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ABSTRACT 

 

 Over 48 million end users worldwide utilize cable modems as their means of 

accessing the Internet at high speeds.  The United States accounts for 54% of those users.  

Networks which provide access via cable modems utilize Data Over Cable Service 

Interface Specifications (DOCSIS) as their means of network management.  As 

availability to the Internet increases (especially at high speeds supported by broadband 

access), so does the opportunity for malicious activity against users utilizing the Internet.  

Denial-of-service (DoS) attacks are one form of malicious activity and one of the most 

common.  In commonplace Ethernet-based wired networks, a DoS attack requires 

relatively high levels of computing and network resources to successfully deny service.  

In DOCSIS-based networks, high levels of computing and network resources aren't 

mandatory in order to sufficiently degrade a network segment, especially when the 

objective of the attack is to reduce the quality of Voice over Internet Protocol (VoIP) 

sessions.  This phenomenon hinges on the Media Access Control layer protocol 

employed by DOCSIS used for managing access to the upstream transmission medium.  

Utilizing NS, a discrete event network simulator, we define and analyze a DoS attack that 

specifically targets DOCSIS-based networks.  The attack consumes a small portion of the 

downstream bandwidth available over a cable network but can severely impact upstream 

performance.  While the DoS attack can have any objective, we focus on an attack on 

best effort VoIP sessions.  The implications of this phenomenon are widespread as end 

users looking for cost-saving voice telecommunications services migrate to best effort 

VoIP such as provided by Vonage.  The contribution of this research is the formulation of 
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a DoS attack that exploits the relatively inefficient upstream channel in a DOCSIS system 

and analysis of the attack which explores the impact of the two attack parameters on 

VoIP performance.  Those two attack parameters are the number of nodes attacked and 

the frequency at which each node is attacked.
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INTRODUCTION 

 In the mid-1990's, the cable industry launched an effort to create a set of Data 

Over Cable Service Interface Specifications (DOCSIS). The goal was to provide a set of 

standards in which cable modems and associated hardware could be engineered and 

manufactured by various companies while maintaining interoperability among one 

another. In March 1997, the main specification work for DOCSIS 1.0 was completed. 

 Since the inception of DOCSIS 1.0, the cable broadband access market has 

witnessed unprecedented growth. In February 2007, U. S. broadband penetration reached 

80.16% among active Internet users [“U. S. Broadband Penetration Breaks 80% Among 

Active Internet Users,” 2007].  Of those users, 41% utilize cable modems as their means 

of obtaining high-speed Internet access [“DSL overtakes Cable in the U. S.,” 2006].  As 

the availability and usage of high-speed broadband access increases, so does the demand 

for broadband applications, such as Voice over Internet Protocol, also increases.  VoIP 

usage is projected to reach 12.1 million subscribers by 2009 [Meckler, 2004].  While the 

majority of telephony service provided by cable service providers generally uses the 

DOCSIS QoS mechanisms (and is therefore isolated from a DoS attack), a growing 

amount of  best effort VoIP is also utilized.  The driver for best effort telephony from 

companies such as Vonage is cost. 

 With the number of households that utilize broadband access and VoIP services 

reaching such remarkable levels, the opportunity for malicious activity against those 

households, at a minimum, increases at the same rate. Malicious activity occurs in many 

different forms.  In this study, we focus on malicious activity which inhibits authorized 
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users from utilizing network resources and services.  This form of malicious activity is 

referred to as a denial-of-service (DoS) attack.  In wired networks such as switched 

Ethernet, a DoS attack would need a node or group of nodes capable of producing 

sufficient levels of network traffic to saturate the network and successfully deny service 

to users of that network segment. 

 In this thesis we show that the media access control (MAC) layer protocol used in 

DOCSIS cable systems make it possible for a DoS attack to successfully degrade a 

network without requiring large amounts of malicious network traffic.  This is especially 

true when the objective of the attack is to reduce the quality of Voice over Internet 

Protocol (VoIP) sessions.  Utilizing NS, a discrete event network simulator, we define 

and analyze a DoS attack that specifically targets DOCSIS-based networks.  The attack 

consumes a small portion of the downstream bandwidth available over a cable network 

but can severely impact upstream performance.  This non-intuitive result is possible in 

moderately congested DOCSIS networks.  The attack “chokes” subscribers upstream 

bandwidth by consuming upstream contention request slots. 

 The objective of the DoS attack is to reduce the quality of latency sensitive 

applications such as VoIP.  To effectively achieve the attack objectives, a specific 

number of nodes targeted by the DoS attack at a given intensity (or attack rate) will result 

in network performance that restricts VoIP service on a simulated DOCSIS network 

segment.  The implications of this phenomenon are widespread as end users looking for 

cost-saving voice telecommunications services migrate to VoIP.  
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 In the research presented in this thesis, we define a DoS attack that the following 

properties: 

1. An attacking node located outside of the DOCSIS cable 
network requires a small amount of downstream bandwidth. 
 
2. The attack has an optimal point that minimizes the 
downstream bandwidth consumed but maximizes the damage to 
the target network.  Beyond this point, if the rate of attack 
packets is increased, performance in the DOCSIS network might 
actually improve as the attacked nodes might take advantage of 
piggybacking or concatenation as the network becomes more 
congested. 
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BACKGROUND 

2.1 MAC Overview 

 The media access control layer is a sub layer of the data link layer specified by the 

Open Systems Interconnection Reference Model (OSI Reference Model).  This sub layer 

provides addressing and channel access control mechanisms which enable multiple nodes 

on a network to communicate.  MAC protocols are the foundation for network 

architectures and significantly effect the performance of higher level protocols such as 

File Transfer Protocol (FTP), Hyper Text Transfer Protocol (HTTP), Transfer Control 

Protocol (TCP), and Internet Protocol (IP) [Peyravi, 1999]. 

2.2 Relevant Technologies and Protocols 

2.2.1 ALOHA 

 ALOHA, also known as ALOHAnet, was a technology developed at the 

University of Hawaii in 1970.  Its purpose was to connect various campuses of the 

University spread across the physically separate Hawaiian islands creating a network 

capable of sharing information.  The original implementation utilized a hub-star 

configuration.  The hub broadcast packets on the outbound channels to the client stations.  

The client stations transmitted their data on the inbound channel to the hub.  The hub 

would then retransmit the data it successfully received.  Client stations listened to see if 

their transmission was successful.  If it was not, the client station waited a short period 

and attempted to retransmit.  This mechanism addressed the issue of two client stations 

transmitting at the same time resulting in a collision and subsequent corrupted data.  
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ALOHA is important because, just like Switched Ethernet discussed in section 2.2.2, it 

utilized a shared transmission medium [ALOHAnet, 2007]. 

 Several versions of ALOHA have evolved since its inception in 1970.  Two 

versions important to this thesis are Reservation Aloha (R-Aloha) and Aloha Reservation 

(Aloha-R).  R-Aloha is the simple form of reservation protocols that is based on 

distributed contention.  Stations transmit in time slots with successful transmission 

resulting in implicit reservation of future time slots corresponding to the slot successful 

transmission occurred.  Time slots remain reserved for the same station as long as data 

remains to be sent.  Initial access to the transmission medium is random.  Aloha-R is a 

distributed contention-oriented reservation protocol that utilizes an explicit reservation 

mechanism.  An Aloha-R based frame is divided into equal length time slots.  One of the 

time slots is further divided into mini-slots which are used by stations to request  reserved 

data slots [Peyravi, 1999]. 

2.2.2 802.3 (Ethernet) 

 Ethernet, also known as IEEE 802.3, is a network technology that enables 

multiple stations to communicate over a shared, wired transmission medium.  Original 

implementations of Ethernet utilized coaxial cable transmitting at speeds of 3 Mbps.  As 

Ethernet has advanced over the years, twisted-pair and fiber optic cable have replaced 

coaxial cable and transmission speeds have eclipsed 1 Gbps.  One aspect of Ethernet that 

has remained consistent is its frame format which has enabled the wide range of Ethernet 

implementations to communicate amongst each other. 
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 Ethernet's distinctive characteristic which enables multiple stations to 

communicate on the same physical transmission medium is known as Carrier Sense 

Multiple Access with Collision Detection (CSMA-CD).  When a station on an Ethernet 

network needs to transmit, it follows the following algorithm: 

 

1. Ethernet frame ready to transmit. 
2. Is the transmission medium idle? 
3. If yes, begin transmitting. 
4. If no, wait for the transmission medium to become idle 

and then wait the inter frame gap (varies among 
implementations). 

5. Continue to monitor transmission medium to determine 
if collision occurs. 

6. No collision, end successful transmission. 
7. Collision occurs, implement #4 (collision detection 

procedure). 
8. Collision Detection Procedure: 
9. Continue transmitting current transmission to enable all 

stations the opportunity to detect collision. 
10. Has the maximum number of transmission attempts been 

reached? 
11. If yes, abort transmission. 
12. If no, determine random back-off interval and wait that 

amount of time before retransmitting. 
13. Return to #1 and attempt to retransmit. 

 
 

 Another characteristic of Ethernet which is important to our study is the use of 48-

bit addresses to uniquely identify stations on an Ethernet network.  This unique 

addressing enables stations to identify both the source and destination of packets 

transmitted.  Having the source and destination of each packet identified provides 

Ethernet networks the capability to more efficiently route packets to the specific 

destination instead of each station on the network checking the packets.  Ethernet 

networks can also use this addressing scheme to provide an additional layer of security to 
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networks by preventing certain address ranges from injecting traffic into a network 

segment or identifying a specific range of addresses that may be attempting to 

maliciously effect a network. 

2.2.3 802.11 (Wireless) 

 Wireless networks, also known by the protocol they are based on 802.11, provide 

network users the ease of mobility without the hassles of wires and the physical limitation 

of wires.  One could say that 802.11 networks give users the mobility and flexibility that 

wired networks inhibits.  The 802.11 wireless network standard accomplishes this by 

utilizing radio broadcasts operating in the industrial, scientific, and medical (ISM) bands 

of the radio spectrum.  Specifically, the 2.4-GHz ISM band and the 5-GHz band are 

utilized by the 802.11 standards.  Within those bands, government regulations constrain 

the power that can be emitted by 802.11 technologies that utilize those radio bands. 

 802.11 networks are comprised of four primary physical components.  Those four 

components are stations, access points (AP), wireless medium, and distribution systems.  

Stations are computing devices that enable users to transfer data between one another via 

wireless network interfaces. Devices called “access points” perform wireless-to-wire 

bridging functions which convert frames on an 802.11 network to another type of frame 

for delivery to the rest of the world.  AP's perform a number of other functions, but 

bridging is considered to be the most important. 

 In order to move data from station-to-station on an 802.11 network, the standard 

uses a wireless medium.  Several physical layers are defined for the wireless medium.  

Two radio frequency (RF) layers and one infrared (IR) layer were initially defined with 
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the RF layers experiencing wider use.  When several AP's are joined together to form one 

large coverage area, each AP must communicate with the other AP's in that coverage area 

to track the movement of stations from one AP to the next.  The distribution system is the 

logical portion of the 802.11 network that forwards the data/frames from the sending 

station to the receiving station.  No specific technology is defined by the 802.11 standard 

for use in a distribution system.  In most commercial uses, some form of bridging engine 

along with the distribution system medium is utilized to transmit data/frames between 

AP's.  The most common term for this part of the network is the backbone network.  The 

most common technology utilized as the backbone network in 802.11 distribution 

systems is the Ethernet technology. 

2.3 DOCSIS 

2.3.1 DOCSIS History and Overview 

 The cable systems that DOCSIS was created for consisted of a head end, 

transmission medium, cable modem termination system (CMTS), and cable modems 

(CM). The head end was where bidirectional frequency division multiplexed (FDM) 

signals originated. Those multiplexed signals would then travel over coaxial cable to 

cable modem termination systems. Eventually, coaxial cable was replaced by fiber optic 

cable between the head end and the cable modem termination systems. Once the FDM 

signal reached the cable modem termination system, it was passed onto a bidirectional 

bus architecture network capable of supporting multiple cable modems. From the cable 

modem termination system to the cable modems, coaxial cable was used as the 

transmission medium. Upstream data (from cable modems to cable modem termination 
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system) utilized higher frequencies for transmission while downstream data (from cable 

modem termination system to cable modems) utilized lower frequencies. 

 

 

 

Figure 2.1. The DOCSIS cable modem protocol stack. The physical layer is 
where modulation of the signal occurs. The cable modem termination system 

adds framing using MPEG-2 transmission convergence protocol enabling 
multiple services to be sent on the same channel. The MAC layer is where 

access to the upstream path is managed.

 

2.3.2 DOCSIS Protocol Stack 

 Figure 2.1 shows a protocol stack as related to DOCSIS at each layer of the OSI 

model. The first four layers are DOCSIS specific. The higher-level protocols (TCP, IP, 

UDP, etc.) are carried by DOCSIS layers across the cable network and are used for 

communications with the Internet [Fellows, 2001]. 
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2.3.3 DOCSIS MAC Layer 

 The DOCSIS media access control (MAC) layer is the focus of this study. The 

MAC layer controls access to the upstream channel of the transmission medium for all 

cable modems. Using the standard client-server model, the upstream channel is the 

network path that carries traffic generated from cable modems (clients) to the cable 

modem termination system (server).  In order for one cable modem to communicate with 

another, access has to be granted by the cable modem termination system for that cable 

modem to place data on the wire. Even if the destination cable modem is located on the 

same local network as the sending cable modem, the cable modem termination system 

has to grant access. Using the client-server model again, the sending cable modem, after 

access has been granted, transmits the data to the cable modem termination system 

(server) which will then transmit the data back down the downstream channel to the 

destination cable modem (client). 

 The request/grant mechanism is implemented via a bandwidth allocation map 

(MAP). Figure  2.2 shows the basic format of a DOCSIS MAP frame. The contention 

slots are used by the cable modems to request access to the upstream channel from the 

cable modem termination system. The data slots are where cable modems insert data after 

access has been granted by the cable modem termination system to the requesting cable 

modem. The maintenance slots are used for initialization and synchronization with the 

channel when a cable modem powers on, and periodically to maintain timing. 
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Figure 2.2. DOCSIS bandwidth allocation map (MAP). The contention slots 
are used by the cable modems to request access to the upstream channel from 
the cable modem termination system. The data slots are used after access has 
been granted to a cable modem to transmit data. The maintenance slots are 
used for initialization and synchronization when a cable modem powers on. 

 

 When a cable modem has data to send, it must wait for the cable modem 

termination system to send a MAP message. It must wait for the MAP because the cable 

modem termination system has not granted that cable modem access to the channel. The 

requesting cable modem will then utilize one of the contention slots of the MAP to 

request a grant from the cable modem termination system to transmit its data. It should be 

noted that the contention slot portion of the MAP can be accessed by any cable modem 

on the local network at any time. Therefore, collisions can occur when two or more cable 

modems request access via the same contention slot. If this occurs, the cable modems that 

experienced the collision will back off a random interval before they attempt to send 

another request. Once the cable modem termination system receives requests, it will 

notify the requesting cable modems in a subsequent MAP which mini-slots they have 

been granted access to for data transmission. This guarantees an interval in which cable 

modems can transmit collision-free.  In order to maximize the available bandwidth in 

DOCSIS-based networks, DOCSIS also allows a bandwidth request to be piggybacked on 

previously granted data slot.  This alleviates the requesting cable modem from having to 
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wait for the next MAP to request bandwidth and improves the efficiency of the upstream 

network channel. 

 DOCSIS also utilizes a mechanism referred to as concatenation in order to 

maximize available bandwidth.  Concatenation allows for a cable modem to combine 

several smaller packets and transmit those combined packets as if they were one.  The 

greatest performance improvement from this mechanism is observed in TCP throughput.  

When concatenation is utilized, multiple TCP ACK packets can be combined (i.e. 

concatenated).  This is possible due to the smaller size of TCP ACK packets compared to 

most other packets.  Rather than separate transmission of individual TCP ACK packets, 

multiple ACKs can be sent in the same DOCSIS frame, maximizing downstream 

throughput. 

 Two other messages that are transmitted by the cable modem termination system 

on the downstream channel that cable modems look for are the upstream channel 

descriptor (UCD) message and the time synchronization message (SYNC). The UCD 

provides the necessary information to the cable modem to determine if its capabilities 

(i.e. frequency range, modulation types, symbol rates, etc.) match that of the upstream 

channel it is attempting to access. The SYNC provides common timing for all modems to 

reference [Fellows, 2001]. 

2.4 Voice over Internet Protocol 

 Voice over Internet Protocol (VoIP) is the routing of voice communication traffic 

over the Internet or any Internet Protocol (IP) based network.  The two major competing 

standards for VoIP are the Internet Engineering Task Force (IETF) standard Session 
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Internet Protocol (SIP) and the Internet Telecommunication Union (ITU) standard H.323. 

Initially H.323 was the most popular protocol, however it has since been surpassed by 

SIP. This was primarily due to the latter's better traversal of network address translation 

and firewalls, although recent changes introduced for H.323 have removed this advantage 

[“Voice over IP,” 2007]. 

2.5 Denial-of-Service Attacks 

 Denial-of-service (DoS) attacks are attempts by a malicious user or group of users 

to render a computer network, system, service, or resource unavailable to its intended 

users. The motive for launching such attacks varies, but the ultimate end-state is the 

inability of legitimate users to conduct normal business due to the unavailable resource.  

There are three basic types of DoS attacks [“Denial-of-Service attack,” 2007]: 

1. Consumption of computation resources, such as 
bandwidth, disk space, or CPU time. 

2. Disruption of configuration information, such as routing 
information. 

3. Disruption of physical network components. 
 

 In a wired network environment, a common DoS attack is a ping flood attack.  A 

ping flood DoS attack overwhelms the targeted system or network with Internet Control 

Management Protocol (ICMP) Echo Request packets (ping).  In order for this attack to be 

effective, the attacker must have a network connection with greater capacity than the 

target network or system.  For example, an attack launched from a Fast Ethernet network 

against a network or system utilizing a DSL connection would be effective.  The Fast 

Ethernet network provides a maximum capacity of 100 Mbps.  The standard DSL 

connection has a downstream capacity of 30 Mbps, but only a 5.12 Mbps upstream 
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capacity.  A ping flood attack from the Fast Ethernet segment would be capable of 

consuming both the downstream and upstream capacity of the DSL connection. 

 Network and system administrators can defend against ping flood DoS attacks. 

Deployment of a firewall can limit or completely deny ICMP echo requests from 

accessing a network or individual system.  This addresses the threat of ping flood DoS 

attacks, but simultaneously inhibits the monitoring of latency by legitimate users (latency 

of a network can be observed utilizing ICMP echo requests). 

 Denial-of-service attacks can be directed at wireless networks just as easily as 

they can at wired.  At the application and transport layer, the attacks are carried out in the 

same manner.  The differences of DoS attacks focused at wireless mediums versus wired 

can be found at the network, MAC, and physical layers.  DoS attacks at the 802.11 MAC 

layer can be categorized into two vulnerability categories: identity and media-access 

control.  Identity vulnerabilities consist of attacks that manipulate the deauthentication, 

disassociation, and transmit power control services.  Media access control vulnerabilities 

consist of attacks that don’t directly manipulate network services provided by the 802.11 

standard, but directly attack the 802.11 protocol. 

 Stations in an 802.11 network implicitly trust the source address provided by any 

station it receives a message from.  This implicit trust is the framework for the 

deauthentication and disassociation DoS attacks in 802.11 networks.  A malicious station 

can spoof a valid station's address and manipulate the deauthentication and disassociation 

services.  When a station joins an 802.11 network, it must associate itself to an AP within 

the network. Prior to association, the AP must authenticate that the station is indeed an 
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authorized user of the network.  The station must send an authentication request to the 

access point.  The AP will respond with an authentication response, validating the request 

and permitting the requesting station to continue with the association process.  The 

station then sends an association request to the access point.  The AP will respond with 

the association response message, completing the association process.  The station is now 

authorized and capable of sending traffic on the network.  A deauthentication attack is 

possible as soon as the association response is sent by the AP to the requesting station.  A 

malicious station, “listening” to the authentication and association messages, spoofs the 

valid stations MAC address.  It creates a deauthentication message using the spoofed 

address, sending the message to the access point. Once the AP receives the message, it 

will respond with a verification of deauthentication.  At this point, the valid station is no 

longer authenticated, and subsequently, not associated to the network.  It will not be able 

to send data on the network until it reauthenticates and reassociates with the access point. 

 

15 



 
 
 

 

Figure 2.3. Message traffic in a deauthentication attack.  A client station sends an authentication 
request.  An access point sends an authentication response.  The client station then sends an 

association request.  The access point sends the association response.  A malicious station at some 
point after association sends a deauthentication response, spoofing the valid client's address.  The 
access point sends the deauthentication response.  During the invalid deauthentication series, the 

client station attempts to send data resulting in an unsuccessful transmission due to the 
deauthentication initiated by the malicious station. 

 

 

 The disassociation attack takes advantage of a similar vulnerability as the 

deauthentication attack.  As stated previously, 802.11 inherently trusts the source address 

of all traffic it receives.  Just as the malicious station in the deauthentication attack spoofs 

the address of a valid station, a malicious station can do the same and initiate the 

disassociation attack.  The distinctive difference between the two attacks is the number of 

messages that are required for a wrongly disassociated station to reassociate.  In the 
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deauthentication attack, it takes four messages for the targeted station to reauthenticate to 

the network.  When a station is successfully targeted by a disassociation attack, it may 

only take two messages to reassociate to the AP (subsequently, the network). 

 The 802.11 standard supports clients to enter a power saving mode in order to 

save energy.  The client enters a sleep state where messages can neither be sent to the 

client nor received.  Prior to entering the sleep state, the client announces to the AP that it 

intends to enter the sleep state so that the AP can begin buffering all traffic destined for 

the client.  While the client is sleeping, it will occasionally “wake up” and poll the AP for 

any buffered traffic.  Once the AP has delivered the buffered traffic to the sleeping client, 

it discards the data in the buffer.  The AP provides a synchronization message that keeps 

the sleeping clients synchronized by sending a broadcast message identifying which 

clients have buffered traffic. 

 One form of a DoS attack via vulnerabilities created by the power save option is a 

malicious station spoofing the polling message of the sleeping client.  A malicious station 

could contact the access point, masquerading as the sleeping client, and poll the AP for 

buffered traffic.  The AP would trust that the poll message is truly from the sleeping 

client, supposedly deliver the traffic, and subsequently discard the traffic under the 

assumption that the traffic was correctly delivered to the sleeping client.  When the 

sleeping client awakens and polls the access point, the AP will no longer have the 

buffered traffic it discarded and the client will not receive the traffic originally intended 

for it.  The client could then return to the sleep state, allowing for this attack to continue 
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as long as the malicious station continues to execute it and the client remained in the 

power save state. 

 A second form of a power save option enabled DoS attack is a malicious station 

spoofing the broadcast message that is sent by the AP which identifies which stations 

have buffered traffic.  The broadcast message is known as the traffic indication map 

(TIM).  By spoofing the TIM message, a malicious station may convince a client that 

there is no buffered traffic for that station when in truth there is.  The client, thinking 

there is no buffered traffic, returns to the sleep state without receiving the buffered traffic.  

Although the buffered traffic is not lost, there is potential for the access point’s buffer to 

reach capacity producing unwanted results (i.e. dropped message traffic). 

 The third form of power save option enabled DoS attack is again spoofing the 

TIM message.  This time, the malicious station can modify the synchronization 

information provided by the TIM so that the clients that receive this message will fall out 

of synchronization with the actual access point, subsequently not waking up at the 

appropriate time.  Just as the previously mentioned TIM attack, a potential negative result 

of this is the capacity of the AP’s buffer maxing out. 

 As network traffic increases, the performance of that network tends to decrease.  

One of the reasons for the decrease in network performance is the collisions that occur 

and the protocols implemented to deal with those collisions.  802.11 networks are no 

different than any other network standard.  Great efforts are made to avoid collisions.  

Unfortunately, a problem that is encountered frequently in 802.11 networks is the hidden 

node problem.  In order to appropriately address the hidden node problem, a combination 
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of physical carrier-sense and virtual carrier-sense mechanisms are employed together to 

manage access to the communications channel.  Both of these mechanisms may be 

exploited by an attacker [Bellardo, 2003]. 

 The physical carrier-sense mechanism employed by 802.11 networks breaks the 

separates the communications channel into four time windows.  For the purpose of this 

paper, we will only discuss the first two time windows which are the Short Interframe 

Space (SIFS) and the Distributed Coordination Function Interframe Space (DIFS).  Prior 

to any frame being sent onto the channel, the sending station must observe the channel 

and ensure that no traffic is being transmitted during one of the time windows.  The SIFS 

window is for frames sent as part of a preexisting frame exchange [Bellardo, 2003].  The 

DIFS window is for stations who wish to initiate a new frame exchange.  The period 

following the DIFS is subdivided into slots to in order to avoid multiple stations from 

transmitting as soon as the DIFS window expires.  The transmitting stations randomly 

select which slot they will transmit in with equal probability of selecting any slot.  If a 

collision occurs, the sending station utilizes an exponential backoff algorithm before 

retransmitting [Bellardo, 2003].  

 A malicious station has the potential to monopolize a communications channel if 

that station sent a short signal at the end of every SIFS window.  This creates a denial-of-

service to all stations on the channel.  The 802.11 contention algorithm is a dual 

persistence algorithm.  A station wishing to transmit data must wait the equivalent of two 

DIFS windows before it can transmit.  If during that window a transmission is sensed 

from another station, the station wishing to send traffic must back off the amount of time 
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determined by the algorithm.  So, a malicious station sending a short signal towards the 

end of every SIFS period would ultimately monopolize the channel, forcing all other 

stations to back off until the attack was over.  Although this attack accomplishes what the 

malicious station wants, it does so with a price.  Since the SIFS window is only 20μs 

long, the malicious station would have to transmit its signal approximately 37,000 times 

per second to occupy the channel which is not very efficient. 

 

 

 
 

Figure 2.4. Graphical depiction of the virtual carrier-sense attack in 
action.  The gradient portion of the attacker’s frame indicates time 

reserved by the duration field although no data is actually sent.  
Continually sending the attack frames back to back prevents other 

nodes from sending legitimate frames [Bellardo, 2003]. 

 

 The network allocation vector (NAV) is a value maintained by each station on an 

802.11 network that identifies a time period that a station will not attempt to access the 

communications channel despite the channel being assessed as available (empty of 

traffic).  Each 802.11 frame contains a duration field that identifies the number of 

microseconds that the channel is reserved [Bellardo, 2003].  A station will not attempt to 
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transmit until its NAV reaches zero.  The request-to-send (RTS)/clear-to-send (CTS) 

communication exchange that takes place to synchronize two stations attempting to 

communicate on the 802.11 channel explicitly utilizes the NAV to address any hidden 

stations that may be interfering with transmissions on the channel. 

 The RTS/CTS handshake (which is the virtual carrier-sense mechanism) 

implemented by 802.11 to address hidden stations creates a vulnerability that allows a 

malicious station to modify the duration field in an 802.11 frame, making the value in the 

duration field extremely large.  By doing so, the malicious station prevents clients who 

adhere to the virtual carrier-sense mechanism for channel control from accessing the 

channel.  A malicious station has the option of using any frame for its attack, but it is in 

its best interest to utilize an RTS frame since most nodes will always respond to an RTS 

frame with a CTS.  By influencing a good station to respond with a CTS frame, the 

malicious station has reduced the amount of resources it has to utilize to execute the 

attack since the station responding with the CTS will propagate the attack for the 

malicious station.  In comparison to the SIFS monopolization attack, a malicious station 

only has to transmit 30 times a second due to the NAV’s maximum value (32,767 which 

is approximately 32 milliseconds). 

2.6 Security 

 In this thesis, when the topic of security is discussed we are referring to security 

issues as related to protocol implementation rather than physical security of a network.  

Physical access of modern networks is relatively simple given the necessary resources.  

Network and security administrators can easily implement extremely strict or lax security 
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procedures.  What is not easily addressed is the underlying security issues found within 

the protocols that manage how stations that already have physical access to a network 

access the transmission medium. 

2.6.1 802.3 (Switched Ethernet) 

 Securing Switched Ethernet entails applying limited access to data packets.  Since 

Ethernet broadcasts data packets to all stations on its network segment, all stations are 

physically capable seeing those packets.  With a properly implemented security 

mechanism, all stations can still physically see the data packets but are not capable of 

reading or understanding them.  Such a security mechanism is referred to as encryption.  

A drawback of applying encryption to any network is the additional overhead in both 

packet size and processing. 

2.6.2 802.11 MAC Layer 

 Several versions of DoS attacks that can be experienced at the MAC layer in 

802.11 networks were discussed in section 2.5.  The number one countermeasure that 

could be implemented is the explicit authentication of management/control frames.  The 

lone attack that this countermeasure would not be successful against is the SIFS 

monopolization which does not rely on the modification or spoofing of 

management/control frames.  The deauthentication, disassociation, and NAV attacks have 

additional countermeasures that can be implemented beyond explicit authentication.  The 

lone countermeasure for the power save option is explicit authentication.  Although 

countermeasures have been identified for these attacks, the sheer numbers of devices that 

would require modifications has hindered any attempt to implement the countermeasures. 
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 A proposed countermeasure for both the deauthentication and disassociation 

attacks is to delay the AP’s response to such requests.  By delaying the AP’s response 

and subsequently having the AP monitor inbound traffic from the alleged station 

requesting deauthentication or disassociation, an AP can determine whether or not a 

station truly wishes to deauthenticate or disassociate.  If the AP receives inbound traffic 

after a deauthenticate or disassociate request is received, then the AP knows that the 

request is from a malicious station (since the order of receipt is not correct).  

Subsequently, the AP would ignore the request. 

 There are two drawbacks to this countermeasure.  An additional vulnerability is 

created and is observed when a station moves from one AP’s BSA to another.  Due to the 

imposed delay, packets may not be properly routed to the appropriate AP since the old 

AP may still consider the station associated with it.  The second drawback is the 

malicious station could take advantage of the delay when a targeted station truly is 

moving from one BSA to another.  The malicious station could continue to spoof the 

mobile station keeping the association with the spoofed AP valid. 

 A proposed countermeasure for the NAV DOS attack is to place a maximum 

allowable value for the duration field of the 802.11 frame.  This would keep the valid 

stations from being wrongfully denied access to the medium from an invalid duration 

value.  Although this countermeasure addresses the attack, it does not completely 

alleviate it.  All a malicious station would need to do is increase its transmission from 

over 30 packets per second to 90 packets per second.  By doing so, denial of service will 
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be achieved on the network.  Again, the true countermeasure for this attack is explicit 

authentication that would guard against modification of the duration field. 

 Why does explicit authentication not effectively counter the SIFS monopolization 

DOS attack?  The SIFS attack does not rely on the spoofing of addresses in order to 

modify management/control frames to deny service to a network and its users.  A 

malicious station simply has to transmit at the end of the SIFS window, subsequently 

forcing all other stations wishing to transmit to exponentially back off.  The attack is a 

result of the prioritization and ordering standardized by the virtual carrier-sense 

mechanism implemented by the 802.11 standard.  In order to counter this attack, the 

behavior of stations waiting to access the communications channel would have to be 

changed from the current behavior.  Hence, the virtual carrier-sense mechanism would 

have to be modified.
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THE ATTACK DEFINED 

 The research conducted for this thesis entailed simulating a DoS attack launched 

against a DOCSIS network segment from a single malicious node located on the Internet 

side of a cable modem termination system providing connectivity to the DOCSIS 

network segment.  The single node's bandwidth is equal to or greater than the 

downstream service rate of the DOCSIS network segment.  The node does not need 

explicit authorization to the DOCSIS network segment but does have implicit 

authorization via available network monitoring capabilities (i.e. the ICMP echo service). 

 The goal of the DOCSIS attack is to consume the upstream contention slots (refer 

to figure 2.2) with illegitimate bandwidth requests reducing the availability of contention 

request slots for legitimate network traffic.  As the number of upstream contention slots 

available for legitimate requests decreases, the average performance experienced by best 

effort traffic degrades.  Specifically, the number of collisions and the average channel 

access time will increase, the number of packets piggybacked will decrease, and the 

number of contention requests and concatenated packets will increase. 

 The DOCSIS attack we define and evaluate in this thesis is a ping flood.  Figure 

3.1 graphically depicts the architecture of the attack.  The parameters for the attack 

include number of TCP connections, attack rate interval, and number of nodes attacked.  

As figure 3.1 depicts, a node with Internet access launches a ping flood, DoS attack on a 

DOCSIS network.  The rate at which the node attacks the network is labeled RA.  RA is 

defined as the rate at which ICMP echo requests are sent by the attacking node to the 

targeted nodes under attack.  The number of nodes attacked is labeled NA.  NA is defined 

25 



 
 
 

as the number of nodes in which the attacking node has targeted for the DoS attack.  

These nodes will receive ICMP echo requests at a rate of RA from the attacking node via 

the downstream channel.  Subsequent ICMP echo replies will be sent from the nodes 

receiving ICMP echo requests to the attacking node via the upstream channel. 

 To establish a level of background network traffic, TCP connections are 

established between cable modems on the DOCSIS network segment and a node on the 

Internet side of the cable modem termination system.  Since most DOCSIS networks 

assign unused data slots to be used for contention requests, sufficient background traffic 

must exist to consume the majority of data slots.  In other words, the attack is most 

effective when the network is moderately busy.  In a practical implementation of the 

attack, attack packets will use a spoofed source address 
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Figure 3.1.  Graphical depiction of simulated network general layout.  The attack 
node is located on any network outside of the DOCSIS network.  The nodes labeled 
CM-1 through CM-N do not support any management or monitoring services and 

are “vulnerable” to the DoS attack.  Nodes CM-N+1 to CM-Total support 
management and monitoring services (TCP traffic replicating varying network 

nodes, loss monitor, VoIP monitor).

 

 In a typical wired network based on Ethernet technology, a ping flood DoS attack 

must generate enough network traffic so that all of the available bandwidth is consumed.  

In a DOCSIS network, we anticipate successful DoS without consuming all of the 

available bandwidth (both downstream and upstream).  The rules employed at the MAC 

layer in DOCSIS networks create a phenomenon during a ping flood DoS attack where 

the contention slots are consumed by cable modems that have an ICMP reply packet 

ready for upstream transmission.  This will increase the average channel access time.  

Non-attack network traffic that relies on contention request for upstream bandwidth will 

suffer.  The required available bandwidth between the attacking node and the victim 
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nodes is a fraction of the upstream channel capacity. The attack exploits the inefficient 

upstream data transmission mechanism.  As the intensity of the attack increases, the 

nodes under attack will make use of piggybacking and concatenation which reduces the 

reliance on contention-based requests and therefore offsets the impact of the attack.  The 

attack has an optimal point that reduces the attack rate while maximizing damage to the 

network.
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METHODOLOGY 

4.1 Overview 

 The research described in this thesis uses an open-source, discrete event simulator 

called the network simulator or NS to simulate a DOCSIS network under various network 

loads and attack intensities [NSNAM, 2007].  The simulator configuration is detailed in 

section 4.2.  The simulated model is discussed in section 4.3. 

4.2 Simulator & Network Configuration 

 NS is a discrete event simulator targeted for network research.  NS provides 

substantial support for simulating TCP, routing, and multicast protocols over wired and 

wireless networks [NSNAM, 2007].  Additionally, a module was added to the base NS 

program to provide the capability of simulating a network based on the DOCSIS 

protocol.  Validation of this module is detailed by Martin and Westall in “Validating an 

'ns' Simulation Model of the DOCSIS Protocol” [Martin, 2006]. 

 The network which this thesis is based on is depicted in figure 4.1.  It is actually 

comprised of two distinct networks.  On the left side of figure 4.1 is the wired, wide area 

network (WAN).  It consists of five nodes labeled N2, N3, N4, N5, and L0.  On the right 

side of figure 4.1 is the wired, DOCSIS-based large area network (LAN).  It consists of 

two nodes labeled N1 and L1.  There are also 400 cable modems which are connected to 

node N1.  Both networks are connected via node N0 which is a Cable Modem 

Termination System (CMTS).  All of the links between N0 and the nodes on the WAN-

side of the network represent the Internet.  The link between N0 and N1 represent a 

private network segment provided by a cable service provider. 

29 



 
 
 

 The WAN-side link settings are as follows: 

Link Type: Duplex 
Maximum Capacity: 100 Mbps 
Queuing Algorithm: Drop Tail 
Propagation Delay: 24 ms 
 

 The DOCSIS network settings are as follows: 

Downstream Channel Rate: 30 Mbps 
Upstream Channel Rate: 5.12 Mbps 
Fragmentation: No 
Concatenations: Yes 
Piggybacking: Yes 
Queue Size: 50 
Contention Slots: 12 
Management Slots: 3 
Map Time: .002 seconds 
Map Frequency: .002 seconds 
Number of Cable Modems:  400 
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Figure 4.1. Network map and configuration settings used as the test network for this 
thesis.  On the left side of the figure is the WAN-side nodes (Internet-residing nodes).  
On the right side are cable modems belonging to the private, DOCSIS-based network.

 

 Sets of simulated runs were devised distinguished by combinations of RA, NA, and 

the number of active TCP connections.  Five variations based on NA were observed: 0, 

10, 50, 100, and 200 nodes under attack.  Each variation of NA was observed with six 

variations of RA: .05, .25, .5, 1, 2, and 4 second intervals between attack packets (longer 

interval = less intense attack).  Within each set, six runs are performed distinguished by 

the number of active TCP connections: 0, 2, 5, 10, 15, and 20 active TCP connections.  

The varying of TCP connections enabled us to observe the network at what would be 
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perceived as average to above average (15-20) and below average (10 or less) loads of 

non-malicious network traffic. 

 To monitor the loss present on the network, a loss monitor (L0) is attached to a 

cable modem on the DOCSIS segment (CM1) with a partner loss monitor (L1) attached 

to a node on the WAN-side network (N2).  These loss monitors exchange packets of size 

210 bytes every .02 seconds, maintaining the loss rate of the network according to their 

packet exchange.  The loss monitor also maintains the necessary statistics for calculating 

the MOS value. 

 As each set was simulated, nine statistics (focus statistics) were isolated to 

observe the effects of varying the variation parameters: aggregate downstream (DS) 

attack packet bandwidth, aggregate upstream (US) attack packet reply bandwidth, mean 

opinion score value, downstream utilization percentage, upstream utilization percentage, 

percentage of upstream packets sent via piggybacking, percentage of upstream packets 

sent via concatenation, percentage of upstream packets sent via contention requests, and 

collision rate. 

 The aggregate downstream attack packet bandwidth is measured in bits per 

second.  It is calculated by multiplying the number of attack packets traced inbound to the 

DOCSIS network segment from the downstream channel by eight (each packet is eight 

bits in size) and dividing that product by the time stamp of the last attack packet received.  

This value represents the portion of the downstream channel's maximum capacity that is 

consumed by the DoS attack. 
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 The aggregate upstream attack packet reply bandwidth is also measured in bits per 

second.  It is calculated by multiplying the number of observed replies from attack 

packets received that are seen outbound from the DOCSIS network segment on the 

upstream channel by eight and dividing that product by the time stamp of the last reply 

transmitted.  This value represents the portion of the upstream channel's maximum 

capacity that is consumed by the DoS attack. 

 The mean opinion score (MOS) value is a numerical representation (1-5) of how a 

media transmission's quality is perceived.  The following list describes each value: 

5—Excellent quality, imperceptible impairment 
4—Good quality, perceptible impairment but not annoying 
3—Fair quality, slightly annoying impairment 
2—Poor quality, annoying impairment 
1—Bad quality, very annoying impairment 
 

 Calculation of the MOS is handled by a loss monitor procedure that was added to 

the NS DOCSIS module.  The procedure utilizes formulas for calculating MOS value 

which are based on computations detailed by Cole in “Voice over IP performance 

monitoring” [Cole, 2001].  When observing VoIP quality and using MOS values to 

determine whether a call is of “toll quality” or not, a minimum MOS value of '4' is the 

telephone industry standard [Miller, 2005].  Depending on which CODEC is used for the 

observed communications channel, MOS values of 3.6 can be considered toll quality 

[Keneipp, 2000].  For the purposes of this thesis, any MOS value less than 3.0 is 

considered less than toll quality. 
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 The downstream utilization percentage is calculated in the NS DOCSIS module 

code.  The code tracks the observed downstream bandwidth consumed, divides that by 

the available downstream bandwidth, and multiplies by 100. 

 The upstream utilization percentage is calculated in the NS DOCSIS module code.  

The code tracks the observed upstream bandwidth consumed, divides that by the 

available upstream bandwidth, and multiplies by 100. 

 The percentage of packets sent via piggybacking and concatenation and the ratio 

of contention requests to total packets sent are all tracked by the NS DOCSIS module.  

All three percentages are calculated by dividing the number of each type observed by the 

total number of packets transmitted, then multiplying by 100. 

 Data to determine the collision rate was captured for three groups of cable 

modems: all cable modems, only the cable modems under attack, and only the cable 

modem supporting the VoIP monitor.  To calculate the collision rates, the number of 

collisions observed for the specified group were divided by the total number of frames 

sent by that group. 

 The configuration of the baseline set for this simulation is zero nodes under attack 

with an attack packet interval of .5 seconds.  This set was run six times with the number 

of active TCP connections increasing as detailed in section three above.  The observed 

focus statistics for this set will be used to compare focus statistics gathered during 

subsequent simulated sets after the variation parameters are changed. 
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ANALYSIS 

5.1 Baseline Results 

 Figures 5.1, 5.2, and 5.3 depict the focus statistics observed during the simulation 

of the baseline configuration set.  Figure 5.1 depicts the MOS value.  Figure 5.2 depicts 

the downstream and upstream utilization rate.  Figure 5.3 depicts the percentage of 

packets sent upstream via piggybacking, contention requests, and concatenation.  Once 

two or more upstream TCP connections are active, more user data is transferred than 

periodic management messages.  Figure 3 illustrates that this moves the system to use 

primarily piggybacked requests.  Aggregate downstream and upstream attack packet 

bandwidth is not depicted in a graph due to all occurrence in the baseline configuration 

resulting in zero for both statistics.  Table 5.1 provides actual values of each statistic 

observed during the simulation of the baseline configuration. 
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Figure 5.1. MOS value observed during simulation of baseline configuration.  400 cable 
modems, range of active TCP connections a follows: 0, 2, 5, 10, 15, and 20. 
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Figure 5.2. Downstream and upstream utilization rate observed during simulation of 
baseline configuration.  400 cable modems, range of active TCP connections a follows: 0, 

2, 5, 10, 15, and 20. 
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Figure 5.3. Percentage of packets sent via piggybacking, contention request, and 
concatenation observed during simulation of baseline configuration.  400 cable modems, 

range of active TCP connections a follows: 0, 2, 5, 10, 15, and 20. 
 

 

36 



 
 
 

Table 5.1. Observed focus statistics for simulation of baseline configuration. 

BASELINE CONFIGURATION

Piggy Back Contention Concatenation MOS US UTIL DS UTIL
0 0 0 0.48 99.08 0.44 4.41 5.24 3.23
2 0 0 79.43 17.96 2.61 4.4 49.37 1.76
5 0 0 76.66 15.84 7.5 4.34 50.46 1.82

10 0 0 75.55 12.56 11.89 4.2 50.87 1.96
15 0 0 72.37 10.84 16.79 3.6 51.4 2.11
20 0 0 70.03 9.65 20.33 3.63 51.84 2.25

Number of TCP 
Connections

Aggregate US Attack 
Bandwidth

Aggregate DS Attack 
Bandwidth

 

5.1.1 No Background Traffic (Zero Active TCP Connections) 

 Both the aggregate downstream and upstream attack bandwidth produced by the 

baseline configuration was zero.  was zero.  As shown in Figure 5.1 (with zero active 

TCP connections), the observed MOS value was 4.41.  This value is well above industry 

standards of good quality (MOS value of 4.0).  The downstream utilization was 3.23 

percent.  The upstream utilization was 5.24 percent.  The lower utilization rates are due to 

network traffic being limited to only management and monitoring traffic.  The percentage 

of packets sent upstream via piggybacking was .48.  In order for piggybacking to occur, 

sufficient levels of network traffic must be generated.  If a cable modem is not sending 

data via granted slots, there are no data slots to piggyback.  Therefore, piggybacking 

percentage will be lower and contention request percentage higher.  The percentage of 

packets sent via contention request was 99.08.  Just as piggybacking requires a certain 

level of network traffic, so does concatenation.  The percentage of packets sent via 

concatenation was .44. 

5.1.2 With Background Traffic (Greater than Zero Active TCP Connections) 

 The addition of background traffic (i.e. active TCP connections) produced a high 

MOS value of 4.41 at zero active TCP connections and a low MOS value of 3.6 at 15 
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active TCP connections.  Downstream utilization remained relatively constant ranging 

from 1.76 to 3.23, varying as active TCP connections were increased.  Upstream 

utilization also remained relatively constant ranging from 49.37 to 51.84, increasing in 

conjunction with the increase of active TCP connections (at zero TCP connections, there 

was only an upstream utilization of 5.24).  The percentage of packets sent via 

piggybacking ranged from 79.41 to 69.9, decreasing in conjunction with the increase of 

active TCP connections.  The percentage of packets sent via contention requests ranged 

from 99.08 to 9.65, decreasing in conjunction with the increase of active TCP 

connections.    There was a significant drop from zero to two active TCP connections.  

This behavior can be attributed to piggybacking and concatenation requiring other traffic 

to exist in order to function.  The percentage of packets sent via concatenation ranged 

from .44 to 20.33, increasing in conjunction with the increase in active TCP connections. 

5.2 Impact of Increasing NA 

 NA was increased as follows: 0, 10, 50, 100, and 200.  The maximum of 200 

nodes attacked is equivalent to 50 percent of the cable modems on the DOCSIS segment.  

As NA was increased, the aggregate attack packet bandwidth for both the downstream and 

upstream channel increased.  The increase was relatively constant across the entire range 

observed with both doubling as NA was doubled.  This behavior was expected and is 

graphically depicted in figures 5.4 and 5.5.  The attack packet size is 64 bytes, however 

DOCSIS is required to encapsulate the ICMP message in a 188 byte MPEG frame.  

Therefore, the anticipated downstream attack bandwidth is: 
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Bandwidth =  (NA * 188 * 8 ) / RA 

 

The upstream bandwidth that is consumed is less since the frame size is now 64 bytes 

(plus framing overhead). 
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Figure 5.4. Aggregate downstream attack packet bandwidth, 400 cable modems, .5 second 
attack interval, across the number of nodes attacked (x-axis) in bits per second (y-axis).  

Also graphed is the anticipated bandwidth given the rate of attack. 
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Figure 5.5. Aggregate upstream attack packet bandwidth, 400 cable modems, .5 second 
attack interval, across the number of nodes attacked (x-axis) in bits per second (y-axis). 
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 As NA was increased, the first MOS value below the industry minimum for toll 

quality was observed when ten nodes were attacked with 15 TCP connections present 

(value: 3.58).  The first MOS value below the benchmark established for this thesis was 

seen when 200 nodes were attacked with 20 TCP connections present (value: 1.96).  The 

difference between the MOS value at 200 nodes attacked with 15 TCP connections 

(value: 3.34) and 200 nodes attacked with 20 TCP connections is significant compared to 

all other decreases.  Prior to the observed decrease from 3.34 to 1.96 (delta of 1.38), the 

largest delta was .63 observed between ten and 15 TCP connections while 50 nodes were 

attacked.  Overall, MOS value experienced the most change with 200 nodes attacked, as 

expected.  The observed behavior is graphically depicted in figure 5.6.1.  This is a key 

result which captures the susceptibility to exploitation of the upstream channel in 

DOCSIS systems.  The MOS value dropped by 50% (from 3.58 to 1.96) with only a two 

percent increase in downstream utilization (from 2% to 4%). 
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Figure 5.6.1. MOS value observed with 400 cable modems, .5 second attack interval, 
number of nodes attacked range from zero to 200.  First MOS value observed below the 
thesis benchmark of 3.0 is at 200 nodes attacked with 20 TCP connections active (light 

blue). 
 

 

 Figures 5.6.2 and 5.6.3 depict the behavior of the average collision rate for the 

cable modems under attack and the collision rate for the cable modem supporting VoIP 

monitoring with 15 and 20 TCP connections.  As NA was increased, the average collision 

rate for cable modems under attack gradually increased up to 100 nodes attacked.  

Doubling the nodes attacked from 50 to 100 nodes, a collision rate change of 33 percent 

was observed.  Doubling the nodes attacked from 100 to 200 nodes, a collision rate 

change of over 80 percent was observed.  The same behavior was observed with the VoIP 

cable modem.  From 50 to 100 nodes attacked, the rate change observed was just over 40 

percent.  From 100 to 200 nodes attacked, the rate change was again over 80 percent. 
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Figure 5.6.2. Collision rate (y-axis) for cable modems under attack, 400 cable modems, .5 
second attack rate interval, range of nodes attacked zero to 200 (x-axis).  Over 80 percent 

change in rate from 100 to 200 nodes attacked, 15 TCP connections. 
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Figure 5.6.3. Collision rate (y-axis) for VoIP cable modem, 400 cable modems, .5 second 
attack rate interval, range of nodes attacked zero to 200 (x-axis).  Over 80 percent change 

in rate from 100 to 200 nodes attacked, 15 TCP connections. 
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 As NA was increased, no significant difference in downstream and upstream 

utilization was observed across the range of zero to 200 for NA for 15 and 20 TCP 

connections.  The range of downstream utilization was 2.11 to 4.16, increase observed at 

each increase of NA.  The range of upstream utilization was 51.4 to 58.56, increase 

observed at each increase of NA.  This behavior was expected and is very significant.  

The maximum change in downstream utilization rate was observed between 100 and 200 

nodes attacked, but was a modest 30 percent.  All other changes were just under 20 

percent.  By doubling the number of nodes attacked, we only increased the change in 

downstream utilization rate by 10 percent at the most intense level observed.  

Furthermore, the 30 percent increase only increased the downstream utilization rate to an 

extremely low value of 4.16 percent.  That leaves over 95 percent of the downstream 

bandwidth available for other network traffic and still achieving the desired MOS value 

of under 3.0.  This behavior is observed in figure 5.7. 

 Another significant point observed is the upstream utilization rate.  Just as the 

change in downstream utilization rate was relatively insignificant, so was the change in 

upstream utilization rate.  The range of upstream utilization was from 51.4 to 58.56 

percent.  The change in rate increased with the increase in the number of nodes attacked.  

The significance in this change is the total change in rate was only 14 percent over the 

entire increase of NA.  Just as the benchmark of 3.0 for MOS value was broken without 

overwhelming the downstream channel, the upstream channel retained a relatively large 

portion for non-attack traffic while still achieving DoS of the VoIP service benchmark.  

This behavior is also observed in figure 5.7. 
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Figure 5.7. Downstream and upstream utilization for 400 cable modems, .5 second attack 
interval, number of nodes attacked range from zero to 200.  Significance observed is the 
extremely low percentage of the downstream channel required to achieve the DoS attack 

objective, as well as, the impact on the upstream channel. 
 

 

 As NA was increased, the observed piggybacking, contention request, and 

concatenation behavior was what was anticipated.  The more nodes targeted by the DoS 

attack produced less packets sent via piggybacking.  This behavior is graphically depicted 

in figure 5.9.  The ratio of contention requests to packets sent increased as NA increased.  

This behavior is graphically depicted in figure 5.10.  The percentage of packets sent via 

concatenation increased as NA increased.  This behavior is graphically depicted in figure 

5.11.  Figure 5.8 graphically depicts the observed behavior for all three metrics for the 

two scenarios (with an attack rate of .5 and the number of upstream TCP connections set 

at 15 and then 20).  The results suggests that less than 15% of the attack packets sent 
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access the transmission channel either via piggybacking or concatenation.  The ratio of 

contention requests to total packets sent for both scenarios is over 50%.  Figure 5.8.1 

depicts the behavior observed strictly of VoIP packets.  Compared to attack packets, 

VoIP packets utilize less piggybacking and more concatenation for improving efficiency. 
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Figure 5.8. Percentage of packets sent via piggybacking, contention requests without 
concatenation, and with concatenation for 400 cable modems, .5 second attack interval, 
number of nodes attacked range from zero to 200.  The observed behavior was in-line 

with what was expected, as the number of nodes attacked increased, the ratio of 
contention requests to total packets sent and packets sent via concatenation increased 

while the number of packets sent via piggybacking decreased. 
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Figure 5.8.1. Percentage of VoIP packets sent via piggybacking, contention requests 
without concatenation, and with concatenation for 400 cable modems, .5 second attack 
interval, number of nodes attacked range from zero to 200.  Compared to attack packet 

behavior, VoIP packets utilize less piggybacking and more concatenation. 
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Figure 5.9.  Percentage of packets sent via piggybacking as the number of nodes attacked 
increased.  400 cable modems, .5 second attack interval, range of nodes attacked from 
zero to 200.  The number of packets sent via piggybacking decreased as the number of 

nodes attacked was increased. 
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Figure 5.10.  The ratio of contention requests to total packets sent as the number of nodes 
attacked increased.  400 cable modems, .5 second attack interval, range of nodes attacked 

from zero to 200.  The ratio of contention requests to total packets sent increased, as 
expected, as the number of nodes attacked increased. 
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Figure 5.11.  The percentage of packets sent via concatenation as the number of nodes 
attacked increases.  400 cable modems, .5 second attack interval, range of nodes attacked 

from zero to 200.  The percentage of packets sent via concatenation increased, as 
expected, with the number of nodes attacked increased. 
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5.3 Impact of Increasing and Decreasing RA 

 RA was increased from the baseline configuration of .5 second intervals between 

attack packets as follows: 1, 2, and 4 seconds.  RA was decreased from the baseline 

configuration of .5 second intervals between attack packets as follows: .25, .05, and .01. 

Each increase in interval doubled the length of the previous interval.  The first decrease in 

interval was half of the baseline configuration, the second decrease equaling a quarter of 

the previous attack interval, and the final decrease twenty percent of the previous 

interval. 

 As RA was increased, MOS value remained above the prescribed threshold value 

of 3.0 for all runs with 15 TCP connections.  As RA was decreased, MOS value dropped 

to less than 1.3 for 15 TCP connections, an attack rate interval of .25 seconds, and 200 

nodes attacked.  A further decrease of RA to .05 seconds resulted in an MOS value of 

2.78 for 50 nodes attacked, 2.53 for 100 nodes attacked, and 1.73 for 200 nodes attacked.  

A final decrease to .01 seconds resulted in an MOS value of 2.6 for 50 nodes attacked 

and less than 1.0 for 100 or more nodes attacked.  These expected behaviors are 

graphically depicted in figures 5.11.1 and 5.11.2.   
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Figure 5.11.1.  Mean Opinion Score (y-axis) for 15 TCP connections, range of nodes 
attacked from zero to 200, and a attack rate interval range from 4 to .01 seconds (x-axis).  
An MOS value less than the threshold value of 3.0 is first observed at 200 nodes attacked 
and an attack rate interval of .25 seconds.  A sub-3.0 MOS value is observed at 50, 100, 

and 200 nodes attacked with an attack rate interval of .05 and .01 seconds. 
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Figure 5.11.2.  Mean Opinion Score (y-axis) for 20 TCP connections, range of nodes 
attacked from zero to 200, and a attack rate interval range from 4 to .01 seconds (x-axis).  
An MOS value less than the threshold value of 3.0 is observed at 200 nodes attacked and 
an attack rate interval of .5 seconds (baseline configuration).  Additionally, sub-3.0 MOS 

values are observed at 100 and 200 nodes attacked with an attack rate interval of .25 
seconds, as well as, 50, 100, and 200 nodes attacked with an attack rate interval of .05 

and .01 seconds. 
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 As RA was decreased over the range of 4 to .01 seconds for runs configured with 

15 and 20 TCP connections, the aggregate downstream attack packet bandwidth 

increased slightly over the 4 to .5 second range.  From .25 to .01 seconds, the increase in 

aggregate downstream bandwidth observed was much higher.  This dramatic change can 

be attributed to the high intensity behavior created by the extremely smaller interval 

between attack packets.   This behavior is graphically depicted in figures 5.12 and 5.13. 
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Figure 5.12.  The aggregate downstream attack packet bandwidth in bits per second (y-
axis) as the attack rate interval is decreased from 4 seconds to .01 seconds (x-axis).  As 

the attack rate interval increases (approaches 4 seconds), downstream bandwidth 
consumes decreases.  As the attack rate interval decreases (approaches .01 seconds), 

downstream bandwidth consumed increases. 
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Figure 5.13.  The aggregate downstream attack packet bandwidth in bits per second (y-
axis) as the attack rate interval is decreased from 4 seconds to .01 seconds (x-axis).  As 

the attack rate interval increases (approaches 4 seconds), downstream bandwidth 
consumes decreases.  As the attack rate interval decreases (approaches .01 seconds), 

downstream bandwidth consumed increases. 
 

 

 As RA was decreased over the range of 4 to .01 seconds for runs configured with 

15 and 20 TCP connections, the aggregate upstream attack packet bandwidth increased 

steadily from 4 to .5 second intervals.  At .25 seconds and faster, the aggregate upstream 

attack packet bandwidth began to decrease drastically for 50 or more nodes attacked.  

This sudden change can be attributed to the complete degradation of the upstream 

channel.  Both attack and non-malicious packets suffered from the abundance of attack 

traffic.  The lone exception is ten nodes attacked.  The aggregate upstream attack packet 

bandwidth for ten nodes attacked actually increased.  It should be noted that despite the 

increase, the MOS value associated with ten nodes attacked and .25 seconds and faster 

attack interval remained above 3.0.  These behaviors are graphically depicted in figures 

5.14 and 5.15. 
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Figure 5.14.  The aggregate upstream attack packet bandwidth in bits per second (y-axis) 
as the attack rate interval is decreased from 4 seconds to .01 seconds (x-axis).  As the 
attack rate interval increases (approaches 4 seconds), upstream bandwidth consumes 
decreases.  As the attack rate interval decreases (approaches .01 seconds), Upstream 

bandwidth consumed increases. 
 

 

20 TCP, 4 
Sec.

20 TCP, 2 
Sec.

20 TCP, 1 
Sec.

20 TCP, .5 
Sec.

20 TCP, 
.25 Sec.

20 TCP, 
.05 Sec.

20 TCP, 
.01 Sec.

0

25000
50000

75000
100000

125000
150000

175000
200000

225000
250000

275000

ATTACK: Aggregate Upstream Packet Bandwidth

0
10
50
100
200

Number of TCP Connections, Attack Interval

Bi
ts

 P
er

 S
ec

on
d

 

Figure 5.15.  The aggregate upstream attack packet bandwidth in bits per second (y-axis) 
as the attack rate interval is decreased from 4 seconds to .01 seconds (x-axis).  As the 
attack rate interval increases (approaches 4 seconds), upstream bandwidth consumes 
decreases.  As the attack rate interval decreases (approaches .01 seconds), Upstream 

bandwidth consumed increases. 
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 As RA was increased from .5 seconds to 4 seconds, both the downstream and 

upstream utilization decreased.  Decreasing the rate from .5 seconds to .01 seconds 

resulted in an increase in both downstream and upstream utilization.  This expected 

behavior is depicted in figures 5.16 through 5.19.  The significance in downstream and 

upstream utilization is not only the direct correlation of increasing RA with decreasing 

utilization, but also the portion of the available downstream and upstream channel 

required for the DoS attack to reach its goal.  Only a minimal portion of the downstream 

channel is required (less than five percent when the first sub-3.0 MOS value is observed) 

and similarly in the upstream channel (just over half of the available upstream channel). 
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Figure 5.16.  Downstream utilization for 15 TCP connections, range of nodes attacked 
from zero to 200, and an attack rate interval range of 4 seconds to .01 seconds.  As the 

attack rate interval was increased (approached 4 seconds), downstream utilization 
decreased.  As the attack rate interval was decreased (approaches .01 seconds), the 

downstream utilization increased. 
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Figure 5.17.  Downstream utilization for 20 TCP connections, range of nodes attacked 
from zero to 200, and an attack rate interval range of 4 seconds to .01 seconds.  As the 

attack rate interval was increased (approached 4 seconds), downstream utilization 
decreased.  As the attack rate interval was decreased (approaches .01 seconds), the 

downstream utilization increased. 
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Figure 5.18.  Upstream utilization for 15 TCP connections, range of nodes attacked from 
zero to 200, and an attack rate interval range of 4 seconds to .01 seconds.  As the attack 
rate interval was increased (approached 4 seconds), upstream utilization decreased.  As 
the attack rate interval was decreased (approaches .01 seconds), the upstream utilization 

increased. 
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Figure 5.19.  Upstream utilization for 20 TCP connections, range of nodes attacked from 
zero to 200, and an attack rate interval range of 4 seconds to .01 seconds.  As the attack 
rate interval was increased (approached 4 seconds), upstream utilization decreased.  As 
the attack rate interval was decreased (approaches .01 seconds), the upstream utilization 

increased. 
 

 

 The collision rate observed behaved as expected, increasing as the attack rate 

interval decreased over the range of 4 seconds to .01 seconds.  This behavior is 

graphically depicted in figures 5.20 and 5.21.  A point of significance is the relatively low 

rate of collisions observed when the first sub-3.0 MOS value is observed (just over 25 

percent rate of occurrence).  Despite the low occurrence of collisions, the DoS attack was 

capable of degrading network performance such that the target MOS was achieved. 
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Figure 5.20.  Collision rate (y-axis) for 15 TCP connections, number of nodes attacked 
range from zero to 200, and attack rate interval range of 4 to .01 seconds.  Decrease in 

attack rate interval results in an increase in collision rate. 
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Figure 5.21.  Collision rate (y-axis) for 20 TCP connections, number of nodes attacked 
range from zero to 200, and attack rate interval range of 4 to .01 seconds.  Decrease in 

attack rate interval results in an increase in collision rate. 
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 As RA decreased over the range of 4 to .01 seconds, the observed ratio of 

contention requests to total packets sent behaved as anticipated increasing over the 

identified range.  This behavior is graphically depicted in figures 5.22 and 5.23.  The 

increase in contention request ratio is related to the increase in collision rate observed 

over the same range.  Each time a cable modem is unable to obtain an upstream slot for 

transmission due to a collision, an additional contention request will be made.  Over the 

range of RA identified, the smaller interval between attack packets results in a more 

intense DoS attack.  With more attack packets sent DS, responding cable modems 

contend for upstream contention request slots resulting in an increase in collisions and 

contention requests. 
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Figure 5.22.  Contention request ratio for 15 TCP connections, number of nodes attacked 
range from zero to 200, attack rate interval range from 4 to .01 seconds.  As the interval 
between attack packets decreases, the number of contention requests required to transmit 

a packet increases. 
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Figure 5.23.  Contention request ratio for 20 TCP connections, number of nodes attacked 
range from zero to 200, attack rate interval range from 4 to .01 seconds.  As the interval 
between attack packets decreases, the number of contention requests required to transmit 

a packet increases. 
 

 

 As RA decreases from 4 to .05 seconds, the percentage of packets that are 

transmitted via piggybacking decreases, as well.  The lone exception once again is 

observed at ten nodes attacked.  Figures 5.24 and 5.25 graphically depict this behavior for 

15 and 20 TCP connections.  The cause of this behavior is related to the relationship 

between increases in contention request ratio and collision rate.  A cable modem may 

attempt to piggyback a request, but due to the increased level of collisions, that request is 

likely to not be granted.  The cable modem will then have to attempt to request future 

data slots via normal contention request slots.  Therefore, a faster attack rate resulting in 

higher collisions not only produces more contention requests but fewer packets 

transmitted via piggybacking.  The ten nodes attacked data point behavior helps explain 

the MOS value remaining above 3.0 despite the previously noted aggregate upstream 

attack packet bandwidth increasing, contrary to other data points. 
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Figure 5.24. Percentage of packets transmitted via piggybacking for 15 TCP connections, 
number of nodes attacked range from zero to 200, attack rate interval range from 4 to .01 
seconds.  As attack rate interval decreases from 4 to .01 seconds, percentage of packets 

sent via piggybacking decreases. 
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Figure 5.25. Percentage of packets transmitted via piggybacking for 20 TCP connections, 
number of nodes attacked range from zero to 200, attack rate interval range from 4 to .01 
seconds.  As attack rate interval decreases from 4 to .01 seconds, percentage of packets 

sent via piggybacking decreases. 
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 As the percentage of packets sent via piggybacking decreases with an increasing 

RA, the percentage of packets concatenated for transmission increases.  Figures 5.26 and 

5.27 graphically depict this behavior. 
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Figure 5.26.  Percentage of packets transmitted via concatenation for 15 TCP connections, 
number of nodes attacked range from zero to 200, attack rate interval range from 4 to .01 

seconds.  As the attack rate interval approaches .01 seconds, the percentage of packets 
sent via concatenation increases. 
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Figure 5.27.  Percentage of packets transmitted via concatenation for 20 TCP connections, 
number of nodes attacked range from zero to 200, attack rate interval range from 4 to .01 

seconds.  As the attack rate interval approaches .01 seconds, the percentage of packets 
sent via concatenation increases. 
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 Tables 5.2 through 5.7 contain the data statistics relating to channel access with 

15 and 20 TCP connections over an attack rate range of 4 to .01 seconds and number of 

nodes attacked range of zero to 200 nodes.  These tables are graphically depicted and 

discussed in previous figures. 

 

PIGGY BACKING
15 TCP, 4 Sec. 15 TCP, 2 Sec. 15 TCP, 1 Sec. 15 TCP, .5 Sec. 15 TCP, .25 Sec. 15 TCP, .05 Sec. 15 TCP, .01 Sec.

0 3.49 3.43 3.43 3.44 3.43 3.44 3.39
10 3.38 3.33 3.39 3.3 3.54 1.79 16.99
50 3.22 3.14 3.04 3.19 3.65 1.5 1.76

100 2.74 2.86 2.74 2.87 3.15 0.93 0.21
200 2.64 2.49 2.18 2.36 2.1 0.5 0.06  

Table 5.2.  Piggybacking data for 15 TCP connections, number of nodes attacked from 
zero to 200, attack rate interval range from 4 to .01 seconds. 

 

PIGGY BACKING
20 TCP, 4 Sec. 20 TCP, 2 Sec. 20 TCP, 1 Sec. 20 TCP, .5 Sec. 20 TCP, .25 Sec. 0 TCP, .05 Sec0 TCP, .01 Sec

0 2.58 2.58 2.63 2.62 2.59 2.61 2.57
10 2.61 2.52 2.57 2.62 2.92 1.48 14.57
50 2.45 2.34 2.39 2.71 3.33 1.28 1.25

100 2.3 2.21 2.27 2.43 3.1 0.9 0.21
200 2.14 1.98 2 2.04 2.09 0.45 0.06

 

Table 5.3.  Piggybacking data for 20 TCP connections, number of nodes attacked from 
zero to 200, attack rate interval range from 4 to .01 seconds. 

 

 

Table 5.4.  Contention request ratio data for 15 TCP connections, number of nodes 
attacked range from zero to 200, attack rate interval range from 4 to .01 seconds. 

CONTENTION REQUEST RATIO
15 TCP, 4 Sec. 15 TCP, 2 Sec. 15 TCP, 1 Sec. 15 TCP, .5 Sec. 15 TCP, .25 Sec. 15 TCP, .05 Sec. 15 TCP, .01 Sec.

0 52.17 51.94 51.96 52.25 52.07 52.21 52.06
10 52.24 52.32 52.06 52.46 52.73 56.37 54.32
50 52.45 52.79 53.12 54.02 55.42 74.45 77.6

100 53.33 53.57 54.59 56.08 60.2 81.44 84.53
200 54.16 55.15 57.51 62.35 68.41 85.76 89.25
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Table 5.5. Contention request ratio data for 20 TCP connections, number of nodes 
attacked range from zero to 200, attack rate interval range from 4 to .01 seconds. 

CONTENTION REQUEST RATIO
20 TCP, 4 Sec. 20 TCP, 2 Sec. 20 TCP, 1 Sec. 20 TCP, .5 Sec. 20 TCP, .25 Sec. 0 TCP, .05 Sec0 TCP, .01 Sec

0 52.37 52.44 52.39 52.47 52.67 52.75 52.63
10 52.44 52.7 52.63 52.9 53.08 55.79 56.58
50 52.84 53.31 53.39 53.97 55.22 73.72 78.66

100 53.46 53.89 54.77 56.46 59.02 81.46 84.74
200 54.5 55.41 57.11 60.74 66.68 86 89.53

 

 

Table 5.6.  Concatenation data for 15 TCP connections, number of nodes attacked range 
from zero to 200, attack rate interval from 4 to .01 seconds. 

CONCATENATION
15 TCP, 4 Sec. 15 TCP, 2 Sec. 15 TCP, 1 Sec. 15 TCP, .5 Sec. 15 TCP, .25 Sec. 15 TCP, .05 Sec. 15 TCP, .01 Sec.

0 0.22 0.22 0.24 0.24 0.23 0.23 0.37
10 0.26 0.3 0.37 0.55 1.36 5 13.82
50 0.32 0.46 0.83 1.78 4.04 7.93 15.82

100 0.42 0.68 1.37 3.22 6.22 8.8 12.39
200 0.56 1.09 2.49 4.98 9.47 10.33 9.44

 

CONCATENATION
20 TCP, 4 Sec. 20 TCP, 2 Sec. 20 TCP, 1 Sec. 20 TCP, .5 Sec. 20 TCP, .25 Sec. 0 TCP, .05 Sec0 TCP, .01 Sec

0 0.23 0.27 0.24 0.24 0.23 0.23 0.4
10 0.24 0.3 0.4 0.62 1.33 4.54 13.61
50 0.35 0.54 1.02 1.93 4.1 9.38 15.35

100 0.43 0.79 1.65 3.51 6.9 8.87 12.19
200 0.63 1.31 2.77 5.67 10.08 10.32 9.21  

Table 5.7. Concatenation data for 15 TCP connections, number of nodes attacked range 
from zero to 200, attack rate interval from 4 to .01 seconds.
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CONCLUSION 

 The data produced from the simulation supports all of our preliminary 

expectations.  As the number of nodes attacked by a ping flood DoS attack on a DOCSIS 

network segment is increased, the upstream channel is "choked" by attack traffic 

contention requests.  Additionally, access to the upstream channel is limited due to the 

increase in collisions which further increases the contention request ratio.  Furthermore, 

as the interval between attack packet transmissions is decreased, the percentage of 

packets accessing the upstream channel via piggybacking decreases while packets 

accessing the same channel via concatenation increases. 

 The increase in contention requests and decrease in packets transmitted via 

piggybacking degrade network performance such that VoIP transmission quality is below 

an acceptable MOS value of 3.0 with several combinations of NA and RA.  The 

relationship between the various combinations is the smaller the interval defined by RA, 

the smaller the amount of nodes targeted for attack defined by NA.  Subsequently, the 

DoS attack defined and analyzed in our research  supports the theory that in DOCSIS 

networks, the attack requires only a small portion of the available downstream bandwidth 

in order to severely impact upstream performance, especially when the focus of the attack 

is best effort VoIP sessions. 
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APPENDIX 

 All files associated with this thesis, as well as a "snapshot" of the NS simulation 

environment, are on the compact disc included with this manuscript.  On the compact 

disc, if you navigate to the directory ./ns-cpsc854/project-docsis/, you will be in the home 

directory for all simulations performed for this thesis.  The directory ./GoRuns contains 

all of the goruns.dat files used for configuring each simulation run.  The directory 

./thesisData contains all of the data files in tar.gz form for all simulations performed 

during our research.  To locate specific data results, the directories in ./thesisData are 

organized with the following naming convention: set4X_Y where X is the number of 

nodes attacked and Y is the attack rate interval.  The sets for .5 second attack rate have no 

Y value (i.e. set400 would be zero nodes attacked with an attack rate interval of .5 

seconds). 

 To recreate the results, a sample script would go as follows: 

./cleanHouse 

./prepRun 0_4 

./goCPRruns.script 400_4 & 
 

 The above script would cleanup all unnecessary files, copy all goruns.dat files 

required for a run with zero nodes attacked with a four second attack interval into the 

appropriate directories, and execute the simulation for those runs saving the results in 

tar.gz form in the ./thesisData/set400_4 directory.  The naming convention is simply 

'number of nodes attack' and 'attack interval' separated with an underscore.  Consolidated 

data is then placed in a file named data_set400_4.out.

64 



 
 
 

REFERENCES 

 

ALOHAnet. (2007, June 6). In Wikipedia, The Free Encyclopedia. Retrieved 19:54, June 
15, 2007, from 
http://en.widipedia.org/w/index.php?title=ALOHAnet&oldid=136304323. 

 
Bellardo, J., Savage, S. (2003). “802.11 Denial-of-Service Attacks: Real Vulnerabilities 

and Practical Solutions.” Retrieved 10:00, June 7, 2007, from 
http://sysnet.ucsd.edu/~bellardo/pubs/usenix-sec03-8021_dos-html/index.html. 

 
Cole, R., Rosenbluth, J (2001). Voice over IP performance monitoring. In ACM 

SIGCOMM Computer Communication Review (volume 31, issue 2, pp. 9-24). 
New York: ACM Press. 

 
Denial-of-Service attack. (2007, June 2). In Wikipedia, The Free Encyclopedia. Retrieved 

21:53, June 6, 2007, from http://en.widipedia.org/w/index.php?title=Denial-of-
service_attack&oldid=135323193. 

 
DSL overtakes Cable in the U. S. (2006, June). In Bandwidth Report. Retrieved 9:25, 

June 6, 2007, from http://www.websiteoptimization.com/bw/0606/. 
 
Fellows, D., Jones, D. (2001).  “DOCSIS Cable Modem Technology.” IEEE 

Communications Magazine, vol. 39 (no. 3), pp. 202-209. 
 
Keneipp, R. (2000, May). “What's Toll Quality Voice.” Retrieved 11:06, June 9, 2007, 

from http://www.itworld.com/Net/2621/ITW849/. 
 
Martin, J. , Westall, M. (2006, July). “Validating an 'ns' Simulation Model of the 

DOCSIS Protocol.”  Proceedings from 2006 SPECTS'06: International 
Symposium on Performance Evaluation of Computer and Telecommunication 
Systems. Calgary, CA: pp. 297-304. 

 
Meckler, Alan (2004, October 7). Jupiter Media. JupiterResearch Forecasts Voice Over 

IP Telephony Services To Reach 12.1 Million Households By 2009.  Retrieved 
9:26, June 6, 2007, from 
http://www.jupitermedia.com/corporate/releases/04.10.07-newjupresearch.html. 

 
Miller, M. (2005, July 19).  “Do You Hear What I Hear?—Part IV: Measuring “Toll 

Quality”.”  Retrieved 10:45, June 9, 2007, from 
http://www.voipplanet.com/backgrounders/article.php/3521171. 

 
NSNAM. (2007, March 11). Main Page, NSNAM. Retrieved 17:15, June 7, 2007 from 

http://nsnam.isi.edu/nsnam/index.php/User_Information. 
 

65 

http://www.voipplanet.com/backgrounders/article.php/3521171


 
 
 

Peyravi, H (1999, March). “Medium access control protocols performance in satellite 
communications.” IEEE Communications Magazine, vol. 37 (no. 3), pp. 62-71. 

 
U. S. Broadband Penetration Breaks 80% Among Active Internet Users. (2007, 

February). In Bandwidth Report.  Retrieved 9:24, June 6, 2007, from 
http://www.websiteoptimization.com/bw/0703/. 

 
Voice over IP. (2007, June 6). In Wikipedia, The Free Encyclopedia. Retrieved 12:49, 

June 6, 2007, from 
http://en.widipedia.org/w/index.php?title=Voice_over_IP&oldid=136206069. 

66 


	Clemson University
	TigerPrints
	8-2007

	PERFORMANCE OF VOIP SERVICES ON A DOCSIS NETWORK TARGETED BY A DENIAL OF SERVICE ATTACK
	Benjamin Sangster
	Recommended Citation


	PERFORMANCE OF VOIP SERVICES ON A DOCSIS NETWORK TARGETED BY A DENIAL OF SERVICE ATTACK

