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ABSTRACT 

In the Graph Complexity Connectivity Method (GCCM), twenty nine complexity 

metrics applied against engineering design graphs are used to create surrogate prediction 

models of engineering design representations (assembly models and function structures) 

for given product performance values (assembly time and market value).  The 

performance of these prediction models has been previously assessed solely based on 

accuracy.  In this thesis, the predictive precision of the surrogate models is evaluated in 

order to assess the GCCM's ability to generate consistent results under the same 

conditions.  The Assembly Model - Assembly Time (AM-AT) prediction model 

performed the best in terms of both accuracy and precision.  This demonstrates that when 

given assembly models, one can consistently predict accurate assembly times.  

Further, a sensitivity analysis is conducted to identify the significant complexity 

metrics in the estimation of the performance values, assembly time and market value.  

The results of the analysis suggest that for each prediction model, there exists at least one 

metric from each complexity class (size, interconnection, centrality, and decomposition) 

which is identified as a significant predictor.  Two of the twenty nine complexity metrics 

are found to be significant for all four prediction models:  number of elements and 

density of the in-core numbers.  The significant complexity metrics were used to create 

simplified surrogate models to predict the product performance values.  The test results 

indicate that the precision of the prediction models increases but the accuracy decreases 

when the unique significant metric sets are used.  Finally, three experiments are 
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conducted in order to investigate the effect of manipulation of the significant complexity 

metrics in predicting the performance values.  The results suggest that the significant 

metric sets perform better in predicting the product performance values as compared to 

the manipulated metric sets of either union or intersection of metrics. 
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Chapter One 

COMPLEXITY IN ENGINEERING DESIGN: A REVIEW 

One of the measures stressed in evaluating and comparing solutions in 

engineering design is simplicity [1–3].  This is often found under the general guide of 

“keep it simple”. Thus, conversely one might also consider complexity as a measure 

when comparing solutions. Evaluating a design problem as regards to complexity yields 

an important measure during the development of design support systems as problems and 

processes are objectively and computably compared with suitable applications [4]. 

Complexity is a term which is usually used to elucidate an attribute, which is hard to 

quantify precisely [5]. Research has been conducted on measuring system complexities 

within specific domains, such as engineering design, information theory, and computer 

science [6]. The question remains how can we use this measurement in making more 

informed decisions earlier in the design process? An initial challenge is to develop an 

objective and representation independent method that can help measure system 

complexities across domains. Considering the large number of system variables that 

contribute to complexity, it is difficult to evaluate it through a single metric. For instance, 

size (system element count) and coupling (connectivity between elements) are both views 

of complexity that are related but not interdependent [7]. This is the reason why previous 

research has focused on measuring complexity in engineering design based on multiple 

metrics [7–20].  

The existing complexity measurement methods refer to the term complexity with 

different interpretations [1,4,21,22]. In design for assembly, complexity is characterized 
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by the number of assemblies and components involved [5,23], their connections 

[14,17,18] and the difficulties associated with their handling and insertion [2]. A design 

for manufacturing approach views complexity as a characteristic of part geometry and its 

implications on tooling construction costs [24]. Complexity measurement has continually 

been an active field of research in areas such as biology, computer science, and 

information theory [1,6]. Complexity in design is a measure of the information content of 

design problem, process and product [1,7]. In a broad sense, complexity can be defined as 

a quality of an object with many interwoven elements and details which makes the 

complete object difficult to understand in a collective view [25]. 

Designers predominantly define the complexity of a system based on the design 

problem and design process, while users define it depending on the design product [7]. 

Previous research has also explored the use of complexity as a surrogate for problem 

difficulty in predicting the effort or point value of an exam problem [26]. This is the 

reason for the existence of multiple definitions of the term complexity. The thesis deals 

particularly with measuring the structural complexity of electro-mechanical consumer 

products. In the context of this research, the following definitions would best describe the 

term complexity: 

1. The amount of information required to describe a system comprised of more 

than one component [4,27]. 

2. The interconnections between elements which allow a given system to take on 

properties and behaviors which the collection of elements would not exhibit 

on its own [17]. 
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A review of the research that has been previously conducted in the field of 

engineering design complexity is presented in section 1.1. It encompasses the different 

views of complexity derived from graph theory, information theory, and design theory 

concluding with a comparison of these views forming the basis for design complexity 

measures. 

1.1 Measuring complexity in design 

Various approaches have been taken across disciplines in order to quantify 

complexity in design with respect to evaluating systems, algorithms, information, or 

design [4]. This section provides a brief overview of the different methods or approaches 

employed by researchers to measure complexity based on its contributing factors such as 

structure, amount of information, and connectivity. A tabular comparison of these 

methods based on multiple parameters has been included at the end of this chapter. 

1.1.1 Structural complexity quantification 

With an effort to objectify the process of system architecture design and selection, 

a quantitative structural complexity metric has been proposed by Sinha et al. [23]. This 

complexity metric encompasses the sum of complexities of individual components, 

number and complexity of each pairwise interaction, and topology. It is given by the 

following functional form: 

 C = C1 + C2C3 (1) 

where, 

C1 = sum of complexities of individual components 
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C2 = number and complexity of each pairwise interaction 

C3 = topological complexity 

The component complexity is assigned by experts on a [0, 5] scale. C1 does not 

include any architectural information. The number and complexity of each pairwise 

interaction can be computed mathematically by using formula (2): 

 C2 = ∑ ∑ β𝑛
𝑗=1

𝑛
𝑖=1 ij Aij (2) 

where, 

Aij = adjacency matrix, which gives the number of 

interactions/connections between components 

βij = interface complexity 

Here, βij is assessed by experts on a scale of [0, 1] which makes it subject to 

variability. Topological complexity differentiates the structural complexities of two 

different connectivity structures which have the same number of components and 

interactions [23]. It can be measured with the help of the following equation: 

 C3 = ϒ*E(A) = (1/n)*E(A) (3) 

where, 

n = number of components in the system 

E(A) = matrix energy of A, which is the sum of the absolute values of the 

Eigen values of the adjacency matrix A 

Distribution of the overall complexity across the system’s architecture is critical 

to achieving less complex subsystems; which will aid in large-scale system development 

efforts. This complexity quantification method was applied to two different jet engine 
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architectures: a dual spool direct-drive turbofan (old architecture) and a geared turbofan 

engine (new architecture) [23,28]. The new architecture had a much higher development 

cost. Further, it was found that the geared turbofan engine had a 40% higher structural 

complexity as compared to the older one. This helped the researchers validate their 

hypothesis that structural complexity increase is a critical contributor to increase in 

system development costs. The research method provides valuable insights into structural 

complexity and its effect on system architecture with supporting evidence. However, 

there exists a certain degree of subjectivity in complexity measurement. The component 

and interface complexities were assigned by experts on a scale of [0, 5] and [0, 1] 

respectively. It is possible that different design experts assign distinct values of 

complexity to the same component or interface, which would ultimately result in a range 

of different values for the same entity’s complexity. This warrants the need for further 

research to achieve objective measurements of complexity. This objectivity is critical to 

enable the application of complexity measures in design automation systems.  

1.1.2 Ship design complexity 

A metric for real-time assessment of complexity is critical to aid in the decision 

making process of ship designers in the design stage of a project [5]. The knowledge of 

the individual components solely is not sufficient to understand the ship’s behavior. A 

complexity metric which would take into account shape, assembly, and material 

complexities would eventually help minimize production time and costs. The total ship 

design complexity can be expressed in the form: 
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 CT = (w1Csh + w2Cas + w3Cmt)/( w1+ w2+ w3) (4) 

where, 

Csh = shape complexity 

Cas = assembly complexity 

Cmt = material complexity 

The shape complexity represents the degree to which a shape is compact. It is an 

important factor for determining the resolution of mesh generation in the field of Finite 

Element Modelling (FEM) [5,29]. Sphericity is commonly used for measuring the 

complexity of 3D shapes. It can be defined as the ratio of the lateral surface of a sphere to 

the surface area of a 3D solid. This ratio has a maximum value of 1 for spheres, and a 

minimum value of 0 for infinitely long and narrow shapes. 

The average shape complexity of a set of parts can be computed using the 

equation: 

 
Csh = ∑[(1 − 𝜓𝑛)

𝑛

𝑖=1

/𝑛] (4) 

where, 

𝟁 = sphericity = As/A = (π
1/3

(6V)
2/3)

) / A 

As = lateral surface of the sphere 

A = lateral surface of the solid 

V = volume of the solid 
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Assembly complexity signifies the extent of diversity amongst the elements 

(components), subassemblies, and their connectivity with the help of a hierarchical 

assembly structure. 

 Cas = ∑ 𝐶(𝑇𝑖 + 𝑁𝑡)log𝑛
𝑖=1 2(2

kt 
– 1) (4) 

where, 

∑ 𝐶(𝑇𝑖)𝑛
𝑖=1  = complexity of n non-isomorphic subtrees (subassemblies) 

Nt = number of elements 

Kt = number of non-isomorphic branches 

Material complexity for an assembly is by the equation, 

 Cmt = Cpt + Cst (5) 

where, 

Cpt = Material complexity for plates 

Cst = Material complexity for stiffeners 

The term Cpt depicts the number of different combinations between plate 

thickness and material type whereas Cst gives the number of different combinations 

between profile types and material type. Unlike other complexity measurement methods, 

this method attempts to measure the complexity associated with materials. However, 

extensive research needs to be conducted to further improve the effectiveness of this 

measure. It fails to address the number of plates and stiffeners, plate thickness, profile 

types, and materials independently. Moreover, each combination is given a similar value 

of 1 which results in multiple different combinations ending up with the same material 
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complexity. For example, 5 aluminum plates of 10 mm and 10 steel plates of 5 mm are 

each assigned a complexity value of 1.  Also, no consideration is given for the possibility 

of variable thickness plates. 

This method provides a good basis to measure various aspects of design 

complexity exclusively for ship design. Major modifications in the vocabulary and 

evaluation of certain complexity metric input variables need to be made in order to 

extend this method to other engineering design domains. A limitation to this method is 

the need for a detailed design of the system to calculate complexity. For instance, 

dimensional details such as part volume and thickness must be known to calculate 

complexity using this method. This renders the method inapplicable in the early design 

stage.   

1.1.3 Information complexity 

Axiomatic design involves mapping of two domains to achieve the desired design 

task, namely, the functional domain and the physical domain. The functional domain 

includes a set of minimum functions called the functional requirements (FRs) required to 

meet the design objective. The physical domain involves the design parameters (DPs) 

required to satisfy the FRs. The probability of the FRs being satisfied depends on the 

selection of DPs. This measure of uncertainty in satisfying the system functional 

requirements is called complexity [1]. Information content is used as the basis to quantify 

complexity. 

The probability of satisfying the functional requirement is given by: 
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 P(dr
l
< FR < dr

u
) = ∫ 𝑝𝑠 (𝐹𝑅)𝑑(𝐹𝑅)

dru

drl
 (6) 

where, 

ps (FR) = system probability density function (pdf) 

dr
l 
= lower limit of design range 

dr
u
 = upper limit of design range 

Information content I is defined in terms of the probability of success in satisfying 

the functional requirement [1]. The greater the information content, the greater the 

complexity. It can be measured using equation (7): 

 I =  -log2P = -log2 ∫ 𝑝𝑠 (𝐹𝑅)𝑑(𝐹𝑅)
dru

drl
 (7) 

For an entire system, 

 I = ∑ Ii = ∑ - log2P (8) 

where, Pi is the probability of success for satisfying the ith functional requirement 

FRi 

Complexity can be further divided into two components: 1) Time-independent, 

which can further be divided into real and imaginary complexity, and 2) Time-dependent, 

which can be classified into combinatorial and periodic complexity [1]. Real complexity 

represents the design embodiment’s uncertainty in satisfying the desired functional 

requirements at all times. The designer cannot always meet the desired functional 

requirements because the design range and the system range are not always necessarily 
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identical. The common range, as the name suggests, is the overlap between these two 

ranges. 

Thus, real complexity can be defined to be equal to the information content as, 

 CR= I = ∑ 𝑙𝑜𝑔𝑛
𝑖=1 2 (1/Pi) (9) 

where, Pi is the probability of success for satisfying the ith functional requirement 

FRi 

Real complexity can be reduced by making sure that the design is either 

decoupled or uncoupled. Imaginary complexity accounts for the designer’s inability to 

thoroughly understand the design mapping, and his inability to achieve the desired design 

solution. In such cases, he will most probably resort to trial and error methods which 

brings to the table greater uncertainty and hence, higher complexity. 

 CI= ln (1/P) =ln (n!) (10) 

where P is the probability of finding the correct combination of n DPs to satisfy 

the entire FRs. 

This view of complexity ignores the possible interconnectivity of the information 

and the difficulty involved in extracting information from a minimal design 

representation. It suggests complexity to be a relative measure, relating what the desired 

objective is against what is known and unknown. It makes an attempt to capture the 

influence of the designer’s understanding and perception of the design through the aspect 

of imaginary complexity. However, a challenge would be measuring this imaginary 
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complexity accurately when the design is decoupled or coupled. Using this method would 

require the ability to determine the probability of the functional requirements being 

satisfied. This calls for an intermediate or an experienced designer.  

The inputs required to measure complexity using this method are independent of 

representation and hence it is extendable to other domains. The research approach 

suggests that complexity increases in direct proportion with information content. This can 

be used as the basis for conducting further research to understand the ‘value’ of the 

information associated with design representations in the measurement of complexity.   

1.1.4 Graph Complexity Connectivity Method (GCCM) 

Complexity metrics measured using graph topologies can be used to create early 

stage surrogate prediction models of assembly time, when product assembly models (3D 

CAD models) are given [11,13,17] and market cost, when function structures are given 

[8,19]. This requires a representation of the system’s architecture, which is developed by 

tracking the connections between the system’s constituent elements in a bi-partite graph 

shown in Figure 1.1. 
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Figure 1.1: Representation of a blender architecture as a bi-partite graph 

Graphs have been used from early stage requirements, function, and working 

principle models to latter stage geometric part and assembly models in engineering 

design [30–33]. In this approach the graphs are evaluated against the structural 

complexity metrics to form a complexity vector describing each product. Unlike previous 

approaches that treat complexity as a single value [23,34–37], this one takes the unique 

approach of treating complexity as a combination of different influential properties:  size, 

interconnectivity, centrality, and decomposition. The complete set of twenty nine 

complexity metrics is demonstrated in Table 1.1. These define the complexity vector used 

to create the surrogate prediction models. 

Initially, the GCCM demonstrated the capability of complexity metrics to form a 

surrogate mapping between physical system architecture and assembly times based on the 
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Boothroyd and Dewhurst Design for Assembly (DFA) tables [17]. The method employed 

a power regression model (log-log regression) for predicting assembly times since it 

indicated the highest correlation of the other regression models evaluated. The regression 

model can be represented by the following equation: 

 ta = [APL] X n
[1.185+PLD] 

(11) 

where, 

ta = assembly time, 

APL = Average path length, 

n = number of elements, 

PLD = Path length density 
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Table 1.1: Complexity metrics 

Class Type Direction 
Metrics 

Comp. vector 

Size 

Dimensional 
Elements 

Relationships 

Connective 
DOF 

Connections 

Interconnection 

Shortest Path 

Sum 

Max 

Mean 

Density 

Flow Rate 

Sum 

Max 

Mean 

Density 

Centrality 

Betweenness 

Sum 

Max 

Mean 

Density 

Clustering Coefficient 

Sum 

Max 

Mean 

Density 

Decomposition 

          Ameri Summers 

Core Numbers 

In 

Sum 

Max 

Mean 

Density 

Out 

Sum 

Max 

Mean 

Density 

Total path length is the number of connections when all the information flow is 

considered. Total path length divided by the size of the path length matrix minus the 

empty identity gives the average path length. Average path length divided by the number 

of relationships in the system gives the Path Length Density. The model, applied against 
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a training set of different electro-mechanical consumer products, estimated assembly 

times within a percentage error of +16% with respect to the assembly times predicted by 

the Boothroyd and Dewhurst DFA tables. 

To assess its potential utility value, the GCCM was compared to the Boothroyd 

and Dewhurst method based on predicted assembly time, analysis duration, input 

information and its nature: objectivity v/s subjectivity [12]. The predicted assembly times 

of the GCCM approximately ranged from 13% to 49%, lower than the predicted times of 

the DFMA software which was considered to be the benchmark. The analysis duration 

was found to be similar for both methods. It was determined that the Boothroyd and 

Dewhurst DFMA software required a larger amount of input information of forty nine 

questions per part, thirty three of which were objective. The GCCM required five 

questions per part, all of which are subjective. Although its accuracy could be further 

improved, this indicated that the GCCM can be automated as it solely requires objective 

information [12]. 

Initially, the GCCM manually created the bi-partite graphs and predicted 

assembly times using regression models. But due to the extensive effort required to create 

the bi-partite graphs, and to map the connective graph metrics to the product assembly 

time; automated graph generation and prediction methods were explored [9,11,16,20,38]. 

To make graph generation faster and accurate, the Assembly Mate Method (AMM) was 

incorporated which uses SolidWorks (SW) assembly mate information to create the 

connectivity graphs needed for the GCCM [9]. Mates create geometric relationships 

between assembly components which allow for defining the allowable directions of linear 
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or rotational motion of the components. For example, a coincident mate makes two 

planar faces become coplanar whereas a concentric mate forces two cylindrical faces to 

turn concentric. 

Continuing the previous work to predict assembly times from detailed assembly 

models, a series of predictive performance experiments were performed on low fidelity 

assembly CAD models [14]. Two separate neural networks were created and compared: 

the first ANN which uses the complexity vector of the high-fidelity models as input and 

assembly times as the targets, and the second ANN which uses the complexity vectors of 

the low-fidelity models as the training inputs and the same assembly times as target 

times. Each of the two ANNs was made to predict the assembly time of a test data set 

consisting of three products using the high-fidelity and low-fidelity models as seen in 

Table 1.2. 

Table 1.2: Experimental design sets (Adapted from [14]) 

Set ANN trained on ANN tested on 

1 High fidelity assembly models High fidelity assembly models 

2 High fidelity assembly models Low fidelity assembly models 

3 Low fidelity assembly models High fidelity assembly models 

4 Low fidelity assembly models Low fidelity assembly models 

It was observed that a neural network trained on low fidelity models did not fare 

well when used to predict the assembly time of high fidelity models. The best 

combination of ANN and input model fidelity level, based on the lowest percent error for 

all three test cases was found to be the high fidelity ANN with low fidelity input vectors. 

The findings of this study suggest that the high fidelity assembly model based neural 

networks provide good prediction tools for estimating assembly time for both high 



17 

fidelity and low fidelity CAD models [14]. Results indicated that the assembly time of a 

product can be predicted to within 40% of the target as built time using a high fidelity 

neural network and a low fidelity CAD model [14]. Ultimately, this research justified the 

use of low fidelity assembly CAD models for providing designers in conceptual stages of 

product development with a tool to evaluate and compare multiple early-stage design 

decisions. 

As mentioned earlier, the GCCM has demonstrated that structural complexity 

metrics applied against graph topologies can be used to create prediction models of 

assembly time given product assembly models [11,13,17] and market cost given function 

structures [19]. This method uses historical data in the form of product graphs 

transformed to a vector of twenty nine complexity metrics coupled with performance 

values to create artificial neural network based surrogate models. Recent advances in the 

method show that each of the two representations, Function Structures and Assembly 

Models can be used to predict both the performance values, Market Price and Assembly 

Time [8]. Table 1.3 illustrates the Absolute Average Percentage Error, also known as 

accuracy, of the five test products (Sander, Hair Dryer, Lawn Mower, Flashlight and 

Food Chopper) for the four prediction models. 

Table 1.3: Comparative Study of the Absolute Average Percentage Error of the four 

prediction models in predicting Product Performance [16] 

 
Assembly Time 

(AT) 

Market Value 

(MV) 
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Assembly Models 

(AM) 

Average:  5% 

Maximum:  10% 

Previous Error 20% [15] 

Average:  12% 

Maximum:  23% [8] 

Function Structures 

(FS) 

Average:  29% 

Maximum:  60% [8] 

Average:  57% 

Maximum:  154% 

Previous Error:  50% [19] 

The prediction results for the Assembly Models –Assembly Time and Function 

Structures – Market Value models were found to be in line with the previous research test 

results [15,19]. Between assembly models and function structures, use of assembly 

models as the input vector for the prediction model demonstrated a lesser absolute 

average percentage error in each of the four cases. The prediction model, ‘Assembly 

Time estimation based on Assembly (CAD) Models’, had the lowest absolute average 

percentage error of 5% when compared to accuracy of predicting within 20% of target 

time portrayed in [39] whereas the prediction model, ‘Market Value estimation based on 

Function Structures’ had the highest absolute average percentage error of 57% when 

compared to accuracy of predicting within 50% of target time displayed in [19]. 

In the order of lowest to highest absolute average percentage error, the four prediction 

models can be ranked as follows: 

Table 1.4: Ranking of the four prediction models based on accuracy 

Rank Prediction model 

I Assembly Models - Assembly Time 
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II Assembly Models - Market Value 

III Function Structures - Assembly Time 

IV Function Structures - Market Value 

The approach to measuring complexity in the GCCM is objective and can be 

applied to different representations [26]. In their research, the factors and sources of 

problem difficulty are examined and compared to the structural complexity of a graphical 

representation of the problem solution. This research is an extended application of the 

GCCM. 

1.2 Comparison of complexity methods 

The complexity measurement methods discussed in this chapter (See sections 

1.1.1 - 1.1.4) differ from each other based on certain parameters as shown in Table 1.5. 

Table 1.5: Comparison of complexity measurement methods 

Method Reference Basis Metric 
Information 

required 

Dimension 

details 
Representation 

1 
Sinha et al. 

2013 
SD R n, c, t No I 

2 
Caprace et 

al. 2012  
SD R n, c, m, s Yes D 

3 Suh 1999 ID R FRs,  DPs No I 

4 
Mathieson 

et al. 2012 
SD A n, c, t No I 

Legend: 
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n = number of components 

t = topology 

c = number of connections 

m = material 

s = shape FRs = functional requirements 

DPs = design parameters SD = Structural Design 

ID = Information content in Design I = Independent 

D = Dependent R = Relative 

A = Absolute  

The top two and the bottommost methods in Table 1.5 use structural design as the 

basis to evaluate and measure complexity whereas method 3 views complexity as a 

measure of the information content contained within a design representation. The top 

three complexity methods provide relative measures of complexity. Method 3 measures 

complexity by relating the current information content with the amount of information 

required to satisfy the design problem [1,4] while methods 1 and 2 require certain input 

parameters that are assigned by expert designers, thus rendering complexity to be a 

relative measure. However, method 4 proposes complexity metrics that are objective in 

that they are dependent on a model generated to represent the design product and 

independent of a designer’s interpretation of information [4]. The common parameter 

considered in all the methods is size, which is represented by the number of components 

in methods 1, 2, and 4 and by the amount of information in method 3. Method 2 requires 

the most amount of information (four input variables) as compared to the others. Out of 

the four, only method 2 requires the dimensional details of the system to be able to 

calculate complexity. The complexity measurement methods 1, 3, and 4 are independent 

of the form of representation. As the design transitions amongst different forms of 

representations, the information contained within the characterization of the product 
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changes. Method 2 on the other hand is dependent on a single form of representation, that 

being of ship design. 

Each of the top three methods mentioned in Table 1.5 are either relative 

complexity measures or dependent on the form of representation. However method 4, the 

GCCM, is independent of a representation model and involves the use of objective 

structural complexity metrics. Objectivity is a key factor in enabling comparison and 

evaluation of multiple design solutions based on their complexities. This method inputs 

twenty nine complexity metrics as a vector into artificial neural networks (ANNs) which 

generate 18900 estimates of the required output performance value. The large number of 

sample points involved in prediction and the objectivity of this method provide 

motivation to conduct further studies on the GCCM. This thesis will focus mainly on 

evaluating the variability of the 18900 estimates (precision) and the sensitivity 

(significance) of the twenty nine complexity metrics. 
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Chapter Two 

MOTIVATION AND RESEARCH QUESTIONS 

The architecture of engineered systems is becoming progressively complex due to 

increased functional performance requirements and cost demands [23,40]. These 

architectures consist of a set of interrelated components which, through their 

interconnectivity, manifest a behavior which the individual components would not 

display independently [41]. This calls for a robust method that can attempt to quantify 

our understanding of these components and interrelations which are counterintuitive [40], 

and use these measurements to make informed decisions. However, such measurements 

are inherently limited in their applicability and not always clear in their implications [18]. 

The higher structural complexity of a design increases the system cost and makes it more 

susceptible to failure [9]. Designers must consider complexity when design decisions are 

made in order to achieve the optimum system architecture with the desired complexity. 

The GCCM is used as the backbone of this thesis. This is because the complexity 

metrics evaluated using this method are objective in that they are independent of a 

designer’s interpretation of information [4]. To date, the research efforts in this method 

have been focused on the development of surrogate prediction models [4,8,9,11–

17,19,20,38,39,42]. These prediction models use engineering design representations 

(assembly models and function structures) to predict product performance values 

(assembly time and market value). The performance of these prediction models has been 

previously assessed solely based on accuracy. In this thesis, the predictive precision of 

the surrogate models is evaluated in order to assess the GCCM's ability to generate 
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consistent results under the same conditions. The accuracy and precision of the estimated 

performance values will be used to assess the performance of the prediction models. A 

prediction model which is both accurate and precise can generate consistent results each 

time (repeatability) under the same conditions. This assessment will enable engineers to 

consider the impacts of their decisions on product performance in the early stages of 

design using exact quantifiers rather than anecdotal experience. It would facilitate 

methodical comparison and application of the appropriate engineering design 

representations for estimating performance values in a design project.  

This thesis will also focus on understanding complexity as an enabler in 

prediction. This will be accomplished by identifying the complexity metrics that are 

influential (significant) in predicting the product performance values for each of the four 

surrogate prediction models. An outline of the GCCM is provided in Figure 2.1. This will 

help illustrate the method flow step by step (marked in blue) and identify the research 

questions (marked in red). 
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Figure 2.1 Outline of the GCCM with the identified research questions 

2.1 Research Questions 

The following three research questions are presented to address the research gaps 

identified from the Graph Complexity Connectivity Method (GCCM). 

RQ2: Which are the most influential 

complexity metrics in predicting the 

performance values of the products? 

Store Assembly Times and Market Values 

of products as Target Values 

Train Artificial 

Neural Networks 

using the 

complexity metrics 
and Target Values 

Test the five 

selected products 

against the trained 

Artificial Neural 

Networks and 
Target Values 

Accuracy 

analysis of the 

test results 

Generate Function 

Structures and 

Assembly Models of 
products 

Create Bi-partite 

Graphs of these 

Structures and 
Models 

Evaluate the 

twenty nine 

complexity metrics 
using these Graphs 

RQ3: How will manipulation of the 

significant complexity metric inputs 

identified for each prediction model 

affect the performance value prediction 

of the products? 

RQ1: How does precision 

vary with the design 

representations and 

performance values of the 

products? 
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Research Question 1: How does precision vary with the design 

representations (assembly models and function structures) and 

performance values of the products (assembly time and market value)? 

Hypothesis 1: The performance ranking order of the four prediction 

models with respect to predictive precision will be similar to their ranking 

order based on predictive accuracy. 

The GCCM has shown the potential to create surrogate prediction models of 

assembly times and market values at the early design stage, given either product 

assembly models [11,13,17] or function structures [8,19]. The four prediction models 

have been evaluated and compared solely based on the accuracy of their prediction in 

previous research [8].  Answering research question 1 motivates the need for a precision 

analysis to understand the closeness of agreement between the estimates and their 

deviation from the mean value. 

Research Question 2: Which are the most influential complexity metrics 

in predicting the performance values of the products? 

Hypothesis 2.1: There are some complexity metrics that will be significant 

across all the four prediction models. 

Hypothesis 2.2: The classes of complexity metrics will not have the same 

significance as each other. 

The GCCM makes use of twenty nine complexity metrics divided across four 

classes as the input to train the artificial neural network (ANN). These metrics were 

developed and integrated into the method over time in an effort to capture all the aspects 

of system complexity and improve the performance value prediction [4,43]. A statistical 

study was conducted to determine the significant complexity metrics for product 
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assembly models to predict assembly times [15]. However, we need to understand the 

contribution of each metric in predicting the performance values across all the four 

prediction models, namely, Assembly Model – Assembly Time, Assembly Model – 

Market Value, Function Structure – Assembly Time, and Function Structure - Market 

Value.  

This second research question will be addressed by executing a multiple linear 

regression analysis of the twenty nine complexity metrics with the 18900 ANN training 

estimates as the responses. Further, a comparative study of the performance value 

prediction models using both the original set of twenty nine metrics and the new sets of 

significant metrics will be performed.  

Research Question 3: How will manipulation of the significant complexity 

metric inputs identified for each prediction model affect the performance 

value prediction of the products?  

In order to address research question 3, all the identified significant complexity 

metrics for the four prediction models would be divided into two different sets and then 

the prediction accuracy and precision would be examined. One set will contain the 

common significant metrics across the four models and the other set would contain the 

union of the significant metrics across the four models. Answering research question 3 

will help evaluate the sensitivity of changes in the predicted performance values. 

2.2 Thesis outline 

In this thesis, the research questions are defined and addressed through six 

chapters as shown in Figure 2.2.  
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Figure 2.2: Outline of the thesis 

The literature review conducted in the area of engineering design complexity in 

chapter 1 facilitates in identifying the research gaps which ultimately form the basis of 

the thesis research questions.  

Chapter Two helps establish the motivation behind the purpose of the thesis. It 

begins with a brief outline of the GCCM which would form the backbone of this thesis. 

RQ2 

RQ1 

RQ3 

Chapter One: 
Complexity in 

Engineering Design: A 
Review 

Chapter Two: 
Research Motivation  

Chapter Five: 
Manipulation of 
significant input 

metrics 

Chapter Three: 
Predictive Prediction 

Chapter Four: 
Sensitivity Analysis 

Chapter Six: 
Conclusions and future 

work  
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Three research questions are then presented to address the research gaps identified from 

the GCCM. The chapter concludes with an outline of the thesis. 

The experimental method employed for predicting the performance values is 

explained in Chapter Three. The chapter also addresses the first research question 

through the precision analysis of the design representations (assembly models and 

function structures) in predicting the performance values of the products (assembly time 

and market value). The results of the precision analysis are further compared to the 

accuracy analysis results previously evaluated [8] for all the four prediction models.  

Chapter Four concerns the examination of the twenty nine complexity metrics to 

determine the influence of each metric in predicting the performance values: assembly 

time and market value. The second research question is addressed in this chapter by 

identifying the significant complexity metrics for each of the four prediction models.  

In Chapter Five, all the significant complexity metrics from the four prediction 

models are divided into two different sets which are then used to train and test the ANN. 

The ANN test estimates are further examined for predictive accuracy and precision to 

address the third research question.  

The conclusions of the analyses conducted in Chapter Three through Chapter Five 

are summarized in Chapter Six along with recommendations for future work. 
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Chapter Three 

ASSESSMENT OF PREDICTIVE PRECISION   

Previous research focused on validating the effectiveness of the surrogate 

prediction models of assembly time and market cost, when product assembly models and 

function structures are given [8,16,17,19]. Accuracy of prediction was used as the sole 

measure of effectiveness to compare and rank the four prediction models [8,16].  

Accuracy gives the closeness of the absolute average of the 18,900 estimated values to 

the target performance value. Nonetheless, it is imperative to note that it is not possible 

to reliably attain accuracy without precision [44]. This chapter seeks to examine the 

precision of the design representations (assembly models and function structures) in 

predicting the performance values of the products (assembly time and market value). The 

measure of precision (also repeatability) represents a method's ability to show consistent 

results under the same conditions [45,46]. It will enable one to characterize how close the 

18,900 estimated values are to each other and indicate the range of values (standard 

deviation) within which the true value is asserted to lie with some level of confidence. A 

large standard deviation relative to the estimate indicates low precision and a small 

standard deviation relative to the estimate indicates high precision. 

In this thesis, the predictive precision of the surrogate models is evaluated in order 

to assess the GCCM's ability to generate consistent results under the same conditions. 

The accuracy and precision of the estimated performance values will be used to assess the 

performance of the prediction models. A prediction model which is both accurate and 

precise can generate consistent results each time (repeatability) under the same 



30 

conditions. This assessment will enable engineers to consider the impacts of their 

decisions on product performance in the early stages of design using exact quantifiers 

rather than anecdotal experience. It would facilitate methodical comparison and 

application of the appropriate engineering design representations for estimating 

performance values in a design project. Section 3.1 illustrates the procedure followed to 

conduct the precision analysis for the four surrogate prediction models which are 

exhibited in Table 3.1. 

Table 3.1: Design representation based surrogate prediction models 

 Design Representation Performance value 

1 Assembly Models Assembly Time 

2 Assembly Models Market Value 

3 Function Structures Assembly Time 

4 Function Structures Market Value 

3.1 Experimental method for prediction 

The GCCM was employed as the experimental method for predicting the 

performance values: assembly time and market value. A flowchart of the experimental 

method is illustrated in Figure 3.1. The method is systematically explained in sections 

3.1.1 through 3.1.5. 
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Figure 3.1: Flow chart of the prediction experimental method 

3.1.1 Dataset 

The experimental method utilized a data set of twenty electro-mechanical 

consumer products for performance value prediction. Fifteen out of these twenty products 

were applied for training the Artificial Neural Networks (ANNs) and the remaining five 

were tested using the trained ANN. A brief description about the ANNs and their 

architecture is provided in Section 3.1.5. The products were first characterized into two 

different design representations, function structures and assembly models.  This provides 

a diversity in product design representation in that the assembly models represent a 

product’s form dependent blueprint whereas the function structures constitute a product’s 

form independent blueprint [47].  Thus the method is not dependent on an engineer’s 

interpretation of product design, but rather on the design representation.  This helps in 

developing objective measures of complexity. 
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3.1.1.1 Assembly Models 

In industries, assembly modeling is done with the help of computer-aided design 

and product visualization software systems.  An assembly model represents multiple parts 

that are joined together to perform a specific function [48].  The parts within an assembly 

are represented as solid or surface models.  Assembly models essentially facilitate the 

evaluation of a product’s structural aspects such as size (number of components), 

connectivity (mates between subcomponents), centrality (how central is each 

subcomponent) and decomposition (ease of disassembly).  This characteristic of 

assembly models is utilized in this method to objectively extract the product’s complexity 

[8,9,11,15–17,20,38] 

The assembly models of the twenty products used in the prediction of assembly 

time and market value were obtained from three different sources. Most of the models 

were used in previous research [9] and were created by different engineering design 

graduate students, but not the author of this thesis, by reverse engineering existing 

products. One of the product assembly models was obtained from a local original 

equipment manufacturer (OEM). The name of the local OEM is not disclosed due to 

proprietary reasons. The assembly models of the remaining products were obtained from 

the online CAD libraries, GrabCAD
1
 and 3D CONTENT CENTRAL

2
.  These products 

were divided randomly into two sets for ANN training and testing purposes. The training 

set consisting of fifteen products is depicted in Table 3.2 and the test set is illustrated in 

Table 3.3. 

                                                           
1
 https://grabcad.com/ (last accessed 2015.06.10) 

2
 http://www.3dcontentcentral.com/default.aspx (last accessed 2015.06.10) 

https://grabcad.com/
http://www.3dcontentcentral.com/default.aspx
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Table 3.2: ANN Training products set 

 
Training 

products set 
CAD Model Image Source 

1 Stapler 

 

GrabCAD
3
 

 

2 Electric Grill 

 

Reverse 

Engineered [9] 

3  Juice extractor 

 

GrabCAD
4
 

 

4  Solar Yard Light 

 

Reverse 

Engineered [9] 

                                                           
3
 https://grabcad.com/ 

4
 https://grabcad.com/ 
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Training 

products set 
CAD Model Image Source 

5  Bench Vise 

 

Reverse 

Engineered [9] 

6  3 Hole Punch 

 

Reverse 

Engineered [9] 

7  Electric Drill 

 

Reverse 

Engineered [9] 

8 Nail gun 

 

GrabCAD
5
 

                                                           
5
 https://grabcad.com/ 
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Training 

products set 
CAD Model Image Source 

9 Blender 

 

Reverse 

Engineered [8] 

10  Computer Mouse 

 

Reverse 

Engineered [9] 

11 Food Mixer 

 

Reverse 

Engineered [9] 

12 
 Garage door 

opener 

 

Reverse 

Engineered [8] 
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Training 

products set 
CAD Model Image Source 

13 Jigsaw 

 

OEM [15] 

14 
 Electric 

toothbrush 

 

Reverse 

Engineered [8] 

15  Sewing Machine 

 

Reverse 

Engineered [8] 
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Table 3.3: ANN Test products set 

 
Test product 

set 
CAD Model Image Source 

1 Sander 

 

3D CONTENT CENTRAL
6
 

2 Hair dryer 

 

Reverse Engineered [8] 

3  Lawn mower 

 

GrabCAD
7
 

                                                           
6
 http://www.3dcontentcentral.com/default.aspx 

7
 https://grabcad.com/ 
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Test product 

set 
CAD Model Image Source 

4  Flashlight 

 

GrabCAD
8
 

5  Food chopper 

 

Reverse Engineered [9] 

3.1.1.2 Function Structures 

Function structures are utilized during the conceptual stage of engineering design 

in order to interpret the customer requirements in the shape of specific functional tasks 

[49]. Function Structures are selected as one of the design representations in this method 

because it allows designers to break down a product’s overall function into simpler 

subfunctions while showing their connectivity in terms of flows.  A function structure is a 

graphical illustration of a functional model, wherein the overall function is represented by 

a number of subfunctions connected by the flows on which they operate.  A function can 

be defined as a description of an operation to be performed by a device which is 

expressed as the action verb of a function block [47,49].  A flow is defined as a change in 

                                                           
8
 https://grabcad.com/ 
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energy, material or signal with time, expressed as the object of a function block [47].  

The function structure of one of the products used for the analysis, namely, a food mixer 

is shown in Figure 3.2.  The function structures of the other products are listed in the 

appendix section of the thesis for brevity.  

 

Figure 3.2: Function Structure of a Food Mixer (Source: Oregon State Design 

Repository9) 

                                                           
9
 http://function2.mime.oregonstate.edu:8080/view/index.jsp 
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Some of the function structures were created manually by mechanical engineering 

graduate students, but not the author of this thesis, while the others were obtained from 

the Oregon State Design Repository10.  The repository is the result of collaborative efforts 

of researchers from Oregon State University, the University of Texas at Austin, Missouri 

University of Science and Technology, and NIST.   

3.1.2 Bi-partite Graphs 

Graphs have been used extensively in engineering design right from early stage 

requirements, functions, and working prototypes to latter stage part and assembly models 

[30–33]. They help portray information in a simple and concise, yet effective manner. 

Graph-based representations such as bond graphs [50], bi-partite graphs [51,52], design 

exemplars [51,53], parametric-constraint graphs [4,52], or semantic networks [54] are 

generally used for representing product architectures. In this method the function 

structures and assembly models of the twenty products were further transformed into bi-

partite graphs, with nodes and edges depicting the entities and relationships respectively 

[51,52]. Bi-partite graphs consist of two independent sets. In case of assembly models the 

first independent set (left-hand side) comprises of the product’s physical parts, including 

both major system components and fasteners. The second independent set (right-hand 

side) depicts the relationships, namely, instances of contact between these parts (see 

Figure 3.3).  

                                                           
10

 http://function2.mime.oregonstate.edu:8080/view/index.jsp 
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Figure 3.3: Translation of Assembly Model into bi-partite graph 

Figure 3.4 depicts the bi-partite graph corresponding to a function structure. In 

this graph, the left-hand-side nodes represent the elements in the function structure 

(functions) and the right-hand-side nodes denote the relationships which exist between 

the identified entities (flows). 

Assembly Model Bi-partite graph 

Part A 
Contact 

Instance 1 

Part D  

Part C 

Part B 

Element Relationship 

Contact 
Instance 2 
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Figure 3.4: Translation of Function Structure into bi-partite graph 

The bi-partite graphs corresponding to the twenty product assembly models and 

function structures were evaluated against the structural complexity metrics to form a 

complexity vector describing each product.  

3.1.3 Metrics of structural complexity 

Twenty nine structural complexity metrics were evaluated for each of the twenty 

electro-mechanical consumer products. Fifteen out of these twenty products were used 

for training the ANNs and the remaining five were used to test the ANNs. These metrics 

are a combination of several distinct properties contributing to product complexity:  size, 

interconnectivity, centrality, and decomposition. The complete set of complexity metrics 

are depicted in Table 3.4. These define the complexity vector used to create the surrogate 

prediction models.  

Element 
(Function) 

Relationship 
(Flow) 

Function Structure Bi-partite graph 
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Table 3.4: Metrics of structural complexity 

Class Type Direction 
Metrics 

Comp. vector 

Size 

Dimensional 
1 Elements 

2 Relationships 

Connective 
3 DOF 

4 Connections 

Interconnection 

Shortest Path 

5 Sum 

6 Max 

7 Mean 

8 Density 

Flow Rate 

9 Sum 

10 Max 

11 Mean 

12 Density 

Centrality 

Betweenness 

13 Sum 

14 Max 

15 Mean 

16 Density 

Clustering Coefficient 

17 Sum 

18 Max 

19 Mean 

20 Density 

Decomposition 

21 Ameri Summers 

Core Numbers 

In 

22 Sum 

23 Max 

24 Mean 

25 Density 

Out 

26 Sum 

27 Max 

28 Mean 

29 Density 

For brevity, a brief description of these structural complexity metrics is provided 

in Sections 3.1.3.1 through 3.1.3.4. The complete set of associated algorithms can be 

found in [18,55]. 
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3.1.3.1 Size  

In information theory, size is characterized by the information content in a system 

[1] whereas in structural design it represents the number of elements and possible 

relationships between these elements [4,17]. Size is a standard measurement parameter 

used in evaluating engineering design complexity. It is essentially based on the count of 

certain characteristics within the system [7,56]. Although it does follow plausibly that if 

the element count or information content in a system increases, so does the system 

complexity; some note that their influence on capturing complexity is non-linear [57]. 

Generally, when the product size is small, the addition of one more element is significant; 

however a similar addition in a large size product might not have the same influence on 

the product complexity. The class size covers both the dimensional and connective 

aspects. 

Dimensional size concerns the evaluation of product elements and their 

relationships through a relational Design Structure Matrix (rDSM). The rDSM is an 

array-based hypergraph representation which recognizes pairs of elements that are 

affiliated via multiple relationship instances as also the relationships between multiple 

elements through a single instance [58]. A detailed explanation of the translation of bi-

partite graphs into rDSM is provided by Mathieson et al. [18]. 

Connective size represents the quantity of arcs contained within the bipartite 

graph. It measures the connections between the elements and the degree of freedom, 

which is the parameter count that might vary in the system.  
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3.1.3.2 Interconnectivity 

The size of the product alone is insufficient in capturing the product architecture 

[4,7]. It does help in evaluating the number of connections between the product elements 

but it does not indicate how these elements are connected to each other. Two products 

might have the same number of connections but the nature of these connections can be 

different which will in turn result in different product complexities. For instance, consider 

a bag full of building bricks and a building constructed using the same bricks. Although 

both have the same number of elements and connections, the building is evidently more 

complex with respect to the interconnectivity between the elements.  

The measure interconnectivity examines the different possible combinations of 

relationships between the elements of a product. Interconnectivity is further broken down 

into two characteristics: shortest path and flow rate. The shortest path length 

measurements indicate the number of relationships that must be passed by to travel from 

one product element to another [58,59]. For instance, in Figure 3.5, housing 1 is 

connected to housing 2 through two contact instances. Thus the shortest path length in 

this case would be two.   
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Figure 3.5: Shortest path length 

Flow capacity evaluates the number of unique paths between each element pair in 

the product. The push-relabel maximum flow algorithm was applied to the degree of 

freedom multiple graphs projection to compute the flow capacity values [18,60]. 

3.1.3.3 Centrality 

The measure of centrality extracts the relative importance of the different 

elements within a system. The two centrality measures that were evaluated for each 

element include betweenness centrality and the clustering coefficient. Betweenness, as 

the name suggests, depicts how central an element is to the other elements within a 

product structure. Betweenness centrality computes the number of shortest paths of which 

an element is a part of [61]; and the clustering coefficient gives a measure of the degree 

to which the elements are bunched within the product [62].  

3.1.3.4 Decomposability 

Decomposability measures the difficulty of disassembling a system one element 

at a time. The purpose is to identify and analyze the necessary actions for structural 
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disassembly of a product. The Ameri-Summers decomposability algorithm [4] was 

developed to calculate this metric. The algorithm iteratively reduces the elements of the 

product with each iteration involving the elimination of relationships that contain the 

least number of connections with the elements. Essentially the product decomposability 

complexity increases in proportion with the number of iterations. 

In decomposition, core numbers can be defined as the largest integer such that the 

given element exists in a graph where all degrees are at least that integer [63]. These 

degrees were separated into measurements relating to the in-degree and out-degree of 

each element node in digraphs. 

The algorithms of all the twenty nine complexity metrics were computed using 

the programming language MATLAB; comprising of a combination of self-developed 

functions and the MatlabBGL implementation of the Boost Graph Library. The 

MATLAB code “EZ_ANN” transforms the bi-partite graphs into the twenty nine 

complexity metrics vector. The MATLAB codes can be found in the Appendix section of 

the thesis. 

3.1.4 Product Performance Values 

The product performance values evaluated in the experimental method include 

assembly time and market value (price). The assembly times and market values of the 

entire set of twenty products are illustrated in Tables 3.5 and 3.6. 
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3.1.4.1 Assembly Time 

The assembly times of the products were evaluated manually based on the 

Boothroyd and Dewhurst tables for Design for Assembly (DFA) [19]. The Boothroyd and 

Dewhurst DFA method calculates assembly time as an aggregation of part handling and 

insertion times. Handling time is measured in terms of the level of difficulty experienced 

in grasping and maneuvering the assembly parts (elements).  Insertion time is calculated 

as the time needed to place each part in the assembly. These product assembly times were 

further used as target values of the products for the two design representations: function 

structures and assembly models. These target values were later used as the performance 

output values to train ANNs. Table 3.5 illustrates the assembly times (in seconds) of the 

entire set of twenty products. The rows containing the five test product quotes are 

highlighted in this table in order to distinguish them from the products used for ANN 

training. 
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Table 3.5 : Product Assembly Times in seconds based on B&D DFA tables [8] 

 Product Name Assembly Time (Seconds) 

1 Stapler 123.51 

2 Electric Grill 121.08 

3 Juice Extractor 76.65 

4 Solar Yard Light 128.79 

5 Bench Vise 143.69 

6 3-Hole Punch 145.38 

7 Electric Drill 189.65 

8 Nail gun 90.44 

9 Blender 263.21 

10 Computer Mouse 81.25 

11 Food Mixer 76.65 

12 Garage Door Opener 196.50 

13 Jigsaw 339.38 

14 Electric tooth Brush 395.82 

15 Sewing Machine 273.71 

16 Sander 218.18 

17 Hair Dryer 89.53 

18 Lawn Mower 296.61 

19 Flashlight 75.40 

20 Food Chopper 316.62 

3.1.4.2 Market Value (Price) 

Five market value quotes in United States dollar ($) currency were procured from 

the Amazon Website11 for each of the twenty consumer products. This was done to cover 

a range of values for each product corresponding to other equivalent products. The 

average value of these five market value quotes was calculated to obtain the target values 

for each product for the two design representations: function structures and assembly 

                                                           
11

 http://www.amazon.com/ 
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models. These target values were later used as the performance output values to train 

ANNs.  

The product quotes obtained from the Amazon Website12 are illustrated in Table 

3.6. The rows containing the five test product quotes are highlighted in this table in order 

to distinguish them from the products used for ANN training. 

                                                           
12

 http://www.amazon.com/ 
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Table 3.6 : Product Market value quotes in $ [8] (Source: Amazon Website13) 

 
Product Name Quote 1($) Quote 2($) Quote 3($) Quote 4($) Quote 5($) 

MEAN 

($) 

1 Stapler 24.88 17.67 14.69 16.13 16.83 18.04 

2 Electric Grill 47.02 49.91 58.94 79.95 89.99 65.162 

3 Juice Extractor 26.99 29.95 30.19 32.78 40 31.982 

4 Solar Yard Light 1.663 1.937 2.997 3.75 4.123 2.894 

5 Bench Vise 38.38 39.15 40.71 40.72 43.37 40.466 

6 3 Hole Punch 57.91 62.99 63.83 71.56 73.5 65.958 

7 Electric Drill 42.99 48.42 49.97 59.26 69.46 54.02 

8 Nail gun 69 76.96 79.99 82.99 89.68 79.724 

9 Blender 14.96 19.99 21.99 24.85 25.31 21.42 

10 Computer Mouse 6.95 8.17 8.99 9 12.01 9.024 

11 Food Mixer 8.99 9.89 13.22 14.96 19.99 13.41 

12 
Garage Door 

Opener 
103.99 119.88 128 139 148 127.774 

13 Jigsaw 114.99 117.5 78.99 74.999 139.95 105.286 

14 
Electric tooth 

Brush 
79.99 95.99 96.9 119 129.95 104.366 

15 Sewing Machine 75 125 175 129 69.99 114.798 

16 Sander 169.95 189.9 204.97 214.95 295 214.954 

17 Hair Dryer 14.99 20.96 23.99 24.49 26.95 22.276 

18 Lawn Mower 99.99 114.99 135.99 137.97 143.99 126.586 

19 Flashlight 17.89 17.76 20.38 20.65 24.92 20.32 

20 Food Chopper 39.95 42.99 49 49 59 47.988 

3.1.5 Artificial Neural Networks (ANNs) 

Once the product complexity metrics were evaluated, the forecasting ability of 

Artificial Neural Networks (ANN) was utilized to map the relationships between them 

and the product performance values: assembly time and market value. ANNs were 

chosen for mapping the relationships on account of their ability to perform nonlinear 

statistical modeling [65]. Other machine learning approaches like the support vector 

                                                           
13

 http://www.amazon.com/ 
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machines and decision trees were not considered to create prediction models as they do 

not provide a continuous differentiable output [20].  

The ANN used for this method is a monitored back propagation network with a 

single hidden layer as recommended in previous research [9,20,66–68]. First, the ANNs 

were trained by providing the complexity vector as the input and the target assembly 

times and market values. Using the trained predictive model information and the new set 

of product complexities, the ANNs were then tested on five of the remaining products. 

Each neural network is made up of 189 architectures with 100 repetitions each. Hence, 

the training and testing of the ANNs resulted in 18,900 individual performance value 

estimates. The precision analysis results of the18,900 estimates for the five test products 

in each of the four prediction models are presented in Section 3.2. 

3.2 Evaluation of Predictive Precision  

The test product set used for predicting the performance value estimates 

comprises of the sander, hair dryer, lawn mower, flashlight, and food chopper. The 

predictive precision analysis is conducted for four prediction models; two of which 

estimate assembly time in seconds and the other two estimate market value in US dollar 

($). This results in a total of four sets of performance value estimates. The standard 

deviation of the absolute percentage error is computed to measure the predictive precision 

of the four prediction models. The mathematical formulae used in the measurement of 

predictive precision are illustrated in Section 3.2.1.  
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3.2.1 Precision measurement 

In order to measure predictive precision, the error in estimated performance 

values must first be evaluated. The predictive error is given by the difference between the 

estimated and the target performance value. This can be calculated using equation 12 as 

shown below. 

Predictive Error =  |(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑇𝑎𝑟𝑔𝑒𝑡)| (12) 

Since two types of performance values (assembly time and market value) are 

estimated using the four prediction models, the measure predictive error will not have the 

same units for all the four prediction models. In order to facilitate an objective 

comparison of the prediction models, the performance estimates are normalized. This is 

achieved by calculating the percentage predictive error, which is the percentage value of 

the ratio of the predictive error and the performance target value. The percentage 

predictive error can be computed using the following mathematical formula: 

Percentage Predictive Error =
Predictive Error

|𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑇𝑎𝑟𝑔𝑒𝑡|
× 100 

(13) 

Standard deviation is a statistical measure which quantifies the amount of 

variation in data distribution [69]. It is a measure of the variability of individual 

observations from the group mean. Thus, the prediction model with the lowest standard 

deviation value would be the most precise and the model with the highest standard 

deviation would be the least precise in predicting the performance values. The standard 
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deviation of the percentage predictive error (predictive precision) for the five test 

products is then evaluated using the mathematical formula (14) presented below.  

Predictive Precision = √
∑(% Predictive Error − Mean % Predictive error)2

𝑛
 

(14) 

where, 

  n = number of estimates 

The standard deviation of the percentage predictive error for the five test products 

across the four prediction models is presented and further analyzed in Section 3.2.2. 

3.2.2 Precision Analysis 

The precision analysis is conducted for five test products across the four 

prediction models. The standard deviation of the absolute percentage error is used as the 

measure to indicate predictive precision. The prediction model with the lowest standard 

deviation value indicates highest precision in predicting the performance values and vice 

versa. The four prediction models are each assigned a rank from 1 through 4 depending 

on the absolute percentage error standard deviation (predictive precision) of the 

performance estimates. The ranks are assigned in a descending order with rank 1 

indicating the highest precision prediction model and rank 4 indicating the prediction 

model with the lowest precision.  

3.2.2.1 Test product 1: Sander 

The absolute percentage error of each prediction model for the Sander is 

computed using the formula (13). Since the ANN gives an output of 18,900 estimates, 
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this results in 18,900 absolute percentage error values for each prediction model. A 

histogram is used to illustrate the frequency distribution of the percentage errors for each 

prediction model in Figure 3.6. 

 

Figure 3.6: Percentage error in prediction for the Sander 

In the above figure, the X-axis represents the percentage error in predicting the 

performance value estimates and the Y-axis represents the frequency of the percentage 

errors. The normally distributed curves in the above histogram depend on two measures, 

namely, mean and standard deviation. The mean value determines the position of the 

center of the curve whereas the standard deviation determines the curve’s width and 

height. It is seen in the figure that the FS-MV and FS-AT prediction models have tall and 

clustered curves whereas the AM-AT and AM-MV models have short and dispersed 
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curves. This is an indicator that the FS-MV and FS-AT prediction models are more 

precise as compared to the other two models for the Sander. 

The absolute percentage error standard deviation of the performance value 

estimates and the corresponding ranks for the Sander is illustrated in Table 3.7.  

Table 3.7: Precision ranking of the prediction models for the Sander 

Prediction Model 
Absolute percentage error 

standard deviation (%) 
Rank 

FS-AT 73.5 1 

AM-AT 149.9 3 

FS-MV 74.6 1 

AM-MV 152.2 3 

A low absolute percentage error standard deviation value indicates high precision 

and vice versa. Considering that the overall range of the absolute percentage error 

standard deviation values across the four prediction models is large, the values falling 

within a +15% range of each other are assigned equal ranks. The FS-AT and FS-MV 

prediction models have the lowest absolute % error standard deviation of 73.5% and 

74.6% respectively. Both these models are assigned an identical rank of 1 since they 

differ within a range of +15% from each other. They are followed by the prediction 

models AM-AT and AM-MV with absolute % error standard deviations of 149.9% and 

152.2% respectively. These two models are also assigned an identical rank of 3 as they 

fall within the range of +15%. The test results suggest that the function structures are 

found to be more precise than the assembly models in predicting the performance value 
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estimates for the sander. The predictive precision rank order of the prediction models for 

the test product Sander is as follows: 

Rank 1: FS-AT, FS-MV > Rank 3: AM-AT, AM-MV 

3.2.2.2 Test product 2: Hair dryer 

A histogram is plotted in Figure 3.7 for each prediction model to illustrate the 

frequency distribution of the percentage errors in prediction for the hair dryer. The X-axis 

represents the percentage error in predicting the performance value estimates and the Y-

axis represents the frequency of the percentage errors.  

 

Figure 3.7: Percentage error in prediction for the Hair dryer 
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In the case of the FS-AT and AM-AT prediction models, it is observed that the 

percentage errors are closely grouped together as compared to the other two models. This 

is representative of the fact that the FS-AT and AM-AT prediction models are more 

precise as compared to the FS-MV and AM-MV models.  

The absolute percentage error standard deviation of the performance value 

estimates and the corresponding ranks for the hair dryer is illustrated in Table 3.8.  

Table 3.8: Precision ranking of the prediction models for the Hair dryer 

Prediction Model 
Absolute percentage error 

standard deviation (%) 
Rank 

FS-AT 233.8 2 

AM-AT 113.4 1 

FS-MV 939.8 3 

AM-MV 1528.0 4 

For the hair dryer, it is observed that the AM-AT prediction model has the least 

absolute percentage error standard deviation of 113.4% and the AM-MV model has the 

highest absolute percentage error standard deviation of 1528.0%. Hence, these models are 

ranked 1 and 4 respectively. This is unlike the sander where the AM-AT model ranked 3 

in precision. The FS-AT and FS-MV prediction models with absolute percentage error 

standard deviation values of 233.8% and 939.8% are ranked 2 and 3 respectively. The 

predictive precision rank order of the prediction models for the hair dryer is as follows: 

Rank 1: AM-AT > Rank 2: FS-AT > Rank 3: FS-MV > Rank 4:AM-MV 
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3.2.2.3 Test product 3: Lawn mower 

Figure 3.8 illustrates a histogram plot for each prediction model to illustrate the 

frequency distribution of the percentage errors in prediction for the lawn mower. The X-

axis represents the percentage error in predicting the performance value estimates and the 

Y-axis represents the frequency of the percentage errors.  

 

Figure 3.8: Percentage error in prediction for the lawn mower 

As seen in the above Figure, the percentage error distribution is the narrowest for 

the AM-AT prediction model, indicating that it is the most precise prediction model for 

the lawn mower. The FS-AT model is the most widely distributed amongst the four 

models and hence, the least precise. 
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The absolute percentage error standard deviation of the performance value 

estimates and the corresponding ranks for the lawn mower is illustrated in Table 3.9. 

Table 3.9: Precision ranking of the prediction models for the lawn mower 

Prediction Model 
Absolute percentage error 

standard deviation (%) 
Rank 

FS-AT 215.1 4 

AM-AT 86.4 1 

FS-MV 157.7 3 

AM-MV 125.1 2 

It is seen that the AM-AT is the most precise model for the lawn mower with an 

absolute percentage error standard deviation value of 86.4%. It is followed by the models 

AM-MV, FS-MV, and FS-AT with absolute percentage error standard deviation values of 

125.1%, 157.7%, and 215.1% respectively. An observation of interest is that the 

assembly model representation is more precise as compared to the function structures in 

estimating the performance values for the lawn mower. This is unlike the sander where 

the function structures were found to be more precise than the assembly models. The 

predictive precision rank order of the prediction models for the lawn mower is as follows: 

Rank 1: AM-AT > Rank 2: AM-MV > Rank 3: FS-MV > Rank 4: FS-AT 

3.2.2.4 Test product 4: Flashlight 

A histogram is plotted in Figure 3.9 to illustrate the frequency distribution of the 

percentage errors in prediction for the flashlight. The X-axis represents the percentage 
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error in predicting the performance value estimates and the Y-axis represents the 

frequency of the percentage errors.  

 

Figure 3.9: Percentage error in prediction for the flashlight 

As seen in the above figure, the percentage error distribution is the narrowest for 

the AM-AT prediction model, indicating that it is the most precise prediction model for 

the flashlight. The AM-MV model on the other hand has a widespread distribution 

indicating that its precision is quite low compared to the other prediction models. 

The absolute percentage error standard deviation of the performance value 

estimates and the corresponding ranks for the flashlight is illustrated in Table 3.10. 
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Table 3.10: Precision ranking of the prediction models for the flashlight 

Prediction Model 
Absolute percentage error 

standard deviation (%) 
Rank 

FS-AT 229.9 2 

AM-AT 176.6 1 

FS-MV 375.8 3 

AM-MV 1675.1 4 

For the flashlight, it is observed that the AM-AT prediction model has the least 

absolute percentage error standard deviation of 176.6% and the AM-MV model has the 

highest absolute percentage error standard deviation of 1675.1%. Hence, these models are 

ranked 1 and 4 respectively. The FS-AT and FS-MV prediction models with absolute 

percentage error standard deviation values of 229.9% and 375.8% are ranked 2 and 3 

respectively. The precision rank order for the flashlight is the same as that for the hair 

dryer evaluated earlier. It is as follows: 

Rank 1: AM-AT > Rank 2: FS-AT > Rank 3: FS-MV > Rank 4:AM-MV 

3.2.2.5 Test product 5: Food chopper 

Figure 3.10 illustrates a histogram plot for each prediction model of the food 

chopper. The X-axis represents the percentage error in predicting the performance value 

estimates and the Y-axis represents the frequency of the percentage errors.  
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Figure 3.10: Percentage error in prediction for the food chopper 

In comparison to the other products the food chopper has closely distributed 

percentage error values across the four models. The AM-AT model is once again seen to 

be the most precise with a narrow distribution curve while the AM-MV model is the least 
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Table 3.11: Precision ranking of the prediction models for the food chopper 

Prediction Model 
Absolute percentage error 

standard deviation (%) 
Rank 

FS-AT 57.7 2 

AM-AT 49.9 1 

FS-MV 133.9 3 

AM-MV 302.7 4 

The AM-AT and FS-AT prediction models have absolute percentage error 

standard deviations of 49.9% and 57.7% respectively. Hence, these models are assigned 

ranks of 1 and 2 respectively. The FS-MV and AM-MV prediction models with absolute 

percentage error standard deviation values of 133.9% and 302.7% are ranked 3 and 4 

respectively. The precision rank order for the food chopper is as follows: 

Rank 1: AM-AT > Rank 2: FS-AT > Rank 3: FS-MV > Rank 4:AM-MV 

3.3 Predictive Precision Ranking 

The purpose of the precision analysis is to determine the performance ranking of 

the four prediction models for their predictive precision. The analysis is conducted for all 

the five test products. As seen in the Table 3.12, the AM-AT prediction model is the most 

precise in predicting the performance values of four of the five products whereas the AM-

MV model is the least precise in predicting the performance values of three of the five 

products. There is however no clear indicator to separate the models FS-AT and FS-MV 

in terms of individual product ranks. In order to establish a clear rank order for each 

prediction model; the measures best, worst, mean, and mode ranks for each product are 
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evaluated. The best and worst ranks determine the highest and lowest precision ranks 

attained by a model for any one of the five products. Mean rank is a measure of the 

average of the five test product ranks. Mode rank indicates the rank most often scored by 

a prediction model across the five products.   

The predictive precision ranking of the four models for each of the five products 

is illustrated in Table 3.12. 

Table 3.12: Predictive Precision ranking of the prediction models 

  FS-AT AM-AT FS-MV AM-MV 

1 Sander 1 3 1 3 

2 Hairdryer 2 1 3 4 

3 Lawnmower 4 1 3 2 

4 Flashlight 2 1 3 4 

5 
Food 

Chopper 
2 1 3 4 

 Best Rank 1 1 1 2 

 Worst Rank 4 3 3 4 

 Mean Rank 2.2 1.4 2.6 3.4 

 Mode Rank 2 1 3 4 

where, 

 FS-AT: Function structure - Assembly Time 

AM-AT: Assembly model - Assembly Time  

FS-MV: Function Structure - Market Value 

FS-AT: Function Structure - Assembly Time 

 Rank 1: highest precision 

Ranks 2, 3: intermediate precision 

Rank 4: lowest precision 

With respect to the measures best and worst rank, a specific rank order cannot be 

established. However, both mean and mode ranks indicate identical predictive precision 

rank orders for the four prediction models; which is given as follows: 
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Rank 1: AM – AT > Rank 2: FS – AT > Rank 3: FS– MV > Rank 4: AM – MV (15) 

The prediction models are further ranked according to the range of the absolute 

percentage error standard deviation values for the five products (see Table 3.13). The 

measure range is the difference between the largest and the smallest percentage error 

standard deviations. It helps to analyze the extent to which a prediction model precision 

varies from one product to another.  

Table 3.13: Range of absolute % error standard deviation  

 FS-AT AM-AT FS-MV AM-MV 

Max stdev. (%) 233.8 176.6 939.8 1675.1 

Min stdev. (%) 57.7 49.9 74.6 302.7 

RANGE (%) 176.1 126.7 865.2 1372.4 

RANK 2 1 3 4 

In the above table, the maximum and minimum values of the absolute percentage 

error standard deviation are used to compute the precision range for each model. There 

exists a big disparity in the standard deviation range between the AM-AT and FS-AT 

prediction models and the FS-MV and AM-MV prediction models. The AM-AT model 

has the best range of 126.7% closely followed by the FS-AT model which has a range of 

176.1%. The models FS-MV and AM-MV indicate much higher range values of 865.2% 

and 1372.4% respectively. These results demonstrate that the AM-AT and FS-AT models 
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predict precisely across all the five test products whereas the precision of the FS-MV and 

AM-MV models vary extensively from product to product.  

The predictive precision rank order based on the measure range is as follows: 

Rank 1: AM – AT > Rank 2: FS – AT > Rank 3: FS– MV > Rank 4: AM – MV (16) 

This rank order is the same as the rank order calculated based on the measures 

mean and mode. Thus, based on the measures mean, mode, and range the predictive 

precision rank order of the four prediction models is as illustrated below: 

Rank 1: AM-AT Prediction model 

Rank 2: FS-AT Prediction model 

Rank 3: FS-MV Prediction model 

Rank 4: AM-MV Prediction model 

Now that the predictive precision rank order is known, it is imperative to 

comprehend the possible reasons behind this ranking. The AM-AT prediction model 

utilizes assembly models to predict assembly times. Assembly models contain specific 

structural information such as component count, connections between these components, 

and their orientation. These are the fundamental factors which essentially influence the 

time required to complete a product assembly. This is possibly one of the main driving 

factors behind the AM-AT prediction model attaining Rank 1. The AM-MV model uses 

function structures to predict market value. Market value is predominantly determined on 

the basis of the product’s functional abilities rather than its assembly details. This is 



68 

reflected in the precision rank order with the FS-MV prediction model proving to be a 

better indicator of market value as compared to the AM-MV model.    

3.4 Comparative evaluation of the prediction models based on accuracy and precision 

This section demonstrates the predictive accuracy and precision of the 

engineering design representations (assembly models and function structures) in 

predicting the performance value estimates (assembly time and market value). Previous 

research compared the four prediction models and assigned ranks based on the accuracy 

of their prediction [8]. In section 3.3 of this thesis, the models were analyzed and 

assigned ranks based on their predictive precision. Table 3.14 illustrates the rank order of 

the prediction models with respect to both predictive precision and accuracy.   

Table 3.14: Predictive accuracy and precision rank order 

Prediction model 
Accuracy 

Rank [8] 

Precision 

Rank 

Assembly Model - 

Assembly Time 
1 1 

Assembly Model - 

Market Value 
2 4 

Function Structure - 

Assembly Time 
3 2 

Function Structure - 

Market Value 
4 3 

As seen in Table 3.14, the Assembly Model - Assembly Time (AM-AT) 

prediction model is ranked 1 for both predictive accuracy and precision. This reflects that 
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given assembly models, the GCCM can consistently predict accurate assembly times; 

thus indicating the robustness of the Assembly Model - Assembly Time prediction 

model. The Function Structure - Assembly Time prediction model is ranked 3 for 

accuracy and 2 for its precision whereas the Function Structure - Market Value prediction 

model ranked 4 for its accuracy and 3 for precision. The Assembly Model - Market Value 

(AM-MV) prediction model is ranked 2 for its predictive accuracy but ranked 4 for its 

precision which demonstrates that it is accurate in predicting the performance values but 

not with enough consistency. This lack of precision could be due to the fact that the 

assembly models do not contain information regarding all the factors that contribute 

towards a product’s market value. For instance, information such as product material, 

labor cost, manufacturing cost etc. which factor in a product’s market value are not 

contained in assembly models.  

A critical observation of interest is that amongst the five test products, the food 

chopper predicts the performance value estimates within an accuracy range of 5.74% to 

13.93% and within a standard deviation range of 49.88% to 302.7%. It is by far the most 

accurate and precise as compared to the other consumer products. One can hypothesize 

that this is due to the use of similar architecture products in the training set, namely, the 

blender, juice extractor, and food mixer. Additional experimentation can be done using a 

larger population of similar product architectures in the training set in order to further 

improve the GCCM’s predictive performance. 



70 

Chapter Four 

SENSITIVITY ANALYSIS OF THE COMPLEXITY METRICS 

The Graph Complexity Connectivity Method (GCCM) currently employs twenty 

nine complexity metrics divided across four classes as the input to train the artificial 

neural networks (ANNs). These metrics were developed and integrated into the method 

over time with the objective to evaluate system complexity and create surrogate 

prediction models of assembly time and market value, given assembly models and 

function structures. However, the influence of each metric in predicting the performance 

values across all the four surrogate prediction models is undetermined. The objective of 

the sensitivity analysis conducted in this chapter is to identify the influential (significant) 

complexity metrics in the estimation of the performance values, assembly time and 

market value. 

Multiple linear regression is the statistical technique used to conduct the 

sensitivity analysis of the twenty nine complexity metrics in performance value 

prediction for the four prediction models. This technique is used owing to its ability to 

model the impact of multiple explanatory variables (independent variables) in predicting 

the response variable (dependent variable). In the sensitivity analysis, the twenty nine 

complexity metrics represent the explanatory variables and the performance value 

represents the response variable. The sensitivity analysis of the metrics as predictors 

through the ANNs can also help us avoid the limitation of the low data set size associated 

with the high degree of freedom of the 29 complexity metrics.  
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The significant metrics identified using the regression analysis for each of the four 

prediction models are further used to train and test the ANNs to predict the product 

performance values. This is followed by a comparative evaluation of predictive accuracy 

and precision of the performance value estimates evaluated using both the original set of 

twenty nine metrics and the new set of significant metrics.  

4.1 Analysis procedure 

The statistical program Minitab (version 17.1.0) is used for the multiple linear 

regression analysis. The specifications of the computer employed for the analysis are as 

follows:  

Windows edition: 8.1 machine 

Processor: 2.40 GHz, 

Installed memory (RAM): 8GB, 

Operating System type: 64-bit.  

The analysis settings for the Minitab analysis are found in Table 4.1. 

Table 4.1: Minitab analysis parameters 

Analysis: Multiple Linear Regression 

Method: Stepwise 

Confidence for all intervals: 90% 

Type of confidence interval: Two-sided 

Sum of squares for tests: Adjusted 

Box Cox Transformation: None 
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The twenty nine complexity metrics are used as the explanatory variables 

(independent variables) and the 18,900 performance value estimates are used as the 

response variables (dependent variables) for the stepwise multiple linear regression 

analysis of the 15 training products. Stepwise regression methodically adds the most 

significant variable or removes the least significant variable during each step. The three 

common procedures for stepwise regression include forward selection, backward 

elimination and the standard stepwise selection procedure. Forward selection starts with 

no predictors in the model with the most significant variable being added in each step. 

Backward elimination starts with all predictors in the model with the least significant 

variable being eliminated in each step. The standard stepwise selection procedure is a 

combination of the forward selection and backward elimination procedures. After each 

step in which a variable is added, all the applicant variables in the model are inspected to 

see if their significance has been reduced below the specified tolerance level. Hence, the 

standard stepwise variable selection procedure is selected for this analysis. Due to a small 

sample size comprising of five test products and fifteen training products, a wide 

confidence interval of 90% is used. 

In this analysis, the ‘Alpha-to-enter value’ of 0.1 is used as the specified tolerance 

level. If a non-significant variable is found, it is removed from the model. The ‘Alpha-to-

remove’ value of 0.1 is used as the indicator for a variable’s significance. The adjusted 

sums of squares is used in this analysis as it does not depend on the order in which the 

factors are entered into the regression model as opposed to the sequential sum of 

squares.  The results from the analysis are illustrated in Section 4.2.  
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4.2 Results of the sensitivity analysis 

The stepwise multiple linear regression analysis is conducted to identify the 

significant complexity metrics in the prediction of performance value estimates 

(significant predictors). This results in four sets of significant predictors, one for each 

prediction model. The significant predictors involved in the FS-AT prediction model are 

illustrated in Table 4.2. The column Metric # represents the number corresponding to 

each metric as assigned earlier in Table 3.4. 

Table 4.2: Significant predictors in the FS-AT prediction model 

Class Type: Metric Metric # Coefficient p-value 

Size Dimensional: Elements m1 10.02 0.000 

Size Connective: Connections m4 2.96 0.018 

Interconnection Flow rate: Sum m9 -0.411 0.001 

Interconnection Flow rate: Max m10 -5.86 0.001 

Interconnection Flow rate: Mean m11 -13.60 0.088 

Interconnection Flow rate: Density m12 783 0.000 

Centrality Betweenness: Max m14 0.2587 0.001 

Decomposition Core numbers In: Density m25 1313 0.005 

Decomposition Core numbers Out: Density m29 -2133 0.000 

where,  

m: Complexity Metric  
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Nine out of the twenty nine complexity metrics are significant predictors for the 

FS-AT prediction model. The other complexity metrics are removed from the model 

because their p-values are greater than the ‘Alpha-to-Enter’ and ‘Alpha-to-remove’ 

values of 0.1. An important point to note is that at least one metric from each of the four 

classes: Size, Interconnection, Centrality, and Decomposition, is significant in assembly 

time prediction. Using the coefficients obtained for each significant predictor, the 

regression equation for the FS-AT prediction model is as follows: 

Assembly Time = -34.0 + 10.02 m1 + 2.96 m4 - 0.411 m9 - 5.86 m10 -

 13.60 m11+ 783 m12 + 0.2587 m14 + 1313 m25 - 2133 m29 

(17) 

The complexity metrics that are identified to be significant in the AM-AT 

prediction model are illustrated in Table 4.3. 
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Table 4.3: Significant predictors in the AM-AT prediction model 

Class Type: Metric Metric # Coefficient p-value 

Size Dimensional: Elements m1 0.487 0.036 

Interconnection Shortest path: Sum m5 0.026 0.000 

Interconnection Shortest path: Density m8 -361.5 0.000 

Interconnection Flow rate: Mean m11 -12.522 0.000 

Centrality Clustering Coefficient: Sum m17 2.486 0.000 

Centrality Clustering Coefficient: Max m18 -14.29 0.000 

Centrality Clustering Coefficient: Density m20 -999 0.000 

Decomposition Core numbers In: Sum m22 0.202 0.073 

Decomposition Core numbers In: Density m25 148 0.031 

where,  

m: Complexity Metric  

Nine out of the twenty nine complexity metrics are identified as significant 

predictors for the AM-AT prediction model.  A metric from each class is found to be 

significant with interconnection and centrality being the classes with the most number of 

significant metrics. The other complexity metrics are removed from the model because 

their p-values are greater than the ‘Alpha-to-Enter’ and ‘Alpha-to-remove’ values of 0.1. 

Using the coefficients obtained for each significant predictor, the regression equation for 

the AM-AT prediction model is as follows: 
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Assembly Time = 141.46 + 0.487 m1 + 0.026 m5 - 361.5 m8 - 12.522 m11 

+ 2.486 m17 -14.29 m18 - 999 m20 + 0.202 m22 + 148.0 m25 

(18) 

Table 4.4 depicts the complexity metrics that are influential in estimating market 

value in the FS-MV prediction model. 

Table 4.4: Significant predictors in the FS-MV prediction model 

Class Type: Metric Metric # Coefficient p-value 

Size Dimensional: Elements m1 13.05 0.000 

Size Connective: Connections m4 1.561 0.044 

Interconnection Flow rate: Sum m9 -0.296 0.000 

Interconnection Flow rate: Max m10 -4.74 0.044 

Interconnection Flow rate: Density m12 741 0.000 

Centrality Betweenness: Sum m13 0.014 0.002 

Decomposition Core numbers In: Density m25 1012 0.014 

Decomposition Core numbers Out: Density m29 -1798 0.000 

where,  

m: Complexity Metric  

For the FS-MV prediction model, eight out of the twenty nine complexity metrics 

are found to be significant predictors. Using the coefficients obtained for each significant 

predictor, the regression equation for this prediction model is as follows: 

Market Value = -45.7 + 13.05 m1 + 1.561 m4 - 0.296 m9 - 4.74 m10  (19) 
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+ 741 m12 + 0.014 m13 + 1012 m25 -1798 m29 

Table 4.4 represents the complexity metrics that are influential in estimating 

market value in the AM-MV prediction model. 

Table 4.5: Significant predictors in the AM-MV prediction model 

Class Type: Metric Metric # Coefficient p-value 

Size Dimensional: Elements m1 0.476 0.051 

Interconnection Shortest path: Sum m5 0.026 0.000 

Interconnection Shortest path: Density m8 -365.6 0.000 

Interconnection Flow rate: Mean m11 -12.558 0.000 

Centrality Clustering Coefficient: Sum m17 2.49 0.000 

Centrality Clustering Coefficient: Max m18 14.37 0.000 

Centrality Clustering Coefficient: Density m20 -999 0.000 

Decomposition Core numbers In: Sum m22 0.198 0.079 

Decomposition Core numbers In: Density m25 150.3 0.026 

where,  

m: Complexity Metric  

It can be seen that an identical set of nine complexity metrics are significant in 

both the AM-MV and the AM-AT prediction models. This is a clear indicator that the 

nature of the design representation influences the prediction process more than the nature 

of the performance values. Using the coefficients obtained for each significant predictor, 

the regression equation for the AM-MV prediction model is as follows: 
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Market Value = 141.96 + 0.476 m1 + 0.026 m5 - 365.6 m8 - 12.558 m11 

+ 2.49 m17 + 14.37 m18 - 999 m20 + 0.198 m22 + 150.3 m25 

(20) 

The significant predictor metrics identified across each of the four prediction 

models are condensed in Table 4.6 to facilitate comparison. The significant metrics 

common across the prediction models FS-AT & FS-MV as also the ones which are 

common across the AM-AT & AM-MV models are italicized. The significant metrics 

which are common across the FS-AT and AM-AT prediction models as well as the ones 

common across the FS-MV and AM-MV are underlined. The predictors marked in bold 

are common for all the four models. 

Table 4.6: Significant predictors for the four prediction models 

Common predictors: 

(bold) 
FS (Common: italicized) AM (Common: italicized) 

AT 

(common: underlined) 

m1 

m4 

m9 

m10 

m11 

m12 

m14 

m25 

m29 

m1 

m5 

m8 

m11 

m17 

m18 

m20 

m22 

m25 

MV 

(common: underlined) 

m1 

m4 

m9 

m10 

m12 

m13 

m25 

m29 

m1 

m5 

m8 

m11 

m17 

m18 

m20 

m22 

m25 
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The complexity metrics m1 through m4 belong to the class ‘size’, m5 through 

m12 fall under the class interconnection, m13 through m20 are associated with the class 

centrality, and metrics m21 to m29 belong to the class decomposition. The regression 

analysis suggests that for each design representation, there exists a set of complexity 

metrics that are significant predictors of performance values. There is at least one metric 

from each class (size, interconnection, centrality, and decomposition) which is identified 

as a significant predictor. Two metrics are found to be significant for all the four 

surrogate prediction models; m1: the number of elements and m25: the density of the in-

core numbers.  

An observation of interest is that there are more centrality metrics that are 

significant for the assembly model design representation than for the function structures. 

This can be elucidated by the fact that the product dataset analyzed comprises of 

consumer products that are generally designed to be highly modular for ease of 

manufacturing and assembly. This modularity (or centrality) is not as evident in the 

function structures.  

4.3 Significant metric set prediction results  

The four sets of complexity metrics identified as significant predictors for the 

corresponding four prediction models are now used to train the ANNs. The same set of 

fifteen consumer products as used before for the original set of twenty nine metrics are 

used for this ANN training. The trained ANNs are then tested on the same set of five 

products as before to predict the performance value estimates for each of the four 

prediction models. Finally, these test results are compared on the basis of predictive 
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accuracy and precision to the earlier test results obtained using the complete set of twenty 

nine complexity metrics. 

4.3.1 Test product: Sander 

The absolute percentage error of each prediction model for the Sander is 

computed using the formula (13). Figure 4.1 illustrates histogram plots for the sander 

corresponding to the four models, depicting frequency distribution of the percentage 

errors in prediction. 

 

Figure 4.1: Percentage error in prediction for the sander using significant metrics  

In the histogram plots, the X-axis represents the percentage error in predicting the 

performance value estimates and the Y-axis represents the frequency of the percentage 

errors. The plots suggest that the FS-MV and AM-MV prediction models are more 
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precise but less accurate as compared to the FS-AT and AM-AT models for the Sander. 

These test results are further compared to the test results obtained using the original set of 

complexity metrics in Table 4.7. A positive change in error mean and standard deviation 

indicates that the significant metric set predicts with higher accuracy and precision 

respectively as compared to the original metric set and vice versa. 

Table 4.7: Comparative evaluation of original and significant metrics’ estimates for 

the sander 

 Accuracy Precision 

 Original 

Absolute 

Percentage 

Error 

Mean (%) 

Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Change in 

Error 

Mean (%) 

Original 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change in 

Error 

Standard 

deviation 

(%) 

FS-

AT 

59.91 40.40 19.51 73.52 88.51 -14.99 

AM-

AT 

10.23 38.26 -28.03 149.9 66.85 83.05 

FS-

MV 

59.31 72.02 -12.71 74.62 20.68 53.94 

AM-

MV 

11.89 71.96 -60.07 152.2 16.47 135.73 

The comparative evaluation for the test product sander suggests that using the 

significant metric set for prediction improves predictive accuracy but decreases precision 

for the FS-AT prediction model. The opposite is true for the remaining three models. 
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4.3.2 Test product: Hair dryer 

The absolute percentage errors of the prediction models for the hair dryer are 

computed using the formula (13). Figure 4.2 illustrates histogram plots for the hair dryer 

corresponding to the four models, depicting frequency distribution of the percentage 

errors in prediction.  

 

Figure 4.2: Percentage error in prediction for hair dryer using significant metrics 

The X-axis of the histograms represents the percentage error in predicting the 

performance value estimates and the Y-axis represents the frequency of the percentage 

errors. The histograms suggest that the FS-AT prediction model is the most accurate and 

precise in prediction. These test results are further compared to the test results obtained 

using the original set of complexity metrics in Table 4.8. A positive change in error mean 
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and standard deviation indicates that the significant metric set predicts with higher 

accuracy and precision respectively as compared to the original metric set and vice versa. 

Table 4.8: Comparative evaluation of the original and significant metrics’ estimates 

for the hair dryer 

 Accuracy Precision 

 Original 

Absolute 

Percentage 

Error 

Mean (%) 

Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Change in 

Error 

Mean (%) 

Original 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change in 

Error 

Standard 

deviation 

(%) 

FS-

AT 

42.12 24.91 17.21 233.8 65.84 167.96 

AM-

AT 

7.49 32.50 -25.01 113.4 133.8 -20.4 

FS-

MV 

132.7 127.6 5.1 939.8 193.2 746.6 

AM-

MV 

12.41 28.11 -15.7 1528 172.4 1355.6 

The comparative evaluation for the test product hair dryer suggests that using the 

significant metric set for prediction improves predictive accuracy only for the FS-AT and 

FS-MV prediction models. The predictive precision is seen to improve for the FS-AT, 

FS-MV and AM-MV prediction models when the significant metric set is used. 

4.3.3 Test product: Lawn mower 

The absolute percentage error of each prediction model for the lawn mower is 

computed using the formula (13). Figure 4.3 illustrates histograms for the lawn mower 
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corresponding to the four models, depicting frequency distribution of the percentage 

errors in prediction.  

 

Figure 4.3: Percentage error in prediction for lawn mower using significant metrics 

The X-axis of the histograms represents the percentage error in predicting the 

performance value estimates and the Y-axis represents the frequency of the percentage 

errors. The histograms suggest that the FS-MV and AM-MV prediction models are more 

precise but less accurate as compared to the FS-AT and AM-AT models for the hair 

dryer. These test results are further compared to the test results obtained using the 

original set of complexity metrics in Table 4.9. A positive change in error mean and 

standard deviation indicates that the significant metric set predicts with higher accuracy 

and precision respectively as compared to the original metric set and vice versa. 
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Table 4.9: Comparative evaluation of the original and significant metrics’ estimates 

for the lawn mower 

 Accuracy Precision 

 Original 

Absolute 

Percentage 

Error 

Mean (%) 

Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Change in 

Error 

Mean (%) 

Original 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change in 

Error 

Standard 

deviation 

(%) 

FS-

AT 

14.47 29.35 -14.88 215.1 93.59 121.51 

AM-

AT 

0.19 32.16 -31.97 86.44 54.85 31.59 

FS-

MV 

21.69 43.53 -21.84 157.7 44.38 113.32 

AM-

MV 

7.2 58.26 -51.06 125.1 35.21 89.89 

The comparative evaluation for the test product lawn mower suggests that using 

the significant metric set for prediction improves predictive precision but reduces 

predictive accuracy for all the four prediction models. 

4.3.4 Test product: Flashlight 

The absolute percentage error of each prediction model for the flashlight is 

computed using the formula (13). Figure 4.4 illustrates histograms of the flashlight 

corresponding to the four models. These depict the frequency distribution of the 

percentage errors in prediction.  
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Figure 4.4: Percentage error in prediction for the flashlight using significant metrics 

The X-axis of the histograms represents the percentage error in predicting the 

performance value estimates and the Y-axis represents the frequency of the percentage 

errors. The histograms suggest that the FS-MV and AM-MV prediction models are more 

precise but less accurate as compared to the FS-AT and AM-AT models for the 

flashlight. These test results are further compared to the test results obtained using the 

original set of complexity metrics in Table 4.10. A positive change in error mean and 

standard deviation indicates that the significant metric set predicts with higher accuracy 

and precision respectively as compared to the original metric set and vice versa. 

Table 4.10: Comparative evaluation of the original and significant metrics’ estimates 
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 Original 

Absolute 

Percentage 

Error 

Mean (%) 

Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Change in 

Error 

Mean (%) 

Original 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change in 

Error 

Standard 

deviation 

(%) 

FS-

AT 

18.98 9.06 9.92 229.9 64.33 165.57 

AM-

AT 

2.91 140.1 -137.19 176.6 186.1 -9.5 

FS-

MV 

36.04 210.7 -174.66 375.8 220.1 155.7 

AM-

MV 

23.23 0.94 22.29 1675 242.1 1432.9 

The comparative evaluation for the test product flashlight suggests that using the 

significant metric set for prediction improves predictive accuracy only for the FS-AT and 

AM-MV prediction models. On the other hand, the predictive precision is seen to 

improve for the FS-AT, FS-MV and AM-MV prediction models when the significant 

metric set is used. 

4.3.5 Test product: Food chopper 

The absolute percentage error of each prediction model for the food chopper is 

computed using the formula (13). Figure 4.5 illustrates histograms for the food chopper 

corresponding to the four models, depicting frequency distribution of the percentage 

errors in prediction.  
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Figure 4.5: Percentage error in prediction for food chopper using significant metrics 

The X-axis represents the percentage error in predicting the performance value 

estimates and the Y-axis represents the frequency of the percentage errors. The 

histograms suggest that the FS-MV and AM-MV prediction models are more precise but 

less accurate as compared to the FS-AT and AM-AT models for the food chopper. These 

test results are further compared to the test results obtained using the original set of 

complexity metrics in Table 4.11. A positive change in error mean and standard deviation 

indicates that the significant metric set predicts with higher accuracy and precision 

respectively as compared to the original metric set and vice versa. 
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 Original 

Absolute 

Percentage 

Error 

Mean (%) 

Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Change in 

Error 

Mean (%) 

Original 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change in 

Error 

Standard 

deviation 

(%) 

FS-

AT 

8.76 17.68 -8.92 57.69 58.74 -1.05 

AM-

AT 

5.74 32.54 -26.8 49.88 53.86 -3.98 

FS-

MV 

13.93 3.22 10.71 133.9 91.17 42.73 

AM-

MV 

6.12 34.45 -28.33 302.7 95.25 207.45 

The comparative evaluation for the test product food chopper suggests that using 

the significant metric set for prediction improves predictive accuracy only for the FS-MV 

prediction models. The predictive precision increases for the FS-MV and AM-MV 

prediction models when the significant metric set is used. 

4.3.6 Conclusions from the prediction results 

The test results suggest that on the whole the precision of the prediction models 

increases when the significant metric set is used for prediction instead of the complete set 

of twenty nine complexity metrics. This is an indicator that employing only the 

significant sets of complexity metrics for prediction improves the Graph Complexity 

Connectivity Method’s ability to produce consistent results under the same conditions.  

There is however a decrease in the predictive accuracy of most of the prediction 

models while using the significant metrics. These results indicate that further work needs 

to be conducted in an attempt to shift these precise measurements towards the target 
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value. This can be achieved by training and testing the artificial neural networks using 

consumer products that have similar product architectures or those from within the same 

category of consumer products. For instance, exclusive use of products those fall under 

the category of consumer power tools. Previous research has indicated that the predictive 

accuracy increases when products from within the same category are used to estimate 

assembly times, given assembly models [15]. The confidence intervals used for the 

regression analysis can also be modified in an effort to improve the accuracy of 

prediction. 

In spite of their relatively low prediction accuracy, these significant complexity 

metrics can still prove to be valuable predictors of later stage information considering the 

fact that they are evaluated using early design stage representations. It is important to 

note that in the early design stage, the product structural information available is 

minimal. Hence, these early design stage significant metrics with relatively low accuracy 

can be as valuable as the metrics evaluated using a more detailed design representation 

with higher accuracy in predicting the same information. These significant metrics will 

enable designers to consider the impacts of their decisions in the early design stage using 

exact quantifiers rather than subjective judgments. This can eventually lead to cost 

savings by making more informed decisions earlier in the design process. 
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Chapter Five 

EXPERIMENTATION WITH DIFFERENT SETS OF SIGNIFICANT METRICS 

In this chapter, the identified significant complexity metrics for the four 

prediction models are divided into different experimental sets which are then used to train 

and test the ANNs. These experimental sets would essentially contain the union and 

intersection of the identified significant complexity across the four prediction models. 

The ANN test estimates are further examined for predictive accuracy and precision. 

These experiments will enable us to investigate the effect of manipulation of the 

significant complexity metrics and in turn answer research question 3. 

5.1 Experiment setup 

In the previous chapter, four sets of complexity metrics were determined to be 

significant (influential) predictors of performance values for the corresponding four 

prediction models. The significant complexity metric sets for the FS-AT, AM-AT, and 

AM-MV prediction models consist of nine metrics each whereas the significant metric set 

for the FS-MV prediction model consists of eight metrics. The dataset for experiment 1 

consists of the union of the metrics significant across both the FS-AT and FS-MV 

models. Experiment 2 includes the significant metrics that are common among the FS-AT 

and FS-MV models. The metrics identified to be significant predictors for the AM-AT 

and AM-MV prediction models are identical. The union and intersection sets of these 

metrics would result in the same set of metrics. This is the reason why experiments 1 and 

2 are not conducted for the AM-AT and AM-MV models. Finally, experiment 3 is 



92 

conducted for a comprehensive set involving the union of all the significant metrics 

across each of the four prediction models. 

5.2 Experiment 1: Union of FS-AT and FS-MV significant metric sets 

The significant complexity metrics of the FS-AT and FS-MV prediction models 

are combined to form the complexity metric vector for this experiment. This complexity 

vector is then used to train and test the ANNs for the same set of consumer products as 

for the previous analyses. 

5.2.1 Test product: Sander 

Figure 5.1 illustrates histogram plots for the sander corresponding to the four 

models, depicting frequency distribution of the percentage errors in prediction. 

The X-axis represents the percentage error in predicting the performance value 

estimates and the Y-axis represents the frequency of the percentage errors.  
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Figure 5.1: Percentage error in prediction for the sander for experiment 1 

The absolute values of the percentage error means are similar for the two 

prediction models. However, the FS-MV model has a narrower distribution as compared 

to the FS-AT model, indicating that the FS-MV model is more precise. In Table 5.1, the 

percentage error mean and standard deviation of the performance estimates obtained for 

experiment 1 are compared to the results evaluated earlier in Section 4.3.1 for the 

significant metric set. A positive change in error mean and standard deviation indicates 

that the experiment 1 metrics predict with higher accuracy and precision respectively as 

compared to the significant metric set and vice versa. 
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Table 5.1: Comparative evaluation of the significant metric set and experiment 1 

estimates for the sander 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

1 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

1 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

40.40 51.14 -10.74 88.51 89.61 -1.1 

FS-

MV 

72.02 54.38 17.64 20.68 31.23 -10.55 

The comparative evaluation suggests that experiment 1 predicts with higher 

accuracy only in the case of the FS-MV prediction model. However, the predictive 

precision is lower for experiment 1 when compared to the significant metric set. 

5.2.2 Test product: Hair dryer 

Figure 5.2 illustrates histogram plots for the hair dryer corresponding to the FS-

AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors.  



95 

 

Figure 5.2: Percentage error in prediction for the hair dryer for experiment 1 

The FS-AT prediction model is more accurate with an absolute percentage error 

mean of 81.85% as compared to the FS-MV model which has an absolute percentage 

error mean of 231.6%. The FS-AT model performs better than the FS-MV model in terms 

of precision as well with a percentage error standard deviation of 165.3% against the FS-

MV model’s 261.9%. In Table 5.2, the percentage error mean and standard deviation of 

the performance estimates obtained for experiment 1 are compared to the results 

evaluated earlier in Section 4.3.2 for the significant metric set. A positive change in error 

mean and standard deviation indicates that the experiment 1 metrics predict with higher 

accuracy and precision respectively as compared to the significant metric set and vice 

versa. 
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Table 5.2: Comparative evaluation of the significant metric set and experiment 1 

estimates for the hair dryer 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

1 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

1 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

24.91 81.85 -56.94 65.84 165.3 -99.46 

FS-

MV 

127.6 231.6 -104.00 193.2 261.9 -68.70 

The comparative evaluation suggests that experiment 1 predicts with lower 

accuracy and precision in the case of both FS-AT and FS-MV prediction models. This 

suggests that for the hair dryer, the predictive accuracy and precision is better when the 

respective sets of significant metrics identified for the two models are used for prediction. 

5.2.3 Test product: Lawn mower 

Figure 5.3 depicts histogram plots for the lawn mower corresponding to the FS-

AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors.  
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Figure 5.3: Percentage error in prediction for the lawn mower for experiment 1 

The FS-AT prediction model is more accurate with an absolute percentage error 

mean of 10.28% as compared to the FS-MV model which has an absolute percentage 

error mean of 23.97%. However, the FS-MV model performs better than the FS-AT 

model in terms of precision with a percentage error standard deviation of 58.00% against 

the FS-AT model’s 68.76%. In Table 5.3, the percentage error mean and standard 

deviation of the performance estimates obtained for experiment 1 are compared to the 

results evaluated earlier in Section 4.3.3 for the significant metric set. A positive change 

in error mean and standard deviation indicates that the experiment 1 metrics predict with 

higher accuracy and precision respectively as compared to the significant metric set and 

vice versa. 
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Table 5.3: Comparative evaluation of the significant metric set and experiment 1 

estimates for the lawn mower 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

1 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

1 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

29.35 10.28 19.07 93.59 68.76 24.83 

FS-

MV 

43.53 23.97 19.56 44.38 58.00 -13.62 

The comparative evaluation suggests that experiment 1 predicts with higher 

accuracy in the case of both FS-AT and FS-MV prediction models. The predictive 

precision is lower for experiment 1 when compared to the significant metric set for the 

FS-MV model. 

5.2.4 Test product: Flashlight 

Figure 5.4 illustrates histogram plots for the flashlight corresponding to the FS-

AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors. 
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Figure 5.4: Percentage error in prediction for the flashlight for experiment 1 

The FS-AT prediction model is more accurate with an absolute percentage error 

mean of 247.0% as compared to the FS-MV model which has an absolute percentage 

error mean of 285.7%. The FS-AT model performs better than the FS-MV model in terms 

of precision as well with a percentage error standard deviation of 202.8% against the FS-

MV model’s standard deviation of 293.5%. In Table 5.4, the percentage error mean and 

standard deviation of the performance estimates obtained for experiment 1 are compared 

to the results evaluated earlier in Section 4.3.4 for the significant metric set. A positive 

change in error mean and standard deviation indicates that the experiment 1 metrics 

predict with higher accuracy and precision respectively as compared to the significant 

metric set and vice versa. 
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Table 5.4: Comparative evaluation of the significant metric set and experiment 1 

estimates for the flashlight 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

1 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

1 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

9.06 247.0 -237.94 64.33 202.8 -138.47 

FS-

MV 

210.7 285.7 -75 220.1 293.5 -73.4 

The comparative evaluation suggests that experiment 1 predicts with lower 

accuracy and precision in the case of both FS-AT and FS-MV prediction models. This 

suggests that for the flashlight, the predictive accuracy and precision is better when the 

respective sets of significant metrics identified for the two models are used for prediction. 

5.2.5 Test product: Food chopper 

Figure 5.5 illustrates histogram plots for the food chopper corresponding to the 

FS-AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors. 
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Figure 5.5: Percentage error in prediction for the food chopper for experiment 1 

For the food chopper, the FS-MV prediction model is more accurate with an 

absolute percentage error mean of 13.40% as compared to the FS-AT model which has an 

absolute percentage error mean of 39.25%. However, the FS-AT model performs better 

than the FS-MV model in terms of precision with a percentage error standard deviation of 

45.46% against the FS-MV model’s standard deviation of 105.90%. In Table 5.5, the 

percentage error mean and standard deviation of the performance estimates obtained for 

experiment 1 are compared to the results evaluated earlier in Section 4.3.5 for the 

significant metric set. A positive change in error mean and standard deviation indicates 

that the experiment 1 metrics predict with higher accuracy and precision respectively as 

compared to the significant metric set and vice versa. 
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Table 5.5: Comparative evaluation of the significant metric set and experiment 1 

estimates for the food chopper 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

1 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

1 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

17.68 39.25 -21.57 58.74 45.46 13.28 

FS-

MV 

3.22 13.40 -10.18 91.17 105.9 -14.73 

The comparative evaluation suggests that experiment 1 predicts with lower 

accuracy in the case of both the FS-AT and FS-MV prediction models. The predictive 

precision is higher for experiment 1 when compared to the significant metric set for the 

FS-AT model but lower in the case of the FS-MV model. 

5.3 Summary of the results of Experiment 1 

This section evaluates the effect of manipulation of the significant complexity 

metrics in experiment 1 on the predictive accuracy and precision of the prediction 

models. In order to evaluate this effect, the changes in the accuracy and precision of the 

experiment 1 performance estimates from the significant metric set performance 

estimates are assessed. A positive change in accuracy and precision indicates that the set 

of complexity metrics used in experiment 1 predict better than the significant metric set. 

On the other hand, a negative change indicates that the significant metric set predicts 

better than experiment 1 metric set. Considering that the overall range of these change 
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values across the four prediction models is large, the values falling within a range of 

+15% from each other are considered to be equivalent to each other. Hence, only those 

changes in accuracy and precision which are beyond the +15% range are considered to be 

suggestive (noteworthy). On the basis of this condition, a recommendation on which 

metric set works better for each test product is provided in Table 5.6. 

Table 5.6: Recommendations on the metric set type to be used for each test product 

Test 

Product 

FS-AT prediction model FS-MV prediction model 

Recommendation  
Change in 

Accuracy 

(%) 

Change in 

Precision 

(%) 

Change in 

Accuracy 

(%) 

Change in 

Precision 

(%) 

Sander -10.74 -1.1 17.64 -10.55 Experiment 1 

Hair dryer -56.94 -99.46 -104.00 -68.70 Significant 

Lawn 

mower 
19.07 24.83 19.56 -13.62 Experiment 1 

Flashlight -237.94 -138.47 -75.00 -73.4 Significant 

Food 

chopper 
-21.57 13.28 -10.18 -14.73 Significant 

Legend 

Experiment 1 predicts better 

(Change > 15%) 

Experiment 1 predicts worse 

(Change < -15%) 

The sole considerable change observed for the test product sander, when the 

experiment 1 metric set is used, is the increase in predictive accuracy. Therefore, it is 

recommended to use the experiment 1 metric set for predicting the performance values of 

the sander. For the hair dryer and flashlight, the predictive accuracy and precision are 

seen to reduce considerably (Change < -15%) when the experiment 1 metric set is used. 

This is observed in the case of both the FS-AT and FS-MV prediction models. Hence, it 

is recommended to use the significant metric set for prediction for these two products. 

For the lawn mower, the experiment 1 metric set is recommended since it improves the 
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overall predictive accuracy and precision. The only considerable change observed for the 

food chopper when the experiment 1 metric set is used is the reduction in accuracy. This 

is the reason why the significant metric set is recommended for the food chopper. On the 

whole, it is seen that the significant metric set works better for three test products (hair 

dryer, flashlight, food chopper) while the experiment 1 metric set works better for the 

other two products (sander and lawn mower). 

5.4 Experiment 2: Intersection of FS-AT and FS-MV significant metric sets 

The complexity metric vector for this experiment includes the significant metrics 

that are common amongst the FS-AT and FS-MV models. This complexity vector is then 

used to train and test the ANNs for the same set of consumer products as for the previous 

analyses. 

5.4.1 Test product: Sander 

Figure 5.6 illustrates histogram plots for the sander corresponding to the FS-AT 

and FS-MV prediction models. The X-axis represents the percentage error in predicting 

the performance value estimates and the Y-axis represents the frequency of the 

percentage errors.  
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Figure 5.6: Percentage error in prediction for the sander for experiment 2 

The FS-AT prediction model is more accurate with an absolute percentage error 

mean of 37.08% as compared to the FS-MV model which has an absolute percentage 

error mean of 57.81%. However, the FS-MV model performs better than the FS-AT 

model in terms of precision with a percentage error standard deviation of 25.01% against 

the FS-AT model’s 79.12%. In Table 5.7, the percentage error mean and standard 

deviation of the performance estimates obtained for experiment 2 are compared to the 

results evaluated earlier in Section 4.3.1 for the significant metric set. A positive change 

in error mean and standard deviation indicates that the experiment 1 metrics predict with 

higher accuracy and precision respectively as compared to the significant metric set and 

vice versa. 
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Table 5.7: Comparative evaluation of the significant metric set and experiment 2 

estimates for the sander 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

2 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

2 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

40.40 37.08 3.32 88.51 79.12 9.39 

FS-

MV 

72.02 57.81 14.21 20.68 25.01 -4.33 

The comparative evaluation suggests that experiment 2 predicts with higher 

accuracy in the case of both FS-AT and FS-MV prediction models. The predictive 

precision is lower for experiment 2 when compared to the significant metric set for the 

FS-MV model. 

5.4.2 Test product: Hair dryer 

Figure 5.7 illustrates histogram plots for the hair dryer corresponding to the FS-

AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors.  
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Figure 5.7: Percentage error in prediction for the hair dryer for experiment 2 

The FS-AT prediction model is more accurate with an absolute percentage error 

mean of 82.01% as compared to the FS-MV model which has an absolute percentage 

error mean of 231.00%. The FS-AT model performs better than the FS-MV model in 

terms of precision as well with a percentage error standard deviation of 145.8% against 

the FS-MV model’s standard deviation of 234.5%. In Table 5.8, the percentage error 

mean and standard deviation of the performance estimates obtained for experiment 2 are 

compared to the results evaluated earlier in Section 4.3.2 for the significant metric set. A 

positive change in error mean and standard deviation indicates that the experiment 2 

metrics predict with higher accuracy and precision respectively as compared to the 

significant metric set and vice versa. 
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Table 5.8: Comparative evaluation of the significant metric set and experiment 2 

estimates for the hair dryer 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

2 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

2 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

24.91 82.01 -57.1 65.84 145.8 -79.96 

FS-

MV 

127.6 231.00 -103.4 193.2 234.5 -41.3 

The comparative evaluation suggests that experiment 2 predicts with lower 

accuracy and precision in the case of both FS-AT and FS-MV prediction models. This 

suggests that for the hair dryer, the predictive accuracy and precision is better when the 

respective sets of significant metrics identified for the two models are used for prediction. 

5.4.3 Test product: Lawn mower 

Figure 5.8 illustrates histogram plots for the lawn mower corresponding to the FS-

AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors. 
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Figure 5.8: Percentage error in prediction for the lawn mower for experiment 2 

The FS-AT prediction model is more accurate with an absolute percentage error 

mean of 4.93% as compared to the FS-MV model which has an absolute percentage error 

mean of 33.59%. However, the FS-MV model performs better than the FS-AT model in 

terms of precision with a percentage error standard deviation of 46.38% against the FS-

AT model’s 65.26%. In Table 5.9, the percentage error mean and standard deviation of 

the performance estimates obtained for experiment 2 are compared to the results 

evaluated earlier in Section 4.3.3 for the significant metric set. A positive change in error 

mean and standard deviation indicates that the experiment 1 metrics predict with higher 

accuracy and precision respectively as compared to the significant metric set and vice 

versa. 
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Table 5.9: Comparative evaluation of the significant metric set and experiment 2 

estimates for the lawn mower 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

2 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

2 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

29.35 4.93 24.42 93.59 65.26 28.33 

FS-

MV 

43.53 33.59 9.94 44.38 46.38 -2.00 

The comparative evaluation suggests that experiment 1 predicts with higher 

accuracy in the case of both FS-AT and FS-MV prediction models. The predictive 

precision is lower for experiment 2 when compared to the significant metric set for the 

FS-MV model. 

5.4.4 Test product: Flashlight 

Figure 5.9 illustrates histogram plots for the flashlight corresponding to the FS-

AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors. 
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Figure 5.9: Percentage error in prediction for the flashlight for experiment 2 

The FS-AT prediction model is more accurate with an absolute percentage error 

mean of 226.6% as compared to the FS-MV model which has an absolute percentage 

error mean of 254.9%. The FS-AT model performs better than the FS-MV model in terms 

of precision as well with a percentage error standard deviation of 173.9% against the FS-

MV model’s standard deviation of 229.7%. In Table 5.10, the percentage error mean and 

standard deviation of the performance estimates obtained for experiment 2 are compared 

to the results evaluated earlier in Section 4.3.4 for the significant metric set. A positive 

change in error mean and standard deviation indicates that the experiment 2 metrics 

predict with higher accuracy and precision respectively as compared to the significant 

metric set and vice versa. 
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Table 5.10: Comparative evaluation of the significant metric set and experiment 2 

estimates for the flashlight 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

2 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

2 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

9.06 226.6 -217.54 64.33 173.9 -109.57 

FS-

MV 

210.7 254.9 -44.2 220.1 229.7 -9.6 

The comparative evaluation suggests that experiment 2 predicts with lower 

accuracy and precision in the case of both the FS-AT and FS-MV prediction models. This 

suggests that for the flashlight, the predictive accuracy and precision is better when the 

respective sets of significant metrics identified for the two models are used for prediction. 

5.4.5 Test product: Food chopper 

Figure 5.10 illustrates histogram plots for the food chopper corresponding to the 

FS-AT and FS-MV prediction models. The X-axis represents the percentage error in 

predicting the performance value estimates and the Y-axis represents the frequency of the 

percentage errors. 
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Figure 5.10: Percentage error in prediction for the food chopper for experiment 2 

For the food chopper, the FS-MV prediction model is more accurate with an 

absolute percentage error mean of 17.50% as compared to the FS-AT model which has an 

absolute percentage error mean of 45.20%. However, the FS-AT model performs better 

than the FS-MV model in terms of precision with a percentage error standard deviation of 

36.73% against the FS-MV model’s standard deviation of 90.77%. In Table 5.11, the 

percentage error mean and standard deviation of the performance estimates obtained for 

experiment 2 are compared to the results evaluated earlier in Section 4.3.5 for the 

significant metric set. A positive change in error mean and standard deviation indicates 

that the experiment 2 metrics predict with higher accuracy and precision respectively as 

compared to the significant metric set and vice versa. 

6004002000-200-400-600-800

6000

5000

4000

3000

2000

1000

0
6004002000-200-400-600-800

Mean -45.20

StDev 36.73

N 18900

FS-AT

Mean -17.50

StDev 90.77

N 18900

FS-MV

FS-AT

Percentage Error

F
re

q
u

e
n

cy

FS-MV

Percentage error in predicting the performance value estimates
Test product: Food chopper



114 

Table 5.11: Comparative evaluation of the significant metric set and experiment 2 

estimates for the food chopper 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

2 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

2 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change 

in Error 

Standard 

deviation 

(%) 

FS-

AT 

17.68 45.20 -27.52 58.74 36.73 22.01 

FS-

MV 

3.22 17.50 -14.28 91.17 90.77 0.4 

The comparative evaluation suggests that experiment 2 predicts with lower 

accuracy in the case of both the FS-AT and FS-MV prediction models. The predictive 

precision is higher for experiment 2 when compared to the significant metric set for both 

the FS-AT and FS-MV models. 

5.5 Summary of the results of Experiment 2 

This section evaluates the effect of manipulation of the significant complexity 

metrics in experiment 2 on the predictive accuracy and precision of the prediction 

models. In order to evaluate this effect, the changes in the accuracy and precision of the 

experiment 2 performance estimates from the significant metric set performance 

estimates are assessed. A positive change in accuracy and precision indicates that the set 

of complexity metrics used in experiment 2 predict better than the significant metric set. 

On the other hand, a negative change indicates that the significant metric set predicts 

better than experiment 2. Considering that the overall range of these change values across 



115 

the four prediction models is large, the values falling within a range of +15% from each 

other are considered to be equivalent to each other. Hence, only those changes in 

accuracy and precision which are beyond the +15% range are considered to be 

suggestive. On the basis of this condition, a recommendation on which metric set works 

better for each test product is provided in Table 5.12. 

Table 5.12: Recommendations on the metric set type to be used for each test product 

Test 

Product 

FS-AT prediction model FS-MV prediction model 

Recommendation  
Change in 

Accuracy 

(%) 

Change in 

Precision 

(%) 

Change in 

Accuracy 

(%) 

Change in 

Precision 

(%) 

Sander 3.32 9.39 14.21 -4.33 Either 

Hair dryer -57.1 -79.96 -103.4 -41.30 Significant 

Lawn 

mower 
24.42 28.33 9.94 -2.00 Experiment 2 

Flashlight -217.54 -109.57 -44.2 -9.6 Significant 

Food 

chopper 
-27.52 22.01 -14.28 0.4 Inconclusive 

Legend 

Experiment 2 predicts better 

(Change > 15%) 

Experiment 2 predicts worse 

(Change < -15%) 

The test results for the sander suggest that there are no considerable changes 

observed in either predictive accuracy or precision in the case of both the FS-AT and FS-

MV prediction models. Therefore, it is recommended to use the experiment 2 metric set 

for predicting the performance values of the sander. For the hair dryer and flashlight, the 

predictive accuracy and precision are seen to reduce considerably when the experiment 2 

metric set is used. This is observed in the case of both the FS-AT and FS-MV prediction 

models. Hence, it is recommended to use the significant metric set for prediction for these 

two products. For the lawn mower, the experiment 2 metric set is recommended since it 



116 

is seen to improve the predictive accuracy and precision for the FS-AT prediction model 

whereas no considerable changes are observed for the FS-MV prediction model. The test 

results for the food chopper are inconclusive to make a recommendation on the metric set 

to be used for prediction, since there are equal number of positive and negative changes 

in predictive accuracy and precision. On the whole, it is seen that the significant metric 

set works better for two test products (hair dryer and flashlight) while the experiment 2 

metric set works better for one product (lawn mower). Either of the two metric sets can 

be used for the test product sander. 

5.6 Experiment 3: Union of all the significant metrics 

Experiment 3 is conducted for a comprehensive set involving the union of all the 

significant metrics across each of the four prediction models. This complexity vector is 

then used to train and test the ANNs for the same set of consumer products as for the 

previous analyses. 

5.6.1 Test product: Sander 

Figure 5.11 illustrates histogram plots for the sander corresponding to the four 

models, depicting frequency distribution of the percentage errors in prediction. The X-

axis represents the percentage error in predicting the performance value estimates and the 

Y-axis represents the frequency of the percentage errors.  
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Figure 5.11: Percentage error in prediction for the sander for experiment 3  

The plots suggest that the FS-MV and AM-MV prediction models are more 

precise but less accurate as compared to the FS-AT and AM-AT models for the Sander. 

These test results are further compared to the test results obtained using the significant set 

of complexity metrics in Table 5.13. A positive change in error mean and standard 

deviation indicates that the experiment 3 metrics predict with higher accuracy and 

precision respectively as compared to the significant metric set and vice versa. 

Table 5.13: Comparative evaluation of the significant metric set and experiment 3 

estimates for the sander 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Experiment 

3 Absolute 

Percentage 

Change 

in Error 

Mean 

Significant 

Absolute 

Percentage 

Experiment 

3 Absolute 

Percentage 

Change in 

Error 

Standard 
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Error 

Mean (%) 

Error 

Mean (%) 

(%) Error 

Standard 

deviation 

(%) 

Error 

Standard 

deviation 

(%) 

deviation 

(%) 

FS-

AT 

40.40 67.39 -26.99 88.51 84.55 3.96 

AM-

AT 

38.26 53.46 -15.2 66.85 60.71 6.14 

FS-

MV 

72.02 96.43 -24.41 20.68 51.71 -31.03 

AM-

MV 

71.96 74.60 -2.64 16.47 24.17 -7.7 

The comparative evaluation for the test product sander suggests that Experiment 3 

predicts with lower accuracy for each of the four prediction models. The predictive 

precision is seen to increase for the FS-AT and AM-AT prediction models and decrease 

for the FS-MV and AM-MV prediction models when the Experiment 3 union metric set 

is used.  

5.6.2 Test product: Hair dryer 

Figure 5.12 illustrates histogram plots for the hair dryer corresponding to the four 

models, depicting frequency distribution of the percentage errors in prediction. The X-

axis represents the percentage error in predicting the performance value estimates and the 

Y-axis represents the frequency of the percentage errors.  



119 

 

Figure 5.12: Percentage error in prediction for the hair dryer for experiment 3 

The histograms suggest that the AM-AT prediction model is the most accurate 

with an absolute percentage error mean of 58.98% whereas the FS-MV prediction model 

is the most precise with an absolute percentage error standard deviation of 58.45%. The 

AM-MV model is the least accurate and precise with absolute percentage error mean and 

standard deviation of 99.34% and 219.1% respectively. These test results are further 

compared to the test results obtained using the significant metric set of complexity 

metrics in Table 5.14. A positive change in error mean and standard deviation indicates 

that the experiment 3 metrics predict with higher accuracy and precision respectively as 

compared to the significant metric set and vice versa. 
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Table 5.14: Comparative evaluation of the significant metric set and experiment 3 

estimates for the hair dryer 

 Accuracy Precision 

 Significant 

Absolute 

Percentage 

Error 

Mean (%) 

Experiment 

3 Absolute 

Percentage 

Error 

Mean (%) 

Change 

in Error 

Mean 

(%) 

Significant 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Experiment 

3 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Change in 

Error 

Standard 

deviation 

(%) 

FS-

AT 

24.91 62.17 -37.26 65.84 181.1 -115.26 

AM-

AT 

32.50 58.98 -26.48 133.8 114.0 19.8 

FS-

MV 

127.6 59.25 68.35 193.2 58.45 134.75 

AM-

MV 

28.11 99.34 -71.23 172.4 219.1 -46.7 

The comparative evaluation for the test product hair dryer suggests that using the 

Experiment 3 metric set for prediction improves predictive accuracy only for the FS-MV 

prediction model. The predictive precision is seen to improve for the AM-AT and FS-MV 

prediction models when the Experiment 3 metric set is used. 

5.6.3 Test product: Lawn mower 

Figure 5.13 illustrates histogram plots for the lawn mower corresponding to the 

four models, depicting frequency distribution of the percentage errors in prediction. The 

X-axis represents the percentage error in predicting the performance value estimates and 

the Y-axis represents the frequency of the percentage errors.  
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Figure 5.13: Percentage error in prediction for the lawn mower for experiment 3 

The histograms suggest that the FS-AT prediction model is the most accurate with 

an absolute percentage error mean of 10.30% whereas the FS-MV prediction model is the 

most precise with an absolute percentage error standard deviation of 60.25%. These test 

results are further compared to the test results obtained using the significant metric set of 

complexity metrics in Table 5.15. A positive change in error mean and standard deviation 

indicates that the experiment 3 metrics predict with higher accuracy and precision 

respectively as compared to the significant metric set and vice versa. 

Table 5.15: Comparative evaluation of the significant metric set and experiment 3 

estimates for the lawn mower 
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 Significant Experiment Change Significant Experiment Change in 
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Absolute 

Percentage 

Error 

Mean (%) 

3 Absolute 

Percentage 

Error 

Mean (%) 

in Error 

Mean 

(%) 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

3 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Error 

Standard 

deviation 

(%) 

FS-

AT 

29.35 10.30 19.05 93.59 61.05 32.54 

AM-

AT 

32.16 -114.40 146.56 54.85 93.22 -38.37 

FS-

MV 

43.53 89.54 -46.01 44.38 60.25 -15.87 

AM-

MV 

58.26 -93.33 151.59 35.21 76.62 -41.41 

The comparative evaluation for the test product lawn mower suggests that using 

the Experiment 3 metric set for prediction improves predictive accuracy for the FS-AT, 

AM-AT, and AM-MV prediction models. The predictive precision is seen to improve 

only for the FS-AT prediction model when the Experiment 3 metric set is used. 

5.6.4 Test product: Flashlight 

Figure 5.14 illustrates histogram plots for the flashlight corresponding to the four 

models, depicting frequency distribution of the percentage errors in prediction. The X-

axis represents the percentage error in predicting the performance value estimates and the 

Y-axis represents the frequency of the percentage errors. 
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Figure 5.14: Percentage error in prediction for the flashlight for experiment 3 

The histograms suggest that the FS-MV prediction model is both the most 

accurate and precise with absolute percentage error mean and standard deviation of 

60.95% and 89.69% respectively. These test results are further compared to the test 

results obtained using the significant metric set of complexity metrics in Table 5.16. A 

positive change in error mean and standard deviation indicates that the experiment 3 

metrics predict with higher accuracy and precision respectively as compared to the 

significant metric set and vice versa. 

Table 5.16: Comparative evaluation of the significant metric set and experiment 3 

estimates for the flashlight 
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Absolute 

Percentage 

Error 

Mean (%) 

3 Absolute 

Percentage 

Error 

Mean (%) 

in Error 

Mean 

(%) 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

3 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Error 

Standard 

deviation 

(%) 

FS-

AT 

9.06 368.6 -359.54 64.33 331.5 -267.17 

AM-

AT 

140.1 190.4 -50.3 186.1 187.3 -1.2 

FS-

MV 

210.7 60.95 149.75 220.1 89.69 130.41 

AM-

MV 

0.94 288.9 -287.96 242.1 343.2 -101.1 

The comparative evaluation for the test product flashlight suggests that using the 

Experiment 3 metric set for prediction improves predictive accuracy and precision only 

for the FS-MV prediction model.  

5.6.5 Test product: Food chopper 

Figure 5.15 illustrates histogram plots for the food chopper corresponding to the 

four models, depicting frequency distribution of the percentage errors in prediction. The 

X-axis represents the percentage error in predicting the performance value estimates and 

the Y-axis represents the frequency of the percentage errors. 
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Figure 5.15: Percentage error in prediction for the food chopper for experiment 3 

The histograms suggest that the FS-AT prediction model is both the most accurate 

and precise with absolute percentage error mean and standard deviation of 30.11% and 

43.52% respectively. These test results are further compared to the test results obtained 

using the significant metric set of complexity metrics in Table 5.17. A positive change in 

error mean and standard deviation indicates that the experiment 3 metrics predict with 

higher accuracy and precision respectively as compared to the significant metric set and 

vice versa. 

Table 5.17: Comparative evaluation of the significant metric set and experiment 3 

estimates for the food chopper 
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Absolute 

Percentage 

Error 

Mean (%) 

3 Absolute 

Percentage 

Error 

Mean (%) 

in Error 

Mean 

(%) 

Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

3 Absolute 

Percentage 

Error 

Standard 

deviation 

(%) 

Error 

Standard 

deviation 

(%) 

FS-

AT 

17.68 30.11 -12.43 58.74 43.52 15.22 

AM-

AT 

32.54 59.99 -27.45 53.86 55.96 -2.1 

FS-

MV 

3.22 40.07 -36.85 91.17 49.92 41.25 

AM-

MV 

34.45 -71.48 105.93 95.25 163.3 -68.05 

The comparative evaluation for the test product food chopper suggests that using 

the Experiment 3 metric set for prediction improves predictive accuracy only for the AM-

MV prediction model. In the case of precision, the FS-AT and FS-MV prediction models 

predict better when the experiment 3 metric set is used.  

5.7 Summary of the results of Experiment 3 

This section evaluates the effect of manipulation of the significant complexity 

metrics in experiment 3 on the predictive accuracy and precision of the prediction 

models. In order to evaluate this effect, the changes in the accuracy and precision of the 

experiment 3 performance estimates from the significant metric set performance 

estimates are assessed. A positive change in accuracy and precision indicates that the set 

of complexity metrics used in experiment 3 predict better than the significant metric set. 

On the other hand, a negative change indicates that the significant metric set predicts 

better than experiment 3. Considering that the overall range of these change values across 
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the four prediction models is large, the values falling within a range of +15% from each 

other are considered to be equivalent to each other. Hence, only those changes in 

accuracy and precision which are beyond the +15% range are considered to be 

suggestive. On the basis of this condition, a recommendation on which metric set works 

better for each test product is provided in Table 5.18. 

Table 5.18: Recommendations on the metric set type to be used for each test product 

Test 

Product 

Change in Accuracy (%) Change in Precision (%) 

Recommendation 

FS-AT 
AM-

AT 

FS-

MV 

AM-

MV 
FS-AT 

AM-

AT 

FS-

MV 

AM-

MV 

Sander -26.99 -15.20 -24.41 -2.64 3.96 6.14 -31.03 -7.70 Significant 

Hair 

dryer 
-37.26 -26.48 68.35 -71.23 -115.2 19.80 134.75 -46.70 Significant 

Lawn 

mower 
19.05 146.56 -46.01 151.59 32.54 -38.3 -15.87 -41.41 Inconclusive 

Flash-

light 
-359.5 -50.30 149.75 -287.9 -267.1 -1.20 130.41 -101.1 Significant 

Food 

chopper 
-12.43 -27.45 -36.85 105.93 15.22 -2.10 41.25 -68.25 Inconclusive 

Legend 

Experiment 3 predicts better  

(Change > 15%) 

Experiment 3 predicts worse  

(Change < -15%) 

The predictive accuracy and precision is seen to reduce considerably for the test 

product sander when the experiment 3 metric set is used across the four prediction 

models. Thus, the significant metric set is recommended for predicting the performance 

values of the sander. For the hair dryer and flashlight, there is both a decrease and 

increase in the predictive accuracy and precision when the experiment 3 metric set is 

used. On the whole, there is a negative change (decrease) in predictive accuracy and 

precision in 5 out of 8 cases. Hence, it is recommended to use the significant metric set 
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for the hair dryer and flashlight. The test results for the lawn mower and food chopper are 

inconclusive to make a recommendation on the metric set to be used for prediction, since 

there are equal number of positive and negative changes in predictive accuracy and 

precision. 

Thus, it is seen that experiment 3, which contains the union of all the significant 

metrics from the four prediction models, does not improve predictive accuracy and 

precision when compared to the significant metric sets. The significant metric sets 

perform better in prediction because each set comprises of complexity metrics that are 

influential for the specific prediction model.  
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Chapter Six 

CONCLUSIONS AND FUTURE WORK       

This chapter presents an overview of the research conducted in this thesis and its 

potential extensions in the future.  The thesis focused on analyzing the precision of the 

design representations (assembly models and function structures) and understanding 

complexity as an enabler in predicting the performance value estimates (assembly time 

and market value).  The three research questions identified earlier in Chapter Two were 

addressed through this thesis.  

6.1 Answers to Research Question 1 

Chapter Three addressed Research Question 1 through the precision analysis of 

the design representations (assembly models and function structures) in predicting the 

performance values of the products (assembly time and market value).  Research 

Question 1 is as follows: 

How does precision vary with the design representations (assembly 

models and function structures) and performance values of the products 

(assembly time and market value)? 

A precision rank order was determined for each of the four surrogate prediction 

models on the basis of the absolute percentage error standard deviation (predictive 

precision) of the performance value estimates. Further, a comparative evaluation of the 

predictive accuracy [8] and precision rank orders of the four prediction models was 

conducted; in order to assess the predictive performance of the design representations in 

estimating the performance values. The Assembly Model - Assembly Time (AM-AT) 
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prediction model was ranked 1 for both predictive accuracy and precision; indicating that 

given assembly models, one can consistently predict accurate assembly times. The 

Function Structure - Assembly Time prediction model was ranked 3 for accuracy and 2 

for its precision whereas the Function Structure - Market Value prediction model ranked 

4 for its accuracy and 3 for precision. The Assembly Model - Market Value (AM-MV) 

prediction model was ranked 2 for its predictive accuracy but ranked 4 for its precision 

which demonstrates that it is accurate in predicting the performance values but not with 

enough consistency. This lack of precision could be due to the fact that the assembly 

models do not contain information regarding all the factors that contribute towards a 

product’s market value. For instance, information such as product material, labor cost, 

manufacturing cost etc. which factor in a product’s market value are not contained in 

assembly models.  

6.2 Answers to Research Question 2 

The sensitivity analysis conducted in Chapter Four focused on addressing 

Research Question 2, which is as follows: 

Which are the most influential complexity metrics in predicting the 

performance values of the products? 

The results of the analysis suggested that for each design representation, there 

exists a set of complexity metrics that are influential (significant) predictors of 

performance values. There exists at least one metric from each class (size, 

interconnection, centrality, and decomposition) which is identified as a significant 
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predictor. Two out of the twenty nine complexity metrics are found to be significant for 

all the four surrogate prediction models; m1: the number of elements and m25: the 

density of the in-core numbers. An observation of interest is that more number of 

centrality metrics are found to be significant for the assembly model design 

representation as compared to the function structures. This can be explained by the fact 

that the product dataset analyzed comprises of consumer products that are generally 

designed to be highly modular for ease of manufacturing and assembly. This modularity 

(or centrality) is not as evident in the function structures. 

The complexity metrics identified as significant predictors for the corresponding 

four prediction models were further used to train and test the ANNs instead of the 

original set of twenty nine complexity metrics. The test results suggested that on the 

whole the precision of the prediction models increases but the predictive accuracy 

decreases when the significant metric set is used for prediction. In spite of their relatively 

low prediction accuracy, these significant complexity metrics can still prove to be 

valuable predictors of later stage information considering the fact that they are evaluated 

using early design stage representations. It is important to note that in the early design 

stage, the product structural information available is minimal. Hence, these early design 

stage significant metrics with relatively low accuracy can be as valuable as the metrics 

evaluated using a more detailed design representation with higher accuracy in predicting 

the same information. These significant metrics will enable designers to consider the 

impacts of their decisions in the early design stage using exact quantifiers rather than 
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subjective judgments. This can eventually lead to cost savings by making more informed 

decisions earlier in the design process. 

6.3 Answers to Research Question 3 

The objective behind the experiments conducted in Chapter Five was to 

investigate the effect of manipulation of the significant complexity metrics and in turn 

answer Research Question 3.  This research question is: 

How will manipulation of the significant complexity metric inputs 

identified for each prediction model affect the performance value 

prediction of the products?  

The experiment 1 test results suggest that the significant metric set works better in 

predicting the performance values for three test products (hair dryer, flashlight, food 

chopper) while the experiment 1 metric set works better for the other two products 

(sander and lawn mower). The test results obtained from experiment 2 indicate that the 

significant metric set works better for three test products (hair dryer, flashlight, food 

chopper) while experiment 2 metric set works better for one product (lawn mower). 

Either of the two metric sets can be used for the test product sander. The performance 

value estimates evaluated using the Experiment 3 metric set demonstrate that in most 

cases this metric set does not improve predictive accuracy and precision when compared 

to the significant metric sets.  

On the whole, it is observed that the unique significant metric sets perform better 

in predicting the product performance values as compared to the manipulated metric sets 

in experiments 1 through 3. This suggests that the unique significant metric sets identified 
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specifically for each prediction model work best when used for predicting the 

performance value estimates of the corresponding model.  

6.4 Future Work 

In this thesis, the complexity metrics identified as influential (significant) 

predictors demonstrated the ability to improve the predictive precision of the 

performance value estimates; when used to train and test the artificial neural networks 

(ANNs). However, the use of these significant complexity metrics resulted in a decrease 

in the predictive accuracy of the performance value estimates. Further work needs to be 

conducted in an attempt to shift these precise measurements towards the target value. The 

current set of consumer products used for training and testing the ANNs vary widely in 

terms of architecture (structure). It is hypothesized that the predictive accuracy can be 

improved by training and testing the artificial neural networks using consumer products 

that have similar product architectures or those from within the same category of 

consumer products. For instance, exclusive use of products those fall under the category 

of consumer power tools. Previous research has indicated that the predictive accuracy 

increases when products from a specific company and within the same category are used to 

estimate assembly times, given assembly models [15]. The following research question 

summarizes the above mentioned future work: 

How does the predictive accuracy of the significant metric set vary when 

products belonging to the same category are used for training and testing 

the artificial neural networks? 
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Currently, the Graph Complexity Connectivity Method used in this thesis predicts 

the product performance values: assembly time and market value, given the design 

representations: assembly models and function structures. Future research efforts can 

seek to investigate how this method can be extended to predict other performance values 

such as product defects. This can be achieved by using previous assembly models and the 

corresponding product defect data to train the artificial neural networks. The trained 

artificial neural networks can then be used to predict potential defects in the new product 

assembly models. This will enable manufacturing of better quality products through 

product defect estimation early in the design stage. 

How can the Graph Complexity Connectivity Method be extended to 

predict other performance values such as product defects using assembly 

models?  
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APPENDIX A – MATLAB CODES 

The Matlab codes used for evaluating the complexity metrics, training and testing 

the ANN are illustrated below. These three codes can be executed only with the aid of 

other Matlab codes created by James Mathieson.  

A.1 EZ_ANN_Run.m  

This Matlab code evaluates the twenty nine complexity metrics of the assembly 

models and the function structures of the twenty consumer products. This code has been 

created by Essam Namouz.  

Clear CellData; 

Clear Assembly; 

Clear Comp Array; 

Clear ElementList; 

Clear pathname; 

Clear filename; 

Clear filelocation; 

% for i = 1:17 

% if i==1 

%  Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\01_crest_toothbrush.xlsx'); 

% elseif i==2 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\02_dewalt_sander.xlsx'); 

% elseif i==3 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\05_irobot_roomba.xlsx'); 
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% elseif i==4 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\06_delta_nail_gun.xlsx'); 

% elseif i==5 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\07_juice_extractor.xlsx'); 

% elseif i==6 

% Assembly=importxls ('C:\Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\11_delta_jigsaw.xlsx'); 

% elseif i==7 

% Assembly=importxls ('C:\Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\12_BrotherSewingMachine.xlsx'); 

% elseif i==8 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\13_Blender.xlsx'); 

% elseif i==9 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\14_Chopper.xlsx'); 

% elseif i==10 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\15_Drill.xlsx'); 

% elseif i==11 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\16_HolePunch.xlsx'); 

% elseif i==12 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\17_IndoorElectricGrill.xlsx'); 

% elseif i==13 



143 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\18_Maglight.xlsx'); 

% elseif i==14 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\19_Mouse.xlsx'); 

% elseif i==15 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\20_SolarYardLight.xlsx'); 

% elseif i==16 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\21_stapler.xlsx'); 

% elseif i==17 

% Assembly=importxls ('C: \Users\Sri Ram\Documents\Function 

structures\James_ExcelSheets\22_Vise.xlsx');      

% end 

% end 

% fprintf ('This is for product %f \n', i); 

% Assembly=importxls ('C: \Documents and Settings\enamouz\My 

Documents\Dropbox\EZ_Complexity_DFA_Work\Complexity 

Graphs\BoothroydPiston_basic.xlsx'); 

%Assembly=importxls ('C: \Users\enamouz\Desktop\TTi\R2401\EZ_Connectivity.xlsx'); 

% Assembly=importxls ('C: 

\Users\enamouz\Desktop\ME402_TTI\connectivitygraphs.xlsx'); 

 

[Filename, pathname, type]=uigetfile ('*.xlsx','Pick an excel file'); 

Filelocation=strcat (pathname, filename);   

Assembly=importxls (filelocation); 

[CompArray, CellData, ElementList]=compag (Assembly); 

% SW_ANN_Assem_Time_Predictor (CompArray);   



144 

% end 

A.2 TrainArchPop.m 

This Matlab code trains the artificial neural networks (ANNs) for predicting the 

performance values (assembly time and market value) of the fifteen training products. 

This code has been generated by Essam Namouz.  

function [tNet] = trainArchPop (input_filename) %changed from trainArchPop 

(input_filename, arr_vec, replicate) 

 

arrs = populate Architectures; 

 

% arr_vec=input (‘which architectures would you like to use?'); 

arr_vec=1:189; 

Replicate=100; 

% replicate=input ('How many replications would you like to use?'); 

num_arch = size (arr_vec, 2); %this code checks the size of the vector, in case it’s not 5 

 

%%% These file names should be specified based on the desired training set 

input_filename = 'FunctionStructures_AssemblyTime'; %Name of file that holds 

inputs and targets 

input_file_type = '.xlsx'; %should be xlsx, file type of inputs and targets 

% input_file_location = 'C:\Users\enamouz\Google Drive\School Stuff\PhD 

Stuff\EZ_Boothroyd DFA Times for Essam\'; %file location 

% input_file_location = 'C:\Users\enamouz\Desktop\ME402_TTI\'; %file location 

input_file_location = 'C: \Users\Sri Ram\Documents\'; 

input_xls_file = strcat (input_file_location, input_filename, input_file_type); 
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% training filename = strcat (input_file_location, input_filename, '_ANN_training'); 

%this line makes a ANN training file for given architectures 

% file type = '.mat'; 

 

NN_input = xlsread (input_xls_file,1); %This lines read in the inputs to train the 

ANNs 

NN_target = xlsread (input_xls_file,2)'; %This line reads the target values to train 

the ANNs 

 

size_Input = size (NN_input); 

size_Target =size (NN_target); 

if size_Input ~= size_Target %This checks to make sure rows and columns of inputs and 

targets match 

NN_target = NN_target'; 

end 

 

tic; %Start Timing     

for arr = 1: num_arch 

Si=arrs{arr_vec(arr)}                        %gets defined characteristics from above 

 

for rep = 1 : replicate          %this loop creates # of reps neural networks based on 

the given characteristics 

 

tNet(arr,rep).net = newcf(NN_input,NN_target,Si);  %newcf creates a cascade-

forward back propagation network: see help newcf for more info 

tNet (arr, rep).net.trainParam.showWindow = false; 

tNet (arr,rep).net = train(tNet(arr,rep).net,NN_input,NN_target); %%This retrains the 

network the specified amount of times to generate pdfs 
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end 

 

end 

 

%Stop timing 

time = toc; 

time = time/60; 

fprintf ('ANN took %f minutes to train’, time); 

save('Training_FS_AT','tNet') 

% Create a variable output with the results of specified architectures 

 

% for i=1:num_arch*replicate 

% output (i, :) = tNet (i).net (NN_input) 

% end 

 

%%For probability density function of each architecture use 

% [f, xi] =ksdensity (output (:, 1) 

A.3 analyzeANN.m 

The purpose of this Matlab code is to test the artificial neural networks (ANNs) 

previously trained for predicting the performance value estimates. This code has been 

created by Essam Namouz.  

Clear output; 

Clear output_trainingset; 

% input_filename = 'EZ_DFA_Training_Case6_Partially_Defined'; 

% input_filename = 'EZ_DFA_Training_Case_TTI_Design 

% input_filename ='EZ-Summary of BD Time Estimates'; 

% input_filename = 'Complexity_Summary'; 

% input_filename = 'TTIplusCEDAR'; 
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% input_filename = 'connectivity'; 

input_filename = 'Test_FS_AT'; 

% input_filename = 'Complexity_Results_Conceptual_Design'; 

% input_filename='TTi_Complexity_Summary'; 

input_file_type = '.xlsx'; 

% input_file_location = 'C:\Documents and Settings\enamouz\My 

Documents\Dropbox\EZ_Complexity_DFA_Work\DFA_Training_Case6_Partially_Defi

ned\'; 

% input_file_location = 'C:\Users\enamouz\Desktop\TTi\'; 

%input_file_location='C:\Users\enamouz\Documents\Dropbox\EZ_Complexity_DFA_W

ork\'; 

% input_file_location='C:\Users\enamouz\Google Drive\School Stuff\PhD 

Stuff\EZ_Boothroyd DFA Times for Essam\'; 

% input_file_location = 

'C:\Users\enamouz\Desktop\ME402_TTI\TeamBSemesterFinalRyobiDrill\'; 

input_file_location = 'C: \Users\Sri Ram\Documents\'; 

input_xls_file = strcat (input_file_location, input_filename, input_file_type); 

%NN_input = xlsread (input_xls_file,1); 

%NN_target = xlsread (input_xls_file,2)'; 

tic; 

NN_test_input = xlsread (input_xls_file, 1); 

%NN_test_input2 = xlsread (input_xls_file, 1); 

for i=1:18900 

output(i,:)= tNet(i).net(NN_test_input); 

end 

%Stop timing 

time = toc; 

time = time/60; 

fprintf('ANN took %f minutes to test’, time); 
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