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Abstract

This thesis focuses on generating a continuous estimate of state using a small number of sen-

sors for a process modeled by the diffusion partial differential equation(PDE). In biological systems

the diffusion of oxygen in tissue is well described by the diffusion equation, also known by biologists

as Fick’s first law. Mass transport of many other materials in biological systems are modeled by the

diffusion PDE such as CO2, cell signaling factors, glucose and other biomolecules.

Estimating the state of a PDE is more formidable than that of a system described by ordinary

differential equations (ODEs). While the state variables of the ODE system are finite in number, the

state variables of the PDE are distributed in the spatial domain and infinite in number. Reduction

of the number of state variables to a finite small number which is tractable for estimation will be

accomplished through use of the Karhunen-Loéve-Galerkin method for model order reduction. The

model order reduction is broken into two steps, (i) determine an appropriate set of basis functions

and (ii) project the PDE onto the set of candidate basis functions. The Karhunen-Loéve expansion is

used to decompose a set of observations of the system into the principle modes composing the system

dynamics. The observations may be obtained through numerical simulation or physical experiments

that encompass all dynamics that the reduced-order model will be expected to reproduce. The PDE

is then projected onto a small number of basis functions using the linear Galerkin method, giving

a small set of ODEs which describe the system dynamics. The reduced-order model obtained from

the Karhunen-Loéve-Galerkin procedure is then used with a Kalman filter to estimate the system

state.

Performance of the state estimator will be investigated using several numerical experiments.

Fidelity of the reduced-order model for several different numbers of basis functions will be compared

against a numerical solution considered to be the true solution of the continuous problem. The

efficiency of the empirical basis compared to an analytical basis will be examined. The reduced-
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order model will then be used in a Kalman filter to estimate state for a noiseless system and then a

noisy system. Effects of sensor placement and quantity are evaluated.

A test platform was developed to study the estimation process to track state variables in

a simple non-biological system. The platform allows the diffusion of dye through gelatin to be

monitored with a camera. An estimate of dye concentration throughout the entire volume of gelatin

will be accomplished using a small number of point sensors, i.e. pixels selected from the camera.

The estimate is evaluated against the actual diffusion as captured by the camera. This test platform

will provide a means to empirically study the dynamics of diffusion-reaction systems and associated

state estimators.
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Chapter 1

Introduction

The transport process of mass diffusing in a medium describes many physical processes.

The diffusion or heat equation is written as

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
x ∈ Ω t > 0 (1.1)

where u describes the mass concentration, D is a dimensionless real valued constant determining

the rate of diffusion on the domain Ω. The second order derivative, the Laplacian, is smooth. Many

biological and chemical processes are more accurately described by the advection-reaction-diffusion

equation described by the partial differential equation (PDE) of the form

∂u(x, t)

∂t
= a

∂u(x, t)

∂x
+D

∂2u(x, t)

∂x2
+ F (u(x, t)) x ∈ Ω t > 0 (1.2)

Where F (u) is a function describing the reaction process and the term a∂u∂x is the advection or flow

term. The advection term is not smooth and allows discontinuities to be propagated in the solution,

creating difficulty in solving the advection-reaction-diffusion equation. Restricting study to pure

diffusion will simplify analysis while allowing application of the major components of this thesis to

more complex systems governed by PDEs such as the advection-reaction-diffusion equation.

Making practical use of systems governed by PDEs requires the ability to estimate the

state of the system and/or to control it. The former requisite of estimating state is the primary

concern of this thesis. Observing the state of a PDE is a more formidable task than most systems
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described by ordinary differential equations (ODE). For an ODE system, a finite number of states

are described by the ODEs. The states may be observed using a finite number of measurement

sensors in accordance with the intrinsic system requirements for observing the system. Systems

described by partial differential equations do not have a finite number of states. Techniques will be

presented for reducing the infinite number of state variables into a small subset of state variables

and estimating the system state with a finite set of measurement sensors.

This thesis focuses on generating a (near) continuous estimate of state for a process well

modeled by the diffusion partial differential equation using a small number of sensors. In biological

systems the diffusion of oxygen in tissue is well described by the diffusion equation, also known

by biologists as Fick’s first law. A test platform will be developed to show the application of the

estimation process to track state variables in a simple non-biological system with clear application

to biological systems. The mass transport process of oxygen diffusion in tissue and hydrogels such

as collagen is similar to the diffusion of dye in gelatin. An estimate of dye concentration throughout

the entire volume of gelatin will be accomplished using a small number of sensors. The methods for

generating the state estimate require a priori knowledge of the system’s structure and parameters.

This amounts to limiting gelatin to a known geometry and size (structure) and the same gelatin

stiffness and dye molecule (parameters). From an application standpoint this implies the ability to

know the system structure of a biological system such as an engineered tissue. Future application

of work extended from this thesis is state estimation of biological system using a mathematical

tumor model. The utility of developing a state estimator for use in a living in vitro tumor model is

contingent on ability to characterize the system with a mathematical model and sense the state at

discrete points. Constructing a tumor tissue with a known and controlled structure implies the ability

to engineer and build tissue. The realizability of these points will be shown through a literature

survey. First, the ability to model biological processes, especially cancer, using mathematical models

is shown. Next biological systems in the context of control systems is motivated on a subcellular level

(gene expression) with application oriented to control of tumor growth using mathematical models.

Biological sensing for feedback and control using optical contactless non-invasive point sensors are

shown to be in development.
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1.1 Mathematical Biological (in silico) Models

Mathematical in silico models have been employed to model a multitude of physiological

phenomena including cellular signaling pathways [127] [2] [129], molecular events [111] [32], vascular

fluid dynamics [109] [21], tumor cell migration [4] [5] , and solid tumor growth. It should be noted

that use of the phrase “biological model” should connote the description of phenomena in terms of a

mathematical model; biologists define a biological model as a way of doing things which bring about

a known result, rather than as a mathematical model [71]. The principle interest will be restricted to

mathematical models of tumor growth and pharmacodynamics (response of drug-cell interaction).

Description of physiological process in rigorous mathematical form has a short history [7].

An example of early deterministic descriptions of physiological processes is Hill’s research of diffusion

of oxygen and lactic acid in and out of tissues. Hill recognized the importance of diffusion in many

key physiological processes [56]. Thomlinson and Gray used the idea of oxygen diffusion in tissue to

develop a model relating consumption and diffusion of oxygen in avascular tumors. The researchers

were able to develop a model which predicting tumor cell necrosis relative to tumor size in close

agreement with empirical observations of 160 tumor masses [123]. Laird [73] and later Burton [22]

devised diffusion growth models fitting rate of growth to a Gompertzian (sigmoidal) curve.

Study of avascular tumors continued including surface tension causing living tumors cells to

maintain a compact mass, diffusion of necrotic cell remains outward [50], growth inhibitors [98], and

extension to two and three dimensions [118]. Greene first noticed growth of tumors implanted in

the guinea pig eye were limited by vasoproliferation [49]. Folkman noted inability of tumors to grow

beyond a certain size threshold without forming new vasculature [41]. The compound responsible for

angiogenesis was isolated [42] and angiogensis as a necessary mechanism for tumor proliferation was

proposed in Folkman’s seminal work [40]. Realization of the link between ability of tumors to grow

vasculature (angiogenesis) through experimental work made requisite the modeling of angiogenic

tumor models. Despite this, work has continued in the area of avascular tumor models, including

inclusion of spatially depending diffusion coefficient, autocrine (self) and paracrine (neighboring)

signaling, apoptosis (programmed cell death) and proliferation [7].

The development of avascular tumor models relying on the diffusion process makes apparent

the importance of the diffusion equation in tumor modeling but also elucidates the major deficiency

of avascular tumor models - the models lack ability to predict metastasis, tumor cell invasion,

3



angiogenesis, etc. In depth coverage of tumor model development may be found in [7] and [82] [26].

This abbreviated review of tumor growth models merely discusses avascular tumor growth

which only accounts for tumor size, metabolite diffusion and at most some growth factors and only

on one length scale. Complex tumor models describe phenomena on multiple length scales, at the

tissue and cellular level. Multiscale models have already been established in chemical processes [84].

Describing cellular response to signaling factors and adaptation stress is important to developing

models able to predict angiogenesis and resistance to treatment [23] [4] [5] [108].

Diffusion gradients of anticancer drugs in avascular tumors have been shown to hinder drug

delivery in animal experiments [105] and in clinical application [75]. Evidence shows an increase

in drug resistance of tumor cells is affected by the diffusion gradient as well as the cell type [119].

Frieboes, et. al. investigated tumor response to a cytotoxic drug comparing experimental and

in silico predictions. Tumor response to concentration of nutrients, oxygen and anticancer drug

were included in a multiscale model. Parameters for the 3D mathematical model are recovered by

extrapolating values found from cell monolayers. MCF-7 wild type (chemosensitive) and MCF-740F

(chemo-resistant) were cultured into multicellular spheroids. Cell viability for the chemosensitive and

chemo-resistant cells types are found for several concentrations of the anticancer drug Doxorubicin

using the mathematical model and experiment with cells. The math model produced results similar

to the observations made in the experiment [43].

1.2 Biological Systems in a Control Context

Mathematical modeling of biological systems with deterministic differential equations casts

the biological system into a palpable form for control. This thesis is concerned with state estimation;

future work building on this thesis will include control. Therefore, it is worthwhile to confirm that

models fit for controller synthesis. Cellular response is discussed in the context of control, motivating

use of in silico models for synthesis of controllers.

The physical process of diffusion, describing mass transport such as metabolites, katabo-

lites and signaling factors through media, is well established. Using the knowledge of fundamental

processes such as diffusion does not give an obvious answer to what response the cells will have in

response to those chemicals. It has been demonstrated that cellular responses do obey deterministic

models for phenomena such as division, death, signaling and motility. Casting the cellular system in
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a control theoretic framework is natural and allows description of phenomena in terms of feedback

loops [120]. Novak and Tyson describe a simple example to demonstrate the biological control loop.

The authors consider a protein which governs the transcription of a protein’s corresponding gene.

The production of the protein is regulated by decay of the protein and production based on con-

centration. Intermediate reactions and transcription time introduce a delay in synthesis. The delay

causes continual up-regulation of synthesis until the protein appears in the cell. The overshoot due

to delay results in limit cycle oscillations of the protein concentration in the cell [95]. The process

is modeled by Michaelis-Menten kinetics, an ordinary differential equation. Synthesis of the protein

may be viewed as a negative feedback system [120] [127] [95].

Ledzewicz and Schättler developed an optimal bang-bang controller for a two compartment

cancer model. The two compartment division of the model splits the tumor dynamics into a growth

phase and into a growth plus mitosis phase which is the only time the cancer drug is available

[76]. Hahndeldt developed a 2D mathematical angiogenesis model which is biologically verified [54].

The Hahndeldt model approximates a PDE system describing angiogenesis with an ODE system.

Ledzewicz and Schättler developed optimal control laws using an optimal singular arc to reduce

tumor volume using the Hahnfeldt angiogenic model [77]. Nath developed an adaptive control law

for the angiogenic Hahnfeldt model driving the tumor to a minimized volume [90]. Fister and Panetta

develop an optimal controller for an ODE model characterizing bone marrow cancer. A control law

for cycle-specific anticancer drug delivery based on Pontryagin’s maximum principle extremizing

a cost functional maximizing bone mass and dose simultaneously [38]. Kirschner synthesizes an

optimum controller for an ODE system describing HIV. A controller based on Pontryagin’s maximum

principle is formuated to extremize a functional weighting T cell count and drug concentration [69].

Groups Castiglione & Piccoli and Pillis & Radunskaya each propose optimal controls for ODE

systems describing immune response in presecence of cancer. Pontryagin’s maximum principle is

used to synthesize controllers boosting immune response [25] [30].

Nearly all control models for biological systems found in a literature search are synthesized

for ODE systems which approximate a tumor model with special restrictions. Controlling response

for more complex systems require use of the PDE governing the system. The difficulty in synthesizing

PDE controllers or estimators has been addressed by chemical engineering and electrical engineering

communities.
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1.3 Sensing in Biological Systems

The opening remarks indicate the state for a model with a known physical structure will be

estimated. Knowledge of the system structure will be necessary for generating a state estimate using

a small number of sensors. Excising tissue samples from animals for biological experiments does not

provide a repeatable test sample. Variations in tissue composition arise from many factors making

tissue properties, for example the diffusion coefficient may vary from sample to sample. Generating

a tissue sample allows control of tissue composition and known placement of measurement sensors.

Techniques for generating large scale tissue samples have been proposed by many researchers. Most

techniques may be classified as a scaffolding and cell seeding [91] or free-form fabrication using

micro pipettes [66] or inkjet cartridges for deposition [89] [103]. Cell seeding relies on self-assembly

[91] and does not have direct control over composition of cell populations. The free-form fabrication

techniques allow deposition several cell types and better control of cell placement. Placing biosensors

in samples of known composition will permit state estimation using a small number of sensors.

New sensor technologies for sensing in biological systems are being developed allowing for

non-invasive optical contactless sensing in the form of films and points sensors ranging from micron

to nano scale [88]. Sensors for imaging biomolecules, CO2, oxygen and pH are being developed

[20]. Oxygen sensor development has been driven in part by the tissue engineering community.

Construction of ex vivo tissue replacements of bone and cartilage of appreciable size have not been

possible [65]. Evidence indicating delivery of nutrients and oxygen are insufficient [34]. Sensing and

oxygen delivery are recognized challenges in constructing engineered tissue [65].

Metal chelates form the basis for contactless optical biosensing. Lanthanide chelates such

as Europium(III) chelates provide a narrow excitation window suitable for sensing [55]. Many

Europium(III) chelates suffer from strong temperature-dependent luminescence and are excitable in

the UV range which may cause background fluorescence. Some visible Europium(III) chelates have

been developed which may be excited by normal LED light sources [19]. Transition metal complexes

such as palladium(II), platinum(II) and ruthenium(II) have characteristic phosphorescence times

and are applicable to a wide gamut of biological sensing [99] [70].

Papkovsky, et. al propose a class of porphyrin ketones using palladium(II) and platinum(II)

for use with oxygen sensing. Advantages of the new porphyrin ketone complexes are better chem-

ical stability and better photo response [100]. Borisov, et. al propose poly beads as a material for
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manufacture of optical nanosensors. The authors prepare sensors each capable of measuring either

oxygen, temperature, pH, copper or chloride. Performance of the 245nm beads are characterized

for several different dyes. Leaching, storage stability and toxicity are also investigated [20]. McNa-

mara and Rosenzweig encapsulate ruthenium cloride (Ru(phen)3) in liposomes producing sub-micron

sensors [86]. Im, et. al develop dual lumiphor oxygen sensors polystyrene beads loaded with octa-

ethyl-porphyrin (SiOEP) and platinum octa-ethyl-porphyrin (PtOEP). The dual lumiphor schema

provides a self reference for calibration [60].

Kellner, et. al measured the oxygen gradient in native bovine articular cartilage and en-

gineered cartilage. Engineered cartilage constructs were constructed by digesting the bovine ar-

ticular cartilage with type II collagenase and seeding PGA scaffolds. Samples were affixed to a

platinum(II)-octaethyl-porphyrin film using alginate crosslinked with CaCl2. The 5×2mm discs

were photographed and oxygen partial pressures were calculated on a pixel by pixel basis using the

hue of the calibrated sensors yielding the oxygen gradient in 2D [65].
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Chapter 2

Background

Estimation and control of dynamic systems require a system model and the ability to sense

the state of a system. For traditional controls techniques, a system uses a finite number of sensors

and a finite number of actuators to control a finite number of system states. In many applications,

the system model may have many or an infinite number of states yet still have a finite number of

sensors and actuators. For example, the diffusion of oxygen in a medium is described by the diffusion

equation

∂u

∂t
= D

∂2u

∂x2
x ∈ Ω t > 0 (2.1)

where u is the mass concentration, x is position, t is time, and D is a constant known as the

diffusion coefficient The diffusion equation cannot be analyzed using classical controls techniques as

the system is truly distributed having an infinite number of state variables. Systems with many or

infinite number of state variables are said to be high dimensional systems or infinite dimensional

systems.

The goal of this thesis is to estimate the state of a diffusion process, a high dimensional

system, using a small and computationally tractable mathematical model. This goal will be met by

limiting the admissible PDEs to systems described by the diffusion equation. A desirable property

of the diffusion equation will be exploited; the dominant slow dynamic behavior of the system may

be described by a finite set of system modes while discarding the infinite dimensional complement.

A model which approximates a high dimensional system with a small number of states will be
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presented. First, analytical and numerical solution techniques for solving the diffusion equation

along with properties of the diffusion equation are presented. Secondly, a method for reducing the

state dimension of the diffusion equation using a set of empirical basis functions and a the linear

Galerkin projection. Lastly, the Kalman state estimator is introduced. Using the aforementioned

three components a state estimator is constructed.

2.1 Reduced Order Model Motivation

The solution to the diffusion PDE will be covered using several techniques. The high

dimensionality becomes obvious when the numerical solutions are implemented. For the (spatial)

one-dimensional case of the diffusion PDE a discretization of a spatial domain from 0 to 1 into 100

increments may be solved using numerical solvers faster than real time, depending on the solver.

The physical process of diffusion is most accurately described in two and three spatial dimensions.

Simulating the diffusion PDE in two and three dimensions using a spatial discretization similar to the

1D case in each direction makes the computational burden very apparent. Decreasing the number of

points in the discretization will allow for faster computation time at the expense of solution accuracy.

The order of the model refers to the number of discretization points in the solution. For the 1D case

described the dimension is 100 while the 2D case is 10,000 and the 3D case is an incomprehensible

1,000,000. Reducing the order of the model while retaining an accurate description of the dynamics

is desired. A method will be presented which produces high fidelity solutions using reduced order

models yet retaining a fine spatial discretization.Particularly the dynamical system will be expressed

as a system of ODEs

dx̃

dt
= Ax̃+ ηs

ỹ = Cx̃+ ε

2.2 Diffusion Partial Differential Equation (PDE)

The diffusion process is described by

∂u

∂t
= D

∂2u

∂x2
x ∈ Ω t > 0 (2.2)
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The diffusion equation is said to be a parabolic PDE; eventually the parabolic nature of the diffu-

sion PDE will be exploited allowing separation of the system into dominant dynamic behavior and

an infinite dimensional complement which will be discarded. The dominant behavior is retained

forming a reduced order model. The performance of the reduced order model will be compared with

known true solutions to the diffusion equation. Tools prsesented to obtains solutions through several

methods will be presented. The classical spectral solution method using a Fourier cosine basis is

developed. Methods for numerically approximating the diffusion equation are presented in two forms

- an explicit Euler solution and a semi-analytical method for solving PDEs through discretization

into a set of ordinary differential equations (ODE). The machinery used in forming the explicit Euler

solution is exploited for finding the discrete Laplacian, similar to the diffusion operator, for use in

finding the reduced order model.

2.2.1 Properties of the Diffusion PDE

The diffusion (or heat) equation is a parabolic partial differential equation. In one dimension

it is given explicitly as

∂u

∂t
= α

∂2u

∂x2
x ∈ (x0, x`) t > 0 (2.3)

or alternatively

∂u

∂t
= D∆u = D∇2u (2.4)

Where α is the diffusion coefficient. The right hand side of 2.4 is an alternative expression

with the coefficient D a real valued constant. The second order derivative in space is also referred

to as the Laplacian.

Writing the PDE in subscript notation will be more succinct for the finite difference expres-

sions

ut = αuxx (2.5)

In two dimensions the diffusion equation is written

∂u

∂t
= α

∂2u

∂x2
+ α

∂2u

∂y2
x ∈ (x0, x`) t > 0 (2.6)
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or equivalently

ut = αuxx + αuyy (2.7)

The problems studied will be initial boundary value problems. The state is known at initial

time and the boundary of the spatial domain must satisfy the boundary conditions for all time.

The boundary conditions determine if the system solution will dissipate, grow or be conserved. The

boundary conditions in a 1D domain are defined as

Dirichlet Neumann Robin

u(x0, t) = a du(x0,t)
dx = a u(x0, t) + du(x0,t)

dx = a t ∈ [0, tf ]

u(x`, t) = b du(x`,t)
dx = b u(x`, t) + du(x`,t)

dx = b a, b ∈ R

The Neumann boundary conditions considered here will always be homogeneous, a, b = 0.

Consider a general second order differential equation with constant coefficients.

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y
+ d

∂u

∂x
+ e

∂u

∂y
+ fu+ g = 0 (2.8)

The leading high order terms dominate the solution of the 2.8 and hence the rest of the equation

will be discarded leaving the principal part [33]:

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y
= 0 (2.9)

Rewriting in matrix notation gives

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y
= ∂TA∂u (2.10)

Where ∂ =

 ∂
∂x

∂
∂y

, A =

a b

b c

 and T denotes the transpose

A PDE of this form can be classified according to the eigenvalues of A, given by

det

[
A− µI

]
= µ2 − (a+ c)µ− (b2 − ac) = 0

Specifically, the value of the discriminant b2 − ac determines the classification of the PDE.

1. b2 − ac < 0 Elliptic - No real characteristic lines exist.
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2. b2 − ac = 0 Parabolic - Characteristic lines are coincident.

3. b2 − ac > 0 Hyperbolic - Two classes of characteristic lines exist [52].

The classification names correspond to the shape of the PDE’s ”‘characteristic curves”’,

along which the PDE can be reduced to an ODE. Any Parabolic PDE may be expressed in the form

of the heat equation with the appropriate change of independent variables [33].

This thesis focuses on the diffusion equation, though the techniques extend to the of linear

parabolic PDEs. Most of this work can be extended to nonlinear parabolic systems. The canonical

classification (parabolic, hyperbolic,...) or shape of the PDE dictates the applicability of the method

for realizing a reduced order model. For example, while a parabolic system allows separation of the

eigenvalues into a set of dominant slow modes and an infinite dimensional complement of fast modes,

a hyperbolic system has eigenvalues which cluster asymptotically nearly the real axis. It is not clear

what modes may be discarded for a hyperbolic system[13]. The method used in section 2.3.2 and

section 2.3.3 are not applicable to the hyperbolic case. Therefore the class of dynamical systems

must be restricted.

2.2.2 Fourier Spectral Solution

A classical solution to the diffusion PDE is expression of the solution as a linear combination

of cosines and sines. The diffusion PDE is solved assuming the function may be solved by separation

of variables. For a function v(x, t) the separation of variables means expressing it as

v(x, t) = f(t)g(x)

Only homogeneous Neumann boundary conditions are considered in the experiment section, therefore

only solutions with Neumann boundary conditions will be presented. The Fourier solution to the

the 1D diffusion PDE results in a solution of the form

u(x, t) = a0(t) +

∞∑
n=1

an(t) cos
(nπx

`

)
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The diffusion equation in one dimension may be rewritten as

∂u

∂t
− ∂2u

∂x2
= 0 (2.11)

∂u(x = 0, t)

∂x
=
∂u(x = `, t)

∂x
= 0 (2.12)

The Laplacian of the 1D diffusion equation is evaluated at the steady state resulting in an ODE

with boundary conditions

∂2u

∂x2
= θ2u (2.13)

∂u(x = 0, t)

∂x
=
∂u(x = `, t)

∂x
= 0 (2.14)

The general solution to the Laplacian ODE is

∂u(x)

∂x
= −c1θ sin(θx) + c2θ (2.15)

Evaluating 2.15 at the boundaries the eigenvectors are

cos
(nπx

`

)
, n = 1, 2, 3... (2.16)

The particular solution of the Laplacian ODE subject to boundary conditions is

u(x) = a0 +

∞∑
n=0

an cos(
nπx

`
) (2.17)

a0 =
1

`

∫ `

0

u(x)dx (2.18)

Where each a is a Fourier coefficient determining the weight of the eigenfunction. The method to

find the Fourier coefficients may be found in [46]. The Fourier analysis thus gives an analytical

solution to the diffusion equation. The analytical solution here may be truncated to a basis of finite

size but with increasing error as the truncation order decreases. Analytic solutions of the 1D and 2D

diffusion equation will be useful for comparison to solutions using empirical bases. The solution for

the 2D diffusion equation with Neumann boundary conditions is given by the Fourier double cosine

13



series and simply stated

u(x, y) = a00 +

∞∑
m=0

∞∑
n=0

amn cos

(
mπx

`1

)
cos

(
nπy

`2

)
(2.19)

a00 =
1

`1`2

∫ `1

0

∫ `2

0

u(x, y)dxdy (2.20)

2.2.3 Numerical Approximation

The solution of the diffusion PDE may also be found utilizing numerical methods. Two

methods are reviewed. First the finite difference approximation is found. This is useful as it is used

in section 3.3.1 to compare performance of the state estimator using a reduced order model with an

estimator using a high dimension finite difference solution of the diffusion PDE in one dimension.

Also, the finite difference of the second order partial differential operator is the Laplacian. A

numerical approximation for the Laplacian is required for projecting the diffusion PDE onto a finite

dimensional basis. Lastly, the finite difference spatial discretization is used in the numerical Method

of Lines (MOL); the MOL is used to generate a true solution of the system.

2.2.3.1 Finite Difference Method

The finite difference solution is a simple solution technique which demonstrates a numerical

solution to differential equations in a straight forward way. The finite difference method discretizes

the spatial domain into a finite number of points where the solution estimate is known. Here the

term estimate refers to error caused by discretizing the domain into a finite number of points. The

finite difference solution will be derived for the 1D diffusion equation and stated for two dimensions.

For simplicity the spatial domain is discretized linearly for the 1D case and as a rectilinear grid in

the 2D case. The solution of the diffusion PDE varies in space and time, the time point will be fixed

for the derivation of the finite difference formula in space; u is meant to correspond to u(x) which

has no variation in time.

The domain of the independent variable 0 to ` will be divided into equally sized increments

∆x into N spatial grid points.

N =
x` − x0

∆x
+ 1

The second derivative at point xi of a function u will be approximated using values of u at
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xi and some neighboring points.

The forward derivative is traditionally expressed as

u′(x) = lim
h→0

u(x+ h)− u(x)

h

The Taylor expansion of u(x) about point x is give by [121]

f(x) = f(xi) +
du(fi)

dx
(x− xi) +

1

2

d2f(xi)

dx2
(x− xi)2 +

1

6

d3f(xi)

dx3
(x− xi)3 +H.O.T. (2.21)

Writing the derivative in a finite difference form may be done using the Taylor expansion

u(xi + ∆x) = u(xi) + u′(xi)∆x+
1

2
u′′(xi)∆x

2 + u3(xi)∆x
3 +H.O.T.

Rearranging

u′(x) =
u(x+ ∆x)− u(x)

∆x
− 1

2
u′′(x)∆x2 − u3(x)∆x3 −H.O.T.

u′(x) =
u(x)− u(x)

∆x
−1

2
u′′(x)∆x2 − u3(x)∆x3 −H.O.T.︸ ︷︷ ︸ (2.22)

O(∆x2) (2.23)

u′(x) =
u(xi+1)− u(xi)

∆x
+ O(∆x2)

where O(∆x2) indicates the magnitude of the error can be bounded by a term that decreases

proportionally to ∆x2 as ∆x becomes small.

Similarly the backward difference is

u′(x) =
u(xi)− u(xi−1)

∆x
+ O(∆x2)

The second derivative my be found using the Taylor expansion. Consider the Taylor expan-

sion at u(xi + ∆x) and u(xi −∆x)

u(xi + ∆x) = u(xi) + u′(xi)∆x+
1

2
u′′(xi)∆x

2 + O1(∆x3)
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u(xi −∆x) = u(xi)− u′(xi)∆x+
1

2
u′′(xi)∆x

2 + O2(∆x3)

add the two

u(xi + ∆x) + u(xi −∆x) = 2u(xi) + u′′(xi)∆x
2 + O1(∆x3) + O2(∆x3)

Rearranging

u′′(xi) =
u(xi + ∆x)− 2u(xi) + u(xi −∆x)

∆x2
+ O(∆x3) (2.24)

The subscript form of the diffusion equation is

ut = αuxx

where u varies in both space and time. For a small known change in time ∆t the diffusion equation

may be written as

u(xi, tτ+1)− u(xi, tτ )

∆t
= α · uxx(xi, tτ )

using the explicit Euler approximation. The change for a given increment of time is

ut(xi) = u(xi, tτ+1)− u(xi, tτ ) = α∆t · uxx(xi, tτ )

substituting the finite difference form of the second derivative the finite difference form of the diffu-

sion equation is

ut(xi) = α
∆t

∆x2
(uxi−1

− 2uxi
+ uxi+1

) (2.25)

The finite difference formula is usually written in a short hand notation where ui denotes the value

of u(i)

ut(xi) = α
∆t

∆x2
(ui−1 − 2ui + ui+1)

The (1) − (−2) − (1) term in the right hand side of the finite difference equation is often called a

stencil. Find the solution may then be found my moving the stencil around the domain and carrying

about the operation. Obviously, special consideration needs to be taken when the stencil is on the

edge of the boundary of the domain. For the Dirichlet case enforcement of boundary conditions

simply requires setting the values at the points x1 and xN to a and b, respectively. To properly
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Figure 2.1: Finite difference discretization of a 2D domain. The x axis is discretized into points from
x1 to xM while the y axis is discretized into points from y1 to yN . The points at x0 are fictitious
points outside the real boundary of the system.

enforce Neumann boundary conditions, fictitious points must be placed at x0 and xN+1 (see figure

2.2.3.1) since the second order centered finite difference stencil for the first derivative would not be

applicable at x1 and xN . The finite difference formula is then solved at the boundary enforcing the

boundary condition. The solution for the a homogeneous Neumann condition at x1 will be solved

and the solution at xN stated.

ut(x = 0) =
∆t

∆x2
(ui−1 − 2ui + ui+1) = 0

ut(x = 0) =
∆t

∆x2
2(ui+1 − ui) (2.26)

the second Neumann boundary condition is

u′(x = `) =
1

∆x2
2(ui−1 − ui) (2.27)

It is simple to extend the finite difference formula to the 2D case

ut(i, j) = α
∆t

∆x2
(ui−1,j − 2ui,j + ui+1,j) + α

∆t

∆y2
(ui,j−1 − 2ui,j + ui,j+1) (2.28)

The results of 2.26 and 2.27 may be applied to enforcement of Neumann boundary conditions
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in the 2D case just as 2.25 to the second central difference in two dimensions in 2.28. The difference

equations enforcing the boundary conditions are stated:

ut(i, j) = α ∆t
∆x2 (ui−1,j − 2ui,j + ui+1,j) + α dt

∆y2 2(2ui,j+1 − ui,j) 0 < i < `1 j = 0

ut(i, j) = α ∆t
∆x2 (ui−1,j − 2ui,j + ui+1,j) + α dt

∆y2 2(ui,j−1 − ui,j) 0 < i < `1 j = `2

ut(i, j) = α ∆t
∆x2 2(ui+1,j − ui,j) + α dt

∆y2 (ui,j−1 − 2ui,j + ui,j+1) i = 0 0 < j < `2

ut(i, j) = α ∆t
∆x2 2(ui−1,j − ui,j) + α dt

∆y2 (ui,j−1 − 2ui,j + ui,j+1) i = `1 0 < j < `2

ut(i, j) = α ∆t
∆x2 2(ui+1,j − ui,j) + α dt

∆y2 2(ui,j+1 − ui,j) i = 0 j = 0

ut(i, j) = α ∆t
∆x2 2(ui+1,j − ui,j) + α dt

∆y2 2(ui,j−1 − ui,j) i = 0 j = `2

ut(i, j) = α ∆t
∆x2 2(ui−1,j − ui,j) + α dt

∆y2 2(ui,j+1 − ui,j) i = `1 j = 0

ut(i, j) = α ∆t
∆x2 2(ui−1,j − ui,j) + α dt

∆y2 2(ui,j−1 − ui,j) i = `1 j = `2

The explicit Euler solution method described in this section is subject to a limited stability

region. A relation between the size of the time step and spatial discretization must be met to

ensure stable integration. The relation is defined by the Courant-Friedrichs-Lewys (CFL) condition

number. The following ratio must be satisfied [52].

dt

∆x2
≤ 1

2

2.2.3.2 Discrete Laplacian

The discrete Laplacian is required for model reduction later. The finite difference formulas

derived in section 2.2.3.1 are directly applicable. The Laplacian of a function u in the spatial domain

x ∈ Ω is

∇2u =
∂2u

∂x2

Unlike the explicit Euler method for solving a system with boundary conditions, taking the discrete

Laplacian of a discrete field is not subject to a set of given boundary conditions. The edges of the

field must be found using forward and backward differences. For the 1D case the second forward

difference is given by taking the derivative of the first forward difference at two adjacent points.

ui =
(ui+2−ui+1)

∆x − (ui+1−ui)
∆x

∆x
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∇2ui = 1
∆x2 (u(xi + h)− 2u(xi) + u(xi − h)) 0 < i < `

= 1
∆x2 (ui − 2ui+1 + ui+2) i = 0

= 1
∆x2 (ui − 2ui−1 + ui−2) i = `

Table 2.1: 1D discrete Laplacian formulas

∇2ui,j = 1
∆x2 (ui−1,j − 2ui,j + ui+1,j) + 1

∆y2 (ui,j−1 − 2ui,j + ui,j+1) 0 < i < `1 0 < j < `2
= 1

∆x2 (ui−1,j − 2ui,j + ui+1,j) + 1
∆y2 (ui,j − 2ui,j+1 + ui,j+2) 0 < i < `1 j = 0

= 1
∆x2 (ui−1,j − 2ui,j + ui+1,j) + 1

∆y2 (ui,j − 2ui,j−1 + ui,j−2) 0 < i < `1 j = `2
= 1

∆x2 (ui,j − 2ui+1,j + ui+2,j) + 1
∆y2 (ui,j−1 − 2ui,j + ui,j+1) i = 0 0 < j < `2

= 1
∆x2 (ui,j − 2ui−1,j + ui−2,j) + 1

∆y2 (ui,j−1 − 2ui,j + ui,j+1) i = `1 0 < j < `2
= 1

∆x2 (ui,j − 2ui+1,j + ui+2,j) + 1
∆y2 (ui,j − 2ui,j+1 + ui,j+2) i = 0 j = 0

= 1
∆x2 (ui,j − 2ui+1,j + ui+2,j) + 1

∆y2 (ui,j − 2ui,j−1 + ui,j−2) i = 0 j = `2
= 1

∆x2 (ui,j − 2ui−1,j + ui−2,j) + 1
∆y2 (ui,j − 2ui,j+1 + ui,j+2) i = `1 j = 0

= 1
∆x2 (ui,j − 2ui−1,j + ui−2,j) + 1

∆y2 (ui,j − 2ui,j−1 + ui,j−2) i = `1 j = `2

Table 2.2: 2D discrete Laplacian formulas

The forward difference is

u′i =
1

∆x2
(ui − 2ui+1 + ui+2) (2.29)

Similarly the second backward difference is

u′i =
1

∆x2
(ui − 2ui−1 + ui−2) (2.30)

The formulas for the dicrete Laplacian in 1D and 2D are given in tables 2.1 and 2.2 respec-

tively.

2.2.3.3 Numerical Method of Lines

The numerical Method of Lines is a PDE solution technique which treats a PDE as a system

of ordinary differential equations which can be solved using standard ODE solvers. The advantage

of using the MOL is utilization of well documented ODE solvers such as Matlab Runge-Kutta solver

ode45 or stiff solver ode15s. The MOL discretizes all but one independent variable; typically the

spatial domain is discretized and the temporal is not. Figure 2.2 depicts the state trajectories for

a 1D diffusion equation discretized into a system of ODEs. The system of ODEs could be solved

using standard analytical means making it a semi-analytical technique. Rather than using analytical

techniques a numberical ODE solver will be used. The finite difference approximation for the second

derivative 2.25 is used to discretize the spatial domain. The 1D diffusion PDE 2.5 is then replaced

19



0
20

40
60

80
100

120 0

0.05

0.1

0.15

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in seconds
Space

Co
nce

ntr
atio

n

Figure 2.2: Solution to the 1D diffusion equation. Each line represents the state evolution for that
particular point in the spatial discretizaton.

with functions

u(x, t) = ui(t) i = 1, 2, ...,M (2.31)

subject to initial and boundary value conditions

u(x, t = 0) = f(x) u(x = 0, t) = g1(t) u(x = M, t) = g2(t) (2.32)

More clearly the system of ODEs may be written

∂ui
∂t

= α
ui+1 − 2ui + ui−1

∆x2
i = 1, 2, ...,M (2.33)

The system of coupled ODEs may now be integrated using a numerical integrator. A stiff

ODE integrator is recommended even for coarse spatial discretizations. Stiffness of an equation

refers to presence of dynamics with different time scales in the solution requiring small time steps to

ensure stability of the solution. As the discretization is refined the system of ODEs becomes stiffer

making non-stiff solvers ineffective at producing a solution is reasonable time [116]. One eigenvalue

is near the origin with magnitude λ1 ≈ −π2 for any size of the spatial increment. The largest

eigenvalue is λm ≈ −4/∆x2. The ratio of these two indicate the stiffness: 4/π2∆x2. As ∆x gets

small the stiffness becomes very large [78].
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2.3 Reduced Order Model (ROM)

The state estimator is built using a finite dimensional model of the diffusion process. The

diffusion process is naturally distributed and described by an infinite dimensional system. Using

numerical techniques the diffusion equation can be solved as a high but finite dimensional system.

Unfortunately brute force numerical methods do not lend themselves to practical state estimator or

control synthesis. A comparison of the (i) true system state, (ii) linear interpolation of sixteen sensors

and (iii) a reduced order model estimating state from five sensors is shown in figure 2.3. Simply

linearly interpolating between sensor points yields a poor estimate of state while the estimator based

on a reduced order model performs much better. The order of the diffusion equation will be reduced

using the Karhunen-Loéve-Galerkin (KLG) model order reduction technique for use in construction

the state estimator.

The Karhunen-Loéve expansion decomposes observations of a system into a set of principle

mode shapes; the set of observations is the ensemble. The ensemble must include all dynamic be-

havior the reduced order model is expected to reproduce which may be composed from numerical

simulations or measurements of an experiment. For example, time instances taken from a numerical

solution to the diffusion equation satisfying a given initial condition with Neumann boundary con-

ditions could be used as the ensemble. The principle mode shapes are found using Karhunen-Loéve

(KL) decomposition and the linear Galerkin method is used to project the system onto the KL

basis. The reduced order model may then be used to simulate or predict system response similar

to that in the input ensemble. If the reduced order model is given dissimilar conditions such as an

initial condition far different from that of the input ensemble or a system with different boundary

conditions the approximation of the original system given by the reduced order model will be poor.

The Karhunen-Loeve-Galerkin method has been applied to many problems. A review of

reduced order model literature with a focus on the KLG method will be presented. The tools for

forming the reduced order model will then next be shown. The theoretical framework for decompos-

ing the input ensemble into a set of empirical modes using the Karhunen-Loéve expansion will be

derived. Next the linear Galerkin method will be derived for projecting the system dynamics onto

a set of basis functions. The Karhunen-Loéve expansion and Galerkin Method will then be shown

to yield a finite set of ODEs forming the reduced order model.

21



0

0.5

1

0

0.5

1
0

0.5

1

Position X

Position Y

C
o

n
c
e

n
tr

a
ti
o

n

0

0.5

1

0

0.5

1
0

0.5

1

Position X

Position Y

C
o

n
c
e

n
tr

a
ti
o

n

0

0.5

1

0

0.5

1
0

0.5

1

Position X

Position Y

C
o

n
c
e

n
tr

a
ti
o

n

Figure 2.3: Left: True solution of the 2D diffusion equation with unitary diffusion coefficient at
25ms. Middle: Linearly interpolated state from sixteen sensors. Right: State estimate from five
sensors using a reduced order model and a Kalman filter.

2.3.1 ROM Literature Review

The Karhunen-Loéve expansion is known by many names depending on the respective field

of application, most notable names are the Principal Orthogonal Decomposition (POD), Principal

Components Analysis (PCA), singular value decomposition and the Hotelling Transform. Likewise

a multiplicity exists in the name of the basis functions obtained through the modal decomposition:

empirical modes, principal orthogonal modes and empirical orthogonal functions (eof) [57]. Several

researchers independently introduced the Karhunen-Loéve decomposition: Pearson [102], Hotelling

[59], Kosambi [72], Loéve [80], Karhunen [63], Pougachev [106] and Obukhov [96].

The primary use of the Karhunen-Loéve procedure bas been for complexity reduction. Early

application of the KLE was in the field of fluid dynamics in analysis of turbulent flows for coherent

structures. The idea of coherent structures in turbulent flows was first proposed by Liepmann [79]

and then subsequently used by Townsend [125]. A coherent structure is defined as a spatial feature

in the flow which have a number of characteristic appearance over an appreciable amount of time.

[17]. Application of the KLE in the area of turbulence was first used by Lumley [81].

The Karhunen-Loéve procedure is pervasive and has found application in more areas than

analysis of turbulent flows. Some limited use has been found in the area of data and image com-

pression. Andrews et. al proposed the the Karhunen-Loéve transform as a data compressor [6].

The Karhunen-Loéve transform is used to generate a data dependent autocorrelation based com-

pression of the data. While the compression is optimal for the data a significant negative is the

autocorrelation matrix must be available to the decoder. For data sources that are non-stationary
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the autocorrelation will vary requiring transfer of the autocorrelation tensor resulting in an imprac-

tical compression technique in many circumstances [115]. The compression made available by KL

expansion has also found a niche in facial recognition. Here, an ensemble of training images is used

to produce the autocorrelation matrix and thusly the eof. Images in the original ensemble may be

represented as a linear combination of the eof. Kirby and Sirovich used the eof from KL expansion

to represent faces not in the training set [68]. Turk and Pentland built on the work of Kirby and

Sirovich developing a facial recognition algorithm using the eof weights to measure the closeness of

a face with those in the training set [126].

Some early investigation of control using modal approximations of distributed parameter

systems was performed by Balas. Balas examined a truncated modal approximation of a linear

diffusion process and theoretical design of a modal controller. The effect of the truncated modes

receiving ’spillover’ control energy is proven to not cause divergence undesirably affect the dissipative

characteristic of the system [14]. Balas also proved a stable finite dimensional controller for the

Galerkin approximation of a distributed parameter system exists [15].

Controllers using KLG approximations to linear systems have been made by several re-

searchers. Kunisch and Volkwein synthesize a closed loop suboptimal feedback controller for the

Burgers’ equation using a reduced order model formed from a Galerkin approximation using modes

recovered from the Karhunen-Loéve expansion. Park and Cho investigate Karhunen-Loeéve Galerkin

approximations to the nonlinear heat equation. Effects of model order, ensemble size, varying bound-

ary values on error are found [101].Chen and Chang develop a control theory for nonlinear systems

with unknown dynamics for systems with a partitionable eigenspectrum with applications to chem-

ical systems. The Karhunen-Loéve-Galerkin methodology is used in development of the nonlinear

feedback control law [27].

Many extensions of the KLG procedure have been proposed. Graham and Kevrekidis modify

the Karhunen-Loéve decomposition to accommodate non-uniform sampling of the input ensemble

and weighted ensemble averages to emphasize events or structures that are localized in space or

time [48]. Rowley and Mardsen extended the Karhunen-Loéve-Galerkin procedure to accommodate

traveling waves. [114]. Roweley et al. extend the previous work for self-similar dynamic systems

[113]. Rambo used a flux matching procedure to accommodate inhomogeneous boundary conditions

for a KLG reduced model[110]. Applying the Karhunen-Loéve expansion to partial data is addressed

by Everson and Sirovich [36].
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For nonlinear systems the model produced using the linear Galerkin method may not capture

satisfactory dynamics. A variation on the linear Galerkin method is the nonlinear Galerkin method

[83]. The linear Galerkin method projects the dynamic system on a finite set of basis functions while

the nonlinear Galerkin method projects the system on an inertial manifold. An inertial manifold

is a positively invariant Lipschitz manifold which exponentially attracts all state trajectories to

the manifold in finite time [39]. The dynamics of the dynamic system reduce to ODEs on the

inertial manifold. ODE analysis techniques applied to the ODEs provide accurate analysis of the

PDE system. Some systems have inertial manifolds which may be proven using existence proofs.

For systems which are proven to have an inertial manifold results of the existence proof does not

produce the inertial manifold itself. Approximate inertial manifolds (AIM) have been proposed

which attract the state trajectories exponentially in finite time [124]. A sampling of AIM techniques

will be stated, an extensive review of model reduction using AIMs and comparison with Karhunen-

Loéve decomposition & flat Galerkin projection see the Shvartsman and Kevrekidis review paper

[117].

Christofides and associates have proposed controllers using combinations of Karhunen-Loéve

expansion, AIMs and Galerkin’s method. Systems governed by the diffusion-convection-reaction

equations (used in in silico models) which are parabolic PDE systems which may separated into

fast and slow modes. Nonlinear finite-dimensional models are developed and a nonlinear control law

developed [29]. They have also applied this methodology to systems with time dependent spatial

domains for linear Galerkin and nonlinear Galerkin methods and subsequently synthesizing a robust

controller for the diffusion-convection-reaction system with uncertainty [8] [10] [9]. Controllers have

also been synthesized for the one dimensional Burgers equation and the 2D Navier-Stokes equation

[11]. They have also synthesized a nonlinear controller for the spatially nonlinear system describing

a rapid thermal chemical vapor deposition process. [12] [13]. A nonlinear controller for a particle

size distribution process governed by first order hyperbolic and integro-differential equations was

synthesized as well [28].

The Karhunen-Loéve-Galerkin formulation is only one example. Several other model reduc-

tion techniques exist worth mentioning. For pure spectral techniques (as opposed to pseudospectral

collocation techniques) other basis sets may be used. Building an optimal set of orthogonal basis

functions using empirical data via the Karhunen-Loéve expansion is limited to recreating initial

conditions which were observed in the input ensemble. Fourier cosine or sine bases are applicable
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to periodic boundary conditions. Chebyshev Legendre polynomials, Laguerre series and Chebyshev

series may also by used provided by satisfy the requirements of the projection technique [47].

The balanced truncation proposed by Moore has been used with Karhunen-Loéve decom-

position to form a reduced model from input-output data [87]. The controllability and observability

grammians are computed and used to find a coordinate transformation which balances the grammi-

ans so they are diagonal and equal. States which are not affected much by input have little effect on

output in in the balanced coordinates and subsequently truncated. While the results are not guar-

anteed to be optimal the error bounds of the reduced model are known. The Galerkin projection

is then used to find an empirical balanced realization for the linear [128] [112] or nonlinear system

[74].

The Tau approximation proposed by Lanczos is similar to the Galerkin method. The or-

thonormal basis set for the Tau approximation is not required to satisfy the boundary conditions

as the Galerkin procedure is. An additional set of functions are required to enforce the boundary

conditions which may be (in)homogeneous [47]. For an overview of the Tau method see [97], [47];

Some examples are provided in [47].

Wavelet-Galerkin methods have been proposed as a solution technique to partial differential

equations motivated by ability to describe multiple scales of resolution [3] [107] [18]. Wavelet-

Galerkin solvers have been shown to produce computationally efficient and accurate results in com-

parison to finite element approximations of PDE’s. Qian and Weiss investigated the wavelet-Galerkin

method for nonlinear PDEs with periodic boundary conditions [107]. Beylkin and Keiser developed

computation algorithms for solving the heat equation, Burgers’ equation and the generalized Burg-

ers’ equation with the wavelet-Galerkin method [18]. Some use of the wavelet-Galerkin method has

been found in system identification [45] [67] [24] and control [64].

2.3.2 Karhunen-Loéve Expansion

The modes found using the Karhunen-Loéve expansion will be the basis set for the reduced

order model. At each time step the reduced order system will be expressed as a linear combination

of the empirical modes. The underlying dominant dynamics of the infinite dimensional system are

projected onto the finite basis set found from the Karhunen-Loéve expansion.

Suppose some set of functions U = {u1, u2, ..., uM} with multiplicity M belong to the

infinite-dimensional L2(Ω) Hilbert space H. Each function ui = ui(x) is a spatial function that
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defines a scalar field in the domain x ∈ Ω describing the system at each observed time increment m.

This set of functions are found through numerical simulations or physical experiments and will be

used to find the empirical modes [57].

The Karhunen-Loéve Expansion allows expression of a function as a linear combination of

eigenfunctions in the form of the expansion

u(x, t) = u0(x, t) +

∞∑
n=1

anφn(x) (2.34)

Where each φn(x) is a basis function satisfying the boundary conditions. The u0(x, t) is a source

function satisfying time varying or inhomogeneous boundary conditions. Interest is limited to static

homogeneous boundary conditions in this work. The weighting coefficients an(t) will be found later

via a system of ordinary differential equations for a system similar to 2.34 which is finite dimensional

and varies in time.

The Hilbert space has the inner product

(f, g) =

∫
Ω

f(x)g(x)dx

and the induced L2-norm

‖f‖ = (f, f)
1
2

It is desired to have the best projection of U = {u1(x), u2(x), ..., un(x)} onto a basis

Φ = {φ1, φ2, ..., φn} for H. The average projection of U onto Φ is

max
Φ∈L2(Ω)

〈|(U,Φ)2|〉
‖Φ‖2

(2.35)

where 〈αi〉 = 1
n

∑
αi is an averaging operation and ‖ · ‖ is the modulus. To find the optimal basis

the average projection needs to be extremized. Maximizing 2.35 is tantamount to minimizing the

projection error. Extremizing the numerator of 2.35 with the constraint ‖Φ‖2 = 1 is a calculus of

variations problem [57], with cost functional

J [Φ] = 〈|(U,Φ)|2〉 − λ(‖Φ‖2 − 1)
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The λ is a Lagrange multiplier. The solution of the variational problem must satisfy [57]

∫
Ω

〈U(x), U(x′)〉Φ(x′)dx′ = λΦ(x). (2.36)

The autocorrelation function is defined as the kernel function of the integral transform in the previous

equation.

R(x, x′) = 〈U(x), U(x′)〉

The um(x) functions are system snapshots. The system snapshots will be discretized observations

of the system. The domain of x discretized into k values. The um(x) continuous function is then

replaced by the vector um(x) where the boldface indicates vector or matrix. The autocorrelation

function is then replaced by a tensor product [57]

R = 〈U⊗U∗〉

where (·)∗ denotes the complex conjugate The eigenvectors of the R matrix correspond to the

principal components of ensemble samples um(x).

The maximum of 2.35 will exist for the operator < given it is compact self-adjoint [57]. The

integral 2.36 may now be written as the eigenvalue-eigenvector problem

<Φ = λΦ

Given the set of empirical orthogonal basis functions ϕ composed of the set of functions

{φ1, φ2, φ3, ..., φn}, the energy of each eigenvector λp = 〈|(up(x),Φ)|2〉 may be written as

Ep =
λp∑m
j=1 λj

The total energy retained by n modes is

E =

n∑
p=1

Ep

The system must retain the 99.9% of the energy given by the largest eigenvalues, the associated

eigenvectors form the truncated basis.
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2.3.3 Galerkin Projection

The linear Galerkin method seeks to find an optimal projection of a function onto a finite

set of basis functions. The system u(x, t) may be written as the series expansion

u(t, x) =

N∑
n=1

an(t)φn(x)

Where an(t) are coefficients which serve as weights for a linear combination of the basis set φn(x).

The dynamics of the coefficients an(t) are found using the Galerkin method; they are the dynamics of

the reduced-order model. The Galerkin method has no knowledge of the system boundary conditions

and requires that the basis functions used for the projection independently satisfy the boundary

conditions [47] [57]. The test functions used may be any set of orthonormal functions satisfying

the boundary conditions such as Chebyshev polynomials, Karhunen-Loéve empirical orthogonal

functions, Fourier series, etc.

The 1D diffusion system in 2.4 is rewritten as

du

dt
= D∇2u = Au

du

dt
−Au = 0 (2.37)

where A(·) = D∇2(·) is the spatial operator. The residual error of the approximate system

from the full rank system is defined as

r(t, x) =
∂u

∂t
−A(u)

It is desired that the residual be zero, however, this is not possible. The objective is to obtain a

system which is realizable in real time, hence the number of basis functions must be finite. The set

of basis functions is truncated, which forms a basis which does not span the entire subspace but still

describes the underlying system sufficiently. The residual may be made orthogonal to the truncated

basis to minimize the error [57].

(r(t, x), φn(x) = 0 n = {1, ..., N} (2.38)
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The solution u of the system is expressed as a truncated series.

u(t, x) =

N∑
n=1

an(t)φn(x) (2.39)

Substituting 2.39 into 2.37 expresses the residual in terms of a series expansion

r(t, x) =
∂

∂t

N∑
n=1

an(t)φn(x)−A

(
∂

∂t

N∑
m=1

am(t)φm(x)

)
(2.40)

=

N∑
n=1

ȧn(t)φn(x)−A

(
N∑
m=1

ȧm(t)φm(x)

)
(2.41)

The error must now be orthogonalized with respect to the basis functions [92], i.e. (

r(t, x), φi(x)=0 ). Then,

(r(t, x), φi(x)) =

∫
Ω

r(t, x)φi(x)dx (2.42)

=

∫
Ω

[
N∑
n=1

ȧn(t)φn(x)−A

(
N∑
m=1

ȧm(t)φm(x)

)]
φi(x)dx (2.43)

=

N∑
n=1

ȧn(t)

∫
φn(x)φi(x)−

∫
Ω

A

(
N∑
m=1

ȧm(t)φm(x)

)
φi(x)dx (2.44)

= ȧi(t)−
∫

Ω

A

(
N∑
m=1

ȧm(t)φm(x)

)
φi(x)dx (2.45)

= 0 (2.46)

Thus, the error will be orthogonal if [93]

ȧi(t) =

∫
Ω

A

(
N∑
m=1

ȧm(t)φm(x)

)
φi(x) i = 1, ..., N (2.47)

These ODEs describe the dynamics of the coefficients of the basis.

2.3.4 Finite Dimensional Model

The Karhunen-Loéve and Galerkin methods will be used together to form the reduced order

model. The Galerkin projection specific to the diffusion equation is developed. The finite dimensional

model employed will use the empirical modes recovered using the Karhunen-Loéve expansion and
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application of the linear Galerkin method.

The input ensemble of M observations is mean centered. The modified ensemble is

vm = um − ū

where the mean is given by

ū =
1

M

M∑
m=1

um

The spatial operator for the 1D diffusion equation may then be rewritten

∂v

∂t
= A(v) = ∇2(u+ ū)

substituting into 2.47

ȧi(t) =

N∑
j=1

aj(t)

∫
Ω

φi(x)∇2φj(x)dx+

∫
Ω

∇2ū(x)φi(x)dx i = 1, .., N (2.48)

Applying the Galerkin method to (φi(x), I(x)) instead of (r(t, x), φi(x)) gives the initial

conditions for the boundary value problem

ai(0) = (φi(x), I(x)) =

∫
Ω

u(x, 0)φi(x)dx i = 1, .., N (2.49)

resulting in a system of ODEs of the form

ȧ(t) = Γa(t) + b (2.50)

where

Γi,j =

∫
Ω

φi(x)∇2φj(x)dx (2.51)

and

bi =

∫
Ω

∇2ū(x)φi(x)dx (2.52)

Once the system is solved and the state vector an(t) is recovered. The approximate system
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ū(t, x) of u(t, x) takes the form

û(t, x) = ū+

N∑
n=1

an(t)φ(x)

2.4 Kalman Filter

The Kalman filter is the tool that will be used to estimate state. Essentially the filter

balances a prediction based on a system model and the measurents from the sensors to provide an

optimal estimate. The diffusion process is modeled using the reduced-order model introduced in

the previous section. Specifically the solution is represented as a linear combination of fixed basis

functions

û(t, x) = ū+

N∑
n=1

an(t)φ(x)

and the coefficients evolve in time according to

ȧ(t) = Γa(t) + b

where Γ and b are given by equations 2.51 and 2.52. The observation matrix C for the reduced-order

model is given by

C =



φ1(x1) φ2(x1) · · · φN (x1)

φ1(x2) φ2(x2) · · · φN (x2)

...
...

. . .
...

φ1(xp) φ2(xp) · · · φN (xp)


It seems a simple solution is to use the sensor data and a pseudo inverse to recover the

weights and subsequently apply to the empirical functions but doing so makes the estimate subject

to sensor and process noise, which may cause the state to vary greatly.

The Kalman filter is a linear recursive optimal estimator. For linear systems true knowledge

of state is usually obscured by sensor and process noise. Inaccuracies arise from sensor noise, biases

and parametric uncertainty of the system. The filter is recursive in that it only requires the previous

system state to make the estimate. The Kalman filter is not merely a data smoother but uses a

dynamic model of the system along with the noise properties to estimate state while minimizing the

error is statistically minimized. Using knowledge about sensor and process noise properties, sensor

measurements are used to estimate the state [85] [51]. The Kalman filter has also been applied to
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weakly nonlinear systems [1]. Only linear estimators are considered in this thesis.

Use of Kalman filtering with reduced order models was first applied in meteorological sys-

tems for state estimation and data assimilation although it is typical to see high dimensional Kalman

filtering [35] and specialized techniques such as ensemble Kalman filters to eliminate expensive matrix

inversions or 4D-VAR [61] [62] for large dimensional systems. Use of the latter techniques require

supercomputers with hundreds of processing cores and large memory capacities to accommodate

models with tens of thousands or millions of state variables [61].

Many relevant examples of Kalman filtering systems described by PDEs arises from me-

teorological forecasting. Dee used a modified Kalman filter to assimilate meteorological data [31].

Fukumori developed a Kalman filter for some reduced order approximation of the system dynamics.

[44]. Pham, et. al design an extended Kalman filter for a system approximated by empirical orthog-

onal functions that they termed singular evolutive Kalman Filter (SEEK) [104] [94]. Farrell and

Ioannou synthesize a Kalman filter for state estimation using a system approximated by balanced

truncation of a Karhunen-Loéve-Galerkin reduced order model [37]. Reduced order Kalman filtering

has also found use in fluids for design of fluid controllers [16] [58]. Computationally efficient Kalman

filtering was also proposed by Gunther, et. al whereby a Fast Fourier Transform and Galerkin

method were used fast nonlinear filtering [53]. Kalman filtering has also been applied to sub-optimal

state estimation of a multi-resolution model estimated by a wavelet-Galerkin model [122].

The state will be estimated for a dynamic system expressed in state space form

ẋ(t) = Ax(t) + η(t)

or written in terms of a state transition matrix in discrete form

xt = Φxt−1 + ηt−1

with measurement model

y(t) = Cx(t) + ξ(t)

or in discrete form

yt = Cxt + ξt
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where ξ and η are zero mean white Gaussian noise terms

η = N (0, Vs)

ξ = N (0, Vy)

The objective of weighting the measured values and predictions made by the system model

will be made through a gain factor.

x̂t,t = K̄tx̂t,t−1 +Ktyt

The double subscript notation indicates the timepoint and nature of the variable. Subscript t,t or t

denotes current time, t,t−1 denotes the prediction made at the last time step and t+1,t denotes the

prediction at the current time step.

The error is minimized when the difference of the true and estimated state is orthogonal to

the measurement. Writing in terms of the expected value [51]

E〈(xt − x̂t,t)Y Ti 〉 = 0 i = 1, 2, ...,m− 1 (2.53)

E〈(xt − x̂t,t)Y Tm 〉 = 0

The matrix Y = [y1, y2, ..., ym] is the history of the system observations.

The error is define

x̃t = xt − x̂t

By making use of the orthononality principle, uncorrelated noises and several algebraic

manipulations, the expected value conditioned on prior measurements becomes [51]

E〈(−x̃t−1,t +KtCx̃t−1,t −Ktξt)(Cx̃t−1,t − ξt)T 〉

The a priori covariance matrix is defined

Qt,t−1 = E〈x̃t,t−1x̃
T
t,t−1〉

33



The Kalman gain is then given

Kt = Qt,t−1C
T [CQt,t−1C

T + Vs]

The Kalman gain found using a covariance matrix conditioned on the past measurements,

it must be corrected and predicted at each time step. Correction of the error covariance may be

written [51]

Qt,t = E〈[x̃t,t+1x̃
T
t,t+1]〉

Making substitutions and rearranging

Qt,t = (I −KtC)Qt,t−1(I −KtC)T +KtRtK
T
t

Making additional substitutions

Qt,t = (I −KtC)Qt,t−1

The covariance prediction is found using the definition of the error and state updates [51]

Qt+1,t = E[x̃t,t−1x̃
T
t,t−1] (2.54)

= ΦQt,tΦ
T +Qt,t (2.55)

The Kalman filter estimates state using the algorithm:

1. Calculate Kalman Gain

Kt = Qt,t−1C
T [CQt,t−1C

T + Vs]
−1

2. Update (estimate) state and predictor covariance

x̂t,t = x̂t,t−1 +Kt[Yt − Cx̂t,t−1]

Qt,t = [I −KtCs]Qt,t−1

3. Predict next state and predictor covariance

x̂t+1,t = Φx̂t,t

Qt+1,t = ΦQt,tΦ
T + Vy
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4. Repeat above for each time step
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2.5 Numerical Implementation

Several tools were presented in the Background chapter but did not address implementation

in a numerical computing environment, such as Matlab R©. A succinct account of the implementation

methodology that is used to conduct numerical studies and the experiment are presented.

2.5.1 Karhunen Loéve Decomposition

The Karhunen-Loéve expansion decomposes a set of discrete observations of the system into

the principle modes. The empirical modes are used as the finite basis the system is projected onto.

Refer to section 2.3.2 for a theoretical background.

A set of M observations from numerical simulations is collected and used for the input

ensemble. The input ensemble U

U = u(t) = [u1,u2, ..., um]
T ∈ RM×N

where each um(x) is discretized into N points in space. The input ensemble is mean centered by

subtracting off the mean

ū =
1

M

M∑
m=1

um

resulting in the mean centered ensemble

V = U− ū

V = v(t) = [v1,v2, ..., vm]
T

The two point correlation function developed in 2.3.2 is now applicable. The covariance

matrix

C =
1

M

∑
Ω

VVT

The covariance matrix C has eigenvectors A and associated eigenvalues λ satisfying

CA = λA
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Singular value decomposition of the covariance matrix C is performed to solve the eigenvalue problem

C = UΣV T

where Σ are the singular values, U are the left singular vectors and V are the right singular vectors.

The MatlabTM SVD routing svd() is used for full decomposition while svds() is used to find the

k largest singular values and vectors. The columns of V correspond to the eigenvectors of C and are

the empirical orthogonal functions. The eigenvectors are then normalized as this is required for the

Galerkin projection.

For dimensions higher than one each system snapshot in the ensemble will be a matrix rather

than a vector. Each snapshot matrix must be reshaped into a vector to apply the Karhunen-Loéve

decomposition. For the 2D case discretized into an i× j rectilinear domain

V =



v1,1 v2,1 v3,1 . . . vi,1

v1,2 v2,2 v3,2 . . . vi,2

v1,3 v2,3 v3,3 . . . vi,3

...
...

...
. . .

...

v1,j v2,j v3,j . . . vi,j


(2.56)

⇒
[
v1,1 v2,1 ... vi,1 v1,2 v2,2 ... vi,2 v1,3 v2,3 ... vi,3 ..... v1,j v2,j ... vi,j

]T
(2.57)

The two point correlation matrix C may now be found. The eigenvectors recovered from the SVD

must be reshaped from a vector into a 2D matrix.

2.5.2 Galerkin Projection & Reduced Order Model

The Galerkin method projects the diffusion equation onto a finite set of basis functions

which satisfy the boundary conditions and define the dynamics of empirical mode coefficients. See

sections 2.3.3 and 2.3.4 for theory. The Galerkin projection is tailored to the diffusion equation for

the 1D and 2D cases. For the 1D case the coefficient dynamics are

ȧi(t) =

N∑
j=1

aj(t)
∑
Ω

φi(x)∇2φj(x)dx︸ ︷︷ ︸ +
∑
Ω

∇2ū(x)φi(x)dx︸ ︷︷ ︸
Γ b

where ∇2 is approximated by the formulas give in tables 2.1 and 2.2.
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The matrices Γ and b for the ODE system describing the dynamics of the empirical mode

coefficients are then obtained. To perform a simulation of the diffusion process using the reduced

order model the Γ and b matrices are used to define a function for use with a numerical ODE

integrator. The dynamic system also needs to be expressed as a system transition matrix for the

Kalman Filter. Solving 2.50 by variation of parameters gives

a(t) = eΓta(0) +

∫ t

0

eΓ(t−τ)bdτ (2.58)

where a(0) is the initial condition.

2.5.3 Kalman Filter - Reduced Order Model Formulation

The Kalman filter estimates the state of the system by weighting sensor measurements and

predictions given by the system dynamic model. It is assumed the system is sampled at uniform

temporal increments and all sensor values are available with neglible delay.

The system model is

ȧ = Γa+ b a ∈ RN

y = Ca y ∈ Rp

where a is the state of the reduced-order model.

The observation matrix of the R.O.M. is given for an N th order approximation with P

sensor locations. The values of x are the points in the domain for which there are sensors placed

CROM =



φ1(x1) φ2(x1) · · · φN (x1)

φ1(x2) φ2(x2) · · · φN (x2)

...
...

. . .
...

φ1(xp) φ2(xp) · · · φN (xp)


∈ Rp×M

The observation vector is

y = [y1 y2 ... yp]

Where yi is the observed sensor value at the corresponding point xi in the domain.

The state covariance is initialized by solving the Ricatti Equation.

Q̇ = 0 = ΓQ+QΓ−QCTs V −1
y CsQ+ Vs (2.59)
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Qt=0 = Q (2.60)

The care() Matlab solver routine is used to solve the Ricatti eqation.

The state of the Kalman filter is initialized by finding a minimum norm fit of the basis

functions to the sensor values at t = 0. A standard Moore-Penrose inverse (denoted by †) is used to

recover the states.

C†s [y1 y2 ... yM ]T = [a1(t = 0) a2(t = 0) ... aN (t = 0)]T

Where the [ā] vector is the state, the weights of that time instant on the modes.

The state transition matrix Φ is the result of the separation of variables solution in 2.58.

Φ = eΓtat,t

The integrand term in 2.58 evaluated only once using ode45() owing to the fixed temporal increment.

c =

∫ t

0

eΓ(t−τ)bdτ

The Kalman filter for the reduced-order model is then given

Calculate Kalman Gain Kt = Qt,t−1C
T
s [CsQt,t−1C

T
s + Vs]

−1

Estimate State ât,t = ât,t−1 +Kt[Yt − Csât,t−1]

Output State S = ū+
∑N
n=1 an(t)φn(x)

Update Covariance Matrix Qt,t = [I −KtCs]Qt,t−1

Predict Next State ât+1,t = Φât,t + c

Predict Next Covariance Matrix Qt+1,t = ΦQt,tΦ
T + Vy

2.5.4 Kalman Filter - Finite Difference Explicit Euler 1D Implementation

The Kalman filter is implemented for the high dimensional system produced by a finite

difference discretization of the 1D diffusion equation. The system is assumed to be discretized into

M spatial points with P sensors

The system model is
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ẋ = Ax a ∈ RM

y = Cx y ∈ Rp

The observation matrix is a diagonal matrix given as

Cee =



11 0 0 0 0 ... 0

0 0 0 0 0 ... 0

0 0 12 0 0 ... 0

0 0 0 13 0 ... 0

0 0 0 0 0 ... 0

...
...

...
...

...
. . .

...

0 0 0 0 0 ... 1P



∈ Rp×M (2.61)

Where each 1p on the diagonal is some arbitrarily placed measurement sensor at position p in the

spatial domain.

The observation vector is given

y = [y1 y2 ... yp]
T

The state transition matrix is derived from the finite difference equations given in 2.2.3.1.

A banded tri-diagonal matrix is formed using the explicit Euler central difference with forward and

backward differences enforcing the Neumann boundary conditions for the 1D case.

A =
∆t

∆x2



−2 2 0 0 . . . 0 0 0 0

1 −2 1 0 . . . 0 0 0 0

0 1 −2 1 0 0 0 0

...
. . .

...

0 0 0 0 1 −2 1 0

0 0 0 0 . . . 0 1 −2 1

0 0 0 0 . . . 0 0 2 −2


Putting the finite difference implementation into state transition matrix Φ

xt+1 = Axt + xt
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xt+1 = (A+ I)xt

Φ = (A+ I)

The initial state is found by linearly interpolating between sensor measurements for M

values given by the measurement vector

x0 = [y1 y2 ... yM ]

The state covariance is initialized by solving the algebraic Ricatti Equation as in 2.59 and

2.60.

The Kalman filter for the explicit Euler approximation is given

Calculate Kalman Gain Kt = Qt,t−1C
T
ee[CeeQt,t−1C

T
ee + Vs]

−1

Estimate State x̂t,t = ât,t−1 +Kt[Yt −Mx̂t,t−1]

Output State S = x̂t,t

Update Covariance Matrix Qt,t = [I −KtCs]Qt,t−1

Predict Next State x̂t+1,t = Φx̂t,t

Predict Next Covariance Matrix Qt+1,t = ΦQt,tΦ
T + Vy
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Chapter 3

Numerical Studies

The tools for state estimation of a PDE system have been presented in chapter 2. What

has not been covered is how well state estimation using a Kalman filter and a Karhunen-Loéve-

Galerkin model will work in practice. The reduced order model reduces the information complexity

of the PDE system into a small tractable ODE system, a type of information compression. The

proposed experiment to prove the state estimator works is estimating the concentration of a dye

diffusing in gelatin. The experiment, however, may introduce unmodeled dynamics. A number of

simulated experiments will be performed to verify the state estimator functions as expected, before

applying the methodology to the experimental data. The simulated experiments are broken into

three sections. First, the accuracy of the numerical solution to the diffusion equation is verified.

Next, the performance of the reduced order model is confirmed. Third, the reduced order model is

used to estimate state via the Kalman filter.

3.1 Numerical Solution to the Diffusion Equation

The numerical solution of the diffusion equation will be considered the true solution of the

continuous problem. The accuracy of the numerical Method of Lines solver will be confirmed by

comparing solutions using several different discretization mesh sizes and verifying the boundary con-

ditions are satisfied. The numerical true solutions will be used with the Karhunen-Loéve expansion

to find the empirical modes for reduced order model studies, state estimator performance studies

and the physical experiment. Inaccuracies of the numerical solver will propagate to the reduced
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order model and state estimator reducing accuracy. Solution results for the 1D and 2D diffusion

equation are both verified.

3.1.1 Diffusion Equation in One Dimension

The one dimensional diffusion equation

u̇ = D∇2u

with diffusion coefficient D = 1, was simulated using an implementation of the Method of Lines

solver with a first order second centered difference discretization in the spatial domain and the

Matlab stiff ODE solver ode15s. The discretization of the spatial domain D ∈ [0 1] was performed

with mesh sizes 0.01, 0.001, 0.0005. The initial condition and Neumann boundary conditions are

given by

IC u(x, t = 0) = 1 x ∈ [0.3, 0.7]

BC ∂u(0,t)
∂x = ∂u(1,t)

∂x = 0 t = [0,∞)

Performance is evaluated by ensuring the boundary conditions are met. The solution to

the homogeneous diffusion equation with homogeneous Neumann boundary conditions will main-

tain constant mass in the domain. The homogeneity of the diffusion equation means there are not

source terms (actuators) in the domain to add or remove concentration. The homogeneous Neumann

boundary conditions prevent any media from flowing in or out of the domain. Thus, integrating

the concentration u(x, t) over the domain at the initial time and final time should yield the same

value. The initial conditions and final state values are integrated for each of the different discretiza-

tions. The initial conditions for the different mesh sizes have slightly different volume due to the

discretization, making direct comparison of the volume less meaningful. The percent difference of

the initial condition and final condition volumes are used to compare the error. Error values for

mesh sizes 0.01, 0.001, 0.0005 are 2.33e-6%, 1.63e-4% and 6.96e-6%, respectively. The error of the

three mesh sizes are of the same magnitude for fine and very fine discretizations affirming the 0.01

discretization is sufficently fine and the solver is performing as expected. The solution using the

0.01 discretization is accepted as being sufficiently accurate as a true solution for further numerical

experiments. The solution is plotted for various time points in figure 3.1.
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Figure 3.1: Solution to the 1D Diffusion Equation with Neumann BCs.
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3.1.2 Diffusion Equation in Two Dimensions

Similar to the evaluation of the 1D diffusion equation the 2D diffusion equation will be

evaluated by similar metrics. The homogeneous 2D diffusion equation is

u̇ = D∇2u

where the diffusion coefficent D = 1. The initial condition and boundary conditions are

IC u(x, y, t = 0) = 1 x, y ∈ [0.3 0.7]

BC ∂u(0,`2,t)
∂x = ∂u(1,`2,t)

∂x = ∂u(`1,0,t)
∂x = ∂u(`1,0,t)

∂x = 0 x, y ∈ [0 1] t = [0,∞)

The domain is discretized into a rectilinear domain in increments of 0.05, 0.02, 0.025 and 0.01 and

simulated using the method of lines solver. As with the 1D case, the equation is homogeneous, and

the boundary conditions are homogeneous, and thus there is no source term in the domain and the

boundaries cannot have flow in or out of them. Integrating over the domain gives a mass which

should be preserved through time. The percent difference of the initial and final volume are used to

compare the different discretizations of the 2D diffusion equation.

3.2 Reduced-Order Model Performance

The state estimate is found using a Kalman filter and the reduced-order model as the

dynamic model. An inaccurate model will lead to an inaccurate state estimate. The accuracy will

be evaluated at several different orders of retained modes to verify the qualitative metric dictating

retention of 99.9% of the system energy produces acceptable solutions. First, the empirical modes

and associated eigenvalues/energy are shown. Second, simulation of the diffusion equation via the

reduced-order model and comparison with the true solution will indicate performance. Third, the

greater efficiency of the empirical basis is demonstrated by forming a reduced-order model using the

analytical basis and then the empirical basis.

3.2.1 Karhunen-Loéve Decomposition

Displaying the mode shapes gives a visual interpretation of what dominant slow dynamics

and fast high frequency dynamics comprise the system. Solutions for the 1D and 2D diffusion

equations are decomposed to illustrate this.
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Figure 3.2: First six empirical orthogonal functions for 1D diffusion equation with Neumann BCs.
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Figure 3.3: Last three empirical orthogonal functions for 1D diffusion equation with Neumann BCs.

The solution for the one dimension diffusion equation found in section 3.1.1 is used as the

input ensemble to find the Karhunen-Loéve Decomposition. A full rank decomposition is performed.

The first six empirical basis functions are found and displayed in figure 3.2. The associated normal-

ized eigenvalue is reported at the top of each function figure. The last three empirical functions for

the full rank decomposition are displayed in figure 3.3. The last three basis functions in figure 3.3

are nearly with zero eigenvalues meaning they do not contribute to the description of the system

dynamics and will necessarily be discarded.

A decomposition of the results obtained in 3.1.2 is performed and plotted in figure 3.4. The

associated normalized eigenvalue is indicated at the top of each figure.
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Figure 3.4: First six empirical orthogonal functions for 2D diffusion equation with Neumann BCs.

3.2.2 Reduced-Order Model Order Study

Accuracy of the reduced-order model is contingent on the number of modes retained, which

has a direct impact on estimation accuracy. It is not known a priori what the error bound is for a

reduced-order model formed from a certain number of basis functions. A qualitative metric asserts

the system will be accurately described if 99.9% of the energy contained by the modes is retained.

The analysis if performed for the diffusion equation in 1D with the assumption that the results

similarly apply to the 2D case. The ability of the reduced-order model to approximate the original

system is performed in two ways. First, the reduced-order model is simulated and the relative error

through time is computed for models projected onto different numers of basis functions. Second, the

maximum error between the true and approximated system for each order is used to form relating

max error and basis size.

The relative error is defined as

e(t) =
‖u(t)− û(t)‖
‖u(t)‖

(3.1)

where the norm is the L2 norm for the Hilbert space H. The true solution is u(t) while the approx-

47



imate solution is û(t). The max error is defined as

e = max
t∈[0 tf ]

e(t) (3.2)

The 1D diffusion equation was simulated with the domain, initial condition and Neumann

boundary conditions described in section 3.1.1. The simulation results were used as the input

ensemble for the Karhunen-Loéve decomposition. ODE approximations for evolution dynamics of

the first ten basis functions using the Galerkin method were found. Each of the ten reduced-order

models were given the same initial condition and simulated for the same length of time as the original

solution.

The qualitative energy metric used to determine the appropriate number of modes to accu-

rately reproduce the system dynamics indicates the first three modes will produce a good model. It

was expected that retention of modes greater than this number would produce better albeit small

improvements. Performance of the reduced-order model of various orders is plotted in the top pane

of figure 3.5. The relative error for the first six models are individually plotted in the lower half of

figure 3.5. The 3rd order model did produce a model with low error although the max error was

approximately 15%. Retaining four modes reduces the max error to less than 5% and retaining more

does not yield any significant improvements. The 3rd order model will be used for the 1D numerical

studes while a 4th order model will be used for the 2D experiment to ensure low max error.

3.2.3 Fourier Basis & Empirical Basis Comparison

To further motivate using empirically determined basis functions over an analytic spectral

basis Fourier analysis is used to generated a basis consisting of cosines to be used as the basis for

the Galerkin Approximation. The cosines are found using the method described in section 2.2.2.

For the one dimensional case the first three empirical orthogonal functions are found using

the Karhunen-Loéve Decomposition on the solution found in section 3.1.1. The ROM is then found

using the linear Galerkin method. Comparison of the cosine basis solution, the empirical basis

solution and the true solution are provided in figure 3.6. The figure clearly shows that the non-

smooth initial condition is most accurately described by the empirical basis. As the solution advances

temporally, the cosine basis solution improves, however, the maximum error is considerably smaller

for the simulation with the empirical basis. The Karhunen-Loéve expansion is proven to produce an
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Figure 3.5: [Top]Maximum relative error for each reduced model order in one dimension. [Lower
Six] Relative error profiles for first six order models.

49



optimal basis making this expected result.

To further underscore the advantage of the empirical basis, simulation of the two dimensional

diffusion equation using a 16th order Fourier basis as described in section 2.2.2 is compared with a 4th

order empirical basis. The empirical basis is formed by applying the Karhunen-Loéve decomposition

to the results found in section 3.1.2. The solution error using the empirical basis is much smaller than

the Fourier basis during the first 20ms. The solution obtained using the Fourier basis is particularly

poor because the error is high, greater than 20%, while the interesting fast dynamics are occuring.

Figures of the initial condition and solution at 10ms for the finite difference, Fourier-Galerkin and

KL-Galerkin cases are in figure 3.7. The superior performance of the empirical basis was expected

since the Karhunen-Loéve expansion is proven to be optimal.

3.3 Kalman Filter

The Kalman Filter is used to find an optimal estimate of state based on the available sensor

measurements. The performance of the reduced-order model has been evaluated in section 3.2

indicating a 3rd order model for the 1D diffusion equation and a 4th order model for the 2D case

will produce approximate solutions with low error (see section 3.2.2 for error rates). The estimator

performance for the 1D diffusion equation using a 3rd order approximate model and a high order

finite difference approximation will be performed. The effects of varying sensors numbers for the

estimator in 1D with no noise performed. Performance of the estimator is then evaluated for one

and two dimensions. Finally the effects of sensor placement in the 2D domain is investigated.

3.3.1 Noiseless Filter Performance

Estimator performance is first evaluated using a reduced-order model and a high dimensional

finite difference approximation to affirm the estimator is working well. Due to storage requirements

and lengthy computation times for accurate explicit Euler solutions, the comparison will only be

made in the one dimensional case, leaving the results to motivate that the 2D case will behave well.

Performance is assessed in the absence of sensor and process noise. The 1D diffusion equation

was simulated using a method of lines solver as described in section 3.1.1. A 3rd order model is

obtained using the Karhunen-Loéve-Galerkin approach. The state is estimated using Kalman filters

formulations found in sections 2.5.3 and 2.5.4. The time steps for the KLG estimate are 1ms while
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Figure 3.6: [Top] Empirical (dashed red) and Fourier (solid blue) basis relative error for 1D diffusion
equation. [Bottom] Solution snapshots at 0s (left) and 10ms (right) for finite difference solution (solid
blue), 3rd order Fourier-Galerkin (dot-dash red) and 3rd order Karhunen-Loéve-Galerkin (dashed
green).
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Figure 3.7: [Top] Empirical (dashed red) and Fourier (solid blue) basis relative error for 2D diffusion
equation. [Middle] Solution snapshots at 0s for finite difference solution (left), 16th order Fourier-
Galerkin (middle) and 4th order Karhunen-Loéve-Galerkin. [Bottom] Solution snapshots at 10ms,
same ordering as Middle.
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the explicit Euler estimator uses a 25µs time step to enforce the Courant-Friedrichs-Lewys stability

requirements. Eleven noiseless measurement sensors are placed evenly in the domain. Solution

cross-sections of reduced-order model and explicit Euler implementations are shown in figure 3.9

and 3.10 respectively. The state evolutions are displayed in 3.8. The state trajectories at the sensor

locations are shown for the actual (blue circle) and estimated state (red dot). The relative error for

each solution is plotted in figure 3.3.1. The explicit Euler estimator provides superior performance

save for the very first time step with nearly 0% estimation error. The reduced-order model produces

more error than the finite difference approximation but the relative error evolution is very simlar to

what is displayed in the 3rd order simulation in 3.2.2, both of these seek to approximate the same

true solution. The similarity in the estimator performance and the reduced-order model simulation

indicate the estimator is operating near the error limit of the reduced-order model.

3.3.2 Noisy Filter Performance - 1D

The configuration described in section 3.3.1 is reproduced. The sensor measurements are

corrupted with zero mean white Gaussian noise with a standard deviation of 0.1. The state trajectory

of the system estimate is plotted in figure 3.13 and cross-sections of the state estimate are plotted in

3.12. The error evolution for the system is plotted in 3.14, the estimate error is less than 5% after

5ms. Figure 3.15 depicts the difference of the true solution and the estimate, the estimate is smooth

in space noisy in time.

3.3.3 Noisy Filter Performance - 2D

The diffusion equation is simulated as described in section 3.1.2 and corrupted with additive

zero mean white Gaussian noise to serve as sensor measurements. A 3rd order reduced-order model

is constructed using the noiseless result of section 3.1.2. Nine sensors are placed in the domain, figure

3.18 middle depicts the placement and the error evolution. Comparison snapshots of the system at

various time points for true, noisy and estimated state are shown in figure 3.16. A nondimensional

temporal cross-section of the state estimates is give in figure 3.17. The error estimate for the 2D

filter does not get driven down as fast as the 1D filter. The estimator takes over 30ms to get the

estimate below 20% error. The sensor placement and number will be examined in light of the poor

performance.
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Figure 3.8: [Top] Reduced-order model Kalman filter state trajectory for true (blue circle) and
estimated (red +) state [Bottom] Explicit Euler Kalman filter state tracjectory
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Figure 3.9: Reduced order model Kalman filter state temporal cross-sections for true (blue circle)
and estimated (red +) state shown in twelve small multiples. Each horizontal axis corresponds to a
noiseless measurement sensor; each vertical axis denotes concentration.
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Figure 3.10: [Top] Explicit Euler Kalman filter state temporal cross-sections for true (blue circle)
and estimated state (red +) shown in twelve small multiples. Each horizontal axis corresponds to a
noiseless measurement sensor; each vertical axis denotes concentration.
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Figure 3.11: [Left] Error evolution for state estimate using a 3rd order approximate model. [Right]
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Figure 3.12: Noisy reduced-order model Kalman filter in 1D sensor state trajectory. true (blue
circle) estimate (red +) and noisy measurement (green asterisk)
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Figure 3.13: Temporal cross-sections of noisy reduced-order model Kalman filter in 1D shown in
lower twelve small multiples. Each horizontal axis corresponds to a noisy measurement sensor; each
vertical axis denotes concentration. State legend: true (blue circle) estimate (red +) and noisy
measurement (green asterisk)
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Figure 3.14: Error evolution for 1D Kalman Filter with Neumann boundary conditions
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Figure 3.15: [Left] Error evolution for state estimate using a 3rd order approximate model. [Right]
Explicit Euler state estimate error

3.3.4 Noisy Sensor Study

The effect of sensor placement and number are investigated for the 2D system. The sim-

ulation experiment results from section 3.3.3 motivate this. The noisy sensor study conducted in

this section is meant to examine the effect of sensor placement and number empirically to create an

intuition to be used with the physical experiment.

Sensors were placed at various locations and relative error measurements taken for no mea-

surement error and additive zero mean white Gaussian noise with 0.05 standard deviation. Sensor

location plots and relative error measurements are plotted in figure 3.18. Problems estimating the

state in the presence of noise are elucidated. The 16 sensor case becomes ineffective in the presence

of noisy. By ineffective what is meant is error rate is approximately 10% while the interesting sys-

tem dynamics are ocurring. Placing a sensor where the initial concentration is known to be a priori

solves the problem.

3.3.5 Summary

The tools developed in chapter 2 were implemented in a numerical computing environment

and confirmed to work. A numerical solution to the 1D and 2D diffusion equation were shown

to be accurate and accepted as the solution to the continuous problem. A reduced-order model

was constructed from a Karhunen-Loéve decomposition of numerical simulations for the 1D and 2D

diffusion equation. The reduced-order model was shown to reproduce system dynamics with a 3 or
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Figure 3.16: True, noisy and estimated states for 2D Kalman filter at various time points
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Figure 3.17: Non dimensional state trajectory cross-section.

4 ODE approximation. The advantage of using an empirical basis was demonstrated by comparison

with a cosine basis, the cosine basis cannot reproduce the dynamics well unless many basis functions

are used. The reduced-order model Kalman state estimator was shown to produce error near the

limit of the reduced-order model for no noise and 11 sensors. Effects of sensor placement and number

on the error of the estimate was investigated for the 1D and 2D diffusion equation for the noisy and

noiseless case. Placement and number of sensors required were not determined analytically.
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Figure 3.18: Sensor, Noisless, Noisy Error plots for 5, 9 and 16 sensors
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Figure 3.19: Sensor, Noisless, Noisy Error plots for 17 and 25 sensors
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Chapter 4

Experiment

The objective of this thesis is to estimate the state of a diffusion process in a biologically

relevant material. The mathematical tools to reduce the diffusion equation into a small set of ODEs

have been presented. The methods examined in the Numerical Studies and confirmed to function

will now be implemented in a physical experiment. As established in the introduction, the process

of oxygen diffusion through tissues and collagen is important to many biological processes. The

medium that will serve as the biologically relevant material is gelatin. A drop of dye will be injected

into the gelatin and observed using a camera. Only a few pixels, i.e. sensors, will be used to estimate

the state, but the entire image will be available to evaluate the estimator performance. The estimate

of dye concentration will serve as a proof of concept of the application of these estimation problems

to biological systems. The experimental apparatus developed here will provide a testbed for further

work in state estimation.

4.1 Experiment Platform

A general test platform has been developed which permits experimentation with biologically

relevant samples. The platform will be able to accommodate samples of of varying size and bound-

ary conditions. A 60mm×60mm lighting surface will accommodate either a small 13mm×13mm

sample holder to enforce homogeneous Neumann boundary conditions or a larger sample holder ap-

proximating homogeneous Dirichlet boundary conditions. The sample is back lit via a Dolan-Jenner

DC950 fiber optic light source which is diffused through frosted acrylic producing a uniformly lit
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Figure 4.1: [Left] A schematic of the test platform. A light source is diffused through filters producing
a uniformly back lit fixture to hold the sample during observation. [Right] Cross section depicting
the hydrophobic paraffin coating, gelatin and ideal ink injection in a sample tray.

surface. Sample trays are manufactured to contain gelatin and also to define boundary conditions.

An acrylic hood is placed over the sample to slow dehydration of the gelatin. A variable size mask

is placed on the the fixture, allowing a sample tray to be affixed with repeatable precision. Data

is collected using a Lumenera Infinity microscope camera. The data is subsequently analyzed in a

numerical computing environment.

4.2 Sample Preparation

Knox R© brand flavorless gelatin is used as the hydrogel medium in which diffusion will be

studied. The manufacturer’s suggested gelatin mixing ratio is one packet gelatin mix to one cup

boiling water. The content of a single gelatin packet was found to be on average 7.1 grams. The

quantity of gelatin mix is reduced producing a gelatin which exhibits the diffusion process quickly

while ensuring no flow of ink is allowed. Ingredient ratios of water to gelatin were tested to qualita-

tively determine the optimal gelatin stiffness. McCormick R© blue pigment at full concentration was

used. Ratios 1:1, 1:4, 1:8, 1:10 of gelatin to water were tested. The original ratio 1:1 required several

days to diffuse. Ratios 1:8 and 1:10 exhibited non-uniformity in the diffusion of dye. The 1:4 ratio

demonstrated the diffusion process in a timely manner while maintaining a predictable diffusion

process. Samples are prepared using the 1:4 mixing ratio of water to gelatin. The sample storage

fixture provides reduces dehydration of the collagen incurred by the low humidity environment found

in a refrigerator. A water reservoir is placed in an enclosed container and each sample covered.

McCormick R© blue food dye (water, propylene glycol, FD&C Blue 1, 0.1% propylparaben) is
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Figure 4.2: [Left] Diffusion test system and microstope. [Top Left] Side view of sample holder
depicting paraffin coating. [Top Right] Replaceable fixture mask. [Middle] Sample holder placed in
fixture mask on lighting surface. Moisture barrier standing on edge. [Right Bottom] Rear service
panel removed revealing optical filters.
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used as the pigment source. Trials of diffusion of several different dye concentrations were conducted

to evaluate use of a camera as a concentration sensor. At high concentrations all light is blocked

by the dye, once all light is blocked increasing the dye concentration further is not sensed by the

camera. At high concentrations of dye act as a source term in the diffusion process. If the diffusion

process is homogeneous with homogeneous Neumann boundary conditions, then the volume at the

initial time and final time will be equal, this can be found by summing the pixel values of the image.

For aqueous dye solutions above 20% the initial and final volumes differed by one to two orders of

magnitude. It was found that a 1.25% aqueous soulution of blue dye differs by a factor of 1.5 to

2. The 1.25% solution was chosen since it shows interesting dynamics of the system while nearly

satisfiying the ideal case.

Preliminary tests of the diffusion platform revealed a problem with pigment injection into the

sample space. Injection of the pigment near the bottom of the gelatin causes pigment to flow along

the bottom surface of the sample holder thus obscuring the diffusion dynamics with an unmodeled

flow term. Paraffin is used to create a hydrophobic coating on the sample holder bottom to discourage

flow.

4.3 Data Processing

Data is captured at regular intervals using the Lumenera Infinity camera. A background

image of the sample holder with no injected pigment is captured. Images are converted from RGB

to grayscale. Ideal concentration profile is highest concentration corresponding to gray value 255

while no concentration corresponds to 0. The inverse is obtained while collecting data; the system

snapshot at each time increment is subtracted from the background producing the expected profile

and removing static structures in the image. The image is cropped to include only the region of

interest and resized into two data sets of 21 and 101 pixels square. Figure 4.3 illustrates the process.

The diffusion coefficient of the acqueous solution of dye in gelatin is not known outright.

The diffusion coefficient is fit to the experiment snapshots using a gradient descent approach. The

first snapshot from the experimental data is used as the initial condition for the 2D diffusion equation

and simulated with a coarse 21 element discretization on each axis. The algorithm runs simulations

for differing diffusion coefficients until the integral of the relative error is minimized. The diffusion

equation is then simulated at a fine 101 element discretization on each axis. The simulation result
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Figure 4.3: RGB original, grayscale, foreground subtracted image, cropped image

is decomposed using the Karhunen-Loéve expansion and a reduced-order model found using a linear

Galerkin method. The reduced-order model is then used in a Kalman filter to estimate the state of

the system snapshots using only a small number of pixels in the image as sensors.

4.4 Results and Discussion

The diffusion process of 1.25% acqueous solution of blue dye in 1:4 gelatin is captured at 15

second intervals for 125 minutes. The data is processed as described in section 4.3. The processed

system states are then used to fit a diffusion coefficient to the empirical data. The relative error of the

best fit 2D homogeneous Neumann diffusion equation is plotted in figure 4.4. The absolute difference

of the true and estimated state is displayed in 4.5. Watching the evolution of the physical system

and the numerical simulation side by side it is obvious a problem lies in the experiment data. The

numerical simulation is forced to be homogeneous with homogeneous Neumann boundary conditions,

therefore it is known the numerical simulation has no source term or ability to accrue mass as the

time advances. The physical system is homogenous with homogenous Neumann boundary conditions

since the only addition of mass (dye) is at the initial condition with no dye added at a later time.

Also, the volume is finite so the mass may not flow out, therefore the total mass in the physical

system should not change. As the state for the physical system evolves, pixel values indicating mass

concentration at the initial condition do not change much while the values of the neighoring area

increase. Both the numerical simulation and the physical system should maintain the same amount

of mass for all time. As the total mass in the physical experiment seems to increase the numerical

model maintins causing the solutions to diverge as time advances. Although the dye was diluted,

the camera remains slightly inaccurate for sensing concentration. Another effect which artifically

increases the concentration is formation of a bubble in the gelatin after the dye is injected. The

results of the experiment do not reflect this, however, it was noted in several trials. The walls of the
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bubble obscure light which appears as a high concentration to the camera. When this bubble pops

it appears as a sudden decrease in concentration.

The diffusion model fit using the gradient descent approach is simulated for the same time

period as the physical experiment. The empirically fit diffusion coefficient was found to be D =

3.267e− 7. The simulation results are then decomposed into empirical modes using the Karhunen-

Loéve expansion. A 4th order approximate model is then found using the Galerkin projection. The

state estimator is then evaluated using the experiment data. A small number of observation points

are taken from the series of pictures by sampling only a few pixels. The pixel values are then used by

the reduced-order model Kalman filter to estimate the state. The sensor locations and error for the

state estimator are depicted in 4.8. Comparisons of the camera observations and the state estimator

are available in figures 4.6 and 4.7 at regular time intervals. The performance of the state estimator

was much better than the reduced-order model. The reduced-order model maintains greater than

30% error for most of the time period while the state estimator drives the error to approximately

15% for the most of the experiment.

The steady state error observed in the state estimator for real data is 10% higher than

that estimated for noisy simulation data. One reason for the high error rate is inhomogeneity

in the experiment data. The camera senses high concentrations as low light levels. Even at low

concentrations of dye the camera still observed an appararent source term. As the dye diffused

outward the camera perstistly detected the same dye concentration at the intial condition although

the true concentration was decreasing. Inhomogeneous behavior causes two problems. First, the

diffusion coefficient is not known directly; simulations of the diffusion equation are run with several

different diffusion coefficients to determine the best fit coefficient. Simulating an inhomogenous

system with a homogenous model will not produce an exact solution. Secondly, the model which

is formed using the Galerkin projection is composed of empirical orthogonal functions which are

recovered from simulation of an homogenous model. The Karhunen-Loéve-Galerkin reduced-order

model can not reproduce dynamic behavior it has not seen before such as inhomogenous behavior

if a homogenous input ensemble is used. Accurately determining the diffusion coefficent using

a standalone experiment would allow a more accurate input ensemble but would not resolve the

sensor problem. Improvement in concentration estimation could be made by characterizing the

camera allowing more accurate observations to be made. Relative error of a least squares fit of the

full camera data to the empirical functions at each time step is displayed in figure 4.4. The solution
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Figure 4.4: [Left] Relative error for numerical model using empirical diffusion coefficient. [Right]
Least squares fit of full camera data to basis functions at each time step.
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Figure 4.5: [Left] Sensor locations overlaid on aerial view of initial condition. [Right] Error evolution
of Kalman filter

gradually diverges as time advances due to the inhomogeneous behavior. The higher error of the

state estimator for the first 70 minutes is most likely due to to an overestimate of the noise on the

sensor data. This causes the estimator to place more trust in the current state estimate which in

turn causes the estimate to slowly converge to the true state.
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Figure 4.6: Complete measurements surface (left) and estimated surface(right).
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Figure 4.7: Complete measurements surface (left) and estimated surface(right).
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Figure 4.8: Absolute difference of error.
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Chapter 5

Conclusions and Future Work

A test platform for state estimation of diffusion processes was developed and the efficacy of

the state estimator was demonstrated. A common process in biological systems is the mass transport

process of oxygen diffusion through tissues, known as Fick’s first law. The action of dye diffusing

in gelatin mimics the dynamics expressed by Fick’s first law. The platform was used to test the

diffusion of dye through gelatin with approximately 15% error even though the dynamic model was

not well fit to the experiment data. The test platform can also serve to test biological sensors such as

transition metal complexes or metal chelates which are mixed with plastics or injected into liposomes

to form sensors and read using confocal microscopes. The test platform can also be used to verify

estimation extensions of the state estimation technique described here.

The Karhunen-Loéve-Galerkin reduced-order model was shown to reproduce the dynamics

of a PDE system with only three or four ODEs. The empirical Karhunen-Loéve basis was shown

to have a clear advantage over a Fourier basis for reproducing known dynamics with known source

terms. For systems where the source terms or actuators are not known the empirical basis will

produce low fidelity results. Many of the in silico cancer models describe phenomena on multiple

length scales. Using a wavelet-Galerkin method may be advantageous owing to the multi-resolution

nature and may provide a more generalized set of candidate functions for the Galerkin projection.

The single biggest improvement which could be made to this system is development of rig-

orous sensor placement strategies and observability requirements. The placement and number of

sensors in the numerical studies section were iterated until the estimator had low error. Character-

istics about the system will be known such as the principal modes, composition of the sample and
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properties of the spatial domain which should be incorporated into optimally placing sensors. Use

of the state estimator in a biological system with optical contactless point sensors will require fur-

ther devlopment. Contactless beads will require examination of a sample under high magnification

making batch polling of the sensors difficult if not impossible. A method for optimally incorporating

sensor measurements that are asynchronous or delayed will provide a necessary ability for use in a

tissue test system.

Further out, application of this method to linear parabolic PDE description of tumor models

could be used to guide design of biological experiments. Simulations and investigation of sensing

requirements in a 2D tumor model as described in the section 1.1 or a more sophisticated 3D model

and performing a change of basis to 2D could be performed. Designing a tissue sample with known

properties such as cell phenotype distribution, nutrient sources, scaffolding material, etcetera could

be modeled in silico and simulated. Using a tissue engineering tool such as a bioprinter a tissue

sample could be constructed to experimentally verify the simulation results. The results of the

simulations could be used to aid in designing biological experiments. Contactless optical biosensors

such as liposomes or beads could be used to measure system properties, while deposition of nutrients

and anticancer agents could serve as actuators. In order to actively control the system state the

Karhunen-Loéve-Galerkin model will have to be implemented in a fashion to accept control inputs.

Use of the Karhunen-Loéve-Galerkin reduced-order model for state estimation in a biologi-

cally relevant medium has been demonstrated and further development will prove useful as biological

modeling, simulation, and control continues to mature.
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[36] R. Everson and L. Sirovich. Karhunen-loéve procedure for gappy data. Journal of the Optical
Society of America, 12(8):1657–1664, 1995.

[37] B.F. Farrell and P.J. Ioannou. State estimation using a reduced-order kalman filter. Journal
of Atmospheric Sciences, 58:3666–3680, 2001.

[38] K.R. Fister and J.C. Panetta. Optimal control applied to cell-cycle-specific cancer chemother-
apy. SIAM Journal on Applied Mathematics, 60(3):1059–1072, 2000.

[39] C. Foias, M.S. Jolly, G.R. Sell, and E.S. Titi. On the computation of inertial manifolds. Physics
Letters A, 131(7,8):433–436, 1988.

[40] J. Folkman. Tumor angiogenesis factor. Cancer Research, 34:2109–1974, 1974.

[41] J. Folkman, E. Merler, C. Abernathy, and G. Williams. Tumor behavior in isolated per-
fused organs: In vitro growth and metastases of biopsy material in rabbit thyroid and canine
intestinal segment. Annals of Surgery, 164:491–502, 1966.

[42] J. Folkman, E. Merler, C. Abernathy, and G. Williams. Isolation of tumor factor responsible
for angiogenesis. Journal of Experimental Medecine, 138:745–753, 1973.

[43] H.B. Frieboes, M.R. Edgerton, J.P. Fruehauf, F.R.A.J Rose, and L.K. Worrall. Prediction of
drug response in breast cancer using integrative experimental/computational modeling. Cancer
Research, 69:4484–4492, 2010.

[44] I. Fukumori and P. Malanotte-Rizzoli. An approximate kalman filter for ocean data assim-
ilation; an example with an idealized gulf stream model. Journal of Geophysical Research,
100(C12):6777–6793, 1994.

[45] R. Ghanem and F. Romeo. A wavelet-based approach for model and parameter identification
of non-linear systems. International Journal of Non-Linear Mechanics, 36(5):835–859, 2001.

[46] M.S. Gockenbach. Partial Differential Equations: Analytical and Numerical Methods. Society
for Industrial and Applied Mathematics, Philadelphis, USA, 2002.

[47] D. Gottlieb and S.A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applica-
tions. Society for Industrial and Applied Mathematics, Montpelier, Vt, 1977.

[48] M.D. Graham and I.G. Kevrekidis. Alternative approaches to the karhunen-loéve decomposi-
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Determination of oxygen gradients in engineered tissue using a flourescent sensor. Biotechnol-
ogy and Bioengineering, 80(1):73–83, 2002.

[66] S. Khalil, F. Nam, and W. Sun. Multi-nozzle deposition for construction of 3d biopolymer
tissue scaffolds. Rapid Prototyping Journal, 11(1):9–17, 2005.

[67] T. Kijewski and A. Kareem. Wavelet transforms for system identification in civil engineering.
Computer-Aided Civil and Infrastructure Engineering, 18:339–355, 2003.

[68] M. Kirby and L. Sirovich. Application of the karhunen-loéve procedure for the characterization
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