
Clemson University
TigerPrints

All Theses Theses

12-2009

Semantic Search
Anup Sawant
Clemson University, asawant@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Sawant, Anup, "Semantic Search" (2009). All Theses. 744.
https://tigerprints.clemson.edu/all_theses/744

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/744?utm_source=tigerprints.clemson.edu%2Fall_theses%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Semantic Web Search

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Anup Satish Sawant

December 2009

Accepted by:

Dr. Robert Schalkoff, Committee Chair

Dr. John Gowdy

Dr. Ian Walker



Abstract

The thesis describes a Semantic approach towards web search through a stand-

alone Java application. An Ontology Web Language(OWL) model is used to build

a knowledge database related to different types of Organisms. The goal is to guide

the Google web search engine using this OWL model. In the first approach towards

Semantic web search, an inference engine called CLIPS is used and in the second

aproach, the Protege-OWL API is used. The thesis goes in detail about the design,

working and comparison of these two approaches. The thesis also deals with design

approach for enhancement of the OWL model, once the Semantic web search is done

through the Protege-OWL API. This is achieved using Natural Language Processing

and Parsing technique. Examples and results of the search and enhancement part of

the application are described in detail. Future research directions are indicated.
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Chapter 1

Introduction

1.1 Motivation

”There is nothing like looking, if you want to find something. You certainly

usually find something, if you look, but it is not always quite the something you were

after.”– J.R.R. Tolkien

With growth of the internet over the past decades search engine has become

an important entity in everyday life. Search engines mainly crawl the web and create

huge repository of webpages. Given a query, search for a target webpage is based on

text matching and popularity based ranking many a times. Although, the results are

good enough, it is seen that not all the search results are relevant to user’s query.

Depending on the context, a word can have several meanings and hence text based

search produces all possible results of webpages in which the given word from user

query appears with high frequency. In this case, the results need not be accurate and

according to user’s needs.

Problems of inaccurate results could be solved if we somehow try to decipher

the meaning of the user query or enhance the user query. Hence, semantic knowledge
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Figure 1.1: Do you see the difference ?
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plays a vital role. Semantics is the study of meaning. Information could be stored in

Ontology form and closest meaning of user query can be derived. User query can be

enhanced and expanded to retrieve better and focused results. Hence, an attempt has

been made to do Semantic web search using the Google API and a local Ontology.

The above figure shows the difference when user puts M4 as a query in a search

engine driven by semantics vis-a-vis a search engine like Google that is based on

text based popularity ranking. Given a knowledge domain of Car a Semantic engine

would derive search results related to M4 Car models and not M4 weapons which are

certainly more popular for Google like search engine to bring them up first on result

page.

1.2 The Objective

The objective of this research is to implement a focused web search in the

context of an Ontology. A normal text based search can be driven on the basis of

knowledge present in the form of an Ontology. The thesis aims to use this Ontology

and develop a stand-alone application to fetch more accurate and relevant search

results for a query vis-a-vis search engines based on text matching. The thesis also

aims to leverage the Ontology by extracting more information from web pages through

Natural Language Processing techinque and update or enhance the ontology.

This work is comprised of following three parts:

(1) Semantic web search using the CLIPS as an inference engine.

(2) Semantic web search using the Protege-OWL API.

(3) Ontology improvement following query results with Natural Language Pro-

cessing and Parsing technique.
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1.3 Overview of the Thesis

The thesis is organized as follows

Chapter 2 describes design of the Semantic application using the CLIPS, CLIP-

SOWL and the Protege-OWL editor.

Chapter 3 describes design of the Semantic application using the Stanford

Protege-OWL API and the Google API.

Chapter 4 suggests a method of improvement or enhancement of the local

Ontology and design of whole Semantic application using the Stanford Lex-Parser

and the HTML parser.

Chapter 5 talks about related work with examples.

Chapter 6 concludes the thesis summarizing the developed Semantic web

search application and further scope of improvement.

1.4 OWL vs Frames

Knowledge modeling can be done in many ways. In Protege, we may use either

Frame based or OWL based representations. Frames have been used to develop tools

and ontologies for specific user communities. They are not compatible with World

Wide Web. Frames are based on Unique Name Assumption(UNA) i.e. different

names refer to different things, by default. OWL(Ontology Web Language) models

on the other hand are compatible with World Wide Web and add certain capabilities

to ontologies like, distribution across many systems and scalability to Web needs.

This is the main reason why we use an OWL model in order to develop Semantic

web application. Furthermore, OWL adds more vocabulary to describe properties,

relation between classes, cardinality, characteristics of properties etc., which Frames
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don’t support. In OWL models, different names can refer to the same thing. A

programmer would want to be aware of the fact that in Frames, relations are known

as Slots and the constraints on Slots are known as Facets, whereas in an OWL model,

relations are known as Properties and the constraints on Properties are known as

Restrictions.

1.5 Brief description of the software

1. Protege-OWL Editor and API: Protege-OWL[11] is an extention of Protege

which supports Ontolgoy Web Laguage(OWL). Protege-OWL also comes as an

open source Java API called as Protege-OWL API[10]. It enables user to load,

save, edit and visualize Ontologies. Protege-OWL is also integrated with Jena

which is another open source Java API for querying and parsing OWL model.

2. Stanford NLP Lex-Parser: Stanford Lex-Parser[13] is the heart of the Semantic

search. It works on grammatical structure of sentences. It is a java package

and carries its own dictionary of words. Lex-Parser produces grammatical de-

pendencies in various forms. Our Semantic search uses the typed dependency

representation of Lex-Parser. Lex-Parser can process about 40-50 words at a

time and derive dependencies among all the words. Typed dependencies are

binary grammatical relations. The current represenation of Lexparser contains

55 grammatical relations. The hierarchy of dependencies helps us to process

and derive information in sequential manner.

3. CLIPS: CLIPS[15] is an expert system tool. It is written in C and provides

support for three different programming paradigms: rule-based, object-oriented

and procedural. CLIPS can be installed on different operating systems like
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Windows, Mac and Unix without code changes. It can also be integrated with

languages such as C, Java and FORTRAN. CLIPS provides CLIPSJNI, a Java

Native for CLIPS. It helps a programmer to interface CLIPS engine with any

Java application.

4. HTML Parser[14]: It is an open source Java library used to parse HTML pages.

It can be used to extract text, extract link, ensure valid links, move existing

web pages to XML etc. In Semantic Web Search, it removes HTML tags from a

web page and returns the text in the form of string to the Stanford Lex-Parser

for further manipulation.

5. Google API: Google AJAX search API[19] allows programmer to put Google

search in web pages with JavaScript. A programmer can choose web search,

image search, multimedia search or map search to embed in his own web pages.

Semantic Web Search uses Google AJAX Web Search API to embed Google

Search in web pages. It is a Javascript library that provides web objects which

carry web search results. Google provides online code playground, example

codes and tutorials to get comfortable with the Web Search API.

6. Brief overview of Application code: Semantic Web Search Application applies

Model, View and Controller(MVC) pattern of coding using Servlet Technology.

The Model part of the application comprises of classes which provide expanded

query to Google API, parse HTML pages, find grammatical relations between

words, extract information, update Ontology and verify user query. The View

consists of Google API for retrieving web search results, Java Scriptlet for dy-

namic user options, front end and interaction with Java Servlets. Controller

consists of Java Servlets to provide communication between View and Model
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part of the application. These parts will be discussed in detail in further chap-

ters.
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Chapter 2

Design of Semantic web search

using the CLIPS, CLIPSOWL and

the Protege-OWL editor

C Language Integrated Production System (CLIPS)[15] is a widely known

and free to use tool for building expert systems. It incorporates object oriented

language COOL to write expert systems. CLIPS can read a .clp file and load classes,

functions and instances to form a database which we can query. The Protege Frame

based Ontology editor[12] uses the CLIPS text file format as its default save/load

file format for both classes and instances. It provides compatible CLIPS extensions

like ‘allowed-classes’facet,’slot-documentation’facet, and project inclusion. Also, the

Protege files can be read directly into the CLIPS. However, for the Semantic Web

Search Application with the CLIPS, we make use of the Protege-OWL editor[11] to

form an OWL model. This owl model is stored as .owl file which is not compatible

with the CLIPS. The solution is to either have an inference engine which could read an

OWL model from .owl file or convert .owl to .clp file which is readable by the CLIPS.
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Hence, in order to use the CLIPS we need a tool called CLIPSOWL[16] which satisfies

the requirement of converting .owl to .clp file. The CLIPSOWL is based on the Pellet

DL reasoner[17] and the OWLAPI[18] in order to map an OWL model to COOL

syntax.

Figure 2.1: Semantic application using CLIPS.

The whole process of Semantic Search with the CLIPS can be explained as

follows:

1. The Protege-OWL editor is used to create and edit an OWL model and store

it in .owl file.

2. The programmer has to select the .owl file using the CLIPSOWL and convert

it into the CLIPS readable .clp file. In order to expand user query, Model part

of Semantic Search engine needs to interact with the CLIPS. This interaction

with the CLIPS is provided by the CLIPSJNI. The CLIPS provides CLIPSJNI,

a Java Native package. It helps a programmer to interface the CLIPS engine
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with any Java application. The CLIPSJNI loads the .clp file and keeps the

application ready for expansion of user query.

3. User needs to type a search query. The View part of the application sends user

query to the Controller where query check and validation is done before it is

sent for further enhancement.

4. After sufficient checks are done, user query is sent to the Model part of the

application where the CLIPSJNI gets the enhanced query through COOL func-

tions. For instance, if ’Hound’ is the user query, the CLIPS COOL functions

would help expand it to ’Hound is-a Dog is-a Mammal’.

5. The expanded and enhanced version of query is returned to the Controller.

6. The Controller passes on the modified query to the View which uses the Google

API to make a web search. Note: A different design approach would be to use

Java Applets instead of Servlets. During the course of application development,

MVC Servlet Technology was found better than Java Applets for couple of

reasons mentioned below:

(a) It takes considerable amount of time to load Applets in a browser.

(b) Applets can’t load external libraries.

(c) Applets can’t call native methods. This makes it difficult to run Semantic

Search using the CLIPSJNI.

7. The Google API returns web search result object with webpage URLs to the

View part of application.

8. User gets to see web search results based on knowledge derived from Ontology.
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Chapter 3

Design of Semantic web search

using the Protege-OWL API

An alternative approach towards developing a Semantic Web application can

be using the Protege-OWL API[10] alone with the Google Web Search API[19]. The

Protege-OWL API is centered around a collection of Java interfaces from the model

package. These Java interfaces provide access to the OWL model and its elements like

classes, properties and individuals. A programmer needs to operate on these interfaces

in order to edit, update, make or save an OWL model. Given an OWL model, a pro-

grammer can query the model using methods like OWLModel.getOWLNamedClass(),

OWLModel.getOWLObjectProperty() etc. which are a part of OWLModel class. The

OWLModel class provides access to all the resources in the model. The Protege-OWL

API supports Model-view-controller architecture. This means that the model stores

the representation of the ontology data, and changes in that model trigger events

which external representation can react to. It also helps in decoupling the entire

process of event handling and enhancement of model. Protege-OWL API allows us

to load an existing OWL file from a URL and save it on disk. In summary, the
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Protege-OWL API has been designed for the development of components that are

executed inside of the Protege-OWL editor’s user interface and for the development

of stand-alone applications.

Figure 3.1: Semantic application using Protege API.

The whole process of Semantic Search with Protege-OWL API can be ex-

plained as follows:

1. The user needs to type a search query. The view part of the application sends

user query to the Controller where query check and validation is done using the

model class OWLhandler. OWLhandler has a method named querycheck(String)

which helps Controller decide whether the user query is related to knowledge

present in OWLModel and can be used for further processing. The Protege-

OWL API interface methods like getInstances() and getBrowserText() help a

programmer to travel through the OWLModel.
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2. If the query is found acceptable then it is further sent for its enhancement by

the Controller to the Model class OWLhandler. OWLhandler has a method

named getexpandedquery(String) which helps retrieve information from the

OWLModel. For instance, if ’Hound’ is the user query, the Protege-OWL API

and the Model class OWLhandler methods would help expand it to ’Hound is-a

Dog is-a Mammal’.

3. The expanded and enhanced version of query is returned to the Controller.

4. The Controller passes on the modified query to the View which uses the Google

API to make a web search.

5. The Google API returns web search result object with webpage URLs to the

View part of application.

6. User gets to see web search results based on knowledge derived from Ontology.

3.1 Query-Ontology interaction and its impact on

search

For a given individual if the query is being hit for the first time then only

the superclass details of individual are extracted from the Ontology and the query

is enhanced. We can say only upper heirarchical information of an individual from

an Ontology is used. On the other hand, if the query for a particular individual is

being hit on selection of a property option then our application attempts to enhance

the query using its superclass and selected property details. Following code snippet

shows the process of query enhancement:
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public String getexpandedquery(String query){

try {

owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri);

} catch (OntologyLoadException e) {

e.printStackTrace();

}

Collection classes = owlModel.getUserDefinedOWLNamedClasses();

/* Extract class information */

for(Iterator it = classes.iterator(); it.hasNext();){

OWLNamedClass cls = (OWLNamedClass)it.next();

Collection instances = cls.getInstances(false);

/* Extract individual */

for(Iterator jt = instances.iterator(); jt.hasNext();){

OWLIndividual individual = (OWLIndividual)jt.next();

if(query.equalsIgnoreCase(individual.getBrowserText())){

query += ”+”;

query += cls.getBrowserText();

}

}

}

return query;

}

/***** javascript handles extraction of property values. ****** /

/***** Following is the code where property details are ******* /

/***** attached if user selects a property option ************* /

14



OWLhandler handle = new OWLhandler();

try {

if(append==null){

getanswer = handle.getexpandedquery(query);

}

else{

getanswer = handle.getexpandedquery(query)+”+”+append;

}

System.out.println(”query is :” + getanswer);

} catch (Exception e) {

e.printStackTrace();

}

There is a trade-off between query enhancement and accuracy of results. If

the property has multiple values then there is a chance of getting a defocused search.

It is also true in the case where property has one value but parent class information

is more. Enhanced query comes with more description and hence more words which

ultimately degrade the performance of Google API search which determines best

search results based on minimum query words, subject popularity, page rank and

popularity of a page. A solution to this problem has been suggested in the Further

Scope section of the last chapter.

3.2 Advantages over CLIPS

1. The CLIPS is written in C and hence compatibility issues need to be handled

using the Java Native package CLIPSJNI in stand-alone Java applications like

Semantic web search. The Protege-OWL API on the other hand is written in

15



Java and supports MVC architecture. Hence, it is easy to interface the Protege-

OWL API with stand-alone web applications.

2. The CLIPS implements COOL and reads .clp files. The Protege-OWL editor

makes and saves OWL model in .owl files and hence those files have to get

converted to .clp using the CLIPSOWL (as described in Chapter 2) to reason

the domain ontology by the CLIPS. The Protege-OWL API works directly with

.owl file. A programmer can query the OWL model using API interface methods.

Hence, there is no need to convert a .owl file to .clp file and vice versa.

3. Conversion from .owl to .clp and vice versa had to be done by the programmer.

The Protege-OWL API helps to keep the whole process autonomous and hence

also saves conversion time.
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Chapter 4

Ontology improvement with NLP

search and Parsing technique

Important domain knowledge details can be derived from result webpages and

OWL model can be enhanced. This leads us to update the design described in previous

chapters. In this chapter we try to discuss design method and issues of a stand-alone

Semantic Web Search application where the underlying OWL model is enhanced

autonomously to direct the user towards doing a focused search. The Stanford Lex-

Parser[13] helps us to deduce grammatical relations between words in text. It is a

java package which works on grammatical structure of sentences. The parser can read

various forms of plain text input and can output various analysis formats, including

part-of-speech tagged text, phrase structure trees, and a grammatical relations(typed

dependency) format. In this application we use typed dependency representation of

the Lex-Parser. It can process about 40-50 words at a time and derive dependencies

among all the words. Typed dependencies are binary grammatical relations. The

current represenation of the Lexparser contains 55 grammatical relations.

The whole process of Semantic Search and Ontology improvement can be ex-

17



Figure 4.1: Ontology improvement using NLP and Parsing technique.

plained as follows:

1. User needs to type a search query. The view part of the application sends user

query to the Controller where query check and validation is done using the model

class OWLhandler. OWLhandler has a method named querycheck(String) which

helps Controller decide whether the user query is related to knowledge present

in OWLModel and can be used for further processing. The Protege-OWL API

interface methods like getInstances() and getBrowserText() help a programmer

to travel through the OWLModel.

2. If the query is found then it is further sent for its enhancement by the Controller

to the Model class OWLhandler. OWLhandler has a method named getexpand-

edquery(String) which helps retrieve information from the OWLModel. For in-

stance, if ’Hound’ is the user query, the Protege-OWL API and the Model class

18



OWLhandler methods would help expand it to ’Hound is-a Dog is-a Mammal’.

3. The expanded and enhanced version of query is returned to the Controller.

4. The Controller passes on the modified query to the View which uses the Google

API to make a web search.

5. The Google API returns web search result object with webpage URLs to the

View part of application.

6. User gets to see web search results based on knowledge derived from Ontology.

7. The Controller recieves webpage URL from the Google API web search ob-

ject and passes it on to the Model. The Model class ParseUrl uses the HTML

parser[14] API to extract text from the web pages. The HTML parser can be

used to extract text, extract link, ensure valid links, move existing web pages

to XML etc. We use it to remove HTML tags from a web page and return the

text content in the form of string. This is done with the help of StringExtrac-

tor(String) interface method under parserapplications package from the HTML

parser API and parse(String,String) method of the Model class ParseUrl. Each

web page is read once to determine the frequency of relevant query words present

in it. Web pages are then ranked such that the top web page has highest fre-

quency of query words present in it.

8. The HTML parser passes first ranked web page to the Model class Lexparser

which imports parser package and nlp.trees package from the Stanford Lex-

Parser API. The Model class Lexparser has extractDetails(String,String,String)

method which makes use of the Stanford Lex-Parser API englishPCFG.ser.gz

dictionary to parse each sentence from the text sent by HTML parser. The
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Stanford Lex-Parser API returns a tree structure of grammatical relations be-

tween words present in a sentence. For instance, if a given sentence is,’Bell,

based in Los Angeles, makes and distributes electronic, computer and building

products.’ then the relevant Stanford Typed Dependencies returned will be:

(a) nsubj(makes-8, Bell-1)

(b) nsubj(distributes-10, Bell-1)

(c) partmod(Bell-1, based-3)

(d) nn(Angeles-6, Los-5)

(e) prep in(based-3, Angeles-6)

(f) conj and(makes-8, distributes-10)

(g) amod(products-16, electronic-11)

(h) conj and(electronic-11, computer-13)

(i) amod(products-16, computer-13)

(j) conj and(electronic-11, building-15)

(k) amod(products-16, building-15)

(l) dobj(makes-8, products-16)

(m) dobj(distributes-10, products-16)

This grammatical tree is read by the ’extractDetails’ method and necessary

information regarding query (which is treated as subject)is found. The Stanford

Lex-Parser provides us with hierarchy of typed dependencies which makes it

easy to deduce the relation relavent to particular subject.

9. After deriving necessary relations and extracting information, the Model class

Lexparser updates OWL model through updatemodel(String,String,String) method

20



of the Model class OWLhandler. The Protege-OWL API provides methods like

addPropertyValue and setPropertyValue by which a programmer can update

an OWL model on which he/she is working.
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Chapter 5

Examples

5.1 Working of application with examples

The three parts discussed in last chapter were tried on Organisms Ontology.

The goal is to search more information related to Plant and Animal kingdom organ-

isms and improve on original Ontology. In this chapter we will discuss working of

Semantic search application with examples. For instance, lets assume a particular user

wants to search about Striped Dolphin. We will see how the search application de-

rives meaning of the word ’Striped’ and tries to improve the Ontology autonomously.

Figure 5.1 is a snapshot of Ontology being used for this application. Figure 5.2 shows

the state of properties of Striped Dolphin individual through Ontoviz editor before

the user actually fires any query.

As soon as the user clicks Search button, a search for ’Striped’ word in done

in Ontology through the Protege-OWL API. The Protege expands user query and

internally provides information to the Google API that ’Striped is a kind of Dolphin

which is a Mammal’. The Google API returns an object with web search results.

Figure 5.3 shows initial search result page for the query ’Striped’.
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Figure 5.1: Ontology used for Semantic Search
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Figure 5.2: Striped Individual before search
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Figure 5.3: Search result for Striped Dolphin
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Before we go on to discuss further steps, lets have a look at Figure 5.4 which

shows the actual Google search results for the query ’Striped’.

As like normal Google search, a user can go on making new searches and

browse the results with Semantic search. As the user keeps making new search, results

of previous searches are simultaneously processed by the application. The first four

search results are parsed by the HTML parser and ranked based on frequency of words

matching the query. The web page which is ranked first is selected and processed by

the Stanford Lexparser to get more information about Striped Dolphin. The new

information is added to Organism Ontology using methods and inference engine of

the Protege-OWL API. Figure 5.5 shows properties added to Striped individual.

Once the new information is added to the Ontology if the user types in same

query sometime later into the search textbox, the application tries to give him direc-

tion into what would he like to search about that particular Animal or Plant (in this

case it’s ’Striped Dolphin’) by reading out the updated Ontology and presenting it

with checkbox on a JSP page. JSP page runs a java scriptlet which retrieves data

using the Protege-OWL API and creates dynamic checkboxes on webpage. These

properties are placed above the search results. Figure 5.6 shows properties added

to the webpage. From the properties marked wih a black rectangle we can see that

the information retrieved is not irrelevant to something called ’Striped Dolphin’. For

instance, first checkbox suggests that Striped Dolphins are capable of diving. Second

checkbox suggests Striped Dolphin gives birth to calf. Third checkbox marked with

rectangle has caught scientific name of Striped Dolphin. Other checkboxes indicate

Striped Dolphin has melon (a typical upper body shape of a whale or Dolphin which

can be seen above water surface) and is observed often or breaching(i.e. diving in

this context).

The user can select any of the options available and the search application
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Figure 5.4: Google search result for keyword ’Striped’
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Figure 5.5: Properties added to Striped Individual
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Figure 5.6: Properties shown on webpage
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would make a new search which would then retrieve new set of results and hence new

information regarding ’Striped Dolphin’. Lets assume that user selects a checkbox

which says ’have[melon]’. Figure 5.7 shows the results after selection of ’have[melon]’

property. These results contain information regarding Striped Dolphin and its melon.

This becomes a new set of webpage results for the application to parse and retrieve

information.

As the search continues, a new set of webpages help in addition of new proper-

ties to the individual Striped Dolphin in Organism ontology. Hence, next time when

the user types in Striped as a query, he can see addition of new properties on the

webpage which could help him to direct his search. Figure 5.8 shows addition of these

new properties on webpage. Newly added properties are shown in black rectangle.

First property indicates different regions in which Striped Dolphins could be found.

Second property indicates what kind of environment or water they prefer. Upwelling

here is the cold current of water coming from bottom of sea. Striped Dolphins prefer

to stay in these areas of ocean.

On similar lines, we can see the search results for user query ’Cricket’in Figure

5.9. After successive search made by the user, we could see new properties added for

Cricket Individual. Figure 5.10 shows new properties added to the webpage.

Another example would be to search for query ’Latex’ as shown in Figure 5.11.

We can see that all the Google search results are related to the LaTeX document

editor whereas Semantic search results are related to the Latex plant. Newly added

properties are shown in Figure 5.12. Properties marked in black rectangle determine

some quality information related to the Latex plant.
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Figure 5.7: Results after selection of ’have[melon]’ property
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Figure 5.8: Addition of new properties
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Figure 5.9: Search results for query ’Cricket’
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Figure 5.10: New properties added to Cricket Individual
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Figure 5.11: Search results for query ’Latex’

35



Figure 5.12: New properties added to Latex Individual
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5.2 Code description

1. Model Package: com.research.model

(a) Clips.java: Imports the CLIPSJNI and provides access to COOL functions.

(b) Lexparser.java: Derives grammatical relations between words and updates

the OWL model using the Protege-OWL API and the Stanford Lex-Parser.

(c) ParseUrl.java: Extracts text from webpages using the HTML parser.

(d) OWLhandler.java: Provides methods to update, query, validate and create

OWL model.

2. Controller Package: com.research.controller

(a) Begin.java: Provides communication between the View and the Model

when the user does search for the first time.

(b) Bridge.java: Provides communication between the View and the Model

during query expansion and OWL model update.

3. View: Java src Webcontent

(a) index.jsp: Provides intial user interface for the first query and communi-

cates with Begin.java Servlet.

(b) response.jsp: Provides user interface for search, runs the Google Web

Search API, creates dynamic checkbox options and communicates with

Bridge.java Servlet.
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Chapter 6

Conclusions and Discussion

6.1 Semantic Search

Slowly and steadily the Semantic Web is becoming the way people seek online

solutions. Semantic Web adds meaning to our online activities and hence it is more

useful than just any other non-semantic application. Apart from applications like

Semantic Social networks and Semantic online meetups, Semantic search is just an-

other application of Semantic Web. The key point of this research is not just running

through webpages with Semantics attached but, updating the current Ontology au-

tonomously to guide the user or help him direct his search. This research was evolved

in three parts.

1. Semantic Search with the CLIPS.

2. Semantic Search with the Protege API.

3. Semantic Search with the Protege API and an Ontology improvement through

NLP and Parser.
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The Protege API approach clearly scores over the CLIPS due to time and .clp

to .owl file change factor. The technology and tools used in this research are:

1. Technology: Java Servlets and JSP.

2. IDE: Eclipse.

3. Server: Apache TOMCAT 6.0.

4. Inference engine: CLIPS, Protege API.

5. Parser: NLP Stanford Lexparser, HTML parser.

6. Other tools: CLIPSOWL.

7. Search engine API: Google API.

8. Configurations: OS Windows XP, 2.5 GB RAM, Intel Core Solo Processor

T1350 1.86 GHz.

6.2 Further scope of study

As we have seen, there are two major shortcomings of this application which

could pave the way for further improvement and study of this application.

1. One major drawback of the Stanford Lex-Parser is the time it takes to parse

large chunk of text thrown at it. The Semantic search application ranks web-

pages and chooses only the first ranked webpage for the Stanford Lex-Parser

processing. Whole process of extracting and updating properties with new web

search results takes on an average 2-3 minutes to complete. This time delay

can be improved to a certain extent by parallel processing. Task of parsing of
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webpages and extraction can be further divided among processors to expedite

the whole process.

2. Some of the properties attached to an Individual seem inaccurate. A larger

dictionary to exclude probable meaningless relations and words would help in

this matter. But a larger dictionary will end up slowing the whole process.

Hence, there is a trade off between accuracy of results and speed of applications.

Another approach would be to provide the user to choose and deselect the

properties which he/she thinks are meaningless or irrelevant.

3. If we have a look at the results of autonomously generated properties of ’Cricket’

and ’Latex’ individuals we see that the accuracy rate of meaningful results lie

between 52-66 percent. A good result or set of properties would be something

around 60 percent as of now. This accuracy can be increased by adding a filter

to our results.

4. Following the previous point, we can have either autonomous or manual fil-

tering of those properties which seem meaningless. For instance, some of the

autonomously derived properties like look[for, like, bit, lack, their] make no

sense for the user to select and proceed for search related to ’Cricket’ as a sub-

ject of search. This process of cleaning up bad or meaningless properties can

be incorporated as a further part of enhancement to the application.

5. There is a trade-off between query enhancement and accuracy of results. After

the user selects a property checkbox and proceeds with search related to a sub-

ject, our application combines the subject, its parent class information and its

property values to enhance the query and get the search results. If the property

has multiple values then there is a chance of getting a defocused search. It is
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also true in the case where property has one value but parent class information

is more. Maximum accuracy of results is seen with a triplet of a superclass

name, a subject and a property value. Hence, as a part of further scope, the

selection of single best property value can be one of the solutions to save the

search from getting defocused.
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