DATA-INTENSIVE COMPUTING FOR BIOINFORMATICS USING VIRTUALIZATION TECHNOLOGIES AND HPC INFRASTRUCTURES

Pengfei Xuan
Clemson University, pfxuan@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses
Part of the Computer Sciences Commons

Recommended Citation

Xuan, Pengfei, "DATA-INTENSIVE COMPUTING FOR BIOINFORMATICS USING VIRTUALIZATION TECHNOLOGIES AND HPC INFRASTRUCTURES" (2011). All Theses. 1261.
https://tigerprints.clemson.edu/all_theses/1261

DATA-INTENSIVE COMPUTING FOR BIOINFORMATICS USING

 VIRTUALIZATION TECHNOLOGIES AND HPC INFRASTRUCTURES\(\left.\left.$$
\begin{array}{c}\text { A Thesis } \\
\text { Presented to } \\
\text { the Graduate School of } \\
\text { Clemson University }\end{array}
$$\right] \begin{array}{c}In Partial Fulfillment

of the Requirements for the Degree

Master of Science

School of Computing\end{array}\right]\)| by |
| :---: |
| Pengfei Xuan |
| December 2011 |

Accepted by:
Dr. Feng Luo, Committee Chair
Dr. Amy W. Apon
Dr. Anna V. Blenda

Abstract

The bioinformatics applications often involve many computational components and massive data sets, which are very difficult to be deployed on a single computing machine. In this thesis, we designed a data-intensive computing platform for bioinformatics applications using virtualization technologies and high performance computing (HPC) infrastructures with the concept of multi-tier architecture, which can seamlessly integrate the web user interface (presentation tier), scientific workflow (logic tier) and computing infrastructure (data/computing tier). We demonstrated our platform on two bioinformatics projects. First, we redesigned and deployed the cotton marker database (CMD) (http://www.cottonmarker.org), a centralized web portal in the cotton research community, using the Xen-based virtualization solution. To achieve highperformance and scalability for CMD web tools, we hosted the large amounts of protein databases and computational intensive applications of CMD on the Palmetto HPC of Clemson University. Biologists can easily utilize both bioinformatics applications and HPC resources through the CMD website without a background in computer science. Second, we developed a web tools - Glycan Array QSAR Tool (http://bci.clemson.edu/tools/glycan_array), to analyze glycan array data. The user interface of this tool was developed at the top of Drupal Content Management Systems (CMS) and the computational part was implemented using MATLAB Compiler Runtime (MCR) module. Our new bioinformatics computing platform enables the rapid deployment of data-intensive bioinformatics applications on HPC and virtualization environment with a user-friendly web interface and bridges the gap between biological scientists and cyberinfrastructure.

ACKNOWLEDGMENTS

Foremost, I would like to thank Dr. Anna Blenda, the Principal Investigator of the Cotton Marker Database development (project 03-391 funded by the Cotton Incorporated), for the financial support of my graduate research assistantship and the opportunity to do my research using the CMD resources. In addition, I would like to thank Dr. Blenda for her advice and friendship. One of the primary benefits of working for Dr Blenda is the freedom she has given me to design my own solutions to the CMD project and perform the further exploration of the solutions.

I would like to express my sincere gratitude to my advisor, Dr. Feng Luo for the continuous support of my study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of the thesis and papers. His ability to answer fundamental questions about complex problems without losing sight of the grand scheme is an ability that I hope to someday acquire. Dr. Luo has played a large and unique part in helping me reach this point in my journey.

I would also like to expressly thank Dr. Amy Apon for being on my committee, reviewing my dissertation and her insight into how to continue my future research.

I am very grateful to the remaining members: Dr. Bo Li, Yuehua Zhang, Aditya Sriram and Gauri Jape (BCI research group), Dr. Stephen Ficklin, Dr. Meg Staton and Dr. Chris Saski (CUGI laboratory), Dr. Véronique Decroocq (INRA, France) and Dr. Jean-Marc Lacape (UMR-DAP, France), for their research collaboration, support, and friendship.

Finally, I would like to thank my wife - Yueli Zheng, my daughter - Emma Xuan, my parents Yuhai Xuan and Jingzhen Li, and my mother-in-law Ailian Zhao. I would not have achieved this without their constant love and support.

TABLE OF CONTENTS

Page
TITLE PAGE i
ABSTRACT. ii
ACKNOWLEDGEMENT iii
LIST OF TABLES vii
LIST OF FIGURES viii
ACRONYM TABLE xi
CHAPTER
1 InTRODUCTION 1
2 BACKGROUND 4
2.1 Virtualization 4
2.2 Machine Learning 5
2.2.1 Classification and Prediction 5
2.2.2 Support Vector Machine 6
2.2.3 Evaluation Criteria 7
2.3 Partial Least Squares (PLS) Regression 9
2.4 GMOD 10
2.5 BLAST and FASTA 11
2.6 BioPerl 12
2.7 Drupal 12
3 Bioinformatics Platform Design, Implementation and Deployment 14
3.1 Multi-tier Architecture 14
3.2 Presentation Tier 17
3.2.1 CMD Web Interface. 17
3.2.2 BCI Glycan Array QSAR Tool Interface. 22

Table of Contents (Continued)

Page

3.3 Logic Tier 25
3.3.1 Data Flow on Bioinformatics Platform 25
3.3.2 CMD Web Tools 26
3.3.3 BCI Glycan Array QSAR Tool 30
3.4 Data / Computing Tier 31
3.4.1 Database System 31
3.4.2 Directory Structure on Palmetto HPC 33
3.5 System Services 34
3.5.1 Email System 34
3.5.2 DNS Service. 36
3.5.3 Web Analytics 36
3.6 Server Virtualization 37
3.7 Backup 39
4 Cotton Marker Database 42
4.1 Introduction 42
4.2 New SSR Projects 43
4.3 Primer Redundancy Information of SSRs 45
4.4 SSR Redundancy Detection using SVM Machine Learning Approach 47
4.4.1 Materials and Methods 47
4.4.2 Result 49
4.5 QTL/Traits Feature and Cotton Genetic Maps 51
5 QUANTITATIVE STRUCTURE-ACTIVITY ReLATIONSHIP (QSAR) Study on Glycan Array Data 53
5.1 Introduction 53
5.2 Results 55
5.2.1 Coding Glycans using Sub-tree Features 55

Table of Contents (Continued)

Page

5.2.2 PLS Regression on Glycan Array Data using Different Features 58
5.2.3 Identification of Significant Structural Features in Glycans 66
5.2.4 Evaluation of QSAR Model on Other Glycan-binding Proteins 75
5.3 Discussion 81
Chapter 6 Conclusion and Future Work 85
APPENDIX A 88
References 114

LIST OF TABLES

TablePage3.1 MX records of CMD mail servers 36
3.2. The network configuration information 39
4.1. The summary of primer redundancy processing 46
4.2 The algorithm to select the SSR redundancy training data. 50
4.3 Evaluation of results obtained for the tested data 50
5.1 The R^{2} of PLS regressions on glycan array data of different glycan-binding proteins using different features. 62
5.2 The highest R^{2} of PLS regressions on glycan array data of different glycan-binding proteins. 62
5.3 The significant di-saccharide sub-trees binding specifically to ConA. 71
5.4 The significant di-saccharide sub-trees binding specifically to VVL 71
5.5 The significant di-saccharide sub-trees binding specifically to WGA. 72
5.6 The significant tri-saccharide sub-trees binding specifically to PNA. 76
5.7 The significant di-saccharide sub-trees binding specifically to SNA. 76
5.8 The significant tri-saccharide sub-trees binding specifically to DC-SIGN. 78
5.9 The significant mono-saccharide sub-trees binding specifically to Siglec-8. 78
5.1 The R^{2} of PLS regressions on glycan array data of different antibodies using different features. 80
5.11 The significant tetra-saccharide sub-trees binding specifically to CSLEX1 (human CD15s antibody). 80
5.12 The significant tetra-saccharide sub-trees binding specifically to Sialyl Lewis x antibody-10. 81

LIST OF FIGURES

Figure Page
2.1 The architecture of virtualization platform 5
3.1 The architecture of data-intensive computing platform for bioinformatics applications. 15
3.2 Home page of the CMD 18
3.3 The web interface for primer redundancy page 19
3.4 CMD Trait View Page. 22
3.5 CMD CMap Viewer. 22
3.6 The web interface of Glycan Array QSAR Tool. 23
3.7 An example result of Glycan Array QSAR Tool. 24
3.8 The data flow on Cotton Marker Database. 26
3.9 CMD web tools execution workflow. 27
3.10 The Glycan QSAR tool execution workflow. 30
3.11 The database schema of CMD website 32
3.12 The directory structure in Palmetto HPC 33
3.13 The management interface of CMD mail list system 35
3.14 The interface of Google Analytics 37
3.15 Snapshot and rsync backup solution to CMD virtualization platform 41
3.16 The structure of backup directory on the remote backup server. 41
4.1 The redundant primer counts obtained for each of the individual threshold values 46
4.2 The SVM machine learning workflow. 48
4.3 ROC curve analysis. 51

List of Figures (Continued)

Figure Page
5.1 An example of glycan chain and its structure. 56
5.2 An example of decomposing the glycan chain in into different sub-trees. 56
5.3 Plot of the percentage of variance explained in the binding intensities of glycan array data of three plant lectins against the number of components in PLS. 60
5.4 Plot of observed intensities against the fitted intensities calculated by PLS regression using di-saccharide sub-trees as features 65
5.5 The distribution of PLS regression coefficients (Beta values) obtained from glycan array data of ConA. 67
5.6 The distribution of PLS regression coefficients (Beta values) obtained from glycan array data of VVL. 67
5.7 The distribution of PLS regression coefficients (Beta values) obtained from glycan array data of WGA. 68

AUC	Area Under Curve
BLAST	Basic Local Alignment Search Tool
BCI	Bioinformatics and Chemical Informatics
CFG	Consortium for Functional Glycomics
CMD	Cotton Marker Database
CMS	Content Management System
EST	Expressed Sequence Tags
GMOD	Generic Model Organism Database
LVM	Logical Volume Manager
LV	Logical Volume
MCR	MATLAB Compiler Runtime
MPI	Message Passing Interface
MX	Mail Exchange
NGS	Next Generation Sequencing
ORFs	Open Reading Frames
PBS	Portable Batch System
PLS	Partial Least Squares
QSAR	Quantitative Structure-activity Relationship
QTL	Quantitative Trait Locus
ROC	Receiver Operating Characteristic
SNP	Single-nucleotide Polymorphism
SSR	Simple Sequence Repeats
SVM	Support Vector Machines
VM	Virtual Machine
PM	Ma

Chapter 1

Introduction

The bioinformatics application often involves many computational components and a large number of runs with different parameters and configurations [1-4]. Recently, the genomic research based on Next Generation Sequencing (NGS) technology makes it possible to study biological phenomena on a large scale: all metabolic processes in a tissue, all transcripts in a cell, and all genes in a genome. However, sequencing-based genome-wide analysis also products massive quantities of data, which brings a new challenge facing the current bioinformatics research [5] and finally leads to the insufficiency of performance or capability on a local workstation or server. For example, the amount of data from the 1000 Genomes Project [6] will reach the petabyte scale for the raw sequence information. In the near future, the situation will be dramatically changed by third-generation sequencing technologies [7]. It will allow us to scan entire transcriptomes, microbiomes and genomes, and make it possible to assess epigenetic changes directly [8] in a few minutes with the cost less than US\$100. Today's dataintensive biology drives a new emerging computational model to integrate massive data with computing resources derived from molecular biology.

Biological research is becoming more and more dependent on big data analysis. Biologists will soon encounter difficulties in handling missive data sets using traditional applications or tools that were initially designed for the single machine or non-dataintensive task in such areas as protein or nucleic acid sequence assembly, sequence
alignment for similarity comparisons, motif recognition in linear sequences or higherorder structure, and common patterns of gene expression; Further, while current technologies can provide large-scale computing solutions to analyze, integrate and manipulate big data sets, there still exists a huge knowledge gap for biologists with sufficient computer science background to utilize high-end platform resources. This shortage means biologists have to either avoid research areas relevant to big data sets or collaborate with data scientists. Due to lack of the ability to analyze the massive data, many promising biological projects have to be given up or cannot keep growing in longterm investments, and the ecosystem of bioinformatics research would also be limited to a very small scope.

High-performance Computing (HPC) is a typical computing infrastructure that provides high-performance parallel file systems with both high bandwidth and large capacity. Parallel file systems like PVFS [9], HDFS [10], GPFS [11] and Lustre [12] are usually employed to meet these needs and are often layered on top of clustered storage systems or use special high-end customized hardware. These systems are geared towards storing petabyte-scale data in a reliable fashion with high throughput for massive computing jobs. To make the bioinformatics resource and software more accessible, and allow for a faster overall time-to-solution, a user-friendly computing platform based on cyberinfrastructure could be a promising way to lead biologists to a new scientific paradigm: data-driven science.

In this thesis, we propose a platform solution for data-intensive bioinformatics applications using virtualization technologies and HPC infrastructures. A multi-tier
architecture is used to integrate the web user interface (presentation tier), scientific workflow (logic tier) and computing infrastructure (data/computing tier). The platform has been demonstrated through two bioinformatics projects: One is Cotton Marker Database (CMD) (http://www.cottonmarker.org) which is a centralized web portal in the cotton research community. The other project is a quantitative structure-activity relationship (QSAR) Tool (http://bci.clemson.edu/tools/glycan_array) used to analyze glycan array data.

The remainder of this thesis is organized as follows. Chapter 2 provides background and terminology information, including concepts to construct our new bioinformatics computing platform. Chapter 3 gives a detailed solution to design and deploy data-intensive computing platform for bioinformatics applications. Chapter 4 demonstrates the CMD project on HPC and virtualization environment. Chapter 5 shows a glycan array QSAR on our new bioinformatics platform. And finally Chapter 6 offers conclusions and future works.

Chapter 2

Background

Bioinformatics is an interdisciplinary field that combines aspects of Biology, Mathematics, and Computer Science [13], which are also theoretical foundations of our bioinformatics platform and related projects. In following sections, we introduce several terminologies and concepts in these areas to give a basic background for the further discussions in the remainder chapters.

2.1 Virtualization

Virtualization is a computing construct for running software (usually operating systems) concurrently and isolated from other programs on a single computer system [14]. Figure 2.1 shows the architecture of a virtualization platform. Typically, the architecture of OS virtualization includes a hypervisor, a software layer or subsystem that controls hardware and provides guest OSs with access to underlying hardware. The hypervisor allows multiple individual guest OSs to share the same physical system by offering virtualized hardware using various approaches (such as, full virtualization, paravirtualization and software virtualization) to mapping [15]. Guest OSs could be 32-bit or 64-bit Windows, Linux or Unix systems, which provides wide support for various applications and services. There are many different types of virtualization platforms, including Xen, KVM, VMware, VirtualBox, OpenVZ and Solaris containers.

Figure 2.1 The architecture of virtualization platform

In our project, a Xen-based virtualization solution is used to support two product websites. The Xen framework is a very popular and common solution for the Linux platform. The Xen hypervisor contains three components, Domain 0, the Xen Hypervisor and Multiple Domain U [14]. These run directly on top of the physical machine, and act as the middle layer for the guest operating systems to access all hardware such as CPU, I/O, and disk. Domain 0 is the only domain that has privileges to access the Xen hypervisor. These privileges allow Domain 0 to manage and control all Domain Guests (DomUs), including starting, stopping, network requests, and so on.

2.2 Machine Learning

2.2.1 Classification and Prediction

Classification, also called supervised learning, is the computational approach of finding a model from training data and predicting the class of testing data. The model built from training data set has the ability to characterize and distinguish prediction data sets with a form of rules, decision tree or mathematical functions. Sample sets are usually observations or measurements labeled with features and class. Features selected for the
samples should relate to the classes, and the labels predicted by the classifier are usually categorical. For models generating continuous numerical values, the labels can be obtained by discretization. Some typical classification algorithms are decision tree, random forest, support vector machine and naïve Bayesian.

Various approaches can be used to validate the prediction result. The cross validation is one of the common and effective approaches. In this method, the sample data is randomly split into n sets. One set in the middle is used for testing and the other $n-1$ sets are used for training. Totally n iterations will be conducted, and the average of each result will be calculated to represent the performance.

2.2.2 Support Vector Machine

Support Vector Machines (SVM) [16] are a computational method for data classification by constructing a hyperplane (or set of hyperplanes) in a high or infinite dimensional space, which can be used for regression, classification, or other further tasks. The original problem is often stated in a finite dimensional space in which the sets to discriminate are not linearly separable. The principle of SVM is to map the original finite-dimensional space into a much higher-dimensional space to make the separation easier. A hyperplane created by the SVM is based on the largest distance to the nearest training data points of any class (functional margin). To avoid overfitting the problem, a buffer (soft margin) is used to provide certain error tolerances during the training stage. There are many implementations of SVM, such as LibSVM [17], SVMlight [18] and

TinySVM [19]. In our project, we use LibSVM tools with different kernel functions to improvement Simple Sequence Repeats (SSR) redundancy of the CMD website.

2.2.3 Evaluation Criteria

In order to measure the performance of classification result, multiple criteria were employed including sensitivity, specificity, precision, accuracy and F-measure. Four basic terminologies are used to definite these criteria which are true positive (TP), false positive (FP), true negative (TN) and false negative (FN) respectively. True positive is the correctly predicted positive data. True negative is the correctly predicted negative data. False positive is the predicted positive data that actually belong to the negative class. False negative is the predicted negative data that actually belong to the positive class. The definition of sensitivity, specificity, precision, accuracy and F-measure are shown here,

Sensitivity is the probability of correctly predicted positive data over the total number of positive data.

$$
\begin{equation*}
\text { Sensitity }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \tag{2.1}
\end{equation*}
$$

Specificity is the probability of correctly identified negative data over the total number of negative data.

$$
\begin{equation*}
\text { Specificity }=\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FN}} \tag{2.2}
\end{equation*}
$$

Precision is the probability of correctly predicted positive data over the total number of predicted positive data.

$$
\begin{equation*}
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} \tag{2.3}
\end{equation*}
$$

Accuracy is the probability of correctly predicted positive and negative data over the sum of positive and negative data.

$$
\begin{equation*}
\text { Accuracy }=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}} \tag{2.4}
\end{equation*}
$$

The F-measure or F-score is a measure of the accuracy of testing data by considering both the precision and recall of the test to compute the score. The best Fmeasure score is 1 and the worst F-measure score is 0 .

$$
\begin{equation*}
\mathrm{F}=\frac{2 \times(\text { Precision } \times \text { Recall })}{(\text { Precision }+ \text { Recall })} \tag{2.5}
\end{equation*}
$$

Additionally, ROC (Receiver Operating Characteristic) curve and AUC (Area Under Curve) value serve to evaluate the discriminate power of models, and can be used to select the optimal models. ROC curve is used to measure the classifier in the cross validation study and the prediction performance. ROC curve plots the fraction of true positives against the false positive rate as the threshold of prediction varies. ROC evaluates the performance of classifiers based on the tradeoff between specificity and sensitivity. While ROC curve provides a visualization method to evaluate a classifier, AUC (area under the curve) score is widely used by providing a numeric value for the comparison of prediction performance. While an AUC value of 1 means perfect prediction, an area of 0.5 indicates random prediction. Most common models should have AUC values between 0.5 and 1.0. The higher the AUC value, the better the model. High AUC value means that lowering the threshold for the prediction only brings in limited false positive samples.

2.3 Partial Least Squares (PLS) Regression

The PLS regression has been widely used to model the relationship between responses and predictor variables [20]. For example, responses are the properties of chemical samples and predicator variables are the composition of chemicals. In our study, the response is the binding intensity of glycan chains to glycan-binding proteins and the predictor variables are the sub-trees extracted from glycan chains. Unlike general multiple linear regression, the PLS regression can handle strong collinear data and the data in which number of predictors is larger than the number of observations. The PLS build the relationship between response and predictors through a few latent variables constructed from predictors. The number of latent variables is much smaller than that of the original predictors. Let vector $\mathrm{y}(\mathrm{n} \times 1)$ denote the single response; matrix $\mathrm{X}(\mathrm{n} \times \mathrm{p})$ denote the n observations of p predictors and matrix $T(n \times h)$ denote n values of the h latent variables. The latent variables are linear combinations of the original predictors:

$$
\begin{equation*}
T_{i j}=\sum_{k} W_{k j} X_{i k} \tag{2.6}
\end{equation*}
$$

where matrix $\mathrm{W}(\mathrm{p} \times \mathrm{h})$ is the weights. Then, the response and observations of predictors can be expressed using T as follows [20]:

$$
\begin{align*}
& X_{i k}=\sum_{j} T_{i j} P_{j k}+E_{i k} \tag{2.7}\\
& y_{m}=\sum_{j} C_{m j} T_{i j}+f_{m} \tag{2.8}
\end{align*}
$$

where matrix $\mathrm{P}(\mathrm{h} \times \mathrm{p})$ is the is called loadings (the regression coefficients of latent variables T for observations) and matrix $\mathrm{C}(\mathrm{h} \times 1)$ is the regression coefficients of T for responses. The matrix $E(n \times p)$ and vector $f(n \times 1)$ are the random errors of X and y. The

PLS regression decomposes the X and y simultaneously to find a set of latent variables that explain the covariance between X and y as much as possible [20].

The PLS regression was performed using the plsregress function in Matlab. The plsregress function takes three parameters: X, y and the number of components. It is important to determine the number of components in PLS regression. We employed the following procedure to select the number of components. We first ran the PLS regression using a large number of components, for example, 50. The plsregress returned the percentage of variance explained in response for each PLS component. Then, we counted the number of components that contribute to variance explained beyond a threshold. This number was our new number of components. In our study, we set the threshold to be 0.5% of variance explained. We then ran PLS regression again using the new number of components.

The R^{2} of PLS regression is calculated using the formula: $R^{2}=S S_{\text {err }} / S S_{\text {total }}$. The $S S_{\text {err }}$ is the sum of squares of fit errors: $S S_{e r r}=\sum_{i} f_{i}{ }_{i}$, where $f^{\prime}(\mathrm{n} \times 1)$ is the regression errors. And the $\mathrm{SS}_{\text {total }}$ is the total sum of squares: $\mathrm{SS}_{\text {total }}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}$, where \bar{y} is the mean of y .

2.4 GMOD

Generic Model Organism Database (GMOD) project, is a collection of open source software tools to create and manage genome-scale biological databases [21]. There are more than 37 components and 14 functionality areas in GMOD project. These components provide the functionality that is needed by all organism databases like Community Annotation, Comparative Genome Visualization, Database schema, Database
tools, Gene Expression Visualization, Genome Annotation, Genome Visualization \& Editing, Ontology Visualization, Literature Tools, Workflow Management, Molecular Pathway Visualization, Middleware, Tool Integration and Sequence Alignment.

In modern biology research area, bioinformatics applications and databases are begin developed at a steady rate. However, many of these tools are seldom used since the user may not have the resources or skills to install the tool and integrate them. There is need for a standardized solution to integrate those tools and databases together. GMOD provides such a platform for developers, scientists and laboratories to construct their own bioinformatics software.

2.5 BLAST and FASTA

BLAST (Basic Local Alignment Search Tool) program [22] and FASTA program [23] are both tools for sequence similarity search which can be used to compare a query to a DNA/protein database by a stand-alone tool or a web interface. The difference between BLAST and FASTA is that they use different algorithm for comparison. FASTA is better for less similar sequences. BLAST may be faster than FASTA without significant loss of ability to find the similar sequences in the DNA/protein database. BLAST is one of the most widely used bioinformatics tools. There are several variants of BLAST programs that can compare between protein or nucleotide queries with protein or nucleotide databases.

2.6 BioPerl

BioPerl is an open-source international project (since 1995) [5] to facilitate sequence alignments, genetic sequence manipulation and genomic analysis. It allows bioinformatieists, genetic researchers and computer scientists to collaboratively focus on providing a set of well-documented Perl modules [24]. It provides a set of foundational libraries that allow the building of complex bioinformatics tools for use in production quality software [4] and the construction of complex solutions to bioinformatics problems. BioPerl (version 1.6.9) gives support to read/write of multiple sequence file formats, sequence retrieval from web databases, sequence manipulation and alignment and sequence annotations.

2.7 Drupal

Drupal is one of most widely used open source web Content Management Systems (CMS), which are used to create integrated web sites. Drupal web sites can include a blog, a portal web site for the organization, an e-commerce site, a social networking site and other componets [25]. The framework of the Drupal system is highly modular, extensible, and standards-compliant. The official version of Drupal only contains the basic core functionality, however, additional functionality can be added using built-in or third-party modules. There are more than 9,000 modules available to extend and customize Drupal functionality. To apply these modules does not require any modifications to the code in the core.

CMS use in bioinformatics is growing [26]. Drupal is used for many applications, including in on-line analysis tools, intranet tools, collaboration tools, biology databases,
conference websites and lab websites. For example, Drupal is selected as the core development framework in GMOD Tripal project [27]. The Tripal modules allow the Drupal CMS to interact with Chado [28] data, as well as provide data loaders, display of Chado data and administrative interfaces for data management. Our glycan array QSAR tool also was developed as a module of Drupal platform by customizing Webform module and Theme module. Detailed discussion will be given at the next chapter.

Chapter 3

Bioinformatics Platform Design, Implementation and

Deployment

In this chapter, we will discuss the design, implementation and deployment of the system platform regarding data-intensive bioinformatics applications. The primary design goal is to create a flexible, configurable and high-performance framework with a userfriendly web interface. Based on the new design, biologists with minimal computer science background can easily analyze massive data sets by using public computing infrastructure. Figure 3.1 shows the architecture of the data-intensive computing platform for bioinformatics applications using virtualization technologies and HPC infrastructures. Detailed description of the multi-tier architecture for the bioinformatics platform is presented in the following sections of the thesis.

3.1 Multi-tier Architecture

Our design applies the software engineering concept of multi-tier architecture including presentation tier, logic tier and data/computing tier. It can seamlessly integrate the web user interface, scientific workflow and computing infrastructure (Figure 3.1).

Figure 3.1 The architecture of data-intensive computing platform for bioinformatics applications.

Presentation tier

The presentation tier is the top layer of the platform. The presentation tier provides user-friendly web interface related to various bioinformatics applications, such as tools for sequence alignment in similarity comparisons, protein sequence or nucleic acid assembly, genetic map views, SSR information retrieval, or glycan array data analysis. All computational parameters and input data sets are submitted from this tier, and then initial information is passed to the next tier. The presentation tier includes three services: a form validation service, the CMS service and a search service. The interface of this tier is implemented using HTML, Perl, PHP, JavaScript languages and the Drupal CMS module.

Logic tier

The logic tier is a middle layer between the presentation tier and the data/computing tier. It acts as a workflow control center for the whole system. The logic tier accepts task requests from the front web user interface and generates the Portable Batch System (PBS) scripts for the HPC infrastructure based on the resource requirements of the bioinformatics applications. In necessary, the logic tier transfers input data sets and PBS scripts to the HPC infrastructure. It submits tasks to the task scheduler of the HPC infrastructure, monitors status of the tasks, collects and stores task results on the web server, parses and generates user-friendly results (e.g. Microsoft Excel format), and sends an email to users with a summary page linked to the task directory on the web server.

The logic tier is composed of four services: the controller, the repository, the result server and the log server. The controller manages the life cycle of each task, transfers, and submits all tasks to the remote HPC infrastructure. The repository is a file archive service. It maintains a unique working directory for each task. All files including input data sets, parameter files, PBS scripts, output result files, parsed results and log files, are hosted in their corresponding directories. The result server receives the properly processed results and sends the confirmation email to the users. If any unexpected exception happens, the result server sends an error message to users and the system administrator. Finally, the log server records the execution details for each task, providing a real-time feedback to monitor the service quality of the current system.

Data/Computing tier

This tier is the bottom layer of the platform. It consists of storage and computing resources including five components: the database system, the PVFS file system, the MPI (Message Passing Interface) library, the PBS job scheduler and bioinformatics applications. The database system stores the relational data sets presented on the bioinformatics website. The PVFS file system can support the management for petabytescale massive files [9], where the large amounts of protein databases and computational intensive applications are hosted. The MPI library provides the fundamental parallel mechanism for bioinformatics applications to achieve the high-performance and scalability. The PBS job scheduler controls batch jobs and distributed computing resources. Bioinformatics applications are installed on the shared storage system which allows all computing nodes to access the same version of program.

3.2 Presentation Tier

3.2.1 CMD Web Interface

Home page

The user interface of the CMD website consists of four functional areas including the menu area, the navigation area, the search area and the content area (Figure 3.2). The menu area includes four main sections: General Info, View, Search and Resources. Each has a drop down menu at the top of the home page, with further options seen along the grey bar. The user can quickly access needed sections by moving pointer over the green title of the link from the drop down menu, and they also can get the section name from
navigation area. The search bar at top of the every page is a convenient way for a user to retrieve the related information from whole website.

Figure 3.2 Home page of the CMD website. A. The menu area. B. The navigation area. C. The search area. D. The content area.

The primer redundancy page

The primer redundancy project page in CMD displays the results obtained from the analysis. The summary page explains the type of analysis performed, number of primers used, total number of redundant primers, threshold value for the analysis and the type of redundancy. The redundant primers page provides a list of redundant primers found in the CMD. The primer redundancy web interface can be accessed at http://www.cottonmarker.org/primer_redundancy/. Figure 3.3 shows a query result page of SSR 'BNL3500' where the user can explore all redundancy information related to the current SSR.

Figure 3.3. The web interface for primer redundancy page. A. The number of matched records. B. The name of the matched primer pair. C. Match type. D. Similarity of the mached pair

Traits page

The traits page visually displays and compares linkage groups/chromosomes of each cotton genetic cross available in CMD, including Quantitative Trait Locus (QTLs)
associated with the cross, as well as their exact positions on the respective chromosomes. Overall, all CMD features are intertwined, offering simple and easy access to published data related to cotton molecular breeding. For example, from the View Traits page (Figure 3.4A), one can gain access to published information about the trait-associated QTLs and nearest mapped SSR markers (Figure 3.4B), as well as detailed information about each QTL (Figure 3.4C) and associated marker information (Figure 3.4D).

Genetic map (CMap) page

CMap is part of GMOD [29] which allows the user to browse the map of interest and select other maps for comparisons. Users can view the number of correspondences among all selected maps in the CMap correspondence matrix. The feature search looks for a certain feature by name or species, accession ID and feature type. Currently, CMD contains data for 27 genetic maps. The anchored genetic markers can be viewed in several formats which includes an Excel spreadsheet, a database search interface, and a graphical interface for comparative SSR maps. Figure 3.6 shows the graphical interface of CMap in which the cotton genetic maps are displayed with anchored SSR markers, and the SSRs location is also compared between different crosses of cotton.

A

ur search hit 37 records
Llick table header to sort the column Name
2.5% Fiber span length (mm)
50% Fiber span length (mm)
Boll Weight
Boll size (g)
Bolls/plant
Fiber Maturity
Fiber Perimeter
Fiber elongation
Fiber elongation (\%)
Fiber length
Fiber length (mm)
Fiber length (mm)
Fiber length (mm)
Fiber length uniformity
Fiber length uniformity
Fiber length uniformity
Fiber strengti
Fiber strength (cN/tex)

D

C

Trait Name		Fiber strength			
Published Symbol		FS			
QTL/Single Gene		QTL			
QTL/Gene Name		qFS-D8-1			
Trait Associated Marker		CIR070a			
Marker Type		SSR			
Cross Name		(Gossypium hirsutum) cross $7235 \times$ TM-1			
Marker Interval For QTL		JESPR127b0CIR070a			
QTL ${ }^{2}$		4.31			
Trait Description		Fiber strength is measured in grams per denier. It is determined as the force necessary to break the beard of fibers, clamped in two sets of jaws.			
Reference		Shen et al/Euphytica, 2007, 155:3716ロ380			
Map Position (Gossypium hirsutum) cross $7235 \times$ TM					
Linkage Group	QTL Span (cM)	Trait-linked SSR Genetic Position (cM)	QTL Start Position	QTL Stop Position	Gene/QTL Position
chros	4.4	58.2	53.8	58.2	

B

4				
ur search hit 22 records				
lick table header to sort the column page				
4 Trait Name	Published Symbol	QTL/Single Gene	QTL/Gene Name	SSR Linked
Fiber strength	FS	QTL	qFS-A11-1	BNL1231
Fiber strength	FS	QTL	qFS-LG05-1	NAU3654
Fiber strength	FS	QTL	qFS-D2-1	CIR246
Fiber strength	FS	QTL	qFS-D2-1	CIR381b
Fiber strength	FS	QTL	qFS-D2-1	CIR381b
Fiber strength	FS	QTL	9FS-D6-1	BNL4030
Fiber strength	FS	QTL	qFS-D6-1	NAU1369
Fiber strength	FS	QTL	qFS-D6-1	NAU1369
Fiber strength	fS	QTL	qFS-D6-1	NAU2035
Fiber strength	FS	QTL	qFS-D6-1	NAU2072

Figure 3.4 CMD Trait View Page. A. Full traits list page. B. The page for the same trait with different properties (QTL/Gene Name, SSR Linked). C. The representative trait information page. D. The page for associated marker.

Figure 3.5 CMD CMap Viewer. A). The index page of CMap Viewer with 27 major genetic maps of cotton. B). An example (chromosome 24) displayed in CMap Viewer with the associated mapped QTLs (light-green bars represent QTLs with their names on the left).

3.2.2 BCI Glycan Array QSAR Tool Interface

To facilitate the utilization of our QSAR method by biologists to analyze their own glycan array data, we developed a web tool and hosted it at http://bci.clemson.edu/tools/glycan_array. The web interface as shown in Figure 3.6. The
users first need to choose three parameters: the array version, sub-tree features and zscore for selecting significant sub-trees. They then need to paste a one-column binding intensities of glycan array. After clicking the "Submit" button, the parameters and data are transferred to the server. A MATLAB program on the server side will perform the PLS regression and generate significant sub-trees. The server will then generate a results page and send back to client. As shown in Figure 3.7, the results page contains a summary section of input parameters and R^{2} value; a table of the significant sub-trees, their regression coefficients and glycan chains containing each feature; a figure that plots the percentage of variance explained against number of PLS components and a figure that plots the observed intensities against fitted intensities. The user will be able to download results and figures from the results page.

Homen Tools
Glycan Array QSAR Tool (v1.02b)
A quantitative structure-activity relationship $(Q S A R)$ study on glycan array data to determine the specificities of glycan-binding proteins
Step 1: Please select the version of CFG glycan array*
Printed Glycan Array Version $2.0-$
Step 2: Please select features *

- mono-saccharide sub trees
- di-saccharide sub trees
- tri-saccharide sub trees
© tetra-saccharide sub trees
Step 3: Please input the z score value to select significant sub-trees (The default value is 2.59) *
2.59

What's z-score?
Step 4: Please paste the binding intensities of your glycan array data 54807.73583 42960.95488 37828.05308 1390.428167 98.0576

Data format: one column only (An example input for Printed Glycan Array Version 2.0)

Figure 3.6 The web interface of Glycan Array QSAR Tool.

Glycan Array PLS Regression Results

Summary

Printed Glycan Array Version: 4.1
Feature: mono-saccharide sub trees
Threshold for significant feature: 2.59
Rsquared: 0.988163

Significant Features	Regression Coefficients	Glycan Chains Contains the feature
$3(60$ SO3)Galb1	8655.456148	45
$3(6-\mathrm{O}-\mathrm{Su})$ Galb1	7816.967003	228

Download data file: Excel/csv format
Plot of percentage of variance explained against number of PLS components

Download
Figure 3.7 An example result of Glycan Array QSAR Tool showed the significant monosaccharide sub-trees binding specifically to Siglec-8.

3.3 Logic Tier

3.3.1 Data Flow on Bioinformatics Platform

The web interface is the gateway between the user and bioinformatics computing resources. The initial information is sent from web interface and finally returned to the front web interface again. Figure 3.8 illustrates the lifecycle of data flow on the CMD system. The computing jobs are requested by the user from the server tools page in the CMD website. The controller in the logical tier schedules the current computing job to local computing server or remote HPC infrastructure based on the computing resources which the user requests. To execute large-scale computing jobs, the user request (including input files, parameters and an execution script) is transferred to the remote PBS scheduler that directs the job to the HPC infrastructure. When the computing job is finished, the controller will either send error message to the user and system administrator or pass the original output (raw data) to the result server.

Figure 3.8 The data flow on Cotton Marker Database. (A). Biologists retrieve the genetic information or submit job from the thin client side. (B). CMD user-friendly web interface. (C). Xen virtualization solution for all servers. (D). All data-intensive computing jobs are transferred to Palmetto HPC. (E). Remote snapshot can quickly mirror all virtual machines to another location.

3.3.2 CMD Web Tools

The tools page in the CMD website provides access to a CAP3 Assembly server, an SSR server, and BLAST and FASTA sequence similarity search tools. These jobs are both time- and resource-consuming, and very difficult to process on a single machine. There are three protein databases with a total size of 16GB that need to be compared
during each computational job. The average computational time could take more than two weeks depending on the size of query file user submitted. In order to handle the larger size of sequence and also reduce job running time, we redesigned the job execution pipeline, and transfer most computational tasks to the Palmetto HPC platform. The Figure 3.9 illustrates the detailed workflow for job execution in the CMD platform.

Figure 3.9 CMD web tools execution workflow between the web server and Palmetto HPC.

CMD web tools execution workflow including the following steps:

1. The user uploads the input file and parameters to analysis tools on CMD website.
2. Web server generates the PBS script based on the computational job requested by the user and then transfers all initial files (input file, PBS file, and parameter file) to Palmetto HPC using scp.
3. All jobs are submitted to PBS scheduler of HPC.
4. Jobs are distributed to computing nodes.
5. The job monitor keeps tracking the status of each job and sends the result back to CMD web server after each job is done.
6. The result server parses the output file to generate the result file with Excel format.
7. CMD web server sends an email with a link to the result page.

SSR server

SSR analysis tools are implemented using a Perl script SSRIT [30] and the FLIP [31] program of the Organelle Genome Megasequencing Project [32]. The information of Open Reading Frames (ORFs) is extracted by the FLIP program, and potential primers are identified using Primer3 [33]. Users can submit a SSR job using the web-based interface of the SSR server by uploading a batch of sequences with FASTA format and related parameters. The result is presented by a job summary page and users also receive an email which includes a URL link to the summary page of this job, which includes:
a) a report of the SSR analysis
b) a library file of sequences user submitted
c) a library file of the SSR containing sequences
d) an Excel file including the SSR-containing clones and its individual properties
e) detailed properties page including sequence name, repeat(s) motif and number, length of the SSR-containing sequence, ORF start/stop position, SSR start/stop position, SSR location relative to the ORF, primer pairs and GC content of the sequence.

CAP3 server

We have deployed the Contig Assembly Program called CAP3 [34] on the bioinformatics platform to allow users to assemble ESTs. Users can submit quality files of sequences with the percentage identity in the overlap region using the web interface. As more ESTs are available in the public database, the unigene of cotton can be continually refined via our CAP3 server, and more SSRs could be mined via the SSR server.

Sequence similarity servers

CMD FASTA and BLAST servers allow users to perform homology batch queries between their sequences and the cotton SSR sequences or protein databases by user-friendly web interface in CMD. In the result summary page, users can retrieve an original output file and an Excel file including any known function, the best match, match length, alignment length, match organism, percent identity, expectation value, and start and stop alignment positions. Our sequence similarity servers specifically designed for processing the larger-scale jobs in cotton research areas, which can help researchers compare new developed cotton sequences and reduce potential redundancy when developing new markers.

Web query services

The database query service is implemented using Perl language, JavaScript language, CPAN and BioPerl modules. Perl is a very popular and also regular programming language in the biology area because it is so well-suited to several
bioinformatics tasks. It is easier to use, more efficient and powerful than traditional programming languages [35]. All query pages are dynamically generated by Apache Perl CGI [36] module, and the result is extracted using SQL language from database. The concept of object oriented [37] design is applied to the development of CMD website.

3.3.3 BCI Glycan Array QSAR Tool

The Glycan Array QSAR Tool provides a novel quantitative structure-activity relationship (QSAR) method to analyze the glycan array data. It first decomposes glycan chains into mono-, di-, tri-, or tetra-saccharide sub-trees. The bond information is also incorporated into the sub-trees to help distinguish the glycan chains structurally. Then, the tool performs PLS regression on glycan array data using the sub-trees as features. Based on the regression coefficients of PLS, the tool will report the sub-trees that determine the binding specificities of glycan-binding proteins. Figure 3.10 illustrates the detailed job execution workflow for this tool.

Figure 3.10 The BCI Glycan QSAR tool execution workflow between web server and Palmetto HPC.

BCI Glycan QSAQ tool execution workflow includes the following steps:

1. The user inputs parameters and glycan array data from the web interface.
2. The form program validates the correctness of input.
3. The corresponding predictor variables are passed to the regression program.
4. Perform the MATLAB PLS regression program and generate significant sub-trees.
5. Plot figures.
6. Generate the result page.
7. Send result page to user.

3.4 Data / Computing Tier

3.4.1 Database System

There are two kinds of database management systems to serve the CMD website. The CMD main website is a relational database implemented by MySQL open source database version 5.0.77. Currently, the database of the CMD website contains 23 tables that host all the data set for the SSR projects, which include information on sequences, SSR-containing clones, primers flanking the SSRs, repeat motif, trait, project collaborators, genetic markers and maps, open reading frame position, standardized panel varieties, publications, data homology and primer redundancy. Figure 3.11 shows the database schema of the CMD website.

Figure 3.11 The database schema of CMD website

3.4.2 Directory Structure on Palmetto HPC

Both data-intensive and computational-intensive bioinformatics jobs are transferred to Palmetto HPC. A hierarchical directory structure (Figure 3.12) is used to organize files (protein databases, bioinformatics applications, computing jobs, scoring matrices and utilities) on Palmetto HPC.

Figure 3.12 The directory structure in Palmetto HPC
dblibs
All databases (totally 17,107,798 protein and DNA sequences) used by BLAST, FASAT and CAP3 server are stored in this directory. When a new version of update is released, our update script can automatically download and preprocess the new database file.
jobs

We deploy several popular bioinformatics applications on Clemson HPC platform. Each computing job is assigned a unique job ID as the directory name of a working space, where input, output and log files is archived.

local

Packages and programs of bioinformatics applications are installed in this directory. These programs are invoked by PBS job script following with detailed parameters and requested computing resources.

bin

This directory hosts customized utilities and scripts. For example, we develop 'submission.sh' utility to monitor the status of computing jobs by wrapping PBS 'qsub' tool. This script can hold job submit terminal and does 'polling search'. When job finish, the 'submission.sh' script can release job submit terminal. By this approach, the workflow control module of CMD system can get a signal of job execution status (waiting, running, success or failure) from the remote computing infrastructure.
mat

All protein similarity matrixes needed by BLAST and FASTA programs stores in this directory.

3.5 System Services

3.5.1 Email System

The mail system is a major channel to build the communication between the user and websites. Technically, we use Google Groups in Google Apps as the mailing list
system, and invoke Perl CPAN module (Net::SMTP::TLS) to send the email via the authentication SMTP protocol from the web server. Figure 3.13 shows the management interface of mail list system. Below are two mail list groups for CMD project:

- cmd_list@cottonmarker.org (52 users)
- cmd_advisory@cottonmarker.org (22 users)

Figure 3.13 The management interface of CMD mail list system

3.5.2 DNS Service

DNS service of whole system is hosted at Clemson CCIT department. The domain name (www.cottonmarker.org) is pointed to the IP address of CMD VM web server (130.127.48.247), and the mail exchange (MX) records is pointed to Google Apps mail servers. Table 3.1 gives the configuration information for MX record.

Table 3.1 MX records of CMD mail servers

MX Server address	Priority
ASPMX.L.GOOGLE.COM.	10
ALT1.ASPMX.L.GOOGLE.COM.	20
ALT2.ASPMX.L.GOOGLE.COM.	20
ASPMX2.GOOGLEMAIL.COM.	30
ASPMX3.GOOGLEMAIL.COM.	30
ASPMX4.GOOGLEMAIL.COM.	30
ASPMX5.GOOGLEMAIL.COM.	30

3.5.3 Web Analytics

Web analytics is very important feature to the website, as it provides the collection, measurement, analysis and reporting of website access data that allow us to understand and optimize web usage [38]. In addition to measuring the website traffic, the web analytics can also be used as a tool to track the user behavior of accessing website. The Google Analytics [39] is a major engine used to track the access history for our websites. Figure 3.14 shows the interface of Google Analytics, which provides information about the number of page views and the number of visitors to a website; it generates traffic and popularity trends which are useful for CMD user distribution research; it also shows us how visitors found CMD website and how they interact with it. All of this information is presented in intuitive, thorough, visual reports. Web access log
files are archived at servers in Google instead of our server.

710 Visits

386 visitors


~~~ \(44.37 \%\) Bounce Rate
00:05:12 Avg. Time on Site
Mnuuw 43.94\% \% New Visits


Figure 3.14 The interface of Google Analytics. It provides site usage, visitors, geography location, traffics sources and records of each page

\subsection*{3.6 Server Virtualization}

The presentation and logic tiers of bioinformatics platform are constructed using a CentOS 5.4 Xen-based virtualization solution. We create three VMs (CMD web server, BCI web server and database server) at the top of physical server. This design allows use of separate different services at the OS level (Figure 3.8C). The physical server use Logical Volume Manager (LVM) to maintain the file system. The guest VM use Logical Volume (LV) of physical server as the local disk. LVM allows the dynamical extension of partition space without destroying the whole file system. The guest VMs connect to
the public network though the network bridge between domain 0 and domain U. All packets sent or received from VMs will pass through the PREROUTING, FORWARD and POSTROUTING iptables chains of domain 0 , in which we can apply the global security policy to monitor and filter the network traffic for all VMs.

The server virtualization provides a lot of benefits for our bioinformatics platform. It increases the flexibility of deployment, reduces the complexity of platform design, improves the reliability of the platform and enhances the security of the whole system. For example, we can easily resolve the dependency conflict problem by deploying different applications in the individual VMs. We can backup whole systems by performing a backup of image file of VMs.

\section*{Network configuration information}

There are two different types of networks, physical and virtual networks, associated with bioinformatics platform. A physical network is a network of physical machines that are connected each other to send and receive data. The Xen VM hosts on a physical machine. A virtual network is a network that connects virtual machines logically to each other on the same physical machine. The physical Ethernet adapter bridges a virtual network and a physical network. In our bioinformatics platform, the master node of private HPC (warriors.sc.clemson.edu) and the remote backup server use the physical network. The CMD web server, BCI web server and database server use the virtual network with the identifiable public IP address and host name. Table 3.2 shows the detailed network configuration information for our bioinformatics platform.

Table 3.2 The network configuration information
\begin{tabular}{|c|c|c|c|c|}
\hline Host Name Domain & Description & IP Address & MAC Address & Storage \\
\hline warriors.cs.clemson .edu & The Private HPC, hosts all Xen VMs & 130.127.48.117 & \[
\begin{aligned}
& \hline 00: 1 \mathrm{~A}: 92: \\
& \text { 69:49:9A }
\end{aligned}
\] & \begin{tabular}{l}
OS \\
/dev/md1 \\
Data \\
/dev/mapper/vg0-data
\end{tabular} \\
\hline \begin{tabular}{l}
vmweb1.cs.clemso \\
n.edu
\end{tabular} & CMD web server www / dev website & 130.127.48.247 & \[
\begin{aligned}
& \hline \text { 00:16:36: } \\
& \text { 21:f4:da }
\end{aligned}
\] & \begin{tabular}{l}
OS \\
/dev/vg0/vm_cmdweb_os \\
Websites \\
/dev/vg0/vm_cmdweb_sites \\
Swap \\
/dev/vg0/cmdweb_swap
\end{tabular} \\
\hline labweb1.cs.clemso n.edu & BCI web server www/dev website & 130.127.48.10 & \[
\begin{aligned}
& \hline 00: 16: 36: \\
& \text { 35:67:B6 }
\end{aligned}
\] & OS /dev/vg0/vm_labweb_os Websites /dev/vg0/vm_labweb_sites Swap /dev/vg0/labweb_swap \\
\hline databases & Databases server MySQL PostgreSQL & 130.127.49.200 & \[
\begin{aligned}
& \text { 00:16:3E: } \\
& \text { 7F:68:3C }
\end{aligned}
\] & \begin{tabular}{l}
OS \\
/dev/vg0/vm_databases_os \\
Database \\
/dev/vg0/vm_databases_data \\
Swap \\
/dev/vg0/vm_databases_swap
\end{tabular} \\
\hline roc-desktop & Remote backup server & 130.127.49.163 & 00:22:19: 1e:4e:ba & \begin{tabular}{l}
OS \\
/dev/sdb1 \\
Backup \\
/dev/mapper/backup- \\
lv_backup_01
\end{tabular} \\
\hline user.palmetto.clems on.edu & HPC login node & 130.127.160.100 & & Job working directory /home/pxuan/cmd \\
\hline
\end{tabular}

\subsection*{3.7 Backup}

It is a significant challenge to automatically back up everything of our bioinformatics platform without stopping services. An effective and reliable backup strategy is important as well as essential since there is not a full-time system administrator to maintain the whole system, and all system services need to stay live without interruption.

To meet the requirement of this situation, a robust, efficient and reliable backup scheme is designed and implemented to support bioinformatics platform. It provides an OS-level backup mechanism to make snapshot for each VM, and then transfers image files of VMs to the remote storage server. In our design, we select rsnapshot [38] as the backup tool, and use rsync [40] utility to synchronize all backups. The usage of disk space is only the basic space of one full backup plus incrementals. Because rsnapshot only keeps a fixed number of snapshots, the amount of disk space used will not continuously grow. Figure 3.15 illustrates the backup schema of CMD virtualization platform. The host domain 0 manages the physical storage as a Physical Volume (PV) by LVM file system. Each VM has its own Logical Volume (LV) partition from the PV. For VMs in CMD platform, this results in a single LV partition hosed on LVM. When rsnapshot is configured to back up one of these LVs, it runs through the following steps:
a) Create temporary snapshots of VMs by their LVs
b) Mount snapshots in a temporary directory
c) Rotate the backup directory of the remote backup machine, making room for the current backup
d) Rsync the snapshot of VMs into the remote backup location.
e) Unmount snapshots of VMs
f) Remove the temporary snapshots of VMs


Figure 3.15 Snapshot and rsync backup solution to CMD virtualization platform
The current backup strategy is based on one week of daily backups (a rolling 7 days) and a manually static full backup. The structure of backup directory on the remote backup server is shown in Figure 3.16.


Figure 3.16 The structure of backup directory on the remote backup server

\section*{Chapter 4}

\section*{Cotton Marker Database}

\subsection*{4.1 Introduction}

Cotton has had a long history as an agriculturally and industrially important crop. To improve understanding of the biological principles controlling various traits of cotton and to enhance the economic competitiveness of cotton cultivars, large-scale genetic and genomic studies are underway by cotton research groups worldwide [41-43]. To make further improvement of cotton, a large amount of molecular markers have been employed to study the tetraploid genome of cultivated cotton. In 2004, Clemson University, in association with Cotton Incorporated, launched the Cotton Marker Database (CMD), a public database and website that provides an easy-access to the publicly available single nucleotide polymorphism (SNP) and SSR markers [44].

SSRs and SNPs hosed in the CMD have been developed by many research groups all over the world within the international cotton community. In collaboration with the principal investigators of the cotton marker development projects, we have annotated the CMD data by arranging, analyzing, integrating and refining the data with an efficient interface for user access. In the following sections, we describe the current CMD database updates with the new enhancements including: new SSRs, redundancy information of SSRs, new trait/QTL feature, extensive genetic maps, new SNP data, new database design and structure, and enhanced web-based and community resources.

\subsection*{4.2 New SSR Projects}

Compared to the previously reported number of SSR markers available through CMD [44], the current total number of cotton microsatellites has significantly increased from 3,452 SSRs in January of 2006 to 17,448 SSRs (including 312 SSR-containing RFLPs) by July of 2011. The 192 SSRs in the STV project were derived from multiple tissues of Gossypium hirsutum, including 150 primer pairs screened on the CMD panel [45]. The 2,937 SSR markers from the new MON project were provided by the Monsanto Company [46]. Bioinformatics analysis of the MON SSR sequences and primer pairs in comparison with the cotton SSR sequences already present in public databases revealed that these SSR primer pairs and target genomic sequences are unique and amplify about 4,000 unique marker loci in a tetraploid cotton genome depending on the germplasm analyzed [46]. Another new SSR project, DPL, contributed by the Delta and Pine Land Company, includes 200 microsatellites developed from G. hirsutum small insert genomic libraries enriched with multiple microsatellite motifs. Seven hundred SSRs from the new Gh project were initially evaluated for internal structure and potential for homodimer and heterodimer formation using publicly available web-based applications [47].

The HAU SSR project including 3,382 microsatellites was developed at the Huazhong Agricultural University. HAU001-HAU119 markers were developed and evaluated from 98 unique ESTs from the cDNA library of 2 - 25 day post anthesis (DPA) developing fibers from G. barbadense cv. Pima 3-79. Markers HAU120-HAU205 were developed from G. barbadense cv. Pima 3-79 using two different approaches: (i) cloning of ISSR amplified fragments and (ii) amplification using degenerate primers. A total of

1,831 new EST-SSRs were developed from the assembled cotton ESTs in the TIGR database (http://www.tigr.org): 346 from G. arboretum (HAU231-HAU576), 293 from G. raimondii (HAU577-HAU869), and 1192 from G. hirsutum (HAU870-HAU2061); 1047 unique EST-SSRs (HAU2062-HAU3108) were developed from ESTs released by Yuxian Zhu; 299 novel EST-SSRs (HAU3109-HAU3407) were developed from ESTs from developing fiber of \(G\). barbadense acc. 3-79 [48, 49].

In addition, 2,233 markers from the NBRI SSR project (263 genomic SSRs and 1,970 EST-SSRs) were developed using four genomic libraries microsatellite-enriched for CAn, GAn, AAGn and ATGn repeats, as well as the transcriptome sequencing of five cDNA libraries of Gossypium herbaceum. Lastly, 312 SSR-containing RFLPs were included for the PGML project [50] .

All new SSRs were incorporated into the existing CMD data display structure, with the SSR Project pages, View and Search pages, updated Homology and Downloads pages. On the SSR View Page, the marker name is linked to a detail page including marker info, sequence type, location of longest ORF and repeat motifs in the sequence. The FASTA and BLAST server databases were updated with all the new SSR sequences from different projects as separate databases, which allow CMD users to perform a batch query using a specific SSR project. In addition, three major protein databases used in the BLAST and FASTA servers in the Tools section were updated with the latest versions: UniProtKB/Swiss-Prot (release 2011.08), UniProtKB/TrEMBL (release 2011.08), and TAIR Arabidopsis (release 2010.12). Homology searches were performed for 1712,448

SSR sequences using all three updated protein databases. Recent homology search results are available on the CMD Downloads page (Homology Data section).

\subsection*{4.3 Primer Redundancy Information of SSRs}

Currently, 18,002 CMD microsatellite primer sequences have been checked using the CMD primer redundancy analysis tool. Any of the following criteria were considered as redundant: (i) identical primer pairs; (ii) identical forward primers; (iii) identical reverse primers; (iv) forward primer identical to reverse and vice versa. From this analysis, \(85.7 \%\) of the microsatellite primer sequences checked were considered to be unique and noted accordingly in the database. The Primer redundancy analysis tool is a Perl package built around the pair wise comparison algorithm to create clusters of identical sequences in accordance to the threshold value specified for the analysis. The primer redundancy threshold value is the "global sequence identity" calculated as number of identical nucleotides in alignment divided by the full length of the shorter sequence. Based on the input threshold value, we construct clusters of sequences and search for identity. A threshold of 0.81 (81\%) was chosen for the analysis after plotting the threshold values from \(70 \%\) to \(100 \%\) against the redundant primer counts. Table 4.1 gives the summary of primer redundancy to the threshold \(81 \%\). In Figure 4.1, the redundant primer counts are obtained for each of the individual threshold values.

In the first quarter of 2009 the new feature Primer Redundancy was added to the View section. In the third quarter the section was updated with the new primer redundancy results. The new results were obtained after performing further data analysis based on the presence of the combined redundancy of the SSR primer sequences and
repeat motifs. MON SSR project data was not included in the primer redundancy analysis due to the lack of data on the target repeat motifs.

Table 4.1 The summary of primer redundancy processing.
\begin{tabular}{|l|l|}
\hline Number of primer sequences analyzed (forward and reverse) & 18,002 \\
\hline Total number of redundant primer sequences found & 2,570 \\
\hline Total number of non-redundant primer sequences & 15,432 \\
\hline Threshold value for the analysis & 81 \\
\hline Total number of redundant primer pairs & 1,422 \\
\hline \begin{tabular}{l} 
Total number of completely matched sequence pairs (match percentage \\
100)
\end{tabular} & 940 \\
\hline Total number of closely matched sequence pairs (match percentage 90-99) & 280 \\
\hline Total number of closely matched sequence pairs (match percentage 81-89) & 202 \\
\hline \multicolumn{2}{|c|}{ Type of primer sequence match (pairs) } \\
\hline Forward-forward match & 460 \\
\hline Reverse-reverse sequence match & 414 \\
\hline Forward-reverse sequence match & 232 \\
\hline Reverse-forward sequence match & 316 \\
\hline Both forward-forward and reverse-reverse match & 103 \\
\hline
\end{tabular}

Note: data presented in the table was retrieved from the CMD website.


Figure 4.1 The redundant primer counts obtained for each of the individual threshold values

\subsection*{4.4 SSR Redundancy Detection using SVM Machine Learning}

\section*{Approach}

Microsatellites or SSRs are used as molecular markers with wide-ranging applications in the field of cotton molecular breeding. CMD provides centralized access to publicly available cotton molecular data. In collaboration with the contributing researchers, we have summarized and provided high quality data for 17,488 SSRs displayed through CMD. However, SSR redundancy is common and inevitable issue for projects coming from different research groups. The method of SSR redundancy detection using the SSR-containing sequence alignment approach gives high number of false-positives even when applying stringent parameters, since the similarity identification is based only on the sequence comparison. To improve the accuracy of the redundant SSRs detection and to reduce the cost of expert intervention, we propose the application of machine learning based on the SVM machine learning approach.

\subsection*{4.4.1 Materials and Methods}

We choose LIBSVM program [51] as machine learning program because it has efficient multi-class classification, and we use cross validation method. We weight SVM for unbalanced data. Specially, LIBSVM can automatically select the model that can generate the contour of greatest cross valuation accuracy. This feature lets us more easily evaluate and select parameters for our SVM program. Figure 4.2 presents the workflow of SVM filtration with three phases: generate SVM model via the training data, verify the
performance via the testing data, and predict/refine SSR redundancy based on the result of sequence similarity.


Figure 4.2 The SVM machine learning workflow.

The feature selection for machine learning is a critical and also challenging task, which usually requires an iterative approach. For our current problem we select a set of five features related to properties of SSRs which are likely to influence a human expert when classifying an SSR redundancy, including: percentage match for primer redundancy, primer match type, motif similarity, percentage match for SSR sequence and map position in the genetic map. The first four SSR features are selected for the machine learning approach, and the last feature is used to help the expert to verify the predicted result. The CMD SSR dataset (847 markers) is used as training, testing and prediction sets for the SVM algorithm. Table 4.2 describes the algorithm for the training data selection.

Percent match of primer sequences: The SSR primer sequence is an important referenced factor in genetic research. It is used to isolate targeted sections of DNA for amplification in PCR. The primer sequence alignment can be calculated by CD-HIT program [52].

Primer match type: Type 1 - forward to forward match, and reverse to reverse match; Type 2 - forward to reverse match, or reverse to reverse match.

Motif similarity: SSR motif similarity is another important factor reflecting the degree of SSR redundancy.

Percent match of SSR-containing sequences: BLAST search allows the comparison for a pair of SSRs, and identify them above a certain threshold.

SSR genetic map position: Based on this feature, the training data were manually selected and the final results were evaluated.

\subsection*{4.4.2 Result}

The SVM approach with different kernel functions is applied to develop an accurate model for SSR redundancy detection. In our experiment, we select four different Kernel Functions to compare the performance of SVM based on optimal parameters C = 512 and gamma \(=0.0078125\). The ROC curve analysis which is generated based on the cross validation results (Figure 4.3) indicate the remarkable performances of the SVM approach. The high accuracy and F-score in Table 4.3 shows that the SVM-based machine learning method can identify SSR redundancy with the high predictive performance.

Table 4.2 The algorithm to select the SSR redundancy training data.
\begin{tabular}{clcc}
\hline No. & \multicolumn{1}{c}{ Condition } & Action \\
\hline Case 1 & No mapping data for any marker. & OMIT \\
\hline Case 2 & Two markers present once on the same chromosome of same map. & PROCEED \\
\hline Case 3 & \begin{tabular}{l} 
Two markers mapped once on the same chromosome of two \\
different genetic maps, two chromosome bridged by 0 or 1 marker.
\end{tabular} & OMIT \\
\hline Case 3 & \begin{tabular}{l} 
Either of the two markers present more than once on same \\
chromosome of same map (one of the 2 or both may provide \\
(A)
\end{tabular} & OMIT \\
\hline Case 4 for redundancy). & \begin{tabular}{l} 
Two markers mapped once on the same chromosome of two \\
different genetic maps, two chromosome bridged by at least 2 \\
flanking markers each mapped once.
\end{tabular} & PROCEED \\
\hline
\end{tabular}

Two markers mapped once on same chromosome of two
(A)
different maps, but among flanking bridged markers one being PROCEED in paralog duplication

Note: The four cases presented above are exclusive to each other. The process may be iterative. Once a first pair of markers has been validated (e.g. marker 1 and marker2 are synonyms), they may become informative in terms of additional bridges for others: for the next pair of markers formerly under case 3 this new information may result in a case 4 situation.

Table 4.3 Evaluation of results obtained for the tested data.
\begin{tabular}{cccccccccc}
\hline \begin{tabular}{c} 
Kernel \\
Function
\end{tabular} & TP & FP & TN & FN & Sensitivity & Specificity & Precision & Accuracy & \begin{tabular}{c} 
F- \\
score
\end{tabular} \\
\hline Linear & 98 & 2 & 117 & 2 & \(98 \%\) & \(98.32 \%\) & \(98.00 \%\) & \(98.17 \%\) & 98.00 \\
\hline Polynomial & 0 & 0 & 119 & 100 & \(0 \%\) & \(100.00 \%\) & -- & \(54.33 \%\) & -- \\
\hline \begin{tabular}{c} 
Radial \\
Basis
\end{tabular} & 97 & 2 & 117 & 3 & \(97 \%\) & \(98.32 \%\) & \(97.98 \%\) & \(97.71 \%\) & 97.31 \\
\hline sigmoid & 99 & 3 & 116 & 1 & \(99 \%\) & \(97.48 \%\) & \(97.06 \%\) & \(98.17 \%\) & 98.02 \\
\hline
\end{tabular}


Figure 4.3 ROC curve analysis

\subsection*{4.5 QTL/Traits Feature and Cotton Genetic Maps}

In breeding, cotton cultivars have been grown and cross-bred to produce desirable, agronomically important traits, which are very often associated with combinations of several genes, called Quantitative Trait Loci (QTLs). To better understand and determine where particular traits of interest are located on chromosomes of a specific species of cotton, researchers have identified a large number of DNA molecular markers linked to certain traits and corresponding QTLs. These molecular markers include, but are not limited to, SNPs and SSRs, or microsatellites.

The total number of agriculturally important cotton traits displayed through CMD is currently 44 , which corresponds to 76 trait symbols and 884 mapped QTL positions on 14 cotton genetic maps. The QTL information has been uploaded into the CMD Comparative Map Viewer (CMap) accessible from the CMD Homepage.

In the past four years, 23 new cotton genetic map sets ( 21 genetic maps corresponding to individual crosses, 1 consensus map and 1 reference map), were added to the previously available 4 genetic maps, were added to the CMap Viewer [53] on the CMD website. In addition, we annotated the CMD cotton traits with the related information about the trait-associated genetic markers from the cotton genetic maps and represented their associations through the CMD-CMap connection. Specifically, the traits are annotated and linked in CMD with the trait description, aliases, published symbol(s), QTL/gene name(s), associated CMD marker(s), cross name(s), marker interval for QTLs, R-square value, genetic linkage group information, genetic map positions and corresponding publications.

\section*{Chapter 5}

\section*{Quantitative Structure-activity Relationship (QSAR) Study on}

\section*{Glycan Array Data}

\subsection*{5.1 Introduction}

Glycan-binding proteins play critical roles in many physiological and pathological processes [54], including inflammation and cancer [55-57], growth and development [5860 ] and microbial pathogenesis [61-64]. In order to understand the biology of glycanbinding proteins, it is essential to identify their glycan-binding specificities. Recently, glycan array technology [65-68] provided a high throughput method to simultaneously measure the binding levels of a certain glycan-binding protein to a large number of glycan molecules. The newest version (V5.0) of the glycan array from the Consortium for Functional Glycomics (CFG) [66] contains 611 glycan chains. Currently, large amounts of glycan array data are freely available on the CFG website (www.functionalglycomics.org), and this number is still increasing. These glycan array data have opened up opportunities to discern the binding specificities for glycan-binding proteins.

The glycan array data usually are very complex, and simple visual inspections may not be able to identify the binding specificities of glycan-binding proteins. This poses a great challenge to extract binding specificities of glycan-binding proteins from glycan array data [69]. Recently, Porter et al. (2010) proposed motif-based methods to discern the sub-structures that contribute to the binding intensities of glycan array to a
specific glycan-binding protein. Porter et al. manually generated a list of 63 motifs that are sub-structures of glycan chains identified previously by biological experiments. By comparing the enrichment of those motifs in high intensity and low intensity data (intensity segregation) or by statistical testing between glycan data with a certain motif and glycan data without a certain motif (motif segregation), Porter et al. (2010) were able to find motifs that represent binding specificities. However, such predefined motifs may not be sufficient to identify all glycan binding specificities.

We have developed a novel quantitative structure-activity relationship (QSAR) method to analyze glycan array data. First, we automatically generated different size subtrees from glycan chains as our features. Then, we established the relationship between sub-tree features and glycan array data using the PLS regression. We demonstrated our QSAR method on glycan array data of different glycan-binding proteins. We were able to identify sub-trees that represent the glycan binding specificities of glycan-binding proteins using the regression coefficients of PLS regression. We also showed that the sub-tree features may be better representations of the glycan binding specificity than the motifs defined by Porter et al. (2010) are. Furthermore, we developed a user-friendly web tool to facilitate the rapid and automatic analysis of glycan array data. A complete description of our results and methods is given in the sections below.

\subsection*{5.2 Results}

\subsection*{5.2.1 Coding Glycans using Sub-tree Features}

Glycan chains consist of different kinds of saccharides, such as glucose (Glc), fucose (Fuc), galactose (Gal), N-acetylglucosamine (GlcNAc), mannose (Man), and Nacetylgalactosamine (GalNAc). The structure of a glycan chain can be represented as a rooted tree. Figure 5.1 shows an example glycan chain that consists of five different saccharides. The binding specificity of a glycan chain to glycan-binding protein usually relies only on its substructures [64, 69]. In order to capture the structure characteristics of glycan chain, we parsed the glycan tree into four sets of sub-trees [70, 71], each of which has mono-, di-, tri-, or tetra-saccharide sub-tree respectively. Figure 5.2 shows that the example glycan chain in Figure 5.1 has been decomposed into five mono-saccharide sub-trees, five di-saccharide sub-trees, five tri-saccharide sub-trees, and four tetrasaccharide sub-trees, respectively. For each version of glycan array from the Consortium for Functional Glycomics (CFG) [66], we generated four sets of sub-trees for the glycan on the array, including mono-, di-, tri-, and tetra-saccharide sub-tree sets. For example, the CFG glycan array version 2.0 contains 264 glycan chains. We obtained 112 monosaccharide sub-trees, 280 di-saccharide sub-trees, 385 tri-saccharide sub-trees and 318 tetra-saccharide sub-trees from those 264 glycan chains. The four sets of sub-trees for the CFG glycan array version 2.0 are listed in Appendix A Table A-(I-IV).


Figure 5.1 An example of glycan chain and its structure. The Sp denotes the spacer arm attached to array.


Figure 5.2 An example of decomposing the glycan chain in Figure 5.1 into different subtrees. The N indicates the number of saccharide in each sub-tree.

In order to represent better the sub-structural characteristics, we included also the bond information in the sub-trees. For each saccharide, we included the positions of its bond connections in its representation. Different mono-saccharide sub-trees will be generated if the same saccharide has different bond connections. For example, we had five mono-saccharide sub-trees for galactose (Gal): (2, 3Gal \(\beta\) ); (2, 3Gal \(\beta 1\) ); ( \(2,4 \mathrm{Gal} \beta 1\) ); \((2 \mathrm{Gal} \beta)\) and \((2 \mathrm{Gal} \beta 1)\) from the glycan chains of CFG version 2.0 array. Furthermore, the
di-saccharides are also represented differently if the bonds between the same pair of saccharides are different. For example, we had two di-saccharide sub-trees between Nacetylglucosamine (GlcNAc) and galactose (Gal): (3,4GlcNAc \(\beta 1-3 \mathrm{Gal} \beta 1\) ) and (3,4GlcNAc \(\beta 1-4 \mathrm{Gal} \beta 1\) ). With the bond information, the sub-trees extracted from glycan chains can help distinguish the glycan chains structurally to a certain extent.

After obtaining the sub-trees, we used them as features to code the structures of glycan chains on the glycan array. This new coding system has an advantage over the motif-based approach in which the sub-tree features are more precise and more flexible. Many sub-structures potentially cannot be represented well in motif-based features since there have been only 63 defined motif features (Porter, A., et al. 2010). In contrast, the number of sub-tree features in our method can be much larger (e.g. 112 mono-saccharide sub-trees, 280 di-saccharide sub-trees, 385 tri-saccharide sub-trees and 318 tetrasaccharide sub-trees for the CFG glycan array version 2.0 . Our method requires more computation than the motif-based method, but this fact shall not be considered a significant limitation of our method.

The structures of glycan chains were obtained from the CFG website. The CFG glycan array version 2.0 data of plant lectins were also downloaded from the CFG website. Table 5.2 list all 52 plant lectins that we analyzed.

For each glycan chain in a certain version of CFG glycan array, we coded one vector based on each set of mono-, di-, tri-, or tetra-saccharide sub-trees. The elements in each vector were 1 and 0 . If a glycan chain contains a sub-tree, we coded the feature with 1 ; otherwise, we coded the feature with 0 . Then, feature vectors were used for PLS
regression study. A Java program was implemented to automatically parse the glycan chains into mono-, di-, tri-, or tetra-saccharide sub-trees, and then code the glycan chains with different sub-trees.

\subsection*{5.2.2 PLS Regression on Glycan Array Data using Different Features}

We first applied the PLS regression to the glycan array data of three plant lectins: Concanavalin A (ConA), Vicia Villosa Lectin (VVL) and Wheat Germ Agglutinin (WGA), which were also studied by motif-based methods [69]. The binding specificities of ConA and VVL are relatively simple. A visual inspection may help to identify some common features from the data. For example, it is shown clearly from the data that ConA binds to the glycans that contain terminal N -acetylglucosamine (GlcNAc). On the other hand, the binding specificity of WGA is broad and cannot be determined easily by visual examination. To understand how different sub-structures contribute to binding specificity, we performed PLS regression studies on the glycan array data of those three plant lectins using the mono-, di-, tri-, and tetra-saccharide sub-tree features as well as the motif features of Porter et al. (2001). We first examined the percentage of variances of binding intensities that can be explained using PLS regression models. The percentage of variance explained measures the amount of variation in the given data that a regression model accounts for and it can be used to indicate how well the regression model is. The higher the percentage of variance explained is, the better the PLS regressions perform and the better the sub-tree features are. Figure 5.3 plots the percentage of variance explained in the binding intensities of three plant lectins against the number of latent variables
(components) in PLS regression. The number of components is automatically determined by their contributions to the variance (see Method section for more details). Thus, the number of components varied for PLS regressions using different features. Figure 5.3Figure 5.3 shows that the PLS regression using di-saccharide sub-trees achieved the highest percentage of variance explained for all three glycan array data. The PLS regression using mono-saccharide sub-trees achieved high percentage of variance explained in glycan array of ConA and the PLS regression using tri-saccharide sub-trees achieved high percentage of variance explained in glycan array of WGA. The PLS regression using tetra-saccharide sub-tree and motif features did not obtain high percentage of variance explained in all three glycan array data. Thus, the tetra-saccharide sub-tree and motif features cannot fully capture the intensity variations in those glycan array data. These results implied that the motif-based method may not have sufficient sensitivity to cover all binding specific sub-structures.


Figure 5.3 Plot of the percentage of variance explained in the binding intensities of glycan array data of three plant lectins against the number of components in PLS. Four sub-tree features and the motif features of Porter et al. [69] are used for PLS regression.
A) ConA, B) VVL, C) WGA.

Then, we calculated the \(R^{2}\) statistics of PLS regressions. The \(R^{2}\) is a statistical measurement indicating how well a regression approximates real data. The \(\mathrm{R}^{2}\) analysis (Table 5.1) is consistent with these results of variance explained above. For ConA, the PLS regressions with all five features can obtain an \(\mathrm{R}^{2}>0.8\). For VVL, only the PLS regression using di-saccharide sub-trees as features can obtain a significant high \(\mathrm{R}^{2}=0.9955\). For WGA, the PLS regression using both di- and tri-saccharide sub-trees can obtain high \(\mathrm{R}^{2}>0.8\). Those results confirmed that di-saccharide sub-trees are good features for characterizing the glycan array data of three plant lectins. We also tested the PLS regression using di-saccharide sub-trees on glycan array data of more than 50 plant lectins (Table 5.2). We obtained good results \(\left(\mathrm{R}^{2}>0.8\right)\) on most of the glycan array data except two of them, which have good regression results using tri-saccharide sub-trees as features. To further examine the results of PLS regressions, we plotted the observed intensities against the fitted intensities calculated by PLS regression using di-saccharide sub-trees for all three plant lectins. As shown in Figure 5.4, there are good correlations between the observed intensities and fitted intensities for ConA, VVL and WGA. The dots in Figure 5.4C are distributed more widely than those in Figure 5.4A and Figure 5.4B, which is consistent with relatively low \(\mathrm{R}^{2}\) value obtained by the PLS regression on glycan array data of WGA. Those plots implied that the di-saccharide sub-trees can represent the binding specificity of ConA, VVL and WGA well.

Table 5.1 The \(\mathrm{R}^{2}\) of PLS regressions on glycan array data of different glycan-binding proteins using different features.
\begin{tabular}{cccccc}
\hline & Motifs & Mono & Di & Tri & Tetra \\
\hline ConA & 0.8052 & 0.9428 & \(\mathbf{0 . 9 5 3 9}\) & 0.8276 & 0.8021 \\
\hline VVL & 0.4943 & 0.6893 & \(\mathbf{0 . 9 9 5 5}\) & 0.7461 & 0.3024 \\
\hline WGA & 0.6242 & 0.7132 & \(\mathbf{0 . 9 0 0 2}\) & 0.8742 & 0.7027 \\
\hline PNA & 0.7774 & 0.5752 & 0.9603 & \(\mathbf{0 . 9 9 6 6}\) & 0.7619 \\
\hline SNA & 0.6760 & 0.7871 & \(\mathbf{0 . 9 0 8 5}\) & 0.7431 & 0.6509 \\
\hline DC-SIGN & 0.4190 & 0.5490 & 0.9179 & \(\mathbf{0 . 9 5 3 3}\) & 0.8521 \\
\hline Siglec-8 & N/A & 0.9882 & 0.9927 & \(\mathbf{0 . 9 9 6 9}\) & 0.9949 \\
\hline
\end{tabular}

Note: The highest values of R squares are highlighted in bold.

Table 5.2 The highest \(R^{2}\) of PLS regressions on glycan array data of different glycanbinding proteins.
\begin{tabular}{|c|c|c|c|c|}
\hline Glycan-
binding
protein name & Glycan-binding protein full name & Number of PLS component & \(\mathbf{R}^{2}\) & Features
Vector Used \\
\hline AAL & Aleuria Aurantia Lectin & 9 & 0.941 & Di \\
\hline ABA & Agaricus bisporus agglutinin (mushroom) & 10 & 0.8904 & Di \\
\hline ACL & Amaranthus cruentus lectin (red amaranth, purple amaranth) & 13 & 0.9939 & Di \\
\hline AMA & Arum maculatum agglutinin (lords and ladies) & 8 & 0.9022 & Tri \\
\hline APA & Allium porrum agglutinin & 8 & 0.9189 & Tri \\
\hline ASA & Allium sativum agglutinin/lectin & 13 & 0.9018 & Di \\
\hline BPL & Bauhinia purpurea agglutinin & 10 & 0.937 & Di \\
\hline CA & Cymbidium agglutinin & 8 & 0.9503 & Di \\
\hline CAA & Caragana arborescens agglutinin (Siberian pea tree) & 11 & 0.8852 & Di \\
\hline ConA & Concanavalin A (Canavalia ensiformis, jack bean) & 10 & 0.9539 & Di \\
\hline Crocus & Crocus Vernus Agglutinin & 12 & 0.8017 & Di \\
\hline CSA & Cytisus sessilifolius agglutinin (Portugal broome) & 13 & 0.9926 & Di \\
\hline DBA & Dolichos biflorus agglutinin (horse gram) & 14 & 0.9711 & Di \\
\hline ECA & Erythrina cristagalli agglutinin (cocks comb coral & 10 & 0.9173 & Di \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{tree)} \\
\hline EEL & Euonymus Europaeus Lectin & 10 & 0.8801 & Di \\
\hline GNL & Peanut nodule lectin (Arachis hypogaea) & 17 & 0.9616 & Di \\
\hline GSL_I & Gerardia savaglia lectin (false foxglove) & 11 & 0.9671 & Di \\
\hline GSL_II & Gerardia savaglia lectin (false foxglove) & 9 & 0.9542 & Di \\
\hline HHL & Hippeastrum Hybrid Lectin & 10 & 0.9495 & Di \\
\hline Jacalin_CoreD & Artocarpus heterophyllus (bread fruit tree) & 13 & 0.9637 & Di \\
\hline Jacalin_CoreH & Artocarpus heterophyllus (bread fruit tree) & 12 & 0.9424 & Di \\
\hline LCA & Lens culinaris agglutinin (lentil) & 12 & 0.9935 & Di \\
\hline LEL & Loranthus europaeus lectin (loranthus, misteltoe) & 12 & 0.9221 & Di \\
\hline LTL & Lotus tetragonolobus agglutinin & 14 & 0.9157 & Di \\
\hline MAA & Maackia amurensis agglutinin/lectin & 13 & 0.977 & Di \\
\hline MAL_CoreD & Maackia amurensis agglutinin/lectin & 14 & 0.992 & Di \\
\hline MAL_CoreH & Maackia amurensis agglutinin/lectin & 15 & 0.9214 & Di \\
\hline MPA & Maclura pomifera agglutinin & 10 & 0.995 & Di \\
\hline MPL & Maclura pomifera agglutinin & 12 & 0.9967 & Di \\
\hline NPL & Narcissus pseudonarcissus agglutinin/lectin & 10 & 0.9436 & Di \\
\hline PHA_L & Leucoagglutinating isolectin of PHA & 13 & 0.8511 & Di \\
\hline PMA & Polygonatum multiflorum lectin (common Solomon's seal) & 10 & 0.9148 & Di \\
\hline PNA & Arachis hypogaea agglutinin (peanut) & 12 & 0.9122 & Di \\
\hline PSA & Pisum sativum agglutinin (garden pea, common pea) & 10 & 0.9815 & Di \\
\hline PTL_I & Psophocarpus tetragonolobus agglutinin (goa bean, winged pea) & 10 & 0.993 & Di \\
\hline PTL_II & Psophocarpus tetragonolobus agglutinin (goa bean, winged pea) & 9 & 0.9472 & Di \\
\hline RCA_I & Ricinus Communis
Agglutinin I & 10 & 0.8998 & Di \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Rcroc & Rhizoctonia crocorum & 18 & 0.8209 & Di \\
\hline SBA & Soybean agglutinin (Glycine max, soya bean) & 11 & 0.9801 & Di \\
\hline SJA & \begin{tabular}{l}
Sophora japonica agglutinin \\
(Japanese/Chinese pagoda tree)
\end{tabular} & 8 & 0.8408 & Di \\
\hline SNA & Sambucus nigra agglutinin (elderberry, eldertree, elder) & 19 & 0.9072 & Di \\
\hline SNA_I & Sambucus nigra agglutinin (elderberry, eldertree, elder) & 12 & 0.902 & Di \\
\hline SNA_II & Sambucus nigra agglutinin (elderberry, eldertree, elder) & 12 & 0.8459 & Di \\
\hline SNA_III & Sambucus nigra agglutinin (elderberry, eldertree, elder) & 11 & 0.9567 & Di \\
\hline SNA_IV & Sambucus nigra agglutinin (elderberry, eldertree, elder) & 10 & 0.9782 & Di \\
\hline SNA_V & Sambucus nigra agglutinin (elderberry, eldertree, elder) & 12 & 0.9705 & Di \\
\hline STL & Solanum tuberosum agglutinin (potato) & 10 & 0.9617 & Di \\
\hline UEA_I & Ulex europaeus agglutinin (furze, gorse) & 10 & 0.9149 & Di \\
\hline VFA & Vicia fava & 11 & 0.9625 & Di \\
\hline VVL & Vicia villosa agglutinin (hairy vetch) & 11 & 0.9954 & Di \\
\hline WFA & Wisteria floribunda agglutinin (Japanese wisteria) & 10 & 0.9322 & Di \\
\hline WGA & Wheat germ agglutinin (Triticum vulgare) & 10 & 0.8997 & Di \\
\hline
\end{tabular}

A


B


C


Figure 5.4 Plot of observed intensities against the fitted intensities calculated by PLS regression using di-saccharide sub-trees as features. The black lines indicate the line of \(y=x\). A) ConA, B) VVL, C) WGA.

\subsection*{5.2.3 Identification of Significant Structural Features in Glycans}

The PLS regression has established the relation between the response y and original predictors X as a multiple regression model:
\[
\begin{equation*}
y_{m}=\sum_{k} B_{m k} X_{i k}+f_{m}^{\prime} \tag{5.1}
\end{equation*}
\]
where vector \(f^{\prime}(n \times 1)\) denote the regression errors and matrix B ( \(p \times 1\) ) denote the PLS regression coefficients and can be calculated by:
\[
\begin{equation*}
B_{m}=\sum_{i} C_{m i} W_{k i} \tag{5.2}
\end{equation*}
\]

Then, the significant predictors can be selected based on the values of regression coefficients from PLS regression, which is called the PLS-Beta method [72].

To select the significant sub-trees using regression coefficients, we modeled the distribution of regression coefficients as a Gaussian distribution. The plots of the regression coefficient distribution obtained from PLS regression on three plant lectins showed that approximating the coefficient distribution as Gaussian distributions is reasonable (Figure 5.5, Figure 5.6 and Figure 5.7 ). Then, we determined the significant regression coefficients based on z-score: \(z=\frac{B_{i}-u}{\sigma}\), where u is the average of regression coefficients and \(\sigma\) is the standard deviation of regression coefficients. We first calculated the \(z\)-score value for each coefficient. We selected the sub-trees whose regression coefficients with z-score larger than a threshold. The higher the z-score, the less number of sub-trees are selected.


Figure 5.5 The distribution of PLS regression coefficients (Beta values) obtained from glycan array data of ConA.


Figure 5.6 The distribution of PLS regression coefficients (Beta values) obtained from glycan array data of VVL.


Figure 5.7 The distribution of PLS regression coefficients (Beta values) obtained from glycan array data of WGA.

We applied the PLS-Beta method (see Methods section for more details) to identify significant sub-trees from the PLS regressions of glycan array data. Table 5.3, Table 5.4 and Table 5.5 list the significant di-saccharide sub-trees binding to three plant lectins. A significant positive coefficient value indicates the corresponding sub-trees have high binding intensities whereas a negative coefficient value suggests the existence of the sub-tree feature will reduce the binding intensity. A negative co-efficient value can be achieved when two glycan chains contain the same sub-tree structure, one with high binding intensity and the other with low binding intensity. For ConA, we identified nine di-saccharide sub-trees, which cover all 19 glycan chains (Table 5.3) with high binding intensities. Among these nine di-saccharide sub-trees, alpha-linked mannose (Man) is involved in seven, and four of these alpha-linked mannoses locate at terminal. Both motif and intensity segregation methods [69] ranked the "terminal Mannose \({ }^{\prime \prime}\) as a
significant motif. The QSAR results showed internal alpha-linked mannose may also contribute to the binding specificity of ConA as four of our significant di-saccharides contained internal alpha-linked mannose. The QSAR method identified that a disaccharide: 3,6Man \(\beta 1-4 \mathrm{GlcNAc} \beta 1\), contributed to binding of 10 glycan chains in CFG glycan array version 2.0:
- 50 (Man \(\alpha 1-3(\) Man \(\alpha 1-6) M a n \beta 1-4 G l c N A c \beta 1-4 G l c N A c \beta-G l y)\)
- 51 (GlcNAc \(\beta 1-2\) Man \(\alpha 1-3(\) GlcNAc \(\beta 1-2\) Man \(\alpha 1-6)\) Man \(\beta 1-4 G l c N A c \beta 1-4 G l c N A c \beta-\) Gly)
- 52 (Gal \(\beta 1-4 \mathrm{GlcNAc} \beta 1-2 \mathrm{Man} \alpha 1-3(\mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta 1-2 \mathrm{Man} \alpha 1-6) \mathrm{Man} \beta 1-\) 4GlcNAc \(\beta 1\)-4GlcNAc \(\beta\)-Gly)
- 53 (Neu5Ac \(\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta 1-2 \mathrm{Man} \alpha 1-3\) (Neu5Ac \(\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta 1-\) 2Man \(\alpha 1-6\) )Man \(\beta 1-4 \mathrm{GlcNAc} \beta 1-4 \mathrm{GlcNAc} \beta-G l y)\)
- 54 (Neu5Ac \(\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta 1-2 \mathrm{Man} \alpha 1-3\) (Neu5Ac \(\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta 1-\) 2Man \(\alpha 1-6\) )Man \(\beta 1-4 \mathrm{GlcNAc} \beta 1-4 \mathrm{GlcNAc} \beta-\mathrm{Sp} 8\) )
- 192 (Man \(\alpha 1-6(\operatorname{Man} \alpha 1-2 M a n \alpha 1-3) M a n \alpha 1-6(M a n \alpha 1-2 M a n \alpha 1-3) M a n \beta 1-\) 4GlcNAc \(\beta 1-4 \mathrm{GlcNAc} \beta-A s n\) ), 193 (Man \(\alpha 1-2 \mathrm{Man} \alpha 1-6(\) Man \(\alpha 1-3) \mathrm{Man} \mathrm{\alpha 1-}\) 6(Man \(\alpha 1-2\) Man \(\alpha 1-2\) Man \(\alpha 1-3\) )Man \(\beta 1-4 G l c N A c \beta 1-4 G l c N A c \beta-A s n)\)
- 194 (Man 1 1-2Man 1 1-2Man 1 1-3(Man 1 1-2Man \(\alpha 1-3(M a n \alpha 1-2 M a n \alpha 1-6) M a n \alpha 1-~\) 6)Man \(\beta 1-4 \mathrm{GlcNAc} \beta 1-4 \mathrm{GlcNAc} \beta-\mathrm{Asn})\)
- 197 (Man \(\alpha 1-6(\) Man \(\alpha 1-3) M a n \alpha 1-6(M a n \alpha 1-2 M a n \alpha 1-3) M a n \beta 1-4 G l c N A c \beta 1-\) 4GlcNAc \(\beta\)-Asn)
- 198 (Man \(\alpha 1-6(\) Man \(\alpha 1-3) M a n \alpha 1-6(M a n \alpha 1-3) M a n \beta 1-4 G l c N A c \beta 1-4 G l c N A c \beta-\) Asn)

This di-saccharide is a subset of both "N-glycan high mannose" and "N-Glycan complex" that are identified as significant motifs by both motif and intensity segregation methods [69]. The "N-glycan high mannose" motif is defined by Porter et al. (2010) as "a glycan chain with a Man \(\alpha 1-3(M a n \alpha 1-6(M a n \alpha 1-3) M a n \alpha 1-6) M a n \beta 1-4 G l c N A c \beta 1-\) 4GlcNAc \(\beta\) base" and the "N-Glycan complex" is defined as "a glycan chain with a GlcNAc \(\beta 1-2\) Man \(\alpha 1-3(G l c N A c \beta 1-2 M a n \alpha 1-6) M a n \beta 1-4 G l c N A c \beta 1-4 G l c N A c \beta\) base" In CFG glycan array version 2.0, the "N-glycan high mannose" motif exists in five glycan chains: 192, 193, 194, 197, 198 and the "N-Glycan complex" motif also exists in five glycan chains: 51, 52, 53, 54 and 201 [69]. The glycan chain 201 (Neu5Ac \(\alpha 2-3\) (Galß13GalNAc \(\beta 1-4\) )Gal \(\beta 1-4 \mathrm{Glc} \beta-\mathrm{Sp} 0\) ) does not contain the di-saccharide 3,6Man \(\beta 1-\) 4GlcNAc \(\beta 1\) and its binding intensity with ConA is low. We then performed similar motif segregation study to compare the di-saccharide \(3,6 \operatorname{Man} \beta 1-4 \mathrm{GlcNAc} \beta 1\) with the " N glycan high mannose" and "N-Glycan complex" motifs. We used the two-tail unpaired ttest. The p-values are \(2.45 \mathrm{E}-21\) for the "N-glycan high mannose" and \(1.18 \mathrm{E}-15\) for the "N-Glycan complex" without counting glycan chain 201. On the other hand, the p-value for \(3,6 \mathrm{Man} \beta 1-4 \mathrm{GlcNAc} \beta 1\) is \(4.61 \mathrm{E}-33\). Thus, the di-saccharide \(3,6 \mathrm{Man} \beta 1-4 \mathrm{GlcNAc} \beta 1\) may be a better representation of the binding specificity of those 10 glycan chains. We also identified a significant di-saccharide, Glc \(\alpha 1-4 \mathrm{Glc} \beta\), which corresponds to the terminal glucose motifs identified by motif-based methods [69]. Furthermore, the listing of glycan chains that contain the significant di-saccharide in Table 5.3 shows that some
of those significant di-saccharides are dependent of each other. For example, 2Mana13Mand and 3Man \(\alpha\)-Sp9 both exist in glycan chains 189 (Mano1-2Mano1-2Mano13Man \(\alpha-\) Sp9) and 191 (Man \(\alpha 1-2 \mathrm{Man} \alpha 1-3 \mathrm{Man} \alpha-\mathrm{Sp} 9\) ). We may be able to merge them as a tri-saccharide: 2Man \(\alpha 1-3 \mathrm{Man} \alpha-\mathrm{Sp} 9\).

Table 5.3 The significant di-saccharide sub-trees binding specifically to ConA.
\begin{tabular}{ccc}
\hline di-saccharide & \begin{tabular}{c} 
Regression \\
Coefficient
\end{tabular} & Glycan numbers \\
\hline Man5-Asn & 46769.84 & 199 \\
\hline\(\alpha\)-D-Man-Sp8 & 46010.46 & 9 \\
\hline 3,6Man \(\alpha-\) Sp9 & 24403.98 & \(190,195,196\) \\
\hline Glc \(\alpha 1-4 \mathrm{Glc} \beta\) & 20758.13 & 177 \\
\hline \(3,6 \operatorname{Man} \beta 1-4 \mathrm{GlcNAc} \beta 1\) & 18295.47 & \(50,51,52,53,54,192,193,194,197,198\) \\
\hline 2Man \(1-3 \operatorname{Man} \alpha\) & 17959.44 & 189,191 \\
\hline 3Man \(\alpha-\operatorname{Sp} 9\) & 17959.44 & 189,191 \\
\hline Man \(\alpha 1-3,6 \operatorname{Man} \alpha\) & 16141.64 & 195,196 \\
\hline Man \(\alpha 1-3,6 \operatorname{Man} \beta 1\) & 10828.64 & 50,198 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant di-saccharide in CFG glycan array V2.0 are listed. The regression coefficients are obtained by PLS regression using disaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V2.0.

Table 5.4 The significant di-saccharide sub-trees binding specifically to VVL.
\begin{tabular}{ccc}
\hline di-saccharide & RegressionCoefficient & Glycan numbers \\
\hline GalNAc \(\alpha 1-3 \mathrm{Gal} \beta\) & 47501.78 & 86 \\
\hline GalNAc \(\beta 1-4 \mathrm{GlcNAc} \beta\) & 46390.05 & 92,93 \\
\hline a-GalNAc-Sp8 & 44524.76 & 10 \\
\hline b-GalNAc-Sp8 & 44432.05 & 20 \\
\hline GalNAc \(\beta 1-2,3 \mathrm{Gal} \beta\) & 36068.33 & 89 \\
\hline GalNAc \(\beta 1-3 G \mathrm{Gal} \alpha 1\) & 20391.86 & 90 \\
\hline Gal \(\alpha 1-2,3 \mathrm{Gal} \beta\) & -14522 & 99 \\
\hline GalNAc \(\alpha 1-2,3 \mathrm{Gal} \beta\) & -14717.1 & 84 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant di-saccharide in CFG glycan array V2.0 are listed. The regression coefficients are obtained by PLS regression using disaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V2.0.

Table 5.5 The significant di-saccharide sub-trees binding specifically to WGA.
\begin{tabular}{ccc}
\hline di-saccharide & Regression Coefficient & Glycan numbers \\
\hline GalNAc \(\alpha 1-3 G a l \beta\) & 42672.23 & 86 \\
\hline (6OSO3)GlcNAc \(\beta\)-Sp8 & 38904.61 & 47 \\
\hline GlcNAc \(\beta 1-4 M D P L y s\) & 36691.11 & 168 \\
\hline GalNAc \(\beta 1-3,4 G l c N A c \beta\) & 35613.5 & 91 \\
\hline GlcNAc \(\beta 1-3,6 G l c N A c \alpha\) & 34575.78 & 121,159 \\
\hline\(\beta-G l c N A c-S p 0\) & 33127.88 & 21 \\
\hline GalNAc \(\alpha 1-2,3 G a l \beta\) & 32604.2 & 84 \\
\hline GlcNAc \(\beta 1-6 G a l \beta 1\) & 31649.8 & 176 \\
\hline\(\alpha-G a l N A c-S p 8\) & 31345.39 & 10 \\
\hline\(\beta-G l c N A c-S p 8\) & 30441.15 & 22 \\
\hline GalNAc \(\beta 1-4 G l c N A c \beta\) & 29082.38 & 92,93 \\
\hline GlcNAc \(\alpha 1-6 G a l \beta 1\) & 27593.5 & 157 \\
\hline \(2,3 G a l \beta 1-4 G l c N A c \beta\) & 27091.45 & \(81,82,97,141,142\) \\
\hline Gal \(\beta 1-4 G l c N A c \beta\) & 26658.48 & 152,153 \\
\hline 2Gal \(\beta 1-4 G l c N A c \beta 1\) & 26061.04 & 60,70 \\
\hline GlcNAc \(\beta 1-3 G a l \beta 1\) & 24471.77 & \(163,164,165,166,167\) \\
\hline Fuc \(\alpha 1-4 G l c N A c \beta\) & -24945.3 & 77 \\
\hline Gal \(\alpha 1-4 G l c N A c \beta\) & -25069.7 & 112 \\
\hline (6OSO3)Gal \(\beta 1-4 G l c N A c \beta\) & -25093.5 & 44 \\
\hline KDNa2-3Gal \(\beta 1\) & -25176.4 & 187,188 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant di-saccharide in CFG glycan array V2.0 are listed. The regression coefficients are obtained by PLS regression using disaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V2.0.

For VVL, we identified six di-saccharide sub-trees with significant positive regression coefficients (Table 5.4), which included all seven glycan chains with high binding intensities. All six di-saccharides involved terminal beta-linked GalNAc \(\beta\) or
terminal alpha-linked GalNAc \(\alpha\). Previously, terminal beta-linked GalNAc \(\beta\) was ranked high by both motif and intensity segregation methods, and terminal alpha-linked GalNAc \(\alpha\) was only ranked high by the intensity segregation method [69]. In the CFG glycan array version 2.0 , there are 10 glycan chains that have terminal alpha-linked GalNAc \(\alpha\) and only two have high binding intensity with VVL. Moreover, there are 13 glycan chains that have terminal beta-linked GalNAc \(\beta\) in the CFG glycan array version 2.0, and five of them have high binding intensity with VVL. Thus, using only terminal alpha- and beta- GalNAc to determine the binding specificity of VVL may be insufficient. When the terminal alpha- and beta- GalNAc are not attached directly to a spacer in the glycan array, our QSAR results implied that the saccharides attaching to terminal alpha- and beta-linked GalNAc affect the binding specificity to VVL. For example, in number 86 (GalNAc \(\alpha 1-3 \mathrm{Gal} \beta-\mathrm{Sp} 8\) ) glycan chain of the CFG glycan array version 2.0, a terminal GalNAc \(\alpha\) attached to a Gal with an \(\alpha 1-3\) link and then attached to the spacer. This glycan chain has high binding intensity. However, when the galactose is also attached with a fucose, the glycan chain (number 84 (GalNAc \(\alpha 1-3\) (Fuc \(\alpha 1-2\) )Gal \(\beta\) Sp 8 ) of the CFG glycan array version 2.0) loses its binding specificity. The QSAR method even showed that the GalNAc \(\alpha 1-2,3 \mathrm{Gal} \beta\) has a significant negative coefficient (Table 5.4). Similarly, a terminal GalNAc attached to a Gal with \(\beta 1-3\) linkage leads to high binding intensity as in number 89 (GalNAc \(\beta 1-3(\) Fuc \(\alpha 1-2) \mathrm{Gal} \beta-\mathrm{Sp} 8\) ) and number 90 (GalNAc \(\beta 1-3 G\) Gal \(\alpha 1-4 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta-\mathrm{Sp} 0\) ) glycan chains of the CFG glycan array version 2.0. However, a terminal GalNAc attached to Gal with \(\beta 1-4\) linkage does not lead to high binding intensity as in five glycan chains of the CFG glycan array version 2.0:
- 203 (NeuAca2-8NeuAca2-8NeuAca2-8NeuAca2-3(GalNAcb1-4)Galb1-4GlcbSp0)
- 204 (Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3(GalNAcb1-4)Galb1-4Glcb-Sp0)
- 206 (Neu5Aca2-8Neu5Ac \(\alpha 2-3(G a l N A c \beta 1-4) G a 1 \beta 1-4 G l c \beta-S p 0)\)
- 209 (Neu5Aca2-3(GalNAcb1-4)Galb1-4GlcNAcb-Sp0)
- 210 (Neu5Aca2-3(GalNAcb1-4)Galb1-4GlcNAcb-Sp8)

Our results suggested that the binding specificity of VVL needs to be determined more carefully by considering the saccharides attached to the terminal GalNAc and how they are attached. This is consistent with the variance explained and \(\mathrm{R}^{2}\) results of the PLS regression study as the PLS regression using di-saccharide sub-trees as features gets much higher performance. Our results also suggested that visual inspection may not be able to identify the true binding specificities even for simple glycan array data. Furthermore, as shown in Table 5.4, each glycan chain contains only one significant disaccharide, which suggests that all significant di-saccharides binding to VVL are independent.

For WGA, we identified 16 di-saccharide sub-trees with significant positive regression coefficients and four di-saccharide sub-trees with significant negative regression coefficient (Table 5.5). The 16 significant di-saccharides exist in 28 glycan chains of the CFG glycan array version 2.0 , which all have high binding intensity with WGA. All 16 significant di-saccharides of WGA are independent as each glycan chain contains only one significant di-saccharide. There are three kinds of glycan in those 16 di-saccharides: Gal, GlcNAc and GalNAc. Those 16 di-saccharides cover the "terminal Lactosamine", "internal Lactosamine", "terminal GlcNAc \(\beta\) ", "Branching", and "terminal GalNAc \(\alpha\) " motifs identified by motif and intensity segregation methods [69]. However, one highly ranked motif, "Terminal Neu5Aca2-3Gal", identified by motif and intensity segregation methods is missing. We then carefully examined the glycan array data of WGA. There are 37 glycan chains in CFG glycan array version 2.0 containing the "Terminal Neu5Aca2-3Gal" motif. The binding intensities of those 37 glycan chains to WGA are very broad, from -73 to 50264 . It is likely that the di-saccharide sub-tree, "Terminal Neu5Aca2-3Gal", may not discern the binding specificity of those 37 glycan chains completely. We then used the tri- and tetra-saccharide sub-trees as features for the PLS regression. We were able to find one significant tri-saccharide (Neu5Ac \(\alpha 2\)-3Gal \(\beta 1\) \(3 \mathrm{GlcNAc} \beta\) ) and four significant tetra-saccharide (Neu5Ac \(\alpha 2-3 \mathrm{Gal} \beta 1-3 \mathrm{GlcNAc} \beta-\mathrm{Sp} 8\), Neu5Ac \(\alpha 2-3 \mathrm{Gal} \beta 1-4(6 \mathrm{OSO} 3)\) GlcNAc \(\beta-\mathrm{Sp} 8\), \(\quad\) Neu5Ac \(\alpha 2-3 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta-S p 0\), Neu5Ac \(\alpha 2-3 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc} \beta-\mathrm{Sp} 8\) ) that contain terminal Neu5Ac \(\alpha 2-3 \mathrm{Gal}\). The results
implied that the terminal Neu5Aca2-3Gal may need to attach to a GlcNAc to make the binding to WGA more specific.

\subsection*{5.2.4 Evaluation of QSAR Model on Other Glycan-binding Proteins}

To further demonstrate the effectiveness of the QSAR method, we tested it on several glycan-binding proteins. We first apply the QSAR to glycan array data of two plant lectins: Peanut Agglutinin (PNA) and Sambucus Nigra Lectin (SNA). For PNA, the PLS regressions using di-saccharide and tri-saccharide sub-trees as features can obtain significant high \(\mathrm{R}^{2}\) of 0.9603 and 0.9966 respectively (Table 5.1). We used PLS-Beta method to identify 11 tri-saccharide sub-trees with significant positive regression coefficients and three tri-saccharide sub-trees with significant negative regression coefficients (Table 5.6). Our results showed that PNA have high binding affinities with the terminal Gal \(\beta 1\)-3GalNAc, which is consistent with previous study [73]. However, if there are other glycan attached to N -acetylgalactosamine (GalNAc) or the Gal \(\beta 1\) 3GalNAc is directly attached to spacer arm (SP), the binding intensity of Galß13GalNAc is reduced. We also observed that terminal galactose attached to another galactose with a \(\beta 1-3\) link also have high binding intensity. Furthermore, non-terminal Galß1-3GalNAc has low binding affinity and leads to the negative coefficients. For SNA, the PLS regressions using di-saccharide sub-trees as features can obtain significant high \(R^{2}\) of 0.9085 Table 5.1). As shown in Table 5.7, the PLS-Beta method successfully identified that SNA have high binding affinities with \(\alpha 2-6\)-linked \(N\)-Glycolylneuraminic Acid (Neu5Gca2-6) bound to galactose (Gal) or N-acetylgalactosamine (GalNAc) [74].

Table 5.6 The significant tri-saccharide sub-trees binding specifically to PNA.
\begin{tabular}{ccc}
\hline tri-saccharide & Regression Coefficient & Glycan numbers \\
\hline (Gal \(\beta 1-3)-3 G a l N A c \alpha-S p 8\) & 50301.69 & 125 \\
\hline (Gal \(\beta 1-3)-3 G a l N A c \beta-S p 8\) & 49878.81 & 126 \\
\hline (Galß1-3)-3Gal \(\beta-S p 8\) & 47607.33 & 130 \\
\hline (Gal \(\beta 1-3)-3,6 G l c N A c \alpha-S p 8\) & 29692.31 & \(120,121,122,123\) \\
\hline (Gal \(\beta 1-3)-(3 G a l N A c \beta 1-4)-3,4 G a l \beta 1\) & 28104.38 & 128,201 \\
\hline (Gal \(\beta 1-3)-3,6 G a l N A c \alpha-S p 8\) & 27781.27 & \(150,174,241,256\) \\
\hline (Gal \(\beta 1-3)-(3 G a l N A c \beta 1-3)-3 G a l \alpha 1\) & 23494.39 & 127 \\
\hline (3GalNAc \(\beta 1-4)-(4 G a l \beta 1-4)-4 G l c \beta\) & 15204.52 & 129 \\
\hline (4Gal \(\beta 1-4)-4 G l c \beta-S p 8\) & 15204.52 & 129 \\
\hline (Gal \(\beta 1-3)-(3 G a l N A c \beta 1-4)-4 G a l \beta 1\) & 15204.52 & 129 \\
\hline (Galß1-3)(Neu5Ac \(\alpha-6)-3,6 G a l N A c \alpha\) & 13740.78 & 241 \\
\hline (3Gal \(\beta 1-3)-(3 G a l N A c \beta 1-3)-3 G a l \alpha 1\) & -12988.4 & 223 \\
\hline (2Gal \(\beta 1-3)-(3 G a l N A c \beta 1-4)-3,4 G a l \beta 1\) & -13998.6 & 59,60 \\
\hline (Neu5Ac \(\alpha 2-3)-(3 G a l \beta 1-3)-\) & -19045.3 & 212,223 \\
\hline 3GalNAc \(\beta 1\) & & \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant tri-saccharide in CFG glycan array V2.0 are listed. The regression coefficients are obtained by PLS regression using trisaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V2.0.

Table 5.7 The significant di-saccharide sub-trees binding specifically to SNA.
\begin{tabular}{ccc}
\hline di-saccharide & Regression Coefficient & Glycan numbers \\
\hline (Neu5Gc \(\alpha 2-6\) )-6Gal \(\beta 1\) & 33419.7 & 263 \\
\hline (9NAcNeu5Ac \(2-6\) )-6Gal \(\beta 1\) & 29606.3 & 49 \\
\hline (Neu5Ac \(\alpha 2-6\) )-6Gal \(\beta 1\) & 27618.6 & \begin{tabular}{c}
\(53,54,244,245,246\), \\
\(247,248,249,250\)
\end{tabular} \\
\hline (Neu5Aca2-6)-6Gal \(\beta\) & 21657.7 & 251 \\
\hline (Neu5Ac \(\alpha-6)-6 G a l N A c \beta 1\) & 19823.3 & 243 \\
\hline (6GalNAc \(\beta 1-4)-4 G l c N A c \beta\) & 19823.3 & 243 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant di-saccharide in CFG glycan array V2.0 are listed. The regression coefficients are obtained by PLS regression using di-
saccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V2.0.

Then, we tested the QSAR method on the glycan array data of two animal lectins: sialic acid binding immunoglobulin-like lectin 8 (Siglec-8) and dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN). For DC-SIGN, both PLS regression using disaccharide and tri-saccharide sub-trees as features obtained significant high \(\mathrm{R}^{2}\) of 0.9179 and 0.9533 respectively (Table 5.1). The PLS-Beta method identified 22 tri-saccharide sub-trees with significant regression coefficients (Table 5.8). The top tri-saccharide, (Fuc \(\alpha 1-3)(2 \mathrm{Gal} \beta 1-4)-3,4 \mathrm{GlcNAc} \beta\left(\mathrm{Le}^{\mathrm{X}}\right)\) is known to bind with DC-SIGN [75]. However, there is no mannose in our identified tri-saccharides. This may be because glycans containing mannose have both high and low binding intensities. For example, glycan chain 197 (Man \(\alpha 1-6(M a n \alpha 1-3) M a n \alpha 1-6(M a n \alpha 1-2 M a n \alpha 1-3) M a n \beta 1-4 G l c N A c \beta 1-\) 4GlcNAc \(\beta-A s n\) ) and glycan chain 198 (Man \(\alpha 1-6(\) Man \(\alpha 1-3)\) Man \(\alpha 1-6(M a n \alpha 1-3) M a n \beta 1-\) 4GlcNAc \(\beta 1-4 \mathrm{GlcNAc} \beta-A s n\) ) in CFG glycan array V2.1 have similar structure. The glycan chain 197 is decomposed into 9 tri-saccharide sub-trees and glycan chain 198 is decomposed into 8 tri-saccharide sub-trees. Among them, six tri-saccharide sub-trees are the same. However, glycan chain 197 has a binding intensity of 6358.993 with DG-SIGN and glycan chain 198 have a binding intensity of 186.303 with DG-SIGN. For Siglec-8, PLS regression using all four types of sub-trees as features can obtain significant high \(\mathrm{R}^{2}>0.99\) (Table 5.1). The PLS-Beta method successfully identified the sialylated-sulfated galactose as the specific binding motif of Siglec-8 (Table 5.9).

Table 5.8 The significant tri-saccharide sub-trees binding specifically to DC-SIGN.
\begin{tabular}{|c|c|c|}
\hline tri-saccharide & Regression Coefficient & Glycan numbers \\
\hline (Fuc \(\alpha 1-3)(2 \mathrm{Gal} \beta 1-4)-3,4 \mathrm{GlcNAc} \beta\) & 4918.172 & 67, 68 \\
\hline (Fuc \(\alpha 1-2\) )-(2Gal \(\beta 1-4\) )-3,4GlcNAc \(\beta\) & 4918.172 & 67, 68 \\
\hline ((3OSO3)Gal \(\beta 1-4\) )-4(6OSO3)Glc \(\beta\)-Sp0 & 4891.928 & 29 \\
\hline (GalNAc \(\alpha 1-3\) )-3GalNAc \(\beta\)-Sp8 & 4706.763 & 85 \\
\hline (GlcNAc \(\beta 1-3\) )-(3Gal \(\beta 1-4\) )-4GlcNAc \(\beta 1\) & 4336.227 & 166 \\
\hline \[
\begin{gathered}
(3,4 \mathrm{GalNAc} \beta 1-3)-(3 \mathrm{Gal} \beta 1-4)- \\
3,4 \mathrm{GlcNAc} \beta \\
\hline
\end{gathered}
\] & 4287.536 & 65 \\
\hline (2Gal \(\beta 1-4\) )-3,4GlcNAc \(\beta\)-Sp0 & 4044.822 & 67 \\
\hline ((3OSO3)Gal \(11-4\) )-4Glc \(\beta\)-Sp8 & 4011.979 & 28 \\
\hline \[
\begin{gathered}
\text { (3,4GlcNAc } \beta 1-4)-(4 \mathrm{Gal} \beta 1-4)- \\
3,4 \mathrm{GlcNAc} \beta 1 \\
\hline
\end{gathered}
\] & 3993.198 & 138 \\
\hline (4Gal 121 -4)-(3,4GlcNAc \(\beta 1-4\) )-4Gal \(\beta 1\) & 3993.198 & 138 \\
\hline (Fuc \(\alpha 1-3)(4 \mathrm{Gal} \beta 1-4)-3,4 \mathrm{GlcNAc} \beta 1\) & 3993.198 & 138 \\
\hline (Galp1-4)-3,4GlcNAc \(\beta\)-Sp8 & 3947.659 & 136 \\
\hline (KDNa2-3)-(3Gal \(\beta 1-4\) )-4GlcNAc \(\beta\) & 3605.753 & 188 \\
\hline (4Gal \(\beta 1-4\) )-4GlcNAc \(\beta-\mathrm{Sp} 8\) & 3303.441 & 170 \\
\hline (GlcNAc \(\beta 1-4\) )-(4Gal \(\beta 1-4\) )-4GlcNAc \(\beta\) & 3303.441 & 170 \\
\hline (2Gal \(11-4\) )-(3,4GalNAc \(\beta 1-3)-3 \mathrm{Gal} \beta 1\) & 3135.134 & 65, 66 \\
\hline (Fuc \(\alpha 1-2)\)-(2Gal \(11-4\) )-3,4GalNAc \(\beta 1\) & 3135.134 & 65, 66 \\
\hline (Fuc \(\alpha 1-3)(2 \mathrm{Gal} \beta 1-4)-3,4 \mathrm{GalNAc} \beta 1\) & 3135.134 & 65, 66 \\
\hline (Fuc 1 1-3)-(3,4GalNAc \(\beta 1-3\) )-3Gal \(\beta 1\) & 3135.134 & 65, 66 \\
\hline (Fuc \(\alpha 1-4\) )-3,4GlcNAc-Sp8 & 3036.607 & 118 \\
\hline (Galß1-3)-3,4GlcNAc-Sp8 & 3036.607 & 118 \\
\hline (Fuca1-2)-2Gal 3 -Sp8 & 2947.905 & 74 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant tri-saccharide in CFG glycan array V2.1 are listed. The regression coefficients are obtained by PLS regression using trisaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V2.1.

Table 5.9 The significant mono-saccharide sub-trees binding specifically to Siglec-8.
\begin{tabular}{ccc}
\hline mono-saccharide & Regression Coefficient & Glycan numbers \\
\hline \(3(6 \mathrm{OSO} 3) \mathrm{Gal} \beta 1\) & 8655.456 & 246 \\
\hline \(3(6-\mathrm{O}-\mathrm{Su}) \mathrm{Gal} \beta 1\) & 7816.967 & 354 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant mono-saccharide in CFG glycan array V4.1 are listed. The regression coefficients are obtained by PLS regression using monosaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V4.1.

Finally, we tested the QSAR method on the glycan array data of two antibodies: CSLEX1 (human CD15s antibody) and Sialyl Lewis x antibody (CD15s) - 10. For both antibodies, the PLS regression using tetra-saccharide sub-trees as features obtained the highest \(\mathrm{R}^{2}>0.99\) (Table 5.10). For CSLEX1, the PLS-Beta method successfully identified the Sialy1 Lewis \(x\), ((Neu5Ac \(\alpha 2-3)-3 G a l \beta 1-4)(F u c \alpha 1-3)-3,4 G l c N A c \beta 1\), as the most significant tetra-saccharide sub-tree (Table 5.11). Meanwhile, the results showed that the glycan chain of (Neu5Ac \(\alpha 2-3)-(3(6 \mathrm{OSO} 3) \mathrm{Gal} \beta 1-4)-4 \mathrm{GlcNAc} \beta\) also have binding affinity to the CSLEX1. For Sialyl Lewis x antibody (CD15s) - 10, the Sialy1 Lewis x , ((Neu5Ac \(\alpha 2-3)\)-3Gal \(\beta 1-4\) )(Fuc \(\alpha 1-3)\)-3,4GlcNAc \(\beta 1\), is also among the top significant tetra-saccharide sub-trees (Table 5.12). It is not the most significant sub-tree because two glycan chains (number 297 (Galß1-3(Neu5Ac \(\alpha 2-3 G a l \beta 1-4(F u c \alpha 1-3) G l c N A c \beta 1-\) 6)GalNAc \(\alpha-\) Sp14) and 377 (Neu5Ac \(\alpha 2-3 G a l \beta 1-4(\) Fuc \(\alpha 1-3)\) GlcNAc \(\beta 1-3 G a l N A c \alpha-\) Sp14)) containing the Sialyl Lewis x structure have very low binding intensities. As shown in Table 5.12, the PLS regression assigned two other tetra-saccharide sub-trees [(3Gal \(\beta 1-4)(\) Fuc \(\alpha 1-3)-(3,4 \mathrm{GlcNAc} \beta 1-3)-3 \mathrm{GalNAc} \alpha, \quad\) (3Gal \(\beta 1-4)-(3,4 \mathrm{GlcNAc} \beta 1-3)-\) 3GalNAc \(\alpha-S p 14]\) in glycan chain 377 with high negative coefficients in order to balance the high regression coefficient of Sialyl Lewis x. These results implied that the binding intensities of a Sialyl Lewis x are reduced if it is attached to an N -acetylgalactosamine.

Table 5.10 The \(\mathrm{R}^{2}\) of PLS regressions on glycan array data of different antibodies using different features.
\begin{tabular}{ccccc}
\hline & Mono & Di & Tri & Tetra \\
\hline CSLEX1 (human CD15s antibody) & 0.3954 & 0.6362 & 0.983 & \(\mathbf{0 . 9 9 5 2}\) \\
\hline Sialyl Lewis x antibody-10 & 0.1374 & 0.5147 & 0.9463 & \(\mathbf{0 . 9 9 4 9}\) \\
\hline
\end{tabular}

Note: The highest values of R squares are highlighted in bold.

Table 5.11 The significant tetra-saccharide sub-trees binding specifically to CSLEX1 (human CD15s antibody).
\begin{tabular}{|c|c|c|}
\hline tetra-saccharide & Regression Coefficient & Glycan numbers \\
\hline ((Neu5Ac \(2-3\) )-3Gal \(\beta 1-4\) )(Fuc \(\alpha 1-3)-3,4 \mathrm{GlcNAc} \beta 1\) & 11142.85 & \[
\begin{aligned}
& 242,245, \\
& 246,290, \\
& 332,374 \\
& \hline
\end{aligned}
\] \\
\hline (Neu5Ac \(\alpha 2-3\) )-(3(6OSO3)Gal \(\beta 1-4\) )-4GlcNAc \(\beta\)-Sp8 & 9937.952 & 43 \\
\hline ((Neu5Ac \(\alpha 2-3)-3 \mathrm{Gal} \beta 1-4)(\) Fuc \(\alpha 1-3)-3,4 \mathrm{GlcNAc} \beta\) & 9304.732 & 243, 244 \\
\hline \begin{tabular}{l}
(3Galb1-4)-(3,4GlcNAc \(\beta 1-3\) )-(3Galß1-4)- \\
3,4GlcNAc \(\beta 1\)
\end{tabular} & 8146.454 & 242 \\
\hline ((Neu5Ac \(\alpha 2-3)-3(6-\mathrm{O}-\mathrm{Su}) \mathrm{Galb} 1-4)(\) Fuc \(\alpha 1-3)-\)
\(3,4 \mathrm{GlcNAc} \beta\) & 8145.086 & 220 \\
\hline (Fuc \(\alpha 1-3)(3\) (6-O-Su)Gal \(\beta 1-4)-3,4 \mathrm{GlcNAc} \beta-\mathrm{Sp} 8\) & 8145.086 & 220 \\
\hline (Neu5Ac 2 -3)-(3(6-O-Su)Gal 1 1-4)-3,4GlcNAc \(\beta\)-Sp8 & 8145.086 & 220 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant tetra-saccharide in CFG glycan array V4.0 are listed. The regression coefficients are obtained by PLS regression using tetrasaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V4.0.

Table 5.12 The significant tetra-saccharide sub-trees binding specifically to Sialyl Lewis x antibody-10.
\begin{tabular}{|c|c|c|}
\hline tetra-saccharide & Regression Coefficient & Glycan numbers \\
\hline \begin{tabular}{l}
(3Galß1-4)-(3,4GlcNAc \(\beta 1-3\) )-(3Gal \(\beta 1-4)\) - \\
3,4GlcNAc \(\beta 1\)
\end{tabular} & 1551.394 & 251 \\
\hline \begin{tabular}{l}
((Neu5Ac \(\alpha 2-3)-3 G a l \beta 1-4)(\) Fuc \(\alpha 1-3)-\) \\
3,4GlcNAc \(\beta 1\)
\end{tabular} & 1424.837 & \[
\begin{gathered}
\hline 251,254,255,297, \\
377
\end{gathered}
\] \\
\hline (3Gal \(\beta 1-4)(\) Fuc \(\alpha 1-3)-(3,4 \mathrm{GlcNAc} \beta 1-3)-\)
\(3 \mathrm{Gal} \beta\) & 863.0468 & 254 \\
\hline (3Gal \(121-4\) )-(3,4GlcNAc \(\beta 1-3)-3 \mathrm{Gal} \beta-\mathrm{Sp} 8\) & 863.0468 & 254 \\
\hline (Fuc \(\alpha 1-3)\)-(3,4GlcNAc \(\beta 1-3\) )-3Gal \(\beta\)-Sp8 & 863.0468 & 254 \\
\hline \[
\begin{gathered}
((3,4 \mathrm{GlcNAc} \beta 1-3)-3 \mathrm{Gal} \beta 1-4)(\text { Fuc } \alpha 1-3)- \\
3,4 \mathrm{GlcNAc} \beta 1 \\
\hline
\end{gathered}
\] & 654.8089 & 70, 251 \\
\hline \begin{tabular}{l}
(Fuc \(\alpha 1-3)-(3,4 \mathrm{GlcNAc} \beta 1-3)-(3 \mathrm{Gal} \beta 1-4)-\) \\
3,4GlcNAc \(\beta 1\)
\end{tabular} & 654.8089 & 70, 251 \\
\hline \begin{tabular}{l}
(3Gal \(\beta 1-4\) )(Fuc \(\alpha 1-3)-(3,4 \mathrm{GlcNAc} \beta 1-3)\) - \\
3GalNAc \(\alpha\)
\end{tabular} & -581.447 & 377 \\
\hline (3Gal \(\beta 1-4)\)-(3,4GlcNAc \(\beta 1-3\) )-3GalNAc \(\alpha-\) Sp14 & -581.447 & 377 \\
\hline (2Gal \(\beta 1-4)(\) Fuc \(\alpha 1-3)-(3,4 \mathrm{GlcNAc} \beta 1-3)-\)
3Gal \(\beta 1\) & -702.1 & 69, 70 \\
\hline (2Galß1-4)-(3,4GlcNAc \(\beta 1-3)-(3 \mathrm{Gal} \beta 1-4)-\)
\(3,4 \mathrm{GlcNAc} \beta 1\) & -896.585 & 70 \\
\hline
\end{tabular}

Note: The sub-trees are ordered in descending of coefficients from up to bottom. The numbers of glycan chains including the significant tetra-saccharide in CFG glycan array V4.1 are listed. The regression coefficients are obtained by PLS regression using tetrasaccharide sub trees as features. The glycan numbers are the numbers of glycan chains in CFG glycan array V4.1.

\subsection*{5.3 Discussion}

The application of glycan array is impeded currently by the lack of automatic and systematic methods to extract useful information [69]. In this study, we proposed a novel quantitative structure-activity relationship (QSAR) method to address this need. We first automatically decomposed the glycan chains into sub-trees. Then, we applied PLS
regression to the glycan array data using sub-trees as features. Based on PLS regression, we were able to identify significant sub-tees that contribute to binding. We demonstrated our methods on glycan array data of multiple glycan binding proteins. Moreover, the substructure features are generated automatically. We also developed a user-friendly web tool that can facilitate the rapid and automatic analysis of glycan array data.

Compared with predefined motifs, automatic decomposition of glycan chains into sub structures provides much broader features for selecting binding specificity. For example, in glycan array data of VVL, terminal alpha-linked GalNAc exists in glycan chains with both high and low binding intensities. Simply using terminal alpha-linked GalNAc as a feature to determine the binding specificity is insufficient. Actually, the motif segregation methods did not rank terminal alpha-linked GalNAc high. Meanwhile, by using di-saccharide sub-trees as features, our QSAR method successfully identified binding specific di-saccharides that include terminal alpha-linked GalNAc. Our results implied that the saccharide attached to terminal alpha-linked GalNAc also determined the binding specificity of VVL. Furthermore, the bindings of glycan chains to proteins are complex. Fixed features, like predefined motifs, may not be able to identify real binding specificity. For example, the QSAR method identified that a di-saccharide: 3,6Man \(\beta 1\) 4GlcNAc \(\beta 1\), contributed to binding of ConA. This di-saccharide is a subset of both " N glycan high mannose" and "N-Glycan complex" motifs. Further analysis showed that the 3,6Man \(\beta 1-4 \mathrm{GlcNAc} \beta 1\) has a lower p -value based on motif segregation. Thus, the \(3,6 \mathrm{Man} \beta 1-4 \mathrm{GlcNAc} \beta 1\) may be the real contributor to the binding specificity of ConA.

Further experiments are needed to confirm the conclusion. But the QSAR method showed the potential to determine more representative binding specificities.

Both motif and intensity segregation methods need to separate the glycan data into two groups and then select the significant motif based on statistical tests on the intensities of the two groups. For intensity segregation, a threshold is needed to determine high and low intensities, which will bring uncertainty to the results [69]. Meanwhile, as the number of glycan chains containing a certain motif is low, the motif segregation suffers from unbalanced data in the two groups [69]. Our QSAR method overcomes the uncertainty and bias as it does not need to separate the glycan data into two groups as motif and intensity segregation methods.

Currently, we performed the PLS regression using different size sub-trees separately. Our current approach fixed the size of sub-structures to represent binding specificity. However, glycan-binding proteins may bind to different size sub-trees in glycan chains. For example, we showed that some di-saccharides of ConA are correlated and may be merged to tri-saccharide sub-trees. In the future, we will further develop the QSAR methods using all sub-trees under a certain size as features. However, directly using all sub-trees will lead to overfitting as features overlap. We are currently exploring feature selection methods to remove overlapped features. Then, the PLS regression will be performed on selected features.

In conclusion, our QSAR method provides a new tool for efficient analysis of glycan array data. Our method is general and can be applied to different types of glycan
array of different glycan-binding proteins. Our method should prompt the utilization of glycan array and help understand the biology of glycan-binding proteins.

\section*{Chapter 6}

\section*{Conclusion and Future Work}

In this thesis, we present a data-intensive computing platform for bioinformatics applications using virtualization technologies and HPC infrastructures. The platform seamlessly integrates the web user interface (presentation tier), scientific workflow (logic tier) and computing infrastructure (data/computing tier).

This platform is demonstrated through two bioinformatics projects. At first project, we redesigned and deployed CMD website using the Xen-based virtualization solution. Now CMD is a centralized web portal in the cotton research community. To achieve high-performance and scalability for CMD web tools, we hosted the large amounts of protein databases and computational intensive applications of CMD on the Palmetto HPC of Clemson University. Biologists can easily utilize both bioinformatics applications and HPC resources through the CMD website even with little background in computer science. Since 2009, CMD has been accessed by users from 101 countries all over the world and 48 states in USA. Currently, CMD project hosts 18 projects with 17,448 publicly available SSRs, 312 mapped cotton RFLP sequences containing SSRs and 27 genetic maps for Gossypium genomics.

Second, a web tool, Glycan Array QSAR Tool, was developed on our bioinformatics platform to analyze glycan array data. The user interface of this tool was developed at the top of Drupal Content Management Systems (CMS) and the computational part was implemented using MATLAB Compiler Runtime (MCR)
module. This QSAR method is general and can be applied to different types of glycan array of different glycan-binding proteins, and it should prompt the utilization of glycan array and help understanding the biology of glycan-binding proteins.

In conclusion, our new bioinformatics computing platform enables the rapid deployment of data-intensive bioinformatics applications using an HPC and virtualization environment with a user-friendly web interface and bridges the gap between biological scientists and cyberinfrastructure.

Some bioinformatics applications require specific computing environments, which are not provided by public computing infrastructures. For example, applications need a specific resource management system which is different with current HPC resources (e.g. SGE, Hadoop scheduler); prerequisite libraries or compliers conflict with its version in the current Operation System; the I/O access pattern does not match the storage system of HPC (e.g. Hadoop HDFS needs the shared-nothing file system). To overcome all difficulties related to the deployments of bioinformatics application on computing environment, our current solution is to port all those bioinformatics applications on the private computing infrastructures (e.g. remote private Linux cluster, local web server). However, for the larger-scale applications, the public HPC (e.g. Clemson Palmetto HPC) is the only feasible infrastructure which could provide sufficient computing resource. In our future research, we plan to extend the current virtualization solution from server virtualization to computing infrastructure virtualization. We will construct a virtual HPC cluster at the top of the public computing infrastructures, and
finally deploy all bioinformatics applications on public HPC or Cloud platforms. This new solution can bring many advantages:
- Improve the scalability of bioinformatics applications.
- Increase the flexibility of deployment and reduce the complexity of bioinformatics platform.
- Improve the reliability of whole system.
- Enhance the security of whole system

\section*{Appendix A}

Table A-I. CFG array v2.0 mono-saccharide Features Summary
\begin{tabular}{|c|c|}
\hline Number of Feature & mono-saccharide \\
\hline 0 & (3OSO3)(6OSO3)Galb1 \\
\hline 1 & (30SO3)Galb \\
\hline 2 & (3OSO3)Galb1 \\
\hline 3 & (4OSO3)(6OSO3)Galb1 \\
\hline 4 & (4OSO3)Galb1 \\
\hline 5 & (6H2PO3)Mana \\
\hline 6 & (6OSO3)Galb1 \\
\hline 7 & (60SO3)GlcNAcb \\
\hline 8 & 2,3Galb \\
\hline 9 & 2,3Galb1 \\
\hline 10 & 2,4Galb1 \\
\hline 11 & 2Galb \\
\hline 12 & 2Galb1 \\
\hline 13 & 2GlcNAcb \\
\hline 14 & 2Mana1 \\
\hline 15 & 3(6-O-Su)Galb1 \\
\hline 16 & 3(60SO3)GalNAca \\
\hline 17 & 3(60SO3)Galb1 \\
\hline 18 & 3(60SO3)GlcNAcb \\
\hline 19 & 3,4(60SO3)GlcNAcb \\
\hline 20 & 3,4,6GlcNAc \\
\hline 21 & 3,4GalNAcb \\
\hline 22 & 3,4GalNAcb1 \\
\hline 23 & 3,4Galb1 \\
\hline 24 & 3,4GlcNAc \\
\hline 25 & 3,4GlcNAcb \\
\hline 26 & 3,4GlcNAcb1 \\
\hline 27 & 3,6GalNAca \\
\hline 28 & 3,6GalNAcb \\
\hline 29 & 3,6Galb1 \\
\hline 30 & 3,6GlcNAca \\
\hline 31 & 3,6GlcNAcb1 \\
\hline 32 & 3,6Mana \\
\hline 33 & 3,6Mana1 \\
\hline 34 & 3,6Manb1 \\
\hline 35 & 3GalNAca \\
\hline 36 & 3GalNAcb \\
\hline 37 & 3GalNAcb1 \\
\hline 38 & 3Gala \\
\hline 39 & 3Gala1 \\
\hline 40 & 3Galb \\
\hline 41 & 3Galb1 \\
\hline 42 & 3GlcNAca \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 43 & 3GlcNAcb \\
\hline 44 & 3GlcNAcb1 \\
\hline 45 & 3Mana \\
\hline 46 & 4(6OSO3)GlcNAcb \\
\hline 47 & 4(6OSO3)Glcb \\
\hline 48 & 4,6GalNAca \\
\hline 49 & 4GalNAca1 \\
\hline 50 & 4GalNAcb \\
\hline 51 & 4GalNAcb1 \\
\hline 52 & 4Galb \\
\hline 53 & 4Galb1 \\
\hline 54 & 4GlcNAcb \\
\hline 55 & 4GlcNAcb1 \\
\hline 56 & 4Glca \\
\hline 57 & 4Glcb \\
\hline 58 & 4MDPLys \\
\hline 59 & 6GalNAca \\
\hline 60 & 6GalNAcb1 \\
\hline 61 & 6Galb \\
\hline 62 & 6Galb1 \\
\hline 63 & 6Glca1 \\
\hline 64 & 6Glcb \\
\hline 65 & 8Neu5Aca \\
\hline 66 & 8Neu5Aca2 \\
\hline 67 & 9NAcNeu5Aca \\
\hline 68 & 9NAcNeu5Aca2 \\
\hline 69 & Asn \\
\hline 70 & Fuca1 \\
\hline 71 & Fucb1 \\
\hline 72 & GalNAca1 \\
\hline 73 & GalNAcb1 \\
\hline 74 & Gala1 \\
\hline 75 & Galb1 \\
\hline 76 & GlcAa \\
\hline 77 & GlcAb \\
\hline 78 & GlcAb1 \\
\hline 79 & GlcNAca1 \\
\hline 80 & GlcNAcb1 \\
\hline 81 & Glca1 \\
\hline 82 & Glcb1 \\
\hline 83 & Gly \\
\hline 84 & KDNa2 \\
\hline 85 & Man5 \\
\hline 86 & Mana1 \\
\hline 87 & Manb1 \\
\hline 88 & Neu5Aca \\
\hline 89 & Neu5Aca2 \\
\hline 90 & Neu5Acb2 \\
\hline 91 & Neu5Gca \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 92 & Neu5Gca2 \\
\hline 93 & Sp0 \\
\hline 94 & Sp10 \\
\hline 95 & Sp11 \\
\hline 96 & Sp8 \\
\hline 97 & Sp9 \\
\hline 98 & a-D-Gal \\
\hline 99 & a-D-Glc \\
\hline 100 & a-D-Man \\
\hline 101 & a-GalNAc \\
\hline 102 & a-L-Fuc \\
\hline 103 & a-L-Rha \\
\hline 104 & a-NeuAc \\
\hline 105 & b-D-Gal \\
\hline 106 & b-D-Glc \\
\hline 107 & b-D-Man \\
\hline 108 & b-GalNAc \\
\hline 109 & b-GlcN(Gc) \\
\hline 110 & b-GlcNAc \\
\hline 111 & b-NeuAc \\
\hline
\end{tabular}

Table A-II. CFG array v2.0 di-saccharide Features Summary
\begin{tabular}{|c|c|}
\hline Number of Feature & di-saccharide \\
\hline 0 & ((3OSO3)(60SO3)Galb1-4)-4(60SO3)GlcNAcb \\
\hline 1 & ((3OSO3)(6OSO3)Galb1-4)-4GlcNAcb \\
\hline 2 & ((3OSO3)Galb1-3)-3,4GlcNAcb \\
\hline 3 & ((3OSO3)Galb1-3)-3GalNAca \\
\hline 4 & ((3OSO3)Galb1-3)-3GlcNAcb \\
\hline 5 & ((3OSO3)Galb1-4)-3,4GlcNAcb \\
\hline 6 & ((3OSO3)Galb1-4)-4(6OSO3)GlcNAcb \\
\hline 7 & ((30SO3)Galb1-4)-4(6OSO3)Glcb \\
\hline 8 & ((3OSO3)Galb1-4)-4GlcNAcb \\
\hline 9 & ((3OSO3)Galb1-4)-4Glcb \\
\hline 10 & ((4OSO3)(6OSO3)Galb1-4)-4GlcNAcb \\
\hline 11 & ((4OSO3)Galb1-4)-4GlcNAcb \\
\hline 12 & ((6OSO3)Galb1-4)-4(6OSO3)Glcb \\
\hline 13 & ((6OSO3)Galb1-4)-4GlcNAcb \\
\hline 14 & ((6OSO3)Galb1-4)-4Glcb \\
\hline 15 & (2,3Galb1-3)-3GlcNAcb \\
\hline 16 & (2,3Galb1-4)-3,4GlcNAcb \\
\hline 17 & (2,3Galb1-4)-4GlcNAcb \\
\hline 18 & (2,3Galb1-4)-4Glcb \\
\hline 19 & (2,4Galb1-4)-4GalNAcb \\
\hline 20 & (2,4Galb1-4)-4GlcNAcb \\
\hline 21 & (2Galb1-3)-3,4GlcNAcb \\
\hline 22 & (2Galb1-3)-3GalNAca \\
\hline 23 & (2Galb1-3)-3GalNAcb \\
\hline 24 & (2Galb1-3)-3GalNAcb1 \\
\hline 25 & (2Galb1-3)-3GlcNAca \\
\hline 26 & (2Galb1-4)-3,4GalNAcb1 \\
\hline 27 & (2Galb1-4)-3,4GlcNAcb \\
\hline 28 & (2Galb1-4)-4GlcNAcb \\
\hline 29 & (2Galb1-4)-4GlcNAcb1 \\
\hline 30 & (2Galb1-4)-4Glcb \\
\hline 31 & (2Mana1-2)-2Mana1 \\
\hline 32 & (2Mana1-3)-3,6Mana \\
\hline 33 & (2Mana1-3)-3,6Mana1 \\
\hline 34 & (2Mana1-3)-3,6Manb1 \\
\hline 35 & (2Mana1-3)-3Mana \\
\hline 36 & (2Mana1-6)-3,6Mana \\
\hline 37 & (2Mana1-6)-3,6Mana1 \\
\hline 38 & (2Mana1-6)-3,6Manb1 \\
\hline 39 & (3(6-O-Su)Galb1-4)-3,4GlcNAcb \\
\hline 40 & (3(6OSO3)Galb1-4)-4GlcNAcb \\
\hline 41 & (3,4GalNAcb1-3)-3Galb1 \\
\hline 42 & (3,4Galb1-4)-4GlcNAcb \\
\hline 43 & (3,4Galb1-4)-4Glcb \\
\hline 44 & (3,4GlcNAcb1-3)-3Galb \\
\hline 45 & (3,4GlcNAcb1-3)-3Galb1 \\
\hline 46 & (3,4GlcNAcb1-4)-4Galb1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 47 & (3,6Galb1-4)-4GlcNAcb \\
\hline 48 & (3,6GlcNAcb1-4)-4Galb1 \\
\hline 49 & (3,6Mana1-6)-3,6Manb1 \\
\hline 50 & (3,6Manb1-4)-4GlcNAcb1 \\
\hline 51 & (3GalNAcb1-3)-3Gala \\
\hline 52 & (3GalNAcb1-3)-3Gala1 \\
\hline 53 & (3GalNAcb1-3)-3Galb1 \\
\hline 54 & (3GalNAcb1-4)-3,4Galb1 \\
\hline 55 & (3GalNAcb1-4)-4Galb1 \\
\hline 56 & (3GalNAcb1-4)-4GlcNAcb \\
\hline 57 & (3Gala1-4)-4Galb1 \\
\hline 58 & (3Galb1-3)-3(6OSO3)GalNAca \\
\hline 59 & (3Galb1-3)-3(6OSO3)GlcNAcb \\
\hline 60 & (3Galb1-3)-3,4GlcNAcb \\
\hline 61 & (3Galb1-3)-3,4GlcNAcb1 \\
\hline 62 & (3Galb1-3)-3,6GalNAcb \\
\hline 63 & (3Galb1-3)-3GalNAca \\
\hline 64 & (3Galb1-3)-3GalNAcb1 \\
\hline 65 & (3Galb1-3)-3GlcNAcb \\
\hline 66 & (3Galb1-3)-3GlcNAcb1 \\
\hline 67 & (3Galb1-4)-3,4(6OSO3)GlcNAcb \\
\hline 68 & (3Galb1-4)-3,4GalNAcb \\
\hline 69 & (3Galb1-4)-3,4GlcNAcb \\
\hline 70 & (3Galb1-4)-3,4GlcNAcb1 \\
\hline 71 & (3Galb1-4)-4(6OSO3)GlcNAcb \\
\hline 72 & (3Galb1-4)-4GlcNAcb \\
\hline 73 & (3Galb1-4)-4GlcNAcb1 \\
\hline 74 & (3Galb1-4)-4Glcb \\
\hline 75 & (3GlcNAcb1-3)-3Galb1 \\
\hline 76 & (30SO3)Galb-Sp8 \\
\hline 77 & (4GalNAca1-3)-2,3Galb1 \\
\hline 78 & (4GalNAcb1-3)-2,3Galb1 \\
\hline 79 & (4Galb1-4)-3,4GlcNAcb \\
\hline 80 & (4Galb1-4)-3,4GlcNAcb1 \\
\hline 81 & (4Galb1-4)-4GalNAcb \\
\hline 82 & (4Galb1-4)-4Galb \\
\hline 83 & (4Galb1-4)-4GlcNAcb \\
\hline 84 & (4Galb1-4)-4Glca \\
\hline 85 & (4Galb1-4)-4Glcb \\
\hline 86 & (4GlcNAcb1-2)-2Mana1 \\
\hline 87 & (4GlcNAcb1-3)-3,6GalNAca \\
\hline 88 & (4GlcNAcb1-3)-3GalNAca \\
\hline 89 & (4GlcNAcb1-3)-3Galb1 \\
\hline 90 & (4GlcNAcb1-4)-4GlcNAcb \\
\hline 91 & (4GlcNAcb1-6)-3,6GalNAca \\
\hline 92 & (4GlcNAcb1-6)-3,6GlcNAca \\
\hline 93 & (4GlcNAcb1-6)-6GalNAca \\
\hline 94 & (6GalNAcb1-4)-4GlcNAcb \\
\hline 95 & (6Galb1-4)-4(6OSO3)GlcNAcb \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 96 & (6Galb1-4)-4GlcNAcb \\
\hline 97 & (6Galb1-4)-4GlcNAcb1 \\
\hline 98 & (6Galb1-4)-4Glcb \\
\hline 99 & (6Glca1-6)-6Glcb \\
\hline 100 & (6H2PO3)Mana-Sp8 \\
\hline 101 & (60SO3)GlcNAcb-Sp8 \\
\hline 102 & (8Neu5Aca2-3)-3,4Galb1 \\
\hline 103 & (8Neu5Aca2-3)-3Galb1 \\
\hline 104 & (8Neu5Aca2-8)-8Neu5Aca \\
\hline 105 & (8Neu5Aca2-8)-8Neu5Aca2 \\
\hline 106 & (9NAcNeu5Aca2-6)-6Galb1 \\
\hline 107 & (Fuca1-2)-2,3Galb \\
\hline 108 & (Fuca1-2)-2,3Galb1 \\
\hline 109 & (Fuca1-2)-2,4Galb1 \\
\hline 110 & (Fuca1-2)-2Galb \\
\hline 111 & (Fuca1-2)-2Galb1 \\
\hline 112 & (Fuca1-2)-2GlcNAcb \\
\hline 113 & (Fuca1-3)-3,4(6OSO3)GlcNAcb \\
\hline 114 & (Fuca1-3)-3,4GalNAcb \\
\hline 115 & (Fuca1-3)-3,4GalNAcb1 \\
\hline 116 & (Fuca1-3)-3,4GlcNAcb \\
\hline 117 & (Fuca1-3)-3,4GlcNAcb1 \\
\hline 118 & (Fuca1-3)-3GlcNAcb \\
\hline 119 & (Fuca1-4)-3,4GlcNAc \\
\hline 120 & (Fuca1-4)-3,4GlcNAcb \\
\hline 121 & (Fuca1-4)-3,4GlcNAcb1 \\
\hline 122 & (Fuca1-4)-4GlcNAcb \\
\hline 123 & (Fucb1-3)-3GlcNAcb \\
\hline 124 & (GalNAca1-3)-2,3Galb \\
\hline 125 & (GalNAca1-3)-2,3Galb1 \\
\hline 126 & (GalNAca1-3)-3GalNAca \\
\hline 127 & (GalNAca1-3)-3GalNAcb \\
\hline 128 & (GalNAca1-3)-3Galb \\
\hline 129 & (GalNAca1-4)-2,4Galb1 \\
\hline 130 & (GalNAcb1-3)-2,3Galb \\
\hline 131 & (GalNAcb1-3)-3Gala1 \\
\hline 132 & (GalNAcb1-4)-3,4Galb1 \\
\hline 133 & (GalNAcb1-4)-3,4GlcNAcb \\
\hline 134 & (GalNAcb1-4)-4GlcNAcb \\
\hline 135 & (Gala1-2)-2Galb \\
\hline 136 & (Gala1-3)-2,3Galb \\
\hline 137 & (Gala1-3)-2,3Galb1 \\
\hline 138 & (Gala1-3)-3,4Galb1 \\
\hline 139 & (Gala1-3)-3Galb \\
\hline 140 & (Gala1-3)-3Galb1 \\
\hline 141 & (Gala1-3)-3GlcNAca \\
\hline 142 & (Gala1-3)-3GlcNAcb \\
\hline 143 & (Gala1-4)-2,4Galb1 \\
\hline 144 & (Gala1-4)-3,4Galb1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 145 & (Gala1-4)-4Galb1 \\
\hline 146 & (Gala1-4)-4GlcNAcb \\
\hline 147 & (Gala1-6)-6Glcb \\
\hline 148 & (Galb1-2)-2Galb \\
\hline 149 & (Galb1-3)-3,4GlcNAc \\
\hline 150 & (Galb1-3)-3,4GlcNAcb \\
\hline 151 & (Galb1-3)-3,4GlcNAcb1 \\
\hline 152 & (Galb1-3)-3,6GalNAca \\
\hline 153 & (Galb1-3)-3,6GlcNAca \\
\hline 154 & (Galb1-3)-3,6GlcNAcb1 \\
\hline 155 & (Galb1-3)-3GalNAca \\
\hline 156 & (Galb1-3)-3GalNAcb \\
\hline 157 & (Galb1-3)-3GalNAcb1 \\
\hline 158 & (Galb1-3)-3Galb \\
\hline 159 & (Galb1-3)-3GlcNAcb \\
\hline 160 & (Galb1-4)-3,4GlcNAcb \\
\hline 161 & (Galb1-4)-3,4GlcNAcb1 \\
\hline 162 & (Galb1-4)-4(6OSO3)Glcb \\
\hline 163 & (Galb1-4)-4GalNAca1 \\
\hline 164 & (Galb1-4)-4GalNAcb1 \\
\hline 165 & (Galb1-4)-4GlcNAcb \\
\hline 166 & (Galb1-4)-4GlcNAcb1 \\
\hline 167 & (Galb1-4)-4Glcb \\
\hline 168 & (GlcAb1-3)-3Galb \\
\hline 169 & (GlcAb1-6)-6Galb \\
\hline 170 & (GlcNAca1-3)-3Galb1 \\
\hline 171 & (GlcNAca1-6)-6Galb1 \\
\hline 172 & (GlcNAcb1-2)-2Galb1 \\
\hline 173 & (GlcNAcb1-2)-2Mana1 \\
\hline 174 & (GlcNAcb1-3)-3,4,6GlcNAc \\
\hline 175 & (GlcNAcb1-3)-3,6Galb1 \\
\hline 176 & (GlcNAcb1-3)-3,6GlcNAca \\
\hline 177 & (GlcNAcb1-3)-3GalNAca \\
\hline 178 & (GlcNAcb1-3)-3Galb \\
\hline 179 & (GlcNAcb1-3)-3Galb1 \\
\hline 180 & (GlcNAcb1-4)-3,4,6GlcNAc \\
\hline 181 & (GlcNAcb1-4)-4,6GalNAca \\
\hline 182 & (GlcNAcb1-4)-4Galb1 \\
\hline 183 & (GlcNAcb1-4)-4GlcNAcb1 \\
\hline 184 & (GlcNAcb1-6)-3,4,6GlcNAc \\
\hline 185 & (GlcNAcb1-6)-3,6GalNAca \\
\hline 186 & (GlcNAcb1-6)-3,6Galb1 \\
\hline 187 & (GlcNAcb1-6)-3,6GlcNAca \\
\hline 188 & (GlcNAcb1-6)-4,6GalNAca \\
\hline 189 & (GlcNAcb1-6)-6GalNAca \\
\hline 190 & (GlcNAcb1-6)-6Galb1 \\
\hline 191 & (Glca1-4)-4Glca \\
\hline 192 & (Glca1-4)-4Glcb \\
\hline 193 & (Glca1-6)-6Glca1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 194 & (Glcb1-4)-4Glcb \\
\hline 195 & (Glcb1-6)-6Glcb \\
\hline 196 & (KDNa2-3)-3Galb1 \\
\hline 197 & (Mana1-2)-2Mana1 \\
\hline 198 & (Mana1-3)-3,6Mana \\
\hline 199 & (Mana1-3)-3,6Mana1 \\
\hline 200 & (Mana1-3)-3,6Manb1 \\
\hline 201 & (Mana1-6)-3,6Mana \\
\hline 202 & (Mana1-6)-3,6Mana1 \\
\hline 203 & (Mana1-6)-3,6Manb1 \\
\hline 204 & (Manb1-4)-4GlcNAcb \\
\hline 205 & (Neu5Aca2-3)-3(6-O-Su)Galb1 \\
\hline 206 & (Neu5Aca2-3)-3(60SO3)Galb1 \\
\hline 207 & (Neu5Aca2-3)-3,4Galb1 \\
\hline 208 & (Neu5Aca2-3)-3,6GalNAca \\
\hline 209 & (Neu5Aca2-3)-3GalNAca \\
\hline 210 & (Neu5Aca2-3)-3GalNAcb1 \\
\hline 211 & (Neu5Aca2-3)-3Galb \\
\hline 212 & (Neu5Aca2-3)-3Galb1 \\
\hline 213 & (Neu5Aca2-6)-3,6GalNAca \\
\hline 214 & (Neu5Aca2-6)-3,6GalNAcb \\
\hline 215 & (Neu5Aca2-6)-3,6GlcNAca \\
\hline 216 & (Neu5Aca2-6)-3,6GlcNAcb1 \\
\hline 217 & (Neu5Aca2-6)-6GalNAca \\
\hline 218 & (Neu5Aca2-6)-6GalNAcb1 \\
\hline 219 & (Neu5Aca2-6)-6Galb \\
\hline 220 & (Neu5Aca2-6)-6Galb1 \\
\hline 221 & (Neu5Aca2-8)-8Neu5Aca \\
\hline 222 & (Neu5Aca2-8)-8Neu5Aca2 \\
\hline 223 & (Neu5Acb2-6)-3,6GalNAca \\
\hline 224 & (Neu5Acb2-6)-3,6GlcNAca \\
\hline 225 & (Neu5Acb2-6)-6GalNAca \\
\hline 226 & (Neu5Acb2-6)-6Galb1 \\
\hline 227 & (Neu5Gca2-3)-3Galb1 \\
\hline 228 & (Neu5Gca2-6)-6GalNAca \\
\hline 229 & (Neu5Gca2-6)-6Galb1 \\
\hline 230 & 2,3Galb-Sp8 \\
\hline 231 & 2Galb-Sp8 \\
\hline 232 & 2GlcNAcb-Sp8 \\
\hline 233 & 3(6OSO3)GalNAca-Sp8 \\
\hline 234 & 3(6OSO3)GlcNAcb-Sp8 \\
\hline 235 & 3,4(6OSO3)GlcNAcb-Sp8 \\
\hline 236 & 3,4,6GlcNAc-Sp8 \\
\hline 237 & 3,4GalNAcb-Sp0 \\
\hline 238 & 3,4GalNAcb-Sp8 \\
\hline 239 & 3,4GlcNAc-Sp0 \\
\hline 240 & 3,4GlcNAc-Sp8 \\
\hline 241 & 3,4GlcNAcb-Sp0 \\
\hline 242 & 3,4GlcNAcb-Sp8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 243 & 3,6GalNAca-Sp8 \\
\hline 244 & 3,6GalNAcb-Sp8 \\
\hline 245 & 3,6GlcNAca-Sp8 \\
\hline 246 & 3,6Mana-Sp9 \\
\hline 247 & 3GalNAca-Sp8 \\
\hline 248 & 3GalNAcb-Sp0 \\
\hline 249 & 3GalNAcb-Sp8 \\
\hline 250 & 3Gala-Sp9 \\
\hline 251 & 3Galb-Sp8 \\
\hline 252 & 3GlcNAca-Sp8 \\
\hline 253 & 3GlcNAcb-Sp0 \\
\hline 254 & 3GlcNAcb-Sp8 \\
\hline 255 & 3Mana-Sp9 \\
\hline 256 & 4(6OSO3)GlcNAcb-Sp0 \\
\hline 257 & 4(6OSO3)GlcNAcb-Sp8 \\
\hline 258 & 4(6OSO3)Glcb-Sp0 \\
\hline 259 & 4(6OSO3)Glcb-Sp8 \\
\hline 260 & 4,6GalNAca-Sp8 \\
\hline 261 & 4GalNAcb-Sp0 \\
\hline 262 & 4GalNAcb-Sp8 \\
\hline 263 & 4Galb-Sp0 \\
\hline 264 & 4GlcNAcb-Asn \\
\hline 265 & 4GlcNAcb-Gly \\
\hline 266 & 4GlcNAcb-Sp0 \\
\hline 267 & 4GlcNAcb-Sp8 \\
\hline 268 & 4GlcNAcb1-Sp8 \\
\hline 269 & 4Glca-Sp8 \\
\hline 270 & 4Glca-Sp9 \\
\hline 271 & 4Glcb-Sp0 \\
\hline 272 & 4Glcb-Sp10 \\
\hline 273 & 4Glcb-Sp8 \\
\hline 274 & 4Glcb-Sp9 \\
\hline 275 & 6GalNAca-Sp0 \\
\hline 276 & 6GalNAca-Sp8 \\
\hline 277 & 6Galb-Sp8 \\
\hline 278 & 6Glcb-Sp8 \\
\hline 279 & 8Neu5Aca-Sp8 \\
\hline 280 & 9NAcNeu5Aca-Sp8 \\
\hline 281 & GlcAa-Sp8 \\
\hline 282 & GlcAb-Sp8 \\
\hline 283 & GlcNAcb1-4MDPLys \\
\hline 284 & Man5-Asn \\
\hline 285 & Neu5Aca-Sp11 \\
\hline 286 & Neu5Gca-Sp8 \\
\hline 287 & a-D-Gal-Sp8 \\
\hline 288 & a-D-Glc-Sp8 \\
\hline 289 & a-D-Man-Sp8 \\
\hline 290 & a-GalNAc-Sp8 \\
\hline 291 & a-L-Fuc-Sp8 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 292 & a-L-Fuc-Sp9 \\
\hline 293 & a-L-Rha-Sp8 \\
\hline 294 & a-NeuAc-Sp8 \\
\hline 295 & b-D-Gal-Sp8 \\
\hline 296 & b-D-Glc-Sp8 \\
\hline 297 & b-D-Man-Sp8 \\
\hline 298 & b-GalNAc-Sp8 \\
\hline 299 & b-GlcN(Gc)-Sp8 \\
\hline 300 & b-GlcNAc-Sp0 \\
\hline 301 & b-GlcNAc-Sp8 \\
\hline 302 & b-NeuAc-Sp8 \\
\hline
\end{tabular}

Table A-III. CFG array v2.0 tri-saccharide Features Summary
\begin{tabular}{|c|c|}
\hline Number of Feature & tri-saccharide \\
\hline 0 & ((3OSO3)(6OSO3)Galb1-4)-4(6OSO3)GlcNAcb-Sp0 \\
\hline 1 & ((3OSO3)(6OSO3)Galb1-4)-4GlcNAcb-Sp0 \\
\hline 2 & ((3OSO3)Galb1-3)(Fuca1-4)-3,4GlcNAcb \\
\hline 3 & ((3OSO3)Galb1-3)-3,4GlcNAcb-Sp8 \\
\hline 4 & ((3OSO3)Galb1-3)-3GalNAca-Sp8 \\
\hline 5 & ((3OSO3)Galb1-3)-3GlcNAcb-Sp8 \\
\hline 6 & ((3OSO3)Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 7 & ((3OSO3)Galb1-4)-4(6OSO3)GlcNAcb-Sp8 \\
\hline 8 & ((3OSO3)Galb1-4)-4(6OSO3)Glcb-Sp0 \\
\hline 9 & ((3OSO3)Galb1-4)-4(6OSO3)Glcb-Sp8 \\
\hline 10 & ((3OSO3)Galb1-4)-4GlcNAcb-Sp0 \\
\hline 11 & ((3OSO3)Galb1-4)-4GlcNAcb-Sp8 \\
\hline 12 & ((3OSO3)Galb1-4)-4Glcb-Sp8 \\
\hline 13 & ((4OSO3)(6OSO3)Galb1-4)-4GlcNAcb-Sp0 \\
\hline 14 & ((4OSO3)Galb1-4)-4GlcNAcb-Sp8 \\
\hline 15 & ((60SO3)Galb1-4)-4(6OSO3)Glcb-Sp8 \\
\hline 16 & ((6OSO3)Galb1-4)-4GlcNAcb-Sp8 \\
\hline 17 & ((6OSO3)Galb1-4)-4Glcb-Sp0 \\
\hline 18 & ((6OSO3)Galb1-4)-4Glcb-Sp8 \\
\hline 19 & (2,3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 20 & (2,3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 21 & (2,3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 22 & (2,3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 23 & (2,3Galb1-4)-4Glcb-Sp0 \\
\hline 24 & (2,4Galb1-4)-4GalNAcb-Sp8 \\
\hline 25 & (2,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 26 & (2Galb1-3)(Fuca1-4)-3,4GlcNAcb \\
\hline 27 & (2Galb1-3)-(3GalNAcb1-3)-3Gala \\
\hline 28 & (2Galb1-3)-(3GalNAcb1-3)-3Gala1 \\
\hline 29 & (2Galb1-3)-(3GalNAcb1-3)-3Galb1 \\
\hline 30 & (2Galb1-3)-(3GalNAcb1-4)-3,4Galb1 \\
\hline 31 & (2Galb1-3)-3,4GlcNAcb-Sp8 \\
\hline 32 & (2Galb1-3)-3GalNAca-Sp8 \\
\hline 33 & (2Galb1-3)-3GalNAcb-Sp0 \\
\hline 34 & (2Galb1-3)-3GalNAcb-Sp8 \\
\hline 35 & (2Galb1-3)-3GlcNAca-Sp8 \\
\hline 36 & (2Galb1-4)-(3,4GalNAcb1-3)-3Galb1 \\
\hline 37 & (2Galb1-4)-(4GlcNAcb1-3)-3Galb1 \\
\hline 38 & (2Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 39 & (2Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 40 & (2Galb1-4)-4GlcNAcb-Sp0 \\
\hline 41 & (2Galb1-4)-4GlcNAcb-Sp8 \\
\hline 42 & (2Galb1-4)-4Glcb-Sp0 \\
\hline 43 & (2Mana1-2)-(2Mana1-3)-3,6Manb1 \\
\hline 44 & (2Mana1-2)-(2Mana1-3)-3Mana \\
\hline 45 & (2Mana1-2)-(2Mana1-6)-3,6Mana \\
\hline 46 & (2Mana1-3)(2Mana1-6)-3,6Mana \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 47 & (2Mana1-3)(2Mana1-6)-3,6Mana1 \\
\hline 48 & (2Mana1-3)(2Mana1-6)-3,6Manb1 \\
\hline 49 & (2Mana1-3)(3,6Mana1-6)-3,6Manb1 \\
\hline 50 & (2Mana1-3)(Mana1-6)-3,6Mana1 \\
\hline 51 & (2Mana1-3)-(3,6Mana1-6)-3,6Manb1 \\
\hline 52 & (2Mana1-3)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 53 & (2Mana1-3)-3,6Mana-Sp9 \\
\hline 54 & (2Mana1-3)-3Mana-Sp9 \\
\hline 55 & (2Mana1-6)-(3,6Mana1-6)-3,6Manb1 \\
\hline 56 & (2Mana1-6)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 57 & (2Mana1-6)-3,6Mana-Sp9 \\
\hline 58 & (3(6-O-Su)Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 59 & (3(6OSO3)Galb1-4)-4GlcNAcb-Sp8 \\
\hline 60 & (3,4GalNAcb1-3)-(3Galb1-4)-3,4GlcNAcb \\
\hline 61 & (3,4GalNAcb1-3)-(3Galb1-4)-3,4GlcNAcb1 \\
\hline 62 & (3,4Galb1-4)-4GlcNAcb-Sp0 \\
\hline 63 & (3,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 64 & (3,4Galb1-4)-4Glcb-Sp0 \\
\hline 65 & (3,4Galb1-4)-4Glcb-Sp9 \\
\hline 66 & (3,4GlcNAcb1-3)-(3Galb1-4)-3,4GalNAcb \\
\hline 67 & (3,4GlcNAcb1-3)-(3Galb1-4)-3,4GlcNAcb \\
\hline 68 & (3,4GlcNAcb1-3)-(3Galb1-4)-3,4GlcNAcb1 \\
\hline 69 & (3,4GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb \\
\hline 70 & (3,4GlcNAcb1-3)-3Galb-Sp8 \\
\hline 71 & (3,4GlcNAcb1-4)-(4Galb1-4)-3,4GlcNAcb \\
\hline 72 & (3,4GlcNAcb1-4)-(4Galb1-4)-3,4GlcNAcb1 \\
\hline 73 & (3,6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 74 & (3,6GlcNAcb1-4)-(4Galb1-4)-4Glcb \\
\hline 75 & (3,6Mana1-6)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 76 & (3,6Manb1-4)-(4GlcNAcb1-4)-4GlcNAcb \\
\hline 77 & (3GalNAcb1-3)-(3Gala1-4)-4Galb1 \\
\hline 78 & (3GalNAcb1-3)-(3Galb1-4)-4GlcNAcb \\
\hline 79 & (3GalNAcb1-3)-(3Galb1-4)-4Glcb \\
\hline 80 & (3GalNAcb1-3)-3Gala-Sp9 \\
\hline 81 & (3GalNAcb1-4)-(3,4Galb1-4)-4Glcb \\
\hline 82 & (3GalNAcb1-4)-(4Galb1-4)-4Glcb \\
\hline 83 & (3GalNAcb1-4)-4GlcNAcb-Sp0 \\
\hline 84 & (3Gala1-4)-(4Galb1-4)-4GlcNAcb \\
\hline 85 & (3Gala1-4)-(4Galb1-4)-4Glca \\
\hline 86 & (3Gala1-4)-(4Galb1-4)-4Glcb \\
\hline 87 & (3Galb1-3)(3Galb1-4)-3,4GlcNAcb \\
\hline 88 & (3Galb1-3)(Fuca1-4)-3,4GlcNAcb \\
\hline 89 & (3Galb1-3)(Fuca1-4)-3,4GlcNAcb1 \\
\hline 90 & (3Galb1-3)(Neu5Aca2-6)-3,6GalNAcb \\
\hline 91 & (3Galb1-3)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 92 & (3Galb1-3)-(3GalNAcb1-3)-3Gala1 \\
\hline 93 & (3Galb1-3)-(3GalNAcb1-4)-3,4Galb1 \\
\hline 94 & (3Galb1-3)-(3GlcNAcb1-3)-3Galb1 \\
\hline 95 & (3Galb1-3)-3(6OSO3)GalNAca-Sp8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 96 & (3Galb1-3)-3(6OSO3)GlcNAcb-Sp8 \\
\hline 97 & (3Galb1-3)-3,4GlcNAcb-Sp0 \\
\hline 98 & (3Galb1-3)-3,4GlcNAcb-Sp8 \\
\hline 99 & (3Galb1-3)-3,6GalNAcb-Sp8 \\
\hline 100 & (3Galb1-3)-3GalNAca-Sp8 \\
\hline 101 & (3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 102 & (3Galb1-3)-3GlcNAcb-Sp8 \\
\hline 103 & (3Galb1-4)-(3,4GlcNAcb1-3)-3Galb \\
\hline 104 & (3Galb1-4)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 105 & (3Galb1-4)-(4GlcNAcb1-3)-3Galb1 \\
\hline 106 & (3Galb1-4)-3,4(6OSO3)GlcNAcb-Sp8 \\
\hline 107 & (3Galb1-4)-3,4GalNAcb-Sp0 \\
\hline 108 & (3Galb1-4)-3,4GalNAcb-Sp8 \\
\hline 109 & (3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 110 & (3Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 111 & (3Galb1-4)-4(6OSO3)GlcNAcb-Sp8 \\
\hline 112 & (3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 113 & (3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 114 & (3Galb1-4)-4Glcb-Sp0 \\
\hline 115 & (3Galb1-4)-4Glcb-Sp10 \\
\hline 116 & (3Galb1-4)-4Glcb-Sp8 \\
\hline 117 & (3GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb \\
\hline 118 & (4GalNAca1-3)-(2,3Galb1-4)-4GlcNAcb \\
\hline 119 & (4GalNAcb1-3)-(2,3Galb1-4)-4GlcNAcb \\
\hline 120 & (4Galb1-4)-(3,4GlcNAcb1-4)-4Galb1 \\
\hline 121 & (4Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 122 & (4Galb1-4)-4GalNAcb-Sp0 \\
\hline 123 & (4Galb1-4)-4GalNAcb-Sp8 \\
\hline 124 & (4Galb1-4)-4Galb-Sp0 \\
\hline 125 & (4Galb1-4)-4GlcNAcb-Sp0 \\
\hline 126 & (4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 127 & (4Galb1-4)-4Glca-Sp9 \\
\hline 128 & (4Galb1-4)-4Glcb-Sp0 \\
\hline 129 & (4Galb1-4)-4Glcb-Sp10 \\
\hline 130 & (4Galb1-4)-4Glcb-Sp8 \\
\hline 131 & (4GlcNAcb1-2)-(2Mana1-3)-3,6Manb1 \\
\hline 132 & (4GlcNAcb1-2)-(2Mana1-6)-3,6Manb1 \\
\hline 133 & (4GlcNAcb1-3)(4GlcNAcb1-6)-3,6GalNAca \\
\hline 134 & (4GlcNAcb1-3)-(3Galb1-4)-3,4GlcNAcb \\
\hline 135 & (4GlcNAcb1-3)-(3Galb1-4)-3,4GlcNAcb1 \\
\hline 136 & (4GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb \\
\hline 137 & (4GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb1 \\
\hline 138 & (4GlcNAcb1-3)-(3Galb1-4)-4Glcb \\
\hline 139 & (4GlcNAcb1-3)-3,6GalNAca-Sp8 \\
\hline 140 & (4GlcNAcb1-3)-3GalNAca-Sp8 \\
\hline 141 & (4GlcNAcb1-4)-4GlcNAcb-Asn \\
\hline 142 & (4GlcNAcb1-4)-4GlcNAcb-Gly \\
\hline 143 & (4GlcNAcb1-4)-4GlcNAcb-Sp8 \\
\hline 144 & (4GlcNAcb1-6)-3,6GalNAca-Sp8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 145 & (4GlcNAcb1-6)-3,6GlcNAca-Sp8 \\
\hline 146 & (4GlcNAcb1-6)-6GalNAca-Sp8 \\
\hline 147 & (6GalNAcb1-4)-4GlcNAcb-Sp0 \\
\hline 148 & (6Galb1-4)-(4GlcNAcb1-2)-2Mana1 \\
\hline 149 & (6Galb1-4)-(4GlcNAcb1-3)-3Galb1 \\
\hline 150 & (6Galb1-4)-4(6OSO3)GlcNAcb-Sp8 \\
\hline 151 & (6Galb1-4)-4GlcNAcb-Sp0 \\
\hline 152 & (6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 153 & (6Galb1-4)-4Glcb-Sp0 \\
\hline 154 & (6Galb1-4)-4Glcb-Sp8 \\
\hline 155 & (6Glca1-6)-6Glcb-Sp8 \\
\hline 156 & (8Neu5Aca2-3)(GalNAcb1-4)-3,4Galb1 \\
\hline 157 & (8Neu5Aca2-3)-(3,4Galb1-4)-4Glcb \\
\hline 158 & (8Neu5Aca2-3)-(3Galb1-4)-4Glcb \\
\hline 159 & (8Neu5Aca2-8)-(8Neu5Aca2-3)-3,4Galb1 \\
\hline 160 & (8Neu5Aca2-8)-(8Neu5Aca2-3)-3Galb1 \\
\hline 161 & (8Neu5Aca2-8)-8Neu5Aca-Sp8 \\
\hline 162 & (9NAcNeu5Aca2-6)-(6Galb1-4)-4GlcNAcb \\
\hline 163 & (Fuca1-2)(4GalNAca1-3)-2,3Galb1 \\
\hline 164 & (Fuca1-2)(4GalNAcb1-3)-2,3Galb1 \\
\hline 165 & (Fuca1-2)(GalNAca1-3)-2,3Galb \\
\hline 166 & (Fuca1-2)(GalNAca1-3)-2,3Galb1 \\
\hline 167 & (Fuca1-2)(GalNAca1-4)-2,4Galb1 \\
\hline 168 & (Fuca1-2)(GalNAcb1-3)-2,3Galb \\
\hline 169 & (Fuca1-2)(Gala1-3)-2,3Galb \\
\hline 170 & (Fuca1-2)(Gala1-3)-2,3Galb1 \\
\hline 171 & (Fuca1-2)(Gala1-4)-2,4Galb1 \\
\hline 172 & (Fuca1-2)-(2,3Galb1-3)-3GlcNAcb \\
\hline 173 & (Fuca1-2)-(2,3Galb1-4)-3,4GlcNAcb \\
\hline 174 & (Fuca1-2)-(2,3Galb1-4)-4GlcNAcb \\
\hline 175 & (Fuca1-2)-(2,3Galb1-4)-4Glcb \\
\hline 176 & (Fuca1-2)-(2,4Galb1-4)-4GalNAcb \\
\hline 177 & (Fuca1-2)-(2,4Galb1-4)-4GlcNAcb \\
\hline 178 & (Fuca1-2)-(2Galb1-3)-3,4GlcNAcb \\
\hline 179 & (Fuca1-2)-(2Galb1-3)-3GalNAca \\
\hline 180 & (Fuca1-2)-(2Galb1-3)-3GalNAcb \\
\hline 181 & (Fuca1-2)-(2Galb1-3)-3GalNAcb1 \\
\hline 182 & (Fuca1-2)-(2Galb1-4)-3,4GalNAcb1 \\
\hline 183 & (Fuca1-2)-(2Galb1-4)-3,4GlcNAcb \\
\hline 184 & (Fuca1-2)-(2Galb1-4)-4GlcNAcb \\
\hline 185 & (Fuca1-2)-(2Galb1-4)-4GlcNAcb1 \\
\hline 186 & (Fuca1-2)-(2Galb1-4)-4Glcb \\
\hline 187 & (Fuca1-2)-2,3Galb-Sp8 \\
\hline 188 & (Fuca1-2)-2Galb-Sp8 \\
\hline 189 & (Fuca1-2)-2GlcNAcb-Sp8 \\
\hline 190 & (Fuca1-3)((3OSO3)Galb1-4)-3,4GlcNAcb \\
\hline 191 & (Fuca1-3)(2,3Galb1-4)-3,4GlcNAcb \\
\hline 192 & (Fuca1-3)(2Galb1-4)-3,4GalNAcb1 \\
\hline 193 & (Fuca1-3)(2Galb1-4)-3,4GlcNAcb \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 194 & (Fuca1-3)(3(6-O-Su)Galb1-4)-3,4GlcNAcb \\
\hline 195 & (Fuca1-3)(3Galb1-4)-3,4(6OSO3)GlcNAcb \\
\hline 196 & (Fuca1-3)(3Galb1-4)-3,4GalNAcb \\
\hline 197 & (Fuca1-3)(3Galb1-4)-3,4GlcNAcb \\
\hline 198 & (Fuca1-3)(3Galb1-4)-3,4GlcNAcb1 \\
\hline 199 & (Fuca1-3)(4Galb1-4)-3,4GlcNAcb \\
\hline 200 & (Fuca1-3)(4Galb1-4)-3,4GlcNAcb1 \\
\hline 201 & (Fuca1-3)(GalNAcb1-4)-3,4GlcNAcb \\
\hline 202 & (Fuca1-3)(Galb1-4)-3,4GlcNAcb \\
\hline 203 & (Fuca1-3)(Galb1-4)-3,4GlcNAcb1 \\
\hline 204 & (Fuca1-3)-(3,4GalNAcb1-3)-3Galb1 \\
\hline 205 & (Fuca1-3)-(3,4GlcNAcb1-3)-3Galb \\
\hline 206 & (Fuca1-3)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 207 & (Fuca1-3)-(3,4GlcNAcb1-4)-4Galb1 \\
\hline 208 & (Fuca1-3)-3,4(6OSO3)GlcNAcb-Sp8 \\
\hline 209 & (Fuca1-3)-3,4GalNAcb-Sp0 \\
\hline 210 & (Fuca1-3)-3,4GalNAcb-Sp8 \\
\hline 211 & (Fuca1-3)-3,4GlcNAcb-Sp0 \\
\hline 212 & (Fuca1-3)-3,4GlcNAcb-Sp8 \\
\hline 213 & (Fuca1-3)-3GlcNAcb-Sp8 \\
\hline 214 & (Fuca1-4)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 215 & (Fuca1-4)-3,4GlcNAc-Sp0 \\
\hline 216 & (Fuca1-4)-3,4GlcNAc-Sp8 \\
\hline 217 & (Fuca1-4)-3,4GlcNAcb-Sp0 \\
\hline 218 & (Fuca1-4)-3,4GlcNAcb-Sp8 \\
\hline 219 & (Fuca1-4)-4GlcNAcb-Sp8 \\
\hline 220 & (Fucb1-3)-3GlcNAcb-Sp8 \\
\hline 221 & (GalNAca1-3)-(2,3Galb1-3)-3GlcNAcb \\
\hline 222 & (GalNAca1-3)-(2,3Galb1-4)-3,4GlcNAcb \\
\hline 223 & (GalNAca1-3)-(2,3Galb1-4)-4GlcNAcb \\
\hline 224 & (GalNAca1-3)-(2,3Galb1-4)-4Glcb \\
\hline 225 & (GalNAca1-3)-2,3Galb-Sp8 \\
\hline 226 & (GalNAca1-3)-3GalNAca-Sp8 \\
\hline 227 & (GalNAca1-3)-3GalNAcb-Sp8 \\
\hline 228 & (GalNAca1-3)-3Galb-Sp8 \\
\hline 229 & (GalNAca1-4)-(2,4Galb1-4)-4GlcNAcb \\
\hline 230 & (GalNAcb1-3)-(3Gala1-4)-4Galb1 \\
\hline 231 & (GalNAcb1-3)-2,3Galb-Sp8 \\
\hline 232 & (GalNAcb1-4)-(3,4Galb1-4)-4GlcNAcb \\
\hline 233 & (GalNAcb1-4)-(3,4Galb1-4)-4Glcb \\
\hline 234 & (GalNAcb1-4)-3,4GlcNAcb-Sp0 \\
\hline 235 & (GalNAcb1-4)-4GlcNAcb-Sp0 \\
\hline 236 & (GalNAcb1-4)-4GlcNAcb-Sp8 \\
\hline 237 & (Gala1-2)-2Galb-Sp8 \\
\hline 238 & (Gala1-3)(Gala1-4)-3,4Galb1 \\
\hline 239 & (Gala1-3)-(2,3Galb1-3)-3GlcNAcb \\
\hline 240 & (Gala1-3)-(2,3Galb1-4)-3,4GlcNAcb \\
\hline 241 & (Gala1-3)-(2,3Galb1-4)-4GlcNAcb \\
\hline 242 & (Gala1-3)-(2,3Galb1-4)-4Glcb \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 243 & (Gala1-3)-(3,4Galb1-4)-4GlcNAcb \\
\hline 244 & (Gala1-3)-(3Galb1-3)-3GlcNAcb \\
\hline 245 & (Gala1-3)-(3Galb1-4)-3,4GalNAcb \\
\hline 246 & (Gala1-3)-(3Galb1-4)-4GlcNAcb \\
\hline 247 & (Gala1-3)-(3Galb1-4)-4Glcb \\
\hline 248 & (Gala1-3)-2,3Galb-Sp8 \\
\hline 249 & (Gala1-3)-3Galb-Sp8 \\
\hline 250 & (Gala1-3)-3GlcNAca-Sp8 \\
\hline 251 & (Gala1-3)-3GlcNAcb-Sp8 \\
\hline 252 & (Gala1-4)-(2,4Galb1-4)-4GalNAcb \\
\hline 253 & (Gala1-4)-(3,4Galb1-4)-4GlcNAcb \\
\hline 254 & (Gala1-4)-(4Galb1-4)-4GalNAcb \\
\hline 255 & (Gala1-4)-(4Galb1-4)-4Galb \\
\hline 256 & (Gala1-4)-4GlcNAcb-Sp8 \\
\hline 257 & (Gala1-6)-6Glcb-Sp8 \\
\hline 258 & (Galb1-2)-2Galb-Sp8 \\
\hline 259 & (Galb1-3)(4GlcNAcb1-6)-3,6GalNAca \\
\hline 260 & (Galb1-3)(4GlcNAcb1-6)-3,6GlcNAca \\
\hline 261 & (Galb1-3)(Fuca1-4)-3,4GlcNAc \\
\hline 262 & (Galb1-3)(Fuca1-4)-3,4GlcNAcb \\
\hline 263 & (Galb1-3)(Fuca1-4)-3,4GlcNAcb1 \\
\hline 264 & (Galb1-3)(GlcNAcb1-6)-3,6GalNAca \\
\hline 265 & (Galb1-3)(GlcNAcb1-6)-3,6GlcNAca \\
\hline 266 & (Galb1-3)(Neu5Aca2-6)-3,6GalNAca \\
\hline 267 & (Galb1-3)(Neu5Aca2-6)-3,6GlcNAca \\
\hline 268 & (Galb1-3)(Neu5Aca2-6)-3,6GlcNAcb1 \\
\hline 269 & (Galb1-3)(Neu5Acb2-6)-3,6GalNAca \\
\hline 270 & (Galb1-3)(Neu5Acb2-6)-3,6GlcNAca \\
\hline 271 & (Galb1-3)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 272 & (Galb1-3)-(3,6GlcNAcb1-4)-4Galb1 \\
\hline 273 & (Galb1-3)-(3GalNAcb1-3)-3Gala1 \\
\hline 274 & (Galb1-3)-(3GalNAcb1-3)-3Galb1 \\
\hline 275 & (Galb1-3)-(3GalNAcb1-4)-3,4Galb1 \\
\hline 276 & (Galb1-3)-(3GalNAcb1-4)-4Galb1 \\
\hline 277 & (Galb1-3)-3,4GlcNAc-Sp0 \\
\hline 278 & (Galb1-3)-3,4GlcNAc-Sp8 \\
\hline 279 & (Galb1-3)-3,4GlcNAcb-Sp8 \\
\hline 280 & (Galb1-3)-3,6GalNAca-Sp8 \\
\hline 281 & (Galb1-3)-3,6GlcNAca-Sp8 \\
\hline 282 & (Galb1-3)-3GalNAca-Sp8 \\
\hline 283 & (Galb1-3)-3GalNAcb-Sp8 \\
\hline 284 & (Galb1-3)-3Galb-Sp8 \\
\hline 285 & (Galb1-3)-3GlcNAcb-Sp0 \\
\hline 286 & (Galb1-3)-3GlcNAcb-Sp8 \\
\hline 287 & (Galb1-4)-(3,4GlcNAcb1-4)-4Galb1 \\
\hline 288 & (Galb1-4)-(4GalNAca1-3)-2,3Galb1 \\
\hline 289 & (Galb1-4)-(4GalNAcb1-3)-2,3Galb1 \\
\hline 290 & (Galb1-4)-(4GlcNAcb1-2)-2Mana1 \\
\hline 291 & (Galb1-4)-(4GlcNAcb1-3)-3,6GalNAca \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 292 & (Galb1-4)-(4GlcNAcb1-3)-3GalNAca \\
\hline 293 & (Galb1-4)-(4GlcNAcb1-3)-3Galb1 \\
\hline 294 & (Galb1-4)-(4GlcNAcb1-6)-3,6GalNAca \\
\hline 295 & (Galb1-4)-(4GlcNAcb1-6)-3,6GlcNAca \\
\hline 296 & (Galb1-4)-(4GlcNAcb1-6)-6GalNAca \\
\hline 297 & (Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 298 & (Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 299 & (Galb1-4)-4(6OSO3)Glcb-Sp0 \\
\hline 300 & (Galb1-4)-4(6OSO3)Glcb-Sp8 \\
\hline 301 & (Galb1-4)-4GlcNAcb-Sp0 \\
\hline 302 & (Galb1-4)-4GlcNAcb-Sp8 \\
\hline 303 & (Galb1-4)-4Glcb-Sp0 \\
\hline 304 & (Galb1-4)-4Glcb-Sp8 \\
\hline 305 & (GlcAb1-3)-3Galb-Sp8 \\
\hline 306 & (GlcAb1-6)-6Galb-Sp8 \\
\hline 307 & (GlcNAca1-3)-(3Galb1-4)-4GlcNAcb \\
\hline 308 & (GlcNAca1-6)-(6Galb1-4)-4GlcNAcb \\
\hline 309 & (GlcNAcb1-2)-(2Galb1-3)-3GlcNAca \\
\hline 310 & (GlcNAcb1-2)-(2Mana1-3)-3,6Manb1 \\
\hline 311 & (GlcNAcb1-2)-(2Mana1-6)-3,6Manb1 \\
\hline 312 & (GlcNAcb1-3)(GlcNAcb1-4)-3,4,6GlcNAc \\
\hline 313 & (GlcNAcb1-3)(GlcNAcb1-6)-3,4,6GlcNAc \\
\hline 314 & (GlcNAcb1-3)(GlcNAcb1-6)-3,6Galb1 \\
\hline 315 & (GlcNAcb1-3)(GlcNAcb1-6)-3,6GlcNAca \\
\hline 316 & (GlcNAcb1-3)-(3,6Galb1-4)-4GlcNAcb \\
\hline 317 & (GlcNAcb1-3)-(3Galb1-3)-3GalNAca \\
\hline 318 & (GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb \\
\hline 319 & (GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb1 \\
\hline 320 & (GlcNAcb1-3)-(3Galb1-4)-4Glcb \\
\hline 321 & (GlcNAcb1-3)-3,4,6GlcNAc-Sp8 \\
\hline 322 & (GlcNAcb1-3)-3,6GlcNAca-Sp8 \\
\hline 323 & (GlcNAcb1-3)-3GalNAca-Sp8 \\
\hline 324 & (GlcNAcb1-3)-3Galb-Sp8 \\
\hline 325 & (GlcNAcb1-4)(GlcNAcb1-6)-3,4,6GlcNAc \\
\hline 326 & (GlcNAcb1-4)(GlcNAcb1-6)-4,6GalNAca \\
\hline 327 & (GlcNAcb1-4)-(4Galb1-4)-4GlcNAcb \\
\hline 328 & (GlcNAcb1-4)-(4GlcNAcb1-4)-4GlcNAcb \\
\hline 329 & (GlcNAcb1-4)-3,4,6GlcNAc-Sp8 \\
\hline 330 & (GlcNAcb1-4)-4,6GalNAca-Sp8 \\
\hline 331 & (GlcNAcb1-4)-4GlcNAcb1-Sp8 \\
\hline 332 & (GlcNAcb1-6)-(3,6Galb1-4)-4GlcNAcb \\
\hline 333 & (GlcNAcb1-6)-(6Galb1-4)-4GlcNAcb \\
\hline 334 & (GlcNAcb1-6)-3,4,6GlcNAc-Sp8 \\
\hline 335 & (GlcNAcb1-6)-3,6GalNAca-Sp8 \\
\hline 336 & (GlcNAcb1-6)-3,6GlcNAca-Sp8 \\
\hline 337 & (GlcNAcb1-6)-4,6GalNAca-Sp8 \\
\hline 338 & (GlcNAcb1-6)-6GalNAca-Sp8 \\
\hline 339 & (Glca1-4)-4Glca-Sp8 \\
\hline 340 & (Glca1-4)-4Glcb-Sp8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 341 & (Glca1-6)-(6Glca1-6)-6Glcb \\
\hline 342 & (Glcb1-4)-4Glcb-Sp8 \\
\hline 343 & (Glcb1-6)-6Glcb-Sp8 \\
\hline 344 & (KDNa2-3)-(3Galb1-3)-3GlcNAcb \\
\hline 345 & (KDNa2-3)-(3Galb1-4)-4GlcNAcb \\
\hline 346 & (Mana1-2)-(2Mana1-2)-2Mana1 \\
\hline 347 & (Mana1-2)-(2Mana1-3)-3,6Mana \\
\hline 348 & (Mana1-2)-(2Mana1-3)-3,6Mana1 \\
\hline 349 & (Mana1-2)-(2Mana1-3)-3,6Manb1 \\
\hline 350 & (Mana1-2)-(2Mana1-3)-3Mana \\
\hline 351 & (Mana1-2)-(2Mana1-6)-3,6Mana \\
\hline 352 & (Mana1-2)-(2Mana1-6)-3,6Mana1 \\
\hline 353 & (Mana1-3)(2Mana1-6)-3,6Mana \\
\hline 354 & (Mana1-3)(2Mana1-6)-3,6Mana1 \\
\hline 355 & (Mana1-3)(3,6Mana1-6)-3,6Manb1 \\
\hline 356 & (Mana1-3)(Mana1-6)-3,6Mana \\
\hline 357 & (Mana1-3)(Mana1-6)-3,6Mana1 \\
\hline 358 & (Mana1-3)(Mana1-6)-3,6Manb1 \\
\hline 359 & (Mana1-3)-(3,6Mana1-6)-3,6Manb1 \\
\hline 360 & (Mana1-3)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 361 & (Mana1-3)-3,6Mana-Sp9 \\
\hline 362 & (Mana1-6)-(3,6Mana1-6)-3,6Manb1 \\
\hline 363 & (Mana1-6)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 364 & (Mana1-6)-3,6Mana-Sp9 \\
\hline 365 & (Manb1-4)-4GlcNAcb-Sp0 \\
\hline 366 & (Neu5Aca2-3)(3GalNAcb1-4)-3,4Galb1 \\
\hline 367 & (Neu5Aca2-3)(GalNAcb1-4)-3,4Galb1 \\
\hline 368 & (Neu5Aca2-3)(Neu5Aca2-6)-3,6GalNAca \\
\hline 369 & (Neu5Aca2-3)-(3(6-O-Su)Galb1-4)-3,4GlcNAcb \\
\hline 370 & (Neu5Aca2-3)-(3(6OSO3)Galb1-4)-4GlcNAcb \\
\hline 371 & (Neu5Aca2-3)-(3,4Galb1-4)-4GlcNAcb \\
\hline 372 & (Neu5Aca2-3)-(3,4Galb1-4)-4Glcb \\
\hline 373 & (Neu5Aca2-3)-(3GalNAcb1-4)-4GlcNAcb \\
\hline 374 & (Neu5Aca2-3)-(3Galb1-3)-3(6OSO3)GalNAca \\
\hline 375 & (Neu5Aca2-3)-(3Galb1-3)-3(6OSO3)GlcNAcb \\
\hline 376 & (Neu5Aca2-3)-(3Galb1-3)-3,4GlcNAcb \\
\hline 377 & (Neu5Aca2-3)-(3Galb1-3)-3,4GlcNAcb1 \\
\hline 378 & (Neu5Aca2-3)-(3Galb1-3)-3,6GalNAcb \\
\hline 379 & (Neu5Aca2-3)-(3Galb1-3)-3GalNAca \\
\hline 380 & (Neu5Aca2-3)-(3Galb1-3)-3GalNAcb1 \\
\hline 381 & (Neu5Aca2-3)-(3Galb1-3)-3GlcNAcb \\
\hline 382 & (Neu5Aca2-3)-(3Galb1-3)-3GlcNAcb1 \\
\hline 383 & (Neu5Aca2-3)-(3Galb1-4)-3,4(6OSO3)GlcNAcb \\
\hline 384 & (Neu5Aca2-3)-(3Galb1-4)-3,4GlcNAcb \\
\hline 385 & (Neu5Aca2-3)-(3Galb1-4)-3,4GlcNAcb1 \\
\hline 386 & (Neu5Aca2-3)-(3Galb1-4)-4(6OSO3)GlcNAcb \\
\hline 387 & (Neu5Aca2-3)-(3Galb1-4)-4GlcNAcb \\
\hline 388 & (Neu5Aca2-3)-(3Galb1-4)-4GlcNAcb1 \\
\hline 389 & (Neu5Aca2-3)-(3Galb1-4)-4Glcb \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 390 & (Neu5Aca2-3)-3,6GalNAca-Sp8 \\
\hline 391 & (Neu5Aca2-3)-3GalNAca-Sp8 \\
\hline 392 & (Neu5Aca2-3)-3Galb-Sp8 \\
\hline 393 & (Neu5Aca2-6)-(3,6GlcNAcb1-4)-4Galb1 \\
\hline 394 & (Neu5Aca2-6)-(6GalNAcb1-4)-4GlcNAcb \\
\hline 395 & (Neu5Aca2-6)-(6Galb1-4)-4(6GSO3)GlcNAcb \\
\hline 396 & (Neu5Aca2-6)-(6Galb1-4)-4GlcNAcb \\
\hline 397 & (Neu5Aca2-6)-(6Galb1-4)-4GlcNAcb1 \\
\hline 398 & (Neu5Aca2-6)-(6Galb1-4)-4Glcb \\
\hline 399 & (Neu5Aca2-6)-3,6GalNAca-Sp8 \\
\hline 400 & (Neu5Aca2-6)-3,6GalNAcb-Sp8 \\
\hline 401 & (Neu5Aca2-6)-3,6GlcNAca-Sp8 \\
\hline 402 & (Neu5Aca2-6)-6GalNAca-Sp8 \\
\hline 403 & (Neu5Aca2-6)-6Galb-Sp8 \\
\hline 404 & (Neu5Aca2-8)-(8Neu5Aca2-3)-3,4Galb1 \\
\hline 405 & (Neu5Aca2-8)-(8Neu5Aca2-3)-3Galb1 \\
\hline 406 & (Neu5Aca2-8)-8Neu5Aca-Sp8 \\
\hline 407 & (Neu5Acb2-6)-(6Galb1-4)-4GlcNAcb \\
\hline 408 & (Neu5Acb2-6)-3,6GalNAca-Sp8 \\
\hline 409 & (Neu5Acb2-6)-3,6GlcNAca-Sp8 \\
\hline 410 & (Neu5Acb2-6)-6GalNAca-Sp8 \\
\hline 411 & (Neu5Gca2-3)-(3Galb1-3)-3,4GlcNAcb \\
\hline 412 & (Neu5Gca2-3)-(3Galb1-3)-3GlcNAcb \\
\hline 413 & (Neu5Gca2-3)-(3Galb1-4)-3,4GlcNAcb \\
\hline 414 & (Neu5Gca2-3)-(3Galb1-4)-4GlcNAcb \\
\hline 415 & (Neu5Gca2-3)-(3Galb1-4)-4Glcb \\
\hline 416 & (Neu5Gca2-6)-(6Galb1-4)-4GlcNAcb \\
\hline 417 & (Neu5Gca2-6)-6GalNAca-Sp0 \\
\hline
\end{tabular}

Table A-IV. CFG array v2.0 tetra-saccharide Features Summary
\begin{tabular}{|c|c|}
\hline Number of Features & tetra-saccharide \\
\hline 0 & ((2Galb1-3)-3GalNAcb1-4)(Neu5Aca2-3)-3,4Galb1 \\
\hline 1 & ((2Mana1-2)-2Mana1-3)(3,6Mana1-6)-3,6Manb1 \\
\hline 2 & ((2Mana1-2)-2Mana1-6)(Mana1-3)-3,6Mana \\
\hline 3 & ((2Mana1-3)-3,6Mana1-6)(2Mana1-3)-3,6Manb1 \\
\hline 4 & ((2Mana1-6)-3,6Mana1-6)(2Mana1-3)-3,6Manb1 \\
\hline 5 & ((3,4GalNAcb1-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 6 & ((3,4GalNAcb1-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb1 \\
\hline 7 & ((3,4GlcNAcb1-3)-3Galb1-4)(Fuca1-3)-3,4GalNAcb \\
\hline 8 & ((3,4GlcNAcb1-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 9 & ((3,4GlcNAcb1-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb1 \\
\hline 10 & ((3,4GlcNAcb1-4)-4Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 11 & ((3,4GlcNAcb1-4)-4Galb1-4)(Fuca1-3)-3,4GlcNAcb1 \\
\hline 12 & ((3Galb1-3)-3GalNAcb1-4)(Neu5Aca2-3)-3,4Galb1 \\
\hline 13 & ((3OSO3)Galb1-3)(Fuca1-4)-3,4GlcNAcb-Sp8 \\
\hline 14 & ((4GlcNAcb1-2)-2Mana1-3)(2Mana1-6)-3,6Manb1 \\
\hline 15 & ((4GlcNAcb1-2)-2Mana1-6)(2Mana1-3)-3,6Manb1 \\
\hline 16 & ((4GlcNAcb1-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 17 & ((4GlcNAcb1-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb1 \\
\hline 18 & ((8Neu5Aca2-8)-8Neu5Aca2-3)(GalNAcb1-4)-3,4Galb1 \\
\hline 19 & ((Fuca1-2)-2,3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 20 & ((Fuca1-2)-2Galb1-3)(Fuca1-4)-3,4GlcNAcb \\
\hline 21 & ((Fuca1-2)-2Galb1-4)(Fuca1-3)-3,4GalNAcb1 \\
\hline 22 & ((Fuca1-2)-2Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 23 & ((GalNAca1-3)-2,3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 24 & ((Gala1-3)-2,3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 25 & ((Gala1-3)-3Galb1-4)(Fuca1-3)-3,4GalNAcb \\
\hline 26 & ((Galb1-3)-3GalNAcb1-4)(Neu5Aca2-3)-3,4Galb1 \\
\hline 27 & ((Galb1-4)-4GalNAca1-3)(Fuca1-2)-2,3Galb1 \\
\hline 28 & ((Galb1-4)-4GalNAcb1-3)(Fuca1-2)-2,3Galb1 \\
\hline 29 & ((Galb1-4)-4GlcNAcb1-3)(4GlcNAcb1-6)-3,6GalNAca \\
\hline 30 & ((Galb1-4)-4GlcNAcb1-6)(4GlcNAcb1-3)-3,6GalNAca \\
\hline 31 & ((Galb1-4)-4GlcNAcb1-6)(Galb1-3)-3,6GalNAca \\
\hline 32 & ((Galb1-4)-4GlcNAcb1-6)(Galb1-3)-3,6GlcNAca \\
\hline 33 & ((GlcNAcb1-2)-2Mana1-3)(2Mana1-6)-3,6Manb1 \\
\hline 34 & ((GlcNAcb1-2)-2Mana1-6)(2Mana1-3)-3,6Manb1 \\
\hline 35 & ((Mana1-2)-2Mana1-3)(2Mana1-6)-3,6Mana \\
\hline 36 & ((Mana1-2)-2Mana1-3)(2Mana1-6)-3,6Mana1 \\
\hline 37 & ((Mana1-2)-2Mana1-3)(3,6Mana1-6)-3,6Manb1 \\
\hline 38 & ((Mana1-2)-2Mana1-3)(Mana1-6)-3,6Mana1 \\
\hline 39 & ((Mana1-2)-2Mana1-6)(2Mana1-3)-3,6Mana \\
\hline 40 & ((Mana1-2)-2Mana1-6)(2Mana1-3)-3,6Mana1 \\
\hline 41 & ((Mana1-2)-2Mana1-6)(Mana1-3)-3,6Mana1 \\
\hline 42 & ((Mana1-3)-3,6Mana1-6)(2Mana1-3)-3,6Manb1 \\
\hline 43 & ((Mana1-3)-3,6Mana1-6)(Mana1-3)-3,6Manb1 \\
\hline 44 & ((Mana1-6)-3,6Mana1-6)(2Mana1-3)-3,6Manb1 \\
\hline 45 & ((Mana1-6)-3,6Mana1-6)(Mana1-3)-3,6Manb1 \\
\hline 46 & ((Neu5Aca2-3)-3(6-O-Su)Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 47 & ((Neu5Aca2-3)-3Galb1-3)(3Galb1-4)-3,4GlcNAcb \\
\hline 48 & ((Neu5Aca2-3)-3Galb1-3)(Fuca1-4)-3,4GlcNAcb \\
\hline 49 & ((Neu5Aca2-3)-3Galb1-3)(Fuca1-4)-3,4GlcNAcb1 \\
\hline 50 & ((Neu5Aca2-3)-3Galb1-3)(Neu5Aca2-6)-3,6GalNAcb \\
\hline 51 & ((Neu5Aca2-3)-3Galb1-4)(3Galb1-3)-3,4GlcNAcb \\
\hline 52 & ((Neu5Aca2-3)-3Galb1-4)(Fuca1-3)-3,4(6OSO3)GlcNAcb \\
\hline 53 & ((Neu5Aca2-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 54 & ((Neu5Aca2-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb1 \\
\hline 55 & ((Neu5Aca2-8)-8Neu5Aca2-3)(GalNAcb1-4)-3,4Galb1 \\
\hline 56 & ((Neu5Gca2-3)-3Galb1-3)(Fuca1-4)-3,4GlcNAcb \\
\hline 57 & ((Neu5Gca2-3)-3Galb1-4)(Fuca1-3)-3,4GlcNAcb \\
\hline 58 & (2Galb1-3)(Fuca1-4)-3,4GlcNAcb-Sp8 \\
\hline 59 & (2Galb1-3)-(3GalNAcb1-3)-(3Gala1-4)4Galb1 \\
\hline 60 & (2Galb1-3)-(3GalNAcb1-3)-(3Galb1-4)4Glcb \\
\hline 61 & (2Galb1-3)-(3GalNAcb1-3)-3Gala-Sp9 \\
\hline 62 & (2Galb1-4)(Fuca1-3)-(3,4GalNAcb1-3)-3Galb1 \\
\hline 63 & (2Galb1-4)-(3,4GalNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 64 & (2Galb1-4)-(3,4GalNAcb1-3)-(3Galb1-4)3,4GlcNAcb1 \\
\hline 65 & (2Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 66 & (2Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb1 \\
\hline 67 & (2Mana1-2)-(2Mana1-3)-3Mana-Sp9 \\
\hline 68 & (2Mana1-2)-(2Mana1-6)-3,6Mana-Sp9 \\
\hline 69 & (2Mana1-3)(2Mana1-6)-3,6Mana-Sp9 \\
\hline 70 & (2Mana1-6)(2Mana1-3)-(3,6Mana1-6)-3,6Manb1 \\
\hline 71 & (2Mana1-6)(2Mana1-3)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 72 & (2Mana1-6)(Mana1-3)-(3,6Mana1-6)-3,6Manb1 \\
\hline 73 & (2Mana1-6)-(3,6Mana1-6)-(3,6Manb1-4)4GlcNAcb1 \\
\hline 74 & (2Mana1-6)-(3,6Manb1-4)-(4GlcNAcb1-4)4GlcNAcb \\
\hline 75 & (3,4GalNAcb1-3)-(3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 76 & (3,4GlcNAcb1-3)-(3Galb1-4)-3,4GalNAcb-Sp0 \\
\hline 77 & (3,4GlcNAcb1-3)-(3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 78 & (3,4GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 79 & (3,4GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 80 & (3,4GlcNAcb1-4)-(4Galb1-4)-(3,4GlcNAcb1-4)4Galb1 \\
\hline 81 & (3,4GlcNAcb1-4)-(4Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 82 & (3,6GlcNAcb1-4)-(4Galb1-4)-4Glcb-Sp10 \\
\hline 83 & (3,6Mana1-6)(2Mana1-3)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 84 & (3,6Mana1-6)(Mana1-3)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 85 & (3,6Mana1-6)-(3,6Manb1-4)-(4GlcNAcb1-4)4GlcNAcb \\
\hline 86 & (3,6Manb1-4)-(4GlcNAcb1-4)-4GlcNAcb-Asn \\
\hline 87 & (3,6Manb1-4)-(4GlcNAcb1-4)-4GlcNAcb-Gly \\
\hline 88 & (3,6Manb1-4)-(4GlcNAcb1-4)-4GlcNAcb-Sp8 \\
\hline 89 & (3GalNAcb1-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 90 & (3GalNAcb1-3)-(3Galb1-4)-4Glcb-Sp10 \\
\hline 91 & (3GalNAcb1-3)-(3Galb1-4)-4Glcb-Sp8 \\
\hline 92 & (3GalNAcb1-4)(Neu5Aca2-3)-(3,4Galb1-4)-4Glcb \\
\hline 93 & (3GalNAcb1-4)-(3,4Galb1-4)-4Glcb-Sp0 \\
\hline 94 & (3GalNAcb1-4)-(3,4Galb1-4)-4Glcb-Sp9 \\
\hline 95 & (3GalNAcb1-4)-(4Galb1-4)-4Glcb-Sp8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 96 & (3Gala1-4)-(4Galb1-4)-4GlcNAcb-Sp0 \\
\hline 97 & (3Gala1-4)-(4Galb1-4)-4Glca-Sp9 \\
\hline 98 & (3Gala1-4)-(4Galb1-4)-4Glcb-Sp0 \\
\hline 99 & (3Galb1-3)(3Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 100 & (3Galb1-3)(Fuca1-4)-3,4GlcNAcb-Sp0 \\
\hline 101 & (3Galb1-3)(Fuca1-4)-3,4GlcNAcb-Sp8 \\
\hline 102 & (3Galb1-3)(Neu5Aca2-6)-3,6GalNAcb-Sp8 \\
\hline 103 & (3Galb1-3)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 104 & (3Galb1-3)-(3GalNAcb1-3)-(3Gala1-4)4Galb1 \\
\hline 105 & (3Galb1-3)-(3GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 106 & (3Galb1-4)(Fuca1-3)-(3,4GlcNAcb1-3)-3Galb \\
\hline 107 & (3Galb1-4)(Fuca1-3)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 108 & (3Galb1-4)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GalNAcb \\
\hline 109 & (3Galb1-4)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 110 & (3Galb1-4)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb1 \\
\hline 111 & (3Galb1-4)-(3,4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 112 & (3Galb1-4)-(3,4GlcNAcb1-3)-3Galb-Sp8 \\
\hline 113 & (3Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 114 & (3Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 115 & (3Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb1 \\
\hline 116 & (3GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 117 & (4GalNAca1-3)(Fuca1-2)-(2,3Galb1-4)-4GlcNAcb \\
\hline 118 & (4GalNAca1-3)-(2,3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 119 & (4GalNAcb1-3)(Fuca1-2)-(2,3Galb1-4)-4GlcNAcb \\
\hline 120 & (4GalNAcb1-3)-(2,3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 121 & (4Galb1-4)(Fuca1-3)-(3,4GlcNAcb1-4)-4Galb1 \\
\hline 122 & (4Galb1-4)-(3,4GlcNAcb1-4)-(4Galb1-4)3,4GlcNAcb \\
\hline 123 & (4GlcNAcb1-3)(4GlcNAcb1-6)-3,6GalNAca-Sp8 \\
\hline 124 & (4GlcNAcb1-3)-(3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 125 & (4GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 126 & (4GlcNAcb1-3)-(3Galb1-4)-4Glcb-Sp0 \\
\hline 127 & (4GlcNAcb1-3)-(3Galb1-4)-4Glcb-Sp8 \\
\hline 128 & (6Galb1-4)-(4GlcNAcb1-2)-(2Mana1-3)3,6Manb1 \\
\hline 129 & (6Galb1-4)-(4GlcNAcb1-2)-(2Mana1-6)3,6Manb1 \\
\hline 130 & (6Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb1 \\
\hline 131 & (6Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 132 & (8Neu5Aca2-3)-(3,4Galb1-4)-4Glcb-Sp0 \\
\hline 133 & (8Neu5Aca2-3)-(3Galb1-4)-4Glcb-Sp0 \\
\hline 134 & (8Neu5Aca2-8)-(8Neu5Aca2-3)-(3,4Galb1-4)4Glcb \\
\hline 135 & (8Neu5Aca2-8)-(8Neu5Aca2-3)-(3Galb1-4)4Glcb \\
\hline 136 & (9NAcNeu5Aca2-6)-(6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 137 & (Fuca1-2)(GalNAca1-3)-2,3Galb-Sp8 \\
\hline 138 & (Fuca1-2)(GalNAcb1-3)-2,3Galb-Sp8 \\
\hline 139 & (Fuca1-2)(Gala1-3)-2,3Galb-Sp8 \\
\hline 140 & (Fuca1-2)-(2,3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 141 & (Fuca1-2)-(2,3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 142 & (Fuca1-2)-(2,3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 143 & (Fuca1-2)-(2,3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 144 & (Fuca1-2)-(2,3Galb1-4)-4Glcb-Sp0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 145 & (Fuca1-2)-(2,4Galb1-4)-4GalNAcb-Sp8 \\
\hline 146 & (Fuca1-2)-(2,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 147 & (Fuca1-2)-(2Galb1-3)-3,4GlcNAcb-Sp8 \\
\hline 148 & (Fuca1-2)-(2Galb1-3)-3GalNAca-Sp8 \\
\hline 149 & (Fuca1-2)-(2Galb1-3)-3GalNAcb-Sp0 \\
\hline 150 & (Fuca1-2)-(2Galb1-3)-3GalNAcb-Sp8 \\
\hline 151 & (Fuca1-2)-(2Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 152 & (Fuca1-2)-(2Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 153 & (Fuca1-2)-(2Galb1-4)-4GlcNAcb-Sp0 \\
\hline 154 & (Fuca1-2)-(2Galb1-4)-4GlcNAcb-Sp8 \\
\hline 155 & (Fuca1-2)-(2Galb1-4)-4Glcb-Sp0 \\
\hline 156 & (Fuca1-3)((3OSO3)Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 157 & (Fuca1-3)(2,3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 158 & (Fuca1-3)(2Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 159 & (Fuca1-3)(2Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 160 & (Fuca1-3)(3(6-O-Su)Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 161 & (Fuca1-3)(3Galb1-4)-3,4(6OSO3)GlcNAcb-Sp8 \\
\hline 162 & (Fuca1-3)(3Galb1-4)-3,4GalNAcb-Sp0 \\
\hline 163 & (Fuca1-3)(3Galb1-4)-3,4GalNAcb-Sp8 \\
\hline 164 & (Fuca1-3)(3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 165 & (Fuca1-3)(3Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 166 & (Fuca1-3)(4Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 167 & (Fuca1-3)(GalNAcb1-4)-3,4GlcNAcb-Sp0 \\
\hline 168 & (Fuca1-3)(Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 169 & (Fuca1-3)(Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 170 & (Fuca1-3)-(3,4GalNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 171 & (Fuca1-3)-(3,4GalNAcb1-3)-(3Galb1-4)3,4GlcNAcb1 \\
\hline 172 & (Fuca1-3)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GalNAcb \\
\hline 173 & (Fuca1-3)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 174 & (Fuca1-3)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb1 \\
\hline 175 & (Fuca1-3)-(3,4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 176 & (Fuca1-3)-(3,4GlcNAcb1-3)-3Galb-Sp8 \\
\hline 177 & (Fuca1-4)(3Galb1-3)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 178 & (Fuca1-4)(Galb1-3)-(3,4GlcNAcb1-3)-3Galb1 \\
\hline 179 & (Fuca1-4)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 180 & (Fuca1-4)-(3,4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 181 & (GalNAca1-3)(Fuca1-2)-(2,3Galb1-3)-3GlcNAcb \\
\hline 182 & (GalNAca1-3)(Fuca1-2)-(2,3Galb1-4)-3,4GlcNAcb \\
\hline 183 & (GalNAca1-3)(Fuca1-2)-(2,3Galb1-4)-4GlcNAcb \\
\hline 184 & (GalNAca1-3)(Fuca1-2)-(2,3Galb1-4)-4Glcb \\
\hline 185 & (GalNAca1-3)-(2,3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 186 & (GalNAca1-3)-(2,3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 187 & (GalNAca1-3)-(2,3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 188 & (GalNAca1-3)-(2,3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 189 & (GalNAca1-3)-(2,3Galb1-4)-4Glcb-Sp0 \\
\hline 190 & (GalNAca1-4)(Fuca1-2)-(2,4Galb1-4)-4GlcNAcb \\
\hline 191 & (GalNAca1-4)-(2,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 192 & (GalNAcb1-4)(8Neu5Aca2-3)-(3,4Galb1-4)-4Glcb \\
\hline 193 & (GalNAcb1-4)(Neu5Aca2-3)-(3,4Galb1-4)-4GlcNAcb \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 194 & (GalNAcb1-4)(Neu5Aca2-3)-(3,4Galb1-4)-4Glcb \\
\hline 195 & (GalNAcb1-4)-(3,4Galb1-4)-4GlcNAcb-Sp0 \\
\hline 196 & (GalNAcb1-4)-(3,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 197 & (GalNAcb1-4)-(3,4Galb1-4)-4Glcb-Sp0 \\
\hline 198 & (Gala1-3)(Fuca1-2)-(2,3Galb1-3)-3GlcNAcb \\
\hline 199 & (Gala1-3)(Fuca1-2)-(2,3Galb1-4)-3,4GlcNAcb \\
\hline 200 & (Gala1-3)(Fuca1-2)-(2,3Galb1-4)-4GlcNAcb \\
\hline 201 & (Gala1-3)(Fuca1-2)-(2,3Galb1-4)-4Glcb \\
\hline 202 & (Gala1-3)-(2,3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 203 & (Gala1-3)-(2,3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 204 & (Gala1-3)-(2,3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 205 & (Gala1-3)-(2,3Galb1-4)-4Glcb-Sp0 \\
\hline 206 & (Gala1-3)-(3,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 207 & (Gala1-3)-(3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 208 & (Gala1-3)-(3Galb1-4)-3,4GalNAcb-Sp8 \\
\hline 209 & (Gala1-3)-(3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 210 & (Gala1-3)-(3Galb1-4)-4Glcb-Sp0 \\
\hline 211 & (Gala1-4)(Fuca1-2)-(2,4Galb1-4)-4GalNAcb \\
\hline 212 & (Gala1-4)(Gala1-3)-(3,4Galb1-4)-4GlcNAcb \\
\hline 213 & (Gala1-4)-(2,4Galb1-4)-4GalNAcb-Sp8 \\
\hline 214 & (Gala1-4)-(3,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 215 & (Gala1-4)-(4Galb1-4)-4GalNAcb-Sp0 \\
\hline 216 & (Gala1-4)-(4Galb1-4)-4GalNAcb-Sp8 \\
\hline 217 & (Gala1-4)-(4Galb1-4)-4Galb-Sp0 \\
\hline 218 & (Galb1-3)(4GlcNAcb1-6)-3,6GalNAca-Sp8 \\
\hline 219 & (Galb1-3)(4GlcNAcb1-6)-3,6GlcNAca-Sp8 \\
\hline 220 & (Galb1-3)(Fuca1-4)-3,4GlcNAc-Sp0 \\
\hline 221 & (Galb1-3)(Fuca1-4)-3,4GlcNAc-Sp8 \\
\hline 222 & (Galb1-3)(Fuca1-4)-3,4GlcNAcb-Sp8 \\
\hline 223 & (Galb1-3)(GlcNAcb1-6)-3,6GalNAca-Sp8 \\
\hline 224 & (Galb1-3)(GlcNAcb1-6)-3,6GlcNAca-Sp8 \\
\hline 225 & (Galb1-3)(Neu5Aca2-6)-3,6GalNAca-Sp8 \\
\hline 226 & (Galb1-3)(Neu5Aca2-6)-3,6GlcNAca-Sp8 \\
\hline 227 & (Galb1-3)(Neu5Acb2-6)-3,6GalNAca-Sp8 \\
\hline 228 & (Galb1-3)(Neu5Acb2-6)-3,6GlcNAca-Sp8 \\
\hline 229 & (Galb1-3)-(3,4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb \\
\hline 230 & (Galb1-3)-(3,4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 231 & (Galb1-3)-(3GalNAcb1-3)-(3Gala1-4)4Galb1 \\
\hline 232 & (Galb1-3)-(3GalNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline 233 & (Galb1-3)-(3GalNAcb1-3)-(3Galb1-4)4Glcb \\
\hline 234 & (Galb1-4)(Fuca1-3)-(3,4GlcNAcb1-4)-4Galb1 \\
\hline 235 & (Galb1-4)-(3,4GlcNAcb1-4)-(4Galb1-4)3,4GlcNAcb \\
\hline 236 & (Galb1-4)-(3,4GlcNAcb1-4)-(4Galb1-4)3,4GlcNAcb1 \\
\hline 237 & (Galb1-4)-(4GalNAca1-3)-(2,3Galb1-4)4GlcNAcb \\
\hline 238 & (Galb1-4)-(4GalNAcb1-3)-(2,3Galb1-4)4GlcNAcb \\
\hline 239 & (Galb1-4)-(4GlcNAcb1-2)-(2Mana1-3)3,6Manb1 \\
\hline 240 & (Galb1-4)-(4GlcNAcb1-2)-(2Mana1-6)3,6Manb1 \\
\hline 241 & (Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)3,4GlcNAcb1 \\
\hline 242 & (Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 243 & (Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4GlcNAcb1 \\
\hline 244 & (Galb1-4)-(4GlcNAcb1-3)-(3Galb1-4)4Glcb \\
\hline 245 & (Galb1-4)-(4GlcNAcb1-3)-3,6GalNAca-Sp8 \\
\hline 246 & (Galb1-4)-(4GlcNAcb1-3)-3GalNAca-Sp8 \\
\hline 247 & (Galb1-4)-(4GlcNAcb1-6)-3,6GalNAca-Sp8 \\
\hline 248 & (Galb1-4)-(4GlcNAcb1-6)-3,6GlcNAca-Sp8 \\
\hline 249 & (Galb1-4)-(4GlcNAcb1-6)-6GalNAca-Sp8 \\
\hline 250 & (GlcNAca1-3)-(3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 251 & (GlcNAca1-6)-(6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 252 & (GlcNAcb1-2)-(2Galb1-3)-3GlcNAca-Sp8 \\
\hline 253 & (GlcNAcb1-3)(GlcNAcb1-4)(GlcNAcb1-6)-3,4,6GlcNAc \\
\hline 254 & (GlcNAcb1-3)(GlcNAcb1-4)-3,4,6GlcNAc-Sp8 \\
\hline 255 & (GlcNAcb1-3)(GlcNAcb1-6)-3,4,6GlcNAc-Sp8 \\
\hline 256 & (GlcNAcb1-3)(GlcNAcb1-6)-3,6GlcNAca-Sp8 \\
\hline 257 & (GlcNAcb1-3)-(3,6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 258 & (GlcNAcb1-3)-(3Galb1-3)-3GalNAca-Sp8 \\
\hline 259 & (GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 260 & (GlcNAcb1-3)-(3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 261 & (GlcNAcb1-3)-(3Galb1-4)-4Glcb-Sp0 \\
\hline 262 & (GlcNAcb1-4)(GlcNAcb1-6)-3,4,6GlcNAc-Sp8 \\
\hline 263 & (GlcNAcb1-4)(GlcNAcb1-6)-4,6GalNAca-Sp8 \\
\hline 264 & (GlcNAcb1-4)-(4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 265 & (GlcNAcb1-4)-(4GlcNAcb1-4)-4GlcNAcb-Sp8 \\
\hline 266 & (GlcNAcb1-6)(GlcNAcb1-3)-(3,6Galb1-4)-4GlcNAcb \\
\hline 267 & (GlcNAcb1-6)-(3,6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 268 & (GlcNAcb1-6)-(6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 269 & (Glca1-6)-(6Glca1-6)-6Glcb-Sp8 \\
\hline 270 & (KDNa2-3)-(3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 271 & (KDNa2-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 272 & (Mana1-2)-(2Mana1-2)-(2Mana1-3)3,6Manb1 \\
\hline 273 & (Mana1-2)-(2Mana1-2)-(2Mana1-3)3Mana \\
\hline 274 & (Mana1-2)-(2Mana1-2)-(2Mana1-6)3,6Mana \\
\hline 275 & (Mana1-2)-(2Mana1-3)-3,6Mana-Sp9 \\
\hline 276 & (Mana1-2)-(2Mana1-3)-3Mana-Sp9 \\
\hline 277 & (Mana1-2)-(2Mana1-6)-3,6Mana-Sp9 \\
\hline 278 & (Mana1-3)(2Mana1-6)-3,6Mana-Sp9 \\
\hline 279 & (Mana1-3)(Mana1-6)-3,6Mana-Sp9 \\
\hline 280 & (Mana1-6)(2Mana1-3)-(3,6Mana1-6)-3,6Manb1 \\
\hline 281 & (Mana1-6)(Mana1-3)-(3,6Mana1-6)-3,6Manb1 \\
\hline 282 & (Mana1-6)(Mana1-3)-(3,6Manb1-4)-4GlcNAcb1 \\
\hline 283 & (Mana1-6)-(3,6Mana1-6)-(3,6Manb1-4)4GlcNAcb1 \\
\hline 284 & (Mana1-6)-(3,6Manb1-4)-(4GlcNAcb1-4)4GlcNAcb \\
\hline 285 & (Neu5Aca2-3)(Neu5Aca2-6)-3,6GalNAca-Sp8 \\
\hline 286 & (Neu5Aca2-3)-(3(6-O-Su)Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 287 & (Neu5Aca2-3)-(3(6OSO3)Galb1-4)-4GlcNAcb-Sp8 \\
\hline 288 & (Neu5Aca2-3)-(3,4Galb1-4)-4GlcNAcb-Sp0 \\
\hline 289 & (Neu5Aca2-3)-(3,4Galb1-4)-4GlcNAcb-Sp8 \\
\hline 290 & (Neu5Aca2-3)-(3,4Galb1-4)-4Glcb-Sp0 \\
\hline 291 & (Neu5Aca2-3)-(3,4Galb1-4)-4Glcb-Sp9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 292 & (Neu5Aca2-3)-(3GalNAcb1-4)-4GlcNAcb-Sp0 \\
\hline 293 & (Neu5Aca2-3)-(3Galb1-3)-(3,4GlcNAcb1-3)3Galb1 \\
\hline 294 & (Neu5Aca2-3)-(3Galb1-3)-(3GalNAcb1-3)3Gala1 \\
\hline 295 & (Neu5Aca2-3)-(3Galb1-3)-(3GalNAcb1-4)3,4Galb1 \\
\hline 296 & (Neu5Aca2-3)-(3Galb1-3)-(3GlcNAcb1-3)3Galb1 \\
\hline 297 & (Neu5Aca2-3)-(3Galb1-3)-3(6OSO3)GalNAca-Sp8 \\
\hline 298 & (Neu5Aca2-3)-(3Galb1-3)-3(6OSO3)GlcNAcb-Sp8 \\
\hline 299 & (Neu5Aca2-3)-(3Galb1-3)-3,4GlcNAcb-Sp8 \\
\hline 300 & (Neu5Aca2-3)-(3Galb1-3)-3,6GalNAcb-Sp8 \\
\hline 301 & (Neu5Aca2-3)-(3Galb1-3)-3GalNAca-Sp8 \\
\hline 302 & (Neu5Aca2-3)-(3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 303 & (Neu5Aca2-3)-(3Galb1-3)-3GlcNAcb-Sp8 \\
\hline 304 & (Neu5Aca2-3)-(3Galb1-4)-3,4(6OSO3)GlcNAcb-Sp8 \\
\hline 305 & (Neu5Aca2-3)-(3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 306 & (Neu5Aca2-3)-(3Galb1-4)-3,4GlcNAcb-Sp8 \\
\hline 307 & (Neu5Aca2-3)-(3Galb1-4)-4(6OSO3)GlcNAcb-Sp8 \\
\hline 308 & (Neu5Aca2-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 309 & (Neu5Aca2-3)-(3Galb1-4)-4GlcNAcb-Sp8 \\
\hline 310 & (Neu5Aca2-3)-(3Galb1-4)-4Glcb-Sp0 \\
\hline 311 & (Neu5Aca2-3)-(3Galb1-4)-4Glcb-Sp8 \\
\hline 312 & (Neu5Aca2-6)(Galb1-3)-(3,6GlcNAcb1-4)-4Galb1 \\
\hline 313 & (Neu5Aca2-6)-(3,6GlcNAcb1-4)-(4Galb1-4)4Glcb \\
\hline 314 & (Neu5Aca2-6)-(6GalNAcb1-4)-4GlcNAcb-Sp0 \\
\hline 315 & (Neu5Aca2-6)-(6Galb1-4)-(4GlcNAcb1-2)2Mana1 \\
\hline 316 & (Neu5Aca2-6)-(6Galb1-4)-(4GlcNAcb1-3)3Galb1 \\
\hline 317 & (Neu5Aca2-6)-(6Galb1-4)-4(6OSO3)GlcNAcb-Sp8 \\
\hline 318 & (Neu5Aca2-6)-(6Galb1-4)-4GlcNAcb-Sp0 \\
\hline 319 & (Neu5Aca2-6)-(6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 320 & (Neu5Aca2-6)-(6Galb1-4)-4Glcb-Sp0 \\
\hline 321 & (Neu5Aca2-6)-(6Galb1-4)-4Glcb-Sp8 \\
\hline 322 & (Neu5Aca2-8)-(8Neu5Aca2-3)-(3,4Galb1-4)4Glcb \\
\hline 323 & (Neu5Aca2-8)-(8Neu5Aca2-3)-(3Galb1-4)4Glcb \\
\hline 324 & (Neu5Aca2-8)-(8Neu5Aca2-8)-8Neu5Aca-Sp8 \\
\hline 325 & (Neu5Acb2-6)-(6Galb1-4)-4GlcNAcb-Sp8 \\
\hline 326 & (Neu5Gca2-3)-(3Galb1-3)-3,4GlcNAcb-Sp0 \\
\hline 327 & (Neu5Gca2-3)-(3Galb1-3)-3GlcNAcb-Sp0 \\
\hline 328 & (Neu5Gca2-3)-(3Galb1-4)-3,4GlcNAcb-Sp0 \\
\hline 329 & (Neu5Gca2-3)-(3Galb1-4)-4GlcNAcb-Sp0 \\
\hline 330 & (Neu5Gca2-3)-(3Galb1-4)-4Glcb-Sp0 \\
\hline 331 & (Neu5Gca2-6)-(6Galb1-4)-4GlcNAcb-Sp0 \\
\hline
\end{tabular}

\section*{References}
[1] B. T. S. Da Wei Huang and R. A. Lempicki, "Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources," Nature protocols, vol. 4, pp. 44-57, 2008.
[2] D. Gilbert, "Pise: Software for building bioinformatics webs," Briefings in bioinformatics, vol. 3, p. 405, 2002.
[3] A. G. Rust, et al., "Genome annotation techniques: new approaches and challenges," Drug discovery today, vol. 7, pp. S70-S76, 2002.
[4] D. Gilbert, "Bioinformatics software resources," Briefings in bioinformatics, vol. 5, p. 300, 2004.
[5] D. S. Roos, "Bioinformatics--trying to swim in a sea of data," Science, vol. 291, p. 1260, 2001.
[6] N. Siva, "1000 Genomes project," Nature biotechnology, vol. 26, pp. 256-256, 2008.
[7] D. J. Munroe and T. J. R. Harris, "Third-generation sequencing fireworks at Marco Island," Nature biotechnology, vol. 28, pp. 426-428, 2010.
[8] B. A. Flusberg, et al., "Direct detection of DNA methylation during singlemolecule, real-time sequencing," Nature methods, vol. 7, p. 461, 2010.
[9] P. H. Carns, et al., "PVFS: A parallel file system for linux clusters," 2000, pp. 2828.
[10] A. S. Foundation., "Hadoop Distributed File System," http://hadoop.apache.org/hdfs/, 2011.
[11] F. Schmuck and R. Haskin, "GPFS: A shared-disk file system for large computing clusters," 2002, pp. 231-244.
[12] P. Schwan, "Lustre: Building a file system for 1000-node clusters," 2003.
[13] A. Bayat, "Bioinformatics," Bmj, vol. 324, p. 1018, 2002.
[14] P. Barham, et al., "Xen and the art of virtualization," 2003, pp. 164-177.
[15] I. Habib, "Virtualization with kvm," Linux Journal, vol. 2008, p. 8, 2008.
[16] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, pp. 273-297, 1995.
[17] R. E. Fan, et al., "Working set selection using second order information for training support vector machines," The Journal of Machine Learning Research, vol. 6, pp. 1889-1918, 2005.
[18] T. Joachims, "Making large scale SVM learning practical," 1999.
[19] T. Kudoh, "Tinysvm: Support vector machines," http://cl.aist-nara. ac. jp/~ takuku/software/TinySVM/index. html, 2000.
[20] S. Wold, et al., "PLS-regression: a basic tool of chemometrics," Chemometrics and intelligent laboratory systems, vol. 58, pp. 109-130, 2001.
[21] GMOD, "Overview," http://gmod.org/wiki/Overview, 2011.
[22] S. F. Altschul, et al., "Basic local alignment search tool," Journal of molecular biology, vol. 215, pp. 403-410, 1990.
[23] W. R. Pearson and D. J. Lipman, "Improved tools for biological sequence comparison," Proceedings of the National Academy of Sciences, vol. 85, p. 2444, 1988.
[24] J. Stajich and E. Birney, "The Bioperl project: motivation and usage," ACM SIGBIO Newsletter, vol. 20, pp. 13-14, 2000.
[25] J. K. VanDyk, Pro Drupal Development: Springer, 2008.
[26] S. D. Mooney and P. H. Baenziger, "Extensible open source content management systems and frameworks: a solution for many needs of a bioinformatics group," Briefings in bioinformatics, vol. 9, p. 69, 2008.
[27] S. P. Ficklin, et al., "Tripal: a construction toolkit for online genome databases," Database, vol. 2011, 2011.
[28] C. J. Mungall and D. B. Emmert, "A Chado case study: an ontology-based modular schema for representing genome-associated biological information," Bioinformatics, vol. 23, p. i337, 2007.
[29] "Generic Model Organism Database (GMOD) Project ".
[30] S. Temnykh, et al., "Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential," Genome research, vol. 11, p. 1441, 2001.
[31] B. N, "FLIP: a Unix C program used to find/translate orfs," bionet software, 1997.
[32] "Organelle Genome Megasequencing Project (OGMP), Biochemistry Department, University of Montreal," http://www.bch.umontreal.ca/ogmp/manlinks/flip.txt.
[33] S. Rozen and H. Skaletsky, "Primer3 on the WWW for general users and for biologist programmers," Methods Mol Biol, vol. 132, pp. 365-386, 2000.
[34] X. Huang and A. Madan, "CAP3: A DNA sequence assembly program," Genome research, vol. 9, p. 868, 1999.
[35] J. D. Tisdall, Beginning Perl for bioinformatics: O'Reilly Media, 2001.
[36] S. Guelich, et al., CGI programming with Perl: O'Reilly \& Associates, Inc., 2000.
[37] G. Booch, "Object-oriented design," ACM SIGAda Ada Letters, vol. 1, pp. 64-76, 1982.
[38] M. Rubel, "Rsnapshot: A Remote Filesystem Snapshot Utility Based on Rsync. 2005," URL http://rsnapshot. org.
[39] J. L. Ledford, et al., Google analytics: Wiley, 2010.
[40] "rsync," http://rsync.samba.org/, 2011.
[41] Z. J. Chen, et al., "Toward sequencing cotton (Gossypium) genomes," Plant physiology, vol. 145, p. 1303, 2007.
[42] J. A. Udall, et al., "A global assembly of cotton ESTs," Genome research, vol. 16, p. 441, 2006.
[43] H. B. Zhang, et al., "Recent advances in cotton genomics," Int J Plant Genomics, vol. 742304, 2008.
[44] A. Blenda, et al., "CMD: a cotton microsatellite database resource for Gossypium genomics," BMC genomics, vol. 7, p. 132, 2006.
[45] E. Taliercio, et al., "Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs," Genome, vol. 49, pp. 306-319, 2006.
[46] J. Xiao, et al., "New SSR Markers for Use in Cotton (Gossypium spp.) Improvement," 2009.
[47] S. Hoffman, et al., "Identification of 700 new microsatellite loci from cotton (G. hirsutum L.)," 2007.
[48] L. L. Tu, et al., "Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development," Plant cell reports, vol. 26, pp. 13091320, 2007.
[49] T. S. T. Schwarzacher, et al., "Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense," Genome, vol. 51, pp. 534-546, 2008.
[50] J. Rong, et al., "A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)," Genetics, vol. 166, p. 389, 2004.
[51] C. C. Chang and C. J. Lin, "LIBSVM: a library for support vector machines," 2001.
[52] W. Li and A. Godzik, "Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences," Bioinformatics, vol. 22, pp. 1658-1659, 2006.
[53] K. Youens-Clark, et al., "CMap 1.01: a comparative mapping application for the Internet," Bioinformatics, vol. 25, p. 3040, 2009.
[54] A. Varki, Essentials of glycobiology: Cold Spring Harbor Laboratory Pr, 1999.
[55] D. H. Dube and C. R. Bertozzi, "Glycans in cancer and inflammation - potential for therapeutics and diagnostics," Nat Rev Drug Discov, vol. 4, pp. 477-488, 2005.
[56] M. M. Fuster and J. D. Esko, "The sweet and sour of cancer: glycans as novel therapeutic targets," Nat Rev Cancer, vol. 5, pp. 526-542, 2005.
[57] K. S. Lau and J. W. Dennis, "N-Glycans in cancer progression," Glycobiology, vol. 18, pp. 750-760, October 1, 20082008.
[58] N. Perrimon and M. Bernfield, "Specificities of heparan sulphate proteoglycans in developmental processes," Nature, vol. 404, pp. 725-728, 2000.
[59] X. Lin, "Functions of heparan sulfate proteoglycans in cell signaling during development," Development, vol. 131, pp. 6009-6021, December 15, 20042004.
[60] J. W. Dennis, et al., "Protein glycosylation in development and disease," BioEssays, vol. 21, pp. 412-421, 1999.
[61] J. Stevens, et al., "Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities," Journal of molecular biology, vol. 355, pp. 1143-1155, 2006.
[62] A. Alkhalil, et al., "Structural Requirements for the Adherence ofPlasmodium falciparum-infected Erythrocytes to Chondroitin Sulfate Proteoglycans of Human Placenta," Journal of Biological Chemistry, vol. 275, pp. 40357-40364, December 22, 20002000.
[63] J. Liu, et al., "Characterization of a Heparan Sulfate Octasaccharide That Binds to Herpes Simplex Virus Type 1 Glycoprotein D," Journal of Biological Chemistry, vol. 277, pp. 33456-33467, September 6, 20022002.
[64] A. Chandrasekaran, et al., "Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin," Nature biotechnology, vol. 26, pp. 107-113, 2008.
[65] C. Y. Wu, et al., "New development of glycan arrays," Org. Biomol. Chem., vol. 7, pp. 2247-2254, 2009.
[66] O. Blixt, et al., "Printed covalent glycan array for ligand profiling of diverse glycan binding proteins," Proceedings of the National Academy of Sciences of the United States of America, vol. 101, p. 17033, 2004.
[67] M. E. Taylor and K. Drickamer, "Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands," Glycobiology, vol. 19, p. 1155, 2009.
[68] K. Drickamer and M. E. Taylor, "Glycan arrays for functional glycomics," Genome Biol, vol. 3, p. 1034, 2002.
[69] A. Porter, et al., "A motif-based analysis of glycan array data to determine the specificities of glycan-binding proteins," Glycobiology, vol. 20, p. 369, 2010.
[70] Y. Yamanishi, et al., "Glycan classification with tree kernels," Bioinformatics, vol. 23, p. 1211, 2007.
[71] T. Kuboyama, et al., "A gram distribution kernel applied to glycan classification and motif extraction," Genome Informatics Series, vol. 17, p. 25, 2006.
[72] I. G. Chong and C. H. Jun, "Performance of some variable selection methods when multicollinearity is present," Chemometrics and intelligent laboratory systems, vol. 78, pp. 103-112, 2005.
[73] H. Yamamoto, et al., "Correlation index-based responsible-enzyme gene screening (CIRES), a novel DNA microarray-based method for enzyme gene involved in glycan biosynthesis," PloS one, vol. 2, p. e1232, 2007.
[74] Y. Naito, et al., "Germinal center marker GL7 probes activation-dependent repression of N -glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation," Molecular and cellular biology, vol. 27, pp. 3008-22, Apr 2007.
[75] E. v. Liempt, et al., "Specificity of DC-SIGN for mannose- and fucose-containing glycans," FEBS letters, vol. 580, pp. 6123-31, Nov 132006.~~~

