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ABSTRACT 

Control of high-precision machinery is necessary to understand 

manufacturing defects, maintain quality control, and obtain desired dimensional 

accuracy, surface roughness, and tolerances. When a controller is designed for 

high-precision applications, the effect of structural and parametric uncertainty, 

disturbances, and noise play a significantly more important role in the system 

performance. The level of modeling required to accurately represent the systems’ 

structure, parameters, noise, disturbances, non-linearity, and etc. to design a high-

precision controller will require expert knowledge and significant time 

investments. In practice, a significant amount of time is spent on tuning the 

controller even after the modeling and initial controller design has been 

accomplished.  

An alternative to the above control design approach is to build a model via 

system identification and design a controller from the identified system. System 

identification can be used to build a model that minimizes the difference between 

the actual system response and the model response when acted on by the same 

input while incorporating the actual plant’s disturbance and noise into the model. 

System identification has the potential to save valuable time and resources in 

industrial applications because it uses input-output data from the system to build a 

model thereby eliminating the difficulty of modeling by physical laws.

 



 

System identification was used to build an accurate model of a high-

precision measurement system. The model built by system identification was 

compared to modeling by first laws and showed extremely similar results. Pole-

placement control design based on the identified system was used to place the 

systems’ dominant poles. The necessary gains to achieve the desired system 

response were determined by using the identified model and knowledge of the 

controller structure. The performance of the model-based controller was 

compared to actual data of the system and showed that control based on the 

identified model can be used to accurately control the precision measuring 

machine.  
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Ruy      cross-correlation between u and y 

σu
2      input signal variance 

Y(ω)      frequency domain input 
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y(t)      input at time t 

u(t)      output at time t 

UΩ(ω)      Fourier transform of input 

YΩ(ω)      Fourier transform of output 

G(q)      discrete transfer function of 
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ˆ ( )u ωΦ       input spectrum 
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CHAPTER 1 

INTRODUCTION 

 

Since the introduction of the flyball governor in the 1780’s, control has 

had an impact on nearly every area of society through its foundational role in 

advancing guidance systems, manufacturing processes, industrial processes, and 

communication systems (Murray, R. M. 2003). The design of a controller for a 

system requires a priori knowledge of the systems’ dynamics (Ljung, L. and 

Glad, T. 1994). The performance of a controller is highly dependent on the 

underlying system model used in its design. Modeling for mechanical engineering 

applications is traditionally done by deriving the differential equations of motion 

using physical laws. The equations of motion give the structure of the system 

model and by combining the systems’ parameter values such as mass, damping, 

and stiffness the resulting dynamic model of the system can be used for control 

design. Many classical and modern control techniques can effectively be used to 

appropriate control laws using this dynamic model.  

 In many cases, the dynamic model developed contains levels of 

uncertainty in its structure due to un-modeled effects. In addition, knowledge of 

the system parameters is not always available and the necessary estimation of 

values such as mass, damping, and stiffness leads to uncertainty in the parameters. 

  When the controller is deployed to control a real plant, environmental 

disturbances and noise must be compensated for by the controller. However, the 

 



 

disturbances and noise are usually unknown prior to implementation and rarely 

enter the plant model. These uncertainty issues have led to the areas of adaptive 

and robust control which have addressed the stability and performance of the 

controller when there is large uncertainty in the structure and parameters. 

Although robust and/or adaptive control can guarantee stability in many cases, 

both are computationally expensive and require expert knowledge to implement. 

A limitation of the classical, modern, robust, and adaptive approaches is the fact 

that they begin with a model that is an idealization of the real system. Although 

modeling by first laws often leads to sufficient control design it is still limited to 

an idealized system. Because of this, tuning of the controller is necessary when it 

is implemented. Tuning is the process of varying the controller parameters, or 

gains, until the desired performance of the plant is obtained. This can be a time 

consuming step in control implementation; especially, when there exists high 

levels of model uncertainty and multiple degrees of freedom in the controller 

parameters. 

When a controller is designed for precision machines, the effect of 

structural and parametric uncertainty, disturbances, and noise play a significantly 

more important role in the controlled system performance. The level of modeling 

required to accurately represent the systems’ structure, parameters, noise, 

disturbances, non-linearity, and etc. to design a precise controller will require 

expert knowledge and significant time investments. In practice, a considerable 

amount of time is spent on tuning such controllers even after the modeling and 

initial controller design has been accomplished. This is compounded when there 
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are multiple systems to tune. Even if detailed efforts are made to build an accurate 

model of the system, the actual system parameters may change over time and the 

system must be re-tuned. Changes in the system due to a crashes or component 

replacement will also necessitate re-tuning or result in sub-optimal control 

performance. An adaptive method of modeling that can be used to mitigate the 

uncertainty in parameters and capture these system changes is system 

identification. 

System identification is the process of building a model based on an actual 

systems’ input/output data. The model built by system identification can be used 

for model-based control. A model built by system identification minimizes the 

difference between the actual system response and the model response when acted 

on by the same input. System identification can be used to build a deterministic 

model of the plants dynamics as well as a stochastic model of the plant’s 

disturbance/noise. The deterministic part of the model can directly be used for 

control design. The stochastic part of model can increase the accuracy of the 

parameters in the deterministic part of the model by properly filtering the plant 

disturbance and noise. For linear systems, the parameters of the identified model 

will approach those of the real system if input/output data is properly collected 

and the correct model structure is selected. Not only can system identification be 

used to create an initial model that incorporates the actual systems’ dynamics but 

it can also be used intermittently or on-line to update the model parameters to 

account for time-varying parametric, structural, noise, and disturbance 

parameters. Therefore, a systems’ model-based control performance, which is 
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related to the accuracy of the model, can be improved by proper system 

identification.  

High precision systems, such as those used as tools to cut or measure parts 

with micron and sub-micron resolutions, are greatly affected by slight 

improvements in control performance. Control of high-precision machinery is 

necessary to understand manufacturing defects, maintain quality control, and 

obtain desired dimensional accuracy, surface roughness, and tolerances. Precision 

manufacturing and control is becoming increasingly more important in this 

society and around the world (Kurfess, 1996). The accuracy of precision machine 

motion is dependent on the ability of the controller to track a given trajectory 

which is dependent on the model that the controller was designed from. System 

identification can be used to build an accurate model of such a system and 

controller gains can be optimally determined by model-based control methods 

such as pole-placement.  

The purpose of this research is to design an adaptive tuning and control 

method by system identification and pole-placement. A literature review of 

system identification is presented in Chapter II. The effect of parametric 

uncertainty as it relates to modeling is demonstrated by the level of effort required 

to identify these parameter by experiment in Chapter III.  In Chapter IV it is 

shown that the modeling effort required to model and control a high-precision 

measurement machine using physical laws can be replaced by system 

identification. In Chapter V, a controller is designed based on the identified 

system using pole-placement. A region of feasible pole locations is explored. The 
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performance of the current machines’ controller, based on a variant of Ziegler-

Nichols, is compared to the performance of a controller designed by pole-

placement using a model determined by system identification. Chapter VI 

summarizes how system identification can be automated and used to adaptively 

determine control gains that can virtually eliminate tuning. The use of system 

identification as an adaptive method of updating control gains has the potential to 

save valuable time and resources in industrial applications.  

 

Research objectives 

 In order to adaptively identify and tune a high-precision machine, the 

following objectives must be met:  

• Review system identification methods and model based control design 

methods. 

• Document the physics of a high precision measurement machine. 

• Design a simulation of the plant and controller to verify that the physical 

modeling is in agreement with experimental data. 

• Perform system identification to identify the model by using input-output 

data. 

• Verify agreement of real system response and the identified response 

• Develop a model-based controller from the identified system. 

• Evaluate the performance of the controller designed from the identified 

model of the system vs. the current control design based on Ziegler-

Nichols methods. 
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  CHAPTER II 

LITERATURE REVIEW 

 
In this section the various methods of system identification and model-

based control design are introduced. Within the practice of system identification 

there are numerous techniques to obtain system information. This information 

serves different purposes and yields different insights of the system. These 

techniques can be classified into parametric and non-parametric methods. Non-

parametric methods have a rich history and were predominantly used prior to the 

1960’s. Parametric methods have dominated system identification ever since. 

Non-parametric methods still give physical insight and are still widely used but 

they do not directly result in a model for use in control design. Once system 

identification has been successfully completed, various model-based control 

design techniques can be used to design an optimal controller. These can also be 

broken down into two categories: classical and modern. This section concludes 

with a summary of the system identification and how they relate specifically to 

designing a controller for the system at hand. 

 

System Identification 

System identification was historically the work of non-engineering fields 

such as mathematics, time-series analysts, and econometricians (Gevers, M. 

2005). System identification in these fields was referred to as estimation theory

 



 

 and it contains a rich statistical history. Models were constructed by using first 

laws and Bode plots while control design was based on Bode, Nyquist, and 

Ziegler-Nichols plots. However, these approaches were limited to single-input-

single-output or SISO systems (Gevers, M. 2006). With the combination of the 

introduction of state-space in the 1960’s, the availability of affordable transistor-

based computers, the minimum state realization by (Ho, B. L. and Kalman, R. E. 

1965), and the introduction of the Maximum Likelihood for parametric models by 

(Åström, K. J. and Bohlin, T. 1965), system identification research began to 

attract great interest.  

System identification can be broken up into parametric and non-

parametric identification. Non-parametric identification methods are graphical in 

nature and result in qualitative information about the system (Eykhoff, P. 1974). 

System identification by control engineers was primarily done by non-parametric 

estimation until the 1960’s. Non-parametric methods are used to estimate the 

impulse and frequency response of the system from a given set of data by 

frequency response analysis, correlation analysis, and spectral analysis. These 

methods are well known and were used by engineers to obtain qualitative 

information about system characteristics for modal analysis and graphical transfer 

function estimation (Åström, K. J., and Eykhoff,  P. 1971), (Rake, H. 1980), 

(Wellstead, P. E. 1981), (Juang, J.-N. and Pappa, R. S. 1988). Non-parametric 

methods provide useful information about the system but they are limited to 

single-input single-output systems and do not immediately result in a model that 

can be used for control (Ljung, L. and Glad, T. 1994). Current system 
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identification for control is performed by parametric methods which directly 

result in a parametric model that can be used for control design. 

Parametric methods are the determination of model parameters from time 

series data and have a rich statistical history that can be traced back to (Gauss, C. 

F. 1809). These methods were greatly developed by econometricians and time 

series analysts until the 1960’s (Deistler, M. 2002). Parametric system 

identification by engineers became increasingly popular because of the need for 

model based control. The models resulting from parametric identification can 

directly be used for control design. 

 

Non-Parametric Methods 

Physical insight and time-domain characteristics can be obtained by the 

transient response analysis of a system to an impulse or step response. Impulse 

and step responses can provide information such as the stability, the dominant 

time constants, time delays, and damping characteristics. Although, step and 

impulse responses can give such qualitative information they do not yield a model 

structure or model parameters. In addition, impulse responses can only be 

approximated and seldom can be used to excite real engineering systems. This is 

because there is either not enough available power to excite the frequency 

spectrum of interest or that an impulse input would damage the system. An 

alternative approach is the use of high energy signals as measured by a crest 

factor. 
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Non-Parametric Estimation of Impulse Response:  

Estimation of the impulse can be accomplished without an impulse input 

(Wellstead, P. E. 1981), (Rake, H. 1980). This is done by correlation analysis of 

the input and output when the input is a low crest factor signal. The crest factor is 

defined as the input of a signal divided by its root mean square value as shown in 

Equation(2.1). 

 

 
( )

( )2

1

max

1
t

f N

t

u t
C

u t
N =

≡

∑
 (2.1) 

 

Therefore, if the system is excited with filtered Gaussian white noise, random 

binary signals, or a pseudo random binary signals (PRBS), which are signals with 

low crest factors, then the system input can contain the frequency content of 

interest. Therefore, the system input can have almost as much content that 

theoretically is present in a true impulse. In practice PRBS are often used because 

they are easy to generate on a digital computer with the use of EXOR logic 

functions and shift registers (Wellstead, P. E. 1981). In addition to the use of these 

high crest factor inputs, other inputs may be used as long as the input and output 

are both filtered by a whitening filter. Use of such a filter ensures that the integrity 

of the correlation analysis is maintained.  

Correlation analysis can be used to approximate the impulse response of 

the system. It is well know that if the impulse response of a system is known then 
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the system characteristics are completely described. The response of a discrete 

system can be given by Equation (2.2). 

  

  (2.2) ( ) ( ) ( ) ( )
0k

y n u n k h k e n
∞

=

= − +∑
 
 

Where y is the output, u(n-k) is the input, h(k) is the impulse response, and e(n) is 

the error from the disturbance and noise. If the input to a system is zero-mean 

white noise and the disturbance and input are uncorrelated, then correlation 

analysis between the input and output can be used to estimate the impulse 

response as in Equation(2.3).  

 

 ( ) ( )
2

uy

u

R k
h k

σ
=  (2.3) 

 

Where, Ruy is the cross correlation of the input and output and σu
2 is the variance 

of the signal. The details of the calculation are given in (Ljung, L. 1999). The 

impulse response can be used to estimate the stability, dominant time constants, 

time delays, and damping characteristics but not the order or structure of the 

dynamic model. Because the impulse response relies on uncorrelated disturbances 

it is biased if used for closed loop identification (Ljung, L. and Glad, T. 1994). 

From a control design point of view the frequency response contains more useful 

information with respect to model construction; especially for first and second 

order systems. 
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Non-Parametric Estimation of Frequency Response: 

Non-parametric identification techniques are not limited to the time 

domain and there are three methods of particular importance in the frequency 

domain: frequency response analysis, Fourier analysis, and spectral analysis.  

The frequency response of a system is simply the construction of the Bode 

plot from sinusoidal input-output data recorded at different frequency steps. The 

Bode plot can be used to approximate the DC gain, system type, time constant, 

damping, order, bandwidth, gain margin, and phase margin for a linear time-

invariant system. However, this approach may not be well suited for some 

systems may be lengthy when sequentially traversing low frequencies (Kurfess, T. 

R. 1996). This simple yet powerful method was used with the sinusoidal transfer 

function analyzer up to the late 1960’s when (Cooley, J. W. and Tukey, S. W. 

1965) demonstrated that the computational difficulty of the DFT could be 

resolved by using and FFT and digital computers. 

Another method to estimate a system model, or at least get a good 

qualitative estimate of the frequency response, is by Fourier analysis. Fourier 

analysis consists of taking the discrete Fourier transform of the input and output 

data and estimating the transfer function by their ratio. If the input output 

relationship is given by, 

  

 ( ) ( ) ( )Y G i Uω ω ω=  (2.4) 

 

Then an estimate for G(ω) can be computed by, 
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 ( ) ( )
( )

U
G i

Y
ω

ω
ω

=  (2.5) 

  

Where the Fourier transform of the input and output yield,   

 

 , (2.6) ( ) ( )
0

iU y t e ωω
Ω

−
Ω = ∫ dt

dt

  

 . (2.7) ( ) ( )
0

iY u t e ωω
Ω

−
Ω = ∫

 
Then the estimate for G(ω) can be expressed over the time 0 < t < Ω as, 

  

 ( ) ( )
( )

ˆ U
G i

Y
ω

ω
ω

Ω
Ω

Ω

=  (2.8) 

 

This is called the Empirical Transfer Function Estimate or ETFE. This can be 

used with good results if the input is periodic which causes the variance to 

decrease with larger data sets. However, if the input is not periodic then the 

variance does not decrease with larger data sets and equals the signal-to-noise 

ratio. A full theoretical analysis of the ETFE’s is given in (Ljung, L. 1999).  

One of the limitations to the above methods is that they can only be used 

when the input is a sinusoidal signal. Spectral Analysis is a powerful tool for 

frequency analysis where the input signal does not need to be periodic and can be 

directly applied to data. Spectral analysis is theoretically the Fourier transform of 
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a systems impulse response. However, because of the need for windowing and the 

nature of sampled data systems this is not done in practice and correlation 

analysis used instead. The spectrum of a signal is defined as the square of the 

absolute value of its Fourier transform at different frequencies. If the signal is the 

realization of a stationary stochastic process then the signals spectra can be 

defined in terms of its expectation and covariance (Wellstead, P. E. 1981). If a 

system sampled at time intervals, T, is described with input-output dynamics, 

  

 ( ) ( ) ( ) ( )y t G q u t v t= +  (2.9) 

  

then the signals spectral density at a certain frequency can be found by taking the 

Fourier transform of the correlation functions. Where G(q) is the discrete transfer 

function with the shift operator q, y(t) is the output, u(t) is the input, and v(t) is the 

disturbance at time, t. The spectrum of the input signal is given by,   

 

 ( ) ( ) 21ˆ limu N
U

N Nω ω
→∞

Φ = . (2.10) 

 

Where UN(ω) is the Fourier transform of the input data, 

 

 ( ) ( )
1

N
i t

N
t

U u t e ωω
=

=∑ . (2.11) 
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If u and v are uncorrelated, then the cross-covariance of the input and output is 

given by, 

 

 ( ) ( ) ( ) ( ) ( )
1

1ˆ
N

yu
t

R kT Ey t u t kT y t u t kT
N =

= − = −∑  (2.12) 

 
And the DFT is, 

 

 . (2.13) ( ) ( )ˆˆ j kT
yu yu

k

T R kT e ωω
∞

−

=−∞

Φ = ∑

 

However, because the large time lags give high variances for the cross-

covariance, windowing must be applied to weigh out larger time lag values. 

Windowing reduces the variations in the cross-covariance but also its resolution. 

If a system does not have resonances close to one another, then windowing can be 

applied to smooth out the frequency estimate without significant loss of 

information. There are a number of different windows that can be used but 

perhaps the most common are the Hamming and Blackman-Tukey windows. Full 

treatment of windowing is given by many authors such as (Oppenheim, A. V., 

Willsky, A. S. et al. 1997), (Oppenheim, A. V., Schafer, R. W. et al. 1999). By 

taking the Fourier transform of the input and cross-covariance and applying the 

proper window, an estimate for the frequency response function can be obtained 

by Equation (2.14), 

 

 ( ) ( )
( )

ˆ
ˆ

ˆ
yui T

u

G e ω ω
ω

Φ
=
Φ

. (2.14) 
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A limitation of spectral analysis for model identification is that it relies on the 

disturbance, v, being uncorrelated with the input, u. This is not the case for data 

generated in closed loop where the disturbances enter into the feedback. The non-

parametric methods discussed above are excellent ways to obtain general 

information about a system that can compliment parametric identification. These 

methods are graphical and do not immediately result in a model which can be 

used for control design. However, the information obtained by using the 

parametric methods can help determine the order and delay for parametric 

methods. Parametric identification is much more powerful for control design 

because they directly result in a model as their output. 

 

Parametric Methods 

Parametric system identification is the fitting of model parameters to a 

pre-selected model by using input-output data. The qualitative information by 

non-parametric identification can be used to select the proper model structure. 

Parametric identification can be seen as identifying the optimal parameters of a 

filter of pre-determined order. The parameters identified by system identification 

are the best approximation to the real model parameters with respect to a certain 

criteria such as the minimum of the norm between the estimate and residuals or 

the least-squares minimum.  

Parametric models can be constructed for deterministic elements of the 

system that characterize intrinsic dynamics and for stochastic elements of the 

system addressing disturbances and noise. As such, the dynamics of the system 
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and the noise can be accurately represented in a single model that can be used for 

control design. Parametric methods are separated into Grey-Box estimation, 

where some of the parameters are known, and Black-Box estimation where none 

of the parameters are known. Most of the parametric methods can be described as 

variants of the general linear parametric model given in Figure 1. 

 

Figure 1: General Linear Parametric Model 

 

Where the q is the discrete shift operator u(n) is the input, e(n) is the noise and 

disturbance, y(n) is the output and A(q), B(q), C(q), D(q), and F(q) are finite 

difference equations. The output to input relationship of the general linear model 

can be described by discrete transfer functions, 

 

 ( ) ( ) ( ) ( ) ( ) ( )y n A q G q u n H q e n= + . (2.15) 

Where the deterministic part of the system model is given by, 

 

 ( )
1 1

1 2
1

1

...
1 ...

nk nk nk nb
nb

nf
nf

b q b q b qG q
f q f q

− − − − − −

− −

+ + +
=

+ + +
 (2.16) 

 

∑u(n) y(n) 

e(n) 

 C(q) 
 D(q) 

     1  B(q)   
 A(q)  F(q) 
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and the stochastic part of the system model based on the second order statistics of 

the error signal is given by, 

 

 ( )
1

1
1

1

1 ...
1 ...

nc
nc

nd
nd

c q c qH q
d q d q

− −

−

+ + +
=

+ + + − . (2.17) 

 

Under varying assumptions and a priori knowledge about the system 

(which can be obtained by non-parametric methods as discussed above) the 

general linear model can be reduced to other forms. Selecting the order of the 

model and predicting how the error or disturbance enters a system is all that is 

need to select a specific model. The different assumptions leading to some of the 

different models are shown in Table 1. These models are described generally in 

(Ljung, L. and Glad, T. 1994) and in great detail by (Ljung, L. 1999). 

The general method to solve the model coefficients summarized in Table 1 

is to minimize the prediction error of the selected model and the actual output, 

solve for the parameters using a correlation function, or by subspace 

identification. There are various techniques used in practice to minimize this 

prediction error. In general, when the system is in the form of (2.15) then the 

prediction is given by (2.18). 

 

 ( ) ( ) ( ) ( ) ( ) ( )1ˆ 1 1y t t H q G q u t H q y t− −⎡ ⎤− = + −⎣ ⎦
1  (2.18) 

 

And the prediction error is given by,  

 ( ) ( ) ( )ˆ 1e t y t y t t= − − . (2.19) 
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Table 1: Black Box Models and Their Assumptions 

MODEL NAME DISTURBANCE 

ASSUMPTION 

OUTPUT 

DEPENDENCE 

 

ARX 

 

Disturbances enter 

the process early 

and share the 

system dynamics. 

 

Past outputs, 

current input, past 

inputs, and past 

dynamic 

disturbance. 

 

ARMAX 

 

 Disturbances enter 

the process early 

and share the 

system dynamics. 

 

Past outputs, 

current input, past 

inputs, and past 

dynamic 

disturbance. 

 

 

Output Error (OE) 

 

Disturbance 

properties are not 

modeled. 

 

Past outputs, 

current input, and 

additive 

disturbance.  

 

 

Box-Jenkins (BJ) 

 

Disturbance and 

system properties 

are independently 

dynamic. 

 

Past outputs, 

current input, and 

dynamic 

disturbance. 
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In order to fit the parameters of a given model to the data criterion function based 

on the prediction error must be minimized (Ljung, L. 1999). The criterion 

function to be minimized is  

 

 ( ) (2

1

1 ,
N

N
t

V e
N

)tθ θ
=

= ∑ , (2.20) 

 

which measures how well the parameters fit the data. There are other criterion 

functions that can be used to measure the goodness of fit and the general case is  

 

 ( ) ( )(
1

1 ,
N

N
t

V
N

)e tθ θ
=

= ∑ . (2.21) 

 

If the function, l(·) is selected to be the logarithm of the probability density 

function of the noise, then this general approach is called the maximum likelihood 

(ML) estimate of the model parameters (Ljung, L. 1999).  

For high precision machines the sources of errors and noise are of a 

completely different nature than low precision machines. In high precision 

machines, noise and error sources from temperature variations, room acoustics, 

floor vibrations, machine resonances, quantization effects, pressure fluctuations in 

air bearings, misalignment of axes, electrical noise from surrounding electronics 

and power sources, and etc. have a much greater impact than in lower precision 

machines. Noise is present in all systems, but for precision machines noise is the 

greatest source of error and must be understood and eliminated as much as 
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possible. Precision machine philosophy is deterministic and the sources of noise 

and how they affect a system is usually or can be well understood. 

 If it is known that the noise enters the process early either an ARX or 

ARMAX model can be a candidate to describe the system and error dynamics. 

The assumption of both the ARX and ARMAX models is that the noise shares the 

same dynamics (or poles) as the system. Perhaps the most commonly used 

parametric model is the ARX model where the AR means autoregressive and 

corresponds to the A(q)y(t) in (2.22) and the X means extra input corresponding to 

the B(q)u(t) in (2.22) and the first row in Table 1.  

 

 ( ) ( ) ( ) ( ) ( )A q y t B q u t e n= +  (2.22) 

 

The system identification problem is then to compute the coefficients of A and B 

from the input-output data. The coefficients of A and B can be placed in a vector 

show in  

 

 [ ]1 2 1 2, ,..., , ,...,na na a a b b bθ = . (2.23) 

 

If the past inputs and outputs are also collected in a vector, 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 , 2 ,..., , , 1 ,..., 1
T

t y t y t y t na u t u t u t nbϕ = − − − − − − − − +⎡ ⎤⎣ ⎦   

  (2.24) 
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If the noise is Gaussian the maximum likelihood estimate of the parameters is 

estimated by the least squares solution (2.25). 

 

  (2.25) ( ) ( ) ( ) ( )
1

1 1

ˆ
N N

T

t t
t t t yθ ϕ ϕ ϕ

−

= =

⎡ ⎤
= ⎢ ⎥⎣ ⎦
∑ ∑ t

 

Where θ̂  is the minimization of the norm of the prediction error between the 

predicted output value from the ARX model and the measured value from the 

actual output (Ljung, L. 1999). If the noise is not Gaussian then the Instrument 

Variable (IV) method can be used to estimate the parameters. This method is 

described in regards to system identification by (Ljung, L. 1999) and (Stocia, P., 

Söderström, T. et al. 1985) and is a well known method in statistics for parameter 

estimation. 

When the noise is a moving average and shares the same dynamics of the 

system, then an autoregressive moving average or ARMAX model can be used to 

describe the dynamics. The ARMAX model is an ARX model with an addition 

moving average or MA term applied to the error input. The ARMAX model in 

equation form is given in (2.26), where C(q)e(n) corresponds to the additional 

term accounting for the MA error dynamics 

. 

 

 ( ) ( ) ( ) ( ) ( ) ( )A q y t B q u t C q e n= +  (2.26) 
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In order to fit the parameters of the ARMAX model and minimize the prediction 

error a two-stage estimation approach is used. The maximum likelihood estimate 

for the ARMAX model was first introduced by (Åström, K. J. and Bohlin, T. 

1965) for system identification. In practice, the first step to fitting the parameters 

is to obtain a rough estimate of the parameters by pseudo regression and then 

perform a minimization of the errors by a method such as Gauss-Newton. The 

ARMAX model allows for a higher degree of freedom in the error term than the 

ARX model and can be used to describe processes where the error is assumed to 

be a moving average of white noise.  

 The ARX and ARMAX models are both called equation error models 

because the error input to the model shares the same dynamics. If the error 

dynamics of a system do not share the system dynamics then an Output Error 

model should be used to describe this process. Output error models are used to 

describe systems where the errors due to noise and disturbances enter the system 

late in the process and do not share the deterministic poles. The two most 

common Output Error models are the Box-Jenkins (BJ) model and the Output-

Error (OE) model which shares the same name as this class of model descriptions. 

Both of these models are shown in Table 1. The relationship between the input 

and output for the OE model is shown in (2.27). 

 

 ( ) ( )
( ) ( ) ( )B q

y t u t e n
F q

= +  (2.27) 
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In this equation, the error which is assumed to be white noise is decoupled from 

the system dynamics. Systems with randomly distributed errors due only to 

measurement of the output can be accurately described by such a model. 

 When the error is also dynamic but decoupled from the system dynamics 

then the Box-Jenkins model shown in  (2.28) should be used.  

 

 ( ) ( )
( ) ( ) ( )

( ) ( )B q C q
y t u t e n

F q D q
= +  (2.28) 

 

This model is named after statisticians G. P. Box and G. M. Jenkins (Box, G. E. 

P., Jenkins, G. N. et al. 1994). The parameters of both the OE and BJ are 

estimated by coarse estimation and then minimization. The instrument variable 

method is used to determine the parameters of B and F and minimization by 

Guass-Newton is done to fit the entire model parameters (Ljung, L. 1999). 

In addition to the above parametric methods there are also parametric 

state-space models. The parameters of the state-space models can be identified by 

using past data records in the same way as the parametric models above. The 

discrete state space model of the system consists of a number of first order 

difference equations in the following form, 

 

 ( ) ( ) ( ) ( ) ( )1x t A x t B uθ θ+ = + t  (2.29) 

 ( ) ( ) ( ) ( )y t C x t v tθ= +  (2.30) 
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Where, the x is the system state, y is the system output, and A(θ), B(θ), and C(θ) 

are the state-space matrices which are parameterized by the unknown parameter 

vector, θ. The state-space equations can be constructed by first law modeling in 

terms of the unknown parameters or by black box estimation (Nelles, O. 2001). 

When the noise in the system is more complex, a Kalman filter can be used to 

optimally filter the noise leading to the innovations model of the state space form 

in Equations (2.31)-(2.32), (Kalman, R. E. 1960a), (Kalman, R. E. 1960b), 

(Ljung, L. 1999). The innovations form of the state space model takes the error, or 

residuals, from the predicted output and actual output into account when 

determining the Kalman gain that minimizes the error in the state estimate. 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ1, ,x t A x t B u t K eθ θ θ θ θ+ = + + t  (2.31) 

 ( ) ( ) ( ) ( )ˆ ,y t C x t e tθ θ= +  (2.32) 

 

Where, K is the Kalman gain applied to the process error and x̂  is the state 

estimate. Kalman filtering is a way of optimally estimating the state of the system 

based on the probability of the predicted state and its covariance. The error in the 

prediction of a state is used to update the probability of that state and correct its 

covariance. Therefore, the Kalman filter is a predictor-corrector filter that uses the 

probabilities of state estimates to weigh the estimates accordingly and determine 

the Kalman gain. The algorithm to compute the optimal parameters, θ, is called 

subspace identification (Van Overschee, P. and De Moore, B. 1994), (Ljung, L. 

1999). There are many books that deal with state-space modeling and control such 
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as (Åström, K. J. and Wittenmark, B. 1989), (Ogata, K. 1987), (Ogata, K. 2002). 

State-space models are advantageous in that they reflect the physics of the 

identified system better than any other parametric method (Ljung, L. 1999). 

 Parametric methods are powerful means for determining a system model. 

The flexible nature of parametric identification methods allows an accurate 

system model to be built. The model resulting from parametric system 

identification can be used directly for model-based control design. 

 

Control Design 

The control of high precision machines requires an accurate model so the 

proper control structure and gains can be selected. The model parameters can be 

found using the system identification techniques discussed above. Without an 

accurate model, control design relies on methods that contain high uncertainty 

such as Ziegler-Nichol and variants of the same. System identification software is 

readily available for accurate model identification such as (LabVIEW), 

(MATLAB), (SOCIT), However, many industrial controllers still rely on control 

design from an uncertain model that results in long tuning times and requires 

expert knowledge. Parametric system identification can be used to construct a 

model or greatly improve its accuracy thereby removing the need for expert 

knowledge and long tuning times. In addition, models identified by data collected 

under closed loop, which is usually the case, are actually best for control design 

(Gevers, M. and Ljung, L. 1986). 
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Once the desired performance of a controller is specified, then there are a 

variety of control design techniques that can be implemented for precision 

control. All of the parametric models can be put into a transfer function or state-

space. The most common linear time-invariant control design methods are 

discussed below. 

Control design can be accomplished when the model is unknown. Ziegler 

and Nichols (Ziegler, J. G. and Nichols, N. B. 1942), (Ziegler, J. G. and Nichols, 

N. B. 1943) proposed methods by which PID control gains can be approximated 

from step response data. However, this approach leads to large overshoot and 

requires fine tuning of the system (Ogata, K. 2002). In order to use such a control 

approach for high precision systems this requires long tuning time and experience. 

If the system parameters change over time, then this time consuming process must 

be repeated. Model based control design is significantly more accurate and 

requires little or no tuning if modeled correctly. 

If the model is known then control design can be done based on root locus 

analysis which was introduced by Evans (Evans, W. R. 1948), (Evans, W. R. 

1950). By placing a controller with a certain control structure in the control loop, 

the dominant poles of the system can be placed where desired assuming that the 

system actuators and power supply is not limited. Then, the gains of the system 

required to place the poles at the desired locations can be determined by 

examining how the position of the dominant poles changes with respect to the 

change in gain (Ogata, K. 2002). Powerful design tools such as MATLAB’s 
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control design toolkit offer graphical software to place the poles and observe the 

change in P, PI, PD, or PID gains. 

If a state space system model identified by system identification is 

controllable, i.e. all the states can be driven to zero, and observable (Kalman, R. 

E., Ho, Y. C. et al. 1963), i.e. all the state can be estimated, then all of the states 

can be observed and controlled by pole placement of the controller. All of the 

system states cannot always be observed but if the system is observable, these can 

be estimated by state observers. A full treatment of discrete state space design is 

given by (Ogata, K. 1987) and continuous state space design by (Ogata, K. 2002). 

 In addition to root locus and state space controller design, frequency 

domain design based on the identified model can also be used to determine the 

compensators and gains to achieve the desired gain and phase margin of the 

closed loop system.  

 The above control design techniques apply to linear time invariant 

systems. Precision machines that are structurally designed for ultra-high 

performance are necessarily designed to be highly linear. The use of system 

identification is well suited for high precision machines where the use of granite 

structures, air bearings, tightly controlled temperature conditions, linear motors, 

laser interferometers, glass scales, and etc. eliminate common non-lineararities. 

The use of a granite frame makes the system robust against temperature 

variations, the use of air bearings greatly mitigates the non-linear effects of 

friction, and the linear motors eliminate the presence of backlash from their ball-

screw alternatives. Such components make the assumption of linearity easily 
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justified. Therefore, system identification of a highly linear precision machine can 

be used to obtain an accurate system model and design a high precision controller 

to achieve the desired performance. 
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CHAPTER III 

EQUIPMENT, INSTRUMENTATION, AND SOFTWARE 

 

Universal Measuring Machine 

 In this section the Universal Measuring Machine’s (UMM) architecture, 

actuators, controllers, and mathematical axis models are presented. The UMM is 

shown in Figure 2.  

 

Figure 2: Universal Measuring Machine 

Architecture 

 The UMM is a continuous-contact or scanning probe measurement 

machine used to measure a parts geometry for quality control during 

 



 

manufacturing. The UMM is basically a CMM with an R-axis, a Z-axis, and a 

fixed rotational C-axis. The R-axis moves the C-axis and part in the horizontal 

direction, the Z-axis carries a measurement probe in the vertical direction, and the 

C-axis, which is mounted on the R-axis, rotates the part. Two additional axes are 

used to center the part on the C-axis. The P-axis is used to horizontally center the 

part on the C-axis by pushing it into place. The W-axis is the vertical centering 

axis used to vertically position the pusher. A schematic of the UMM is shown in 

Figure 3. The R, C, and Z axes are all frictionless air-bearing axes driven by 

brushless servo-motors controlled by the Programmable Multi-Axis Controller 

(PMAC).  The R- and Z-axes use Trilogy 310 series linear motors while the C 

axis uses an integral frameless rotary motor. The P-axis is a Trilogy 210 series 

linear motor and the W-axis is lead screw driven by a brushless servo motor. The 

above discussion is summarized in Table 2. 

 

Figure 3: Schematic of UMM architecture 
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Table 2: UMM Axis Motor and Bearing Type. 

UMM Motor Manufacturer Motor Type Bearing Type 

Z-Axis  310-4S  Trilogy-Parker  Linear  Air 

R-Axis  310-5P   Trilogy-Parker  Linear  Air 

C-Axis  K254-100-H01-001   Bayside  Rotary  Air 

P-Axis  210-2S   Trilogy-Parker  Linear  Rolling  

W-Axis  CM231AE-00060  Compudor  Rotary  Element 

 

Natural frictional damping of the air bearing motors is very small and 

damping must be done either by the controller or other means. Damping of the R- 

and Z-axis is accomplished by eddy current dampers. The eddy current dampers 

consist of aluminum blocks attached to the coil of the linear motors. As the R-axis 

moves through the magnet track the eddy currents induced in the aluminum block 

resist forward motion. Damping of the C-axis is done by the controller. Damping 

of the other W- and P-axes is done by both the controller and friction. 

The position of the R-axis and Z-axis is determined by laser 

interferometers. The C-axis position is determined by a rotary encoder. The P- 

and W-axis position is determined by linear encoders. The axis and corresponding 

encoder and its resolution is summarized inTable 3. 

The linear motors are commutated brushless DC motors. Two of the 

phases are commutated by the controller. The two commutated phases are fed into 

an amplifier and the amplifier commutates the third phase. The amplifier is a 

Glentek linear amplifier with a low-pass cutoff frequency of 523 Hz. 
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Table 3: Axis Encoder and Resolution 

UMM Encoder Type Resolution 

Z-Axis  Laser Interferometer  809,070 counts/mm 

R-Axis  Laser Interferometer  809,073 counts/mm 

C-Axis   Rotary Encoder     4,551 counts/deg 

P-Axis  Linear Encoder     4,000 counts/mm 

W-Axis  Linear Encoder   15,748 counts/mm 

 

Controller 

The controller is a Turbo Programmable Multi-Axis Controller, or PMAC, made 

by Delta Tau. The controller is a multi-axis PID controller with feed-forward and 

feedback capabilities. The controller performs cascaded loop control to maintain 

desired position of the R-, Z-, and C-axes while maintaining the desired force in 

the probe along the surface of the part. In order to work within the available 

memory of the PMAC, and correctly deal with the different resolutions of the 

encoders, scale factors are used throughout the control loop. The PMAC 

command output is governed by Equation (3.1) where the n represents the time 

step. The output servo command is commutated and sent to a linear differential 

amplifier that is tuned for each axis. The PMAC takes approximately 0.443ms per 

servo cycle which is about 2257 samples per second which represents a loop 

closure rate of 2.257 kHz for control purposes. The command output of the 

PMAC shown in Equation (3.1) is essentially a PID filter with feed-forward 
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terms; the variables are listed in Table 4. The command output is given in encoder 

counts and limited to 32,767 encoder counts with a range of ±10V volts. 
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Table 4: PMAC Controller Variables 

PMACS 

Variable Name 

Description 

Ix30  PMACS Proportional Gain 

Ix08  Position Scale Factor 

Ix09  Velocity Loop Position Scale Factor 

Ix33  PMACS Integral Gain 

Ix31  PMACS Derivative Gain 

Ix32  PMACS Feed-Forward Velocity Gain 

Ix35  PMACS Feed-Forward Acceleration Gain 

CA(n)  Command Acceleration 

CV(n)  Command Velocity 

FE(n)  Following Error  

IE(n)  Integration Error 

AV(n)  Actual Velocity 
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Tuning  

In order to obtain the desired performance each axis of the UMM must be 

independently tuned. The UMM has been tuned by an experienced professional 

although the PMAC has tuning software that can determine the PID gains. The 

PMAC tuning algorithm is proprietary but likely a variant of Ziegler-Nichols and 

tuning done by the professional performs much better. All of the current tuning is 

done without a system model. Although the performance objectives are achieved 

by this approach, model based tuning is much more efficient. However, creating a 

model with accurate parameters is difficult and time consuming as discussed in 

the next chapter. Both the modeling and tuning can be performed by system 

identification. Algorithms to automatically tune each axis can be created to tune 

the system on start-up or at preset time intervals. This would allow the machine to 

correct the gains automatically for time-varying parameters or event changed 

parameters such as a collision.  

 

System Simulation 

Determination of the dynamic models and their parameters for each UMM 

axis requires proper input-output data. Unfortunately, the input-output data were 

not available. Therefore, an accurate simulation created by physical modeling 

using first laws and manual system parameter determination was used to simulate 

identification data. The R- and C-axis were simulated because they are 

representative of all the other axes. To verify the models for the R- and C-axis the 
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PMAC controller was also simulated. In this section, the simulation and methods 

by which the R- and C-axis parameters were determined is presented. The 

simulation and actual data show extremely close agreement indicating that the 

modeling of the two axes and controller were done correctly.  

 

Modeling of C-axis: 

The C-Axis is a commutated brushless DC motor as shown in Figure 4. The 

motor is modeled as a circuit with a resistor, inductor, and ideal motor that 

supplies torque proportional to the current less the back emf. By summing the 

voltages around the loop according to Kirchoff’s Voltage Law yields equation  

(3.2). 

 

Figure 4: DC motor model 

 

 0
a

a a a b
die R i L e
dt

= + +  (3.2) 

 

Where e0 is the applied voltage to the motor Ra is the resistance in the motor, ia is 

the current through the motor, La is the inductance in the motor caused by the 

coils, and eb is the back-electromotive force or back-emf. The back-emf is 
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proportional to the speed of the motor shaft as shown in Equation 4 where Kb is 

the back-emf constant and ω is the angular speed. 

 b b b
de K K
dt
θ ω= =  (3.3) 

 

The torque supplied by the motor is proportional to the current as seen in 

Equation 5 where Kt is the torque constant of the motor. 

  

 t aT K i=  (3.4) 

 

The moment balance on the motor shaft is shown in equation (3.5). Where JL is 

the rotational inertia and b is the viscous damping. 

  

 
2

2L L
d d dT J b J b
d t d t d t
θ θ ω ω= + = +  (3.5) 

 

The Laplace transform of equations (3.2)-(3.5) assuming zero initial conditions 

yields equations (3.6)-(3.9). 

  

 ( )0 0 ( ) ( ) ( )a
a a a b a a a b

die R i L e E s R L s I s E s
dt

= + + = + +⇒  (3.6) 

 

 ( ) ( )b b b b b
de K K E s K s
dt
θ ω= = = Ω⇒  (3.7) 
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  (3.8) ( ) ( )t a t aT K i T s K I s= =⇒

 ( )( ) ( )L
dT J b T s J s b s
d t L
ω ω= + = + Ω⇒  (3.9) 

 

The above equations can be combined algebraically to create the speed per 

voltage transfer function as in equation (3.10) or as a block diagram as shown in 

Figure 5.  

  

 2

( )
( ) ( ) ( )

t

o a L a a L a t

Ks
E s L J s L b R J s R b K K
Ω

=
+ + + + b

 (3.10) 

 

 

Figure 5: Block Diagram of DC motor 

 

The proportionality constants, Kt and Kb, are given by Bayside and shown in 

Table 5. The integrator in Figure 5 can be used to get the position per input 

voltage transfer function which is the information obtained from the encoder.  

The C-axis is actuated by an input command that comes from the PMAC 

in the form of DACcounts. This value is then converted by a scale factor, KDAC of 

20/65536 V/DACcounts and sent to the amplifier as a command voltage across the 

motor. The amplifier then turns this value into a command current proportional to 
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its transconductance, KTC which is 0.5 Amps/Volt for the C-axis. The output 

position is converted from counts to degrees by a rotary encoder and is the 

feedback to the PMAC. The amplifier/motor block diagram is shown in Figure 6. 

 
 

Table 5: C-Axis Catalogue Values 

Winding 

Type 

Motor Torque 

Constant     

[oz. in./Amp] 

Motor Torque 

Constant        

[Nm./Amp] 

Back Emf 

Constant    

[V-s/rad] 

Resistance   

[Ohm] 

Inductance  

[mH] 

G 682.3 4.82 4.82 6.3 63.72 

H 856.22 6.05 6.05 9.96 100.35 

 

  

 

Figure 6: DC motor model with amplifier dynamics added 

 

The amplifier dynamics are much faster than the motor dynamics. A reasonable 

assumption is that they are negligible. However, the amplifier is included in the 

model so that the variables associated with it can be adjusted to see their effect on 

the overall system. The amplifier also acts as a low-pass filter of 523Hz. When 

the PMAC command and amplifier dynamics are included in the model the input 

voltage is given by equation (3.11). 
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 ( )( )COMMAND DAC A( ) 1o CE s PMAC K K I I= ⋅ ⋅ + ⋅ a−  (3.11) 

 

By combining equation (3.11) and the integral of the angular speed to get the 

angular position, (3.11) becomes, 

 

 
( )( )COMMAND DAC A

2

1 1( )
( ) ( )

t C

a L a a L a t b

K PMAC K K I I
s

L J s L b R J s R b K K s

⎛ ⎞⋅ ⋅ ⋅ + ⋅ −
Θ = ⋅⎜ ⎟⎜ ⎟+ + + +⎝ ⎠

a . (3.12) 

 

In order to evaluate this model it was simulated in MATLAB’s Simulink. The 

value of actual system’s inertia was unknown and determined according to the 

following procedure. 

 

C-Axis Inertia Determination 

 The following discussion outlines an experimental determination of the 

UMM C-axis inertia. The actual position of the C-axis is in the form of Equation 

(3.13), 

  

 ( )sinA tθθ ω= ⋅ ⋅ . (3.13) 

 

Where θ is the actual position in degrees, Aθ is the amplitude of the servo 

command in degrees, ω is the frequency in radians per second, and t is the time in 

seconds. Taking the derivative of position yields velocity and the taking the 

derivative again yields acceleration as shown in Equations 15 and 16 respectively. 
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 ( )cosA tθ ω ωΩ = ⋅ ⋅ ⋅  (3.14) 

  

 ( ) 2sinA tθα ω ω= − ⋅ ⋅ ⋅  (3.15) 

 

From the moment balance on the C-axis shaft, 

  

 T J bα= ⋅ + Ω∑ , (3.16) 

 

where,  T  is the torque in Nm, J is the rotational inertia in Nms2, α is the angular 

acceleration in rad/s2, b is the damping coefficient in Nms, and Ω is the angular 

speed of the motor in rad/s. The friction in the C-axis is assumed to be much less 

than the inertia times acceleration, therefore the damping term in (3.16) was 

neglected. This is reasonable because the C-axis air bearing is assumed to have 

minimal damping. Therefore, substituting equation (3.14) into equation (3.15) and 

neglecting the damping term yields Equation (3.17). 

 

 ( ) 2 radsin
180deg

T J A tθ
πω ω= − ⋅ ⋅ ⋅ ⋅ ⋅  (3.17) 

 

 Because the torque constants for the motor and the transconductance of 

the amplifier are known from the manufacturer data sheets, the servo command 

from the PMAC controller is translated into a command torque by  Equation 

(3.18). 

 C AMPT S Res K KT= ⋅ ⋅ ⋅  (3.18) 
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where, S is in DAC counts, ResC is the range multiplier of  20 Volts/65536 DAC 

counts that converts the servo command into a voltage command, KTC is the 

amplifier transconductance (0.5 Amps/Volt for the C-axis), and Kt is the torque 

constant for the C-axis motor of 6.05 Nm/Amp. The torque constant was 

determined from the Bayside catalogue. Combining equations  (3.17) and (3.18) 

and substituting ω = 2πf yields an expression for the inertia (3.19). 

  

 
( ) ( )2

4551enct / deg 180deg
sin2

TC t CK K S ResJ
A tf θ ω ππ

⋅ ⋅ ⋅
= − ⋅ ⋅

⋅ ⋅
 (3.19) 

 

The S / A0 sin(ωt) term is simply the slope of the servo command position vs. 

actual position. The servo command is converted into voltage by the resolution of 

the DAC and the actual position is converted from encoder counts to degrees by 

the 4551 multiplier. This slope was determined experimentally. The experimental 

data was collected using Delta Tau’s tuning software to perform a sine test by the 

following proceedure: 

 

1. Selecting a certain command frequency 

2. Choosing the number of oscillations to get enough data that 

eliminates the transient effects 

3. Record the servo command and actual position (This is a linear 

relationship if the axis is able to follow the command position)  

4. Plot the servo command vs. actual position 

5. The slope of this line is the variable S / A0 sin(ωt) in Equation 20. 

43 



 

6. Use this slope with the DAC resolution and encoder count scale 

factors to determine the rotational inertia of the stage. 

 

The following is the result of a 0.4 Hz test and a 0.7 Hz test. Higher test 

frequencies became unstable. The technicians attribute this to a bug in the 

program. The slope changes for the different values but the frequency 

proportionally changes as well. Of the frequencies tested, the higher frequencies 

yielded steeper slopes and provide better resolution. The 0.7 Hz frequency is 

assumed to be more accurate than the 0.4 Hz frequency although for this reason.  

 

0.7 Hz Experimental Data: 

If the variables are defined as follows, 

 ResC = 20V/65536 DAC counts 

 KAMP = 0.5 Amps/Volt 

 KT  = 6.05 Nm/A 

 S / Aθ sin(ωt) = -0.26 DAC counts/ecnts 

 f = 0.7 Hz 

( )22

0.5 / 6.05 / 4551 ecnts 0.26 DAC 180deg
65536 DAC deg ecnts4 0.7 /

A V Nm A 20VJ
s ππ

⋅ −
= − ⋅ ⋅ ⋅ ⋅  

    = 3.23 Nm/s2 = 3.23 kgm2 

0.4 Hz Experimental Data: 

With the same variables as above except for a frequency of 0.4 Hz and slope of -

0.0809 DAC the inertia becomes, 

 

44 



 

 J = 3.08 kgm2 which differs from the above answer by only 5%. 

 

The estimated inertia from measurement of the C-axis geometry is approximately 

3.1 kgm2 which shows close agreement with the experimental results.  

 

C-Axis Simulated Vs. Actual Results 

 The C-Axis was simulated using MATLAB Simulink and the models are 

shown in Figure 54 through Figure 56. The actual control gains for the C-axis 

were used in the program as well as the actual scaling factors used in the real 

system. The parameters identified above are used in the simulation. A step test of 

1,000 and 10,000 counts was performed using Delta Tau’s tuning software. The 

actual and simulated results are shown in Figure 7 and Figure 8 for C-Axis step 

test of 1,000 and 10,000 counts respectively. This corresponds to a step input of 

0.22 and 2.2 degrees respectively. The mean of the residuals of the simulated C-

axis model compared to the actual data was 3.6682 counts and the standard 

deviation was 25.7364. The average error of the simulation was approximately 

4% which showed that the simulation closely represents the actual data.  

 

C-Axis Conclusion 

The rotational inertia for the C-axis was determined using the approach 

outlined above. The simulation of the C-axis closely represented the experimental 

results indicating that the parameters were estimated correctly. The approach 
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followed above can be replaced by a model identified by system identification if 

the proper input output data is available.  

 

 

Figure 7: 1,000 count step response 

 

Figure 8: 10,000 count step response 
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Linear Motor Parameter Determination 

Simulation of the R-Axis required determination of the unknown mass and 

damping. This section discusses three methods by which the damping was 

determined and how the mass was determined with and without knowledge of this 

term. 

 

Theoretical  Eddy Current Damping 

 Theoretical modeling of eddy current damping has been done by (Hughes, 

S. B. 2000) and (Sodano, H., Bae, J. et al. 2004). Damping on the R-axis is from 

the effect that eddy currents have on a conductor passing through a magnetic 

field. The R-axis magnetic field is perpendicular to the motion and induced by a 

rare earth magnet track. An aluminum plate is attached to the end of both linear 

motors on the R-axis. An electromotive force (voltage) is produced as this plate 

moves according to Faraday’s law,  

 

 emf BLv= . (3.20) 

 

Where, emf is the electromotive force in Volts, B is the magnetic flux in the motor 

in Tesla, and L is the height of the plate in the field. The induced eddy currents 

are this voltage divided by the resistance of the plate. The resistance is given by 

(Caldwell, 1996) as, 
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 RLR
c xσ

=
⋅ ⋅

. (3.21) 

 
Where R is the resistance in Ohms, LR is the effective height of the plate in the 

magnetic field, σ is the conductivity of  aluminum, c is the plate thickness, and x 

is the plate width. The effective height,  LR is less than the height of the plate in 

the magnetic field. This is an unknown parameter but using empirical results from 

(Hughes, S. B. 2000) the effective height is assumed to be 25% of the height of 

the plate in the magnetic field. The eddy currents are therefore a result of 

equations (3.20) and (3.21), 

 

 
R

c x B LI v
L

σ ⋅ ⋅ ⋅ ⋅
= . (3.22)  

 

The magnetic flux induced currents create a magnetic field that opposes the 

change in flux according to the Lenz’s law. This flux then produces a force in the 

direction opposite to the velocity. This is described by Lorenz force law and can 

be used to calculate the force due to damping by equation (3.23). 

  

 LZF IL B= ×  (3.23) 

 

By combining equations (3.20) thru (3.22) into equation (3.23) the Lorenz force 

law becomes, 
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2 2

LZ
R

c x B LF
L

σ ⋅ ⋅ ⋅ ⋅
= v

B

. (3.24) 

 

However, according to (Cadwell, L. H. 1996), the effective magnetic flux is half 

the flux of the magnet and is approximanted as, 

   

 0.5effB = . (3.25) 

 

Therefore, the Lorenz force equation becomes, 

 

 
2 2
eff

LZ
R

c x B L
F v

L
σ ⋅ ⋅ ⋅ ⋅

= . (3.26) 

 

The values for the variables in the equations above are summarized in Table 6. 

The theoretical damping is 687 Ns/m. To verify this experimental determination 

of the damping was also performed. 

 

Table 6: Theoretical Eddy Current Determination Variables 

Resistivity of Aluminum 2.82E-08 m3·kg·s–3·A–2

Conductivity of Aluminum 3.77E+07 m–3·kg-1·s3·A2

Plate Thickness (c) 0.007 m
Plate Length (x) 0.2 m
Effective Magnetic Field Height (L) 0.05 m
Effective Length (LR) 0.013 m
Flux Density (B) 0.52 T 
Damping (F/v) 687 N·s·m-1
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Experimental Eddy Current Damping 

 The linear motors on the R-Axis and Z-axis are damped by eddy current 

dampers. The servo command is broken up, or commutated, into three phases in 

order to pass current through the appropriate motor windings and produce the 

desired torque. Only the commutated servo command output was readily available 

for data collection. This problem can be overcome but will require time to code. 

The commutated servo command was logged using Delta Tau’s tuning software. 

The amplitude of the command input was determined by fitting a sine wave via 

linear regression to the servo command. This command input was translated into a 

command current and subsequently commanded force by knowledge of the 

amplifier transconductance and torque constant for the motor. The damping is 

determined from this information as shown in the analysis that follows. The linear 

model is assumed to be in the following second order form as found in (Liaw, C. 

M., Shue, R. Y. et al. 2001). 

 

 ( )signumL C FF ma bv F F F v= + + + +  (3.27) 

 

Where F is the thrust force of the motor in N, m is the mass in kg, α is the 

acceleration in m/s2, b is the damping coefficient in Ns/m, v is the velocity in m/s, 

FL is the load on the motor opposing the thrust force in N, FC is the cogging force, 

and FF is the Coulomb friction force. The cogging force is the force necessary to 

initially overcome the magnetic attraction between the linear motor coil and 

magnet track. The amplifier is powerful enough so the cogging force is negligible. 
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The friction force can be modeled by different methods as summarized by 

(Åström, K. 1998). However, the R-axis rests on air bearings and friction forces 

are assumed to be negligible. It is not known how much cogging force is present. 

However, the linear regression outlined below takes into account an offset force 

to account for this uncertainty. These assumptions reduce equation (3.27) to, 

 

 F ma bv= + , (3.28) 

 

Or, in terms of damping, 

  

v
maFb −

=
. 

 

 The damping term in the above equation was determined by constant 

velocity commands to the motor. The position and servo command (force) were 

recorded for each constant velocity command. By using this approach, the 

acceleration term in equation (3.28) becomes negligible and the damping is 

determined from the data for force and velocity. However, the force command is a 

commutated signal in which the amplitude is unknown. This can be determined 

by using a least squares regression on the commutated servo command as follows. 

The servo command is assumed to be in the following format, 

  

 ( )cosS A bθ θ φ= − +  (3.29) 
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Where α is the amplitude of the servo command in volts, where θ is the phase 

angle and φ is the phase offset and z is the commutated servo command for the 

first phase. Using trigonometric identities equation (3.29) becomes, 

   

 ( ) ( ) ( ) ( )cos cos sin sinS A A bθ θθ φ θ φ= + +  (3.30) 

 

Linear regression of equation (3.30) can be used to determine α and φ. The 

regression of z gives two linearly dependent terms i and j, as shown in equation 

(3.31). 

 

 
( ) ( )
( )
( )

cos sin

cos

sin

S i j b

i A

j A
θ

θ

θ θ

φ

φ

= + +⎧
⎪
=⎨

⎪ =⎩

 (3.31) 

 

The terms i and j in the linear regression can be used to get the amplitude α and 

phase offset φ as shown in equations 34 and 35. 

  

 ( )( ) ( )( )2
cos sinA A Aθ θ θφ= +

2
φ  (3.32) 

   

 
( )
( )

sin
arctan

cos
A
A
θ

θ

φ
φ

φ
⎛ ⎞

= ⎜⎜
⎝ ⎠

⎟⎟  (3.33) 
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A plot of the actual servo command voltage, linear regression values, and 

residuals vs. distance along the R-axis is shown in Figure 9. 
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Figure 9: R-Axis DAC voltage command and residuals vs. position at 100mm/s 

 

The linear regression of the commutated servo command signal showed close 

agreement with the actual servo command signal as shown in Figure 9. The above 

test is a constant velocity test which means that the acceleration in equation (3.28) 

is zero. Therefore, by repeating this test at different constant velocities the slope 

of the servo command vs. voltage F/v term is equal to the damping as shown in 

equation (3.34). This is graphically shown in Figure 10. 

 

 Fb
v

=  (3.34) 
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The slope of the line in Figure 10 is equal to the damping coefficient but the units 

are in Vs/mm. The damping coefficient is converted to Ns/mm by equation (3.35). 
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Figure 10: Velocity for different servo commands 

 

 [Ns/mm] [Vs/mm] t TCb b K K= ⋅ ⋅  (3.35) 

 
Where, Kt is equal to the torque constant of the motor (provided by the 

manufacturer) in Nm/Amp and KTC is the amplifier transconductance in 

Amp/Volts and the result is scaled by 1m/1000mm. The result is that the damping 

coefficient of the R-axis is equal to 670 Ns/m.  

 An alternative method to determine the damping was also performed in 

which an approximately constant force was applied with a hand held force gage 

and the velocity measured for different forces. The ratio of the force over the 

velocity was the damping due to the eddy currents. This is shown in Figure 11 and 
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both methods are shown in Figure 12. The constant velocity test yielded 673 Ns/m 

and the constant force test yielded 709 Ns/m for b. The increased force is likely 

due to the fact that the velocity is not constant. 

 

Figure 11: Alternate constant force eddy current damping determination 
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Figure 12: Both methods of eddy current damping 
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R-Axis Mass Determination 

 The damping values above showed close agreement both theoretically and 

from two empirical tests. To completely model the R-Axis the mass must also be 

determined. Recall from equation (3.27) that the force on the linear motor is, 

  

  ( )vFFFbvmaF FCL signum++++= .   

 

The force, F, can be determined easily from the servo command output from the 

PMAC. To get the servo command in terms of force it must be multiplied by the 

DAC resolution to get volts, multiplied by the amplifier transconductance to get 

amps, and multiplied by the torque constant for the motor to get Newtons. A 

linear regression from knowledge of this force input and recorded data was 

performed according to equation (3.36). 

 

 ( )1 2 3signum offsetF x a x v x v F= + + +  (3.36) 

 

Where, Foffset is the sum of all external forces acting on the motor and includes 

cogging force and any external offset force, x1 corresponds to the fitted mass, x2 

corresponds to the fitted damping, x3 corresponds to the fitted hysteresis. This 

hysteresis is due to the friction effect of stiction which is assumed to have a 

constant magnitude, changing only in sign with the direction of the velocity (Ellis, 

G. 2004). More accurate modeling of stiction has been presented by Stribeck 

(Åström, K. 1998). The actual position was obtained from the PMAC and the 
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numerical derivative was taken to get the velocity and likewise the acceleration. 

The values for velocity, acceleration, signum(v), and Foffset were used in the linear 

regression. 

 Data for the linear regression was collected by a sinusoidal input to the R-

axis linear motor at different frequencies and amplitudes. A linear regression was 

performed at each frequency to determine the coefficients x1, x2, and x3, as well as 

the Foffset term to determine the corresponding mass, damping, hysteresis, and 

force offset in the model. A summary of the regression coefficients is given in 

Table 7 and plot of each is shown in Figure 20 through Figure 23. The results of 

the low and high frequency linear regression are shown in Figure 14 through 

Figure 18. The hysteresis due to the small amount of stiction can be clearly seen 

in Figure 19. The solid lines in Figure 20 through Figure 23 represent the 

regression values obtained when all data sets from all frequencies were used and 

the damping term was fixed at 670 Ns/m as determined above using the constant 

velocity method. The linear regression values obtained were used in a simulation 

that is shown in Figure 25.  

 

Figure 13: Stribeck Model of Force vs. Velocity 
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Figure 14: Force and position vs. time for 0.1mm Sine input at 1 Hz for 5 seconds 
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Figure 15: Force and position vs. time for 0.1mm Sine input at 5 Hz for 1 second 

58 



 

-40

-30

-20

-10

0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Fo
rc

e 
(N

)

-4

-3

-2

-1

0

1

2

3

4

V
el

oc
ity

 (m
m

/s
)

Commanded Force (N) Fitted Force (N) Actual Velocity (mm/s)  

Figure 16: Force and velocity vs. time for 0.1mm Sine input at 5 Hz for 1 second 
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Figure 17: Force and acceleration vs. time for 0.1mm Sine input at 5 Hz for 1 

second 
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Figure 18: Force and position vs. time for 0.1mm Sine input at 10 Hz for 0.5 

seconds 
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Figure 19: Force vs. position for 0.1mm Sine Input at 5Hz for 1 second 
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Figure 20: Linear regression values for mass at different frequencies  
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Figure 21: Linear regression values for hysteresis at different frequencies 
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Figure 22: Linear regression values for Damping at different frequencies 
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Figure 23: Linear regression values for force offset at different frequencies 
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Table 7: Regression Values for Different Frequencies 

Frequency
(Hz)

Mass
(kg)

Hysteresis
(N)

Damping
N/(mm/s)

Imbalance
(N)

1 120.121 1.801 1.940 -4.825
2 162.148 1.972 1.090 -4.860
3 172.937 2.006 0.885 -4.814
4 181.319 1.887 0.995 -4.806
5 173.315 1.970 1.175 -4.780
6 165.154 2.001 0.891 -4.745
7 167.014 1.738 0.581 -4.679
8 163.560 2.804 0.069 -4.715
9 161.256 1.083 0.307 -4.692
10 160.369 1.886 -0.054 -4.736  

 

 By including all the data at all frequencies and fixing the damping term at 

670 Ns/m (as identified before) in the linear regression, the identified mass was 

160 kg, the force imbalance -4.8 N, and the hysterisis/backlash accounted for 2.1 

N of force. The force imbalance of 4.8 N would simply be the force necessary to 

maintain position of the R-Axis is there was an offset angle of 0.18◦. The negative 

value of damping in Table 7 corresponding to the 10 Hz frequency indicates that 

damping is likely being done by the controller to maintain stability. 

 

R-Axis Simulated Vs. Actual Results 

 A linear motor model was created for simulation using the identified 

values above for mass, damping, and force offset. The simulation model (ignoring 

hysterisis) for the linear motor is, 

  

 offsetF ma bv F= + +  (3.37) 
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In terms of the Laplace domain, 

  

 ( ) ( ) ( )( )2
offsetF s F s X s ms bs− = +  (3.38) 

 

In terms of the linear motors’ transfer function of position to a force input, 

 

 ( ) ( )
( ) ( ) ( )2

1

offset

X s
G s

F s F s ms bs
= =

− +
 (3.39) 

 

The block diagram of the linear motor model is shown in  

Figure 24. 

 

 

Figure 24: Block diagram for linear motor 

 

The above model was coded in MATLAB using the parameters identified above. 

The actual and simulated response is shown below. There is about a 6% error in 

the simulated and actual position that is likely due to the fact that the hysterisis 

and amplifier dynamics are not included.  
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Figure 25: Simulated/Actual data R-Axis 0.1 mm sine wave at 10 Hz for 0.5 sec 

  

Alternatively, the R-Axis may be modeled as a DC motor in the same way 

as the C-axis. For design and comparison purposes the resulting model is 

presented. The modeling of the R-Axis as a DC motor is the same as equations 

(3.6) through (3.10) where the torque is replaced by the applied force and the 

rotational inertia is replaced by the mass. This leads to a model for the R-axis 

given in equation (3.40) where the speed is integrated to get the position. 

 

 2

( ) 1
( ) ( ) ( )

t

o a a a a t b

Ks
E s L ms L b R m s R b K K

⎛ ⎞Θ
= ⎜ ⎟+ + + +⎝ ⎠ s

 (3.40) 

 

The amplifier dynamics can also be included in the same way as in equation 

(3.12).  A comparison of the simulated and actual values for the same input is 

shown in Figure 26. 
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Figure 26: Simulated/Actual data R-Axis 0.1 mm sine wave at 10 Hz for 0.5 sec 

 

Comparison of Figure 25 and Figure 26 shows that the simple mass-damper 

model and the more complex DC motor model are very close. The simple mass-

damper model underestimates the necessary force to move the axis and the DC 

motor model overestimates the necessary force to move the axis. This uncertainty 

is present because neither model accurate captures the true parameter values.  

Parameter Summary 

 From the experiments discussed above, manufacturer’s catalogue 

information, and UMM drawings, the parameters for the different motor axes 

were collected. It is evident that the parameter estimation by modeling and 

experimental identification is a time consuming process. This process can be 
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replaced with system identification as discussed in the next section. A summary 

of the axis parameters is shown in Table 8.  

 

Table 8: Summary of Motor Parameters for the UMM 

UMM 
Stage 
Mass 
[kg] 

Damping
[Ns/m] 

Inertia 
[kgm²]

Kt   
[N/A]

Ke   
[Vs/m or 

rad] 

Resistance 
[Ohms] 

Inductance 
[mH] 

R-Axis 
 

160 670 - 34.1
39.4 

[Vs/m] 5.4 3.8 

C-Axis - - 3.23 4.82
4.82 

[Vs/rad] 6.3 63.72 
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CHAPTER IV 

SYSTEM IDENTIFICATION 

 

This chapter presents the results of system identification from input output 

data of the UMM described above. The models built from this data are compared 

to those developed by physical modeling as in the previous chapter. The level of 

effort required to model the system and determine the parameters by 

experimentation is significant. However, if proper input-output data is obtained 

then an accurate model can be determined by this information alone as 

demonstrated in this chapter. 

The physical modeling and parameter identification approach detailed in 

Chapter III resulted in models and parameters for both the R- and C-axes. The 

model from the C-Axis DC motor is from equations (3.11) and (3.12) where the 

input is the input voltage to the motor and the output is the position read by the 

encoder. 

 

( ) 2
0

( ) 1
( ) ( )

t

a L a a L a t b

Ks
E s L J s L b R J s R b K K

⎛ ⎞Θ
= ⋅⎜ ⎟+ + + +⎝ ⎠ s

 

 

Similar modeling of the R-axis resulted in equation (3.40), 

 

 



 

 

 

2

( ) 1
( ) ( ) ( )

t

o a a a a t b

Ks
E s L ms L b R m s R b K K

⎛ ⎞Θ
= ⋅⎜ ⎟+ + + +⎝ ⎠ s

 

The orders of the parametric model used for system identification can be 

determined by converting the continuous time models into discrete time models. 

Putting the parameter values into the continuous time models for the C-axis and 

R-axis and converting the models to discrete time models by a zero order hold 

yields equations (4.1) and (4.2) for the C- and R-axes respectively.  

 

 
-10 2 -9 -10

3 2

( ) 2.646 10 z  + 1.047 10 z + 2.589 10
( )   z  - 2.957z  + 2.915z - 0.9573

C axis

o C axis

z
E z

−

−

Θ × ×
=

×  (4.1) 

 

 
-9 -9 -92

3 2

( ) 1.37 10 z  + 4.719 10  z + 1.001 10
( )    z - 2.531z  + 2.064z - 0.5332

R axis

o R axis

z
E z

−

−

Θ × ×
=

×  (4.2) 

 

The order of the numerator and denominator in equations (4.1) and (4.2) is used to 

select the order of the numerator and denominator for the parametric model 

selected to represent the system. If the system, disturbance, and noise share the 

same dynamics, then an ARX model can describe the system. The ARX model for 

the C-axis and R-axis derived by this assumption and selection of the orders by 

the a priori knowledge of the system order yields an ARX model in the form, 

 

( ) ( ) ( ) ( ) ( ) ( ) (1 2 3 1 21 2 3 1 2y t a y t a y t a y t b u t b u t e n+ − + − + − = − + − + ) (4.3) 
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In transfer function form the ARX model is, 

 

 ( )
( )

( )1 2
1 2

1 2 3 1 2
1 2 3 1 2 3

y z e nb z b z
u z a z a z a z a z a z a z

− −

− − − − −

+
= +

+ + + + 3− . (4.4) 

 

Unfortunately, proper input/output data for the motor was unavailable and a 

simulated controller and motor were used to simulate the plant data. The 

simulation models are shown in the appendix. 

 

C-axis Identification of ARX models 

 
In addition to the order of the system, the input to output delay is also 

needed to select the proper parametric model. The input-output delay of the C-

Axis was determined by a step input command to the motor of 2.2 degrees. The 

step response of the motor is shown in Figure 27. The time it takes for the output 

to change from a given input determines the input-output delay. A close up of the 

initial response to a step input of 0.22 degrees to the C-axis reveals a time delay 

of 1.25ms. The sample time is 440μs so the 1.3 ms delay in output corresponds to 

a delay of 2.95 cycles. Therefore, the ARX model selected has a third order 

denominator, second order numerator, and a delay of two or three samples. In 

comparison, a step test on the actual system showed a delay of 2.25 samples 

indicating that the actual delay in the system is between two and three samples. 
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Figure 27: 0.22 degree step input for C-Axis 

 

Figure 28: Close up of step input showing time delay of approximately 1.3 ms. 

 

Band-limited white noise was input into the simulated controller to excite 

the frequencies of interest. The band is limited by the one half of the sampling 

period. The choice of input is not unique and any a variety of inputs may excite 
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the same system adequately. The power of the band-limited white noise was 

selected as 1000 for the C-axis in order to get measurable values from the 

encoder. The output of the white noise was updated every 0.88s which is slightly 

longer than the time constant of the C-axis. This allows the higher frequency 

content to be captured. The data was recorded for 100s and sampled at a rate of 

2.27 kHz (once every 440μs) which is the default of the PMAC. The voltage input 

to the simulated C-Axis motor from the PMAC and its output position in radians 

were recorded. The recorded input to the motor and its output are shown in  

Figure 29. A power spectrum of the input is shown in Figure 30. This is 

the power spectrum of the white noise input into the PMAC controller. The power 

spectrum from the PMAC output into the motor is shown in Figure 31. This 

demonstrates that the necessary frequency content is present in the exciting signal 

for identification purposes.    

 

Figure 29: Identification data for C-axis 
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Figure 30: Power spectrum of white noise input to PMAC 

 

Figure 31: PSD of motor input from PMAC 
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The model identified by selecting an ARX structure with the orders and a 

delay of both two and three as determined above is shown in equations (4.5) and 

(4.6).  

 

 ( )
-7 2 -5

-0.00044s
322 3 2

-6.742 10 s  - 3.42 10 s + 20.9
s  + 101.4s  + 128.1s + 0.0002721

ARX e × ×
=  (4.5) 

 

 ( )
-6 2

-0.00088s
323 3 2

1.334 10  s  + 0.00916 s + 20.9
s  + 101.4 s  + 128.1 s - 0.00447

ARX e ×
=  (4.6) 

 

These equations represent the deterministic part of the ARX model which is 

necessary for model-based control. A Bode plot of the above two equations and 

the model of the C-axis used to generate the data is shown in Figure 32. The 

ARX322 corresponds to a third order numerator, second order denominator, and 

delay of two. The ARX323 signifies the same but with a delay of three.  The Bode 

plot shows that the model of the C-axis is correctly identified by both ARX 

models which both assume that the noise enters early in the system and shares the 

systems dynamics.  
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Figure 32: Bode plot of system model and identified models 

 

Equations (4.5) and (4.6) indicate that both choices of delay identify the 

system dynamics, or poles, correctly. The roots from the identified ARX models 

above and the continuous time transfer function of the C-axis from Equation 

(3.12) are presented in Table 9. 

 

Table 9: Roots of C-axis model and identified ARX models 

C-axis roots [-98.09,  -1.16,  0] % Error [ -,  -, -] 

Equation (4.5) roots  [-99.72,  -1.28,  0] % Error [1.6%, 10.3%,  0%] 

Equation (4.6) roots [-99.72, -1.28,   0] % Error [1.6%, 10.3%,  0%] 
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As seen in the table, the poles of the system are identified with less than 11% 

error. Inspection of the time response of both ARX models compared to the 

simulated and actual data is shown in Figure 33. The similar responses of the 

identified models demonstrate that identification has been performed with high 

quality. Another measure of the quality of the models is inspection of the 

residuals left by the identification. Residual analysis is done by correlation of the 

residual with itself and the input.  

 

 

Figure 33: Comparison of models 
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Figure 34: Residuals from identified ARX models 

 
However, residual analysis by correlation will not accurately demonstrate 

the model quality for data identified under closed loop. Closed loop data will 

necessarily have a correlated error and input meaning that the correlation analysis 

cannot be used to measure the model quality. The residuals themselves are 

informative and are shown in Figure 34. This figure shows that the residuals are 

three orders of magnitude less than the signal. The max value of the residual error 

for the ARX322 model is 7.1423x10-6 and for the ARX323 it is 7.0214x10-6. The 

average residual for the ARX322 model is 7.2321 x10-7 and for the ARX323 

model it is 7.1782x10-7. Therefore, the average residual is four orders of 

magnitude smaller than the output which indicates that the model is very accurate.  
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Effect of Noise and Disturbance for C-axis Identification 

 The data used above to calculate the ARX models was simulated without 

noise or disturbance. In all real systems noise and disturbances exist and how they 

enter the system will determine which model structure is used. This section 

describes how the identified model structure changes when noise enters early in 

the model as an input and late in the model as additive output noise. If the noise 

enters early in the model, then the equation error models such as the ARX model 

can still be used to describe the systems dynamics. 

  A continuous normally disturbed random number with zero mean and 

variance of one was added to the voltage input in the motor to evaluate noise that 

enters the system early. This input and corresponding output are shown in Figure 

35. The identified model using an ARX322 model structure with input noise is 

shown in Equation (4.7). The roots of the denominator are [-99.72, -1.28, 0] 

which are exactly the same as the models identified without the noise input. This 

demonstrates how the noise is effectively fit into the stochastic part of the ARX 

structure while the deterministic part remains effectively unchanged. 

 

 ( )
-7 2 5

-0.00044 s
322 3 2

-6.742 10 s  -3.42 10- s + 20.9 
s  + 101.4s  + 128.1 s + 0.005657

ARX e × ×
=  (4.7) 
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Figure 35: Identification data with noisy input into C-axis motor 

 

When the noise is added to the output an output error model such as the 

OE or BJ of Table 1 must be used. To show this, data was created with a normally 

distributed random number added to output every 0.00044 seconds with variance 

of 10-12 for 10 seconds. A plot of the input to the motor and the output with the 

added noise is shown in Figure 36. A Box-Jenkins model was selected to 

represent this system with same structure as the ARX models above for the 

deterministic part. A comparison of the performance of the ARX models with the 

same structure as above and the Box-Jenkins model is shown in a Bode plot of the 

corresponding models is Figure 38. Figure 37 shows a view of the added noise to 

the output. The deterministic part of the Box-Jenkins model is shown in Equation 

(4.8). Although the Bode plot shows close agreement of the Box-Jenkins model is 
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much more complex than necessary and the ARX model above should be used for 

control design. 

 

-6 5 4 3 2 4

6 5 4 5 3 5 2

-2.217 10 s  -0.007295s  + 20.17s  + 1610s  + 2.322 10 s + 745.2
s  + 178.7s  + 9102s  + 1.227 10 s  + 1.461 10 s + 4551s - 0.6993

BJ × ×
=

× ×
 (4.8) 

 

 

Figure 36: Identification data with added noisy output 

 

Figure 37: Close up of output noise 
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Figure 38: Comparison of Actual, Box-Jenkins, and ARX models with output 

error 

 

In summary, the ARX model with either a delay of two or three samples 

identified the C-axis dynamics accurately. The accuracy of the identified ARX 

models implies that the effort required to determine all the parameters as 

discussed in the previous chapters can be replaced by proper input-output data if 

the disturbances and share the same dynamics as the system. The identified 

models are also suitable for control design because the dynamics of the models in 

the frequency range of interest is accurately captured. Even in the case of error in 

the input to the system the ARX model was able to identify the system correctly. 

Even when a different model structure must be used to account for additive output 
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error, such as the Box-Jenkins model above, the system dynamics can still be 

captured. However, the identified model deviates from the model of the true 

system in this case and better data is needed. The identified ARX model is ideal 

for control design because it accurately captures the dynamics of the system. The 

control design from the identified model is discussed in the next Chapter. 
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CHAPTER V 

CONTROL DESIGN 

 
 

This chapter presents how the model identified in Chapter IV by system 

identification is used to analytically determine controller gains. The identified 

model and controller are combined to form a single transfer function. The poles of 

this transfer function are placed using pole placement and the gains necessary to 

achieve these pole locations are determined. 

 An accurate plant model determined by system identification can be used 

to determine the necessary controller gains to achieve the desired performance of 

the system without tuning. These gains are obtained deterministically by 

obtaining the closed loop transfer function of the system and placing the dominant 

poles in a location that yields the desired response. From the documentation of the 

PMAC the output of the controller is governed by Equation (3.1). 
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In terms of PID and feed-forward Gains, 
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(5.1) 

 

Where, the parameters for the equation are shown in Table 4. The schematic of 

the system setup is shown in the appendix. The following definitions are used to 

re-write Equation (5.1) above with difference equations. 

 

 ( ) ( ) ( )FE n CP n -AP n=  (5.2) 

 ( ) ( ) ( ) ( )( )1CV n CP n -CP n-1 CP 1 z−= = −  (5.3) 
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1 1
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Inserting these definitions into Equation (5.1) yields the following expression, 
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If the command position and actual position terms are collected equation (5.6) 

becomes, 
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For transparency, the following definitions are used to simplify equation  (5.6). 
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Using the above definitions yields,  
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The identified motor in equation (4.5) can be simplified by ignoring negligible 

terms as, 

 

 3 2

 20.9
s  + 101.4s  + 128.1s 

 (5.14) 

 

The amplifier is treated a simple low pass filter with a gain. The transfer function 

for combined motor and amplifier is: 

 

 A
C 3 2

K 2AP  20.9 =Res DAC 
CMDout 2 s  + 101.4s  + 128.1s 

f
s f

π
π

⎛ ⎞⋅ ⎛ ⎞⋅ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
. (5.15) 

 

Where, ResC is the resolution of the C-axis, DAC is the conversion factor of the 

digital to analog converter, f is the cutoff frequency of the amplifier (523 Hz), and 

KA is the amplifier gain. Equation (5.15) must be converted to discrete form to 

combine with equation (5.13). Conversion by a zero-order hold with a sample 

time of 440μs yields and rewriting in terms of CMDout yields, 

 

 
4 3 2

-8 2 -7 -8

z  - 3.192 z  + 3.609z  - 1.642z + 0.2253CMDout =AP
7.587 10 z  + 3.001 10 z + 7.42 10

⎛ ⎞
⎜ ⎟× × ×⎝ ⎠

 (5.16) 

 

In order to eliminate the CMDout term, equation (5.16) is combined with (5.13) to 

yield the following, 

 

88 



 

( ) ( ) ( )

( ) ( )

3 2

-8 2 -7 -8

-1 1 2 Is
Ps Vffs Affs 1

1I
Ps Ds1

  z  - 2.957z  + 2.915z - 0.9573AP
8.949 10 z  + 3.541 10 z + 8.755 10

KK Ix08 1 K 1-z K 1 2 CP
1

Ix08KK Ix08+ K Ix09 1 AP 
1

z z
z

z
z

− −
−

−
−

⎛ ⎞
⎜ ⎟× × ×⎝ ⎠

⎛ ⎞
⎜ ⎟= + + − + +
⎜ ⎟−⎝ ⎠

⎛ ⎞
⎜ ⎟− + −
⎜ ⎟−⎝ ⎠

 (5.17) 

 

Collecting terms for AP yields, 

 

( ) ( )
3 2

1Is
Ps Ds-8 2 -7 -8 1

Ix08K  z  - 2.957z  + 2.915z - 0.9573AP +K Ix08+ K Ix09 1
8.949 10 z  + 3.541 10 z + 8.755 10 1

z
z

−
−

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟+ −⎨ ⎬⎜ ⎟ ⎜ ⎟× × × −⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 

 ( ) ( ) ( )
-1 1 2 Is

Ps Vffs Affs 1

KK Ix08 1 K 1-z K 1 2 CP 
1

z z
z

− −
−

⎛ ⎞
⎜ ⎟= + + − + +
⎜ ⎟−⎝ ⎠

 (5.18) 

 

Therefore the transfer function for the controller and plant together is given by 

 

( ) ( ) ( )

( ) ( )

-1 1 2 Is
Ps Vffs Affs 1

3 2
1Is

Ps Ds-8 2 -7 -8 1

K
K Ix08 1 K 1-z K 1 2  

1AP

CP Ix08K  z  - 2.957z  + 2.915z - 0.9573
+K Ix08+ K Ix09 1

8.949 10 z  + 3.541 10 z + 8.755 10 1

z z
z

z
z

− −

−

−

−

+ + − + +
−

=

+ −
× × × −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ ⎛⎛ ⎞
⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎩ ⎝

⎞⎫

⎠⎭
 (5.19) 

 

Equivalently, 
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Ps Vffs Affs Is2

3 2

Ps Is Ds-8 2 -7 -8

z-1 2 1 z
K Ix08 1 K K K  

AP z z z-1

  z  - 2.957z  + 2.915z - 0.9573 z z-1CP
+K Ix08+Ix08K K Ix09

8.949 10 z  + 3.541 10 z + 8.755 10 z-1 z

z z− +
+ + +

=

+
× × ×

⎛ ⎛ ⎞ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎜ ⎟ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎝ ⎠ ⎠

⎧⎛ ⎞ ⎛ ⎛ ⎞ ⎛
⎜ ⎜ ⎟ ⎜⎨⎜ ⎟ ⎝ ⎝ ⎠ ⎝⎝ ⎠

⎞⎞
⎟⎟
⎠⎠
⎫
⎬

⎩ ⎭
 

  

This is the overall transfer function of the system. Simplifying the above 

expression and examining the pole locations as functions of the controller gains 

will lead to the gains that place the poles at the desired location.  

The desired locations of the poles are determined by the desired steady 

state and transient response characteristics. The desired settling time is no greater 

than 0.2 seconds, the desired system damping must be at least 0.8 so that the 

overshoot is less than 2% and to ensure no amplification at the systems natural 

frequency. This corresponds to a rise time of 0.166 sec. The specification for the 

settling time in the Laplace domain is, 

 

 4 4 0.2sec
0.8S

n n

t
ζω ω

= = =  (5.20) 

 

Therefore the natural frequency should be 25 rad/sec. The settling time 

performance specifications is mapped to the Z-domain by z = e(-ζωnT) where T is 

sampling time. Therefore the poles must lie inside the circle defined by the radius,  

 

 ( ) ( ) ( )0.8 25 0.00044 0.9912nTdr e eζω − ⋅ ⋅−≤ = =  (5.21) 
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The imaginary part of the dominant poles lies at an angle θ defined by, 

 

 ( )21 0.00044 0.0066d P nTθ ω ω ζ= = − =  (5.22) 

 

Therefore, the poles in the z-plane must be located at values less than 

0.9912±0.00653. When simplified, the denominator of Equation (5.19) is a 

seventh order polynomial in z and has a pole at 0 and 1 that is due to the 

digitization.  Although, the pole at 1 would yield a marginally stable system it is 

cancelled by a zero at 1 in the numerator. The denominator is in terms of the 

proportional gain, KP the integral gain, KI and the derivative gain, KD.  

 The controller gains that give the desired pole locations can be found by 

creating a polynomial with the desired poles and equating the coefficients of this 

polynomial to the coefficients of the seventh order polynomial denominator in 

Equation (5.19). Because both polynomials are monic there are six equations 

relating the coefficients. The coefficients of the denominator in Equation (5.19) 

are in terms of the three unknown gains, KP, KI, and KD. Four of the pole 

locations are specified by the desired performance characteristics and constraints 

of the system; the other three poles are unknown. Therefore, the three unknown 

poles and three unknown gains are determined by solving the six equations 

relating the coefficients of the polynomials. Therefore, only two of the poles can 

be uniquely placed, two are fixed at 0 and 1, and the other three are determined by 

solving the equations. The KP, KI, and KD gains are uniquely found by specifying 

91 



 

four of the pole locations. A MATALAB program was used to find the gains and 

remaining pole locations and is shown in the appendix. 

 The pole locations based on the transient specifications were at 

0.9912±0.00653. The two other poles intrinsic to the system were at 0 and 1. The 

other three poles determined by solving the system of equations were 0.23448, 

0.97469, and 0.000304537 indicating that the system is stable with the desired 

dominant poles. The gains determined by these poles where KP = 84,666, KI = 

1,586, and KD = 22,829. The response of the simulated system to a step input of 

1000 counts using these gains is shown in Figure 39. The figure shows that the 

desired settling time of 0.2 sec is met but the rise time is 0.192 sec which fails by 

approximately 14 % to meet the rise time specification of 0.166 sec. This is due to 

the fact that there is no control over the other three pole locations and they are 

placed by their relationship to the three gains and the other pole locations. 

However, the desired performance characteristics are close to being met and the 

step response indicates that the dominant poles have been placed as desired. 

Figure 39 also shows the step response from the gains determined by the 

experienced professional.  In comparison, the gains determined by the 

experienced professional were where KP = 200,000, KI = 1000, and KD = 15,000. 

The dominant pole locations with these gains are at [0, 0.99994, 

0.98840+0.014529, 0.98840-0.014529, 0.98840, 0.23406, 0.00042653]. A similar 

response can be attained by pole placement if the desired poles are changed.  
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Figure 39: Step response using pole placement gains 

 

A pole-zero map of the system with the gains determined by pole 

placement is shown in Figure 40 with the poles indicated by an ‘x’ and the zeroes 

indicated by a red ‘o’. A close-up of the pole locations is shown in Figure 41. The 

figures show the pole locations at [0, 1, 0.9912+0.00653, 0.9912-0.006530.23448, 

0.97469, 0.000305] and that there is pole-zero cancellation at 0 and 1. 

The feasible pole locations can be determined by observing the pole-zero 

map for a range of gains. To observe how specific ranges of gains affect the 

system the proportional, integral, and derivative gains were varied individually to 

see their effect on the overall pole locations. In addition, the effect of each gain on 

the maximum acceleration constraint of 245o/s2 is investigated. 
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Figure 40: Pole-zero map of system with pole placement approach 

 

 

Figure 41: Close-up of pole-zero map 
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The proportional gain’s effect on the pole locations was investigated by 

holding the integral and derivative gains constant at 1,000 and 15,000 

respectively, while the proportional gain was varied. The result from varying the 

proportional gain from 1 to 1,000,000 in increments of 5,000 is shown in Figure 

42. Close-ups, shown in Figure 43 and Figure 44, show that the poles near zero 

are only slightly affected but the poles near 1 are significantly affected by varying 

KP. Figure 42 through Figure 44 show that the locations of the zeros are not 

affected by the proportional gain. The effect of the proportional gain on the 

maximum acceleration is shown in Figure 45. Figure 45 shows that the 

proportional gain should be less than 475,000 so that the max acceleration 

limitation is not exceeded. 

The effect of the integral gain was investigated by holding the 

proportional and derivative gains constant at 200,000 and 15,000 respectively 

while varying the integral gain from 1 to 1,000,000 in increments of 5,000. Plots 

of the pole and zero locations as KI is varied are shown in Figure 46 through 

Figure 48. The plots show that KI moves the location of the zeros and dominant 

poles significantly and can result in an unstable system for large values of KI. The 

value of KI where the system becomes unstable is approximately 150,000 with the 

proportional and derivative gains held constant. Figure 49 shows that the integral 

gain does not affect the max acceleration limits but this is because controller only 

integrates when the velocity is zero 

The derivative gain’s effect on the system was investigated by holding the 

proportional and integral gains constant at 200,000 and 1,000 respectively, while 
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varying the derivative gain from 1 to 1,000,000. Plots of the pole and zero 

locations as KD is varied is shown in Figure 50 through Figure 52. These plots 

show that the derivative gain does not move the zero locations and has very little 

effect on the poles closest to 0. However, the poles near 1 are significantly 

affected by the derivative gain. The plots indicate that large values for KD can 

result in an unstable system. The value of KD where the system becomes unstable 

is approximately 350,000 with the proportional and integral gains held at the 

constant values. Figure 53 shows that the derivative gain must be greater than 

7000 so that the acceleration limit is not exceeded. 

 

 

Figure 42: Pole locations as KP is varied from 1 to 1,000,000 

 

 

96 



 

 

Figure 43: Close up of pole locations as KP is varied from 1 to 1,000,000 

 

 

 
Figure 44: Dominant poles affected by KP 
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Figure 45: Acceleration limit related to KP 

 

 

Figure 46: Pole locations as KI is varied from 1 to 1,000,000 
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Figure 47: Close up of pole locations as KI is varied from 1 to 1,000,000 

 

 

Figure 48: Dominant poles affected by KI 
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Figure 49: Acceleration limit related to KI 

 

Figure 50: Pole locations as KD is varied from 1 to 1,000,000 
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Figure 51: Close up of pole locations as KD is varied from 1 to 1,000,000 

 

Figure 52: Dominant poles affected by KD 
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Figure 53: Acceleration limit related to KD 

 

In summary, the plant identified by system identification was used to 

determine the closed loop transfer function of the controller-plant system. The 

dominant poles of this transfer function were placed by pole placement and the 

gains were determined. The system response using the pole placement approach 

matches the response to the current tuning approach well. This suggests that the 

tuning process can be replaced by proper system identification and pole 

placement. The pole-zero plots as functions of the proportional, integral, and 

derivative gains suggest that there is a wide range of possible gain combinations 

that will result in placing the dominant poles in desired locations. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

The goal of this research was to use model-based control procedures to 

achieve the desired performance of the Universal Measuring Machine. In order to 

use to use model based control, a model was constructed by mathematically 

modeling the system and by using system identification. The model identified 

using system identification was used for model-based control via pole-placement. 

The results of Chapter III demonstrate that a considerable level of effort is 

required to determine the parameters for this model. Theoretical and experimental 

methods were used to determine the unknown parameters of the R- and C-axes. A 

simulation of the C- and R- axes verifies the results of mathematical modeling 

and the theoretical and experimental parameter determination. The simulation and 

actual data from the R- and C-axes were compared and indicate that the 

parameters are identified accurately by this approach. The error in simulated data 

for the R-axis is approximately 6%. The error in simulated data for the C-axis is 

approximately 4% which shows that the simulation closely represents the actual 

data.

 



 

This approach requires the use of theoretical and assumed models, 

manufacturer data sheets, tailored experiments, post-processing of data, machine-

down time, knowledge of gains, machine parameters, and the use of estimated 

values. Although the model is able to reproduce the actual data well, this 

approach is time consuming and can be replaced by proper system identification.  

A deterministic model for the C-axis is determined using system identification 

in Chapter IV. An ARX model is assumed with orders attained from the a priori 

knowledge of the systems’ dynamic model structure. The model built by using the 

experimental procedures of Chapter III and the model built via system 

identification  in Chapter IV show extremely close agreement. This indicates that 

the model built by system identification can replace the model based on 

mathematical modeling if the proper input-output data is obtained. The model 

identified by system identification matches the actual data recorded from the C-

axis well. These results are summarized in Figure 33. The ARX model with a 

delay of 2 samples results in a mean error of 0.41%. The ARX model with a delay 

of 3 samples results in a mean error of 0.40%. The model built by system 

identification in the noise-free simulation shows a 10.3% and 1.6% percent error 

in the identified poles when compared to those used to simulate the system. 

Control design using the identified model shows acceptable performance when 

implemented on the simulated model.  

Use of system identification to determine a model for one of the axes requires 

considerably less effort and time than performing the manual parameter 

estimation approach of Chapter III. System identification requires input-output 
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data that is replete with system information. A white noise input is selected as the 

input to ensure that the necessary frequency content was present in the data. 

However, the real system may not lend itself well to this type of input and care 

must be taken to work within the limitations of the actuators and power supplies. 

Other options for inputs are discussed in Chapter II. System identification works 

well in the simulations and suggests that implementation on the actual system will 

show similar results.  

The model built by system identification is used for analytical control 

design by pole-placement. In Chapter V the desired dominant poles are placed 

according the desired damping ratio, settling time, and rise time. The transient 

response with these poles meet the damping and settling time constraints but the 

rise time error is approximately 14%. The response of the system using pole-

placement and the response determined by expert tuning is shown in Figure 39. 

The results of Chapter V indicate that model-based control is achievable using a 

model built by system identification and that the tuning process can be replaced 

by pole-placement.  

Pole-placement has some distinct advantages over manually tuning the 

system. Pole-placement is analytical and does not require the use of the actual 

machine. A range of pole locations are obtained by varying the gains or desired 

dominant pole locations as the pole-zero maps of Chapter V demonstrate. Simply 

using pole-placement with a set of desired dominant poles does not necessarily 

guarantee desired performance as demonstrated by the error in rise-time. The 

dominant poles of the system are placed in the desired locations but there is no 
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freedom to place the other poles. In addition, the gains resulting from selecting a 

set of desired poles are not always physically realizable due to machine 

limitations. Manually tuning the system by an expert with knowledge of the 

desired systems response and machine limitations results in the desired 

performance; however, this requires expert knowledge and is time-consuming. 

The pole-placement approach demonstrates that the entire control design process 

can be automated.  

 

Recommendations 

This thesis demonstrates that model based control is not only feasible but 

suggests that it can be automated for the UMM. The modeling process is time 

consuming due to unknown system parameters and should be done by system 

identification. Accurate models of the UMM axes can be determined by system 

identification. The input and output data collected for system identification must 

contain enough information to identify the system accurately. The input signal to 

be used for identification must at least contain frequency content throughout the 

systems standard operation range and ideally cover the systems bandwidth. A 

variety of inputs are available to excite the system and their frequency content can 

be tested by the crest factor. Band-limited white noise should be used if possible 

but other inputs such as a pseudo-random binary signal can also be used and are 

easier to implement. A long enough data record should be collected so that the 

low frequency dynamics of the system are captured. The sampling rate must be 

selected so that there are enough data points during the transient response of the 
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system. The recommended sampling rate is 10 times faster than the systems 

bandwidth which ensures 5-8 data points over the rise-time in a step-response 

(Ljung and Glad, 1994). This corresponds to selecting a sampling rate that will 

accurately capture the dominant time constants of the system. 

The current control approach of tuning the UMM can be replaced by pole 

placement. Ranges of acceptable gains should be determined as well as the 

limitations of the machines actuators, power supply, and acceleration limits so 

that these limitations are taken into account when placing the poles. The 

identification and pole-placement approach presented here can be automated and 

used on-line. An algorithm should be created to perform system identification on 

the systems axes and from the knowledge of the controller structure and system 

limitations place the dominant poles on-line. This would allow the machine to 

update appropriate gains for each axis without additional tuning and allow time-

varying process parameters to be identified so that the machine performs 

optimally.  
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APPENDIX 

MATLAB/SIMULINK PROGRAMS 
 
 

 

Figure 54: Diagram of UMM controller and motor

 



 

 

Figure 55: Diagram of PMAC 
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Figure 56: Diagram of motor model 
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% Calculation of poles and P,I,D gains 
clear all  
clc 
syms  f g h x Kps Kds Kis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Desired Poles  
% Desired_Poles = [0 1 0.9912+0.00653i 0.9912-0.00653i f g h] 
 a = 0 
 b = 1 
 c = 0.9912+0.00653i 
 d = 0.9912-0.00653i 
% These are the other calculated poles: 
% roots: 0.00030453654173727358779964368097381 
%        0.97469199955619182237116602553891 
%        0.23448101090207090404103433078012 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  These are the actual poles 
% a =  0                     
% b =  0.99993903080093                     
% c =  0.98839786307770 + 0.01452941588949i 
% d =  0.98839786307770 - 0.01452941588949i 
% f =  0.98167666085888                     
% g =  0.23406217499354                     
% h =  0.00042652622514 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Pnml = (x-a)*(x-b)*(x-c)*(x-d)*(x-f)*(x-g)*(x-h) 
collect(Pnml,x) 
% This is the polynomial created from the four desired pole locations (roots) 
% S = solve('(-1864/625-f-g-h) = -4.192777391',... 
%     '(29649200809/10000000000+1864/625*f-(-1864/625-f)*g-(-1864/625-f-g)*h) = 0.1000000000e-
16*(0.2189103072e12*Kps+0.2189103072e12*Kps*Kis+0.6803819703e18+0.2189103072e12*Kps*Kds)',... 
%     '(-9825200809/10000000000-29649200809/10000000000*f-
(29649200809/10000000000+1864/625*f)*g-(29649200809/10000000000+1864/625*f-(-1864/625-f)*g)*h) 
= 0.1000000000e-16*(0.6472514509e12*Kps+0.8661617581e12*Kps*Kis-
0.5254778029e18+0.4283411437e12*Kps*Kds)',... 
%     '(9825200809/10000000000*f-(-9825200809/10000000000-29649200809/10000000000*f)*g-(-
9825200809/10000000000-29649200809/10000000000*f-(29649200809/10000000000+1864/625*f)*g)*h) = 
0.1000000000e-16*(-0.1299231825e13*Kps*Kds-
0.6519803747e12*Kps+0.2141813835e12*Kps*Kis+0.1869206515e18)',... 
%     '(-9825200809/10000000000*f*g-(9825200809/10000000000*f-(-9825200809/10000000000-
29649200809/10000000000*f)*g)*h) = 0.1000000000e-16*(-0.2254707977e17+0.4377989910e12*Kps*Kds-
0.2141813835e12*Kps)',... 
%     '9825200809/10000000000*f*g*h = 0.2141813835e-5*Kps*Kds') 
% This is the IDENTIFIED TF Model denominator including amplifier 
% 1.000000000*z^7 
% -4.191877547*z^6 
% +0.8000000000e-
16*(0.3034822324e11*Kps+0.3034822324e11*Kps*Kis+0.8501138251e17+0.3034822324e11*Kps*Kds)*z^5 
% +0.8000000000e-16*(0.8970251888e11*Kps+0.1200507421e12*Kps*Kis-
0.6564309966e17+0.5935429565e11*Kps*Kds)*z^4 
% +0.8000000000e-16*(-0.1800745452e12*Kps*Kds-
0.9037202632e11*Kps+0.2967871580e11*Kps*Kis+0.2334592912e17)*z^3 
% +0.8000000000e-16*(-0.2815742638e16+0.6069331053e11*Kps*Kds-0.2967871580e11*Kps)*z^2 
% +0.2374297264e-5*Kps*Kds*z 
  
S = solve('(-1864/625-f-g-h) = -4.191877547',... 
    '(29649200809/10000000000+1864/625*f-(-1864/625-f)*g-(-1864/625-f-g)*h) = 0.8000000000e-
16*(0.3034822324e11*Kps+0.3034822324e11*Kps*Kis+0.8501138251e17+0.3034822324e11*Kps*Kds)',... 
    '(-9825200809/10000000000-29649200809/10000000000*f-
(29649200809/10000000000+1864/625*f)*g-(29649200809/10000000000+1864/625*f-(-1864/625-f)*g)*h) 
= 0.8000000000e-16*(0.8970251888e11*Kps+0.1200507421e12*Kps*Kis-
0.6564309966e17+0.5935429565e11*Kps*Kds)',... 
    '(9825200809/10000000000*f-(-9825200809/10000000000-29649200809/10000000000*f)*g-(-
9825200809/10000000000-29649200809/10000000000*f-(29649200809/10000000000+1864/625*f)*g)*h) = 
0.8000000000e-16*(-0.1800745452e12*Kps*Kds-
0.9037202632e11*Kps+0.2967871580e11*Kps*Kis+0.2334592912e17)',... 
    '(-9825200809/10000000000*f*g-(9825200809/10000000000*f-(-9825200809/10000000000-
29649200809/10000000000*f)*g)*h) = 0.8000000000e-16*(-0.2815742638e16+0.6069331053e11*Kps*Kds-
0.2967871580e11*Kps)',... 
    '9825200809/10000000000*f*g*h = 0.2374297264e-5*Kps*Kds') 
  
Kps = S.Kps; 
Kds = S.Kds; 
Kis = S.Kis; 
r1 = S.f 
r2 = S.g 
r3 = S.h 
  
Kp = Kps*2^19  
Kd= Kds*2^7  
Ki = Kis*2^23  
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