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ABSTRACT 
 

 

An array of health concerns have been attributed to oxidative DNA damage from 

the hydroxyl radical (•OH), and the presence of the most biologically available redox-active 

metals, iron and copper, perpetuate the production of this radical through the Fenton and 

Fenton-like reactions, respectively.  The concentrations at which flavonol and polyphenol 

antioxidants prevent 50% of DNA damage (IC50) were measured using gel electrophoresis 

assays upon Fe(II)/H2O2- and Cu(I)/H2O2-mediated DNA damage (Chapter 2).  Results 

show that catechol- and gallol-containing antioxidants differ greatly in preventing DNA 

damage by Cu(I)/H2O2, compared to Fe(II)/H2O2, behavior that was explained using 

electron paramagnetic resonance spectroscopy.  Semiquinone and other radical formation 

indicated that some polyphenol compounds could promote copper redox cycling, leading to 

increased DNA damage and prooxidant activity.  DNA damage assays also revealed that 

hydroxy-keto functional groups participate in preventing iron-mediated DNA damage 

prevention depending on the type of hydroxy-keto group present in the flavonolic 

compound (Chapter 2).   

Concentrations of labile iron and copper are elevated in patients with neurological 

disorders, causing concern about metal-neurotransmitter interactions.  Both catecholamine 

and amino acid neurotransmitters are known to bind these metals, and their antioxidant 

properties have been previously examined.  To further investigate the extent to which metal-

binding affects the antioxidant activity of both neurotransmitter types  their iron-mediated 

DNA damage inhibition was quantified, UV-vis studies were used to detect iron and copper 

binding, and cyclic voltammetry was used the determine redox potentials for these 
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neurotransmitters with and without iron (Chapter 3).  In contrast to the amino acid 

neurotransmitters, catecholamine neurotransmitters prevent iron-mediated DNA damage 

and are electrochemically active.  When bound to iron, these catecholamines shift redox 

potentials outside the range for iron(II) generation of •OH. Curcumin, a novel preventative 

treatment for Alzheimer’s symptoms, also demonstrated the ability to inhibit iron- and 

copper-mediated DNA damage (IC50 values of 28 and 55 μM, respectively) as well as 

versatile redox activity, indicating that metal binding can explain most of the antioxidant and 

prooxidant activity of this compound.  These mechanistic insights into metal binding as an 

antioxidant mechanism will help in identifying antioxidants to treat and prevent 

neurodegenerative diseases. 
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CHAPTER ONE 

INTRODUCTION 

Antioxidants and the Fenton Reaction 

 Antioxidants are consumed daily worldwide, yet little is known about their 

mechanistic behaviors in biological systems.  For example, flavonoids, one class of naturally 

occurring polyphenolic antioxidants, are found in chocolate, vegetables, fruits, and wines, 

and the average intake of flavonoids from all sources is 23 mg/day [1].   The estimated total 

polyphenol consumption for men and women is 296.9 and 260.0 mg/day, respectively, from 

edible portions of fruits and vegetables [2].  Tea, the second most consumed drink in the 

world (aside from water) [3, 4], is rich in antioxidants such as epigallocatechin gallate 

(EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), and epicatechin (EC) [5] that 

have proven to be effective against cellular oxidative stress [6-8].  Antioxidants have stepped 

into the limelight and have become a selling point for juice and tea advertisements due to 

their health benefits, but many questions are still to be answered regarding how these 

compounds exert their antioxidant effects.   

One definition of an antioxidant is a compound that prevents or delays oxidation of 

an oxidizable substrate when the antioxidant is in low concentrations compared to the 

oxidizable substrate [9].  Reactive oxygen species (ROS) are generated in many forms and 

cause cellular oxidative damage and oxidative stress that can be moderated by antioxidants. 

Consequences of this oxidative stress include DNA damage, enzyme inactivation, and the 

alteration of lipid-protein interactions leading to Parkinson’s disease, cancer, heart disease 

and stroke, and Alzheimer’s disease [10, 11].  ROS are often derived from molecular oxygen, 

O2 [12], and created through many processes, including metal ion oxidation [13] and 
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irradiation [14].  One very common ROS is the hydroxyl radical (•OH), which is typically 

produced through Fenton (or Fenton-like) reactions by Fe(II) or Cu(I) [15] (Reaction 1).  

Hydroxyl radical generation by Fe(II) and Cu(I) occurs frequently in mitochondria, 

macrophages, and perosisomes [12].  

Fe(II) or Cu(I) + H2O2 → Fe(III) or Cu(II) + •OH + -OH  (1) 

Both the DNA backbone [16, 17] and the nucleobases [18] can be oxidatively 

damaged by metal-generated •OH.  Specifically, the 5’-G of a 5’-GG-3’ doublet is the most 

susceptible nucleotide sequence to oxidative nucleobase damage, and guanine is the most 

susceptible to oxidative nucleobase damage, regardless of position [19].  In fact, iron-

mediated DNA damage is the most common source of damage in prokaryotes and 

eukaryotes and is the primary cause of cell death under oxidative stress conditions for both 

types of cells [20].  

 

Relevance of Metals in Disease 

In the human brain, the concentration of both labile and bound iron is 

approximately  34 mM [21].  The concentration of labile iron in the human brain has not 

been reported, however, non-protein-bound iron in a lamb’s brain was found to be 10.7 μM 

[22].  If a lamb’s brain is similar to a human’s, the implication is that labile iron is nearly 15 

times more prevalent in the brain than labile copper, which is present in a concentration of 

0.2 μM [23].  It is not currently known whether mis-regulated labile iron or copper plays a 

more significant role in cellular ROS damage.  However, the imbalance of these biologically 

relevant metals observed in disease states indicates importance of studying the in vitro 
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consequences of metal-antioxidant interactions to gain insight into complex in vivo biological 

systems.   

The closely regulated balance of metal ions in cells for both human and animals is 

fundamental to health.  Many studies strongly suggest correlations between metal 

concentration imbalance and disease.  Elevated total iron levels in serum have been 

associated with an increased risk of myocardial infarction [24] as well as restless leg 

syndrome [25]. In a recent review, Jomova and Valko discuss pro-mutagenic DNA base 

modifications that result from metal-mediated DNA damage and link cellular metal ions to 

cancer development [26]. This review also concludes that protection from metal-mediated 

damage can occur by chelating Fe(II) to prevent ROS-forming reactions, to keep it in a 

redox state, Fe(III), that is unable to reduce oxygenated species, or to trap free radicals [26].   

Total iron concentrations are elevated in several areas of the brain in those who experience 

migraines [27].  Labile iron serum levels are about the same in depressed patients as with 

people who are not depressed (82 μM and 93 μM, respectively), but labile copper 

concentrations differ greatly (3.9 μM and 0.2 μM, respectively) [23].  This contrast between 

labile copper and iron concentrations may imply that copper produces a higher quantity of 

ROS compared to iron, due the fact that Cu(II) is more easily reduced than Fe(III) [28] to 

increase hydroxyl radical formation in vivo. 

Recent research suggests that copper abundance also plays a direct role in 

Alzheimer’s disease.  Copper can bind to His13, His14, His6, and Tyr10 on the amyloid-β 

protein (Aβ) [29], causing oxidative damage that leads to neurotoxicity [30].  Elevated levels 

of both iron and copper have been detected by electron paramagnetic resonance (EPR) 

spectroscopy in patients with atherosclerosis compared to healthy patients (0.370 versus 
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0.022 nmol iron/mg tissue and 7.51 versus 2.01 pmol copper/mg tissue, respectively) [31].  

Total copper concentration in the gray matter of the human brain is about 40 μM, with the 

largest concentration detected in the hippocampus [32]; the concentration of labile copper in 

these areas is 0.7 μM [33].  In patients with Alzheimer’s disease, the average concentration of 

labile copper in the brain tissue was found to be 4.9 μM [33], which may be a contributing 

factor in development of this disease.  Aggregates of Aβ protein have also been shown to 

increase H2O2 concentrations [34], which will further perpetuate hydroxyl radical production 

and may be yet another reason for disease development, especially in patients with elevated 

labile metal concentrations. 

 

Polyphenols as Antioxidants/Prooxidants in Relation to Structure and Chemical Environment 

 Many polyphenol compounds prevent oxidative damage to plasmid DNA [20, 35-37] 

and to cells [38-40].  Among these polyphenols are flavonols [41, 42], flavanols [43], and 

anthocyanins [44] that often contain catechol, gallol, and keto-hydroxy functional groups [20, 

35] (Figure 1.2).  The potential for a compound to have prooxidant properties can be 

dependent on the presence of metal ions.  Redox cycling is known to promote radical 

formation by electron transfer (NAD(P)H is a common biological source of electrons) that 

can generate O•
2
– and then becomes damaging •OH in reactions facilitated by metal ions [45].  

In the presence of copper, the known antioxidants [46-48] resveratrol [49] and ascorbic acid 

[50] promote DNA damage, reinforcing how great a role chemical environment plays in 

antioxidant/prooxidant behavior.  

Flavonoids can have metal-binding catechol, gallol, and keto-hydroxy functional 

groups within their structure. For example, if the basic flavonol structure (Figure 1.1) has a  
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Figure 1.1. Structures of common polyphenolic classes and metal-binding functional groups 
(in box). 

 

3’-OH and 5’-H, the structure is quercetin, which is a flavonol with a catechol group on the 

B-ring as well as keto-hydroxy groups on the A and C rings.  Catechols and gallols have very 

different antioxidant behavior and differences in metal binding.  Methyl-3,4,5-trihydroxyl-

benzoate (MEGA) and methyl-3,4-dihydroxybenzoate (MEPCA) are examples of gallol and 

catechol compounds that differ only by one hydroxyl group, yet behave quite differently in 

preventing DNA damage.  The concentration at which MEGA prevents 50% of  iron-

mediated DNA damage (IC50) is over 4 times lower than that for MEPCA [20]. Quercetin 

and myricetin are also catechol and gallol analogs, respectively, and myricetin effectively 

prevents over 5 times more iron-mediated DNA damage than quercetin at the same 

concentration (IC50 values of 2.0 μM vs. 10.7 μM, respectively) [20].  Thus, simply by varying 
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one hydroxyl group, antioxidant behavior in the presence of a metal ion can differ greatly.  

Not only do synthetic and dietary compounds fall under the polyphenolic structural groups 

already mentioned, but also certain endogenous compounds in humans such as hormones 

and neurotransmitters.  

 

Radical Scavenging Assays 

 The most common method for analyzing antioxidant potency is the use of radical 

scavenging assays.  Flavonoid antioxidants have been studied thoroughly using methods 

such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and are potent radical 

scavengers [51].  Catecholamine neurotransmitters have also been studied for their 

antioxidant activity using such assays.  A recent study analyzed the abilities of catecholamine 

neurotransmitters to scavenge radicals through either a hydrogen atom transfer mechanism 

or a metal-ion-coupled-electron transfer with Mg(II) [52].  Using ultraviolet-visible (UV-vis) 

spectroscopy and gel electrophoresis, it was determined that dopamine had the highest 

radical scavenging ability compared to other catecholamines, preventing radical-induced 

DNA damage most efficiently in the presence of Mg(II) [52]. 

Another study analyzed the bark extract of Spondias pinnata (a fruit plant from 

Thailand that is rich in flavonoids) using a variety of radical scavenging techniques, including 

nitric oxide, peroxynitrite, hydrogen peroxide, and singlet oxygen scavenging assays [53].  

The total antioxidant activity of the extract was determined its ability to scavenge the 2,2'-

azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) cationic radical (ATBS•+) in comparison to 

the well-known antioxidant standard 6-hydroxy-2,5,7-tetramethylchroman-2-carboxylic acid 

(Trolox), a water-soluble vitamin E analog, to calculate the Trolox equivalent antioxidant 
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concentration (TEAC) value [53].  Although radical scavenging assays are useful, they do not 

address the role of metal ions that may generate ROS in biological systems. 

 

Neurotransmitters 

The anti- or prooxidant behavior of neurotransmitters is still an active area of 

research.  Dopamine (DA), epinephrine (EP), and norepinephrine (NE) are catecholamine 

neurotransmitters (Figure 1.2), and all three are monoamine polyphenol compounds.  An 

interspecies comparison shows that DA is found at higher concentrations than EP and NE 

in most animals, including humans (Table 1.1).  The levels of these neurotransmitters in the 

brain (1-10 μM) are in quantities at or near IC50 values the Brumaghim group has measured 

for other catechol and carboxylic acid compounds for both iron- [10, 13] and copper-

mediated DNA damage prevention [10, 35] (Table 1.1).    Three additional monoamine 

neurotransmitters of interest are γ-aminobutyric acid (GABA), glutamate (Glu), and glycine 

(Gly) (Figure 1.2), all of which are monoamine carboxylic acid neurotransmitters.  A  
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Table 1.1. Concentrations of neurotransmitters in Figure 1.2. References are given in 
brackets. 
Tissue Concentration Range for Each Compound (µM) 

Dopamine Norepinephrine Epinephrine GABA Glycine Glutamate 

Cat 
Brain N/R N/R N/R 0.00158a 

[54] 
0.489a 
[54] 

0.901 a 
[54] 

Swine 
Brain N/R N/R N/R N/R N/R 9.65-7.57 a 

[55] 

Rat 
Brain 

1.0-2.7 
[56] 

0.914 - 7.76 a 
[57] 

0.56 - 1.69 a 
[57] N/R N/R 0.285-21.9 

[58, 59] 

Mouse 
Brain 

8.6 a 
[60] 

2.3 a 
[60] N/R N/R N/R N/R 

Human 
Plasma N/R 0.00068-0.0011 

[61] 

0.000095-
0.00017 
[61] 

N/R 0.12-0.32  
[62]  

0.5 
[63] 

Human 
Brain 

0.42-8.9 a 
[64] 

0.00025-0.014 a 
[65] N/R 1840 

[66] N/R N/R 

 N/R = not reported; a used wet brain density conversion from [67]. 

 

comparison between concentrations of these three neurotransmitters shows that GABA is 

by far the most concentrated in the human brain, and that Gly and Glu are similar in 

abundance to the catecholamines (Table 1.1).   

The concentration of total copper in the substantia nigra, where dopamine is produced 

in the brain [68], can be as high as 0.4 mM [69], increasing the potential for interactions 

between catecholamine compounds and copper.  Gene expression disruption has been 

proposed to occur in the presence of presence of both DA and 10-20 μM of either Fe(III) or 

Cu(II) [70], near the biological concentrations for both metal ions.  Direct comparisons 

between DA, EP, and NE show that DA produces the most oxidative DNA damage 
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products, including 8-hydroxydeoxyguanosine (8-oxodG), especially in the presence of 

Cu(II) [70, 71].  These results that show the damaging effect DA and copper ions can have 

on DNA has also been proven and quantified by the Brumaghim group; biologically relevant 

concentrations for compounds have a range of 0.3-10.0 μM [72-74], yet at 10 μM, DA was 

found to damage plasmid DNA in the presence of Cu(I) [35]. Thus, established research has 

shown the presence of both dopamine and metal ions, specifically copper, to cause 

significant DNA damage. 

GABA is an amino acid neurotransmitter responsible for mood regulation [75].  The 

average concentration of GABA in the occipital cortex of the brain for patients in the 

follicular stage of premenstrual dysphoric disorder (PMDD) is 850 μM compared to 1840 

μM in control patients [66] (Table 1.1), suggesting a correlation between the changes in 

mood and GABA levels.  It has also been suggested that glutamate levels in the brain also 

influence behavior in menstruating women [76].  Although glutamate and glycine levels are 

not as high in the human brain as GABA, they are in the micromolar range for cats (0.901 

μM and 0.489 μM, respectively) [54] and swine (9.65 μM glutamate) [55] (Table 1.1). 

GABA-rich extract obtained from fermented seaweed has been shown to have 

potent antioxidant properties [77].   However, tea enriched with GABA was found to 

promote oxidative DNA damage in the presence of Cu(II), whereas GABA alone did not 

[78]. Further investigation concluded that Cu(I) must be produced in the oxidative DNA 

damage process, suggesting a reductive property of GABA [78].  GABA has also been 

crystallized coordinated to Cu(II) [79], indicating that copper binding may affect GABA 

antioxidant properties. 
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The most structurally simple amino acid, glycine (Gly), is also a neurotransmitter  

and binds Fe(III) with the formation constant KFe(III)-Gly = 2.0 × 102 L·mol-1 [80].  Iron-

glycine supplementation increases superoxide dismutase and catalase antioxidant enzyme 

activity in vivo [81].  Both Cu(I)-glycine (binding through the amino nitrogen) [82] and Cu(II)-

glycine (binding through the amine nitrogen and the carboxylate oxygen in a distorted 

square-pyramidal geometry) [83] complexes have been reported.  Glycine was found to be an 

ineffective antioxidant in the presence of iron (preventing only 31.9% of DNA damage at 

10,000 μM), but prevented oxidative damage in the presence of copper at a much lower 

concentration (50% of DNA damage was prevented at 20.2 μM) [84].  The significant 

differences in behavior of glycine by changing the metal ion responsible for •OH generation 

emphasizes the importance of the metal ion in oxidative damage and its prevention.  

Glutamate is the major excitatory neurotransmitter for motor functions, but in the 

presence of increased labile copper levels, decreased cortical excitability in patients with 

depression has been documented.  This effect suggests disruption in glutamatergic 

neurotransmission from oxidative stress [23].  Glutamate’s role as an agent involved in the 

regulation of oxidative stress is still relatively vague, especially since many of the publications 

deal with glutamate-containing compounds or glutamate receptors, not glutamate itself.  It is 

known, however, that glutamate inhibits lipid peroxidation damage to the heart in vivo [85].  

A direct comparison of antioxidant (and prooxidant) effects with neurotransmitter structure 

with both iron and copper will help establish the biological functions of these compounds 

that will be invaluable to understanding and treating neurological diseases. 
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Implications and Completed Research for Selected Compounds 

As previously mentioned, flavonols and other polyphenols are known antioxidants, 

but the specifics regarding how flavonol-metal binding affects antioxidant activity are 

unclear.  To investigate the importance of metal binding for polyphenol prevention of metal-

mediated DNA damage, derivatives of the compounds of interest lacking metal binding sites 

were tested to determine the importance of metal coordination on the antioxidant activity of 

these compounds. Chromones are derivatives of flavonols that do not have a B-ring (Figure 

1.1) but do have keto-hydroxy binding groups.  The ability of these compounds to prevent 

iron-mediated DNA damage was examined in A.M. Verdan, S.W. Hsiao, C.R. García, W.P. 

Henry, J.L. Brumaghim, J. Inorg. Biochem. 105 (2011) 1314-1322.  We determined that 3-

hydroxychromone more effectively prevents iron-mediated DNA damage compared to 5-

hydroxychromone and also has much faster kinetics of Fe(II) oxidation [42].  Specifics of 

this work are described in Chapter 2. 

Not only do flavonols show a wide difference in antioxidant behavior from structure 

variations, but also their antioxidant activity differs widely depending on the metal ion 

causing the oxidative damage.  Using EPR spectroscopy, we discovered that the low IC50 for 

copper-mediated DNA damage prevention by MEPCA may be due to a suppression of 

radical formation in a redox cycling mechanism (N.R. Perron, C.R. García, J.R. Pinzón, M.N. 

Chaur, J.L. Brumaghim Inorg. Biochem. 105 (2011) 745-753). With the prooxidant 

compound EC, several different radicals are formed (not only •OH adduct, but also •H 

radical), in greater quantity compared to the antioxidant MEPCA [35].  These results are also 

discussed in Chapter 2.  
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 Metal binding is, therefore, proposed to be the most active antioxidant mechanism 

of the selected neurotransmitters and the related compounds discussed in this thesis.  If this 

is the case, understanding the interactions of neurotransmitters and metals is crucial to 

understanding neurodegenerative diseases and their treatments.  Interactions between 

neurotransmitters and both iron and copper vary greatly; catecholamines (dopamine, 

epinephrine, and norepinephrine) show iron and copper binding vis UV-vis spectroscopy, 

and show significant electrochemical activity both unbound and bound to iron (Chapter 3). 

The observed metal-binding activities explain why the catecholamines effectively prevent 

DNA damage in the presence of iron.  In contrast, amino acid neurotransmitters (glycine, 

glutamate, and γ-aminobutyric acid), are inactive electrochemically and do not show binding 

to iron or copper, conclusions which explain their inactivity in preventing DNA damage in 

the presence of iron.  With the rising use of antioxidant as a buzzword for advertisements and 

no absolute cure for diseases tied to increased biological metal levels, understanding the 

specifics of antioxidant structure and how it ties to metal binding and behavior is imperative 

to furthering the science of healthy living.   
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CHAPTER TWO 

INVESTIGATING THE METAL BINDING PROPERTIES OF 

HYDROXYCHROMONES, CATECHOLS, GALLOLS, AND CURCUMIN ON 

ANTIOXIDANT AND PROOXIDANT ACTIVITES IN VITRO FOR DNA DAMAGE 

 

Labile Iron and Copper Cause DNA Damage and Cell Death 

Non-protein-bound (labile) copper and iron concentrations are tightly controlled in 

the body [1-3].  Superoxide reacts with H2O2 to produce hydroxyl radical (•OH) through a 

Haber-Weiss reaction (reaction 1) [4]; however, the Haber-Weiss reaction is 

thermodynamically unfavorable in biological systems, necessitating a catalyst [5].  When iron 

is the catalyst, the reaction is then considered the Fenton reaction (reduction and oxidation 

reactions 2 and 3, respectively) [5]. Since about 70% of iron (bound or unbound) in 

atherosclerotic plaque tissue is Fe(III) at any given time [6], the cycle will become catalytic.   

 

O2
•– + H2O2 → O2 + –OH + •OH                 (1) 

Fe(III) + O2
•– → Fe(II) + O2                         (2) 

Fe(II) + H2O2 → Fe(III) + –OH + •OH        (3) 

Cu(II) + O2
•– → Cu(I) + O2                          (4) 

Cu(I) + H2O2 → Cu(II) + –OH + •OH         (5) 

 

When copper ions are the catalyst for the Haber-Weiss reaction, the reaction is then 

considered a Fenton-like reaction (reduction and oxidation reactions 4 and 5, respectively) 
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[7].  Understanding hydroxyl radical formation is important because it is one of the few ROS 

capable of directly damaging most biomolecules [7]. 

To determine the effects of labile metal-ion-generated oxidative damage to DNA 

and a compound’s ability to act as either a pro- or antioxidant to enhance or prevent this 

damage, the reduced forms of the most bioavailable metals (Fe(II) and Cu(I)) can be 

combined with plasmid DNA in an environment that mimics biological conditions.  Using 

gel electrophoresis for these plasmid DNA damage assays, DNA damage can be quantified 

from the bands of damaged and undamaged DNA bands on the gel.   

In these experiments, Fe(II) concentrations are 2 μM, well within cellular labile iron 

levels (1 × 10-5 – 25 μM [8, 9], Table 2.1).  The concentration of 6 μM Cu(I) used in this 

DNA damage assay is also within the range found in human cells (0.2 - 80 μM [8, 9], Table 

2.1).  Even though typical cytoplasmic concentrations for labile copper in Escherichia coli (E. 

coli), are below 1 copper ion per cell [10, 11], E. coli toxicity occurs at concentrations above 

100,000 μM [12].  It is worth noting that some strains of E. coli are known to have copper 

toxicity resistance systems in which copper transferred from the DNA-rich cytoplasm to the 

DNA-poor periplasm, explaining why toxic levels for some strains of E. coli are so high in 

comparison to human cells [13].  Labile iron and copper are not the only source of damaging 

ROS; protein-bound copper ions can also participate in redox activity, resulting in ROS 

generation [14].  Therefore, both protein-bound and labile copper concentrations should be 

taken into consideration.  Total metal ion concentrations for Fe and Cu ions are generally 

within the micromolar range for human and E. coli cells, a promising find for the biological 

relevance of in vitro DNA damage prevention studies.   
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The unavoidable combination of oxidative ROS as well as redox-active metals and 

reductive compounds in cells can result in DNA damage [21, 22] and cell death [23, 24].  A 

review by Kroemer, et al. discusses programmed cell death that may occur when ROS are 

formed in the mitochondria and generate oxidative damage [23].  In vivo, it is  proposed that 

phagocytes would recognize this damage and remove the cell, but in vitro, degradation of the 

DNA can be observed, and cytolysis is the ultimate consequence [23].  Therefore, 

investigation of DNA damage using an in vitro assay provides a clear correlation between 

metal ions and the damaging effects of ROS since this in vitro DNA damage can be directly 

quantified. 

 
Table 2.1. Levels of iron and copper ions in human and E. coli cells. References are provided 
in brackets. 

Metal Ion Labile/Bound Human Cells (µM) E. coli Cells (µM) 

Fe(II)/(III) 
Labile + bound ≥ 25 [15] a, 20 [16] b ̶ 

Labile 9.2 × 10-5 [8] b, 
0.57 ± 0.27 [17] c 10, 70, 80, and 160 [18] e 

Cu(I)/(II) 
Labile + bound 50 [9] d ≥100,000-400,000 can be 

toxic [12] f 

Labile 0.2 [8] b, 1.6 [19] b 1 × 10-15 [10] g 

a Myelomonocytic cell line THP-1; b human serum; c human lymphocyte; d human liver, using 
the wet density conversion of 1.0 g/1.0 mL [20]; e for E. coli strains AB1157 (wild-type), 
KK204 (Fur–), JI132 (SOD–), and KK216 (SOD– Fur–), respectively; f W3110 (wild-type);  
g value calculated based on Cu binding affinity for metalloregulatory protein CueR; this value 
is well below 1 Cu ion/E. coli cell [11]. 
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Polyphenol Behavior in the Presence of Copper(I) 

DNA damage assays were performed under Fenton-like conditions (6 μM Cu(II), 7.5 

μM ascorbate, and 50 μM H2O2) to investigate the potential of catechol- and gallol-

containing compounds (MEPCA, EC and MEGA, EGCG, respectively, Figure 2.1) to either 

prevent or promote DNA damage.  Results from DNA damage assays of these compounds 

were quantified and the concentration at which 50% of DNA damage is inhibited (IC50) 

values were determined if possible (Table 2.2).  Electron paramagnetic resonance (EPR) 

spectroscopy was then employed to investigate the differences in radical formation and in 

order to better explain the antioxidant behavior.  From the results of the DNA damage  

 

OH

OH

OH

O

OCH3 H

H

1
2

3

4
5

6

methyl 3,4,5-trihydroxy benzoate (MEGA)

O

OH

H

OH

H

H H

O

H

H

H

OH

OH

H

H

(-)-epicatechin (EC)

(-)-epicgallocatechin-3-gallate (EGCG)

O

H

OH

OH

OH

H

1

2'
3'

4'

5'

6

7
8

9

10

1''
2''

3''

4''
5''

6''

7''

5

2

34

1'

6'

7

O

OH

H

OH

H

H H

OH

H

H

H

OH

OH

H

H

1

2'
3'

4'

5'

6

7
8

9

105

2

34

1'

6'

methyl 3,4-dihydroxy benzoate (MEPCA)

OH

OH

H

O

OCH3 H

H

1
2

3

4
6

7

5

 

Figure 2.1. Molecular structures of MEGA, MEPCA, EC, and EGCG shown with structure 
numbering. 
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assays, an obvious difference can be seen in the activities of gallol- and catechol-containing 

polyphenols.  For example, EC is a prooxidant at all the tested concentrations whereas 

EGCG prevents oxidative damage at all the tested concentrations [25].  Dopamine, a 

catecholamine neurotransmitter produced in the brain where labile copper pools are located 

[26], increases DNA damage by 2.5-fold at 10 μM, approximately the concentration of 

dopamine in the human brain [27].   

The mixture of prooxidant and antioxidant behavior for the tested catechol and 

gallol compounds led us to use EPR spectroscopy to determine whether the semiquinone 

radical species are formed from the polyphenol/copper compounds under conditions similar 

to those used for the DNA damage assays, a result that would indicate polyphenol 

participation in copper redox-cycling. This information should correlate with the 

compound’s observed ability to either prevent or promote DNA damage and provide 

insights into the biological behavior of these polyphenols. 

 

Table 2.2. A summary of the prooxidant and antioxidant activity of polyphenols with Cu(I)-
mediated DNA damage [25].a  
Compound  Proox. Activity (Max %) b  Antiox. Activity (Max %)  IC50 (µM)  

DA  0.2 - 2000 µM 
(-245.3% at 10 µM)  

3000 µM 
(22.7% at 3000 µM)  – 

EC  0.2-500 µM 
(-20.8% at 200 µM)  – – 

EGCG  – 10 - 3000  µM 
(100% at 3000 µM)  225  

MEGA  0.2-10 µM 
(-55.1% at 4 µM)  

50 - 3000 µM 
(100% at > 1000 µM)  102.3 ± 0.1  

MEPCA  – 86.1 ± 0.1  8.24 ± 0.03  

a All data are reported as the average of three trials with calculated standard deviations. 
b Negative percentage values represent prooxidant activity of the compound.  
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 Mg(II) is commonly used to stabilize semiquinone radicals of polyphenols, thereby 

enabling detection by EPR spectroscopy [28, 29]. EC + Mg(II) shows a three-line EPR 

spectrum in every case at pH 7.2, regardless of Cu(II) or H2O2 addition (Figure 2.2A).  

Similar spectra have been observed for Zn(II)-trapped EC semiquinone radical [30] and in 

both cases, the polyphenol undergoes a one-electron oxidation to semiquinone that is 

trapped by coordination and stabilization with Mg(II) or Zn(II).  Analysis of the EC spectra 

indicates that the three-line pattern is not a true triplet, since a weak signal is observed to the  

 

 

 

Figure 2.2. EPR spectra of A) EC, B) EGCG, C) MEGA, and D) MEPCA with Mg(II) at 
pH 6.0 (1), Mg(II) at pH 7.2 (2), same as 2 plus Cu(II) (3), and same as 2 plus Cu(II), 
ascorbate, and H2O2.  From reference [25]; used with permission (Appendix A). 
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right of the three primary resonances (Figure 2.2A, marked with *).  These resonances are 

assigned to splitting of the semiquinone radical by H2’, H5’, and H6’ of the catechol rings 

(Figure 2.1).   

The MEGA semiquinone is observed as a singlet (Figure 2.2C, panels 2 and 3) 

formed by the hydrogen extraction of the 4-OH group (Figure 2.1) [31].  The doublet 

observed for MEGA is the ascorbate radical [32], indicating that MEGA does not scavenge 

the ascorbate radical (Figure 2.2C).  No radical was detected for MEPCA solutions, 

consistent with its significantly lower IC50 value for DNA damage prevention when 

compared to the other three compounds (Table 2.2).  Interestingly, three of the tested 

polyphenol compounds appear to undergo significant autooxidation (excluding MEPCA), 

existing in substantial quantity as semiquinone radical even in the absence of copper or 

H2O2. At pH 6.0, semiquinone radicals were not detected for any of the tested compounds 

(Figure 2.2). 

Another method used to detect semiquinone formation in the presence of copper 

was by using α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN), a spin trap capable of detecting 

the •OH radical in solution by forming a spin adduct with •CH(OH)CH3, the α-hydroxyethyl 

radical, formed when •OH abstracts a hydrogen from ethanol [33-36].  Cu(II) alone displayed 

no EPR signal in the presence of POBN; however, the addition of Cu(II) and ascorbate with 

and without H2O2 resulted in the •CH(OH)CH3 adduct of POBN (Figure 2.3B and C).  The 

EPR resonances for this adduct agree with reported values (aN = 15.8 G, aH = 2.6 G 

compared to the established values aN = 15.6 G, aH = 2.6 G [32, 37]; Table 2.5 in the  
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Figure 2.3. EPR spectra of A) Cu(II) with POBN, B) Cu(II) and ascorbate with POBN, and 
C) Cu(II), ascorbate, and H2O2 with POBN. All spectra were acquired in the presence of 
ethanol, MOPS buffer (pH 7.2), and NaCl. From reference [25]; used with permission 
(Appendix A). 
 

 
 

 

Figure 2.4. EPR spectra of A) EC, B) EGCG, C) MEGA, D) MEPCA with POBN (1), and 
Cu(II), ascorbate, H2O2, and POBN (2). From reference [25]; used with permission 
(Appendix A). 
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Experimental Section).  EC also showed the α-hydroxyethyl-POBN adduct when Cu(II) was 

added, indicating that EC can reduce Cu(II) similarly to ascorbate. However, when Cu(II) is 

first reduced with ascorbate and then combined with EC and lastly H2O2, a much more 

intense α-hydroxyethyl-POBN adduct signal was obtained and multiple spin environments 

are present (Figure 2.4: aN1= 15.8 G, aN2= 16.2 G, aH1= 2.6 G, aH2~ 11.5 G; Table 2.5).  The 

additional resonances are due to the hydrogen radical (•H) adduct of POBN reported by 

Gunther and coworkers [33].   

The α-hydroxyethyl-POBN radical was the only radical detected in solutions of 

MEGA and MEPCA compounds when POBN was used as a spin trap (Figure 2.4).  

However, the intensity of the detected POBN adduct is significantly less intense when 

MEPCA is present than MEGA (Figure 2.5C and D), indicating less radical formation [38, 

39] and is consistent with MEPCA’s lower IC50 value (Table 2.2).  Because EGCG, MEGA, 

and MEPCA did not prevent all radical formation but also did not display the six lower-

intensity resonances for the •H adduct of POBN similar to EC, these results suggest that 

EGCG, MEGA, and MEPCA may be scavenging radical species.  These results agree with 

those reported by Luo, et al. who reported that MEGA prevents hydroxyl radical formation 

in vivo [40].  Our EPR results also correlated to the measured IC50 values for the four 

compounds, since only the α-hydoxyethyl POBN adduct was formed when MEGA, 

MEPCA, and EGCG were present.  For the prooxidant EC, however, the hydrogen radical 

was observed in addition to the α-hydoxyethyl radical adduct (Figure 2.4), which may explain 

the increase in DNA damage compared to that for the other three compounds. 



28 
 

The detection of both •OH and semiquinone radical adducts in solutions with EC 

and copper by EPR spectroscopy, as well as brown quinone species formed from EC in the 

presence of Cu(II), ascorbate, and H2O2, indicates redox-cycling is occurring within this 

system (Figure 2.5). This redox-cycling may account for the increase in DNA damage 

observed for EC from the gel electrophoresis studies.  Because the hard polyphenol oxygen 

ligands have little affinity for the soft Cu(I) ion, Cu(I) is free to react with H2O2, generating 

DNA-damaging •OH.  When Cu(II) is generated, the polyphenol subsequently binds Cu(II) 

and reduces it to Cu(I).  This copper-polyphenol complex then may dissociate into 

semiquinone radical and Cu(I), recycling the metal ion to once again react with H2O2, 

ultimately restarting the redox cycle.  Some compounds, such as EGCG and MEPCA, are 

not easily oxidized to the quinone product, causing a lack of participation in the redox-

cycling pathway and accounting for their antioxidant rather than prooxidant behavior.  

 

O

O

R2

R1

HO

HO

R2

R1

-O

O

R1

  Ascorbate
Radical (A  -)

Cu(II)

Cu(I) H2O2

   DNA
Damage

Ascorbate
   (AH-)

OH
Ascorbate
   (AH-)

R2

 

Figure 2.5. Proposed copper and polyphenol redox cycling mechanism leading to both 
prooxidant and antioxidant activity for polyphenol compounds. From reference [25]; used 
with permission (Appendix A). 
 

Compounds such as ascorbic acid, assorted polyphenolic acids, and thiols have been 

shown to be strong reductants and can perpetuate the redox cycling of vitamin E [41], a 
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compound known for its radical-scavenging antioxidant abilities [42], demonstrating that 

pro- or antioxidant capacity can be greatly influenced by surrounding chemical environment.  

Accordingly, it is important to determine the compound’s antioxidant ability in the presence 

and absence of reducing agents to further determine its potential behavior in the complex 

environment of a cell.   

In the absence of the reductant ascorbic acid, any actively damaging radicals that 

result must come from the polyphenolic compound itself.  Gel electrophoresis DNA 

damaging experiments were again conducted to determine whether or not MEGA, MEPCA, 

EC, or EGCG directly reduce Cu(II) to Cu(I).  The results shown in Figure 2.6 indicate that 

EC does reduce Cu(II) to Cu(I) that then reacts with H2O2 to cause substantial DNA 

damage (-82.2 ± 0.8% at 500 μM EC), whereas the other compounds did not (Figure 2.6).  

EGCG, MEGA, and MEPCA did not reduce Cu(II), since no significant DNA damage was 

observed (4.6 ± 0.6% at 3000 μM, 5.4 ± 0.2 at 3000 μM, and 6.1 ± 0.7% at 3000 μM, 

respectively, Table 2.3). These EPR spectroscopy and DNA damage gel data suggest that 

redox cycling causes prooxidant behavior for polyphenols, since they have little affinity for 

Cu(I) binding to the hard oxygen atoms, allowing Cu(I) to dissociate from the polyphenol 

and to react with H2O2 to form •OH that then damages DNA.  Understanding the causes of 

polyphenol antioxidant or prooxidant activity and the effects of the chemical environment, 

specifically the presence of metal ions, has on the polyphenols’ behavior using in vitro models 

is vital to understand results of cellular and animal studies as well as understanding and 

predicting therapeutic outcomes. 
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Figure 2.6. A) Gel electrophoresis image of EC and EGCG DNA damage assays with 
Cu(II) and H2O2 (50 μM). Lane 1: MW marker, 1 kb ladder; 2: plasmid (p); 3: p + H2O2 (50 
μM); 4: p + 500 μM EC; 5:  p + H2O2 + Cu(II) (6 μM) + ascorbate (7.5 μM); 6-10: H2O2 + 
Cu(II) + 500 μM EC; 11-15: H2O2 + Cu(II) + 3000 μM EGCG; 16: p + 500 μM EGCG. B) 
Gel electrophoresis image of MEGA and MEPCA with Cu(II) (6 μM) and H2O2 (50 μM). 
Lane 1: MW marker, 1 kb ladder; 2: plasmid (p); 3: p + H2O2 (50 μM); 4: p + 500 μM 
MEGA; 5:  p + H2O2 + Cu(II) (6 μM) + ascorbate (7.5 μM); 6-10: H2O2 + Cu(II) + 500 μM 
MEGA; 11-15: H2O2 + Cu(II) + 3000 μM MEPCA; 16: p + 500 μM MEPCA. 
 

 

 

 

 

 



31 
 

 

Table 2.3. Tabulation of DNA gel electrophoresis results for EC, EGCG, MEGA, and 
MEPCA with 6 μM Cu(II) and 50 μM H2O2.a  
Lane  Polyphenol, µM  % Supercoiled  % Nicked  % Damage Inhib.  p Values  

plasmid  None  92.98  7.02  0 -  

EC  500  0.6 ± 0.5  99.4 ± 0.5  -82.19 ± 0.81  3.24 × 10-5  

EGCG  3000  86.1 ± 0.2  13.9 ± 0.2  4.59 ± 0.60  5.65 × 10-3 

Plasmid  None  90.58  9.42  0 -  

MEGA  3000  86.08 ± 0.1  13.9 ± 0.1  5.40 ± 0.15 2.57 × 10-4  

MEPCA  3000  86.6 ± 0.5 13.4 ± 0.5  6.08 ± 0.66 3.90 × 10-3  

a All data are an average of three trials; calculated standard deviations are shown.   
 

 

Flavonol Derivatives and Their Implications for Flavonol Antioxidant Behavior with Iron 

 Flavonols are a subgroup of flavonoids that include quercetin, myricetin, and morin 

(Figure 2.7), that effectively prevent iron-mediated DNA damage. IC50 values for myricetin 

and quercetin DNA damage inhibition are of 2.0 μM and 10.7 μM, respectively [43].  Both 

myricetin and quercetin have keto-hydroxy metal binding sites in addition to catechol and 

gallol metal binding sites on the B ring (Figure 2.7).  To determine the role of metal binding 

at the 5-keto-hydroxy and 3-keto-hydroxy sites, the abilities of 5-hydroxychromone, 3-

hydroxychromone, and sulfonated morin to prevent DNA damage were determined. 
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Figure 2.7. Chemical structures for the keto-hydroxy functional group flavonols, and 3- and 
5-hydroxychromone showing atomic numbering.   

 

 
The DNA damage assay results shown in Figure 2.8 indicate that 5-

hydroxychromone prevents iron-mediated DNA damage with an IC50 value of 419 ± 1 μM.  

In the same assay, 3-hydroxychromone demonstrated more than twice the antioxidant 

potency of 5-hydroxychromone (IC50 = 193.4 ± 0.6 μM), indicating that the 3-hydroxy-4-

keto functionality plays a greater role in preventing iron-mediated DNA damage than the 5- 

hydroxy-4-keto functionality. Though a direct comparison of the antioxidant activity of 3-

hydroxychromone to morin cannot be made due to morin’s very low water solubility, 

comparisons can be made with the antioxidant activity of the more water-soluble sulfonated 

morin. The IC50 values of 3-hydroxychromone (193.4 ± 0.6 μM) and sulfonated morin (91.8 

± 0.2 μM) are significantly different, demonstrating that the presence of the B ring and/or 

both 3- and 5-hydroxy-keto sites increase antioxidant activity.   
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Figure 2.8. A) Gel electrophoresis image of 5-hydroxychromone DNA damage assays with 
Fe(II) (2 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + 
H2O2 ; 3 = p + 900 μM 5-hydroxychromone + H2O2; 4 = p + Fe(II) + H2O2; and lanes 5-
14: p + 2 μM Fe(II) + 50 μM H2O2 + 20, 100, 240, 320, 380, 450, 600, 700, 800, and 900 μM 
5-hydroxychromone, respectively. B) Dose-response curve for 5 hydroxychromone 
inhibition of iron-mediated DNA damage.  Data are reported as the average of three trials 
with calculated standard deviations. From reference [44]; used with permission (Appendix 
A). 

 

 

Combining Fe(EDTA)2- and H2O2 alone results in significant DNA damage (lane 4), 

and addition of increasing concentrations of sulfonated morin has no effect on DNA 

damage inhibition.  In contrast, both 3- and 5- hydroxychromone inhibit DNA damage by 

Fe(EDTA)2-/H2O2 at high concentrations.  3-Hydroxychromone inhibits a maximum of 70 

± 1% DNA damage at 1000 μM, whereas 5-hydroxychromone inhibits a maximum of 49 ± 

4% DNA damage at 875 μM (Figure 2.9).  Thus, 5-hydroxychromone has an IC50 value for 
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prevention of Fe(EDTA)2-/H2O2-mediated DNA damage greater than the maximum 

concentration that can be achieved in these gel studies.  The IC50 value for 3-

hydroxychromone inhibition of DNA damage by Fe(EDTA)2-/H2O2 is 293 ± 2 �M, 

significantly higher than for prevention of iron-mediated DNA damage (IC50 = 193 �M).  

Comparing the DNA damage results from Fe(II) and Fe(EDTA)2-, it is clear that iron 

binding is the only mechanism for iron-mediated DNA damage prevention by sulfonated 

morin and is the primary antioxidant mechanism for both 3- and 5-hydroxychromone, since 

the IC50 values for DNA damage prevention are considerably lower when iron is unchelated.  

For the hydroxychromones, a second mechanism (possibly ROS scavenging) also 

contributes to antioxidant behavior at high concentrations. 

 

 

Figure 2.9. Gel electrophoresis image of 5-hydroxychromone DNA damage assays with 
Fe(EDTA)2- (400 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 
2 = p + H2O2; 3 = p + 875 μM 5-hydroxychromone + H2O2; and 4 = p + Fe(EDTA)2- + 
H2O2. Lanes 5-15: p + Fe(EDTA)2- + H2O2. + 20, 100, 240, 320, 380, 450, 600, 700, 800, 
and 875 μM 5-hydroxychromone, respectively. From reference [44]; used with permission 
(Appendix A). 

 

Curcumin: An Answer to Radical Damage? 

Curcumin (diferuloymethane) is the active compound in the herbal remedy and spice 

turmeric (Curcuma longa) [45] and has a wide range of potential uses, including oral 
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chemopreventative properties [46], anti-inflammatory properties both in vitro [47] and in vivo 

[48], and is a potential Alzheimer’s treatment due to the suppression of Aβ-protein 

formation in animal studies [49].  Curcumin concentrations as low as 1 μM have been shown 

not only to prevent aggregation of monomeric Aβ, but also to promote its disaggregation in 

vitro [50].  The poor water solubility of curcumin has been an issue, so efforts have been 

made to create water-soluble curcumin analogs with similar biological properties to increase 

therapeutic applications [51].  Increasing the bioavailability of curcumin is also an active area 

of research, through developing analogs or alternate absorption methods.  In a mouse brain, 

curcumin concentrations have reached around 3.2 μM [52, 53] and tetrahydrocurcumin, a 

bioavailable curcumin analog, can reach concentrations of up to 6.0 μM [53].  The 

preparation of curcumin is also a factor in to the bioavailability.  For instance, when rats 

orally ingest curcumin, samples that are prepared as nanoparticles are much more 

bioavailable compared to curcumin samples paired with an absorption enhancer (0.71 μM 

curcumin in blood compared to 0.33 μM)  [54]. 

Curcumin has two protonation states that exist in the pH range 2-8, containing either 

a keto-hydroxy or a β-diketo functional group [55] (Figure 2.10).  The keto-hydroxy 

functional group was previously discussed in this chapter (Figure 2.7) and is capable  
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Figure 2.10. Curcumin protonation states at pH 2-8 [55]. 
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of binding metal ions as well as contributing to antioxidant activity in polyphenolic 

compounds.  The β-diketo moiety (Figure 2.10) is known to bind metals [56] and curcumin 

derivatives have shown strong β-diketonate-Fe(III) binding with a proposed 3:1 

stoichiometry [57].  The β-diketo functional group is assumed to be involved in curcumin’s 

antioxidant activity [58]; however, examination of the antioxidant activity for analogs that 

contain fewer than two phenol groups show  that not only is the β-diketo necessary for 

antioxidant activity, the two phenol groups are as well [58].   

In DNA damage assays, the IC50 for curcumin prevention of iron-mediated DNA 

damage is 28 ± 1 μM (Figure 2.11).  With Fe(EDTA)2-, curcumin prevented only 38 ± 6% 

damage at 75 μM (the maximum concentration attainable; Figure 2.12, Table 2.9) compared 

to 98 ± 6% at 75 μM with Fe(II)/H2O2.  The somewhat high error for DNA the damage 

assay results at high curcumin concentrations are due to the limited solubility of curcumin, 

with ~75 μM being the most consistently attainable concentration for a prolonged period of 

time.  These results establish that the primary mechanism for antioxidant activity is metal 

binding rather than ROS scavenging in the presence of Fe(II), similar to the results observed 

for catechol- and gallol- containing polyphenols [43].  

In the presence of Cu(I), curcumin behaves as a slight prooxidant at low 

concentrations, with a maximum percentage of DNA damage (11.1 ± 0.5%) at 10 μM.  At 

all higher concentrations, curcumin acts as an antioxidant, with a maximum DNA damage 

prevention of 81 ± 4% at 70 μM (Table 2.10, Figure 2.13), yielding an IC50 of 54.95 ± 0.05 

μM for copper-mediated DNA damage (Figure 2.13B).  The Fenton-like reaction does not 

occur when the copper ion is chelated prior to peroxide addition (with no statistically 
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significant change in DNA damage, Figure 2.14), indicating that metal-binding is the only 

antioxidant mechanism for curcumin in the presence of Cu(I).   

 
 
 
 

 

 

Figure 2.11. A) Gel electrophoresis image of curcumin DNA damage assays with Fe(II) (2 
μM) and H2O2 (50 μM); lanes: MW = 1 kb ladder; 1: plasmid (p); 2: p + H2O2; 3: p + 75 μM 
curcumin; 4:  p + H2O2 + Fe(II); 5-14: lane 5 + 1, 5, 10, 20, 25, 35, 45, 50, 60, and 75 μM, 
respectively.  B) Dose-response curve for curcumin inhibition of iron-mediated DNA 
damage.  Data are reported as the average of three trials with calculated standard deviations. 
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Figure 2.12. Gel electrophoresis image of curcumin DNA damage assays with Fe(EDTA)2- 
(400 μM) and H2O2 (50 μM); lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + 
H2O2; 3 = p + 75 μM curcumin + H2O2; and 4 = p + Fe(EDTA)2- + H2O2. Lanes 5-9: p + 
Fe(EDTA)2- + H2O2. + 1, 10, 25, 45, and 75 μM curcumin, respectively. 
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Figure 2.13. A) Gel electrophoresis image of curcumin DNA damage assays Cu(I) (6 μM) 
and H2O2 (50 μM); lanes: MW = 1 kb ladder; 1: plasmid (p); 2: p + H2O2; 3: p + 70 μM 
curcumin; 4:  p + H2O2 + Cu(I); 5-13: lane 5 + 1, 5, 10, 20, 25, 35, 40, 50, and 70 μM, 
respectively.  B) Dose-response curve for curcumin inhibition of copper-mediated DNA 
damage.  Data are reported as the average of three trials with calculated standard deviations. 
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Figure 2.14. Gel electrophoresis image of curcumin DNA damage assays with Cu(bpy)2
+ (50 

μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1: plasmid (p); 2: p + H2O2; 3: p + 70 μM 
curcumin; 4:  p + H2O2 + Cu(bpy)2

+; 5-9: lane 5 + 1, 10, 25, 40, and 70 μM, respectively. 

 

Since metal-binding is a key mechanism for the antioxidant activity of curcumin based on 

the gel DNA damage assays results, further examination of iron and copper binding to 

curcumin could provide insight into iron and copper coordination modes and oxidation 

states.  Upon addition of Fe(II), curcumin shows an absorbance band at 524 nm in the 

ultraviolet-visible (UV-vis) spectrum for both 1:1 and 1:3 curcumin-to-iron ratios after 10 

min reaction time, indicative of Fe(III) binding, not Fe(II) binding (Figure 2.15A). This band 

represents a p(π) orbital of the phenolate ion interacting with the half-filled dx-y/dz2(π) orbital 

of Fe(III) [59], confirming that the oxidized Fe(III)-curcumin complex has formed.   
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Figure 2.15. UV-vis difference spectra for curcumin (145 μM) in the presence of A) Fe(II) 
in MES buffer (10 mM, pH 6.0) and B) Cu(I) in MOPS buffer (10 mM, pH 7.2).  
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Similarly, 10 min after addition of Cu(I) to curcumin, the UV-vis spectra also showed 

phenolate binding to Cu(II), not Cu(I), at 295 nm [60] (Figure 2.15B).  This oxidation 

behavior upon Cu(I)-O binding has been reported previously.  Cvetkovic, and coworkers 

attempted to examine Cu(I)-phenolate complexes in an oxygenated system using UV-vis 

spectroscopy, yet the spectroscopic results were suggestive of Cu(II) complexes [61].  Since 

curcumin binding promotes the oxidation of Fe(II) and Cu(I), iron- and copper-curcumin 

complexation in vivo may aid in its observed antioxidant activity by stabilizing the oxidized 

form of the bound metal ion and preventing metal redox cycling.    

In the presence of copper and iron, curcumin shows metal binding and prevents 

DNA damage mediated by Fe(II).  However, the potential for curcumin as a radical 

scavenger is also worthy of investigation.  Cyclic voltammetry (CV) experiments were 

conducted to determine whether its redox potentials could correlate with the antioxidant 

behavior of curcumin.  Curcumin is electrochemically active when tested ± 1 V in aqueous 

solution and has one reversible redox couple that is electrochemically similar to the catechol 

oxidation [62] (Figure 2.16, indicated with I and I’) and one irreversible oxidation reaction 

(Figure 2.16, indicated with II), attributed to a phenol redox potential [62] (Table 2.4). The 

irreversible reduction observed at pH 6.0 and 7.2 may be a reason why curcumin is an 

effective radical scavenger[64, 65].  In the body, the redox range for the metal-mediated 
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Figure 2.16. Cyclic voltammograms of curcumin (380 μM) vs. NHE in MES buffer (64 mM, 
pH 6.0, dotted line) and MOPS buffer (64 mM, pH 7.2, solid line) with KNO3 (64 mM) as 
the supporting electrolyte. 
 

 

 

Table 2.4. Electrochemical potentials vs. NHE of curcumin at various pH values. 
pH Epa (V) Epc (V) ∆E (V) E1/2 (V) Source 

5.0 a -1.1, -0.8 -0.9, -1.1, -1.4 0.2, 0.3 -1.0, -0.95 [63] 

6.0 b 0.456, -0.312 0.861 0.404 0.659 This work 

7.2 c 0.337, -0.377 0.894 0.557 0.616 This work 

8.5 d 0.5, 0.8 0.5 0.0 0.5 [63] 
a In 0.2 M NaCH3COO buffer with 20 mM NaCl as a supporting electrolyte, b 64 mM MES 
buffer with 64 mM KNO3 as a supporting electrolyte, c 64 mM MOPS buffer with 64 mM 
KNO3 as a supporting electrolyte, and d 50 mM Na3PO4 buffer with 0.3 M NaCl for a 
supporting electrolyte. 
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catalytic generation of hydroxyl radical from hydrogen peroxide is 0.460 V to -0.324 V [66].  

Using this range to gauge biologically spontaneous redox reactions, both oxidations and the 

reduction of curcumin are within this range, indicating that its redox behavior may also play 

a role in curcumin’s biological antioxidant activity. 

Stanić, et al. performed cyclic voltammetry on curcumin at pHs 5.0 and 8.5 and the 

results correlate with the redox behavior observed at pHs 6.0 and 7.2 [63].  It is difficult to 

compare the results obtained by Stanić, et al. with the data reported in this work, since the 

curcumin samples used by Stanić and coworkers were dissolved in pure ethanol before 

diluting to the required concentrations with aqueous buffer (resulting in 0.40 M and 0.34 M 

ethanol, final concentrations, for pH 5.0 and pH 8.5 samples, respectively), whereas the 

curcumin samples in this work were dissolved in significantly less ethanol (0.057 M ethanol 

final concentration).  The redox values (E1/2) at pHs 6.0, 7.2, and 8.5 shift to a more negative 

potential, exhibiting a pH dependence reported for other polyphenolic compounds [67-69].  

The observed electrochemical activity  coincides with reported non-polar cyclic voltammetry 

[63], and also lends credibility to the secondary DNA damage prevention mechanism of 

radical scavenging. 

The electrochemical investigation shows that curcumin may act as a radical scavenger 

at high concentrations in addition to acting as a metal-binding antioxidant. Curcumin 

prevents a maximum of 98% of damage at 75 μM through iron chelation, but if curcumin 

the iron is chelated, only 38% of DNA damage is prevented at the same concentration.  

Thus, some small amount of antioxidant activity may be due to a non-iron-binding 

mechanism, such as radical scavenging.  The fact that curcumin is electrochemically active 

supports this secondary antioxidant mechanism of radical scavenging.  In contrast, copper-
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binding is the only observed mechanism of antioxidant activity for curcumin in the presence 

of copper.   

 

Conclusions 

EPR spectroscopy results suggest that the prooxidant activity observed for some 

polyphenol compounds is the result of a redox-cycling pathway wherein the polyphenols 

initially share little affinity for Cu(I), allowing it to react with H2O2 to generate •OH (detected 

as the α-hydroxyethyl radical adduct of POBN). Polyphenol compounds can then reduce 

Cu(II), generating Cu(I) and semiquinone radicals (detected through Mg(II) stabilization); 

the latter can reduce oxygen to superoxide and ultimately regenerate H2O2, or react with 

excess ascorbate to regenerate the parent polyphenol compound, to restart the copper redox 

cycle. These EPR results suggest a redox-cycling mechanism for polyphenol prooxidant 

effects on DNA damage by Cu(I)/H2O2 that is consistent with our observed gel 

electrophoresis results. MEPCA, with the greatest ability to prevent copper-mediated DNA 

damage, also formed the lowest concentration of •OH radical as determined in EPR studies. 

Hence, EPR spectroscopy has proven to be an invaluable tool in predicting both the pro- 

and antioxidant activities of polyphenols in the presence of Cu(I). 

Previous studies have investigated the antioxidant activities of 3-hydroxychromone, 

5-hydroxychromone, and sulfonated morin primarily in acidic (pH = 2) or organic solvent 

systems. In contrast, this work focuses on the in vitro antioxidant properties of these three 

compounds in aqueous solution at physiologically relevant pH 6.  The results from DNA 

damage prevention and other experiments prove that antioxidant activity of flavonols with 

competing 3- and 5-hydroxy-keto groups is controlled by iron binding at the 3-hydroxy-keto 
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site.  In comparison, the antioxidant activities of quercetin and myricetin are controlled 

primarily by iron binding at the catechol and gallol groups, respectively, not at their hydroxy-

keto sites. Only at high concentrations, alternative mechanisms (such as ROS scavenging) 

come into play for 3- and 5-hydroxychromone. Although the majority of research on 

flavonoid antioxidant activity primarily focuses on the ROS scavenging abilities of these 

compounds, this study reflects the importance of iron binding and oxidation on flavonoid 

antioxidant activity, specifically at the hydroxy-keto sites.  

Curcumin demonstrates versatile chemical behavior that can account for its observed 

antioxidant activity.  Curcumin binds Fe(III) and Cu(II) as measured by UV-vis 

spectroscopy, has demonstrated both reversible and irreversible redox potentials within a 

biologically relevant range, has a low IC50 for prevention of iron-mediated DNA damage, 

and prevents substantial copper-mediated DNA damage at concentrations above 35 μM. 

When Cu(I) or Fe(II) is chelated prior to curcumin addition, curcumin prevents little to no 

DNA damage, suggesting that metal chelation is the primary mechanism in antioxidant 

activity.  These metal chelation antioxidant effects may be a reason why curcumin is such a 

promising treatment for diseases that are often associated with an abundance of labile iron 

and copper ions, such as Alzheimer’s and Parkinson’s disease.  

 

Experimental Section 

General. Water was purified using a Barnstead NANOpure DIamond Life Science 

(UV/UF) water deionization system (Barnstead International). (−)-Epicatechin (Aldrich), 

(−)-epigallocatechin-3 gallate (Cayman Chemical Company), methyl 3,4,5-

trihydroxybenzoate, methyl 3,4 dihydroxybenzoate, curcumin (MP Biomedical), 
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FeSO4·7H2O (Acros Organics), NaOH·H2O (99.996%), and NaCl (99.999%) (Alpha Aesar) 

were all used as received. High purity NaOH and NaCl were essential in order to avoid metal 

contamination. H2O2 (Fisher) was a 30% solution in water; absolute ethanol (Acros), Ultrol® 

grade 2-(N-morpholino)ethanesulfonic acid (MES) (Calibiochem) and 3-(N-

morpholino)propanesulfonic acid (MOPS) buffers (Alfa Aesar), TRIS base, Na2EDTA (J.T. 

Baker), ethidium bromide (Lancaster), and agarose (VWR) were also used as received. 

Because of the necessity for all experiments involving DNA damage to be as free from 

redox-active metals as possible, all microcentrifuge tubes were washed in 1 M HCl for at 

least 30 min, triply rinsed with deionized water, and dried.  

To avoid use of radical scavenging solvents such as DMSO or ethanol that are 

typically used to dissolve polyphenol compounds, [70, 71] addition of a small amount of 

NaOH (20–100 μL of 1 M NaOH per 10 mL polyphenol stock solution in buffer) was 

sufficient to quickly and completely dissolve EC and EGCG. These stock solutions were 

then readjusted to either pH 6.0 in MES buffer or pH 7.2 in MOPS buffer as required, 

resulting in no precipitation of the polyphenol compound.  To dissolve curcumin, a small 

measured amount of MES or MOPS buffer (2.0 mL, 10 mM, pH 6.0 or 7.2, respectively) 

was added to curcumin and then a small amount of pure ethanol was added (0.05 M EtOH 

in final stock solution, about 58 μL per 20 mL stock solution).  The buffer/ethanol solution 

was then adjusted to a basic pH (~10) by use of less than 50 μL 1 M NaOH / 50 mL sample 

(identifiable by a dark red color) and then adjusted back to pH 6.0 or 7.2 by slowly adding 

buffer at low concentrations (10 - 45 mM), ramping up buffer concentrations slowly.  The 

solution should be brilliant yellow with no precipitation.  Precipitation indicates that the 

solution was prepared with MES or MOPS buffer at too high a concentration.  Ethanol 
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concentrations in the curcumin solutions were accounted for in the gel electrophoresis 

experiments. 

 

Transfection and amplification of E. coli, and purification of plasmid DNA. Plasmid 

DNA pBSSK was purified from E. coli strain DH1 using a PerfectPrep Spin kit (5-Prime).  

The plasmid DNA was dialyzed at 4 °C against EDTA (1 mM) and NaCl (50 mM) for 24 h 

and then against NaCl (130 mM) for 24 h to remove metal ions from the DNA. For all 

experiments, DNA absorbance ratios A250/A260≤0.95 and A260/A280≥1.8 were ensured for the 

dialyzed DNA sample. 

 

Gel electrophoresis experiments under Fenton reaction conditions. MES buffer at 

pH = 6.0 (10 mM final concentration) was used to ensure the solubility of Fe(II) in all of 

these experiments [72], and iron solutions were immediately prepared from solid 

FeSO4·7H2O prior to each experiment. For each reaction, reagents were added in the 

following order to achieve the given final concentrations in a final volume of 10 μL: 

deionized H2O, MES buffer (10 mM, pH 6.0), NaCl (130 mM), 100% ethanol (10 mM), the 

desired concentration of compound (0.01-1500 μM), and Fe(II) (2 μM). This mixture then 

was allowed to stand at room temperature for 5 min, followed by addition of pBSSK DNA 

(0.1 pmol in 130 mM NaCl). After again standing for another 5 min of standing, H2O2 (50 

μM) was added and the Fenton reaction was allowed to occur for 30 min. EDTA (50 μM) 

was used to quench the reaction, and loading dye (2 μL) was added to achieve a final volume 

of 12 μL. Gel electrophoresis was run in TAE buffer for 30 min at 140 V to separate the 

nicked and supercoiled forms of the plasmid DNA. Gels were stained for 5 min using 
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ethidium bromide and then washed for an additional 10 min in deionized H2O. The gels 

were imaged under UV light and the amount of damaged and undamaged DNA was 

quantified using UVIproMW software (Jencons Scientific Inc., 2003). Ethidium stains 

supercoiled DNA less efficiently than nicked DNA, so supercoiled DNA band intensities 

were multiplied by 1.24 prior to comparison [73, 74].  Intensities of the nicked and 

supercoiled bands were normalized for each lane so that % nicked + % supercoiled = 100 

%.  Gel results for these experiments are given in Tables 2.6 and 2.8. 

 

Gel electrophoresis experiments with Fe(EDTA)2-. To determine the role of iron 

binding in the antioxidant activities of the compounds, Fe(EDTA)2- was used as the iron 

source. Experiments were performed as described above, with 400 μM Fe(EDTA)2-  

replacing 2 μM FeSO4.  Gel results for these experiments are given in Tables 2.7 and 2.9. 

 

 Gel electrophoresis with Cu(I) and H2O2. Conditions were similar to the gel 

electrophoresis experiments with Fe(II) and H2O2 except that CuSO4·5H2O (6 μM, final 

concentration) and ascorbic acid (7.5 μM, final concentration) were combined prior to each 

gel experiment in place of Fe(II).  Ascorbic acid concentration was 1.25× the Cu(II) 

concentration to ensure complete reduction of Cu(II) to Cu(I).  For gel studies conducted 

without ascorbic acid, ascorbic acid solutions were replaced with water, keeping all final 

concentrations in the samples the same.  Gel results for these experiments are given in Table 

2.10. 
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 Gel electrophoresis with Cu(bpy)2
+ and H2O2. Conditions were similar to the gel 

electrophoresis experiments under Fenton reaction condition protocol except that 

CuSO4·H2O (50 μM) and bipyridine (200 μM) prior to experimentation to ensure copper 

chelation and ascorbic acid (62.5 μM) was added prior to experimentation to ensure 

complete reduction of Cu(II) to Cu(I).  Gel results for these experiments are given in Table 

2.11. 

 

EPR spectroscopy. EPR spectra were measured on a Bruker EMX spectrometer 

using a quartz flat cell at room temperature. For all experiments, modulation amplitude 

varied from 0.5 G to 1.0 G, depending on the sample, modulation frequency was 100 kHz, 

microwave power was 20 mW, microwave frequency was approximately 9.778 GHz, the 

time constant was 81.92 ms, conversion time was 81.92 ms, and a sweep width of 100 G 

centered at 3490 G was used for all samples. Each sample was referenced to the g-factor of 

2,2-diphenyl-1- picrylhydrazyl (DPPH; g = 2.0036 [75]). Thirty to ninety seconds were 

required from the start of the reaction until the flat cell could be loaded into the 

spectrometer and tuned. These parameters are optimized to observe polyphenol radicals; to 

observe the Cu(II) complex radical signal, different parameters must be used (microwave 

frequency = 9.800 GHz, time constant and conversion time = 163.84 ms, modulation 

amplitude = 6 G, and a sweep width of 1000 G centered at 3386 G). Conditions for EPR 

experiments were identical to the gel electrophoresis experiments except that the 

concentrations of Cu(II), H2O2, and ascorbate were increased 50-fold to obtain a clear EPR 

signal, and DNA was excluded. Samples were prepared by adding aqueous solutions of 

CuSO4·5H2O (300 μM) to a solution of polyphenol compound (600 μM) along with NaCl 
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(130 mM), ethanol (10 mM), either MOPS buffer (10 mM, pH 7.2) or MES buffer (10 mM, 

pH 6.0), ascorbate (375 μM), H2O2 (22.5 mM), and either MgSO4·7H2O (0.53 M) or α-(4-

pyridyl-1-oxide)-N-t-butylnitrone (POBN, 30 mM). In each case, copper was added last to 

initiate the reaction. All concentrations listed are final concentrations in a 1 mL sample 

volume; for samples without one or more of the listed reaction components, the volume was 

replaced by adding an equal portion of deionized H2O so that the final volume of the 

solution was maintained at 1 mL. Mg(II) is commonly used to stabilize semiquinone radicals 

of polyphenols for detection by EPR [28, 29], and POBN is a preferred spin trap to use in 

systems with ethanol where •OH is formed, since POBN traps the ethanol radical adduct of 

•OH [76-79]. 

 

Metal binding analysis via UV-vis spectroscopy.  All cuvettes were washed in 6 M 

HCl for at least 30 min, thoroughly rinsed 3 times with deionized water, and dried to avoid 

metal contamination. At room temperature, curcumin (145 μM) and MES or MOPS 

buffered solutions (10 mM, pH 6.0 and 7.2, respectively) were prepared and fresh 

FeSO4·7H2O or CuSO4·5H2O at the indicated concentration ratios were added for a total 

reaction time of 10 min prior to data collection with a Shimadzu UV-3101PC 

spectrophotometer (Shimadzu Corp.).  Difference spectra were obtained by subtracting a 

spectrum of curcumin (145 μM) from the curcumin/Fe(II) or curcumin/Cu(I) spectra. 

 

Electrochemical studies.  Cyclic voltammetry and differential pulse voltammetry 

measurements for curcumin (380 μM) were measured using a CH Electrochemical Analyzer 

(CH Instruments, Inc.) in phosphate buffer (64 mM final concentration of KH2PO4, pH 6.0) 
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with KNO3 as a supporting electrolyte (64 mM final concentration).  Prior to analysis, the 

solutions were deoxygenated with argon for 45 min; during analysis, the sample was 

blanketed with N2 to avoid oxidation.  For cyclic voltammetry, the samples were cycled 

between -1.0 V and 1.0 V vs. Ag/AgCl/3 M KCl (+210 mV vs. NHE [80, 81]) using a glassy 

carbon working electrode and a platinum counter electrode at a scan rate of 100 mV/s.  

Differential pulse voltammetry was performed from -1.0 V to 1.0 V in increments of 0.004 

V at amplitude 0.05 V, pulse width of 0.05 s, sample width 0.0167 s, and pulse period 0.2 s; 

sensitivity ranged from 1 × 10-5 to 1 × 10-6 A/V. 
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Table 2.5. EPR spectroscopy data for EC, EGCG, MEGA, and MEPCA samples under 
Fenton-like reaction conditions with copper, ascorbate (AA), and H2O2. From reference [25]; 
used with permission (Appendix A). 

 
 

Sample Component g aH1, G aH2 , G aN1 , G aN2 , G Color 

Cu(II) + POBN — — — — — Colorless 

(Cu(II), AA) + POBN 2.00434 2.6 — 15.8 — Colorless 

(Cu(II), AA, H2O2) + POBN 2.00453 2.6 — 15.8 — Colorless 

EC + Mg(II) (pH 6.0) — — — — — Colorless 

EC + Mg(II) 2.00271 4.1 (2H) — — — Colorless 

(Cu(II), EC) + Mg(II) 2.00271 4.1 (2H) — — — Colorless 

(Cu(II), AA, EC, H2O2) +  Mg(II) 2.00270 4.1 (2H) — — — Brown 

(Cu(II), EC) + POBN — — — — — Colorless 

(Cu(II), AA, EC, H2O2) +  POBN 2.00470 2.6 11.5e 15.8 16.2 Brown 

EGCG + Mg(II) (pH 6.0) — — — — — Colorless 

EGCG + Mg(II) 2.00255 4.4 — — — Colorless, White 
Ppt 

(Cu(II), EGCG) + Mg(II) 2.00287 4.3 — — — Colorless, White 
Ppt 

(Cu(II), AA, EGCG, H2O2) +  Mg(II) 2.00270 4.3 — — — Faint Yellow, 
White Ppt 

EGCG + POBN — — — — — Colorless 

(Cu(II), EGCG) +  POBN — — — — — Colorless 

(Cu(II), AA, EGCG, H2O2) +  POBN 2.00467 2.6 — 15.6 — Faint Yellow 

MEGA + Mg(II) (pH 6.0) — — — — — Colorless 

MEGA + Mg(II) 2.00370 — — — — Colorless 

(Cu(II), MEGA) + Mg(II) 2.00381 — — — — Faint Yellow 

(Cu(II), AA, MEGA, H2O2)  +  Mg(II) 2.00372 1.8 — — — Faint Yellow 

MEGA + POBN — — — — — Colorless 

(Cu(II), MEGA) +  POBN — — — — — Faint Yellow 

(Cu(II), AA, MEGA, H2O2) +  POBN 2.00243 2.6 — 15.8 — Faint Yellow 

(Cu(II), AA, MEGA, H2O2) +  POBN 2.00302 2.6 — 15.8 — Faint Yellow 

MEPCA + Mg(II) (pH 6.0) — — — — — Colorless 

MEPCA + Mg(II) — — — — — Colorless 

(Cu(II), MEPCA) + Mg(II) — — — — — Faint Yellow 

(Cu(II), AA, MEPCA, H2O2) +  Mg(II) — — — — — Faint Yellow 

MEPCA + POBN — — — — — Colorless 

(Cu(II), MEPCA) +  POBN — — — — — Faint Yellow 

(Cu(II), AA, MEPCA, H2O2) +  POBN 2.00211 2.7 — 15.6 — Faint Yellow 

(Cu(II), AA, MEPCA, H2O2) +  POBN 2.00241 2.5 — 15.6 — Faint Yellow 



54 
 

Table 2.6. Tabulation of gel electrophoresis results for 5-hydroxychromone DNA damage 
assays with 2 μM Fe(II) and 50 μM H2O2. From reference [44]; used with permission 
(Appendix A). 

Gel lane 5-HC, µM % Supercoiled % Nicked % Damage Inhib. p Values 

4: Fe(II) + H2O2 0 6.47 ± 6.62 93.53 ± 6.62 0 - 

5 20 7.67 ± 9.58 92.33 ± 9.58 0.61 ± 3.13 0.339 

6 100 13.27 ± 19.47 86.73 ± 19.47 -0.05 ± 1.89 0.966 

7 240 15.03 ± 3.19 84.97 ± 3.19 14.03 ± 4.44 3.17 × 10-2 

8 320 30.73 ± 18.94 69.27 ± 18.94 18.62 ± 0.47 2.12 × 10-4 

9 380 39.98 ± 13.83 61.02 ± 13.83 32.92 ± 6.22 1.17 × 10-2 

10 450 72.43 ± 2.05 27.57 ± 2.05 64.71 ± 1.22 1.18 × 10-4 

11 600 81.37 ± 2.00 18.63 ± 2.00 76.26 ± 3.73 7.96 × 10-4 

12 700 86.90 ± 3.24 13.10 ± 3.24 83.69 ± 4.58 9.97 × 10-4 

13 800 93.46 ± 1.83 6.54 ± 1.83 92.33 ± 2.46 2.37 × 10-4 

14 900 92.58 ± 1.15 7.42 ± 1.15 91.09 ± 1.52 9.28 × 10-5 
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Table 2.7. Tabulation of gel electrophoresis results for 5-hydroxychromone DNA damage 
assays with 400 μM Fe(EDTA)2- and 50 μM H2O2. From reference [44]; used with 
permission (Appendix A). 

Gel lane 5-HC, µM % Supercoiled % Nicked % Damage Inhib. p Values 

4: Fe(EDTA)2- + H2O2 None 9.06 ±  6.41 90.94 ± 6.41 0 - 

5 20 10.36 ± 7.84 89.64 ± 7.84 1.53 ± 1.77 0.273 

6 100 17.35 ± 5.69 82.65 ± 5.69 9.52 ± 3.56 4.36 × 10-2 

7 240 28.99 ± 6.57 71.01 ± 6.57 22.92 ± 1.79 2.03 × 10-3 

8 320 33.25 ± 3.77 66.75 ± 3.77 27.72 ± 4.57 8.94 × 10-3 

9 380 38.00 ± 8.33 62.00 ± 8.33 33.34 ± 4.07 4.93 × 10-3 

10 450 40.43 ± 4.10 59.57 ± 4.10 35.99 ± 1.48 5.63 × 10-4 

11 600 47.77 ± 5.33 52.23 ± 5.33 41.03 ± 1.72 5.85 × 10-4 

12 700 47.21 ± 3.48 52.79 ± 3.48 43.73 ± 2.55 1.13 × 10-3 

13 800 50.81 ± 6.50 49.19 ± 6.50 48.01 ± 2.49 8.95 × 10-4 

14 875 51.93 ± 3.60 48.07 ± 3.60 49.20 ± 3.60 1.78 × 10-3 

 
 
 
Table 2.8. Tabulation of gel electrophoresis results for curcumin DNA damage assays with 
2 μM Fe(II) and 50 μM H2O2. 

Gel lane Curcumin, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) - 94.67 ± 4.22 5.33 ± 4.22 - - 

2: p + H2O2 - 90.79 ± 8.45 9.21 ± 8.45 - - 

3: p + H2O2 + CurQ 75 96.88 ± 2.55 3.12 ± 2.55 - - 

4: Fe(II) + H2O2 0 7.20 ± 2.73 92.80 ± 2.73 0 - 

5 1 12.23 ± 1.41 87.77 ± 1.41 5.82 ± 3.22 0.0887 

6 5 12.37 ± 0.40 87.63 ± 0.40 5.98 ± 2.79 0.0655 

7 10 16.91 ± 2.47 83.09 ± 2.47 11.54 ± 1.81 8.10 × 10-3 

8 20 33.91 ± 2.37 66.09 ± 2.37 31.61 ± 3.10 3.19 × 10-3 

9 25 42.41 ± 2.28 57.59 ± 2.28 41.89 ± 3.10 1.82 × 10-3 

10 35 69.57 ± 8.97 30.43 ± 8.97 66.42 ± 4.87 1.79 × 10-3 

11 45 78.38 ± 5.53 21.62 ± 5.53 78.21 ± 1.61 1.41 × 10-4 

12 50 81.48 ± 2.43 18.52 ± 2.43 81.49 ± 1.53 1.17 × 10-4 

13 60 82.99 ± 2.56 18.52 ± 2.56 84.28 ± 1.83 1.57 × 10-4 

14 75 93.11 ± 1.92 6.89 ± 1.92 97.97 ± 5.58 1.08 × 10-3 
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Table 2.9. Tabulation of gel electrophoresis results for curcumin DNA damage assays with 
400 μM Fe(EDTA)2- and 50 μM H2O2.  

Gel lane Curcumin, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) - 93.49 ± 1.48 6.51 ± 1.48 - - 

2: p + H2O2 - 92.99 ± 3.02 7.01 ± 3.02 - - 

3: p + H2O2 + CurQ 75 94.26 ± 1.43 5.74 ± 1.43 - - 

4: Fe(EDTA)
2-

 + H
2
O

2
 0 14.50 ± 4.94 84.35 ± 4.94 0 - 

5 1 29.96 ± 4.95 70.04 ± 4.95 19.41 ± 0.88 6.84 × 10
-4

 

6 10 35.70 ± 8.24 64.30 ± 8.24 26.73 ± 5.63 0.0145 

7 25 43.61 ± 6.31 56.39 ± 6.31 36.59 ± 3.40 2.87 × 10
-3

 

8 45 47.35 ± 7.45 52.65 ± 7.45 41.15 ± 5.31 5.50 × 10
-3

 

9 75 44.79 ± 8.46 55.21 ± 8.46 38.12 ± 6.47 9.47 × 10
-3

 
 

 

 
Table 2.10. Tabulation of gel electrophoresis results for curcumin DNA damage assays with 
6 μM Cu(I) and 50 μM H2O2. 

Gel lane Curcumin, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) - 99.36 ± 0.55 0.64 ± 0.55 - - 

2: p + H2O2 - 99.16 ± 0.73 0.81 ± 0.73 - - 

3: p + H2O2 + CurQ 70 98.63 ± 1.13 1.37 ± 1.13 - - 

4: Cu(I) + H2O2 0 16.98 ± 2.46 83.02 ± 2.46 0 - 

5 1 14.81 ± 4.83 85.19 ± 4.83 -2.85 ± 3.11 0.0253 

6 5 9.22 ± 4.09 90.78 ± 4.09 -10.34 ± 6.54 0.0111 

7 10 8.60 ± 2.86 91.40 ± 2.86 -11.08 ± 0.52 7.33 × 10-4 

8 20 13.44 ± 8.40 86.56 ± 8.40 2.76 ± 3.98 0.353 

9 25 21.53 ± 15.36 78.47 ± 15.36 10.21 ± 5.48 0.0841 

10 35 28.06 ± 2.62 71.94 ± 2.62 12.98 ± 3.11 0.0186 

11 40 29.36 ± 11.18 70.64 ± 11.18 20.92 ± 4.53 0.0153 

12 50 42.99 ± 10.35 57.01 ± 10.35 33.02 ± 1.72 9.03 × 10-4 

13 70 80.07 ± 3.50 19.93 ± 3.50 80.49 ± 3.67 6.92 × 10-4 
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Table 2.11. Tabulation of gel electrophoresis results for curcumin DNA damage assays with 
50 μM Cu(bipy)2

+ and 50 μM H2O2. 
Gel lane  Curcumin, µM  % Supercoiled  % Nicked  % Damage Inhib. p Values 

1: plasmid (p) - 95.81 ± 3.25 4.19 ± 3.25 - - 

2: p + H2O2 - 97.89 ± 1.67 2.11 ± 1.67 - - 

3: p + H2O2 + CurQ 70 97.02 ± 0.45 2.98 ± 0.45 - - 

4: Cu(bpy)+ + H2O2  0 94.81 ± 2.28  5.19 ± 2.28 0 -  

5 1 98.32 ± 2.61 1.67 ± 2.61 -5.18 ± 3.53 0.126 

6 10 98.00 ± 2.74 2.00 ± 2.74 -4.85 ± 3.93 0.166 

7 25 98.32 ± 1.40 1.68 ± 1.40 -4.86 ± 2.25 0.0646 

8 40 98.81 ± 1.94 1.82 ± 1.94 -4.77 ± 2.49 0.0801 

9 70 98.14 ± 0.26 1.86 ± 0.26 -4.56 ± 3.06 0.123 
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CHAPTER THREE 

PREVENTION OF IRON-MEDIATED OXIDATIVE DNA DAMAGE BY 

CATECHOLAMINE AND AMINO ACID NEUROTRANSTMITTERS: METAL 

BINDING AS AN ANTIOXIDANT MECHANISM 

 

Introduction 

 With the rising popularity of prescription medications that alter neurotransmitter 

levels in the brain and no cure for many neurodegenerative diseases, understanding the 

chemical behavior of neurotransmitters (NT) is becoming more essential.  The two 

categories of monoamine neurotransmitters that will be examined in this chapter are the 

catecholamines, dopamine (DA), epinephrine (EP), and norepinephrine (NE), and the amino 

acids, glycine (Gly), glutamate (Glu), and γ-aminobutyric acid (GABA) (Figure 3.1).  
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Figure 3.1. Structures of monoamine neurotransmitters. 
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 Catecholamines are a class of polyphenol neurotransmitters that play a primary role 

in the way humans and other mammals think and behave.  Each catecholamine discussed in 

this thesis, DA, EP, and NE, have an array of functions in the healthy brain.  Dopamine 

plays a primary role in motor function [1], binge eating tendencies [2], and is proposed to 

play a role in depression [3].  Epinephrine (also known as L-adrenaline) plays a role in motor 

behavior and regulating emotional stress [4, 5].  Norepinephrine (also known as 

noradrenaline) regulates both anxiety and depressive mood disorders [6].  Dopamine is the 

most biologically abundant catecholamine, with concentrations in the human and mouse 

brain around 8 μM [7, 8].  Epinephrine and norepinephrine are typically found in the rat 

brain in low micromolar ranges (1 – 2 μM and 1 – 8 μM, respectively) [9], whereas human 

plasma concentrations of catecholamines are in the nanomolar ranges (approximately 1 nM 

each) [10]. 

 Monoamine carboxylic acids include glycine, glutamate, and γ-aminobutyric acid.  

Poor regulation of glycine and GABA transmission can decrease rapid eye movement sleep 

[11] and cause epilepsy [12].  Elevated levels of glutamate are observed in patients with 

mania and diminished levels of this neurotransmitter are observed in patients with 

depression [13]. Glutamate levels in the mammalian brains of cats, swine, and rats range 

from 1 to 20 μM [14-17] and glycine levels in the human plasma are around 0.2 μM [18].  

GABA, however, typically has human brain levels in the millimolar concentrations (1.8 mM) 

[19]. 

 Both brain function and overall health have been linked to labile (non-protein 

bound) metal ion concentrations.  Labile copper levels in human serum have an inverse 

relationship to cognitive state, but levels of protein-bound copper showed no effect, 
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emphasizing the influence of labile metals [20].  A positive correlation has been established 

between labile copper concentrations and Alzheimer’s disease (about 7 times more abundant 

[21]).  It has been proposed that labile iron pools in the brain could be the key player in the 

neurodegeneration that leads to Parkinson’s disease [22].  The mounting evidence for mis-

regulation of labile metal concentrations in patients with impaired brain function stresses the 

importance of understanding of metal-neurotransmitter interactions on a chemical level. 

 Catecholamines and amino acid neurotransmitters have also been investigated for 

their antioxidant properties.  All three catecholamines are considered potent radical 

scavengers: DA is the most potent superoxide scavenger, followed by NE and EP as 

determined by electron paramagnetic resonance (EPR) spectroscopy [23].  However, 

catecholamines can also increase DNA damage in the presence of copper and iron  [24, 25].  

In the presence of Cu(II), DA and EP both promote DNA damage due to their ability to 

participate in copper redox cycling, with DA producing substantially more damage in the 

presence of copper [26].  Gly has also been established to be a potent radical scavenger [27] 

and glycine-iron supplementation has shown to increase superoxide dismutase and catalase 

antioxidant enzyme production in vivo [28], which may be due to radical scavenging 

properties, iron binding, or both.  Most of the research on glutamate is on Glu-containing 

compounds or Glu receptors, but it has been shown that Glu itself inhibits lipid oxidation 

production in vivo [29].  Alone, GABA does not promote DNA damage, but in the presence 

of Cu(II), DNA damage has been reported [30].  

 The experiments described in this thesis will delve further into the metal-binding 

mechanisms for neurotransmitters antioxidant behavior, not just the effects of metal 

presence on biological damage and quantifying the ability of neurotransmitters to prevent 
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iron-mediated DNA damage.  Both iron and copper binding to neurotransmitters will be 

directly examined and a comparison between neurotransmitters that do and do not bind iron 

and copper will also be made.  To investigate the interactions between metal ions and 

neurotransmitters, plasmid DNA damage assays, ultraviolet-visible (UV-vis) spectroscopy, 

and cyclic voltammetry (CV) are all be used to provide comprehensive insight into metal 

binding as an essential antioxidant mechanism for these neurotransmitters.  This work 

contains contributions from Jenna Wilkes, who aided in the CV data collection and 

completed some of the UV-vis spectroscopy as well as Carlos Angéle-Martínez for 

completing the Fe(II) and Fe(EDTA)2- DNA damage gels for two of the neurotransmitters. 

 

Neurotransmitter Prevention of Iron-Mediated DNA Damage 

 Iron-mediated oxidative DNA damage has been linked to many health problems 

including Alzheimer’s disease [31], heart disease [32], and cancer [33] and can lead to 

apoptosis [34, 35].  To quantify iron-mediated DNA damage prevention by 

neurotransmitters, a plasmid DNA damage assay was used; this method has been used 

previously to determine polyphenol DNA damage inhibition by Fe(II) and H2O2 [36-38].  

The gel image in Figure 3.2A shows that dopamine prevents DNA damage by Fe(II)/H2O2 

with a maximum DNA damage prevention of 98 ± 1% at 1600 μM, the highest 

concentration tested (Figure 3.2A).  By graphing DNA damage inhibition vs. DA 

concentration, a dose-response curve was obtained to determine the concentration at which 

50% of DNA damage prevention was observed (IC50).  For dopamine, this IC50 value is 111 

± 5 μM (Figure 3.2B).  Epinephrine also behaves as an antioxidant to prevent iron-mediated 

DNA damage, with a maximum percent damage inhibition of 63 ± 3% at 50 μM and an IC50 
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value of 15 ± 1 μM. Norepinephrine, like the other catecholamines, shows does-dependent 

behavior and has an IC50 value of 35 ± 1 μM, preventing 98.3% of DNA damage at 200 μM. 

Gel images and data tables for these DNA nicking assays are provided in Figures 3.2, 3.13, 

and 3.17 and Tables 3.4, 3.6, and 3.8. Of the catecholamines, epinephrine most effectively 

prevents iron-mediated oxidative DNA damage and is more than 2 times more effective 

than norepinephrine and about 8 times more effective than dopamine.  In fact, epinephrine 

antioxidant activity falls within biological concentrations, preventing 14.0% DNA damage at 

10 μM. 

 GABA was inactive as either a pro- or antioxidant in the presence of iron ions (Table 

3.1).  Glycine is a weak antioxidant, preventing only 31.9% of iron-mediated DNA damage 

at 10,000 μM [39].  Glutamate behaves much like GABA, acting as neither a pro- nor 

antioxidant at all tested concentrations (up to 200 μM).  The catecholamines prevent 

significantly more DNA damage under these conditions than the amino acid 

neurotransmitters, which showed little or no activity.    

 To establish whether iron chelation is required for DNA damage prevention, similar 

DNA damage assays were conducted, but instead of using FeSO4 as the iron source, the 

Fe(II) was fully chelated with ethylenediaminetetracetate (EDTA4-) prior to adding the 

neurotransmitter. The resulting Fe(EDTA)2- complex damages DNA upon H2O2 addition 
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Figure 3.2. A) Gel electrophoresis image of dopamine DNA damage prevention with Fe(II) 
(2 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1: plasmid (p); 2: p + H2O2; 3: p + 75 
μM; 4:  p + H2O2 + Fe(II); 5-18: lane 5 + 1, 5, 10, 30, 50, 80, 100, 150, 200, 400, 600, 1000, 
1200, and 1600 μM, respectively.  B) Dose-response curve for dopamine inhibition of iron-
mediated DNA damage.  Data are reported as the average of three trials with calculated 
standard deviations. 
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Table 3.1. Gel electrophoresis data for neurotransmitter (NT) prevention of Fe(II)-mediated 
DNA damage and Fe(II)- and Cu(I) UV-vis spectra in the presence of neurotransmitters. 

Compound Antioxidant Activity 
(max %) IC50 (µM)a NT-Fe 

λmax (nm) 
NT-Cu 

λmax (nm) 

Dopamine 
(DA) 

1 – 1600 µM 
(98.2% at 1600 µM) 111 ± 5 290, 583 288, 297 

Epinephrine 
(EP) 

1 – 50 µM 
(76.3% at 50 µM) 15 ± 1 281 282, 485 

Norepinephrine 
(NE) 

 
5 – 200 µM 

(98.3% at 200 µM) 
 

35 ± 1 283, 579 286, 297 

Glycine 
(Gly) 

1-10000 µM 
(31.9% at 10000 µM)b – – 231 

Glutamate 
(Glu) – – – 234 

γ-aminobutyric acid 
(GABA) – – – – 

aIC50 values are an average of three trials and errors are calculated standard deviations. bFrom 
source [39].   

 
 
 

(Figure 3.3, Lane 4) but does not permit neurotransmitter-iron binding. With Fe(EDTA)2- as 

the iron source, DA prevents significantly less DNA damage compared to unchelated Fe(II), 

with a maximum of 22 ± 1% damage inhibition compared to 91 ± 2% at 1200 μM (Figure 

3.3 and 3.2A, respectively).  EP also prevents substantially less damage under these 

conditions; 28 ± 6% compared to 76 ± 4% DNA damage inhibition at 50 μM for  
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Figure 3.3. Gel electrophoresis image of dopamine with Fe(EDTA)2- (400 μM) and H2O2 
(50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + H2O2; 3 = p + 1200 μM 
dopamine + H2O2; and 4 = p + Fe(EDTA)2- + H2O2; lanes 5-9: p + Fe(EDTA)2- + H2O2 + 
10, 80, 150, 600, and 1200 μM dopamine, respectively. 
 
  

 Fe(EDTA)2- and Fe(II), respectively.  NE is virtually inactive in preventing Fe(EDTA)2- 

meditated DNA damage.  For the tested catecholamines, using Fe(EDTA)2- as the iron 

source resulted in less than 50% DNA damage even at the highest neurotransmitter 

concentration, suggesting that iron-biding is the primary mechanism of DNA damage 

prevention.  Similarly, curcumin shows a decreased ability to prevent DNA damage in the 

presence of chelated iron or copper when compared to the unchelated metal ions (Chapter 

2).  The small amount of DNA damage prevention observed for these neurotransmitters in 

the presence of Fe(EDTA)2-/H2O2 is likely due to an alternate antioxidant mechanism, such 

as ROS scavenging, at high concentrations [39-42].   

 
 
Iron and Copper Binding to Neurotransmitters  
 
 UV-vis spectroscopy experiments were conducted to confirm iron biding and 

establish neurotransmitter:metal stoichiometry.  Upon addition of Fe(II) to all six 
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neurotransmitters, DA, EP and EP showed evidence of iron binding and oxidation as 

determined from the UV-vis spectra.  The absorbance bands around 285 nm that increase 

upon catecholamine addition (Figure 3.4) result from a π-π* transition of the polyphenols 

[43, 44].  The lower-energy bands around 580 nm observed in the spectra for DA and  NE 

upon iron addition are indicative of an Fe(III)-phenolate bond [45, 46] (Figure 3.4, Table 

3.2) similar to curcumin (Chapter 2).  These lower-energy bands are consistent with an array 

of polyphenols that exhibit similar ligand-to-metal charge transfer (LMCT) bands within the 

same range [47].  The observed absorbance Fe(III) bands in these UV-vis spectra indicate 

that within the 10 min reaction time, DA and NE not only bind iron, but also promote 

Fe(II) oxidation to Fe(III).  The very small lower-energy Fe(III) LMCT band for EP 

indicates that EP might have significantly slower oxidation kinetics compared to DA and 

NE or that EP solubility may be an issue in these experiments at high EP concentrations.  

Similar iron binding and oxidation behavior has previously been reported for other catechol-

containing polyphenol compounds [36]. 

UV-vis spectra for DA, EP, and NE with Cu(I) show bands around 290 nm (Figure 

3.5, Table 3.2), again due to the catechol π-π* aromatic ring transition [43, 44]; the same 

band is observed in the iron UV-vis spectra. Upon copper addition, EP is the only 

compound to display any additional band at a lower intensity (at 485 nm) and this band is 

due to the phenolate-Cu(II) LMCT [48, 49]. As observed with Fe(II), interactions of Cu(I) 

with these catecholamines can promote Cu(I) oxidation to Cu(II). 

 In contrast to the catecholamines, UV-vis spectra for the amino acid 

neurotransmitters Gly, Glu, and GABA show no significant absorbance changes upon Fe(II) 

addition (Figure 3.6), so iron binding and oxidation cannot be determined using UV-vis 
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spectroscopy.  The UV-vis spectra for Gly and Glu with copper show a band increase at λmax 

231 and 234 nm (Figure 3.7), possibly  representing σ(O-carboxylate) → Cu(II) LMCT 

bands [50, 51].  GABA shows no significant absorbances upon copper addition.  Although 

GABA also contains carboxylic acid functional groups, no similar LMCT bands were 

observed possibly due to slower kinetics of copper oxidation.  With Gly and Glu, as well as 

the catecholamines, Cu(I) is oxidized to Cu(II) upon binding. 

 Results of the DNA damage assays and UV-vis spectroscopy studies suggest that, 

not only do catecholamines bind iron, but this iron binding correlates with DNA damage 

prevention.  Because EP is slow to oxidize, Fe(II)-binding, rather than oxidation to Fe(III), 

may be responsible for the observed DNA damage inhibition.  In contrast, the three 

monoamine carboxylic acids showed no iron binding by UV-vis spectroscopy, and had little 

or no antioxidant ability to inhibit iron-mediated DNA damage.  Two of the amino acid 

neurotransmitters (Gly and Glu) also bind and oxidize copper.  Oxidation of Fe(II) and 

Cu(I) when bound to neurotransmitters is observed for all complexes with detectable UV-vis 

bands.  These UV-vis spectroscopy studies suggest that iron-binding is essential in 

preventing DNA damage, since the catecholamines bind and oxidize iron and also prevent 

iron-mediated DNA damage, whereas the amino acid neurotransmitters provide little or no 

protection against iron-mediated DNA damage, and no evidence of iron binding and 

oxidation. 

  

Electrochemical Properties of Neurotransmitters with and without Iron 

 Because the generation of hydroxyl radical can occur only in a limited 

electrochemical window (-0.324 V to 0.460 V [52] vs. NHE), stabilization of Fe(III) by 
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neurotransmittter binding may prevent iron redox cycling and subsequent DNA damage.  

Cyclic voltammetry was performed to determine the effects of pH and iron interactions on 

neurotransmitter electrochemical potentials.  The monoamine carboxylic acids Gly, Glu, and 

GABA were all electrochemically inactive at both pH 6.0 and 7.2 within a range of ± 1 V 

(Figure 3.8).  This inability of Gly, Glu, and GABA to participate in redox reactions is 

consistent with the lack of either prooxidant or antioxidant activity observed in the iron-

mediated DNA damage assays.   

Catecholamines, however, are known to be electrochemically active under these 

conditions.  Biological redox cycling for catecholamines is proposed to occur by two 

subsequent electron redox reactions: first, a two-electron oxidation of the catecholamine to 

the o-quinone, then a 1-electron reduction to the radical o-semiquinone in the presence of 

cellular reductants (such as NADPH) [53, 54] (Figure 3.9).  The semiquinone can then cycle 

back to the oxidized quinone form in the presence of oxidants (such as molecular oxygen), 

creating a perpetual cycle of radical production and resulting in neurotoxicity [53, 54].  At 

pH 3.0, oxidation potentials for DA, EP, and NE were 0.703 V, 0.772 V, and 0.741 V vs. 

NHE, respectively, corresponding to oxidation of the catecholamines to the corresponding 

o-quinones [55].  Under the same conditions, these o-quinones reduce at 0.338 V, 0.447 V, 

and 0.338 V vs. NHE, respectively, presumably back to the parent catecholamine 

compounds [55]. 
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Figure 3.9. Catecholamine oxidation to the cyclized and linear o-quinones and biological 
redox cycling between respective quinones and semiquinones. 
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Figure 3.10. Cyclic voltammogram vs. NHE of dopamine (380 μM) in MES buffer (64 mM, 
pH 6.0, dotted line) or MOPS buffer (64 mM, pH 7.2, solid line) with KNO3 (64 mM) as the 
supporting electrolyte. 
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Figure 3.11. Cyclic voltammograms vs. NHE of A) epinephrine and B) norepinephrine.  
Compounds (380 μM) in MES buffer (64 mM, pH 6.0, dotted line) or MOPS buffer (64 
mM, pH 7.2, solid line) with KNO3 (64 mM) as a supporting electrolyte. 
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Table 3.2. Electrochemical data vs. NHE for neurotransmitters with and without the 
addition of 1 equivalent Fe(II).a 
Compound and pH Epa (V) Epc (V) ∆E (V) E1/2 (V) 

DA (pH 6.0) 0.200, 0.667 0.106, 0.494 0.094, 0.173 0.153, 0.582 

DA (pH 7.2) 0.158, 0.605 0.027, 0.425 0.131, 0.180 0.092, 0.515 

DA + Fe(II) (pH 6.0) 0.090 0.747 0.657 0.418 

NE (pH 6.0) 0.287, 0.696 0.227, 0.527 0.060, 0.169 0.257, 0.612 

NE (pH 7.2) 0.642 0.114 0.528 0.378 

NE + Fe(II) (pH 6.0) 0.166 0.758 0.592 0.462 

EP (pH 6.0) 0.237, 0.711 0.189 0.522b 0.045b 

EP (pH 7.2) 0.606 0.114 0.492 0.360 

EP + Fe(II) (pH 6.0) 0.180 0.856 0.676 0.518 

FeSO4 (pH 6.0) 0.112 0.5 - 0.65c – – 
aGly, Glu, and GABA showed no electrochemical activity under these conditions.  b∆E and 
E1/2 of EP was calculated using 0.711 V for oxidation to coordinate with the o-quinone 
potentials for pH 7.2 for all compounds [55].  cBroad wave.  
 

 
   

At pH 6.0, the oxidation wave (Epa) for DA that occurs at 0.667 results from a 2 

electron catecholamine o-quinone product (Figure 3.10, Table 3.2), and the reduction wave 

(Epc) observed at the most positive voltage (0.494 V) is likely due to a 2-electron reduction 

back to the parent compound [54-56].  The second redox couple at pH 6.0 for DA at lower 

potentials (0.153 V) can be assigned to a reversible, two-electron oxidation of the cyclized 

catecholamine to the cyclized o-quinone (Figure 3.10) [56-58], similar to that described for 

norepinephrine by Bian, et al.  The formation of the semiquinones is not observed in these 

CV studies.  It is well-documented that the redox potentials of catecholamines are pH 
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dependent: as the pH of the solution increases, both the potential of the oxidation and 

reduction values shift toward a more negative potential voltage [56, 57, 59].  Dopamine 

exhibits this behavior (Figure 3.7, Table 3.2) in aqueous solution at pH 6.0 and 7.2, with each 

redox wave shifting about -0.050 V from pH 6.0 to 7.2.   

The cyclized o-quinone reduction is observed at pH 6.0 for both EP and NE but is 

not observed to reduce for either EP or NE at pH 7.2.  In comparing the voltammograms of 

the three catecholamine compounds, dopamine is the only compound that has two clear 

reduction and oxidation potentials at both pH 6.0 and pH 7.2 (Figures 3.10 and 3.11).  At 

these pH values, EP does not show reduction of the linear o-quinone.  However, NE shows 

both redox potentials for the linear o-quinone.  Bian, et al. identified two redox couple sets 

for norepinephrine at 400 μM using a modified glassy carbon electrode; when a unmodified 

glassy carbon electrode was used, only one redox couple and one oxidation were observed 

[57].  Thus, both redox couples for EP and NE may be detectable in these experiments if the 

concentration were increased.  

Dopamine toxicity attributed to its autooxidative properties has been well-

established [60], leading to death of dopaminergic neurons and causing decreased motor 

function and, ultimately, Parkinson’s disease [61].  Although dopamine and epinephrine both 

autooxidize, ultimately causing DNA damage in vitro, DA caused two times the oxidative 

DNA damage as epinephrine [26].  Interestingly, DA at low concentrations promotes 

oxidative DNA damage in the presence of Cu(I) [25].  These CV and DNA damage results 

indicate that DA can participate in copper redox cycling, perhaps explaining why DA is 

cytotoxic in systems rich in copper [62].  Similar CV experiments to investigate the effect of 

Cu(I) on neurotransmitter redox potentials could not be conducted due to precipitation of 
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the neurotransmitter in the presence of copper.  These in vitro studies may help to explain 

why bound copper ions in human serum show no correlation to motor function, whereas 

labile copper levels have a strong inverse relationship to motor function [20]. 

Cyclic voltammetry experiments were also conducted with the catecholamines in the 

presence of 1 equiv Fe(II) at pH 6.0 after a reaction time of 10 min.  Under these conditions, 

the CV of Fe(II)SO4∙7H2O alone shows one sharp oxidation wave and one broad reduction 

wave around 0.50 – 0.65 V (Figure 3.12A).  Differential pulse voltammetry (DPV) 

experiments resolved this broad reduction wave into two partially overlapping waves (Figure 

3.12A, insert).  At pH 4.0, Nemtoi and coworkers reported that FeSO4∙7H2O has two 

reduction waves due to Fe(III) to Fe(II) reduction and Fe electrodeposition, respectively 

[63].  At pH 6.0, the iron oxidation wave is at 0.112 V, and the two reduction waves are at 

0.41 and 0.58 V, respectively.  The Fe(II)/Fe(III) redox couple can be attributed to the 

single anodic wave and the more positive cathodic wave [64]. 

The cyclic voltammograms for iron in the presence of DA, EP, and NE are all 

similar in both shape and redox potentials to FeSO4∙7H2O, suggesting that the observed 

waves are from Fe(II)/Fe(III)-based redox reactions.  Upon adding 1 equiv neurotransmitter 

to Fe(II) at pH 6.0 and waiting 10 min, oxidation potentials are observed for DA-Fe, NE-Fe, 

and EP-Fe at 0.090 V, 0.166 V, and 0.180 V, respectively (Table 3.3).  These oxidation 

potentials are shifted from those of iron alone by -0.022, +0.054, and +0.068 V for DA-, 

NE-, and EP-Fe, respectively.  Only DA-Fe showed an oxidation potential at a lower voltage 

than Fe(II) alone, suggesting that Fe(II) oxidation to Fe(III) is less spontaneous when iron is 

bound to dopamine.  EP and NE addition yielded higher Fe(II)/Fe(III) oxidation potentials 

when bound to iron.  All the neurotransmitter-Fe anodic potentials are well within the 
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biological range of the Fenton reaction (-0.324 V to 0.460 V at pH 7 [65]), yet the cathodic 

waves detected were outside the biologically relevant range, occurring at potentials around 

0.7 V - 0.9 V (Table 3.3).  The additional waves seen for EP-Fe(II) can be detected by 

negative DPV and have values of -0.165 and 0.781 V that can be attributed to unbound EP 

(Figure 3.12).  Presence of unbound epinephrine may be due to solubility issues, since a 

neutral form of the compound was used, unlike NE and DA that were used in salt form.  

The strong antioxidant potential may lie, then, in the effect on the redox value EP has on 

iron when EP binds. 

The E1/2 potentials for the catecholamines suggest that EP-Fe interactions shift the 

iron redox potentials farthest the range of biological reduction of H2O2 (E1/2 EP-Fe = 0.518 V), 

consistent with epinephrine’s ability to prevent iron-mediated DNA damage.  Iron bound to 

NE has a redox potential of 0.462 V, just outside of the biologically favorable range.  This 

may explain why, in the presence of iron, NE still prevents damage but not as efficiently as 

EP.  Dopamine-bound iron has the least positive potential (0.418 V) that falls well-into the 

range for Fe(II) reduction of H2O2, explaining its lower antioxidant activity relative to the 

other catecholamines.  These iron-bound potentials correlate with the antioxidant activities 

of the catecholamine neurotransmitters in the presence of iron, showing agreement between 

the gel DNA damage assay studies and the iron-neurotransmitter electrochemistry.
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Conclusions 

 Catecholamines and monoamine carboxylic acid neurotransmitters behave quite 

differently as antioxidants.  Three different methods (iron-mediated DNA damage gel 

electrophoresis, Fe(II)- and Cu(I)-binding UV-vis spectroscopy, and CV both with and 

without Fe(II) addition) were used to determine antioxidant potential of these 

neurotransmitters, all of which point to metal binding as a primary factor in the observed 

antioxidant activity.  In the iron-mediated DNA damage assays, the catecholamines DA, EP, 

and NE were the only compounds to prevent Fe(II) mediated DNA damage.  The 

monoamine carboxylic acids Gly, Glu, and GABA prevented little or no DNA damage 

under the same conditions.  When Fe(II) is chelated prior to adding the catecholamine 

neurotransmitters, they prevented only a fraction of the DNA damage observed with Fe(II), 

indicating that iron binding is required for maximal antioxidant efficacy.  

UV-vis spectroscopy studies show that the three catecholamines bind Fe(II) and 

promote oxidation to Fe(III), whereas the three amino acid neurotransmitters showed no 

evidence of iron binding.  The catecholamines also showed much stronger interactions with 

copper by UV-vis spectroscopy than the amino acids, accelerating Cu(I) oxidation to Cu(II).  

Cyclic voltammetry provided insight into the behavior of these neurotransmitters both in the 

presence and absence of iron.  The monoamine carboxylic acids were inactive within the 

accessible aqueous potential window at both pH 6.0 and pH 7.2, which correlates with their 

inactivity in preventing oxidative DNA damage.  In contrast, all three catecholamines show 

electrochemical evidence of o-quinone formation, with DA as the only catecholamine that 

shows both linear and cyclic quinone formation for both tested pHs.  Cyclic voltammetry of 

the catecholamines in the presence of iron show a trend between higher iron oxidation 
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potentials and improved antioxidant activity.  All of these findings emphasize the importance 

of iron binding in preventing oxidative DNA damage, suggesting that this antioxidant 

mechanism should be further investigated when developing treatments for Alzheimer’s, 

Parkinson’s, and other diseases with increase labile metal ion concentrations.   

 

Experimental Section 

General. Water was purified using a Barnstead NANOpure DIamond Life Science 

(UV/UF) water deionization system (Barnstead International). Dopamine hydrochloride, 

98.5% (Alfa Aesar), L-adrenaline (TCI America), L-noradrenaline bitartrate (TCI America), 

glycine (J.T. Baker), DL-glutamic acid (TCI Tokyo Kasei), 4-amino-n-butyric acid (TCI 

America), 2-(N-morpholino)ethanesulfonic acid (MES; Calibiochem), 3-(N-

morpholino)propanesulfonic acid (MOPS; Alfa Aesar), KNO3, fine crystal (Mallinckrodt 

Chemicals), FeSO4∙7H2O (Acros Organics), CuSO4∙5H2O (Fisher), and L-(+)-ascorbic acid, 

ACS, 99+% (Alfa Aesar), sodium bitartrate (Electron Microscopy Sciences), Chelex 100 

resin (Sigma-Aldrich), and disodium dihydrogen ethylenediaminetetraacetate dehydrate (TCI 

America) were all used as received.  

To dissolve L-adrenaline in buffered solutions, 1 M HCl was added as needed (up to 

50 μL / 50 mL for a 400 μM solution) until dissolved while maintaining a final pH of 6.0 or 

7.2.  To prevent oxidation of epinephrine in solution, samples were prepared daily and 

stored in the dark on ice prior to use.  All experiments with norepinephrine bitartrate were 

also carried out with sodium tartrate as a control.  To avoid metal contamination, all 

microcentrifuge tubes were rinsed in 1 M HCl, triply rinsed in deionized H2O, and dried 
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prior to use.  Buffered solutions were treated with Chelex resin (2 g / 80 mL buffer) and 

mixed for 24 h prior to use. 

 

Transfection, amplification, and purification of plasmid DNA. Plasmid DNA 

(pBSSK) was purified from E. coli strain DH1 using a PerfectPrep Spin kit (Fisher).  The 

plasmid DNA was dialyzed at 4 °C against EDTA (1 mM) and NaCl (50 mM) for 24 h and 

then against NaCl (130 mM) for 24 h to remove metal ions from the DNA. For all 

experiments, DNA absorbance ratios A250/A260 ≤ 0.95 and A260/A280 ≥ 1.8 were ensured after 

dialysis. 

 

Gel electrophoresis experiments with Fe(II)/H2O2. For each reaction, reagents were 

added in the following order to achieve the given final concentrations in a final volume of 10 

μL: deionized H2O, MES buffer (10 mM, pH 6.0; to ensure Fe(II) solubility), NaCl (130 

mM), 100% ethanol (10 mM), the desired concentration of neurotransmitter (0.01-1500 μM), 

and Fe(II) (2 μM). Iron solutions were immediately prepared from solid FeSO4·7H2O prior 

to each experiment. This mixture was allowed to stand at room temperature for 5 min, 

followed by addition of plasmid DNA (0.1 pmol in 130 mM NaCl). After 5 min, H2O2 (50 

μM) was added to initiate DNA damage. After 30 min, EDTA (50 μM) was used to stop the 

reaction, and loading dye (2 μL) was added to achieve a final volume of 12 μL. Gel 

electrophoresis was run on a 1% agarose gel in TAE buffer for 30 min at 140 V to separate 

the nicked and supercoiled forms of the plasmid DNA. Gels were then stained for 5 min 

using ethidium bromide and washed for an additional 10 min in deionized H2O before 

imaging under UV light. The intensities of the damaged and undamaged DNA gel bands 
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were quantified using UVIproMW software (Jencons Scientific Inc., 2003). Ethidium stains 

supercoiled DNA less efficiently than nicked DNA, so supercoiled DNA band intensities 

were multiplied by 1.24 prior to comparison [66, 67].  Intensities of the nicked and 

supercoiled bands were normalized for each lane so that % nicked + % supercoiled = 100 

%. Sodium tartrate prevented only 11.4% of DNA damage at 200 μM (Figure3.20, Table 

3.3), the highest concentration of norepinephrine tested, so norepinephrine DNA damage 

prevention percentages are uncorrected. 

 

Gel electrophoresis experiments with Fe(EDTA)2-/H2O2. To determine the role of 

iron binding in neurotransmitter prevention of DNA damage, Fe(EDTA)2- (400 μM) was 

used as the iron source and experiments were performed as described for the Fe(II)/H2O2 

studies. 

 

Iron and copper binding by UV-vis spectroscopy. All cuvettes were washed in 6 M 

HCl for at least 30 min, thoroughly rinsed 3 times with deionized water, and dried to avoid 

metal contamination.  Samples were prepared using fresh FeSO4·7H2O or CuSO4·5H2O + 

1.25 equiv ascorbate in buffered solutions (MES at 10 mM, pH 6.0 for Fe(II) studies and 

MOPS at 10 mM, pH 7.2 for Cu(I) studies) with neurotransmitter (145 μM) and added to a 

final concentration of 145 μM and a neurotransmitter to metal ratio of 1:1.  For higher 

neurotransmitter to metal ratios, the neurotransmitter concentration was increased 

accordingly, keeping the metal concentration at 145 μM.  Samples were allowed to stand for 

10 min prior to data collection with a Shimadzu UV-3101PC spectrophotometer.  Upon 

Fe(II) addition, sodium tartrate showed only a slight absorbance (0.05 AU) increase at 320 - 
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330 nm in the UV-vis spectra, making the contribution of tartrate to noradrenaline UV-vis 

spectra negligible (Figure 3.22A).  No absorbances were observed in the UV-vis spectra of 

Cu(I) + tartrate (Figure 3.22B). 

 

Electrochemical studies.  Cyclic voltammetry and differential pulse voltammetry 

measurements for neurotransmitters alone (380 μM) and neurotransmitters with 1 equiv 

Fe(II) (145 μM each, final concentration) were measured using a CH Electrochemical 

Analyzer (CH Instruments, Inc.) in MES buffer (64 mM, pH 6.0) or MOPS buffer (64 mM, 

pH 7.2) with KNO3 as a supporting electrolyte (64 mM).  Upon Fe(II) addition, samples 

were allowed to stand for 10 min prior to data collection.  Prior to analysis, all solutions were 

deoxygenated by bubbling with argon for 45 min; during analysis, the sample was blanketed 

with N2 to prevent oxidation.  For cyclic voltammetry, the samples were cycled between -1.0 

V and 1.0 V vs. Ag/AgCl/3 M KCl (+199 mV vs. NHE [68, 69]) using a glassy carbon 

working electrode and a platinum counter-electrode at a scan rate of 100 mV/s.  Each 

sample was allowed to complete one full ± 1 V cycle prior to data collection.  Differential 

pulse voltammetry was performed from -1.0 V to 1.0 V in increments of 0.004 V at an 

amplitude 0.05 V, a pulse width of 0.05 s, a sample width 0.0167 s, and a pulse period 0.2 s; 

the sensitivity ranged from 1 × 10-5 to 1 × 10-6 A/V.  Tartrate showed no electrochemical 

activity in this range at pH 6.0 or 7.2 (Figure 3.23), so norepinephrine CV data are 

uncorrected. 
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Figure 3.13. Gel electrophoresis image of epinephrine prevention of DNA damage by 
Fe(II) (2 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + 
H2O2; 3 = p + 50 μM epinephrine + H2O2; 4 = p + Fe(EDTA)2- + H2O2; and lanes 5-11: p 
+ Fe(EDTA)2- + H2O2 + 1, 5, 10, 15, 25, 30, and 50 μM epinephrine, respectively. 
 

 

 

 

Figure 3.14. Dose-response curve for epinephrine inhibition of iron-mediated DNA 
damage.  Data are reported as the average of three trials with calculated standard deviations. 
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Figure 3.15. Gel electrophoresis image of epinephrine prevention of DNA damage with 
Fe(EDTA)2- (400 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 
2 = p + H2O2; 3 = p + 50 μM epinephrine + H2O2; and 4 = p + Fe(EDTA)2- + H2O2; lanes 
5-9: p + Fe(EDTA)2- + H2O2 + 1, 5, 15, 25, and 50 μM epinephrine, respectively. 
 
 
 
 
 
 

 
 
Figure 3.16. Gel electrophoresis image of norepinephrine prevention of DNA damage 
Fe(II) (2 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + 
H2O2; 3 = p + 200 μM norepinephrine + H2O2; and 4 = p + Fe(II) + H2O2; lanes 5-12: p + 
Fe(II) + H2O2 + 2, 5, 10, 25, 50, 100, 150, and 200 μM norepinephrine, respectively. 
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Figure 3.17. Dose-response curve for norepinephrine inhibition of iron-mediated DNA 
damage.  Data are reported as the average of three trials with calculated standard deviations. 

 

 

 

  

Figure 3.18. Gel electrophoresis image of norepinephrine prevention of DNA damage with 
Fe(EDTA)2- (400 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 
2 = p + H2O2; 3 = p + 200 μM norepinephrine + H2O2; and 4 = p + Fe(EDTA)2- + H2O2; 
lanes 5-9: p + Fe(EDTA)2- + H2O2 + 1, 2, 5, 10, 25, 50, 100, 150, and 200 μM 
norepinephrine, respectively. 
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Figure 3.19. Gel electrophoresis image of GABA prevention of DNA damage with Fe(II) (2 
μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + H2O2; 3 
= p + 300 μM GABA + H2O2; and 4 = p + Fe(II) + H2O2; lanes 5-12: p + Fe(II) + H2O2 + 
1, 5, 50, 75, 100, 150, 200, and 300 μM GABA, respectively. 
 

 

 

 

 
Figure 3.20. Gel electrophoresis image of glutamate prevention of DNA damage by Fe(II) 
(2 μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + H2O2; 
3 = p + 200 μM Glu + H2O2; and 4 = p + Fe(EDTA)2- + H2O2; lanes 5-13: p + Fe(II) + 
H2O2 + 1, 2, 5, 10, 25, 50, 100, 150, and 200 μM Glu, respectively. 
 

 

 

 

 



97 
 

 

Figure 3.21. Gel electrophoresis image of tartrate prevention of DNA damage with Fe(II) (2 
μM) and H2O2 (50 μM). Lanes: MW = 1 kb ladder; 1 = plasmid DNA (p); 2 = p + H2O2; 3 
= p + 400 μM tartrate + H2O2; and 4 = p + Fe(II) + H2O2. Lanes 5-9: p + Fe(II) + H2O2. + 
1, 25, 75, 200, and 400 μM tartrate, respectively. 
 

 

 

Table 3.3. Tabulation of gel electrophoresis results for tartrate DNA damage assays with 2 
μM Fe(II) and 50 μM H2O2. 

Gel lane Tartrate, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) – 94.25 ±  3.87 5.75 ± 3.87 – – 

2: p + H2O2 – 96.47 ± 2.49 3.53 ± 2.49 – – 

3: p + H2O2 + Tart 400 96.40 ± 1.97 3.60 ± 1.97 – – 

4: Fe(II)+ H2O2 0 13.21 ± 7.87 86.79 ± 7.87 0 – 

5 1 18.73 ± 7.86 81.27 ± 7.86 7.07 ± 0.91 5.47×10-3 

6 25 16.77 ± 7.55 83.23 ± 7.55 4.33 ± 2.46 9.28×10-2 

7 75 19.10 ± 9.50 80.90 ± 9.50 7.57 ± 3.64 6.92×10-2 

8 200 21.93 ± 8.71 78.07 ± 8.71 11.43 ± 3.50 2.98×10-2 

9 400 27.11 ± 5.85 72.89 ± 5.85 18.04 ± 1.89 3.63×10-3 
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Figure 3.22. UV-vis spectra of tartrate (145 μM) with iron and copper in A) MES buffer 
(pH 6.0, 10 mM) with Fe(II) and B) MOPS buffer (pH 7.2, 10 mM) with Cu(I).  A 1:1 ratio 
represents 145 μM neurotransmitter to 145 μM Fe(II) or Cu(I), respectively, and higher 
concentration ratios are obtained by increasing tartrate concentrations with fixed Fe(II) and 
Cu(I) concentrations (145 μM).  Fe(II) solutions show no significant absorbances at these 
wavelengths.   
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Figure 3.23. Cyclic voltammograms of tartrate in MES buffer (64 mM, pH 6.0, dotted line) 
or MOPS buffer (64 mM, pH 7.2, solid line) with 64 mM KNO3 as a supporting electrolyte. 
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Table 3.4. Tabulation of gel electrophoresis results for dopamine DNA damage assays with 
2 μM Fe(II) and 50 μM H2O2. 

Gel lane DA, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) – 94.16 ± 2.64 5.84 ± 2.64 – – 

2: p + H2O2 – 93.29 ± 2.20 6.71 ± 2.20 – – 

3: p + H2O2 + DA 1600 95.85 ± 2.10 4.15 ± 2.10 – – 

4: Fe(II) + H2O2 0 8.49 ± 2.0 91.51 ± 2.0 0 – 

5 1 3.92 ± 7.20 96.08 ± 7.20 -1.04 ± 1.78 0.418 

6 10 3.87 ± 4.76 96.13 ± 4.76 -2.93 ± 1.79 0.105 

7 30 8.01 ± 5.69 91.99 ± 5.69 2.55 ± 3.74 0.359 

8 50 21.75 ± 6.33 78.25 ± 6.33 12.06 ± 3.71 3.01×10-2 

9 80 30.60 ± 9.42 69.40 ± 9.42 25.05 ± 5.11 1.36×10-2 

10 100 47.72 ± 7.38 52.28 ± 7.38 40.54 ± 4.19 3.54×10-3 

11 150 68.60 ± 4.02 31.40 ± 4.02 65.53 ± 5.70 2.51×10-3 

12 200 76.28 ± 1.81 23.72 ± 1.81 75.11 ± 2.83 4.73×10-4 

13 400 79.26 ± 1.15 20.74 ± 1.15 81.92 ± 1.32 8.65×10-5 

14 600 86.08 ± 3.82 13.92 ± 3.82 89.07 ± 3.83 6.16×10-4 

15 1000 88.97 ± 4.26 11.03 ± 4.26 94.39 ± 3.86 5.57×10-4 

16 1200 90.53 ± 2.26 9.47 ± 2.26 97.06 ± 1.36 6.54×10-5 

17 1600 92.23 ± 2.09 7.78 ± 2.09 98.19 ± 1.14 4.49×10-5 
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Table 3.5. Tabulation of gel electrophoresis results for dopamine DNA damage assays with 
400 μM Fe(EDTA)2- and 50 μM H2O2. 

Gel lane DA, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) – 93.93 ± 1.86 6.07 ± 1.86 – – 

2: p + H2O2 – 92.35 ± 1.81 8.82 ± 1.81 – – 

3: p + H2O2 + DA 1200 94.61 ± 1.17 5.39 ± 1.17 – – 

4: Fe(EDTA)2-  + H2O2 0 2.22 ± 1.09 97.78 ± 1.09 0 – 

5 10 5.16 ± 4.78 94.84 ± 4.78 3.26 ± 2.91 0.192 

6 80 9.07 ± 4.98 90.93 ± 4.98 7.17 ± 3.18 5.98×10-2 

7 150 15.44 ± 3.27 84.56 ± 3.27 14.79 ± 1.83 5.06×10-3 

8 600 21.34 ± 2.58 78.66 ± 2.58 21.50 ± 1.44 1.49×10-3 

9 1200 22.30 ± 0.25 77.70 ± 0.25 21.66 ± 1.08 8.23×10-3 

 
 
 
 
 
 
 
Table 3.6. Tabulation of gel electrophoresis results for epinephrine DNA damage assays 
with 2 μM Fe(II) and 50 μM H2O2. 

Gel lane EP, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) – 96.71 ± 3.08 3.29 ± 3.08 – – 

2: p + H2O2 – 93.30 ± 5.23 6.70 ± 5.23 – – 

3: p + H2O2 + EP 50 95.92 ± 5.71 4.08 ± 5.71 – – 

4: Fe(II) + H2O2 0 9.56 ± 7.03 90.44 ± 7.03 0 – 

5 1 10.81 ± 8.23 89.19 ± 8.23 1.48 ± 2.79 0.455 

6 5 0.76 ± 0.11 99.24 ± 0.11 0.0016 ± 0.0013 0.167 

7 10 12.85 ± 10.70 87.15 ± 10.70 3.81 ± 6.81 0.435 

8 15 39.98 ± 7.71 60.02 ± 7.71 35.08 ± 5.77 8.90×10-3 

9 25 61.18 ± 1.37 38.82 ± 1.37 59.29 ± 5.13 2.48×10-3 

10 30 64.59 ± 4.64 35.41 ± 4.64 63.35 ± 1.75 2.56×10-4 

11 50 65.67 ± 3.23 34.33 ± 3.23 63.34 ± 2.76 6.32×10-4 
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Table 3.7. Tabulation of gel electrophoresis results for epinephrine DNA damage assays 
with 400 μM Fe(EDTA)2- and 50 μM H2O2. 

Gel lane EP, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) ̶ 96.90 ± 2.86 3.10 ± 2.86 ̶ ̶ 

2: p + H2O2 ̶ 93.96 ± 5.27 6.04 ± 5.27 ̶ ̶ 

3: p + H2O2 + EP 50 96.45 ± 3.39 3.55 ± 3.39 ̶ ̶ 

4: Fe(EDTA)2- + H2O2 0 12.84 ± 8.59 87.16 ± 8.59 0 ̶ 

5 1 22.81 ± 9.14 77.19 ± 9.14 11.98 ± 3.56 2.82×10-2 

6 5 28.44 ± 9.10 71.56 ± 9.10 18.69 ± 5.46 2.73 ×10-2 

7 15 31.08 ± 0.90 68.92 ± 0.90 21.02 ± 6.60 3.13×10-3 

8 25 43.06 ± 2.18 56.94 ± 2.18 35.16 ± 6.62 1.16×10-3 

9 50 36.56 ± 3.49 63.44 ± 3.49 27.72 ± 6.40 1.74×10-3 

 
 
 
 
 
 
Table 3.8. Tabulation of gel electrophoresis results for norepinephrine DNA damage assays 
with 2 μM Fe(II) and 50 μM H2O2. 

Gel lane NE, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) – 94.82 ± 1.82 5.18 ± 1.84 – – 

2: p + H2O2 – 94.15 ± 3.25 5.85 ± 3.25 – – 

3: p + H2O2 + NE 200 97.19 ± 3.15 2.81 ± 3.15 – – 

4: Fe(II) + H2O2 0 23.99 ± 8.42 76.01 ± 8.42 0 – 

5 2 14.88 ± 8.30 85.12 ± 8.30 -13.34 ± 6.76 7.60×10-2 

6 5 23.70 ± 12.12 76.30 ± 12.12 -0.33 ± 4.86 0.917 

7 10 21.18 ± 11.02 75.82 ± 11.02 10.37 ± 8.21 0.160 

8 25 40.24 ± 13.62 59.76 ± 13.62 30.28 ± 11.00 4.13×10-2 

9 50 67.56 ± 2.35 32.44 ± 2.35 64.79 ± 5.04 1.73×10-3 

10 100 84.41 ± 6.15 15.59 ± 6.15 93.37 ± 0.91 3.17×10-5 

11 150 89.44 ± 5.06 10.56 ± 5.06 93.06 ± 7.80 2.33×10-3 

12 200 87.81 ± 9.75 12.19 ± 9.75 98.29 ± 5.99 1.24×10-3 
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Table 3.9. Tabulation of gel electrophoresis results for norepinephrine DNA damage assays 
with 400 μM Fe(EDTA)2- and 50 μM H2O2. 

Gel lane NE, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) – 96.53 ± 4.19 3.47 ± 4.19 – – 

2: p + H2O2 – 90.91 ± 6.28 9.09 ± 6.28 – – 

3: p + H2O2 + NE 200 95.40 ± 3.49 4.60 ± 3.49 – – 

4: Fe(EDTA)2- + H2O2 0 4.50 ± 0.05 95.50 ± 0.05 0 – 

5 1 10.60 ± 0.53 89.40 ± 0.53 6.70 ± 0.28 5.82×10-4 

6 2 8.72 ± 2.60 91.28 ± 2.60 4.66 ± 2.94 0.111 

7 5 7.91 ± 3.04 92.09 ± 3.04 3.80 ± 3.43 0.195 

8 10 8.26 ± 0.94 91.74 ± 0.94 4.12 ± 0.95 1.73×10-2 

9 25 6.13 ± 0.22 93.87 ± 0.22 1.79 ± 0.27 7.50×10-3 

10 50 4.51 ± 0.16 95.49 ± 0.16 0.01 ± 0.13 0.906 

11 100 3.18 ± 3.97 96.82 ± 3.97 -1.42 ± 4.39 0.632 

12 150 3.37 ± 5.27 96.63 ± 5.27 -1.19 ± 5.83 0.757 

13 200 2.70 ± 2.72 97.30 ± 2.72 -1.96 ± 2.99 0.374 
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Table 3.10. Tabulation of gel electrophoresis results for γ-aminobutyric acid DNA damage 
assays with 2 μM Fe(II) and 50 μM H2O2. 

Gel lane GABA, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) ̶ 97.22 ± 2.71 2.78 ± 2.71 ̶ ̶ 

2: p + H2O2 ̶ 94.77 ± 4.93 5.23 ± 4.93 ̶ ̶ 

3: p + H2O2 + GABA 300 85.49 ± 2.00 14.51 ± 2.00 ̶ ̶ 

4: Fe(II) + H2O2 0 15.05 ± 12.69 84.95 ± 12.69 0 ̶ 

5 1 11.74 ± 10.06 84.95 ± 10.06 -4.78 ± 5.44 0.267 

6 5 11.57 ± 9.74 88.43 ± 9.74 -5.07 ± 5.08 0.226 

7 50 13.78 ± 12.52 86.22 ± 12.52 -1.75 ± 1.07 0.105 

8 75 16.69 ± 16.69 83.31 ± 16.69 2.56 ± 8.10 0.639 

9 100 13.92 ± 12.61 86.08 ± 12.61 -1.55 ± 1.10 0.135 

10 150 11.13 ± 9.41 88.87 ± 9.41 -5.74 ± 5.07 0.189 

11 200 12.68 ± 5.59 87.32 ± 5.59 -4.39 ± 9.29 0.499 

12 300 12.46 ± 5.06 87.54 ± 5.06 -4.73 ± 9.81 0.492 

 
 
Table 3.11. Tabulation of gel electrophoresis results for glutamate with 2 μM Fe(II) and 50 
μM H2O2. 

Gel lane Glu, µM % Supercoiled % Nicked % Damage Inhib. p Values 

1: plasmid (p) ̶ 97.79 ± 3.01 2.21 ± 3.01 ̶ ̶ 
2: p + H2O2 ̶ 97.30 ± 2.71 2.70 ± 2.71 ̶ ̶ 

3: p + H2O2 + Glu 200 98.13 ± 3.12 1.87 ± 3.12 ̶ ̶ 

4:Fe(II) + H2O2 0 12.52 ± 21.68 87.48 ± 21.68 0 ̶ 

5 1 11.12 ± 19.27 88.88 ± 19.27 -2.24 ± 3.87 0.422 

6 2 11.96 ± 16.39 88.04 ± 16.39 -1.96 ± 8.34 0.724 

7 5 18.20 ± 15.76 81.80 ± 15.76 3.54 ± 22.55 0.811 

8 10 11.66 ± 20.20 88.34 ± 20.20 -1.37 ± 2.38 0.423 

9 25 11.53 ± 18.39 88.47 ± 18.39 -1.93 ± 5.12 0.581 

10 50 11.19 ± 19.39 88.81 ± 19.39 -2.13 ± 3.69 0.423 

11 100 13.17 ± 22.58 86.83 ± 22.58 0.99 ± 1.49 0.367 

12 150 15.54 ± 26.22 84.46 ± 26.22 4.69 ± 7.43 0.389 

13 200 19.19 ± 31.05 80.81 ± 31.05 10.19 ± 15.49 0.375 
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CHAPTER FOUR 

CONCLUSIONS 

 

Indications of Copper Redox Cycling in the Presence of Polyphenol Compounds 

 Electron paramagnetic resonance spectroscopy has been successfully used to investigate 

polyphenol radical formation with and without addition of Cu(I) and H2O2.  The results indicate that 

hydroxyl radical formation occurs in the presence of methyl 3,4,5-trihydroxybenzoate (MEGA), 

methyl 3,4-dihydroxybenzoate (MEPCA), (-)-epicatechin (EC), and (-)-epigallocatechin-3-gallate 

(EGCG) upon Cu(I) and H2O2 addition, with MEPCA suppressing hydroxyl radical formation more 

than the other polyphenols and that hydrogen radical formation also occurs for a prooxidant 

compound, epicatechin (EC).  These results correlate with Cu(I)/H2O2 DNA damage gel assays that 

determined EC was a prooxidant and MEPCA was the most potent antioxidant under these 

conditions.  Semiquinone radical formation was also detected for all compounds without Cu(I) or 

H2O2 addition, with the exception of MEPCA.  The formation of semiquinone radical species 

independent of either Cu(I) or ascorbate presence is indicative of polyphenol redox cycling,  and 

could explain the cellular toxicity observed for these compounds. 

  

The Role of Iron Binding in Neurotransmitter and Polyphenol Prevention of DNA Damage 

 Neurotransmitter and polyphenol compounds capable of binding iron behave as 

antioxidants to prevent iron-mediated DNA damage.  5-Hydroxychromone, epinephrine, 

norepinephrine, dopamine, and curcumin all show evidence of iron oxidation upon binding to iron, 

and all effectively inhibit iron-mediated DNA damage (IC50 values ranging from 15 μM – 416 μM).  

Upon chelating the iron with EDTA prior to conducting DNA damage assays, these compounds 

exhibited less than half their antioxidant potential compared to DNA damage assays with unchelated 
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Fe(II), indicating that iron binding must occur for maximal antioxidant behavior.  Compounds that 

prevent little or no iron-mediated DNA damage show no iron binding by ultraviolet-visible 

spectroscopy, including glycine, glutamate, and γ-aminobutyric acid.  Thus, iron binding is a primary 

mechanism for the antioxidant neurotransmitter and polyphenol compounds. 

 

Electrochemical Potentials of Neurotransmitters and Polyphenols Affect Antioxidant Potential 

 The ability of a neurotransmitter or polyphenol compound to prevent iron-mediated DNA 

damage correlates directly with its redox activity in an aqueous solution. The tested catecholamines 

(dopamine (DA), epinephrine (EP) and norepinephrine (NE)) and curcumin are all effective 

antioxidants and are electrochemically active within a ± 1 V range at physiological pH.  

Electrochemically inactive compounds, including glycine, glutamate, γ-aminobutyric acid, and 5-

hydroxychromone, are either inactive or very ineffective at inhibiting iron-mediated DNA damage.  

Upon binding to iron, catecholamines shift the Fe(III)/Fe(II) redox potential; these shifts correlate 

to the efficacy of the individual catecholamines to prevent DNA damage by in a Fe(II)/H2O2. 

 

Future Work 

 To further analyze the importance of metal-binding on neurotransmitter antioxidant activity, 

copper DNA damage experiments can be carried out to investigate the ability of neurotransmitters 

to inhibit copper-mediated DNA damage.   To determine whether copper coordination is required 

for the observed activity, DNA damage assays with completely chelated [Cu(bipy)2]+ instead of 

aqueous Cu(I) could be conducted.  The Cu(I)/H2O2 results could then be compared to the 

collected Cu(I) UV-vis data to determine if copper binding correlates with prevention of copper-

mediated DNA damage.  Establishing neurotransmitter behavior in a copper-rich environment 
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would be valuable in mimicking a biological environment, particularly due to the mis-regulation and 

accumulation of copper found in patients with neurodegenerative diseases. 
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