production and beginning stocks’ 

forecasting cycles are 9 months for corn, soybeans, and cotton, and 6 months for wheat. 

The forecasting cycles are 19 months for all crops’ other categories. Figure 3.1 illustrates 

the 2011/12 marketing year and the relative WASDE forecasting cycles for commodities 

included in this study. 

WASDE forecasts are considered fixed-event forecasts because the series of 

forecasts are related to the same terminal event yt
J, where J is the release month of the 

final estimate for a marketing year t, and t=1(1984/85),…,28(2011/12). J=9 for 

production and beginning stocks forecasts for corn, soybeans, and cotton, and J=6 for 

those two categories for wheat; J=19 for all crops’ other categories. The terminal event 
                                                
13 USDA was prohibited from publishing forecasts of cotton prices from 1929 to 2008, but 
USDA’s ICEC for cotton calculated unpublished price forecasts each month as point estimates. 
Since 2008, cotton price forecasts have been published in interval form. Also, for all four 
commodities, the price forecasts typically converge to point estimates by April of the marketing 
year.  
 
14 WASDE frequently published the revised estimate of final soybean production in October after 
the marketing year. The final forecasts of the cotton production were commonly revised in April 
and May of the subsequent year. Also, WASDE sometimes revised the final forecasts of the 
wheat beginning stocks and production in January and October, respectively. Because these 
additional revisions were somewhat sporadic in nature, they are not included in our analysis. 
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for supply and demand categories describes a total volume, while the terminal event for 

the price category represents a marketing year’s average value for price. The forecasted 

value published in month j is denoted as yt
j, where j=1,…,J. Therefore, each subsequent 

forecast is an update of the previous forecast describing the same terminal event. Based 

on the definition of forecasting cycles from the data section, WASDE generates 18 

updates/revisions for each U.S. category except for production and beginning stocks (8 

updates for corn, soybeans, and cotton, and 5 updates for wheat). 

Methods 

Forecast Revision Efficiency 

The tests of efficiency in forecast revisions were originally developed by 

Nordhaus in 1987 and have since been used extensively in the macroeconomic literature 

(e.g., Clements, 1997; Harvey et al., 2001; Patton and Timmermann, 2010; Dovern and 

Weisser, 2011) and less frequently in agricultural forecasting (Isengildina, Irwin, and 

Good, 2006b; Lewis and Manfredo, 2012).  Within the Nordhaus framework, if fixed 

event forecasts are weak-form efficient, their revisions should follow a random walk. 

In this study, forecast revisions were defined as the difference between two 

adjacent forecasts. In order to standardize for increasing crop size over time, forecast 

revisions were examined in log percentage form: 
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where is a revision of a forecast for marketing year t released in month j-1. Figure 3.2 

illustrates the layout of the fixed event forecasting cycle and the corresponding forecast 

revisions process using corn production as an example.  

Following Isengildina, Irwin, and Good (2006b), efficiency of WASDE forecast 

revisions was examined as:  

(3.2)    j = 2, …, J;  t =1,…,28. 

Thus, for j = 3, λ represents the slope coefficient for all July revisions made from 1984/85 

to 2011/12 regressed against the June revisions (j – 1 = 2) for the same years. The null 

hypothesis for efficiency in forecast revisions was λ = 0. If λ > 0, the forecasts are 

considered “smoothed”, as they are partially based on the previous revision. If λ < 0, the 

forecasts are called “jumpy”, as they tend to partially offset the previous revision. The 

test of Ho that λ = 0 required at least 3 rolling-event forecasts to generate a revision and a 

lagged revision which limited our ability to analyze revision efficiency in the first 2 

forecasts of each marketing year. Therefore, month 3 was the first month analyzed. 

Equation (3.2) was estimated using the method of Ordinary Least Squares (OLS) for each 

forecast category for each crop.   

Correction for Revision Inefficiency 

The Basic Correction Procedure 

The basic procedure for correcting revision inefficiency was described in Isengildina, 

Irwin and Good (2006b). Since in equation (3.2), revision inefficiency in one month 

(rejection of Ho that λ = 0), signals a failure in the previous month to appropriately 
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incorporate all new information, an alternative measure for inefficiency correction that 

provides an adjustment parameter γ for a pending, as opposed to a past revision was used:  

(3.3)             j = 1, …, J - 1;  t =1,…,28, 

where et
j is the forecast error of a forecast for marketing year t released in month j, and 

rt
j+1 is the forecast revision for the same marketing year t released in the next month. 

Consistently with forecast revisions, forecast errors were calculated in log percentage 

form: 

(3.4) .  

Equation (3.3) was based on Nordhaus’ (1987) derivation that the forecast error at 

time j should be fully corrected (on average) by the following revision(s), thus, if 

revisions are efficient, γ=1.  According to Isengildina, Irwin and Good (2006b), out-of-

sample correction of revision inefficiency should proceed along the following steps: 1) 

estimate γ coefficients using equation (3.3) and the data in the estimation subsample, 2) 

multiply published revisions by γ coefficients to derive efficient revisions,15 and 3) 

calculate adjusted forecasts by adding efficient revisions to the previous months’ 

forecasts. 

  For example, if was estimated using 1984/85-1993/94 May forecast errors (et
j, 

t=1,…,10 and j=1) and June forecast revisions (rt
j+1, t=1,…,10, and j=1), the adjusted 

                                                
15 We follow a more conservative approach by adjusting revisions and forecasts only when the 
estimated γ coefficients are significant at a significance level of 0.05. Results of adjusting all 
revisions and forecasts regardless of the significance of the estimated γ coefficients are available 
upon request.  
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revision for June 1994/95 (!!!!!, t=11 and j=1) was the product of and !!!! . Because the 

forecast errors and revisions were defined in logarithm terms in this study, the June 

1994/95 adjusted forecasts were calculated as !!!! = !!!! ∗ !(!!!! !"").  

While Isengildina, Irwin and Good (2006b) demonstrated that such revision 

inefficiency correction improved the accuracy of corn and soybean production forecasts 

in their 1980/81-2004/05 validation subsample, their procedure may have suffered from 

several potential limitations. First, an OLS regression was used to estimate in equation 

(3.3), so the estimates might be influenced by the presence of outliers. Second, other 

variables might affect smoothing. For example, Isengildina, Irwin and Good (2013) 

argued that “big crops get bigger and small crops get smaller,” which suggests that 

forecast size and direction should be considered in adjusting forecasts for smoothing. 

Third, stability of revision inefficiency over time would have implications on how well 

the correction procedure would improve accuracy: if the inefficiency is unstable, the 

adjustment procedure would perform poorly and modifications must be made. Our 

approach to incorporating these additional factors in the revision inefficiency correction 

procedure is described in the following sections. 

Outlier Detection 

Rousseeuw and Leroy (2005) argued that regression outliers (either in the 

dependent or independent variable) pose a serious threat to the interpretation of results 

from a standard least squares analysis. They suggested two approaches to identify and 

deal with outliers, including regression diagnostics and robust regression. Diagnostics 

include statistics, such as the Hat Matrix (Hoaglin and Welsch, 1978) and the Cook’s D 

γ̂

γ̂
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(Cook, 1977), computed from the data so as to discover influential points. On the other 

hand, robust regression methods have been developed to find estimators that are not 

strongly affected by outliers as they assign less weight to “abnormal” values.  

In this study, the existence of outliers in estimating equation (3.3) using the OLS 

method was detected by Cook’s D, which is a measure that combines the information on 

leverage (a measure of how far an independent variable deviates from its mean) and 

residual (the difference between the predicted value and the observed value) of the 

observation. A data point is considered an outlier if the corresponding Cook’s D value is 

bigger than 4/n (Rawlings, Pantula, and Dickey, 1998), where n is the sample size. To 

handle outliers, robust regression was used for estimating the γ coefficients in equation 

(3.3) because outliers could not be simply removed or corrected. In this study, a detected 

outlier represents a sudden change in revision inefficiency level. Robust regression has 

been applied in numerous fields, such as policy, finance, and economics, etc. (e.g. 

Alesina and Perotti, 1996; Preminger et. al., 2007; Finger, 2010). However, we are not 

aware of any previous studies that applied robust regression to agricultural forecasts. 

Maximum likelihood-type estimation (M-estimation) by Huber (1964) and multiple M-

estimation (MM-estimation) methods by Yohai (1987) were considered in this study, 

since they were the most commonly used robust estimations and both methods were 

accessible in statistical software R.  

Forecast Size and Direction 

The influence of forecast size and direction on revision inefficiency should also 

be considered in the adjustment procedure because forecast size and direction could be 
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some of the potential sources of smoothing (Isengildina, Irwin, and Good, 2013). In order 

to account for the effect of those two variables, out-of-sample linear trend forecasts were 

generated using the 5-year rolling approach. The rolling out-of-sample trend forecast 

approach was preferred to the recursive approach used by Isengildina, Irwin and Good 

(2013) because USDA commodity forecasts in the long term are volatile. Accordingly, 

the rolling trend forecast for 1989/90 was constructed as a linear trend forecast using data 

from 1984/85-1988/89 and the rolling trend forecast !!"#$%,! for the remaining years was 

consistently computed using the previous five years’ observations. The rolling trend 

forecasts were estimated using only the final month WASDE estimates for each 

marketing year, so the trend forecasts remained the same across different months within 

one marketing year.   

The Trend Difference (TD) was then defined as the log percentage difference 

between USDA forecast and the estimated rolling out-of-sample trend forecast: 

(3.5)  j = 1, …, J;  t =6,…,28. 

The TD captured the influence of both USDA forecast size and direction by comparing 

the actual forecast to a linear trend forecast. The sign of the TD indicated the forecast 

direction with a positive TD showing that the actual forecast was higher than the 

predicted value from the trend. The magnitude of the TD indicated the forecast size or 

how much larger or smaller the actual forecast was relative to the trend value. To take the 

forecast size and direction into account for revision inefficiency correction, equation (3.3) 

was modified as following: 

 
TDt

j = 100*ln( yt
j

y! trend ,t
)
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(3.6)          j = 1, …, J - 1;  t =6,…,28. 

Correction for revision inefficiency then proceeded as described in the basic procedure.  

Stability of Revision Inefficiency Over Time 

Stability of revision inefficiency was reviewed by blocking the full data period 

from 1984/85 through 2011/12 into twelve consecutive 10 year sub-periods as 1984/85-

1993/94, 1985/86-1994/95, etc. The estimated λ coefficients (!) from equation (3.2) were 

then computed for each sub-period and plotted to provide a general view of instability in 

revision inefficiency over time. Furthermore, structural changes were tested formally 

using a Quandt Likelihood Ratio (QLR) test. The QLR test statistic is the maximum of all 

Chow F-statistics over a range of potential breakpoints, with a conventional search for 

such breakpoints within the inner 70% of the observations (excluding the first and last 

15% observations) from the study period (Stock and Watson 2003).  

If the structural break in revision inefficiency was identified, the basic correction 

procedure could be modified in the following ways. The first approach required the use 

of data after the breakpoint for the adjustment procedure. Consequently, the full data 

period of this study would be trimmed and the validation subsample would be shortened 

as well. Alternatively, a rolling approach to estimating ! in equation (3.3) could be 

applied instead of the recursive approach used by Isengildina, Irwin and Good (2006b). 

With the rolling approach, the γ coefficients for any year are estimated using previous 

five years’ forecast errors and revisions16. The use of this 5-year rolling approach may 

help reduce the influence of potential structural changes that happened more than 5 years 
                                                
16 This study also applied 10-year rolling estimation, but 5-year window performed better in 
dealing with potential structural changes. 
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ago.  

Accuracy Evaluation 

Performance of alternative revision inefficiency correction procedures was 

evaluated based on their effect on forecast accuracy. Accuracy implications of the basic 

correction procedure were first evaluated by subtracting the monthly MAPEs of adjusted 

forecasts from those of the published WASDE forecasts over the validation subsample 

from 1994/95 to 2011/12. Then modified procedures described in the previous three 

sections were compared with the basic procedure in the corresponding validation 

subsample17 to determine the preferred new correction procedure for each crop. Finally, 

the accuracy of corrected forecasts using the new procedure was assessed by comparing 

the monthly MAPEs of adjusted forecasts from the ones of the published WASDE 

forecasts, and the validation subsample was determined according to the selected new 

procedure.  

In each step, the improvement of forecast accuracy was reported using the 

average difference in mean absolute percentage errors (MAPEs) across all months. We 

also considered the frequencies of improvement in forecast accuracy (cases with positive 

changes in absolute percentage errors) and frequencies of deterioration (cases with 

negative changes in absolute percentage errors). The reason these additional measures 

were analyzed is that the adoption of any correction procedure by USDA would require 

                                                
17 The validation sub-samples for adjusting outliers is from 1994/95 to 2011/12, for controlling 
forecast size and direction is from 1999/00 to 2011/12, for using post breakpoint data is from 10 
years after the structural break to 2011/12, and for applying rolling approach in equation (3.3) is 
from 1994/95 to 2011/12. 
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careful examination of all potential costs and benefits of such procedure and using 

averages only may mask potentially serious costs.   

Results 

Forecast Revision Efficiency 

The results of monthly evaluation of revision efficiency of WASDE corn, 

soybean, wheat, and cotton forecasts are reported in tables 3.1-3.4, respectively. 

Significant correlation between consecutive forecast revisions was found in all crops and 

all categories except for the seed category in wheat forecasts. Almost all correlations 

between consecutive forecast revisions were positive, suggesting a tendency for 

“smoothing” or systematic under-adjustments of the forecasts. Negative correlations were 

observed only once in corn and wheat and in 3 cases for soybeans. All 5 of the negative 

correlation cases occurred at the end of the forecasting cycle when the final revisions of 

the data were observed after the end of the marketing year. The preponderance of 

smoothing rather than jumpiness is consistent with other studies (e.g., Nordhaus, 1987; 

Coibon and Gorodnichenko, 2012).  

Tables 3.1 and 3.2 demonstrate that smoothing in WASDE forecasts spans far 

beyond the production forecasts that have been analyzed by Isengildina, Irwin and Good 

(2006b). In fact, Table 3.1 shows that in corn forecasts, revision inefficiency was most 

common in the exports category with 11 out of 17 examined months of the forecasting 

cycle showing positive correlations between consecutive revisions. Out of the four crops 

examined in this study, smoothing was most prevalent in soybeans with the crushings, 

exports, ending stocks, and price categories showing inefficiency in 12, 14, 10, and 7 out 
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of 17 months, respectively. Smoothing was the least common in wheat with the most 

affected categories of exports and prices exhibiting positive correlations in 5 and 6 out of 

17 months, respectively. In cotton, smoothing was most frequent in production, domestic 

use, exports and ending stocks forecasts. Prevalence of smoothing seemed to be most 

common between November and January for corn, in August and from November to 

September for soybeans, from September to December for wheat, and from January to 

April for cotton.  

Smoothing in production forecasts has been a focus of previous studies because it 

is commonly observed by forecast users and could affect other forecasts due to the 

balance-sheet nature of WASDE reports. We did find some evidence of the influence of 

smoothing in production on other categories as smoothing in November corn production 

forecast revisions was accompanied by smoothing in exports, ending stocks, and price 

forecast revisions, and smoothing in August and November soybean production forecast 

revisions was accompanied by smoothing in almost all other categories. We found similar 

patterns in July forecasts for wheat and in July and January forecasts for cotton. Our 

findings of smoothing in corn and soybean November production revisions are consistent 

with the findings in Isengildina, Irwin, and Good (2006b) in both the magnitude and 

significance level. The estimated coefficients can be interpreted as point elasticities and 

indicate, for example, that on average, a 10% revision in October corn production 

forecasts has been followed by a 7% revision in the same direction in November. The 

same revision coefficient for corn production forecasts in November (0.70) was also the 

case of the largest magnitude of smoothing in production forecasts, as other coefficients 
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ranged from 0.27 to 0.5.18 

Exports was the category most affected by smoothing across the four 

commodities most likely due to the added uncertainty associated with international trade 

information and conservativeness of the experts with incorporating this information into 

the forecasts. The magnitude of smoothing in exports forecasts ranged from 0.32 to 0.71 

for corn, 0.22 to 1.25 for soybeans, 0.2 to 0.56 for wheat, and 0.22 to 1.07 for cotton. 

Among categories in domestic use forecasts, soybean crushings and cotton domestic use 

forecasts appeared to be most affected by smoothing. Domestic use forecasts are partially 

based on data collected from domestic processing plants and smoothing may reflect the 

slowness of incorporating these data. Smoothing in ending stocks forecasts was likely 

caused by problems in domestic use and exports forecasts and hence was most 

pronounced in soybeans and cotton. Among price forecasts, the biggest issues were found 

in soybeans with 8 out of 17 months affected by inefficiency, followed by wheat with 

smoothing detected in 6 months, corn where smoothing was limited to only 3 months, 

and cotton where smoothing was significant in only one month. USDA price forecasts are 

based on a combination of statistical models and market information and smoothing 

suggests that the new information may be incorporated too slowly during the certain parts 

of the forecasting cycle. It is interesting to observe that smoothing in soybean price 

forecasts, differently from other crops, appeared later in the forecasting cycle when the 

information about competing soybean crops grown in the Southern Hemisphere usually 

                                                
18 Big significant coefficients early in the production cycle should be interpreted with care as 
these forecasts are largely based on historical trends and very little new information. August is the 
first month when production forecasts are based on NASS estimates rather than trend patterns. 
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becomes available. 

Correction for Revision Inefficiency 

The Basic Correction Procedure  

The summary statistics pertaining to the accuracy implications of the basic 

correction procedure for corn, soybeans, wheat, and cotton, are presented in Comparison 

1 of tables 3.5-3.8, respectively, and include the average change in MAPEs across all 

months, the number of negative changes in MAPEs, and the number of positive changes 

in MAPEs. Negative changes indicate that errors became smaller after correcting for 

revision inefficiency and show the evidence of improvements from adjusting the 

forecasts using the basic procedure. Positive values indicate that published WASDE 

forecasts were more accurate than the adjusted forecasts.  

 Our findings demonstrate that the basic correction procedure in the vast majority 

of the cases did not improve the accuracy of the forecasts included in this study. All 

average changes in MAPEs in soybeans were non-negative, showing larger errors 

resulting from forecast adjustment. In corn, the only average reduction in MAPEs due to 

the basic correction procedure was observed in production forecasts, but even that change 

was very small (-0.005). The counts for MAPE changes in corn production forecasts 

indicate that out of 144 forecasts, only 38 forecasts were adjusted (only γ coefficients 

significant at 0.05% level were adjusted) and the accuracy improved in 16 cases and 

deteriorated in 22. Among wheat forecasts, the only case of average reduction in MAPEs 

was found in price forecasts (-0.004), but here again the frequency of accuracy 

deterioration was greater than frequency of accuracy improvements (14 vs. 10 cases). The 
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basic procedure appeared to perform the best in cotton production and exports forecasts 

with average reductions in MAPEs of -0.122 and -0.011, respectively. While the average 

improvements in error in these forecasts are still very small, the frequency of accuracy 

improvements far outweighs that of accuracy deterioration in these cases (31 vs. 13 cases 

for production and 44 vs. 25 cases for exports). Interestingly, while our findings for corn 

production forecasts are somewhat consistent with Isengildina, Irwin, and Good (2006b) 

results, our results for soybean production forecasts were in sharp contrast with that 

previous study.  This difference seems to be exclusively due to the differences in the 

sample periods (their study used the data from 1970 to 2004) since the basic adjustment 

procedure applied was identical.19 This difference in results highlights the importance of 

the factors that may have an effect on the basic correction procedure investigated in this 

study.  

Outlier Detection 

The existence of outliers in equation (3.3) was examined using Cook’s D. Outliers 

were found for all categories in all crops. For example, for corn production using the 

October data from 1984/95 to 2002/03, Cook’s D for October 1988 was 0.52, which was 

larger than the critical value of 0.21 (4/19, where 19 is the sample size), suggesting that 

October 1988 was an outlier. Additionally, the residuals versus fitted plot, the normality 

plot, the scale location plot, and the residuals versus leverage plot shown in Figure 3.3 

                                                
19 Other differences are the use of RMSPEs to evaluate changes in accuracy in Isengildina, Irwin, 
and Good (2006b) study versus MAPEs in our study and we adjusted forecasts with only 
significant γ coefficients. We double-checked our results by adjusting all forecasts and using 
RMSPEs to examine changes in accuracy. We found that the differences still hold. 
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indicate that the same data point (labeled in these plots as ‘5’) was a potential outlier.  

Although the MM-estimation approach is often preferred to the M-estimation 

approach in robust regression because the latter could be biased in the presence of high 

leverage points, we found that the M-estimation performed better in this study since it 

generated smaller MAPEs than the MM-estimation. 20  The effect of using the M-

estimation approach instead of the OLS estimation approach on forecast accuracy is 

summarized in Comparison 2 of tables 3.5-3.8. Based on the negative changes in 

MAPEs, indicating a reduction in error, the M-estimation was preferred for corn, 

soybeans, and cotton due to accuracy improvements in the majority of cases, as 4 out of 7 

categories of corn, 4 out of 7 categories of soybeans, and 4 out of 6 categories of cotton 

experienced negative average changes in MAPEs. On the other hand, the OLS estimation 

was preferred for wheat because the M-estimation had a very limited (1 out of 7) positive 

impact on the accuracy of these forecasts. Therefore, the M-estimation was applied to 

estimating γ coefficients in equation (3.3) for corn, soybeans, and cotton while the OLS 

estimation was used for wheat in the remainder of the analyses.  

Forecast Size and Direction 

The impact of forecast size and direction on correction for revision inefficiency 

was investigated by including the variable TD in equation (3.3). The changes in MAPEs 

for four crops over the validation subsample 1999/2000-2011/12 were calculated by 

subtracting the MAPEs of adjusted forecasts including TD as in equation (3.6) from those 

                                                
20  The comparison of results using the MM-estimation and the M-estimation for all four 
commodities are available upon request. 
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adjusted using the basic procedure for the same time period. The assessment of the 

changes in MAPEs for corn, soybeans, wheat, and cotton is summarized in Comparison 3 

of tables 3.5-3.8, respectively. The adjustment appeared to have the largest impact on the 

soybean balance sheet where beginning stocks, crushings, and price forecasts showed 

reductions in average error of -0.077, -0.015, and -0.061, respectively, and the number of 

smaller errors was greater or equal to the number of larger errors. Reductions in average 

MAPEs were found in corn price (-0.014) and wheat production forecasts (-0.054). The 

lack of accuracy improvement after accounting for forecast size and direction in the 

cotton balance sheet suggests that cotton forecasters have already take these factors into 

account. Based on these results, forecast size and direction were incorporated in 

correcting inefficiency in revisions of corn price; soybean beginning stocks, crushings, 

and price; and wheat production forecasts, but not in any other categories.  

Stability of Revision Inefficiency Over Time 

Stability of revision inefficiency over time was examined graphically and using a 

QLR test. Figure 3.4 gives a graphical example of revision inefficiency over time for corn 

production using consecutive 10 year sub-periods. Bars in the plot for July represent the λ 

coefficients calculated using equation (3.2) for each 10 year block of observations. Plots 

demonstrate that the estimated coefficients vary substantially depending on the sub-

period used.  

 An example of the QLR test for corn production illustrating the detection of 

structural change in November 2000 is shown in figure 3.5. The QLR test was carried out 

for all categories of corn, soybean, wheat, and cotton forecasts, and we found that years 
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1987, 2006, and 2007 had significant coefficients 11, 8, and 9 times respectively, while 

other years were significant only once or twice across the four crops.21 Therefore, we 

concluded that forecast revisions were unstable over the study period with structural 

breaks likely taking place in 1987 and 2006-2007. 

As discussed in the methods section, the basic correction procedure can be 

modified in several ways to address the issue of instability. The first approach would use 

only the data after the breakpoint for the adjustment procedure. Considering the sample 

period of this study, it was not feasible to use post 2007/08 data for the analysis. 

However, the influence of a structural change in year 1987 was tested by trimming the 

data period to 1987/88-2006/07 with the validation subsample of 1997/98-2006/07. Using 

the trimmed data did not yield an improvement in forecast accuracy.22 The second 

approach applied a 5-year rolling method to estimating the γ coefficients in equation (3.3) 

instead of the recursive method used in the basic correction procedure. This modified 

approach was evaluated by subtracting the MAPEs of the rolling estimation from those 

using the recursive estimation over the validation subsample 1994/95-2011/12 and 

forecast accuracy was reduced in all categories of all crops with the exception of the 

wheat price forecasts. Due to the lack of effectiveness, the modifications described above 

were not included in the adjustment procedure. Instead, we examined the impact of 

structural breaks on the effectiveness of our correction procedure from another angle by 

evaluating the changes in their effect on forecast accuracy over time. For this purpose, the 
                                                
21 The complete QLR test results are available upon request.  
 
22 The complete results of changes in MAPEs using all data versus trimmed data over the 
validation subsample of 1997/98-2006/07 are available upon request.  
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validation subsample of 1994/95-2011/12 was divided into three 6-years periods, where 

1994/95-1999/00, 2000/01-2005/06, and 2006/07-2011/12 were considered stage 1, 2, 

and 3 respectively.  

Tables 3.9-3.12 report the implications of the new correction procedure on 

forecast accuracy for corn, soybeans, wheat, and cotton, respectively, over the full 

validation subsample, as well as within three stages. The changes were computed by 

subtracting the MAPEs of published WASDE forecasts from those of adjusted forecasts 

using the new revision inefficiency correction procedure. The new procedures for four 

crops were formed according to the results of the previous two sections as following: 

equation (3.6) was used for correcting corn price forecasts; soybean beginning stocks, 

crushings, and price forecasts; and wheat production forecasts; while equation (3.3) was 

used for all other categories. The M-estimation was used for corn, soybeans, and cotton 

and the OLS estimation was applied for wheat.  

A direct comparison of the new correction procedure with the basic correction 

procedure was made based on the results of the full validation subsample in the top part 

of tables 3.9-3.12 and the results in Comparison 1 of tables 3.5-3.8.23 Relative to the basic 

correction procedure, the new procedure improved forecast accuracy in 4 out of 7 

                                                
23 Note that the validation subsample for category price in corn, beginning stocks, crushings, and 
price in soybeans, and production in wheat in Comparison 1 of table 3.5-3.8 starts in 1994/95, 
while the validation subsample of these categories in the top part of tables 3.9-3.12 starts in 
1999/00. Therefore, the results for these categories in tables 3.9-3.12 using the new correction 
procedure should be compared with the ones using the basic procedure over the same validation 
subsample 1999/00-2011/12. The average MAPEs have decreased from 0.073 to 0.062 for corn 
price; increased from 0.02 to 0.034 for beginning stocks, decreased from 0.019 to 0.007 for 
crushings, and from 0.061 to -0.030 for price in soybeans; and from 0.016 to -0.038 for cotton 
production forecasts. 
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categories in corn, 5 out of 7 categories in soybeans, 1 out of 8 categories in wheat, and 4 

out of 6 categories in cotton. In relative terms, the new procedure reduced the accuracy of 

corn beginning stocks, feed and residual, and food, seed, and industrial forecasts, soybean 

beginning stocks and ending stocks forecasts, and cotton beginning stocks and exports 

forecasts, while leaving the accuracy of other forecast categories unchanged. But, of 

course, the true value of the new procedure should be interpreted relative to the published 

WASDE forecasts as shown in tables 3.9-3.12.  Overall, the revision inefficiency 

correction procedure developed in this study appears helpful to corn production and 

exports forecasts, soybean price forecasts, wheat production and price forecasts, and 

cotton production and ending stocks forecasts. 

The results for 3 stages in tables 3.9-3.12 reveal the performance of the new 

correction procedure over time. Our results for corn production forecasts shown in Table 

3.9 demonstrate that the new adjustment procedure reduced average MAPEs in all three 

stages. Our adjustment procedure improved the accuracy for corn exports and feed and 

residual forecasts in stage 2 but not in other stages. Among soybean forecasts, our 

adjustment procedure performed the best in stage 3 with average MAPE reductions in 

beginning stocks, exports, ending stocks, and price forecasts of 0.226, 0.107, 0.252, and 

0.092, respectively. However, prior to stage 3, our adjustment procedure did not improve 

accuracy in these forecasts. The results were probably the strongest for soybean exports 

and price forecasts, where error reductions were much more common than error 

increases. In terms of raw units, our findings for soybean exports, for example, imply a 

reduction in forecast error in December of 2011/12 marketing year due to correction for 
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forecast revision inefficiency as large as 1.4 million bushels for a 1.3 billion bushel 

soybean crop. Wheat forecasts were the least affected by revision inefficiency, but we 

still find potential accuracy improvements due to our adjustment procedure in production 

forecasts in stages 2 and 3, in exports forecasts in stage 2, and in price forecasts in stage 1 

and 2. In the results for cotton, our adjustment procedure showed the most potential in 

cotton production forecasts with the largest overall average reduction in MAPEs, the 

average reduction in MAPEs increasing over time, and the frequency of accuracy 

improvements consistently much greater than accuracy deteriorations. Accuracy 

improvements due to correction for revision inefficiency in other cotton forecasts were 

more sporadic. These findings demonstrate the challenges in correcting revision 

inefficiency when inefficiency is unstable over time. 

Summary and Conclusions 

Numerous previous studies demonstrated inefficiencies in WASDE commodity 

forecasts. Our study focused on inefficiency in revisions of WASDE forecasts for U.S. 

corn, soybeans, wheat, and cotton. We also presented an adjustment procedure that could 

be used to correct revision inefficiency and improve the accuracy of these forecasts.    

 Results from the evaluation of the revision inefficiency show significant 

correlations between consecutive forecast revisions in all crops and all categories except 

for the seed category in wheat forecasts. Almost exclusively, inefficiency took the form 

of smoothing as revisions were positively correlated. We also discovered that among the 

forecasts of four crops, smoothing was most prevalent in soybeans and least common in 

wheat, and exports was the category most affected by smoothing. 
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 The widespread evidence of revision inefficiency suggests that forecast accuracy 

could be improved if this inefficiency is corrected. Using the revision inefficiency 

correction procedure suggested by Isengildina, Irwin, and Good (2006b) study as the 

basic procedure, we modified the procedure to adjust for outliers and the impact of 

forecast size and direction on revision inefficiency. After a series of comparisons, the 

new correction procedures for four commodities were selected as following: using the 

OLS estimation for wheat and the M-estimation for corn, soybeans, and cotton; only 

considering forecast size and direction for corn price, soybean beginning stocks, 

crushings, and price, and wheat production forecasts. We also found that revision 

inefficiencies were unstable during our sample period, resulting in changes in the 

correction ability of the new procedure over time.  

Our findings suggest that our adjustment procedure has the highest potential for 

improving accuracy in corn, wheat, and cotton production forecasts. It is important to 

note that the application of such a correction procedure over time should remove or 

decrease the degree of revision inefficiency, which should be taken into account in the 

continued adjustment of the correction procedure to be focused on the most relevant data.  

Our limited ability to correct revision inefficiency using multiple statistical 

methods explored in this study provides insight about the nature of the inefficiency 

commonly called smoothing. Most previous studies (Nordhaus, 1987; Isengildina, Irwin 

and Good, 2006b; Coibon and Gorodnichenko, 2012) argue that smoothing is associated 

with conservativeness or inability of forecasters to adjust to innovations in a timely 

manner. However, if this conservativeness was systematic, we should be able to control 
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for it using statistical methods. Instead, our findings show that the impact of smoothing is 

very unstable over time, yet a persistent characteristic of most forecasts revisions. This 

suggests that perhaps correlations in forecast revisions (smoothing) illustrate that 

forecasters tend to make the same mistakes within the forecasting cycle. In fact, some of 

the biggest improvements in suggested smoothing correction procedures were due to 

incorporating forecast size and direction for some forecasts. If repeating the same 

mistakes causes smoothing, it can only be corrected by knowing what these mistakes are. 

Therefore, studies that investigate efficiency of WASDE forecasts with respect to 

external factors (e.g., macro forces in Isengildina and Karali, 2013) may provide some 

guidance. 
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Table 3.1 Tests of Revision Efficiency for WASDE Corn Forecasts, 1984/85-2011/12 Marketing Years 

Month Beginning 
Stocks Production Feed and 

Residual 

Food, Seed 
and 

Industrial 
Exports Ending 

Stocks Price 

Jul 0.45   -0.02   0.18   -0.04   0.11   -0.33   -0.36   
Aug 0.01   0.45 *** -0.12   -0.19   0.00   0.30   -0.08   
Sep 0.77 *** 0.05   0.10   0.02   0.40 *** 0.03   0.14   
Oct 0.29   0.38   0.05   0.50 ** 0.13   0.47   0.21   
Nov -0.06   0.70 *** 0.21   -0.05   0.32 * 0.30 *** 0.57 *** 
Dec --    --    0.07   0.00   0.57 *** 0.03   0.20 ** 
Jan --    --    0.87   0.46 *** 0.39 ** 0.85 ** 0.60 *** 
Feb     

  
0.00   0.28 * 0.39 *** 0.09   0.06   

Mar         0.00   0.00   0.29   0.14   0.00   
Apr         --   -0.10   0.66 *** 0.63   0.32   
May         0.06   0.09   0.51 *** 0.21   -0.13   
Jun         0.14 ** 0.41 *** 0.36 ** 0.07   -0.22   
Jul         -4.59   0.05   0.71 *** 0.45   0.65   

Aug         0.01   -0.05   0.35 ** 0.07   0.00   
Sep         0.00   0.03   0.52 *** 0.65 *** -0.01   
Oct         -0.89   0.68 *** 0.01   -0.71 * -0.05   
Nov         -0.01   -0.09   0.08   0.00   0.00   

Notes: Reported values are λ coefficients from regression which is estimated using the OLS  
method. Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%, 5%, and 1%.  
Missing values are generated when the dependent and/or independent variables in the regression are zeroes. 
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Table 3.2 Tests of Revision Efficiency for WASDE Soybean Forecasts, 1984/85-2011/12 Marketing Years 

Month Beginning 
Stocks Production Crushings Seed and 

Residual Exports Ending 
Stocks Price 

Jul 0.48 ** 0.23   -0.04   -0.47   1.25 ** 0.02   0.00   
Aug 0.36 * 0.65 *** 0.58 *** 0.37 * 0.49 ** 0.59 *** 0.21   
Sep 0.06   0.03   -0.01   -0.05   -0.01   0.15   0.10   
Oct 0.45   0.28   0.43 ** 0.31   0.47 * -0.01   0.52   
Nov 0.00   0.28 *** 0.30 *** 0.14 ** 0.31 ** 0.21 * 0.21 * 
Dec --   0.00   -0.06   0.03   0.52 *** 0.18 * 0.33 * 
Jan  --   -2.23   0.50 ** 0.64   0.67 *** 0.99 *** 0.15   
Feb      0.50 *** -0.06   0.75 *** 0.17   0.11   
Mar      0.35 ** 0.00   0.64 *** 0.32 * 0.75 *** 
Apr      0.33 ** -0.83   0.51 *** -0.01   0.46 *** 
May         0.50 *** 0.03   0.36 ** 0.37 * 0.66 *** 
Jun         0.90 *** 0.00   0.39 *** 0.63 *** 0.22 ** 
Jul         0.44 *** 2.85   0.76 *** 0.40 ** 0.98 *** 

Aug         0.54 *** 0.03   0.70 ** 0.39 * 0.07   
Sep         0.56 *** 0.92 *** 0.22 ** 0.25 ** 0.08   
Oct         -0.03   -0.58   0.05   -0.88 * 0.17   
Nov       -0.13 * -0.04   -0.14   0.00   -0.10 * 

Notes: Reported values are λ coefficients from regression which is estimated using the OLS  
method. Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%, 5%, and 1%.  
Missing values are generated when the dependent and/or independent variables in the regression are zeroes. 
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Table 3.3 Tests of Revision Efficiency for WASDE Wheat Forecasts, 1984/85-2011/12 Marketing Years 

Month Beginning 
Stocks Production Food Seed Feed and 

Residual Exports Ending 
Stocks Prices 

Jul 0.76 ** 0.93 ** 0.11 ** 0.17 0.91 ** 0.69   0.46   0.77 * 
Aug 0.00   0.10   0.59   0.00 0.11   0.37   -0.10   0.15   
Sep --    0.10   0.07   --  0.01   0.20 * 0.12   0.29 ** 
Oct --    0.31   0.00   0.80 0.40   0.46 ** 0.28   0.42 *** 
Nov      0.07   0.00 -0.03   0.37 ** 0.13 * 0.20 ** 
Dec       0.20   0.00 0.00   0.56 ** 0.59 * 0.65 *** 
Jan       0.00   -1.00 --    0.12   0.05   0.65 *** 
Feb       0.20   0.00 0.03   0.33 * 0.09   0.08   
Mar         0.17   0.00 0.00   0.05   0.24   0.12   
Apr         0.00   -0.50 --    0.13   -0.06   0.09   
May         0.33   0.00 0.00   -0.01   0.09   -0.18   
Jun         -0.06   0.00 0.00   0.17   0.12   0.09   
Jul         0.04   -0.58 -1.84   0.01   0.68 ** -0.08   

Aug         0.63   -0.01 -0.28 *** -0.16   0.00   0.00   
Sep         0.06   0.00 0.03   -0.01   --    0.00   
Oct         0.07    -- 0.22   0.00   --    0.00   
Nov       0.00   0.00 0.02   0.00   0.00   --    

Notes: Reported values are λ coefficients from regression which is estimated using the OLS  
method. Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%, 5%, and 1%.  
Missing values are generated when the dependent and/or independent variables in the regression are zeroes. 
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Table 3.4 Tests of Revision Efficiency for WASDE Cotton Forecasts, 1984/85-2011/12 Marketing Years 

Month Beginning 
Stocks Production Domestic 

Use Exports Ending 
Stocks Price 

Jul 0.54 ** 0.95 * 0.82 *** 1.07 *** 0.55   0.28   
Aug 0.32 *** 0.22   0.21   0.22   0.18   0.25   
Sep 0.01   0.12   0.39 ** 0.01   -0.02   -0.10   
Oct -0.04   0.44 *** 0.32   0.41 * 0.14   0.53   
Nov 0.12   0.45 *** 0.31 ** 0.06   0.09   0.15   
Dec 0.00   0.27 ** 0.15   0.35   0.18   0.37 ** 
Jan 0.00   0.50 *** 0.22 *** 0.61 *** 0.57 *** -0.10   
Feb     1.70 *** 0.36 *** 0.60 *** 0.06   
Mar     0.40 *** 0.27   0.40 ** -0.13   
Apr     0.38 ** 0.60 *** 0.25 * 0.13   
May      0.51 ** 0.16   0.02   0.12   
Jun    

 
  0.13   0.19   0.35 * 0.05   

Jul         0.48 ** 0.20   0.50 ** -0.08   
Aug         0.19   0.84 *** 0.32 *** -0.13   
Sep         0.26   0.22 *** 0.22   0.25   
Oct         0.23   0.30   0.04   0.10   
Nov         0.01   0.00   0.14 * 0.00   

Notes: Reported values are λ coefficients from regression which is estimated using  
the OLS method. Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%,  
5%, and 1%.  
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Table 3.5 Evaluation of Revision Inefficiency Correction Procedures for Corn Forecasts 

 
Beginning 

Stocks Production Feed and 
Residual 

Food, 
Seed, and 
Industrial 

Exports Ending 
Stocks Price 

Comparison 1: MAPEs of forecasts adjusted using the basic correction procedure minus 
MAPEs of published WASDE forecasts, 1994/95-2011/12 

Average difference 0.007 -0.005 0.024 0.053 0.064 0.376 0.050 
Negative changes  2 16 4 4 14 20 1 
Positive changes  4 22 6 5 22 28 4 
Sample Size 144 144 324 324 324 324 324 
Comparison 2: MAPEs of forecasts adjusted using the M-estimation minus those adjusted using 
the OLS estimation in equation (3.3), 1994/95-2011/12 
Average difference 0.099 -0.014 0.002 0.058 -0.084 -0.099 -0.009 
Negative changes  10 24 6 7 31 24 3 
Positive changes  17 14 6 7 16 23 5 
Sample Size 144 144 324 324 324 324 324 
Comparison 3: MAPEs of forecasts adjusted including forecast size and direction minus those 
not considering forecast size and direction, 1999/00-2011/12 

Average difference 0.111 0.168 0.015 0.024 0.422 0.585 -0.014 
Negative changes  10 19 7 5 24 15 3 
Positive changes  13 22 8 7 32 31 1 
Sample Size 104 104 234 234 234 234 234 
Notes: Negative changes indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or  
deterioration of forecast accuracy. Sample size reflects the shorter forecasting cycle for beginning stocks and production  
forecasts and loss of observations used to calculate the forecast size and direction variable. 
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Table 3.6 Evaluation of Revision Inefficiency Correction Procedures for Soybean Forecasts 

 
Beginning 

Stocks Production Crushings Seed and 
Residual Exports Ending 

Stocks Price 

Comparison 1: MAPEs of forecasts adjusted using the basic correction procedure minus MAPEs of published WASDE 
forecasts, 1994/95-2011/12 
Average difference 0.242 0.021 0.004 0.177 0.032 0.262 0.065 
Negative changes  4 4 15 9 43 9 19 
Positive changes  8 7 12 10 27 15 26 
Sample size 144 144 324 324 324 324 324 
Comparison 2: MAPEs of forecasts adjusted using the M-estimation minus those adjusted using the OLS estimation in 
equation (3.3), 1994/95-2011/12 

Average difference 0.235 -0.003 0.001 -0.049 -0.003 0.024 -0.049 
Negative changes  13 7 13 13 40 18 39 
Positive changes  17 5 16 10 33 14 22 
Sample size 144 144 324 324 324 324 324 
Comparison 3: MAPEs of forecasts adjusted including forecast size and direction minus those not considering forecast size 
and direction, 1999/00-2011/12 

Average difference -0.077 0.050 -0.015 0.444 0.017 0.618 -0.061 
Negative changes  11 10 12 13 22 12 26 
Positive changes  11 9 12 14 37 18 21 
Sample size  104 104 234 234 234 234 234 
Notes: Negative changes indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or deterioration of forecast accuracy. 
Sample size reflects the shorter forecasting cycle for beginning stocks and production forecasts and loss of observations used to calculate the forecast 
size and direction variable. 
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Table 3.7 Evaluation of Revision Inefficiency Correction Procedures for Wheat Forecasts 

 
Beginning 

Stocks Production Food Feed and 
Residual Exports Ending 

Stocks Price 

Comparison 1: MAPEs of forecasts adjusted using the basic correction procedure minus MAPEs of published WASDE 
forecasts, 1994/95-2011/12 
Average difference 0.117 0.029 0.000 0.107 0.072 0.000 -0.004 
Negative changes  0 11 0 2 9 0 10 
Positive changes  2 12 0 6 18 0 14 
Sample size 90 90 324 324 324 324 324 
Comparison 2: MAPEs of forecasts adjusted using the M-estimation minus those adjusted using the OLS estimation in 
equation (3.3), 1994/95-2011/12 
Average difference 0.000 -0.031 0.000 0.000 0.039 0.007 0.015 
Negative changes  0 10 0 4 16 3 15 
Positive changes  0 9 0 6 18 3 10 
Sample size 90 90 324 324 324 324 324 
Comparison 3: MAPEs of forecasts adjusted including forecast size and direction minus those not considering forecast size 
and direction, 1999/00-2011/12 
Average difference 0.008 -0.054 0.007 0.001 0.026 0.162 0.060 
Negative changes  0 9 2 4 6 0 13 
Positive changes  4 8 3 4 15 1 11 
Sample size 65 65 234 234 234 234 234 
Notes: Negative changes indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or deterioration of forecast accuracy. 
Sample size reflects the shorter forecasting cycle for beginning stocks and production forecasts and loss of observations used to calculate the forecast 
size and direction variable. 
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Table 3.8 Evaluation of Revision Inefficiency Correction Procedures for Cotton Forecasts 

 
Beginning 

Stocks Production Domestic Use Exports Ending Stocks Price 

Comparison 1: MAPEs of forecasts adjusted using the basic correction procedure minus MAPEs of published WASDE 
forecasts, 1994/95-2011/12 
Average difference 0.119 -0.122 0.072 -0.011 0.028 0.096 
Negative changes  4 31 18 44 26 14 
Positive changes  4 13 17 25 22 17 
Sample size 144 144 324 324 324 324 
Comparison 2: MAPEs of forecasts adjusted using the M-estimation minus those adjusted using the OLS estimation in 
equation (3.3), 1994/95-2011/12 
Average difference 0.004 -0.005 -0.011 0.020 -0.035 -0.006 
Negative changes  4 26 22 22 29 15 
Positive changes  15 19 17 46 21 14 
Sample size 144 144 324 324 324 324 
Comparison 3: MAPEs of forecasts adjusted including forecast size and direction minus those not considering forecast size and 
direction, 1999/00-2011/12 
Average difference 0.031 0.085 0.022 0.287 0.167 0.162 
Negative changes  6 19 20 13 13 18 
Positive changes  8 22 27 37 23 23 
Sample size 104 104 234 234 234 234 
Notes: Negative changes indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or deterioration of forecast accuracy. 
Sample size reflects the shorter forecasting cycle for beginning stocks and production forecasts and loss of observations used to calculate the forecast 
size and direction variable. 
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Table 3.9 Evaluation of the New Revision Inefficiency Correction Procedure over Time for Corn Forecasts 

 
Beginning 

Stocks Production Feed and 
Residual 

Food, Seed, 
and Industrial Exports Ending 

Stocks Price 

1994/95-2011/12 
Average difference 0.106 -0.019 0.026 0.111 -0.020 0.278 0.062 
Negative changes  10 18 4 5 22 13 0 
Positive changes  17 20 7 7 19 19 3 
Sample size 144 144 324 324 324 324 234 

Stage 1: 1994/95-1999/00 
Average difference 0.151 -0.025 0.000 0.127 0.007 0.327  
Negative changes  1 5 0 0 4 4  
Positive changes  8 8 0 2 4 7  
Sample size 48 48 108 108 108 108  

Stage 2: 2000/01-2005/06 

Average difference 0.028 -0.012 -0.001 0.036 -0.233 0.363 0.041 
Negative changes  6 6 2 0 13 6 0 
Positive changes  5 6 1 1 6 9 2 
Sample size 48 48 108 108 108 108 108 

Stage 3: 2006/07-2011/12 

Average difference 0.139 -0.021 0.079 0.145 0.165 0.142 0.094 
Negative changes  3 7 2 5 5 3 0 
Positive changes  4 6 6 4 9 3 1 
Sample size 48 48 108 108 108 108 108 
Notes: The evaluation is carried out by subtracting the MAPEs of published WASDE forecasts from the MAPEs of the new correction procedure. The 
new revision inefficiency correction procedure for corn includes the use the M-estimation in estimating the γ coefficients, the use of equation (3.6) for 
category price, and the use of equation (3.3) for other categories. The validation subsamples for price are from 1999/00-2011/12. So, no results are given 
for price in stage 1. Negative changes indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or deterioration of 
forecast accuracy.  
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Table 3.10 Evaluation of the New Revision Inefficiency Correction Procedure over Time for Soybean Forecasts 

 
Beginning 

Stocks Production Crushings Seed and 
Residual Exports Ending 

Stocks Price 

1994/95-2011/12 
Average difference 0.034 0.018 0.007 0.128 0.029 0.286 -0.030 
Negative changes  5 0 8 11 38 13 22 
Positive changes  2 5 9 10 24 16 10 
Sample size 104 144 234 324 324 324 234 

Stage 1: 1994/95-1999/00 
Average difference  0.000  -0.212 0.027 0.766  
Negative changes   0  2 10 1  
Positive changes   0  1 6 7  
Sample size  48  108 108 108  

Stage 2: 2000/01-2005/06 

Average difference 0.410 0.050 0.012 0.158 0.167 0.345 0.027 
Negative changes  1 0 4 4 10 6 9 
Positive changes  2 3 3 4 10 7 7 
Sample size 48 48 108 108 108 108 108 

Stage 3: 2006/07-2011/12 

Average difference -0.226 0.012 0.008 0.426 -0.107 -0.252 -0.092 
Negative changes  4 0 3 5 18 6 13 
Positive changes  0 2 5 5 8 2 3 
Sample size 48 48 108 108 108 108 108 
Notes: The evaluation is carried out by subtracting the MAPEs of published WASDE forecasts from the MAPEs of the new correction procedure. The 
new revision inefficiency correction procedure for soybeans includes the use of the M-estimation in estimating the γ coefficients, the use of equation 
(3.6) for category beginning stocks, crushings, and price, and the use of equation (3.3) for other categories. The validation subsamples for beginning 
stocks, crushings, and price are from 1999/00-2011/12. So, no results are given for beginning stocks, crushings, and price in stage 1. Negative changes 
indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or deterioration of forecast accuracy.  
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Table 3.11 Evaluation of the New Revision Inefficiency Correction Procedure over Time for Wheat Forecasts 

 
Beginning 

Stocks Production Food Feed and 
Residual Exports Ending 

Stocks Price 

1994/95-2011/12 
Average difference 0.117 -0.038 0.000 0.107 0.072 0.000 -0.004 
Negative changes  0 8 0 2 9 0 10 
Positive changes  2 4 0 6 18 0 14 
Sample size 90 65 324 324 324 324 324 

Stage 1: 1994/95-1999/00 
Average difference 0.351  0.000 0.016 0.113 0.000 -0.095 
Negative changes  0  0 0 3 0 3 
Positive changes  2  0 1 6 0 5 
Sample size 30  108 108 108 108 108 

Stage 2: 2000/01-2005/06 
Average difference 0.000 -0.064 0.000 0.000 -0.027 0.000 -0.039 
Negative changes  0 3 0 0 5 0 3 
Positive changes  0 2 0 0 4 0 5 
Sample size 30 30 108 108 108 108 108 

Stage 3: 2006/07-2011/12 
Average difference 0.000 -0.016 0.000 0.305 0.135 0.000 0.115 
Negative changes  0 4 0 2 1 0 4 
Positive changes  0 2 0 5 8 0 4 
Sample size 30 30 108 108 108 108 108 
Notes: The evaluation is carried out by subtracting the MAPEs of published WASDE forecasts from the MAPEs of the new correction procedure. The 
new revision inefficiency correction procedure for wheat includes the use of the OLS estimation in estimating the γ coefficients, the use of equation (3.6) 
for category production, and the use of equation (3.3) for other categories. The validation subsamples for production are from 1999/00-2011/12. So, no 
results are given for production in stage 1. Negative changes indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or 
deterioration of forecast accuracy. 



 76 

Table 3.12 Evaluation of the New Revision Inefficiency Correction Procedure over Time for Cotton Forecasts 

 
Beginning 

Stocks Production Domestic Use Exports Ending Stocks Price 

1994/95-2011/12 
Average difference 0.122 -0.128 0.061 0.009 -0.007 0.090 
Negative changes  4 34 19 39 20 12 
Positive changes  15 12 17 24 13 15 
Sample size 144 144 324 324 324 324 

Stage 1: 1994/95-1999/00 
Average difference 0.228 -0.019 0.041 0.321 -0.354 0.014 
Negative changes  1 9 3 13 5 3 
Positive changes  8 4 3 10 2 4 
Sample size 48 48 108 108 108 108 

Stage 2: 2000/01-2005/06 
Average difference -0.048 -0.124 0.221 -0.470 0.001 0.156 
Negative changes  2 11 6 17 7 4 
Positive changes  6 2 9 2 4 3 
Sample size 48 48 108 108 108 108 

Stage 3: 2006/07-2011/12 
Average difference 0.187 -0.240 -0.079 0.176 0.332 0.100 
Negative changes  1 14 10 9 8 5 
Positive changes  1 6 5 12 7 8 
Sample size 48 48 108 108 108 108 
Notes: The evaluation is carried out by subtracting the MAPEs of published WASDE forecasts from the MAPEs of the new correction procedure. The 
new revision inefficiency correction procedure for cotton includes the use of the M-estimation in estimating the γ coefficients and the use of equation 
(3.3) for all categories. Negative changes indicate the improvements in forecast accuracy. Positive changes illustrate larger errors or deterioration of 
forecast accuracy. 
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Figure 3.1 The WASDE Forecasting Cycle for Corn, Soybeans, Cotton and Wheat 
Relative to the 2011/12 U.S. Marketing Year 
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          Figure 3.2  Corn and Soybean Production Forecasting Cycle and Corresponding 
Revision Cycle for a Marketing Year 
 
 
 
 
 
 

 
Figure 3.3 An Example of Outlier Detection For Corn Production using the October Data 
from 1984/95 to 2002/03
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Notes: The graphs show the λ coefficients from regression for j=3=July, 
j=4=August, j=5=September, j=6=October, j=7=November. Each point (bar) is calculated using a 
10 year subsample starting in the year used as a label; for example, the bar labeled 1985 uses the 
10 year sub-sample starting in 1985. 
 
Figure 3.4 Stability of Revision Inefficiency Over Time: Corn Production  
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Note: The graphs show the F statistic for a QLR test for equation  for j=3=July, 
j=4=August, j=5=September, j=6=October, j=7=November; the upper horizontal line represents 
the critical value (7.12) for each month. 
 
Figure 3.5 Structural change test (QLR) for corn production: 1984/85-2011/12 
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CHAPTER FOUR 

QUANTIFYING PUBLIC AND PRIVATE INFORMATION EFFECTS ON THE 

COTTON MARKET 

Introduction 

In volatile agricultural markets, most public information is provided by the U.S. 

Department of Agriculture (USDA), which historically devoted substantial resources to 

their agricultural forecasting program (Offutt, 2002). Information in the USDA forecast 

reports is widely used by farmers, agribusiness firms, other commercial decision makers, 

speculators, as well as secondary information producers, such as universities, and 

consulting and market advisory firms. Moreover, the importance of public information on 

agricultural markets has been debated since the early 80s, given the emergence of private 

agricultural analysis and the gradual reduction in governmental spending for statistical 

reporting services. In comparison to public expenditure in 1980, 1983 federal budget 

request for USDA was reduced by 20%. More recently, the USDA cut 12 statistical and 

commodity reports in response to budgetary constraints in 2011 (NASS news, October 

17, 2011), and in early 2013 USDA suspended a number of statistical surveys and reports 

due to reduced funding (NASS news, March 12, 2013). Thus, the issue of the value of 

public information sources has become particularly urgent.   

Most previous studies evaluating public information effects focused on a single 

report and provided mixed evidence. Sumner and Mueller (1989) found significant 

announcement effect on corn and soybean market price movements using USDA harvest 

forecast reports. McNew and Espinosa (1994) and Fortenbery and Sumner (1993) used 
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USDA Crop Production Report and reached a consistent conclusion that there is no 

strong evidence indicating a significant influence USDA corn and soybean production 

forecasts on the level of futures prices after 1985. In contrast, Garcia et al. (1997) and 

Mckenzie (2008) analyzed the same USDA reports and suggested that corn and soybean 

forecasts still provide valuable information on commodity futures markets, even though 

there has been a reduction in the information effects after the mid-1980s. Colling and 

Irwin (1990) and Mann and Dowen (1997) examined the effect of USDA Hogs and Pigs 

Report and they found the ability of the futures market of hogs to incorporate 

unanticipated information. Grunewald, McNulty, and Biere (1993) and Schaefer, Myers, 

and Koontz (2004) discovered that live cattle futures prices respond to information 

contained in Cattle on Feed Report.  

The information effect of World Agricultural Supply and Demand 

Estimates (WASDE), one of the most influential public sources of commodity forecasts, 

has also been analyzed by several previous studies. Isengildina-Massa, Irwin, and Good 

(2008a, 2008b) respectively investigated the impact of WASDE on the options and 

futures price for corn and soybean. Both studies confirmed a significant price reaction to 

the WASDE reports. More recently, Adjemian (2012) conducted a comprehensive study 

by quantifing the WASDE information effect for multiple crop markets, and he found 

significant impact. Although Dorfman and Karali (2013) analyzed multiple USDA 

reports (Acreage & Prospective Plantings; Cattle; Cattle on Feed; Crop Progress; Feed 

Outlook; Grain Stocks; Hogs and Pigs; Livestock, Dairy, and Poultry Outlook; Oil Crops 

Outlook; and WASDE) within one study, they examined these reports separately using 
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parametric and nonparametric approaches. Report-by-report analysis does not allow the 

measurement of the overall impact of a group of similar reports. More importantly, 

evaluating a single report is likely to overestimate its effect since several public reports 

could be simultaneously published within the same reaction window. 

 Isengildina, Irwin, and Good (2006) first studied to address the “clustering reports 

problem” by simultaneously analyzing six USDA reports using a GARCH-type model. 

They focused on the most influential reports in live hog and cattle returns. Later, Karali 

(2012) evaluated the impact of multiple USDA reports on the conditional variances and 

covariances of returns on 5 related futures contract.    

Based on the above literature, we found most research has focused on the corn, 

soybean, cattle, and hog markets, leaving the effect of public information on other 

commodity market unclear. The objective of this study is to estimate the impact of all 

major public reports and one private report on the cotton market from 1995 through 2012. 

The cotton market was chosen because (a) the cotton industry has undergone substantial 

changes over the last fifteen years (Isengildina and MacDonald, 2013); (b) cotton prices 

have become particularly volatile in recent years (Robinson, 2009); (c) forecasts of cotton 

prices were prohibited from 1929 to 2008; and (d) little is known about the impact of 

information on cotton markets relative to other commodities.  

Cotton daily futures returns of nearby futures contracts from January 1995 

through January 2012 are used in the analysis. Reports identified as main sources of 

public information for the cotton market include Crop Progress, Export Sales, 

Perspective Plantings, and WASDE reports released by the USDA. This study also 
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includes the most commonly used private report: the Cotton This Month report from the 

International Cotton Advisory Committee.24 Having both public and private reports 

allows us to compare the impact of public and private information on the cotton market.  

This study uses the standard event study approach, which has been widely used in 

analyzing public information effect (e.g. Dorfman and Karali, 2013; Isengildina-Massa, 

Irwin, and Good, 2006). Within this framework, information is considered valuable to 

market participants if prices respond to the information release (the event). Evaluation of 

the effect of multiple reports is then be conducted using the GARCH-type model similar 

to the one outlined in Isengildina-Massa, Irwin, and Good (2006). The model controls for 

other potential determinants of abnormal price movements, such as stock levels, day of 

the week, seasonality, and weekend-holiday effects. This approach allows for valuation 

of relative importance of five main reports in cotton futures market. Furthermore, the 

methods reveal the report announcement effect on both the mean and the variance of 

returns. 

Data 

Public and Private Reports 

USDA, as the main public information provider, releases over 20 different reports 

related to cotton industry each year. Moreover, other government-funded organizations, 

such as International Cotton Advisory Committee (ICAC), National Cotton Council 

                                                
24 The selection of main public reports on cotton has been discussed with Steven MacDonald, a 
senior economist in USDA, and John R. C. Robinson, professor and extension economist in 
Texas A&M University.  
!
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(NCC), World Bank, and International Monetary Fund (IMF) publish various cotton 

reports. Several reports identified in this study as main information sources for the cotton 

market include Export Sales, Crop Progress, WASDE, and Perspective Plantings from 

USDA and Cotton This Month from ICAC. Other reports, such as Cotton and Wool 

Outlook and Weekly Cotton Market Review, contain mostly secondary information and 

analysis and are not expected to move the markets. 

Export Sales is published by the USDA through its export sales reporting system. 

The reports are part of the USDA’s Export Sales Reporting Program, which monitors 

U.S. agricultural exports on a daily and weekly basis. Only the weekly Export Sales 

reports are included in this study; these reports are published every Thursday at 8:30 am 

ET and contain the weekly summary of export activity for all major commodities. The 

historical reports are available since November 1, 1990. Crop Progress reports list 

planting, fruiting, and harvesting progress and overall condition of crops in major 

producing states. The National Agricultural Statistics Service (NASS) issues weekly 

Crop Progress reports during the growing season (early April through the end of 

November or the beginning of December) of selected crops, including cotton, after 4:00 

pm ET on the first business day of the week. The WASDE reports are released monthly 

by the World Agricultural Outlook Board; they provide USDA's comprehensive 

estimates and forecasts of supply and demand for major U.S. and global crops and U.S. 

livestock to advise market participants about the current and expected market conditions. 

Historically WASDE were published about one hour after the close of trading of cotton 

futures. Starting in May 1994, the USDA changed the releasing time to 8:30 am ET. 
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Prospective Plantings reports are published at the end of March by the NASS every year 

and concentrate on the expected plantings as of March 1st for various crops. Similar to 

WASDE, Prospective Planting were scheduled to be released after market close before 

1996 and the publishing time was switched to before market opening since 1996. ICAC 

issues Cotton This Month reports at 3:00 pm ET of the first working day of each month in 

five languages. These reports present estimates and projections of world supply and 

demand and assessments of supply and demand by country. In contrast to other reports 

included in this study, Cotton this Month is released to subscribers only. 

The release of these five major reports in the cotton market represents “events” in 

this study and is used to capture the impact of public reports on cotton futures prices. The 

trading days immediately following reports release are considered event days. Thus, for 

reports that are released after cotton futures market close, the event day is the day 

following the release. On the other hand, the event day is equivalent to the release date if 

a report is issued before trading hours. The event days for Cotton This Month, the only 

private report included in this study, are the second day after the release of each month’s 

report. The reason for using the second day25 instead of the first day is that the private 

report releases to subscriber first and the new information takes longer to reach the 

market.   

Because the Crop Process reports can be only traced back to 1995, the sample 

period for this study is chosen from January 1995 through January 2012. During the 

sample period, weekly Export Sales and Crop Progress were published 893 and 598 

                                                
25 This study also used the third days, forth days, and fifth days after the reports release as event 
days and the results are available upon requests.  
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times, respectively. Monthly WASDE reports were published 205 times and yearly 

Prospective Plantings reports were published 17 times. ICAC released its first Cotton 

This Month on November 1, 1995 and has published 194 reports since then. In total, 1907 

public reports were included in this study. None of the five reports were intended to be 

released on the same day, however, out of 1759 event days, 146 days and 1 day captures 

the impact of two and three reports, respectively. This indicates the need to consider the 

effect of “report clustering”.   

Cotton Futures Returns 

During the period of study, Cotton No. 2 futures contracts were traded on the New 

York Board of Trade (NYBOT) and were operated under the CME Group. Cotton No. 2 

has contract months of March, May, July, October, and December and the contract size is 

50,000 pounds. To obtain a spliced, continuous price series for cotton, the closest to 

delivery contract is used until the third Tuesday of the month prior to delivery, after 

which the series switch to the next nearby contract. In this way, the expiration effects on 

prices and on the level of trading activity are avoided. Table 4.1 presents the matching 

futures contracts with each report release month. 

 The information effect in cotton futures market is measured in terms of returns. 

Following previous studies by Yang and Brorsen (1993) and Isengildina-Massa, Irwin, 

and Good (2006) returns are calculated as log percentage changes in the nearby futures 

contract prices for cotton from January 3, 1995 through January 31, 2012. Accordingly, 

the equation we use to calculate returns is: 

(4.1)  Rt = 100* (lnPt – lnPt-1),   
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where lnPt is the natural logarithm of the settlement price of cotton’s futures contract on 

day t (event day), while Pt-1 is the settlement price on the previous day. This calculation 

is also called the Close-to-Close (CTC) approach as the settlement prices are used in two 

consecutive days. Karali (2012) stated “the advantage of using the CTC approach, as it is 

more conservative if the impact is disseminated into prices instantaneously in the 

opening”. However, Isengildina-Massa, Irwin and Good (2006) argued that CTC 

measurement may mask the markets’ reaction to USDA reports as other information 

becomes available to the market during the event day. Based on the efficient market 

theory, which suggests the impact of new information should be reflected instantaneously 

in futures prices right after a trading session begins, Isengildina-Massa, Irwin and Good 

(2006) suggested using Close-to-Open (CTO) returns, and they also mentioned it is 

necessary to use all three measures of returns--CTC, CTO, and open-to-close (OTC)--to 

completely understand the dynamics of market reaction to USDA reports when the 

reaction speed is unknown. Therefore, this study also calculates the returns in two other 

ways: a) CTO returns, when Pt is the open price on the event day and Pt-1 is the 

settlement price on the previous day; b) OTC returns (daily returns), where Pt and Pt-1 are 

the event day’s settlement and open price, respectively.  

Cotton futures contract is subject to daily price limit, which restricts potential 

large price movements. Following previous studies (Park, 2000; Isengildina-Massa, Irwin, 

and Good, 2006; Karali, 2012), this research does not adjust returns data for price limit 

moves. Thus, the estimates of announcement effects may be underestimated because of 
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the lack of ability to detect large market reactions to new information in days with price 

limit moves.  

Descriptive Analysis 

CTC, CTO, and OTC returns of cotton futures are respectively plotted in Panel 1-

3 of figure 4.1. Spikes can be seen in all three plots and they are related to the arrival of 

important new information. This study evaluates if the five reports (Exports Sales, Crop 

Process, WASDE, Perspective Plantings, and Cotton This Month) can be used to explain 

the volatility in returns. Volatility of cotton futures markets is plotted in figure 4.2 in 

terms of squared returns (a common measure of volatility, which emphasizes the 

deviations of returns). The plots in Panels A and C show that CTC and OTC 

measurements share a similar volatility pattern, where the returns were volatile in the 

year of 2001 and 2009. However, the plot for CTO measurement indicates that the returns 

of cotton futures market were most volatile around year 2005.26 All three plots in figure 

4.2 suggest heteroskedasticity in variance (the volatility of returns) over time and they 

show evidence of volatility clustering, indicating that low volatility was normally 

followed by low volatility and vice versa.   

 Descriptive statistics for cotton futures returns are presented in table 4.2. The 

average magnitude of returns is -0.03, -0.06, and 0.03 percentage points for CTC, CTO, 

and OTC respectively. The skewness for all three measurements are between -0.5 and 

0.5, suggesting the distribution of returns is approximately symmetric. The assumption 

for normality is rejected in all three cases based on the Jarque-Bera test, and the rejection 

                                                
26 Panel A, B, C in figure 4.2 have different scales. The largest volatility in Panel A is two times 
larger than the largest one in Panel B.  
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is likely to be explained by the large value for kurtosis. Although the values of kurtosis 

for CTC and OTC returns are about half of the size for CTO, the kurtosis value is bigger 

than 3, indicating the distribution of returns has a fatter tail than a normal distribution.   

Methods 

Traditional Ordinary Least Squares (OLS) method is not suitable to analyze 

cotton’s daily futures returns because the distribution of returns is non-normal with time-

varying volatility as disscussed in the previous section. The GARCH-type models have 

been widely used in commodity futures studies and they have been shown to more 

accurately model the distribution of daily futures returns (e.g. Yang and Brorsen, 1993; 

Yang and Brorsen, 1994; etc.). Selection of an appropriate GARCH model has always 

been a great challenge, and there is no single GARCH-type model claimed as the best fit 

for various commodities. Yang and Brorsen (1993) applied the GARCH(1,1) to capture 

the nonlinear dynamics of 15 commodities’ daily futures price. One year later, they 

compared three different models and concluded the GARCH(1,1)-t fits their data the best. 

Isengildina-Massa, Irwin, and Good (2006) used a TARCH-in-mean model to measure 

live/lean hog and live cattle futures returns as they found evidence that the markets react 

asymmetrically to “good” and “bad” news. Instead of directly selecting a GARCH-type 

model from previous literature, this study strives to select a GARCH model that best fits 

the characteristics of the cotton futures daily returns. We first present the steps for 

choosing an optimal GARCH model that fits the returns without any external effects. The 

external effects, including public reports, are then added to build the full model.  
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Model with No External Effects 

Basic GARCH model 

Prior to determining the order for the GARCH terms, it is necessary to know if the 

daily cotton futures returns imply the existence of ARCH effect. So, the first step is to 

estimate the daily cotton futures returns using the “best fitting” ARMA model.27 Then, 

the ARCH disturbances can be tested using the Lagrange multiplier test (LM) proposed 

by Engle (1982). If the null hypothesis of no ARCH effect has been rejected, the GARCH 

model should be considered. 

 The GARCH model was developed by Bollerslev (1986) and Taylor (1986) and 

the basic form of a GARCH (p,q) model is written as: 

(4.2) Rt = g(x;θ )+ ε t  

(4.3)  

(4.4)  

The function  in the mean equation (4.2) is determined by the “best fitting” 

ARMA model. The constant term in the ARMA model is interpreted as the price of risk. 

Isengildina-Massa, Irwin, and Good (2006) argued that the price of risk might be 

associated with the volatility of returns and GARCH with mean model can capture the 

association by adding the conditional standard deviation ( ) into the mean equation. 

The error term is assumed to have the decomposition of , where is the 

conditional variance, representing the forecast variance based on past information. The 
                                                
27 More detail on how to find the “best fitting” model is given in Brockwell and Davis (2009).  
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conditional variance is presented as a function of a constant term ( ), the new 

information measured as the sum of squared previous days’ returns ( ), and the 

previous forecast variances ( ). Coefficients of GARCH model are normally 

estimated by the maximum likelihood estimation (MLE) method using the algorithm 

developed by Marquardt (1963).  

 As stated by Teräsvirta, Tjøstheim and Granger (2011), the overwhelmingly most 

popular GARCH model in applications has been the GARCH(1,1) model, where p=q=1 

in equation (4.4). In addition, Hansen and Lunde (2005) compared 330 different volatility 

models using daily exchange rate data (DM/$) and IBM stock prices and they concluded 

that the GARCH(1,1) was not significantly outperformed by any complicated GARCH 

models. Therefore, GARCH(1,1) is a good starting point to fit the daily cotton futures 

returns data. The LM test can be applied again for testing the existence of left over 

ARCH effects and higher order GARCH model will be considered if the null hypothesis 

is rejected.  

Extensions of basic GARCH model have been developed to deal with “stylized 

facts”, including asymmetric, non-gaussian error distribution, and long memory, in 

financial and agricultural commodity time series data. Our approach to incorporating 

these additional factors in the daily cotton futures returns is described in the following 

sections. 
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GARCH Model with Non-Gaussian Error Distribution 

In the basic GARCH model, the error term follows a normal distribution (see 

equation 4.3). Even though the distribution of financial and commodity returns have 

fatter tail than a normal distribution, He and Teräsvirta (1999) argue that a GARCH 

model with normal errors (GARCH-normal) can replicate some fat-tailed behavior. 

However, due to the high kurtosis values (4.50, 10.03, and 5.24 for CTC, CTO and OTC 

returns, respectively), it is important to consider distributions with fatter tails than the 

normal distribution. Zivot (2009) notes that the commonly used fat-tailed distributions for 

fitting GARCH models include the Student’s t distribution, the double exponential 

distribution, and the generalized error distribution.  

 GARCH model with Student’s t distribution (GARCH-t) is considered in this 

study. Bollerslev (1987) first developed the GARCH-t, and the GARCH-t process is 

claimed to be useful in modeling leptokurtosis as it features both conditional 

heteroskedasticity and conditional leptokurtosis (Yang and Brorsen, 1994). For a 

GARCH-t model, the error term in the GARCH model follows a Student’s t 

distribution with degrees of freedom (Bollerslev, 1987). After the GARCH-t model has 

been fit to the data, the adequacy of assuming Student’s t distribution can be tested 

graphically by plotting the quantile-quantile plot (QQ plot) with the standardized 

residuals because the distribution of the standardized residuals should match the specified 

error distribution used in the estimation (Zivot, 2009).  

Asymmetric GARCH Model 

In the basic GARCH model, the signs of the residuals ( ) have no impact on the 

ε t

v

ε t
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conditional variance ( ) because only the squared residuals are included in equation 

(4.4). However, previous literature suggests that “bad” news (when previous returns are 

negative) tends to have a larger effect on volatility than “good” news (when previous 

returns are positive) (e.g. Engle, 2004; Isengildina-Massa, Irwin, and Good, 2006). In 

other word, the reaction of volatility toward different types of news is asymmetric. 

Therefore, it is necessary to examine if such asymmetric reactions exist in the cotton 

daily futures returns.  

 Asymmetry can be tested by calculating the correlation between the squared 

return and lagged return . Negative correlation suggests the existence of 

asymmetry (Zivot, 2009). If asymmetry in the daily cotton futures returns has been 

identified, an asymmetric volatility model such as EGARCH (Nelson, 1991), TGARCH 

(Zakoian, 1994), and GJR-GARCH (Glosten, Jaggnnathan, and Runkle, 1993) may be 

preferred to the basic GARCH model. Using TGARCH as an example, equation (4.4) 

will be adjusted as: 

(4.5)   

where  if  or  if . Therefore, for “bad” news, the total 

effect of is given by , while for “good” news, the total effect of is 

given solely by .  

Long Memory GARCH Model 

For many financial and agricultural commodity time series, the for the previous 
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period’s volatility in equation (4.4) is very close to 0.9 (e.g. Yang and Brorsen, 1994; 

Hansen and Lunde 2001), indicating a large/small volatility is always followed by a 

large/small volatility. This feature is identified as volatility persistence or volatility 

clustering. The basic GARCH model captures this feature with an exponential decay in 

the autocorrelation of conditional variance. However, it has been noticed that the squared 

and absolute returns of financial assets have serial correlations that decays much slower 

than an exponentially decay. To the best of our knowledge, previous studies in 

agricultural commodity futures returns have not paid particular attention to this long 

memory phenomenon.  

 In this study, plotting the autocorrelation function for the squared daily cotton 

futures returns is used to check for the presence of the long memory behavior. If such 

behavior exists, the Integrated GARCH (IGARCH) model will be applied to fit the 

returns. IGARCH eliminates the intercept coefficient  in equation (4.4) and restricts 

the sum of all other  and coefficients to be one (Engle and Bollerslev, 1986).28  

Full Model with External Effects 

Although the objective of this study is to identify the public information effect on 

cotton futures market, it is necessary to account for other potential determinants of 

market volatility while considering the impact of public reports. Well-documented 

external factors include the day-of-the-week effects (e.g. Yang and Brorsen, 1994; 

                                                
28 The IGARCH process is not weekly stationary as the unconditional variance does not exist. 
Nelson (1990) showed that the IGARCH(1,1) process is strongly stationary if 

. Therefore, the parameters of the model can still be consistently estimated 
by MLE.  
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Isengildina-Massa, Irwin, and Good, 2006) and the seasonality in variance (e.g. Hennessy 

and Wahl, 1996; Isengildina, Irwin, and Good, 2006). In addition, Williams and Wright 

(1991) asserted a theoretical argument that market conditions affect the reaction of a 

storable commodity’s price to announcements. And the “market conditions” had latter 

been explained as commodity stock level or inventory conditions (Good and Irwin, 2006; 

Colling, Irwin, and Zulauf, 1996; Adjemian, 2012). 

 The impact of external effects is commonly estimated by adding dummy variables 

into the mean/or variance equations. In this study, the dummy variables for each day of 

the week, including DT, Dw, DH and DF, with DM treated as the base category, are 

included in both the mean equation (4.2) and the variance equation (4.4). Using DT as an 

example, DT equals one if Tuesday and zero otherwise. Outlined in Isengildina-Massa, 

Irwin, and Good (2006) and Karali (2012), seasonality is introduced into the variance 

equation as 11 monthly dummy variables (DJAN for January, DFEB for February, DMAR for 

March, DAPR for April, DMAY for May, DJUN for June, DJUL for July, DAUG for August, 

DSEP for September, DOCT for October, DNOV for November) with DDEC for December as 

the base categories. Monthly cotton stocks data (value of ending stocks, which is 

recorded on the last day of the month) is drawn from the USDA Economic Research 

Service’s Cotton and Wool Situation and Outlook Yearbook. The procedure to generate 

the inventory level of each day is described in Adjemian (2012). He defined the stock 

level on the report day of the first month (R) is SR and the stock on the report day of the 

next month (N) is SN. Then the stock level for any day t between report days R and N is 

calculated as: 
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(4.6)   

The calculated daily stock levels can be then ordered by their magnitudes and the lowest 

1/5th are recorded as low stock levels. The stock level effect is tested by adding a dummy 

variable DLOW into the variance equation (4.4) directly. DLOW equals one if the daily stock 

level is low and zero otherwise.   

 Following Isengildina-Massa, Irwin, and Good (2006) and Karali (2012), the 

impact of public reports on cotton daily futures returns is measured only in the variance 

equation. DES for Export Sales, DCP for Crop Progress, DWASDE for WASDE, DPP for 

Perspective Plantings and DCTM for Cotton This Month reports are introduced as dummy 

variables with the value of one on the event day and zero otherwise. We also include the 

weekend-holiday effect, which we define as the impact of a public report release after the 

futures market close on Friday or the day before a holiday. Since the futures market 

closes during weekends and holidays, the markets have longer time to react to the new 

information. We anticipate that the impact of public reports would be masked by this 

weekend-holiday effect. Two dummies DHWCP and DHWCTM
29

 are generated and added 

into the variance equation. These dummy variables equal one on the first day after the 

weekends or holidays if the corresponding report releases after the futures market closes 

on the previous Fridays or the day before holidays, and zero otherwise.  

 

                                                
29 DHWES, DHWWASDE, and DHWPP are not included because the holiday-weekend effect does not 
apply to the Export Sales, WASDE, and Perspective Plantings reports.  
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Results 

Model Selection30 

Although previous studies normally included ten lagged independent variables in 

the mean equation (Yang and Brorsen, 1994; Isengildina-Massa, Irwin, and Good, 2006), 

the “best fitting” ARMA model to estimate the daily cotton futures CTC returns was the 

autoregressive process containing four lags, AR(4).31 Additionally, the null hypothesis of 

no ARCH effect with lag of five32 was rejected at the significance level of 99%, 

indicating the need for using a GARCH-type model.  

The GARCH(1,1)-normal model was estimated first and the test statistics are 

presented in the first column of table 4.3. No higher order of GARCH model was needed 

as the LM test indicates there was no ARCH effect left after fitting the GARCH(1,1)-

normal. If the residuals are normally distributed, the standardized residuals in the QQ plot 

should lie alongside a straight 45 degree line. However, the QQ plot in figure 4.3a of the 

standardized residuals calculated based on the GARCH(1,1)-normal model indicates a 

departure from normality as the points are off the straight line at both ends. This finding 

implies the need for applying a distribution with fatter tails.  

The GARCH(1,1)-t was then estimated and the test statistics can be found in the 

second column of table 4.3. The LM test result was consistent with the one for 

GARCH(1,1)-normal. The Akaike Information Criterion (AIC) and the Schwartz 

Bayesian Criterion (SBC) for GARCH(1,1)-t were smaller than the ones for 
                                                
30 Due to space limitation, the model selecting process is only explained in detail for the CTC 
returns.  
31 Details on the selection of AR(4) is available upon request.  
32 The null hypothesis of the Lagrange multiplier test with other lag values were also rejected.  
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GARCH(1,1)-normal, indicating that the GARCH(1,1)-t is preferred. In addition, the 

standardized residuals computed after fitting the GARCH(1,1)-t that more closely 

followed the straight line in the QQ plot in figure 4.3b suggesting that the GARCH(1,1)-t 

was a better fit for cotton daily futures returns.  

 As described in the methodology section, asymmetry can be tested by examining 

the correlation between the squared returns and lagged returns. The correlation between 

these two variables was -0.02, which suggests no existence of asymmetry. Furthermore, 

the insignificant asymmetric coefficient in equation (4.5) of the TGARCH-normal 

model led to the same conclusion.  

 Figure 4.4 contains the autocorrelations (ACF) and partial autocorrelations 

(PACF) plots of the squared CTC returns. Starting from lag one, the autocorrelations 

decayed much slower than an exponentially decay expected for a GARCH model. In 

addition, the sum of the GARCH coefficients  and for GARCH(1,1)-t was very 

close to one. Both findings indicated that the daily cotton futures returns have the long 

memory behavior. Therefore, the IGARCH(1,1)-t was fitted next to capture the strong 

persistence in the returns’ variance and the test statistics are reported in the third column 

of table 4.3. Due to this change, that the intercept in the variance equation was eliminated 

while the other GARCH coefficients were forced to add up to one. Although the log-

likelihood was reduced from -8063.34 (from GARCH(1,1)-t) to -8071.01, which implies 

a log-likelihood ratio test statistic of 15.34 with two degree of freedom, Engle and 

Bollerslev (1986) argued that this reduction is mainly due to the restriction of setting 

intercept to be zero. The QQ plot for IGARCH(1,1)-t in Figure 4.3 demonstrate that 

γ

α1 β1
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IGARCH(1,1)-t is preferred to GARCH(1,1)-t as the standard residuals follows the 

straight line in figure 4.3c closer than in 3b.  

 GARCH(1,1)-t with mean was also tested and the results are reported in the last 

column of table 4.3. Neither the coefficient for nor the log-likelihood ratio statistic was 

significant, indicating the conditional standard deviation should not be included in the 

mean equation (4.2). 

 Based on the results in table 4.3, the best fitting model for daily cotton futures 

CTC, CTO, OTC returns were AR(4)-IGARCH(1,1)-t, AR(4)-GARCH(1,1)-t with mean, 

and AR(7)-IGARCH(1,1)-t, respectively.   

Full Model for CTC Returns33 

The first column in table 4.4 presents the results for CTC returns including all 

external effects (the day-of-week effect both in the mean and variance equation, the 

seasonality effect, reports effect, stock level effect, and weekend-holiday effect in the 

variance equation). Autocorrelation was significant in the second and the forth lags. 

Because the external effects were introduced through a series of dummy variables, the 

estimates need to be interpreted relative to the base alternative of a no-report Monday in 

December with a high stock level. Wednesday returns appeared to be 0.144 percentage 

points higher than Monday returns and cotton futures were less volatile on Wednesdays 

and Fridays. Seasonality can be found in May and September where cotton futures were 

significantly more volatile in these two months than in December. The stock level effect 

and weekend-holiday effect were both insignificant. The GARCH coefficients in the 
                                                
33 Because of the space limitation, the impacts of external effects, especially the information 
effect, were explained focusing on the CTC returns.   

ht
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variance equation suggest that the conditional variance of cotton futures placed a weight 

of about 95.3% on the prior day’s conditional variance estimate and a weight of 4.7% on 

the previous day’s information about returns.  

Impacts of Public and Private Reports 

According to the results in the column 1 of table 4.4, the coefficients of the 

dummy variables are positive for most reports except Crop Process. Positive signs 

indicate USDA reports increase the conditional variance of returns on the event day, and 

under market efficiency, provide new information to the market. Among the five reports, 

WASDE and Perspective Planting reports had a significant impact on cotton futures CTC 

returns. The release of WASDE and Perspective Planting report increased the conditional 

variance by a factor of 0.5827 and 0.8468, respectively. The only private report included 

in the study, Cotton This Month, did not significantly affect the cotton market.  

 Since return volatility in agricultural market was often perceived in terms of 

standard deviation, Isengildina-Massa, Irwin and Good (2006) suggested interpreting the 

impact of reports relative to the estimated average standard deviation of the daily futures 

returns. Therefore, the coefficients in table 4.4 can be translated to changes in standard 

deviation of the underlying futures returns using the comparative statistic equation: 

(4.7)  , 

where  is the estimated coefficient for each report and the proxy of is the estimated 

mean conditional variance from the IGARCH(1,1)-t model. According to the results in 

table 4.5, the mean estimated conditional standard deviation was 1.75%. The coefficients 
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in table 4.5 were drawn from the first column of table 4.4 and the partial derivative 

can be interpreted as the increase in the conditional standard deviation of cotton 

futures CTC returns associated with the release of a report, given all other external 

factors constant. For example, the partial derivative for Perspective Planting is 0.248 

(calculated by ), indicates that the conditional standard deviation of cotton 

futures returns increased by 0.248 percentage points on average because of the release of 

a Perspective Planting report. The proportion of the mean in table 4.5 represents the 

increase in conditional standard deviation due to report release expressed as a proportion 

of the mean conditional standard deviation. For example, the conditional standard 

deviation of cotton futures returns was 14.6% (0.248/1.705) greater on the release days of 

Perspective Planting reports. The release of WASDE also significantly increased the 

mean conditional standard deviation by about 10%.  

Following Adjemian (2012), the impact of information can be explained one step 

further, in the context of a holder of cotton futures contract, measured against the size of 

the maintenance margin. The maintenance margin is the minimum amount of collateral 

that has to be posted in an account for a futures position to remain open. Currently, 

IntercontinentalExchange requires $1,750 for a speculative or hedge trader and the size of 

the cotton futures contract is 50,000 pounds. Results in table 4.6 illustrate the impact of 

report release on market participants. At the mean settle price of $0.673 per pound during 

our sample period, WASDE reports moved cotton prices by an average of $0.0012 

(0.673*0.171) per pound. In terms of the futures contract, the WASDE shifted the value of 

∂ĥt / ∂Di
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each contract (up or down) by an average of $57.5 ($0.0012*50,000 pounds), which 

represents a 3.29% ($57.5/$1,750) of collateral tied up in a position. On the other hand, 

the release of Perspective Planting report resulted in a 4.77% change in the collateral. 

Similar interpretation using the maximum settle price of cotton $2.14 per pound showed 

that the release of WASDE and Perspective Planting reports could change the value of a 

cotton futures contract by as much as $182.8 and $265.7—a 10.45% and 15.18% return 

on collateral, respectively.  

WASDE is considered one of the most valuable forecasting reports for agricultural 

commodity and its value has been analyzed by multiple studies. It is useful to find out if 

prices react differently to WASDE reports released at various times within a year. 

Therefore, the interaction terms for Monthly effects with WASDE dummies were 

included in the full model and the results are reported in the column 2 of table 4.4. The 

monthly effects of WASDE reports are also plotted in figure 4.5. Based on the results, the 

September WASDE report had the largest significant impact on price volatility as it 

increased the conditional variance of the CTC returns by 1.74 percentage point 

comparing with a non-WASDE event day in December, given other external factors 

constant.  

Column 3 of table 4.4 presents the results with only WASDE in the model. The 

significant coefficient for the WASDE report was 0.6501, which was higher than the 

coefficient in the column 1 of that table, proving that evaluating WASDE reports 

separately overestimates their effects due to “clustering”.  The extent of clustering in our 
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sample is 67 out of 205 WASDE event days, when one or two other reports were also 

published.   

Comparison of results for CTC, CTO, and OTC returns 

While table 4.4 presents the results of the full model with all external effects (day-

of-week, seasonality, stock level, weekend-holiday, and reports effect) for CTC returns, 

table 4.7 reports the model with selective external effects for CTC, CTO, and OTC 

returns. The external factors were chosen if they improved the fit of the model 

significantly using a series of log-likelihood ratio tests. Different “best fitting” models 

were applied for various returns as described in a previous section. According to the 

results, the day-of-week effect was included both in the mean and variance equations for 

CTC and OTC returns, while it was only added in the variance equation for CTO returns. 

The weekend-holiday effect for Crop Process report was included only in CTO and OTC 

returns.  

Impacts of Public and Private Reports 

All CTC, CTO, and OTC returns were used in the study to demonstrate the 

progression of market reaction to new information. Isengildina-Massa, Irwin, and Good 

(2006) discussed the three different patterns of market reaction. First, under market 

efficiency, futures price may reach a new equilibrium shortly after the release of new 

information between trading sessions. In this case, CTO returns would reflect the full 

impact of the new information while the OTC returns would reflect no impact and the 

CTC returns would reflect the impact dampened by additional information arriving in the 

market during the trading day. The second scenario is when the market is not efficient 
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and tends to over-react to new information, and the third scenario is when the market 

reacts to new information but not instantaneously. If the market reaction follows the 

second or third scenarios, the initial reaction (open price of the event day) should not be 

used, and the CTC returns would reflect the true equilibrium.  

 The coefficient results in table 4.7 show that the WASDE effect was significant 

using the CTO and CTC returns while the impact of Perspective Planting was significant 

using the CTC and OTC returns. Interestingly, the impact of the only private report, 

Cotton this Month, was also significant in the OTC returns.  

Notice that the magnitudes of coefficients can be only compared within one type 

of returns. The comparisons among different returns need to be conducted by using the 

ratios of coefficients of report relative to the corresponding mean of estimated conditional 

variance. Figure 4.6 presents the market reaction to WASDE, Prospective Planting, and 

Cotton This Month using different returns. The values above each bar represent the 

increase in conditional standard deviation associated with reports. For example, given 

other external effects constant, the conditional standard deviation of cotton future returns 

was 11.9%, 7.5%, and 4.1% greater on the release days of WASDE reports using the CTC, 

CTO, and OTC returns, respectively.  

Graph 1 in figure 4.6 indicates that the cotton futures price responded to the 

WASDE report immediately (CTO with the change of 7.5%) and continuously absorbed 

the new information through the trading day (OTC with the change of 4.1%, 

insignificant). Although the reaction during the trading day was not significant, the 

impact of WASDE using the CTC returns was significant. Therefore, the CTC returns was 
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preferred since using CTO would under-estimate the impact of WASDE reports. On the 

other hand, graph 2 shows that the cotton market reacted to the Perspective Planning 

report slowly during the trading session since no impact was observed in CTO returns 

(0%), but significant impact was detected in OTC (15.2%) and CTC (14.8%) returns. A 

similar pattern, but even more pronounced is observed in market reaction to the release of 

Cotton This Month reports.  As shown in in graph 3, almost no reaction is observed in the 

opening prices (CTO with the change of 0.8%, insignificant) but a small reaction is 

observed during event day34 (OTC with the change of 3%, significant), this reaction is not 

strong enough to be significant relative to higher volatility of the CTC returns (1%).     

Summary and Conclusions 

This study estimated the impact of all major public and private reports on the 

cotton futures market from 1995 through 2012. The estimation was based on the event 

study approach with the events measured by the release of 5 major reports: Export Sales, 

Crop Progress, WASDE, and Perspective Plantings (public reports from USDA) and 

Cotton This Month (private report from ICAC). In measuring the report effects, we 

controlled for the day-of-week, seasonality, and stock level effects on cotton futures 

returns.  

 A best fitting GARCH-type model was carefully selected to model cotton futures 

returns, characterized by non-normal, time-varying volatility.  

                                                
34 Note the event days for Cotton This Month were considered as the second days after the release 
of every month’s report. 
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Instead of investigating the information effect of a single report, this study 

analyzed the impact of five reports simultaneously, which avoided the issue of 

overestimation due to “clustering of reports”. In fact, the results indicated the existence of 

the “clustering reports” problem as the coefficient of WASDE report was smaller when 

we included all 5 reports instead of having only the WASDE report. Having all five 

reports also allowed us to judge the relative impact of different reports. Results indicated 

the Perspective Planting had the largest impact in the cotton market, followed by the 

WASDE reports. Specifically, information contained in the average Perspective Planting 

report is estimated to affect the price of cotton futures contracts by more than 

$83.6/contract at the mean settle price during the sample period, equivalent to a 4.7% 

return on collateral for a trader in a single day, and the release of WASDE report brings 

more than 3.3% return. By further investigating the price reaction to WASDE report over 

time, we found that September WASDE report had the largest significant impact on price 

volatility. The impact of the other two public reports Export Sales and Crop Progress 

were not significant. The impact of the only private report included in this study, Cotton 

this Month, was much smaller and delayed as detected in Open-to-Close results.  

The analysis of this study was also carried out using the Close-to-Close, Close-to-

Open, and Open-to-Close returns to investigate the progression of market reaction to new 

information. This analysis demonstrates that although most of the reaction to WASDE 

reports happened immediately after the report release, the cotton market continuously 

absorbed the new information throughout the trading day. This finding was slightly 

different from Adjemian (2012) where market reaction to WASDE reports was 
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concentrated in the opening futures prices following the report’s announcement. We also 

discovered that the cotton market reacted to the Perspective Planning report not 

immediately but slowly during the trading session. Similar results were found in the 

reaction to the Cotton This Month report but with a much smaller magnitude.  

 This study contributes to the literature on the value of information by 

simultaneously evaluating the impact of five public and private reports on the cotton 

futures market. The findings can assist market participants, who are exposed to 

announcement shocks, to build expectation toward the main information resource. This 

study reflects only one aspect (moves the price of futures market) of the use of USDA 

reports, while other purposes, such as the use of data for policy analysis or research, were 

not covered. Future studies are necessary to generate a complete benefit-and-cost analysis 

of the value of USDA reports, which would further help USDA officials to efficiently 

allocate public funds to their best uses.   
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Table 4.1 New York Board of Trade (NYBOT) Cotton No. 2 Futures Contracts with 
Each Report Release Month 
 

Month of Report Release Cotton No. 2 Futures Contract 
January March 
February March 
March May 
April May 
May July 
June July 
July October 

August October 
September October 

October December 
November December 
December March 

 
 
 
Table 4.2 Descriptive Statistics for Cotton Daily Futures Returns, January 1995-January 
2012 

 
 Close-to-Close 

Returns 
Close-to-Open 

Returns 
Open-to-Close 

Returns 
Mean -0.03 -0.06 0.03 
Variance 3.03 0.59 2.52 
Skewness 0.03 -0.28 -0.09 
Kurtosis 4.50 10.03 5.24 
Jarque.test 401.57*** 8854.05*** 898.32*** 

                 Note: Single, double, and triple asterisks (*, **, ***) denote statistical significance  
                     at 10%, 5%, and 1%. 
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Table 4.3 Test Statistics of Model Selection for Cotton Daily Futures Returns, January 
1995-January 2012 
 
 GARCH(1,1) 

-normal 
GARCH(1,1) 

-t 
IGARCH(1,1) 

-t 
GARCH(1,1) 
-t with MEAN 

Close-to-Close Returns 

LM p-value 
with lags=10 

0.8601  0.9103  0.7283  0.9085  

Mean Equation         
      Intercept -0.0401 * -0.0368 * -0.0371 * -0.0784  
     ht        0.5730  
      0.0323 ** 0.0159  0.0147  0.0158  
      -0.0377 ** -0.0392 ** -0.0382 ** -0.0392 ** 
      0.0069  0.0090  0.0091  0.0090  
      0.0340 ** 0.0307 ** 0.0299 ** 0.0306 ** 
Variance 
Equation 

        

     Intercept 0.0169 *** 0.0135 ***   0.0136 *** 
      0.0474 *** 0.0495 *** 0.0424 *** 0.0497 *** 

     ht−1
2  0.9477 *** 0.9474 *** 0.9576 *** 0.9472 *** 

Degree of 
Freedom 

  10.3655 *** 10.8451 *** 10.3718 *** 

Log-likelihood -8096.24  -8063.34  -8071.01  -8063.17  
AIC 3.7968  3.7818  3.7850  3.7822  
SBC 3.8087  3.7952  3.7882  3.7971  

Close-to-Open Returns 

LM p-value 
with lags=10 

0.9068  0.9489  0.9609  0.9554  

Mean Equation         
      Intercept -0.0381 *** -0.0113 * -0.0113 * 0.0373 ** 
      ht        -0.0983 *** 
      0.1364 *** 0.0851 *** 0.0865 *** 0.0817 *** 
      -0.0004  0.0198   0.0199  0.0150  
      0.0395 ** 0.0440 *** 0.0451 *** 0.0396 *** 
      0.0228  0.0306 ** 0.0312 ** 0.0262 * 
Variance 
Equation 

        

     Intercept 0.0059 *** 0.0014 **   0.0014 ** 
      0.0590 *** 0.0894 *** 0.0578 *** 0.0899 *** 

yt−1
yt−2
yt−3
yt−4

ε t−1
2

yt−1
yt−2
yt−3
yt−4

ε t−1
2
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Table 4.3 Continued 
 
 GARCH(1,1) 

-normal 
GARCH(1,1) 

-t 
IGARCH(1,1) 

-t 
GARCH(1,1) 
-t with MEAN 

     ht−1
2  0.9337 *** 0.9272 *** 0.9422 *** 0.9266 *** 

Degree of 
Freedom 

  3.3257 *** 4.0535 *** 3.3460 *** 

Log-likelihood -4416.01  -3956.43  -3970.89  -3948.76  
AIC 2.0726  1.8578  1.8636  1.8547  
SBC 2.0845  1.8719  1.8740  1.8696  

Open-to-Close Returns 

LM p-value 
with lags=10 

0.4460  0.3583    0.3588  

Mean Equation         
      Intercept 0.0288  0.0348 * 0.0343 * -0.0331  
      ht        0.0543  
      -0.0370 ** -0.0447 *** -0.0448 *** -0.0452 *** 
      -0.0220  -0.0149  -0.0146  -0.0150  
      0.0306 * 0.0293 * 0.0294 ** 0.0291 * 
      0.0405 ** 0.0394 *** 0.0392 *** 0.0392 ** 
      -0.0046  0.0077  0.0076  0.0076  
      0.0244  0.0177  0.0176  0.0174  
      0.0194  0.0273 * 0.0277 * 0.0273 * 
Variance 
Equation 

        

     Intercept 0.0091 *** 0.0060 **   0.0060 ** 
      0.0431 *** 0.0397 *** 0.0336 *** 0.0399 *** 

     ht−1
2  0.9542 *** 0.9595 *** 0.9664 *** 0.9593 *** 

Degree of 
Freedom 

  6.4919 *** 
7.0274 

*** 6.4649 *** 

Log-likelihood -7640.76  -7563.76  -7568.96  -7563.04  
AIC 3.5873  3.5517  3.5532  3.5518  
SBC 3.6037  3.5696  3.5681  3.5712  
Note: Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%, 5%, and 1%.  
 

yt−1
yt−2
yt−3
yt−4
yt−5
yt−6
yt−7

ε t−1
2
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Table 4.4 Results for Cotton Daily Futures Close-to-Close Returns, January 1995-
January 2012 
 
 Full Model with 

Five Reports 
Full Model with 

Interaction 
(Monthly Effect 
and WASDE) 

Full Model with 
WASDE Report 

Only 

Model IGARCH(1,1)-t 
Mean Equation       
      Intercept -0.0831 * -0.0823 * -0.0882 * 
      0.0163  0.0153  0.0177  
      -0.0399 ** -0.0373 ** -0.0378 ** 
      0.0083  0.0065  0.0104  
      0.0270 * 0.0254  0.0256 * 
      DT (Tuesday) 0.0022  -0.0013  0.0017  
      DW (Wednesday) 0.1440 ** 0.1330 ** 0.1476 ** 
      DH (Thursday) -0.0107  -0.0069  -0.0101  
      DF (Friday) 0.1008  0.0695  0.0816  
Variance Equation       
       0.0472 *** 0.0446 *** 0.0476 *** 
      ht−1

2  0.9528 *** 0.9554 *** 0.9524 *** 
      DES (Export Sales) 0.2451  0.1424    
      DCP (Crop Process) -0.1675  -0.1314    
      DWASDE (WASDE) 0.5827 *** 0.5658  0.6501 *** 
      DPP (Perspective 
      Planting) 0.8468 ** 0.8547 **   

      DCTM (Cotton This 
      Month) 0.0385  0.0378    

      DT (Tuesday) 0.0444  -0.1252  0.0575  
      DW (Wednesday) -0.1819 * 0.1118  -0.0837  
      DH (Thursday) 0.0471  -0.3281  0.1587 * 
      DF (Friday) -0.3295 *** 0.0613 *** -0.2665 *** 
      DJAN (January) 0.0277  0.0126  0.0229  
      DFEB (February) 0.0235  -0.0121  0.0098  
      DMAR (March) -0.0221  0.0201  -0.0003  
      DAPR (April) 0.0101  0.0683  -0.0073  
      DMAY (May) 0.0784 ** 0.0706  0.0312  
      DJUN (June) 0.0439  -0.0068  0.0114  
      DJUL (July) 0.0024  0.0301  -0.0305  
      DAUG (August) 0.0428  -0.0084  0.0045  
      DSEP (September) 0.0651 * 0.0026  0.0198  
      DOCT (October) 0.0128  -0.0124  -0.0250 * 

yt−1
yt−2
yt−3
yt−4

ε t−1
2
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Table 4.4 Continued 
 
 Full Model with 

Five Reports 
Full Model with 

Interaction 
(Monthly Effect 
and WASDE) 

Full Model with 
WASDE Report 

Only 

      DNOV (November) 0.0377  -0.0014  -0.0103  
      DJANWASDE    -0.6650    
      DFEBWASDE   0.1005    
      DMARWASDE    -0.2427    
      DAPRWASDE    -0.4181    
      DMAYWASDE    -0.0901    
      DJUNWASDE    -0.7562    
      DJULWASDE    0.0423    
      DAUGWASDE   0.1665    
      DSEPWASDE    1.1725 *   
      DOCTWASDE    0.2194    
      DNOVWASDE    0.7999    
      DHWCP 0.8031  0.6086    
      DHWCTM 0.1777  0.1443    
      DSTOCKLEVEL 0.0092  0.0061  0.0056  
Degree of Freedom 11.5938 *** 11.7269 *** 10.7897 *** 
R2 0.0044  0.0044  0.0044  
Log-Likelihood -8033.86  -8027.80  -8040.01  
Note: Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%, 5%, and 1%.  
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Table 4.5 Impact of Reports on Conditional Standard Deviation of the Daily Cotton 
Futures Close-to-Close Returns, January 1995-January 2012 
 

Close-to-Close Returns 
Mean Estimated Conditional Standard Deviation ĥt =1.705%  

Reports Coefficients ∂ĥt / ∂Di  
Proportion of 

Mean ĥt  
DES (Export Sales) 0.2451  0.072 4.2% 
DCP (Crop Process) -0.1675  -0.049 -2.9% 
DWASDE (WASDE) 0.5827 *** 0.171 10.0% 
DPP (Perspective Planting) 0.8468 ** 0.248 14.6% 
DCTM (Cotton This Month) 0.0385  0.011 0.7% 

           Note: Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%, 5%, 
           and 1%.  
 
 
 
 
Table 4.6 WASDE and Prospective Planting Reports Effect in Context 
 

 Effect on Returns 
($/lb) 

Effect per 
Contract 

($/Contract) 

Return on 
Collateral 

Mean Price (0.673$/lb) 
WASDE 0.0012 57.5001 3.29% 
Prospective Planting 0.0017 83.5612 4.77% 

Maximum Price (2.140$/lb) 
WASDE 0.0037 182.8385 10.45% 
Prospective Planting 0.0053 265.7073 15.18% 
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Table 4.7 Final Results for Cotton Daily Futures Returns, January 1995-January 2012 
 
 Close-to-Close 

Returns 
Close-to-Open 

Returns 
Open-to-Close 

Returns 
 IGARCH(1,1)-t GARCH(1,1)-t with 

Mean 
IGARCH(1,1)-t 

Mean Equation       
      Intercept -0.0740  0.0398 *** 0.0083  
      ht    -0.1066 ***   
      0.0166  0.0844 *** -0.0444 *** 
      -0.0374 ** 0.0130  -0.0141  
      0.0083  0.0421 *** 0.0248  
      0.0272 * 0.0243 * 0.0386 ** 
          0.0072  
          0.0208  
          0.0287 * 
      DT (Tuesday) -0.0201    -0.0190  
      DW (Wednesday) 0.1307 **   0.1060 * 
      DH (Thursday) -0.0240    -0.0348  
      DF (Friday) 0.0760    0.0785  
Variance Equation       
      Intercept   -0.0083    
       0.0466 *** 0.0784 *** 0.0378 *** 
      ht−1

2  0.9534 *** 0.9306 *** 0.9622 *** 
      DES (Export  
      Sales) 0.2024  -0.0075  0.0673  

      DCP (Crop  
      Process) -0.1097  0.0022  -0.0822  

      DWASDE  
      (WASDE) 0.6896 *** 0.0773 *** 0.1945  

      DPP (Perspective  
      Planting) 0.8622 ** 0.0005  0.7228 ** 

      DCTM1 (Cotton 
      This Month) 0.0475  0.0102  0.1415 * 

      DT (Tuesday) -0.1025  -0.0144  0.1228  
      DW (Wednesday) 0.0151  -0.0087  -0.0736  
      DH (Thursday) -0.3391  0.0428  0.1303  
      DF (Friday) 0.0475 *** 0.0143  -0.3101 *** 
      DJAN (January) 0.0204  0.0004  0.0023  
      DFEB (February) 0.0289  0.0022  0.0185  
      DMAR (March) -0.0267  -0.0010  -0.0308 * 
      DAPR (April) -0.0033  0.0005  -0.0138  

yt−1
yt−2
yt−3
yt−4
yt−5
yt−6
yt−7

ε t−1
2
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Table 4.7 Continued 
 
 Close-to-Close 

Returns 
Close-to-Open 

Returns 
Open-to-Close 

Returns 
      DMAY (May) 0.0639 * -0.0026  0.0417  
      DJUN (June) 0.0381  0.0114 ** 0.0328  
      DJULY (July) 0.0022  -0.0018  -0.0304  
      DAUG (August) 0.0343  0.0124 * 0.0236  
      DSEP (September) 0.0549  -0.0071  0.0438  
      DOCT (October) 0.0058  -0.0029  -0.0033  
      DNOV (November) 0.0150  0.0021  0.0101  
      DHWCP   0.2762  0.8405  
Degree of Freedom 11.4465 *** 3.4535 *** 6.7348 *** 
Diagnostics       
      R2 0.0044  0.0181  0.0062  
      Log-Likelihood -8035.29  -3920.13  -7538.56  
Note: Single, double, and triple asterisks (*, **, ***) denote statistical significance at 10%, 5%, and 1%.  
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Panel A: Close-to-Close Returns 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Close-to-Open Returns 

 
Panel C: Open-to-Close Returns 

 
Figure 4.1 Cotton Daily Futures Returns, January 1995-Janaury 2012 
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Panel A: Close-to-Close Squared Returns 

 
Panel B: Close-to-Open Squared Returns 

 
Panel C: Open-to-Close Squared Returns 

 
 
Figure 4.2 Cotton Daily Futures Squared Returns, January 1995-Janaury 2012 
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           3a. QQ Plot for GARCH(1,1)-normal                               3b. QQ Plot for GARCH(1,1)-t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3c. QQ Plot for IGARCH(1,1)-t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Quantile and Quantile Plot of GARCH(1,1)-normal, GARCH(1,1)-t, and 
IGARCH(1,1)-t models for Cotton Daily Futures Close-to-Close Returns, January 1995-
Janaury 2012 
  



 124 

 
Figure 4.4 The Autocorrelations (ACF) and Partial Autocorrelations (PACF) Plots of the 
Squared Close-to-Close Returns, January 1995-Janaury 2012 
 
 
 
 

 
Figure 4.5 Monthly Effects of WASDE Reports on Cotton Daily Futures Close-to-Close 
Returns, January 1995-Janaury 2012 
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Figure 4.6 Progression of Market Reaction to WASDE, Prospective Planting, Cotton This 
Month Reports in Cotton Daily Futures Close-to-Close, Close-to-Open, and Open-to-
Close Returns, January 1995-Janaury 2012 
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CHAPTER FIVE 

DISSERTATION SUMMARY 
 

The research implemented statistical tools for examining two economic issues: the 

impact of a regional agricultural campaign on participating restaurants and efforts of 

USDA forecasting reports in agricultural commodity markets. The first study estimated 

the perceived economic value of each of the four components of the Certified South 

Carolina campaign from the viewpoint of participating restaurants. A choice experiment 

was conducted as part of a restaurant manager survey to estimate average WTP for each 

campaign component using a mixed logit model. The four existing campaign components 

were treated as attributes in mixed logit model estimation, which also included the 

method of payment and the amount of payment for the campaign. Findings indicate that 

three existing campaign components--Labeling, Multimedia Advertising, and “Fresh on 

the Menu” have a significant positive economic value for restaurants participating in the 

program. 

 This study also shed light on determinants of restaurants’ WTP for the campaign. 

We found that restaurants’ image, satisfaction with the campaign, and motivation for 

participation significantly affect their WTP for the “Fresh on the Menu”, Signage and 

Labeling campaign components. However, restaurants’ size does not affect WTP for any 

component. These findings can help the South Carolina Department of Agriculture 

marketing the campaign to potential participants. 

  The second study focused on inefficiency in revisions of WASDE forecasts for 

U.S. corn, soybeans, wheat, and cotton. Results from the evaluation of the revision 
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inefficiency showed significant correlations between consecutive forecast revisions in all 

crops and all categories except for the seed category in wheat forecasts. Almost 

exclusively, inefficiency took the form of smoothing as revisions were positively 

correlated. We also discovered that among the forecasts of four crops, smoothing was 

most prevalent in soybeans and least common in wheat, and exports was the category 

most affected by smoothing. 

The widespread evidence of revision inefficiency suggested that forecast accuracy 

could be improved if this inefficiency is corrected. Therefore, the second study also 

attempted to develop an adjustment procedure that could be used to correct revision 

inefficiency and improve the accuracy of these forecasts. New correction procedures for 

four commodities were developed as follows: using the OLS estimation for wheat and the 

M-estimation for corn, soybeans, and cotton; only considering forecast size and direction 

for corn price, soybean beginning stocks, crushings, and price, and wheat production 

forecasts. Our findings suggest that the adjustment procedure has the highest potential for 

improving accuracy in corn, wheat, and cotton production forecasts.  

This third study estimated the impact of all major public and private reports on the 

cotton futures market from 1995 through 2012. The estimation was based on the event 

study approach with the events measured by the release of 5 major reports: Export Sales, 

Crop Progress, WASDE, and Perspective Plantings (public reports from USDA) and 

Cotton This Month (private report from ICAC). In measuring the report effects, we 

controlled for the day-of-week, seasonality, and stock level effects on cotton futures 

returns. A best fitting GARCH-type model was carefully selected to model cotton futures 
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returns, characterized by non-normal, time-varying volatility. Instead of investigating the 

information effect of a single report, this study analyzed the impact of five reports 

simultaneously, which avoided the issue of overestimation due to “clustering of reports”. 

In fact, the results indicated the existence of the “clustering reports” problem as the 

coefficient of WASDE report was smaller when we included all 5 reports instead of 

having only the WASDE report. Having all five reports also allowed us to judge the 

relative impact of different reports. Results indicated the Perspective Planting had the 

largest impact in the cotton market, followed by the WASDE reports.  

The analysis in the third study was also carried out using the Close-to-Close, 

Close-to-Open, and Open-to-Close returns to investigate the progression of market 

reaction to new information. This analysis demonstrated that although most of the 

reaction to WASDE reports happened immediately after the report release, the cotton 

market continuously absorbed the new information throughout the trading day. On the 

other hand, the cotton market reacted to the Perspective Planning report not immediately 

but slowly during the trading session. Similar results were found in the reaction to the 

Cotton This Month report but with a much smaller magnitude.  
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