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ABSTRACT 

 

Construction activities have been recognized to have significant impacts on the 

environment. Excess sediment from construction sites is frequently deposited into nearby 

surface waters, negatively altering the chemical, physical and biological properties of the 

water body. This environmental concern has led to strict laws concerning erosion and 

sediment control, such as imposing permit conditions that limit the concentration of 

suspended solids that can be present in effluent water from construction sites. However, 

sediment concentration measurements are not routinely used to detect and correct short-

term problems or permit violations because laboratory analysis of sediment 

concentrations is time-consuming and costly. Nevertheless, timely, accurate field 

estimation of sediment loading could be facilitated through the development of empirical 

relationships between suspended solids and turbidity.  

Previous research indicates that turbidity measurements may be a more practical 

method of estimating sediment loads by indirectly relating sediment concentration to 

turbidity. In addition, recognition of turbidity as an indicator of pollution in surface 

runoff from disturbed areas has resulted in efforts by the U.S Environmental Protection 

Agency (EPA) to implement turbidity effluent limitation guidelines to control the 

discharge of pollutants from construction sites. Therefore, given the importance of a 

proposed turbidity limit, focus of this research is to determine relationships between 

representative soils and corresponding turbidity as a function of suspended sediment 

concentration and sediment settling. Turbidity is not only a function of suspended 
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sediment concentration, but also of particle size, shape, and composition; so this research 

was needed to analyze turbidity responses based on sediment characteristics of 

representative South Carolina soils.  

First, accuracy and precision of commercially available nephelometers needed to 

be quantified for use in subsequent sediment/ surface water analysis and potential 

regulatory compliance. Analysis of accuracy and precision for instruments showed that 

even though meters may be very precise, they could also be inaccurate. However, three of 

the four meters that performed well provided statistically accurate and precise results. It 

was also found that formazin calibration standards may be a better standard than AMCO 

EPA standards for surface water analysis.  

Utilizing representative South Carolina soils, both relationships of turbidity to 

sediment concentration and turbidity to settling time were used to form mathematical 

correlations. Turbidity versus suspended sediment concentration and turbidity versus 

settling time correlated well when top soil and subsoils were classified based on their 

predominant South Carolina region and their measured clay content. Derived trends for 

suspended sediment concentration to turbidity correlated well with either a linear or log 

relationship (R2 values ranging from 0.7945 to 0.9846) as opposed to previous research 

utilizing a power function or the assumption of a one-to-one relationship. For the 

correlation of turbidity and sediment settling time, trends were well correlated with a 

power function (R2 values ranging from 0.7674 to 0.9347). This relationship suggests 

Stoke’s Law was followed; where smaller particles remain in suspension longer and 

contribute more to turbidity compared to soils with less clay content. 
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Altogether, results of this research provide a step in determining potential site-

specific equations relating sediment concentration to turbidity and sediment settling time 

to turbidity. With this knowledge, results could ultimately aid in the design of future 

sediment basins of South Carolina and provide information for potential regulatory 

compliance.  
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CHAPTER 1 

INTRODUCTON 

 

Increased erosion caused by anthropogenic activities has been recognized as a 

priority environmental concern. Suspended solids from runoff, such as introduction 

through construction activity, are a potential water pollutant that can cause significant 

environmental impacts. Such impacts include adsorption of heavy metals, toxic 

substances, and biological pollutants to soil particles that are then transported to nearby 

waters. These chemical and biological pollutants can harm water quality and lead to fish 

kills and other ecological problems. This environmental concern has led to strict laws 

concerning erosion and sediment control. The outcome of the sediment and erosion 

control laws has resulted in construction sites using sediment basins as the conventional 

method of controlling sediment-laden runoff from these sites. Sediment basins are 

designed to slow the velocity of runoff and allow sediment particles to settle from the 

water column before discharge to surface waters offsite (Millen et al., 1997). The 

efficiency of these ponds is critical to controlling the amount of runoff from these sites. 

Several measures can be used to determine the effectiveness of a sedimentation 

basin including trapping efficiency, average effluent concentration, peak effluent 

concentration and peak effluent settleable solids (Hoechst, 1997). Trapping efficiencies 

are the most common performance standard and are generally calculated with the use of 

sediment concentration (Mitchell, 2000). Water samples from influent and effluent of the 

basin must be taken to the laboratory and analyzed for sediment content. Methods to 
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obtain the amount of solids contained in stormwater samples includes filtering water, 

then drying and weighing residue that has remained on a filter (Guo, 2006). Sediment 

concentrations from the influent and effluent waters are compared to determine the 

trapping efficiency of the pond using a mass balance approach (Mitchell, 2000).  

Total suspended solids (TSS), resulting from erosion, are held in the water 

column by turbulence and encompass both inorganic solids, such as sand, silt, clay and 

organic solids, such as algae and detritus (Thackston and Palermo, 2000). Suspended 

solids measurements are not routinely used to detect and correct short-term problems or 

permit violations because sediment concentrations cannot be determined easily or quickly 

in the field, and transportation to a laboratory for analysis is time-consuming and can be 

costly (Thackston and Palermo, 2000). Timely, accurate field estimation of sediment 

loading could be facilitated through the development of precise relationships between 

suspended solids and turbidity.  This approach has potential for monitoring any water 

quality constituent whose concentration is better correlated with an easily measured (in 

situ) parameter, such as turbidity.  

Turbidity is an expression of the optical properties of a liquid that causes light 

rays to be scattered and absorbed rather than transmitted in straight lines through a 

sample (Anderson, 2005). Suspended solids have an optical impact on water quality by 

reducing light transmission through water; this is referred to as light attenuation (Davies-

Colley and Smith, 2001). Cloudiness of water results from intense scattering of light by 

fine particles. Hence, waters with high concentrations of fine suspended sediment are 

described as turbid.  
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Turbidity measurements are gaining increased usage as an indicator of sediment 

pollution in surface runoff from disturbed areas such as active construction sites. Recent 

efforts by the U.S. Environmental Protection Agency (EPA) have resulted in turbidity 

effluent limitation guidelines and new source performance standards to control the 

discharge of pollutants from construction sites (EPA, 2009). Numeric turbidity limits for 

construction site discharge are expected to be required in the near future.  Such 

requirements will likely include subjecting construction site stormwater discharges to a 

maximum allowable numeric turbidity effluent limit in nephelometric turbidity units 

(NTU) for sites disturbing 10 acres or more. Where turbidity output readings from 

nephelometers are given in nephleometric turbidity units (NTU) when scattered light is 

measured perpendicular to meter’s incident beam. 

Turbidity is not an inherent property of water, such as temperature or pH. 

However, the recognition of turbidity as an indicator of the environmental health of water 

bodies has increased, resulting in a growing demand for high-quality and objective 

turbidity measurements (Anderson, 2005).  Therefore, given the importance of a 

proposed turbidity limit, the focus of this research is to better understand the relationship 

between turbidity and suspended sediments.  To fulfill this goal, three objectives were 

established.  These objectives are described below. 

1. Compare selected turbidity meters to quantify accuracy and precision of each 

instrument for use in subsequent soil/water analysis objectives.  

2. Establish empirically derived relationships between suspended solids 

concentration and turbidity for representative South Carolina soils.  
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3. Determine the correlation of turbidity with respect to settling time of the selected 

South Carolina soils.  

Before relationships between turbidity and suspended sediments could be 

established, questions remain as to how samples should be obtained and processed to get 

reliable readings for future analysis. Therefore, this research will first compare the 

performance of various commercially available nephelometers to statistically quantify 

accuracy and precision of selected instruments for use in subsequent analysis and 

potential regulatory compliance. 

A standard practice in relating suspended sediment to turbidity is to take the 

association as a one-to-one relationship (Hayes et al., 2001). Prior research, however, 

indicates this assumption is not accurate unless site-specific sampling is utilized to 

establish unique turbidity-suspended sediment relationships because turbidity is not only 

a function of TSS concentrations, but also of particle size, shape, and composition 

(Gippel, 1995: Hayes et al., 2001). As a result, this research is needed to analyze turbidity 

responses based on sediment characteristics for representative South Carolina soils.  

Also, in order to separate particles from the runoff water in best management 

practices (BMPs) such as sediment basins, it is imperative to know sediment settling time 

and settling properties required to remove the particles from the water column. 

Accordingly, this research will also determine empirical relationships of sediment settling 

time to turbidity. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Suspended Solids 

Increased nonpoint source (NPS) pollution in the United States has been 

recognized as a priority environmental concern. NPS pollution is generated from diffuse 

land use activities rather than originating from a single discrete point source, such as a 

pipe (USGAO, 1998). It is conveyed to waterways through natural processes, such as 

rainfall, storm runoff, or groundwater seepage that generally are associated with land 

management, construction, and urban runoff (USGAO, 1998). Recent studies and surveys 

by EPA and state water quality agencies suggest the majority of remaining water quality 

impairments result from nonpoint sources, urban stormwater discharges, and combined 

sewer overflows compared to point source pollution. Decreases in water quality from 

NPS pollution are generally reflected by increases of particulate matter (Packman et al., 

1999) known as total suspended solids (TSS). According to the National Water Quality 

Inventory in 1998, suspended solids and sediment are the leading cause of water quality 

impairment of rivers and lakes (Swietlik, 2002).  

TSS refers to the mass or concentration of both inorganic and organic solids that 

are held in the water column by turbulence (Thackston and Palermo, 2000). Inorganic 

solids can include sand, silt and clay particles, and organic solids may encompass algae, 

bacteria and detritus (Thackston and Palermo, 2000). Introduction of suspended solids 
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(SS) in the nation’s bodies of water may be caused by many sources, including (LSS, 

2009): 

• Soil erosion associated with agricultural practices and construction site runoff 

• Domestic and industrial wastewater discharge 

• Urban runoff from impervious surfaces  

• Flooding and chronically increased flow rates 

• Algae growth from nutrient enrichment (eutrophication) 

• Dredging and channelization, and 

• Removal of riparian vegetation and other stream bank disturbances 

All streams carry SS under natural flow conditions. However, if concentrations 

are elevated from the above disturbances, this can lead to alterations to the physical, 

chemical and biological properties of a water body (Bilotta and Brazier, 2008).   

Physical alterations caused by SS pose risks to water quality and aquatic 

organisms. Increased SS may result in a reduction of light penetration available for 

aquatic vegetation to grow by photosynthesis (LSS, 2009). A reduction in plant matter 

results in less energy, oxygen, and habitat for aquatic organisms.  In addition, increased 

SS can negatively affect fish by limiting their ability to find food, increasing 

susceptibility to predators, and increasing gill abrasion (Packman et al., 1999). Water 

temperature alterations are another harmful physical stressor caused by increased TSS. 

Waters usually become warmer because of the greater heat absorbency of particulate 

matter and their ability to darken water and absorb more heat from sunlight (LSS, 2009). 

This thermal change can lead to negative effects on cold-water adaptive species (LSS, 



7 

 

2009). Lastly, upon deposition, increased SS loads can cause infilling of channels and 

reservoirs (Bilotta and Brazier, 2008).  

Case studies involving the Chesapeake Bay, the Everglades, Milltown Reservoir, 

and Lake Hartwell have shown that suspended solids can be another pathway for 

biological and chemical contaminants to pollute the environment. Chemical contaminants 

are conveyed from adsorption sites on surfaces of sediments. Constituents of concern can 

include organic compounds, heavy metals, and some nutrients. Organic contaminants 

may encompass PCBs, PAHs present in fossil fuels, and pesticides from agricultural 

practices. Heavy metals include mercury, cadmium, lead, zinc, and chromium that could 

result from domestic and industrial wastes. Such contaminants are harmful because they 

can 1) bioaccumulate through the food chain (i.e. mercury); 2) they can settle with the 

sediments, where bottom-dwelling organisms are exposed to bioavailable contaminants, 

or 3) pollute groundwater via leaching from settled sediments (LSS, 2009). Sediments 

can also be a major source of the plant nutrients nitrogen, phosphorous and iron (LSS, 

2009). One phenomenon, called eutrophication, is the result of waters becoming nutrient-

rich, which can lead to increased biological productivity. The most severe consequence of 

eutrophication is the depletion of oxygen by the decomposition of organic matter (Boesch 

et al., 2001). Organic matter produced in surface waters sink to the bottom where it 

decomposes, consuming oxygen inventories that are not replenished by photosynthesis or 

mixing with oxygen-rich surface waters (Boesch et al., 2001). Lastly, there is a long-

established link between sediment and biological pollutants, such as bacteria, in lentic 

systems (Sawyer, 2009). Clearly, SS are an important pollutant in surface waters; thus, 
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quantifying and monitoring changes in suspended solids is critical for the nation’s bodies 

of water.  

TSS monitoring has become an integral part of programs to reduce nonpoint 

source pollution, such as those enacted by the Clean Water Act (CWA) (Dahlgren et al., 

2004). The goal of the CWA is “to restore and maintain the chemical, physical and 

biological integrity of the Nation’s waters” (EPA, 1972). The Clean Water Act is a 

comprehensive set of programs and requirements designed to address the complex 

problems caused by a wide variety of pollution sources (EPA, 1972). The primary focus 

of the CWA and subsequent 1977 amendments was the prevention of pollution 

discharges from point sources. In 1987, the act was again amended, this time to focus on 

non-point sources of pollution. One of the cornerstones of the Act is the National 

Pollutant Discharge Elimination System (NPDES), which regulates discharge of 

pollutants into waters of the U.S. Under the CWA, NPDES permits are issued to 

industrial, municipal, and other point source dischargers by either EPA or a delegated 

state agency (EPA, 1987).  

Construction sites of a designated size or larger require NPDES permit coverage 

because erosion and sediment laden runoff can have a significant impact on water quality 

(EPA, 1987). The NPDES stormwater program requires construction site operators 

engaged in clearing, grading, and excavating activities that disturb one acre or more to 

obtain coverage under an NPDES general permit for their stormwater discharges. Most 

states, including South Carolina, are delegated to implement stormwater NPDES 

permitting programs. Permits require construction site operators to install and maintain 
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erosion and sediment control measures to minimize stormwater from washing soil, 

nutrients, chemicals and other harmful pollutants into local water bodies. 

 

Construction Sites 

According to United States General Accounting Office in 1997, without proper 

controls at construction sites, sediment loads can reach 35 to 45 tons per acre per year 

(USGAO, 1998). The two factors accounting for large amounts of sediment coming from 

construction sites include high erosion rates and high delivery rates.  

Erosion is the wearing away of top soil and subsoil by means of running water, 

wind, ice or other geologic agents (EPA, 1992). The process of erosion features 

detachment of soil particles from a soil mass, transport of the detached sediment (i.e. via 

runoff) and deposition of the sediments, known as sedimentation (Johns, 1998). The two 

types of erosion include geologic erosion and accelerated erosion. Geologic erosion, also 

known as natural erosion, is caused by geological processes acting over long periods of 

time without human disturbance (Johns, 1998), whereas accelerated erosion is a more 

rapid erosion process influenced mostly by human activities (Johns, 1998). Accelerated 

erosion is most often caused by an alteration of the landscape, resulting from floods, 

earthquakes, or anthropogenic activities (Morrow et al., 2007).  Hence, land disturbance 

from construction activity exposes large areas of bare soil to water and wind erosion, 

increases soil erosion rates 2,000 to 40,000 times undisturbed rates (Harbor, 1999: Johns, 

1998), and results in approximately 80 million tons per year of sediment supplied to US 

lakes, rivers and waterways (Harbor, 1999). 
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More importantly, construction sites can create very high delivery rates compared 

to pre-construction conditions (NCDENR, 2009). During the initial phase of construction, 

vegetation is cleared, land is graded, and ditches or storm sewers are installed to provide 

good drainage. Such alterations increase runoff volume and change the timing, frequency 

and rate of discharge. Practices are now required to compensate for increased post-

construction peak flows. However, these practices only control the rate of runoff volume 

leaving sites, but still allow increases in untreated runoff volume. Therefore, this drainage 

arrangement provides an efficient delivery system for pollutants to reach local waters.  

 

Sediment Control Structures 

States implement specific stormwater management and sediment reduction 

regulations for land disturbing activities that stem from the Clean Water Act. For 

example, according to South Carolina’s Department of Health and Environmental 

Control (SCDHEC) regulations, construction site activities disturbing one acre or more 

require the development of erosion prevention and sediment control (EPSC) plans to 

achieve an 80 percent (minimum) design removal efficiency goal (SCDHEC, 2003). 

There are many practices that can be implemented on construction sites to reduce erosion. 

Consequently, even with very aggressive erosion prevention practices, soil erosion will 

still take place (Harbor, 1999). Therefore, to reduce eroded soil leaving sites, and meet an 

80 percent removal efficiency goal, a variety of sediment trapping measures have 

traditionally been used. Gravitational settling from detention is the main process used to 
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remove sediment from construction site runoff. Commonly used sediment trapping 

practices on sites include silt fences and sediment basins.  

Silt fences are used as temporary perimeter controls that allow sediment to settle 

out of runoff. They are composed of a geotextile fabric with varying mesh sizes that are 

stretched across and attached to anchored wooden or metal stakes. The stakes are spaced 

at regular intervals along the site perimeter (Harbor, 1999). The bottom of the fence is 

buried in a trench to create a ponding area that allows time for sediment from runoff to 

settle before water passes through the geotextile (Harbor, 1999). If installed and 

maintained correctly, filtering efficiencies of silt fences can vary from 75 to 85 percent 

(EPA, 1992). Unfortunately, the vast majority of silt fences are installed incorrectly, 

resulting in ineffective sediment controls (Harbor, 1999).   

Sediment basins are another common technique to capture sediment from 

stormwater runoff before it leaves the site.  Sediment basins are engineered impoundment 

structures designed to temporarily detain surface runoff long enough to allow for 

sediments to settle out of water under the influence of gravity (Millen et al., 1997). They 

are installed prior to full-scale grading and remain in place until the disturbed portions of 

the drainage area are fully stabilized (EPA, 1993a). Sediment basins are usually used for 

drainage areas of five to 100 acres (EPA, 1993a) and are applicable in drainage areas 

where it is anticipated that controls, such as silt fences, will not be sufficient to prevent 

off-site transport of sediment (EPA, 1992). Sediment basins are popular with developers 

because they require less maintenance than other erosion and sediment control techniques 

and often can be converted into permanent urban runoff management ponds (Harbor, 
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1999). If sediment basins are converted into permanent stormwater management ponds, 

they must meet all regulatory requirements for wet or dry ponds (SCDHEC, 2005).  

Several measures can be used to determine the effectiveness of a sedimentation 

basin including trapping efficiency, average effluent concentration, peak effluent 

concentration and peak effluent settleable solids (Hoechst, 1997). Trapping efficiencies 

are the most common performance standard and are generally calculated based on certain 

design requirements (Hoechst, 1997). For example, Figure 2.1 shows sediment basin 

details according to South Carolina’s Regulation 61-9. The general design requirements 

are as follows (SCDHEC, 2005): 

1. Minimum drainage area of five acres and maximum drainage area of 150 acres, 

2. 80 percent design removal efficiency goal for TSS, 

3. Basin Shape: The effective flow length is at least twice the effective flow width 

(L=2W minimum), 

4. Outlet riser has discharge capacity for a 10-year, 24-hour storm event, and 

5. Effluent 2-year and 10-year, 24-hour storm disturbed flow rates are less than or 

equal to pre-disturbance peak flow rates.  
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Figure 2.1. SCDHEC sediment basin specifications (SCDHEC, 2005). 
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For sediment basins to achieve certain sediment removal efficiencies, the basin 

size must be derived from calculating the rate at which sediments settle. Sediment basin 

settling theory is generally governed by Stokes’ Law (Equation 1) to determine the 

settling velocity of particles (Haan et al., 1994). According to this law, a particle will 

settle in the vertical direction and accelerate to a constant velocity under the assumption 

that all particles have equal densities, are all spherical in shape, and all soil particles fall 

independent of each other under laminar flow conditions (Scott, 2000). The law states 

that particles larger in diameter sink farther and quicker than smaller particles when 

suspended in a liquid (Scott, 2000). Particles with greater surface area per unit of weight 

have greater frictional resistance and hence settle at slower velocities (Scott, 2000).  

 

 

v� � g�ρ� � ρ�d	
18µ  

(1) 

vs= settling velocity (m/s) 

g= gravitational acceleration (m/s2) 

ρs= particle density (kg/m3) 

ρ= fluid density (kg/m3) 

d= particle diameter (m) 

µ= dynamic viscosity (Pa-s) 
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Along with calculating appropriate basin size, basin geometry is an important 

design parameter in maintaining higher sediment retention efficiencies (Millen et al., 

1997). Poor efficiencies are often found in ponds that have areas of dead storage caused 

by short circuiting. Bypassing of these dead spaces renders these areas ineffective in the 

settling process (Mitchell, 2000). As such, South Carolina’s R 61-9 requires the flow 

length to be at least twice the flow width to increase the flow path length to minimize 

dead spaces (SCDHEC, 2005).  

Sediment basins must be maintained to work effectively. Such maintenance may 

include inspecting basins regularly for sediment deposition and removal of sediment once 

the basin reaches 50 percent of sediment storage volume (SCDHEC, 2005). Sediment 

basin effectiveness is a function of eroded particle size distribution of inflow sediment 

(Mitchell, 2000). Trapping efficiencies will be adversely affected by fine sediments that 

remain in suspension.  

 

TSS Measurements 

Sediment trapping efficiency of a pond may be found by measuring the sediment 

concentration and flow rate of the runoff entering the structure and the sediment 

concentration and flow rate of the water leaving the detention structure. Total suspended 

solids are determined from laboratory analysis by the dry weight of suspended solids per 

unit volume of water, and are typically reported in milligrams of solids per liter of water 

(mg/L). There are three different laboratory methods to quantify the amount of solids 

contained in stormwater samples taken from the field (Guo, 2006). The three methods 
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include EPA’s TSS Method (USEPA 1999), the American Public Health Association’s 

(APHA 1995) TSS Method (also referred to as Standard TSS Method), and American 

Society for Testing and Materials’ (ASTM) Suspended Sediment Concentration (SSC) 

Method (ASTM 1997). All three methods obtain the amount of solids contained in 

stormwater samples through filtering water, then drying and weighing residue that has 

remained on the filter (Guo, 2006). EPA’s TSS Method stirs and collects the sub-sample 

by pouring from the whole sample container, the Standard TSS Method stirs and collects 

the sub-sample using a pipette to draw from the whole sample container, and the ASTM’s 

SSC Method uses the whole sample (Guo, 2006).  

Consequently, TSS measurements are not routinely used to detect and correct 

short-term problems or permit violations because sediment concentrations cannot be 

determined easily or quickly in the field, and transportation to a laboratory for analysis is 

time-consuming and can be costly (Thackston and Palermo, 2000). As a result, these 

laboratory methods are increasingly being replaced in favor of continuously-collected 

surrogate data for quantification of SSC that may be safer and (or) less expensive to 

obtain. Other common methods to evaluate stream-water suspended solids concentrations 

include transparency and turbidity measures. For example, the relation of turbidity to TSS 

can be used to estimate suspended loads as opposed to estimations based on water 

discharge from construction sites. This approach has potential for monitoring any water 

quality constituent whose concentration is better correlated with an easily measured 

parameter, such as turbidity.  
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Turbidity 

Turbidity is a measurement used to quantify water clarity (Davies-Colley and 

Smith, 2001). It is an expression of optical properties that cause light rays to be scattered 

and absorbed rather than transmitted in straight lines through a water sample (Anderson, 

2005). Suspended solids have an optical impact on water quality by reducing light 

transmission through water; this is referred to as light attenuation (Davies-Colley and 

Smith, 2001). Materials contributing to suspended solids include soil particles (silts and 

clays), finely divided organic and inorganic matter, soluble organic compounds, plankton, 

and microscopic organisms. Typically, suspended soil particles exert the dominant 

influence on light attenuation in natural waters (Davies-Colley and Smith, 2001). 

Cloudiness of water results from intense scattering of light by fine particles typically with 

diameters smaller than 0.050 mm (Mitchell, 2000). Hence, waters with high 

concentrations of fine suspended sediment are described as turbid.  

 

Turbidity Measurements 

From the early 20th century, turbidity was measured in Jackson turbidity units 

(JTU) using a Jackson Candle Turbidimeter (Borok, 2010). This method incorporated a 

visual method of looking at a black object at certain depths in water to determine 

turbidity of water (Mitchell, 2000). The turbidimeter consisted of a special candle and a 

flat-bottom glass tube. Measurements were made by slowly pouring a turbid sample in 

the tube until the image of the candle flame diffused to a uniform glow (Borok, 2010). 

Depth of the sample in the tube is read against the ppm-silica scale, and turbidity was 
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measured in Jackson turbidity units (JTU). Jackson turbidimeters cannot measure 

turbidity lower than 25 JTU, are cumbersome, and depend on human judgment to 

determine the extinction point (Borok, 2010). Thus, photoelectric detectors were 

developed and became the accepted method to measure turbidity (Borok, 2010). 

Turbidity meters can be used in the field with portable meters, in the lab with benchtop 

meters, or as probes that can be installed in a stream or lake for continuous 

measurements. Turbidity is now commonly measured in nephelometric turbidity units 

(NTU) using nephelometric turbidimeters (Mitchell, 2000).  

Nephelometric turbidimeters direct a beam of light into the side of a test sample, 

measure the amount of light that is reflected at a restricted range of angles (typically 90 

degrees) by any particles present, and compare it to the light scattered by standard 

reference suspensions (Mitchell, 2000 and Borok, 2010). Figure 2.2 displays the basic 

design for nephelometric turbidimeters where scattered light is captured by a photodiode, 

which produces an electronic signal that is converted to a turbidity value reported in 

NTUs (ISO, 1999). Two of the most commonly used nephelometric turbidimeters include 

nephelometers and near infrared turbidimeters.  
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Figure 2.2. Basic turbidimeter design using nephelometric measuring technique (Sadar, 

2004). 

 

Nephelometers measure light that has been scattered at a specific angle of 90 

degrees from the main light path (EPA, 1993b). Generally, commercially available 

nephelometers are compliant with EPA’s Method 180.1 for determining turbidity by 

nephelometry (Borok, 2010). Along with the specified angle of 90 degrees, 

nephelometers under EPA’s Method 180.1 require the light source to be a tungsten lamp 

operating at a color temperature between 2200-3000 K. The light source is a light-

emitting diode where the light path is designed to minimize stray light falling on the 

detector (Thackston and Palermo, 2000).  Therefore, a zero reading means no light 

scattered at 90 degrees (±30 degrees) from the main light path and implies no turbidity 

(Thackston and Palermo, 2000). Nephelometers must be standardized against either a 

primary formazin suspension with a value of 4000 NTUs (which can be diluted to desired 

NTU values) or a commercially available polymer standard identified as AMCO-AEPA-1 

(EPA, 1993b).   
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Formazin was established as the first calibration standard for turbidity meters in 

the 1950’s. Since then, machine performance and EPA approval for meters is structured 

around formazin as the primary calibration standard (AMCOClear, 2010). Formazin 

suspensions exhibit a wide range of suspended particle size and shape. Typically, 

formazin particles are irregular in shape and range from 0.1 to 10.0 µm in size, closely 

matching the range of particulates, 0.2 to 50 µm, found in real world samples (Hach, 

2011). The highly predictable light-scattering properties of formazin are the basis of 

algorithm design for nephelometric instruments. The primary formazin suspension is a 

stock standard suspension (SSS) that can be prepared following standard methods 

(APHA, 2005). While SSS can be prepared directly in the laboratory and used to create 

primary calibration standards (PCALs), the process is labor intensive, time consuming, 

and requires precise laboratory technique (Hach, 2011).  Besides being the only primary 

standard, formazin is also the least expensive, premixed, commercially available turbidity 

standard (Downing, 2005). However, routine use of formazin SSS and PCALs have 

several notable disadvantages that include: 1) formazin’s hydrazine sulfate is a 

carcinogen; 2) turbidity can vary by 2% from batch-to-batch; 3) the size, shape, and 

aggregation of formazin particles change with temperature, time, and concentration; 4) it 

settles in storage and must be mixed immediately prior to use; and 5) diluted formazin 

standards have a storage life as short as one hour (Downing, 2005). As a result, 

alternative standards, known as secondary calibration standards (SCALs), are created and 

typically supplied with purchase of turbidity meters. SCALs have been certified by the 

manufacturer to provide calibration results equivalent to those obtained when the 
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instrument was calibrated with a primary standard (APHA, 2005). Available secondary 

standards include commercial stock suspensions of 4000 NTU formazin (i.e. StablCal), 

commercial suspension of microspheres of styrene divinylbenzene (SDVB) 

microspheres, and items supplied by instrument manufacturers (APHA, 2005).  

According to Method 180.1, SCALs are acceptable as a daily calibration check, but must 

be monitored on a routine basis for deterioration and subsequently replaced as required. 

All secondary standards change with time and must be replaced when their age exceeds 

shelf life. Deterioration can be detected by measuring the turbidity of the standard after 

calibrating the instrument with a fresh formazin or microsphere suspension (APHA, 

2005).  

Along with formazin calibration standards, EPA approved polymer suspensions in 

1984 as a secondary calibration standard for turbidity meters under the name AMCO 

EPA (AMCOClear, 2010). It is made from SDVB microspheres and, unlike formazin, 

SDVB microspheres have uniform size, shape and particle size distribution. An example 

is displayed in Figure 3.3 (Downing, 2005). SDVB microspheres have a particle size 

distribution of 0.02 to 0.2 µm with a mean size of 0.121 µm (AMCOClear, 2010). Size 

distribution of SDVB spheres are adjusted to produce a formazin-equivalent response 

from a particular turbidity meter (Downing, 2005). SDVB standards are formulated for a 

specific make and model of turbidimeter, and therefore, cannot be used with a different 

manufacturer or model even though it conforms to the same standard method (Downing, 

2005).  Key benefits of SDVB standards are: 1) batch-to-batch variation in turbidity is 

less than 1%; 2) optical properties are constant from 10 to 30ºC; 3) one-year stability is 
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guaranteed; 4) mixing and dilution are not required, and; 5) are not toxic (Downing, 

2005).  

 

 

Figure 2.3. Scanning electron microscopy (SEM) images. On the left, formazin particles 

have many different shapes, whereas SDVB particles on the right are dimensionally 

uniform (Downing, 2005). 

 

 

Figure 2.4. Graph compares the particle sizes of formazin and SDVB. The SDVB 

particles are about 1/5 that of formazin particles (Downing, 2005). 
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Other regularly accepted nephelometric turbidimeters are near infrared (IR) 

turbidimeters. These types of nephelometric turbidimeters are compliant with the 

International Standards Organization (ISO) standard 7027, which is commonly used in 

Europe (Borok, 2010). This standard requires that particle light scattering should be 

measured in near infrared (wavelength 860±60 nm) with a light-emitting diode (LED) as 

the instrument’s light source (ISO, 1999). Also, the detector angle must not exceed ±2.5 

degrees from the 90-degree incident path (Borok, 2010).  

Turbidity meters vary in design, such as optical design of spectral power of the 

light source, spectral sensitivity of the detector, angular scattering range, and optical 

geometry (Pfankuche and Schmidt, 2003). As a result, meters are highly instrument-

specific turbidity measurements in spite of identical calibration to formazin (Pfankuche 

and Schmidt, 2003). For example, infrared turbidimeter beams are unaffected by light 

absorbance of particles (usually dissolved organic compounds), whereas visible light 

turbidimeters are more sensitive to scattering from fines (Packman et al., 1999). 

 

Future Turbidity-Based Regulations 

Turbidity has been recognized as an indicator of pollution in surface runoff from 

disturbed areas. In December 2009, EPA released turbidity effluent limitations and new 

source performance standards to control discharge of pollutants from construction sites 

(EPA, 2009). Regarding turbidity, the final rule subjected discharges from construction 

sites disturbing 20 or more acres of land at one time to comply with a numeric effluent 

limit of 280 NTU, starting in August of 2011 (EPA, 2009). By February 2014 the 
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limitation would apply to all construction sites disturbing 10 or more acres (EPA, 2009). 

Interestingly, the final rule does not prescribe specific requirements, such as frequency or 

location of monitoring related to construction activity (EPA, 2009).  Subsequent to the 

proposed final rule, multiple petitions for reconsideration pointed out potential error in 

calculating the numeric limit of 280 NTU (EPA, 2010). As a result, EPA concluded that 

it improperly interpreted the data and is currently reevaluating the numeric effluent 

limitation of 280 NTU. EPA intends to publish the corrected final rule by May 30, 2011 

so that the revised limitation can be effective by June 29, 2011 for its Construction 

General Permit (EPA, 2010).  

 

Relationships to Total Suspended Solids 

Optical gauges are widely used devices to monitor TSS concentrations indirectly 

since they are generally sensitive to a wide concentration range of TSS and are relatively 

inexpensive (Foster et al., 1992). Although most are suited to the concentration range of 

0-1000 mg/L, higher concentrations can be determined, but these yield a decrease in 

sensitivity (Foster et al., 1992). Therefore, nephelometric turbidity measurements are 

gaining recognition because NTU units have been shown to relate to TSS concentrations 

in many water bodies in regions around the world (Packman et al., 1999). This is because 

the scattering coefficient measured at an angle of 90 degrees behaves almost 

proportionally to suspended particle concentration when sensors are calibrated to give a 

linear response to standards (Pfankuche and Schmidt, 2003). Thus, response to varying 

TSS concentrations should be linear if the physical properties of suspended particles are 
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constant (Lewis, 1996). For instance, Lewis (1996) was able to estimate event sediment 

loads by predicting SSC from linear regressions on turbidity from five storm events on a 

creek.  

Several other studies have illustrated adequate relationships from linear and other 

regression models of TSS concentration and nephelometric turbidity units in varying 

water bodies (Ellison et al., 2010; Grayson et al., 1995; Hayes et al., 2001; Packman et 

al., 1999; Pavanelli and Pagliarani, 2002; Pfankuche and Schmidt, 2003; Mitchell, 2002). 

However, previous research states turbidity should not be used as a substitute for 

sediment concentration without a careful study of the relationship between turbidity and 

suspended load for any proposed watershed monitoring (Pavanelli and Pagliarani, 2002). 

Hence, previous research stresses the importance of site-specific sampling in order to 

establish unique turbidity-suspended sediment relationships, (Hayes et al., 2001) because 

turbidity is not only a function of TSS concentrations, but also of particle size, shape and 

composition (Foster et al., 1992: Gippel, 1995). As a result of such site-specific 

properties, there are no universal relationships between turbidity and suspended solids 

(Borok, 2010). Variable optical properties have resulted in correlations with low 

coefficients of determination (Pfankuche and Schmidt, 2003). Such variability was 

generally attributed to changes in particle properties and particularly particle size 

(Pfankuche and Schmidt, 2003). Finer sediments have more reflective surfaces per unit 

mass, so, for constant SSC, sensor output increases as suspended sediment becomes finer 

(Schoellhamer and Wright, 2003), whereas a higher concentration of larger particles 

produces lower turbidity levels (Hayes et al., 2001). Since turbidity is often an indication 
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of the quantity of clay particles in suspension, it would be beneficial to obtain a 

relationship between turbidity and particle size, as well as sediment concentration. Also, 

MacDonald (1991) and Lewis (1996) found that when a watershed displayed similar 

characteristics, such as soil type, variations either are generally not large or related to 

SSC, thus the relation between turbidity and SSC may be quite stable and precise (Hayes 

et al., 2001) .  

 

Particle Size Distributions & Particle Settling Velocities 

In order to classify a soil for engineering purposes, one needs to know the 

distribution of particle sizes in a given soil mass. In order to separate particles from the 

runoff water in best management practices (BMPs) such as sediment basins, it is 

imperative to know sediment settling time and settling properties required to remove the 

particles from the water column (Haan et al., 1994: Tempel, 2011). As addressed earlier, 

particle diameter plays an irmportant role in calculating trapping efficiency of a sediment 

basin because particle sizes directly relate to settling velocity of the particles (Stoke’s 

Law). Again, these velocities have an effect on required detention time and 

corresponding area of the pond (Mitchell, 2000).  

The scope of this project is on behavior of particles smaller than 0.063 mm (silts 

and clays) because larger particles settle from surface water flow relatively quickly, 

whereas small particles remain in suspension longer, thus contributing as sources of 

turbidity. Therefore, along with determining the relationship between turbidity and 
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particle size, this research will evaluate each soil’s relationship of turbidity with respect 

to time.  

A particle size distribution (PSD) curve is created to describe the range of various 

particle sizes in a given soil. A typical way to express particle size distribution is with a 

percent finer curve. Such a curve illustrates particle size weight classes versus the entire 

sample weight. According to the American Association of State Highway and 

Transportation Officials (AASHTO), particle sizes include four categories of gravel, 

sand, silt and clay. Their respective particle diameter sizes are listed below following 

USDA’s particle size classification (Das, 2006). 

1. Gravel: greater than 2 mm. 

2. Sand: 2 mm to 0.05 mm. 

3. Silt: 0.05 mm to 0.002 mm 

4. Clay: less than 0.002 mm 
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CHAPTER 3 

 

 

ACCURACY AND PRECISION OF PORTABLE TURBIDITY METERS 

 

  



29 

 

ABSTRACT 

 

EPA has published effluent limitation guidelines (ELGs) to control discharge of 

pollutants from construction sites.  Numeric turbidity limits for construction site 

discharge are expected to be required in the near future.  Such requirements will likely 

include subjecting construction site stormwater discharges to a maximum allowable 

turbidity numeric effluent limit in nephelometric turbidity units (NTUs) for sites 

disturbing 10 acres or more. 

Turbidity is an expression of the optical properties of a liquid that causes light 

rays to be scattered and absorbed as measured by a nephelometer. Though constituents 

such as organic matter can impact water clarity, typically the inorganic fraction derived 

from particulate matter such as sediment dominates turbidity levels in surface waters.  

Recognition that water clarity is an important indicator of environmental health has 

increased, resulting in growing demand for high-quality and objective measurement.  

However, questions remain as to how samples should be obtained and processed to get 

reliable readings.  

Given the importance of pending numeric effluent limitations related to turbidity, 

the focus of this research is to compare various nephelometers to quantify accuracy and 

precision of selected portable instruments for use in routine sediment/surface water 

analysis and potential regulatory compliance. Instruments were either provided with 

commercial stock suspensions of formazin (StablCal) or commercial suspension of 

microspheres of styrene divinylbenzene (SDVB) (AMCO EPA).  In order to evaluate 



30 

 

meter accuracy and precision, experiments were conducted to compare their responses to 

true NTU values. This analysis examined performance of each meter when calibrated to 

manufacturer-supplied secondary calibration standards and when calibrated to primary 

calibration standards (PCALs).  

Results indicated three of the four meters (Hach 1, Hach 2, and GW) were 

accurate and precise for both calibration studies, but did not fall within the claimed ±2% 

accuracy range as provided by manufacturer’s specifications.  The LaMotte meter did not 

perform as well, and even though the overall accuracies improved when calibrated to the 

formazin PCALs, the meter was inaccurate for higher turbidity readings. As for the 

meters’ responses to varying field surface water samples, readings produced by the Hach 

2100Q meters (‘Hach 1’ & ‘Hach 2’) had very similar results and did not change much 

for either calibration study, but were consistently higher than the LaMotte and GW 

meters. However, when meters were calibrated to PCALs, the range of readings per 

sample narrowed. Additionally, the LaMotte and GW meters may provide inaccurate 

results for higher turbidity readings that may typically contain a wider range of particle 

sizes. Variability among the Hach meters to the LaMotte and GW is most likely due to 

differences in formazin standards and SDVB standards. Results may have significant 

bearing on the construction and development industry as it prepares for proposed 

monitoring requirements associated with recently promulgated numeric effluent standards 

for turbidity. 
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INTRODUCTION 

 

Turbidity measurements are gaining increased usage as an indicator of pollution 

in surface runoff from disturbed areas such as active construction sites. Recent efforts by 

the EPA have resulted in proposed turbidity effluent limitations for discharge from 

construction sites. Turbidity is an expression of optical properties that cause light rays to 

be scattered and absorbed rather than transmitted in straight lines through a water sample 

(Anderson, 2005). Though constituents such as organic matter can impact water clarity, 

typically the inorganic fraction derived from particulate matter, such as sediment, 

dominates turbidity levels in surface waters (Davies-Colley and Smith, 2001).  

Cloudiness of water results from intense scattering of light by fine particles typically with 

diameters smaller than 0.050 mm (Davies-Colley and Smith, 2001). Hence, waters with 

high concentrations of fine suspended sediment are frequently described as turbid. 

Turbidity is a vivid visual indicator of pollution associated with sediment-laden runoff. 

Turbidity is now commonly measured in nephelometric turbidity units (NTU) 

using nephelometric turbidity meters (Borok, 2010). Such meters direct a beam of light 

into the side of a test sample, measure the amount of light that is reflected at a restricted 

range of angles (typically 90 degrees) by any particles present, and compare it to light 

scattered by standard reference suspensions (Borok, 2010). Two of the most commonly 

used nephelometric turbidity meters include nephelometers and near infrared turbidity 

meters.  
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Nephelometers measure light that has been scattered at a specific angle of 90 

degrees from the main light path (EPA, 1993b). Most commercially available meters 

comply with EPA’s Method 180.1 for determining turbidity by nephelometry (Borok, 

2010 and EPA, 1993b). Such instruments must be standardized against either a primary 

formazin suspension with a value of 4000 NTU (which can be diluted to desired NTU 

values) or a commercially available polymer standard identified as AMCO-AEPA-1 

(EPA, 1993b).  

Formazin was established as the first calibration standard for turbidity meters in 

the 1950’s and since then, machine performance and EPA approval for meters is 

structured around formazin as the primary calibration standard (AMCOClear, 2010). 

Formazin suspensions are characterized by a wide range of suspended particle size and 

shape. Typically, formazin particles are irregular in shape and range from 0.1 to 10.0 µm 

in size, closely matching the range of particulates found in field samples (Hach, 2011). 

The highly predictable light-scattering properties of formazin are the basis of algorithm 

design for nephelometric instruments. The primary formazin suspension is a stock 

standard suspension (SSS) that can be prepared following standard methods (APHA, 

2005). While SSS can be prepared directly in the laboratory and used to create primary 

calibration standards (PCALs), the process is labor intensive, time consuming, and 

requires precise laboratory technique (Hach, 2011).  Besides being the only primary 

standard, formazin is also the least expensive premixed, commercially available turbidity 

standard (Downing, 2005). However, routine use of formazin SSS and PCALs have 

several notable disadvantages: 1) formazin’s hydrazine sulfate is a carcinogen; 2) 
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turbidity can vary by 2% from batch-to-batch; 3) the size, shape, and aggregation of 

formazin particles change with temperature, time, and concentration; 4) it settles in 

storage and must be mixed immediately prior to use; and 5) diluted formazin standards 

have a storage life as short as one hour (Downing, 2005).  

As a result, alternative standards known as secondary calibration standards 

(SCALs) are created and typically supplied with purchase of turbidity meters. SCALs 

have been certified by the manufacturer to provide calibration results equivalent to those 

obtained when the instrument was calibrated with a primary standard (APHA, 2005). 

Available secondary standards include commercial stock suspensions of 4000 NTU 

formazin (i.e. StablCal), commercial suspension of microspheres of styrene 

divinylbenzene (SDVB) microspheres, and items supplied by instrument manufacturers 

(APHA, 2005).  According to Method 180.1, SCALs are acceptable as a daily calibration 

check, but must be monitored on a routine basis for deterioration and subsequently 

replaced as required. All secondary standards change with time and must be replaced 

when their age exceeds shelf life. Deterioration can be detected by measuring the 

turbidity of the standard after calibrating the instrument with a fresh formazin or 

microsphere suspension (APHA, 2005).  

Along with formazin calibration standards, EPA approved use of polymer 

suspensions in 1984 as a secondary calibration standard for turbidity meters under the 

name AMCO EPA (AMCOClear, 2010). It is made from SDVB microspheres and unlike 

formazin, the SDVB microspheres have uniform size, shape and particle size distribution 

(Downing, 2005). The SDVB microspheres have a particle size distribution of 0.02 to 0.2 
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µm with a mean size of 0.121 µm (AMCOClear, 2010). The size distribution of SDVB 

spheres is adjusted to produce a formazin-equivalent response from a particular turbidity 

meter (Downing, 2005). SDVB standards are formulated for a specific make and model 

of turbidimeter, therefore, cannot be used with one from a different manufacturer or 

model even though it conforms to the same standard method (Downing, 2005).  The key 

benefits of SDVB standards are: 1) batch-to-batch variation in turbidity is less than 1%; 

2) optical properties are constant from 10 to 30ºC; 3) one-year stability is guaranteed; 4) 

mixing and dilution are not required, and; 5) are nontoxic (Downing, 2005).  

Turbidity is not an inherent property of water, such as temperature or pH, yet 

recognition of turbidity as an indicator of the environmental health of water bodies has 

increased, resulting in a growing demand for high-quality and objective turbidity 

measurements (Anderson, 2005).  Questions remain as to how samples should be 

obtained and processed to get reliable readings. Therefore, given the importance of 

proposed turbidity limits, focus of this research is to compare various commercially 

available portable nephelometers to quantify accuracy and precision of the selected 

instruments for use in routine sediment/ surface water analysis and potential regulatory 

compliance. 
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PROCEDURES 

 

To evaluate instrument performance, accuracy is defined as the nearness of a 

measurement to the accepted or true value. Accuracy can be expressed as a range, about 

the true value, in which a measurement occurs. Instrument precision is defined as the 

tightness of measurements for one sample. Precision can be expressed as a range about 

the averaged reading (LaMotte, 2010). 

Four commonly utilized and commercially available turbidity meters were 

selected for evaluation in this study (see Figure 3.1). Nephelometers chosen included two 

Hach 2100Q, one LaMotte 2020e and Global Water’s ‘GW’ Turb430T1. Note that meters 

Hach 1 and 2 are the same model, and were selected to evaluate any statistical differences 

between two meters from the same manufacturer. Each meter specified compliance with 

EPA’s Method 180.1, and meter specifications are provided in Table 3.1.  Meters Hach 1 

and 2 are both supplied with SCALs known as StablCal (a stable formazin secondary 

standard) to calibrate the meters, whereas the LaMotte and GW meters are supplied with 

AMCO EPA calibration standards. Experimental procedures are summarized and 

outlined in Table 3.2.  

 

 

                                                           
1
 Disclaimer: Mention of a trade name does not imply endorsement of the product by Clemson University 

to the exclusion of others that might be available. Users are encouraged to fully evaluate the suitability of 
any equipment for their intended application.  
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Figure 3.1. Selected nephelometers. From left to right GW, Hach 1, and LaMotte. 

 

Table 3.1. Manufacturer’s provided specifications for selected meters. 

Meter Accuracy Precision    Price  Meter 
Range 

Hach 
1&2 

±2% of true values from 0 to 1000 NTU ±1% of the 
measured value 

$930 
 
 

0-1000 
NTU 

LaMotte ±2% of true values from 0 to 100 NTU 
±3% of true values above 100 NTU 

 

0.02 NTU of the 
measured value 

$900 
 
 
 

0-4000 
NTU 

GW ±2% of true values from 0 to 500 NTU 
±3% of true values 500 to 1100 NTU 

±1% of the 
measured value 

$2100 0.01-1100 
NTU 

 

 

Table 3.2. Experimental procedures summary. 

 Exp. 1 Exp. 2 Exp. 3a Exp. 3b Exp. 4a Exp. 4b 
       

Calibrated with Supplied 
SCALs 

Supplied 
SCALs 

Supplied 
SCALs 

Created 
PCALs 

Supplied 
SCALs 

Created 
PCALs 

 
Tested Solution Cecil TSS 

concentrations 
All 

Supplied 
SCALs 

Created 
PCALs 

Created 
PCALs 

Field 
Samples 

Field 
Samples 
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Experiment 1: Concentration vs. Turbidity 

Initially, known total suspended solids (TSS) concentrations of a Cecil soil series 

were tested in the Hach 1, LaMotte and GW meters when calibrated to their provided 

calibration standards. Cecil soil, a predominant sandy loam commonly found in Piedmont 

uplands of the southeastern U.S., was used to create several concentrations of TSS for 

analysis. First, a dry sieve analysis was performed where soils were oven dried at 105ºC 

and passed through a 230 sieve with a mesh opening of 0.063mm to obtain material for 

use in experimentation. Resulting soil material was weighed on an analytical balance to 

the nearest 0.0001 g to achieve concentrations of 3000, 2000, 1000, 500, 100, 50 and 25 

mg/L. Each concentration was created individually and was mixed using a magnetic stir 

plate.  

Each meter was calibrated as specified to the manufacturer’s operating 

instructions and then the known concentrations were placed in corresponding sample 

vials for analysis. Each sample was read five times by each meter and then averaged (see 

Appendix A). Between each reading, the sample vial was gently agitated by inverting the 

vial roughly ten times to adequately suspend and disperse all sediment particles before 

replacing it into the turbidity meter (Hayes et al., 2001). Using standard pipette protocol, 

dilutions were made from the sample vial if concentrations were out of instrument 

turbidity range (see Table 3.1).  

Meters did not produce the same turbidity readings for each known concentration 

and results are displayed in Figure 3.2. After performing an ANOVA two factor analysis 

without replication it was concluded that the meters were different (p-value less than 
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0.05), initially suggesting they may differ in the manufacturer’s calibration standards. 

Therefore, the following experiment was conducted to test the standards provided with 

each meter. 

 

 

Figure 3.2. Meters’ turbidity responses to known Cecil concentrations. 

 

Experiment 2: Verification of Manufacturer Supplied Standards 

For this experiment, meters Hach 1, LaMotte and GW were available to evaluate 

meter responses to all supplied calibration standards. Again, each meter was calibrated 

with its provided standards as specified in the manufacturer’s operating instructions.   
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First, standards from Hach 1 were placed in each meter (including Hach 1) to distinguish 

if subsequent readings gave the same result as the standard. Five readings were taken for 

each of Hach 1’s standards, recorded and then averaged. The procedure was repeated 

using meters LaMotte and GW’s calibration standards. Resulting tabular data are 

included in Appendix A.  

Results indicated each meter was calibrated to its own standards. This also 

verifies that meters calibrated with SDVB standards (AMCO EPA) are formulated 

exclusively for the specified meter and cannot be used with different meters (Downing, 

2005). Therefore to find true readings of each meter, the primary formazin stock standard 

suspension (SSS) with a value of 4000 NTUs was used for the following experiments.  

 

Experiment 3: Meter Accuracy and Precision 

To evaluate meter accuracy and precision, the third experiment compared 

responses to true NTU values. This analysis examined meters’ performance when 

calibrated to manufacturer-supplied secondary calibration standards and when calibrated 

to primary calibration standards (PCALs).  

 

3a: Meters calibrated to supplied SCALs 

Preparation of NTU standards used the 4000 NTU primary formazin SSS. 

Following Standard Methods, dilutions with high-quality dilution water was used to 

create PCALs with values of 1, 10, 50, 100, 280, 500, 750 and 1000 NTU. First, one liter 

of the 1000 NTU standard was created from the 4000 NTU formazin primary standard 
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and placed in an amber bottle. 100 milliliters of each standard was prepared from the 

1000 NTU solution and placed in opaque plastic bottles to eliminate light penetration. 

Because hydrazine sulfate (constituent in formazin) is a carcinogen, all dilutions were 

executed under laboratory hood to avoid inhalation, ingestion and skin contact (APHA, 

2005). 

Meters were calibrated as specified in the manufacturer’s operating instructions 

with provided calibration standards. Each created NTU standard was placed in the 

meter’s specified sample vial, positioned in the turbidity meter five times, and the results 

were recorded. Between each reading, sample vials were carefully inverted ten times 

before being placed back in the meter. A replicated experiment was performed for 

statistical purposes. Resulting data tables are in Appendix A.  

To determine meter accuracy for each sample, percent difference from the true 

value (value derived from formazin SSS) was calculated for each reading and then 

averaged among percent differences (Equation 2). Therefore meter accuracy, displayed in 

Table 3.3, is represented as an averaged percentage about the true value. To determine 

meter precision for each sample, the same five readings were utilized and averaged. 

Then, each reading’s percent difference from the averaged measured value was calculated 

and these five percent differences were averaged (Equation 3). Results are shown in 

Table 3.4 and are represented as an averaged percentage about the measured value.  
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MR= measured turbidity reading [NTU], 

TV= true turbidity value [NTU] 
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(3) 

MR= measured turbidity reading [NTU] 

 

3b: Meters calibrated to PCALs 

The fourth experiment was conducted to compare each meter’s performance when 

calibrated to formazin primary calibration standards (PCALs). Therefore, values of the 

meters provided calibration standards created following the Standard Methods procedure 

above, and meters were calibrated as specified to the manufacturer’s operating 

instructions using these PCALs.  

The experiment was performed, as described above, to test each meter’s readings 

of the created standards of 1, 10, 50, 100, 280, 500, 750 and 1000 NTU.  Again, a 

replicated experiment for the meters calibrated to PCALs was executed for statistical 

purposes. To determine each meter’s accuracy and precision, calculations described 

previously were performed with results shown in Tables 3.3 and 3.4.  
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Experiment 4: Turbidity in Natural Water Samples 

The final experiment was to evaluate meter response to surface water samples 

collected in the field from both disturbed and undisturbed sites. Since future use of these 

instruments will be to monitor field conditions, it was important to examine meter 

behavior with real surface water samples of unknown turbidity collected in the field.  

Samples used for this experiment included three composites collected at the 

discharge point from an active construction site at varying time intervals after a rain event 

began, one sample from a golf course creek, and another sample from a botanical 

garden’s pond. It was desired to get a variety of samples with varying TSS concentrations 

to evaluate meter range. Samples were mixed using a magnetic stir plate in the 

laboratory. Laboratory analysis was chosen over field practice because some of the 

samples needed to be diluted using laboratory techniques. This would eliminate field 

dilution errors when calculating actual turbidity readings.  

Meters were calibrated to their provided calibration standards. Each field sample 

was drawn using a 10ml pipette, placed in the specified vial and positioned in the 

corresponding turbidity meter. Each sample was read five times and averaged. Sample 

vials were inverted ten times between each reading to adequately suspend and disperse all 

sediment particles before placing it into the turbidimeters. A total of five replications for 

each sample were analyzed. Dilutions were made from the main sample if the 

concentration was out of an instruments’ turbidity range (see Table 3.1).  
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Finally, the same procedure was repeated except meters were calibrated to PCALs 

instead of the meter’s calibration standards. Resulting data tables are shown in Appendix 

A.  
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RESULTS AND DISCUSSION 

 

The goal of this paper was to compare accuracy and precision for selected 

portable turbidity meters that comply with Method 180.1.  Computed results are 

presented in Tables 3.3-3.4 and also account for experimental error associated with the 

volumetric flasks used to create primary formazin standards.   

In Table 3.3, for each meter, overall averaged percent error (“AVG”) from the 

true value was calculated. However, statistical calculations were computed without the 

meters’ averaged percent differences from the 1 NTU value because the low end 

produced a large discrepancy; and focus of this research is surface water samples that 

have typical values above 10 NTU. Overall accuracy improved somewhat for all meters 

when calibrated to the formazin PCALs by 0.34%, 0.52%, 8.57% and 1.28% for Hach 1, 

Hach 2, LaMotte and GW, respectively (Table 3.3). However, meters Hach 1, Hach 2, 

and GW for both calibration studies are slightly above the specifications’ claimed ±2%. 

Even though LaMotte meter improved when calibrated to the PCALs, the instrument still 

provided statistically inaccurate results, especially for readings above 500 NTUs.  The 

LaMotte meter provided significantly higher percent differences compared to other 

meters and even deviated from single digit percent differences at higher turbidity 

readings.  

As for the meters’ repeatability of a sample, Hach 1, Hach 2 and GW, for both 

calibration studies, fell within the claimed ±1% of the measured value (Table 3.4). 
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LaMotte was slightly above ±1% of the measured value, but improved when calibrated to 

PCALs.  
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Table 3.3. Meter Accuracy: averaged percent difference about the true value for each 

meter2.  

 Hach 1  Hach 2 LaMotte GW 
PCAL 
values3 
[NTU] 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

1  55.6 44.0 53.0 54.0 61.1 23.6 6.20 31.2 
10 6.70 6.20 5.70 5.00 14.9 6.13 3.32 0.50 
50 1.58 2.50 1.52 1.00 16.4 5.14 3.70 3.12 
100 3.96 0.99 1.63 0.56 10.1 7.24 5.00 2.15 
280 4.68 3.18 3.21 2.50 3.14 7.64 3.39 2.11 
500 2.20 2.72 2.56 2.46 22.1 6.54 4.48 3.10 
750 1.53 2.27 2.15 2.20 78.1 47.9 2.72 1.03 
1000 1.12 1.54 1.24 0.62 21.3 24.2 1.11 2.79 

AVG 3.11 2.77 2.57 2.05 23.7 14.9 3.39 2.11 

 

Table 3.4. Meter Precision: averaged percent difference about measured value for each 

meter4.  

 Hach 1  Hach 2 LaMotte GW 
PCAL 
values5 
[NTU] 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

Calibrated 
to provided 

SCALs 

Calibrated 
to PCALs 

1  6.99 2.24 5.00 2.69 9.93 9.81 7.50 18.92 
10 1.69 1.13 0.75 0.57 1.34 4.35 0.50 0.93 
50 0.37 0.72 0.61 0.40 0.34 0.40 0.73 0.38 
100 0.69 0.54 0.49 0.71 0.47 0.49 0.93 0.60 
280 1.05 0.59 0.41 0.22 0.10 0.45 0.67 0.58 
500 0.82 1.15 1.29 0.84 2.10 1.03 0.54 0.31 
750 1.19 0.70 0.70 0.68 4.83 1.33 0.88 1.22 
1000 1.21 0.77 0.65 0.46 1.07 0.42 0.89 0.99 

AVG 1.00 0.80 0.70 0.56 1.46 1.21 0.73 0.72 

 

                                                           
2,4 Overall averaged percent error (‘AVG’) from the true value was calculated without the meters’ averaged 
percent differences from the 1 NTU value. 
3,5

 Known NTU values (‘PCAL values’) were derived by diluting 4000 NTU primary formazin SSS with 
distilled (DI) water.  
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Finally, meters were tested with field samples of unknown turbidity values in 

order to understand their behavior for future analysis. Meter responses are provided in 

Figure 3.3. Overall, Hach 1 and 2 meters produced very similar results, as expected, and 

did not change much for either calibration study. Also, it was observed from Figure 3.3 

that Hach 1 and 2 consistently produced higher results compared to meters LaMotte and 

GW. This relationship was also shown in Experiment 1, Figure 3.2.  However, when 

meters were calibrated to PCALs, the range of readings per sample narrowed (see Table 

3.5). This may be due to formazin resembling sediment found in surface waters. Again, 

AMCO EPA solutions have uniform microspheres ranging from 0.02 to 0.2 µm; whereas 

formazin particles are irregular in shape and range from 0.1 to 10.0 µm. Suspended 

sediment typically contain fines (silt and clay) that range from particles less than 0.2 to 

50 µm. Therefore, formazin may more closely match the range of particulates found in 

collected field samples.  
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Figure 3.3. Turbidity measurements from each meter using field samples6.  

 

Table 3.5. Meters’ standard deviation [NTU] for each field sample7. 

 Const. Site 
(t=20 min) 

Const. Site 
(t=30 min) 

Const. Site 
(t=60 min) 

Const. Site 
(t=150 min) Creek Pond 

Calibrated with SCALs  
 

71.5 326 304 83.5 1.43 281 

Calibrated with PCALs 54.2 292 250 15.4 1.40 244 

 

 

                                                           
6
 Hach 1, Hach 2, LaMotte and GW refer to the meters calibrated to their provided SCALs.  

 Hach 1’, Hach 2’, LaMotte’ and GW’ refer the meters calibrated to the created PCALs. 
 
7
 Derived calculations are shown in Appendix A; Table A.12 and Table A.14.  
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Furthermore, two sediment basin composite samples collected 30 minutes and 60 

minutes after a rainfall event were relatively turbid, due to samples’ initial readings 

exceeding Hach’s instrument range, and had to be diluted by a factor of 4 and 5, 

respectively.  According to Method 180.1, turbidity of the original sample is then 

computed from turbidity of the diluted sample and dilution factor (EPA, 1993b).  For 

example, if 5 volumes of turbidity-free water were added to 1 volume of sample and the 

diluted sample showed a turbidity of 30 NTU, then the turbidity of the original sample 

was 180 NTU (EPA, 1993b). Therefore, differences between Hach meters to LaMotte 

and GW meters were pronounced due to the multiplication factor of the actual turbidity 

readings and possible errors introduced with dilution techniques.  

In addition, dilution procedures did not follow Method 180.1’s protocol to dilute 

samples until turbidity readings fell below 40 NTU mainly because of the difficulty to get 

field samples below this value. Turbid samples that were diluted by a factor of 4 and 5 

produced turbidity readings in a range of 200 to 500 NTU before multiplication. To dilute 

these samples even farther to obtain values 40 or below would potentially introduce many 

errors. From a practical standpoint issues related to dilution and the potential for 

compounded error for turbid field samples need to be avoided. 

However, for meters designed with the AMCO EPA standards, before and after 

dilution turbidity readings did not display similar proportionality. For example, as shown 

in Figure 3.2, pond sample turbidity for meters Hach 1, Hach 2, LaMotte and GW read 

886, 868, 354, and 432 NTU, respectively. Then, samples were diluted by a factor of two. 

After incorporating the multiplication of two with the diluted readings, the computed 
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actual turbidity readings were 813, 816, 534, and 619 NTU for meters Hach 1, Hach 2, 

LaMotte and GW. Therefore, according to EPA’s Method 180.1 proportionality, meters 

Hach 1, Hach 2, LaMotte and GW are 8.3, 5.9, 50.7, and 43.2 percent different from the 

undiluted reading. Therefore, LaMotte and GW may be altogether inaccurate for higher 

turbidity readings of surface water samples, further supporting the design of AMCO EPA 

standards to specifically resemble remaining particulates in finished treated drinking 

water that are primarily submicron in size following filtration (AMCOClear, 2010). 
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CONCLUSIONS 

 

Given potential impact of proposed numeric effluent limitations related to 

turbidity on construction activities, the goal of this research was to quantify accuracy and 

precision of selected instruments in routine surface water analysis and potential 

regulatory compliance. Disclaimer: Mention of a trade name does not imply endorsement 

of the product by Clemson University to the exclusion of others that might be available. 

Users are encouraged to fully evaluate the suitability of any equipment for their intended 

application.  

When subjected to both calibration experimental procedures, meters Hach 1, Hach 

2 and GW provided accurate results for their overall averaged percent differences about 

true NTU values, but were not within their claimed ±2%. The LaMotte meter was not as 

statistically accurate by comparison. Though overall averages improved when calibrated 

to the PCALs, LaMotte remained inaccurate for higher turbidity readings. Possible 

inaccuracy results for the LaMotte may result from its provided SCALs. The highest 

SCAL provided was 100 NTU, even though range of the instrument is 0 to 2000 NTU.  

As for meter precision, Hach 1, Hach 2, and GW were precise under both 

calibration studies and were overall within the claimed ±1% of measured values; whereas 

the LaMotte was slightly above ±1% of the measured values for both calibration studies. 

Analysis showed that even though meters may be very precise, the meters could be 

inaccurate. If inaccuracy is compounded by precision, misinterpretation of results is 

likely. 
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With an understanding of each meter’s accuracies and precisions to formazin 

NTU values, instruments were tested with field water samples of unknown turbidity or 

concentration values to observe their behavior for future analysis. Readings produced by 

the Hach meters had very similar results for either calibration study, but were consistently 

higher than the LaMotte and GW meters. However, when meters were calibrated to 

PCALs, the range of readings per sample narrowed, suggesting that formazin is a better 

calibration standard. Also, the LaMotte and GW meters may provide inaccurate results 

for higher turbidity readings that contain a wider range of particle sizes. This again 

suggests that AMCO EPA standards more adequately resemble treated drinking water 

samples. In addition, the collected field samples were not diluted until turbidity readings 

fell below 40 NTU mainly because of the difficulty to get field samples below this value. 

Issues related to dilution and the potential for compounded error for turbid field samples 

need to be avoided. Therefore, it is recommended that Method 180.1 be reevaluated in 

order to clarify standards used for either drinking water or surface water evaluations. 
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CHAPTER 4 

 

 

TURBIDITY ANALYSES BASED ON SEDIMENT CHARACTERISTICS OF  

REPRESENTATIVE SOUTH CAROLINA SOILS 
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ABSTRACT 

 

EPA has published effluent limitation guidelines (ELGs) to control discharge of 

pollutants from construction sites. Numeric turbidity limits for construction site discharge 

are expected to be required in the near future Such requirements will likely include 

subjecting construction site stormwater discharges to a maximum allowable turbidity 

numeric effluent limit in nephelometric turbidity units (NTUs) for sites disturbing 10 

acres or more. 

Turbidity is a measurement used to quantify water clarity. Turbidity is an 

expression of the optical properties of a liquid that causes light rays to be scattered and 

absorbed as measured by a nephelometer. Though constituents such as organic matter can 

impact water clarity, typically the inorganic fraction derived from particulate matter such 

as sediment dominates turbidity levels in surface waters.  Recognition that water clarity is 

an important indicator of environmental health has increased, resulting in growing 

demand for high-quality objective measurement.   

Given the importance of pending numeric effluent limitations related to turbidity, 

focus of this research is to determine relationships between representative South Carolina 

soils and corresponding turbidity as a function of suspended sediment concentration and 

settling time.  

The relationship between turbidity and suspended sediment concentration is 

complex. Experimental results indicate this relationship is well correlated when top soil 

and subsoil trends were based on predominant South Carolina region and measured clay 



55 

 

content. Derived trends either correlated well with a linear or a log relationship (R2 

values ranging from 0.7945 to 0.9846) as opposed to a power function from previous 

research. Therefore, for each region, research confirmed that as concentration of fines 

increased, turbidity increased; and soils with higher clay content produced higher 

turbidity values compared to soils with less clay. 

As for the correlation of turbidity and settling time, top soil and subsoil results 

were also separated by South Carolina region and sorted based on the same measured 

clay content ranges formulated above. All trends correlated well with a power function 

(R2 values ranging from 0.7674 to 0.9347). This relationship therefore followed Stoke’s 

Law, where smaller particles remain in suspension longer and contribute more to 

turbidity as opposed to soils with less clay content. Such results may have significant 

bearing on the construction and development industry as it prepares for proposed 

monitoring requirements associated with recently promulgated numeric effluent standards 

for turbidity. 

 

  



56 

 

INTRODUCTION 

 

Accelerated erosion due to construction can potentially cause much damage to the 

surrounding ecosystem (Haan et al., 1994). For example, introduction of excessive 

suspended solids (SS) from runoff, such as construction activity, are a potential water 

pollutant that can cause significant environmental impacts. All streams carry some SS 

under natural conditions, but if concentrations are elevated from human disturbance, it 

can lead to alterations to the physical, chemical and biological properties of a water body 

(Bilotta and Brazier, 2008). Such impacts can include the adsorption of heavy metals, 

toxic substances, and biological pollutants to soil particles that are then transported 

downstream. Chemical and biological pollutants can harm water quality and other 

ecological problems. Clearly, SS are an important pollutant in surface waters; thus, 

quantifying and monitoring changes in suspended solids is critical for the nation’s bodies 

of water. As a result, water quality regulatory agencies often impose permit conditions 

that limit the concentration of suspended solids that can be present in effluent waters 

(Thackston and Palermo, 2000).    

Total suspended solids (TSS) resulting from erosion encompass both inorganic 

solids and organic solids. Inorganic solids may include sand, silt, clay sediment particles, 

and organic solids can consist of algae and detritus. TSS is computed from laboratory 

analysis by the dry weight of suspended solids per unit volume of water, and is reported 

in milligrams of solids per liter of water (mg/L). However, TSS measurements are not 

routinely used to detect and correct short-term problems or permit violations because 
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sediment concentrations cannot be determined easily or quickly in the field, and 

transportation to a laboratory for analysis is time-consuming and can be costly 

(Thackston and Palermo, 2000). As a result, these traditional methods are increasingly 

being replaced in favor of accurate, continuously-collected surrogate data for 

quantification of SSC that may be safer and (or) less expensive to obtain, such as 

turbidity measurements.  

Turbidity measurements are gaining increased usage as an indicator of pollution 

in surface runoff from disturbed areas such as active construction sites. For example, 

timely, accurate field estimation of sediment loading could be facilitated through the 

development of precise relationships between suspended solids and turbidity.  This 

approach has potential for monitoring any water quality constituent whose concentration 

is better correlated with an easily measured (in situ) parameter, such as turbidity.  

Turbidity is an expression of the optical properties of a liquid that causes light 

rays to be scattered and absorbed rather than transmitted in straight lines through a water 

sample (Anderson, 2005). Though constituents such as organic matter can impact water 

clarity, typically the inorganic fraction derived from particulate matter such as sediment 

dominates turbidity levels in surface waters (Davies-Colley and Smith, 2001).  

Cloudiness of water results from intense scattering of light by fine particles typically with 

diameters smaller than 0.050 mm (Davies-Colley and Smith, 2001). Hence, waters with 

high concentrations of fine suspended sediment are frequently described as turbid. 

Turbidity is a vivid visual indicator of pollution associated with sediment-laden runoff. 
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Turbidity is now commonly measured in nephelometric turbidity units (NTU) 

using nephelometric turbidimeters (Mitchell, 2000), currently two of the most frequently 

used nephelometric turbidimeters include nephelometers and near infrared turbidimeters. 

For this research, nephelometers are of interest because of their common use in the U.S. 

as opposed to near infrared turbidimeters that are most common overseas.   

Nephelometers measure light that has been scattered at a specific angle of 90 

degrees from the main light path (EPA, 1993b). Generally, nephelometers are compliant 

with EPA Method 180.1 for determining turbidity by nephelometry (Borok, 2010). Along 

with the specified angle of 90 degrees, nephelometers under EPA’s Method 180.1 require 

the light source to be a tungsten lamp operating at a color temperature between 2200-

3000 K. The light source is a light-emitting diode where the light path is designed to 

minimize stray light falling on the detector (Thackston and Palermo, 2000).  Therefore, a 

zero reading means no light scattered at 90 degrees (±30 degrees) from the main light 

path and implies no turbidity (Thackston and Palermo, 2000). Nephelometers must be 

standardized against either a primary formazin suspension with a value of 4000 NTUs 

(which can be diluted to desired NTU values) or a commercially available polymer 

standard identified as AMCO-AEPA-1 (EPA, 1993b).   

Turbidity is not an inherent property of water, such as temperature or pH. 

However, the recognition of turbidity as an indicator of the environmental health of water 

bodies has increased, resulting in a growing demand for high-quality and objective 

turbidity measurements (Anderson, 2005).  Therefore, given the importance of a 

proposed turbidity limit, the focus of this research is to determine relationships between 
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representative sediments and corresponding turbidity as a function of suspended sediment 

concentration. Also, in order to separate particles from the runoff water in best 

management practices (BMPs) such as sediment basins, it is imperative to know sediment 

settling time and settling properties required to remove the particles from the water 

column (Haan et al., 1994: Tempel, 2011). Thus, this research will also determine if any 

relationship exists between turbidity and settling time of suspended sediments.  

A standard practice in relating suspended sediment to turbidity is to take the 

association as a one-to-one relationship (Hayes et al, 2001). Prior research, however, 

indicates this assumption is not accurate unless site-specific sampling is utilized to 

establish unique turbidity-suspended sediment relationships because turbidity is not only 

a function of TSS concentrations, but also of particle size, shape, and composition (Foster 

et al., 1992: Hayes et al., 2001). Hence, this research is needed to analyze turbidity 

responses based on sediment characteristics for representative South Carolina soils.  
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PROCEDURES 

 

Soil Collection 

The following section describes the materials and methods used to complete the 

objectives of relating turbidity to suspended sediment concentration and settling time of 

representative South Carolina soils. First, the most representative soils for South Carolina 

were found using U.S. Department of Agriculture’s (USDA) Natural Resources 

Conservation Service (NRCS) soils data for each county in South Carolina. Soils are 

listed by county with corresponding area provided in acres. Soil area by county was 

aggregated and ranked based on percent coverage for the entire state. The most 

predominant twenty five soils represent fifty percent of South Carolina’s total area (see 

Table 4.1). Table 4.1 also provides the soil’s predominant region, consisting of the 

upstate Piedmont Region, the mid-state Central region and the Coastal Plains region (see 

Figure 4.1) as defined by Russ (2009).  Soils were located around the state in order for 

data collection to proceed. Most were found on Clemson University experiment stations 

located in various geographic regions across the state. These stations included the 

Simpson Experiment Station (Anderson, SC), the Pee Dee Research and Education 

Center (REC) (Florence, SC), and the Edisto REC (Blackville, SC). Other samples were 

collected in Aiken, Edgefield and Laurens counties. Each representative soil was 

identified at the experiment stations and other parts of the state using the Soil 

Conservation Service county soil surveys or NRCS’s Web Soil Survey online service.  
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Figure 4.1. South Carolina physiographic regions (Russ, 2009). 

 

Table 4.1. Representative South Carolina soils utilized for this research in order of area. 
 

Soil Series Percent 
of SC 

Predominant SC 
Region 

1 Cecil 8.940 Piedmont 
2 Lakeland 2.936 Central 
3 Goldsboro 2.540 Coastal 
4 Pacolet 2.507 Piedmont 
5 Madison 2.443 Piedmont 
6 Rains 2.327 Coastal 
7 Lynchburg 2.164 Coastal 
8 Wilkes 2.086 Piedmont 
9 Coxville 1.929 Coastal 
10 Johnston 1.674 Central 
11 Georgeville 1.665 Piedmont 
12 Troup 1.656 Central 
13 Norfolk 1.617 Coastal 
14 Hiwassee 1.441 Piedmont 
15 Cataula 1.378 Piedmont 
16 Blanton 1.368 Central 
17 Fuquay 1.334 Central 
18 Dothan 1.307 Central 
19 Ailey 1.284 Central 
20 Vaucluse 1.273 Central 
21 Appling 1.205 Piedmont 
22 Bonneau 1.156 Central 
23 Noboco 1.149 Coastal 
24 Herndon 1.110 Piedmont 
25 Wagram 1.002 Central 
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 When a desired soil series was identified at the sampling location, cover 

vegetation was removed, and a shovel was used to determine soil profile. Using a shovel, 

top soil was collected in a nineteen liter bucket, and subsoil was separately placed in 

another nineteen liter bucket. Soil collection was carefully executed to avoid mixing top 

soil and subsoil. Lids were tightened on each bucket, and samples were brought back to 

the lab for analysis.  

 

Data Analysis 

 First, a wet sieve and pipette analysis were conducted in order to obtain an 

aggregate size distribution (ASD) for each soil. For a primary particle size distribution, 

procedures require sodium hexametaphosphate to disperse aggregates formed in order to 

obtain all particle sizes (Das, 2006).  However, samples collected were not dispersed for 

a primary particle size distribution.  As a result, for this research, ASD analysis was 

conducted using representative soils as they would be found on sites across South 

Carolina.  

 

Wet Sieve Analysis: 

 Sieve analysis is applicable to separate granular material from soil mass (Das, 

2006). First, 100 grams of each soil sample was measured and mixed with 600 ml of 

water. The mixture was washed through a series of six sieves with mesh openings of 2.0, 

1.0, 0.425, 0.15, 0.075, and 0.063 mm. The procedure consisted of first passing the soil 

mixture through the 2.0, 1.0 and 0.425 mm mesh openings that were stacked in a five 
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gallon bucket. Next, the sieves were placed in a second nineteen liter bucket. The first 

bucket was stirred and its mixture was poured over the sieves in the second bucket. The 

soil mixture went through these sieves three times. During this process, an additional 400 

ml of water was used for the soil mixture to thoroughly pass through the sieves. After 

running the mixture through these three sieves three times, the sieves were removed from 

the bucket and the remaining three sieves, 0.15, 0.075, and 0.063 mm, were placed in the 

bucket. The remaining soil mixture was passed through the smaller sieves three times. 

The soil-water mixture left in the bucket was measured and saved for pipette analysis to 

determine sizes less than 0.063 mm. Approximately 1.0 L was used for each pipette 

analysis.  

 Once the mixture was passed through all the sieves, the soil remaining on each 

sieve was collected in a pre-weighed tin and placed in the drying oven at 105 ˚C for a 

minimum 24 hours (Bolton, 1979). Once dried, the tins were weighed on a balance to the 

nearest 0.001 gram and recorded.  

 

Pipette Analysis: 

 As stated before, sieve analysis was used to separate gravel (particles coarser than 

2 mm) from particles less than 2 mm in diameter. Percent sand was isolated by wet 

sieving (Scott, 2000). However, particles less than 0.063 mm were of particular interest 

for this work because larger particles will settle from surface water flow relatively 

quickly leaving smaller particles that contribute as sources of turbidity (Hayes et al., 

2001). Therefore to determine the proportion of silt and clay in the sample, a pipette 
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procedure was conducted. Silt and clay can be separated by settling in water, where the 

rate of settling is governed by Stoke’s Law (Scott, 2000). For the pipette procedure, once 

the soil-water mixture had been thoroughly mixed, all particles of one size will have 

fallen below a certain level in the suspension after a certain amount of time has elapsed 

(Scott, 2000).  

Therefore, the remaining 1 L soil-water mixture from the wet sieve analysis was 

completely mixed, collected and used for pipette analysis. Pipette withdrawals followed 

the schedule shown in Table 4.2 to obtain the size distribution range between 0.063 mm 

and 0.002 mm. Samples were assumed to be collected at a temperature of 21 degrees 

Celsius since this temperature was the approximate room temperature. The particular 

sizes displayed in Table 4.2 represent the largest particle size collected at the elapsed 

time (Johns, 1998). Depth is the distance the 25 ml pipette tip was lowered from the 

actual (declining) water surface at each sample time.  

 

Table 4.2. Pipette analysis schedule at 21˚C (USDA, 1979)8.  
 
Sediment Size (mm) 0.062 0.031 0.016 0.008 0.004 0.002 
Depth (mm) 150 150 150 150 100 50 

Time (hr:min:sec) 0:00:42 0:02:48 0:11:14 0:29:58 1:00:00 4:02:00 
 

 

Once the 25 ml sample was drawn, it was collected in a pre-weighed tin and 

placed in a drying oven at 105 ˚C for a minimum 24 hours to evaporate any water present 

(Bolton, 1979). After each sample was dried, tins were weighed on a balance to the 

                                                           
8
 All tests withdrew 25 ml from the soil-water mixture 
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nearest 0.0001 gram and results were recorded. The remaining soil-water mixture in the 

1L graduated cylinder was saved for subsequent analysis.  After the completion of the 

wet sieve and pipette analysis for each soil, results were computed to create an ASD. 

ASD examples for each region’s dominant soil series are displayed in Figures 4.3 to 4.5. 

Figure 4.6 illustrates differences among soil’s ASD and eroded PSD. Tabular data for all 

soil’s ASDs are found in Appendix B.  

 

      

Figure 4.2 Wet sieve and pipette analysis summary photographs. 

 



 

Figure 4.3. Piedmont: 
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Piedmont: Cecil’s aggregate size distribution (ASD).

 

Figure 4.4. Central: Lakeland’s aggregate size distribution (ASD).
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Figure 4.5. Coastal:

Figure 4.6. Size distribution comparison for 
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Figure 4.5. Coastal: Goldsboro’s aggregate size distribution (ASD). 
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Hydrometer Analysis 

As stated previously, the particle size distribution obtained from the wet sieve and 

pipette analysis was not a primary particle size distribution, but rather a modified eroded 

particle size distribution that would resemble sediment found in surface waters during 

active construction phases. To gather additional information on characteristics of each 

soil series, primary particle sizes of selected soils were established through performance 

of a hydrometer analysis (Scott, 2000). Hydrometer analysis uses a dispersed sample of 

soil that has been thoroughly mixed with water in a tall glass cylinder and allowed to 

settle. Soil particles in a dispersed state in water will settle individually according to 

Stoke’s Law (Das, 2006).  Therefore, after specified settling times, density (g/L) of each 

suspension is measured with a hydrometer to determine the mass of particles remaining 

in suspension. 

For the hydrometer method, 50 g of soil for each series was used to determine soil 

particle analysis using an ASTM 152-H hydrometer. To achieve separation among soil 

particles, 40 g/L of sodium hexametaphosphate was utilized. Procedures followed 

ASTM’s Standard Test Method for Particle-Size Analysis of Soils (ASTM D 422-63, 

2004), and hydrometer readings were recorded 40 seconds and 2 hours after settling. At 

40 seconds, sand-sized particles will have settled out of the suspension leaving only silt 

and clay sized particles. After 2 hours of settling, the silt sized particles have settled 

leaving the hydrometer to read the density of clays remaining in suspension. Due to 

hydrometers being calibrated to 20 degrees Celsius and because density and viscosity of 

water change with temperature, temperatures were recorded for each reading to correct 
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the hydrometer readings (hydrometer paper). Readings were corrected for temperatures 

above 20 degrees Celsius using the following equation (Equation 4). The primary particle 

size distribution results from the hydrometer analysis are in Appendix B.  

 

'%��"
(") *�)�%+"("� �"�)#&,-, .⁄ 0
� +"$���") �"�)#&, -, .⁄ 0
1 �-+"�$��") ("+2"��(��" � 20°'0 � 0.36 , .⁄ � 

(4) 

 

 

Figure 4.7. Hydrometer analysis photographs. 

 

Turbidity versus Settling Time 

To derive empirical relationships between turbidity and settling time of selected 

South Carolina soils, the procedure utilized the remaining soil-water mixtures from 

pipette analysis.  Again, both top soil and subsoil were examined for this experiment. To 

obtain turbidity readings the Hach 2100Q was chosen based upon determining meter’s 

reliable accuracies and precisions. It was also chosen because its secondary calibration 
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standard of a stable formazin was found to be better suited to mimic sediment found in 

surface water samples. The Hach 2100Q was calibrated daily with its provided 

calibration standards (StabCal) as specified in the manufacturer’s operating instructions.  

Once the pipette method was complete, the graduated cylinder containing the soil-

water mixture was filled back up to 1 liter with distilled (DI) water and repeatedly 

inverted until solution was completely mixed. Fifteen milliliters of the soil-water mixture 

was drawn at specified times from two inches below the surface of the sample and placed 

in the Hach 2100Q’s cuvette. Specified times spanned two weeks and included readings 

taken at 0 min, 5 min, 30 min, 1 hour, 2 hour, 4 hour, 24 hours, 48 hours, 4 days, 7 days, 

and 14 days. A depth of two inches below the water surface level was chosen to minimize 

surface and edge effects from the glass cylinders. This depth would also mimic surface 

withdrawal from sediment basins through such practices as skimmers and flashboard 

risers.  

The cuvette containing each sample was inverted ten times between readings to 

adequately resuspend and disperse all sediment particles before placement in 

turbidimeters (Hayes et al., 2001). The Hach 2100Q cannot measure turbidities higher 

than 1000 NTU. Therefore, if a reading exceeded this range, dilutions were made from 

the cuvette to follow EPA’s Method 180.1 proportionality example to obtain sample’s 

actual turbidity reading. For instance, if the soil-water solution was diluted by half, then 

the diluted sample’s turbidity reading was multiplied by two. However, for all turbidity 

readings, dilution procedures did not follow EPA’s Method 180.1 protocol to dilute 

samples until turbidity readings fell below 40 NTU. This was mainly because of the 
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difficulty to get soil-water samples below this value. From a practical standpoint, issues 

related to dilution and the potential for compounded error for turbid samples need to be 

avoided.  

Five readings were recorded for each sample and averaged. For each soil’s top 

soil and subsoil, results were plotted on a graph. Each sample was saved for utilization in 

subsequent TSS analysis.  

 

Turbidity versus Total Suspend Solids Concentration 

To develop unique relationships for concentration of South Carolina suspended 

sediments versus turbidity, analysis was conducted in sequence with the turbidity versus 

settling time procedure. After the five turbidity readings were recorded, 10 ml of each 

sample was drawn using a 5 ml Eppendorf Pipette, placed in a pre-weighed dish and 

dried in the oven at 105 degrees Celsius for a minimum of 24 hours (Bolton, 1979). After 

the sample was dried, tins were removed from the oven using tongs to avoid additional 

errors. Samples were weighed on a balance to the nearest 0.0001 gram to obtain 

concentrations in mg/L. Resulting concentrations were plotted on a graph versus its 

corresponding turbidity from the procedure above.  

 

Turbidity versus Particle Size 

To better understand sediment effects on turbidity, it was important to analyze 

turbidity response to particle size. Particle diameters analyzed for this project were 

derived using the parameters selected in the turbidity versus settling time procedure. 
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Knowing samples were drawn from a depth of two inches below the water surface level, 

Stoke’s Law was applied for the specified time intervals of 0 min, 5 min, 30 min, 1 hour, 

2 hours, and 4 hours to calculate the particle diameters of  0.063, 0.014, 0.006, 0.004, 

0.003 and 0.002 mm, respectively. Altogether, at the specified times, particle sizes were 

compared to their corresponding turbidities and concentrations that were determined from 

the above procedures. However, actual turbidity and concentration values for the particle 

sizes needed to be determined. This is because when samples were drawn at the given 

times; the particle size calculated included that size, along with any sizes smaller that also 

remained in suspension. Therefore, a subtraction method was adopted to determine the 

particle sizes true turbidity and concentration values (‘Actual Conc.’ and ‘Actual Turb.’ 

in Table 4.3). If the subtraction method produced a negative value, values were assigned 

zero, indicating that particle diameter did not contribute to turbidity. Because all soils 

vary in turbidity and concentrations for a given time, in order to compare all soils, each 

particle diameter was plotted versus the ratio of turbidity to concentration.  

 

Table 4.3. Tabular data of a soil sample’s turbidity and concentration response to particle 

size.  

D [mm] 
Conc. 
[mg/L] 

Actual 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Actual 
Turbidity 

[NTU] 

 Actual Turb/ 
Actual Conc 

0.063 6510 2240 6818 292 0.130 
0.014 4270 1830 6526 2106 1.151 
0.006 2440 720 4420 876 1.217 
0.004 1720 210 3544 241 1.148 
0.003 1510 450 3303 993 2.207 
0.002 1060 1060 2310 2310 2.179 
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RESULTS AND DISCUSSION 

 

Turbidity with Respect to Total Suspended Solids Concentration 

 Selected soils were first divided by top soil and subsoil and plotted to determine if 

any relationships existed between suspended solids concentration and turbidity (Figure 

4.4). This approach was taken to evaluate if the representative South Carolina soils 

collectively could be classified by certain properties. Factors taken into consideration 

encompassed the experimental particle size distribution values, primary particle size 

distribution values from the hydrometer analysis, South Carolina region, soil 

classification (soil order, suborder, great group, subgroup) and soil family (particle size 

and mineralogy).  

Measured turbidity averages and calculated sediment concentrations were plotted 

and used in a regression analysis to model turbidity as a function of sediment 

concentration. These values can be viewed in Appendix C. First, trends were arbitrarily 

chosen based on similar turbidity responses to suspended sediment concentration. 

However, trends could not be explained because there were no common denominators to 

classify the soils’ relationship of turbidity with suspend solids concentration. As a result, 

top soils and subsoils were examined depending on South Carolina regions.  
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Figure 4.8. All twenty five selected top soil and subsoil’s relationship of turbidity and 

suspended sediment concentration. 

 

 Once soils were divided by South Carolina regions, top soil and subsoils were 

sorted based on 1) measured clay content, 2) measured fine content, and 3) the ratio of 

measured clay to fines to establish any trends from each scenario. Measured values were 

derived from ASD. Each scenario was evaluated and it was found that for each region, 

trends were best formulated from soils’ measured clay content compared to the other two 

scenarios. Fines content would be expected to explain the relationships of turbidity to 

concentration because both silt and clay particle sizes contribute to turbidity. However, 
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this scenario did not rationalize the behavior of certain subsoils that aggregated and 

quickly settled from suspension. Aggregates formed in these subsoils contributed to a 

higher percentage of silt in the upper range of 0.016 to 0.05 mm, but settled rapidly, 

leaving very small amounts of clay in suspension. As a result, these soils would 

contribute to high turbidity and high concentration readings, but values would then 

substantially drop after the first minutes. Hence, when subsoils were sorted according to 

the amount of measured fines, poor correlations resulted because aggregated soils were 

incorrectly grouped with soils that had both higher amounts of silt and clay. Figure 4.9 

depicts an example of a subsoil that aggregated and quickly settled compared to its top 

soil.  

 

 

Figure 4.9. Example of a subsoil (image on bottom) that aggregated and settled quickly 

compared to its top soil (image on top). 
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Based upon correlation coefficients of the predicted equations, trends correlated 

well with either a linear or a log relationship. These relationships are plotted in Figures 

4.10-4.159. From the figures, not all results followed a one to one relationship, as 

previous research had assumed (Kundell, 1995). Yet, soils that did conform to a linear 

relationship were not far off from a one to one relationship. A power function in the form 

of T=a*SSb has previously been found to correlate sediment concentration and turbidity 

(Hayes, et al. 2001 and Mitchell 2000). However, this relationship proved 

inconsequential and was not utilized because, even though it produced high correlation 

coefficients, it did not accurately model the behavior of soils with higher clay content. 

For the most part, these soils in their higher turbidity and concentration range behaved 

asymptotically rather than turbidity continuing to increase with increasing concentration.  

 

 

 

                                                           
9
 For Figures 4.10-4.15, n refers to the number of soil samples. Each soil sample contains 11 data points.  
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Figure 4.10. Piedmont top soils relationship of turbidity with respect to concentration 

(n=number of soils). Trends were formulated based on MCP. 

 

 

Figure 4.11. Piedmont subsoils relationship of turbidity with respect to concentration 

(n=number of soils). Trends were formulated based on MCP. 
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Figure 4.12. Central top soils relationship of turbidity with respect to concentration 

(n=number of soils). Trends were formulated based on MCP. 

 

 

Figure 4.13. Central subsoils relationship of turbidity with respect to concentration 

(n=number of soils). Trends were formulated based on MCP. 
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Figure 4.14. Coastal top soils relationship of turbidity with respect to concentration 

(n=number of soils). Trends were formulated based on MCP. 

 

 

Figure 4.15. Coastal subsoils relationship of turbidity with respect to concentration 

(n=number of soils). Trends were formulated based on MCP. 
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Turbidity with Respect to Settling Time 

To determine if an empirically derived relationship between settling time and 

turbidity existed for the selected soils, measured turbidity averages from above and their 

corresponding time values were evaluated.  These values are plotted in Figure 4.16 and 

raw data may be viewed in Appendix D. In addition, Figure 4.16 shows that majority of 

the soils were not below a value of 280 NTU until 24 hours, or later, of settling. In other 

words, it would take longer than a day for the soils to be below EPA’s effluent limitation 

guideline of 280 NTU. 

 

 

Figure 4.16. The twenty five selected South Carolina soil’s top soil and subsoil’s 

turbidity relationship to settling time10. 

                                                           
10

 For Figure 4.16, 0 minute values were plotted as 1 to be shown on logarithmic scale 

0

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

T
u

rb
id

it
y

 [
N

T
U

]

Time [min]

Topsoil

Subsoil

280 NTU



81 

 

To remain consistent with classifying the soils, results were divided by South 

Carolina regions and the top soil and subsoils were sorted based on the same measured 

clay content ranges formulated previously.  Resembling the relationships established 

above from turbidity with respect to suspend sediment concentration, it was found that 

for each region, trends were best formulated from soils’ measured clay content as well.  

Based upon correlation coefficients of the predicted equations, all trends 

correlated well with a power function. This suggests the relationship is governed by 

Stoke’s Law; where smaller particles remain in suspension longer and contribute more to 

turbidity compared to soils with less clay content. These relationships are displayed in 

Figures 4.17-4.2211 on log-log plots. For Figures 4.17-4.22, 0 minute values were 

assigned a value of 1 in order to be able to be shown on a logarithmic scale.  

 

 

 

                                                           
11

 For Figures 4.17-4.22, n refers to the number of soil samples. Each soil sample contains 11 data points. 
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Figure 4.17. Turbidity as a function of settling time for Piedmont top soils (n= number of 

soils). Trends were formulated based on measured clay percentages (MCP). 

 

 

Figure 4.18. Turbidity as a function of settling time for Piedmont subsoils (n= number of 

soils). Trends were formulated based on measured clay percentages (MCP). 
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Figure 4.19. Turbidity as a function of settling time for Central top soils (n= number of 

soils). Trends were formulated based on measured clay percentages (MCP). 

 

 

Figure 4.20. Turbidity as a function of settling time for Central subsoils (n= number of 

soils). Trends were formulated based on measured clay percentages (MCP). 
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Figure 4.21. Turbidity as a function of settling time for Coastal top (n= number of soils). 

Trends were formulated based on measured clay percentages (MCP). 

 

 

Figure 4.22. Turbidity as a function of settling time for Coastal subsoils (n= number of 

soils). Trends were formulated based on measured clay percentages (MCP). 
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Figures 4.17-4.22 illustrate noticeable differences among the smallest percentages 

of measured clay content. However, for both relationships of turbidity versus suspended 

sediment concentration and turbidity versus settling time, the trends formulated from 

measured clay content have gaps between the ranges.  To possibly explain gaps between 

measured clay content or why certain soils aggregated, both soils’ primary particle size 

distribution and eroded particle size distribution values were examined. If either of these 

values could describe the ranges that were formulated, then lab analysis could possibly be 

avoided in order to predict the behavior of all soils in the respective South Carolina 

regions.  Nevertheless, primary particle size distribution and eroded particle size 

distribution values could not relate to the ranges obtained for this project (tabular data 

shown in Appendix B). An aggregate size distribution would have to be executed in order 

to use the empirically derived correlations established in this project. If this procedure is 

performed and the soil’s ASD clay content does not follow within the empirical ranges, 

interpolation between trendlines could be conducted to predict the soil’s behavior with 

respect to turbidity.  However, in Figures 4.13 and 4.15, trendlines cross due to high 

initial values from the certain subsoils that aggregated and quickly settled. Therefore, if 

interpolation was needed where lines cross, still use the trendlines that the measured clay 

content lies between. 

 

Turbidity with Respect to Particle Size 

 After the fulfillment of analyzing turbidity with respect to concentration and 

settling time, a potential predictive model of turbidity’s response to particle size was 
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evaluated to possibly support the previous findings. Prediction models, such as 

SEDIMOT II, utilize particle diameters from an eroded particle size distribution to 

estimate effluent sediment loads from best management practices. Therefore, it would be 

beneficial if a correlation existed between particle diameter and turbidity for use in 

prediction models. As stated earlier, to be able to compare all selected soils, the ratio of 

turbidity to concentration was plotted versus particle diameter (see Figure 4.23).  

 

 

Figure 4.23. The ratio of turbidity to concentration versus particle diameter for all soils12. 

 

                                                           
12

 Two values above a ratio of 6 were allocated as outliers and were not plotted on Figure 4.19. 
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First, top soils and subsoils were evaluated collectively, but no correlations were 

determined. As a result, soils were once again evaluated depending on South Carolina 

regions, and the top soil and subsoils were sorted based on the same measured clay 

content ranges formulated above.  Unlike trends found in the above analyses, correlation 

coefficients of the predicted equations did not correlate as well with a classification based 

on measured clay content. These relationships are displayed in Figures 4.24-4.29. 

Because a ratio of zero indicated a particle diameter not contributing to turbidity, these 

ratios were not plotted. Appendix E contains the modified and raw data used to create 

Figures 4.25-4.29. For the most part, the figures seem to follow an increasing trend from 

larger particles to smaller particles. As particle size decreases, the ratio of turbidity to 

concentration increases. Soils were chosen to fit a power function as opposed to a 

logarithmic regression because the power function equations will not produce negative 

ratios if the equation was carried out for larger particle sizes. However, soils viewed 

individually (Appendix E) do not follow this, or any apparent, trend mainly due to the 

subtraction method that was computed. Errors were most likely introduced with the lab 

procedure of pulling a sample at a certain depth and time to calculate its corresponding 

particle diameter because the true amount of a particle was still unknown even though a 

subtraction method was performed. Hence, correlations were inconclusive and future 

analysis is encouraged to refine this relationship of turbidity/concentration to particle size 

for it to be used in prediction models.  
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Figure 4.24. Piedmont top soil’s relationship of particle diameter to y, where y is the ratio 

of turbidity to concentration (n= number of soils). Trends were evaluated based on MCP. 

 

 

Figure 4.25. Piedmont subsoil’s relationship of particle diameter to y, where y the ratio of 

turbidity to concentration (n= number of soils). Trends were evaluated based on MCP 
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Figure 4.26. Central top soil’s relationship of particle diameter to y, where y the ratio of 

turbidity to concentration (n= number of soils). Trends were evaluated based on MCP. 

 

 

Figure 4.27. Central subsoil’s relationship of particle diameter to y, where y the ratio of 

turbidity to concentration (n= number of soils). Trends were evaluated based on MCP. 
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Figure 4.28. Coastal top soil’s relationship of particle diameter to y, where y the ratio of 

turbidity to concentration (n= number of soils). Trends were evaluated based on MCP. 

 

 

Figure 4.29. Coastal subsoil’s relationship of particle diameter to y, where y the ratio of 

turbidity to concentration (n= number of soils). Trends were evaluated based on MCP.  
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CONCLUSIONS 

 

 The goal of this research was to determine if relationships could be established to 

relate sediment concentration and sediment settling time to turbidity based on sediment 

characteristics of representative South Carolina soils.   

For the relationship of suspended sediment concentration to turbidity, soils were 

first divided by top soils and subsoils to determine if the behavior of the selected soils 

could be collectively classified by soil characteristics. However, relationships found 

among top soils and subsoils could not be explained or classified because common 

physical properties could not be established. Further analysis found correlations among 

top soil and subsoil based on predominant South Carolina region and measured clay 

content. Such results are supported by previous research that relationships must be 

derived from site specific characteristics. Based on correlation coefficients of the 

predicted equations, trends correlated well with either a linear or a log relationship (R2 

values ranging from 0.7945 to 0.9846). Therefore, for each region, research confirmed 

that as concentration of fines increased, turbidity increased; and soils with higher clay 

content produced higher turbidity values compared to soils with less clay. As opposed to 

measured fines content (silt and clay), empirically derived measured clay content best 

modeled the behavior of soils’ turbidity with respect to concentration. This was because 

fines content could not rationalize the behavior of soils that aggregated and quickly 

settled from suspension.  
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As for the correlation of turbidity and settling time, to remain consistent with 

classifying the soils, they were once again evaluated depending on the assortment 

determined from the above analyses. Therefore, results were separated by South Carolina 

region where the top soil and subsoils were sorted based on the same measured clay 

content ranges formulated above. Based on the correlation coefficients of the predicted 

equations, all trends correlated well with a power function (R2 values ranging from 

0.7674 to 0.9347). This relationship therefore followed Stoke’s Law, where smaller 

particles remain in suspension longer and contribute more to turbidity as opposed to soils 

with less clay content.  

It was also determined that majority of the selected soils did not below a value of 

280 NTU until 24 hours, or later, of settling. In other words, it would take longer than a 

day for the soils to be below EPA’s effluent limitation guideline of 280 NTU. 

For both relationships of turbidity versus suspended sediment concentration and 

turbidity versus settling time, trends formulated from measured clay content have gaps 

between the ranges and could not be explained by either soil’s primary or eroded particle 

size distributions. Therefore, if relationships formulated in this project are to be used for 

future predictive purposes, a modified eroded particle size distribution would be required. 

Also, if this procedure is performed and the soil’s ASD clay content does not fall within 

the empirical ranges, to account for the gaps in clay content ranges, interpolation between 

trendlines could be conducted to predict the soil’s behavior with respect to turbidity, 

concentration, and settling time. 
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Lastly, the relationship of turbidity to particle size was evaluated to potentially 

support findings of turbidity to sediment concentration and settling time. Once again, top 

soils and subsoils were examined based on South Carolina region and measured clay 

content. It was found that the ratio of turbidity to concentration versus particle diameter 

did not correlate well (R2 values ranging from 0.0028 to 0.8634 from power functions), 

resulting in inconclusive relationships. Due to potential procedural errors, it is 

encouraged to refine this relationship of turbidity/concentration to particle size in order 

for it to be used in future prediction models. Better separation of particle sizes, as 

opposed to conducting a subtraction method, should yield in better results for 

determining particle size’s effect on turbidity.  
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CHAPTER 5 

SUMMARY CONCLUSIONS 

 

The overall goal of this research was to determine relationships between turbidity 

and sediment concentration and sediment settling time, based on properties of 

representative South Carolina soils. Before this could be achieved, accuracy and 

precision of commercially available nephelometers were evaluated for use in subsequent 

analysis and potential regulatory compliance. The overall goal was met, and the 

following conclusions can be made from the from instrument analysis results.  

1. Analysis of instruments’ accuracy and precision showed that even though meters 

may be precise, there is potential for inaccuracy. If inaccuracy is compounded by 

precision, misinterpretation of results is likely.  

2. Meters that performed well provided accurate and precise results for both 

calibration studies. As a result, secondary calibration standards (SCALs) did 

provide calibration results equivalent to those obtained when the instrument was 

calibrated with the primary calibration standard (PCAL) of formazin.  

3. When subjected to varying field surface water samples, readings produced by 

meters calibrated to formazin standards produced higher, but consistent, NTU 

values compared to meters calibrated to styrene divinylbenzene (SDVB) 

standards. However, when all meters were calibrated to formazin PCALs, range 

of readings per sample narrowed. These results suggested that differences from 

meters are most likely due to differences in formazin standards and SDVB 
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standards. It was also concluded that formazin standards may be a better standard 

for surface water analysis. 

 

After meter performance conclusions were determined, the following conclusions 

can be made from the soil-water analysis results.  

4. It was found that the relationship of turbidity versus sediment concentration of 

selected South Carolina soils were well correlated when top soil and subsoils were 

classified by South Carolina physiographic region and measured clay content. As 

a result, for each region, research suggests that as concentration of fines increase, 

turbidity increases; and soils with higher clay content produce higher turbidity 

values compared to soils with less clay.  

5. Based on correlation coefficients of the predicted equations, trends for suspended 

sediment concentration to turbidity correlated well with either a linear or a log 

relationship (R2 values ranging from 0.7945 to 0.9846) as opposed to previous 

research utilizing a power function or the assumption of a one-to-one relationship. 

6. When TSS Cecil concentrations from a dry sieve analysis were created and tested 

with the four commercially available turbidity meters, results were not equivalent 

to turbidity and concentration values that were obtained from soil-water remains 

of a wet sieve analysis. For example, Cecil subsoil that was dry sieved, at higher 

concentration values, turbidity was roughly half of its concentration value. For 

Cecil soil that was wet sieved, at higher concentration values, turbidity was 

roughly doubled its concentration value. Differences among results are most 
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likely due to the difference in sieve procedures. The wet sieve analysis would 

have disassociated more clay particles to pass through sieve openings as opposed 

to the dry sieve analysis.  

7. Trends that correlated well with a linear relationship for suspended sediment 

concentration and turbidity can follow the dilution protocol in EPA’s Method 

180.1. Where, if a sample is diluted by half, then its turbidity reading is multiplied 

by two. Thus, following a linear proportionality. However, this would not be the 

case for trends that correlated well with a log relationship.  

8. For correlations of turbidity and sediment settling time, trends also correlated well 

when top soil and subsoils were classified based on their predominant South 

Carolina physiographic region and measured clay content. From the correlation 

coefficients of the predicted equations (R2 values ranging from 0.7674 to 0.9347), 

all trends correlated well with a power function. This suggests that the 

relationship was governed by Stoke’s Law; where smaller particles remain in 

suspension longer. As a result, the smaller particles contributed more to turbidity 

compared to soils with less clay content. 

9. Majority of the soils were not below a value of 280 NTU until 24 hours, or later, 

of settling. In other words, it would take longer than a day for the soils to be 

below EPA’s proposed effluent limitation guideline of 280 NTU. 

10. The empirical relationships found for turbidity versus suspended sediment 

concentration and turbidity to sediment settling time are expected to work well for 

predicting the behavior of all South Carolina soils. Correlations can be utilized if 
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soil’s measured clay content is determined from an aggregate size distribution 

(ASD). Also, if soil’s measured clay content does not fall within the empirical 

ranges, to account for gaps in clay content ranges, interpolation between 

trendlines can be conducted to predict soil’s behavior with respect to turbidity, 

concentration and sediment settling time.  

Altogether, results of this research will provide a step in determining 1) potential 

site-specific equations relating sediment concentration to turbidity and sediment settling 

time to turbidity, 2) aid in the design of future best management practices on construction 

sites, and 3) provide information for potential regulatory compliance. However, future 

analysis is encouraged to refine turbidity relationships and suggestions are listed below. 

1. EPA’s Method 180.1 is focused on turbidity analyses for drinking water. If future 

limitation guidelines are proposed for construction site activities, then revisions to 

EPA Method 180.1 are needed. For example, it was found that formazin may be a 

better standard for surface water samples as opposed to the other accepted 

standard, AMCO EPA. Also, it was impractical and difficult to dilute samples 

below a turbidity value of 40 NTU. Lastly, not all soils’ relationship of turbidity 

and suspended sediment concentration was linear, therefore, cannot follow the 

dilution proportionality outlined in 180.1.  

2. The research found well-correlated relationships of turbidity to sediment 

concentration and turbidity to sediment settling time, but these trends were 

formulated from specific measured clay content ranges. Therefore, further 

research is needed to see if the correlations found could be used to accurately 
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predict the responses of other South Carolina soils. It would also be of interest to 

evaluate if interpolation between trendlines could be executed in order to 

calculate relationships of other South Carolina soils that don’t fall within the 

empirically derived clay content ranges.  

3. Again, from this research it was determined that future laboratory analysis, 

namely conducting an aggregate size distribution, cannot be avoided if data are 

going to be used. However, the potential for particle diameter relating to the ratio 

of turbidity to concentration could be a link to explaining turbidity relationships 

for prediction models. It is suggested this relationship be further refined with a 

different lab procedure. 
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APPENDIX A. 

Tabular data of Experiments 1-4 to determine meters accuracy and precision13,14 

 

Appendix A contains the tabular data calculated in order to evaluate instrument 
performance of four commonly utilized and commercially available nephelometers. 
Determining meters’ accuracy and precision may be found in the tables for Experiments 
3a and 3b. Tabular data for meters’ response to surface water samples may be found in 
the tables for Experiments 4a and 4b.   

  

                                                           
13

 Meters used: 

Hach 1&2= Hach 2100Q 
LaMotte= LaMotte 2020e 
GW= Global Water’s Turb 430T 

 
14

 Experiment 1= Meters’ turbidity responses to TSS concentrations of a Cecil soil (calibrated to provided 
SCALs). 

  Experiment 2= Verification of manufacturer supplied standards (calibrated to provided SCALs) 
  Experiment 3a= Meter accuracy and precision (calibrated to provided SCALs) 
  Experiment 3b= Meter accuracy and precision (calibrated to created PCALs) 
  Experiment 4a= Meters’ turbidity responses to natural water samples (calibrated to provided SCALs) 
  Experiment 4b= Meters’ turbidity responses to natural water samples (calibrated to created PCALs) 
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Table A.1. Experiment 1: Hach 1, LaMotte and GW’s turbidity [NTU] responses to Cecil 
TSS [mg/L]. 

Hach 1 

3000 mg/L 2000 mg/L 1000 mg/L 500 mg/L 100 mg/L 50 mg/L 25 mg/L 

1360 1070 414 216 51.6 26.9 15.6 

1385 1030 407 219 53.1 27 14.7 

1375 1065 401 220 52.0 25.7 14.3 

1370 1030 411 219 49.5 26.9 14.7 

1380 1070 410 220 50.1 26.5 14.5 

1374 1053 408.6 219 51.3 26.6 14.8 

LaMotte  

3000 mg/L 2000 mg/L 1000 mg/L 500 mg/L 100 mg/L 50 mg/L 25 mg/L 

1060 724 263 175 36.9 18 9.4 

1032 696 270 163 40.1 20.1 10.3 

1036 756 263 162 40.1 19.8 8.1 

1036 820 264 160 39.7 20.7 8.9 

1080 692 271 172 40.9 21.2 9.8 

1049 738 266 166 39.5 19.9 9.30 

GW 

3000 mg/L 2000 mg/L 1000 mg/L 500 mg/L 100 mg/L 50 mg/L 25 mg/L 

970 750 266 158 35.5 18.4 11.0 

945 740 261 163 35.5 18.2 9.5 

955 740 263 146 34.6 16.9 11.4 

940 710 252 156 38 18.6 9.9 

915 735 262 154 30.8 15.8 11.0 

945 735 261 155 34.9 17.6 10.6 
  



102 

 

Table A.2. Experiment 2: meter’s turbidity [NTU] responses to Hach 2100Q’s provided 
SCALs. 

Hach 1 LaMotte  GW 

10 
NTU 

20 
NTU 

100 
NTU 

800 
NTU  

10 
NTU 

20 
NTU 

100 
NTU 

800 
NTU  

10 
NTU 

20 
NTU 

100 
NTU 

800 
NTU 

9.79 20.7 103 797 9.83 22.1 110 675 9.43 20.3 107 1048 

9.77 20.7 102 801 9.83 22.1 110 677 7.49 20.5 105 1074 

9.72 20.7 103 796 9.83 22.1 111 677 7.48 19.3 107 1026 

9.71 20.8 103 801 9.84 22 111 677 8.92 20.5 104 1024 

9.76 20.8 102 805 9.83 22 111 677 9.22 20.1 107 1030 

9.75 20.7 103 800 9.83 22.1 111 677 8.51 20.1 106 1040 
 

Table A.3. Experiment 2: meter’s turbidity [NTU] responses to LaMotte 2020e’s 
provided SCALs. 

Hach 1 LaMotte  GW 
0 

NTU 
1 

NTU 
10 

NTU 
100 

NTU 
0 

NTU 
1 

NTU 
10 

NTU 
100 

NTU 
0 

NTU 
1 

NTU 
10 

NTU 
100 

NTU 

0.58 1.37 10.2 68.1 0.08 1.15 10.0 104 0.23 1.18 10.5 86.9 

0.60 1.26 10.4 67.9 0.00 1.14 10.6 99.0 0.22 1.10 10.1 86.5 

0.62 1.32 10.3 68.1 0.00 1.15 9.9 99.0 0.22 1.06 10.2 87.1 

0.56 1.42 10.2 67.8 0.11 0.95 10.9 98.7 0.20 1.11 10.0 86.9 

0.71 1.32 10.1 67.7 0.00 0.95 10.0 98.7 0.19 1.08 10.1 87.3 

0.61 1.34 10.2 67.9 0.04 1.07 10.3 99.9 0.21 1.11 10.2 86.9 
 

Table A.4. Experiment 2: meter’s turbidity [NTU] responses to Global Water’s provided 
SCALs. 

Hach 1 LaMotte  GW 
0.02 
NTU 

10 
NTU 

1000 
NTU 

0.02 
NTU 

10 
NTU 

1000 
NTU 

0.02 
NTU 

10 
NTU 

1000 
NTU 

0.33 10.1 429 0.00 10.7 1744 0.00 9.95 1000 

0.34 10.1 430 0.12 10.7 1744 0.00 9.97 1001 

0.32 10.1 432 0.03 10.8 1726 0.00 9.91 1001 

0.26 10.1 429 0.03 10.8 1746 0.01 9.95 1000 

0.30 10.1 431 0.08 10.8 1717 0.00 9.96 996 

0.31 10.1 430 0.05 10.8 1735 0.00 9.95 1000 
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Table A.5. Experiment 3a, meters’ averaged turbidity readings [NTU].  

 Hach 1 Hach 2 LaMotte GW 

PCAL 
NTU 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

1 1.71 1.40 1.56 1.62 1.44 1.53 1.90 1.32 1.61 1.00 1.07 1.03 

10 10.4 10.9 10.7 10.1 11.0 10.6 12.1 10.9 11.5 9.37 9.96 9.67 

50 50.7 50.9 50.8 49.7 51.2 50.5 62.2 54.2 58.2 48.5 47.8 48.2 

100 95.8 96.3 96.0 98.0 98.7 98.4 117 103 110 97.0 92.9 95.0 

280 264 270 267 269 273 271 291 287 289 273 268 271 

500 486 492 489 483 492 487 600 621 611 479 477 478 

750 731 752 741 724 744 734 1411 1261 1336 729 730 730 

1000 1008 989 999 991 984 988 724 851 787 1004 984 994 

 

Table A.6. Experiment 3a, meter accuracy: averaged percent difference about the true 
value.  

Hach 1 Hach 2 LaMotte GW 

PCAL 
NTU 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

1 71.00 40.20 55.60 62.20 43.80 53.00 89.80 32.40 61.10 5.60 6.80 6.20 

10 4.00 9.40 6.70 1.40 10.00 5.70 21.00 8.88 14.94 6.28 0.36 3.32 

50 1.32 1.84 1.58 0.60 2.44 1.52 24.44 8.40 16.42 3.00 4.40 3.70 

100 4.20 3.72 3.96 2.00 1.26 1.63 17.00 3.22 10.11 2.98 7.02 5.00 

280 5.64 3.71 4.68 3.79 2.64 3.21 3.79 2.50 3.14 2.57 4.21 3.39 

500 2.76 1.64 2.20 3.48 1.64 2.56 19.96 24.24 22.10 4.28 4.68 4.48 

750 2.59 0.48 1.53 3.52 0.77 2.14 88.11 68.13 78.12 2.75 2.69 2.72 

1000 1.16 1.08 1.12 0.92 1.56 1.24 27.64 14.94 21.29 0.64 1.58 1.11 

 

Table A.7. Experiment 3a, meter precision: averaged percent difference about measured 
value. 

 Hach 1 Hach 2 LaMotte GW 

PCAL 
NTU 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

1 11.70 2.28 6.99 6.66 3.34 5.00 9.59 10.27 9.93 12.00 3.00 7.50 

10 1.92 1.46 1.69 0.59 0.91 0.75 1.65 1.03 1.34 0.77 0.24 0.50 

50 0.51 0.24 0.37 0.40 0.82 0.61 0.68 0.00 0.34 0.62 0.84 0.73 

100 0.52 0.85 0.69 0.31 0.67 0.49 0.00 0.95 0.47 0.70 1.16 0.93 

280 1.21 0.89 1.05 0.59 0.22 0.41 0.21 0.00 0.10 0.66 0.67 0.67 

500 0.99 0.65 0.82 1.12 1.46 1.29 0.37 3.83 2.10 0.54 0.55 0.54 

750 1.18 1.20 1.19 0.75 0.64 0.70 8.00 1.67 4.83 1.04 0.71 0.88 

1000 1.94 0.49 1.21 0.93 0.37 0.65 1.71 0.42 1.07 1.00 0.79 0.89 
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Table A.8. Exp. 3b, meters’ averaged turbidity readings [NTU]. 

Hach 1 Hach 2 LaMotte GW 

PCAL 
NTU 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

Round 
A 

Round 
B AVG 

1 1.33 1.55 1.44 1.41 1.67 1.54 0.79 1.26 1.03 1.02 0.41 0.71 

10 10.6 10.7 10.6 10.9 10.1 10.5 10.7 9.49 10.1 10.0 10.0 10.0 

50 48.9 51.4 50.2 49.4 49.6 49.5 49.3 45.6 47.4 48.4 51.5 49.9 

100 99.4 101 100 99.6 99.7 99.6 99.2 86.4 92.8 97.1 101 99.3 

280 267 275 271 270 276 273 274 243 259 272 284 278 

500 482 491 486 482 494 488 56 504 533 478 491 485 

750 725 741 733 725 742 734 1175 1044 1110 723 735 729 

1000 980 989 985 993 994 994 810 706 758 983 961 972 

 

Table A.9. Experiment 3b, meter accuracy: averaged percent difference about the true 
value. 

 
Hach 1 Hach 2 LaMotte GW 

PCAL 
NTU 

Round 
A 

Round 
B 

AVG 
Round 

A 
Round 

B 
AVG 

Round 
A 

Round 
B 

AVG 
Round 

A 
Round 

B 
AVG 

1 32.8 55.2 44.0 40.6 67.4 54.0 21.0 26.2 23.6 3.40 59.0 31.2 

10 5.80 6.60 6.20 8.60 1.40 5.00 6.64 5.62 6.13 0.38 0.62 0.50 

50 2.12 2.88 2.50 1.20 0.80 1.00 1.40 8.88 5.14 3.24 3.00 3.12 

100 0.58 1.40 0.99 0.40 0.72 0.56 0.84 13.64 7.24 2.90 1.40 2.15 

280 4.57 1.79 3.18 3.43 1.57 2.50 2.14 13.14 7.64 2.79 1.43 2.10 

500 3.64 1.80 2.72 3.64 1.28 2.46 12.20 0.88 6.54 4.44 1.76 3.10 

750 3.39 1.15 2.26 3.33 1.07 2.20 56.67 39.25 47.9 0.04 2.03 1.03 

1000 2.00 1.08 1.54 0.68 0.56 0.62 19.00 29.40 24.2 1.68 3.90 2.79 

 

Table A.10. Experiment 3b, meter precision: averaged percent difference about measured 
value. 

 
Hach 1 Hach 1 LaMotte GW 

PCAL 
NTU 

Round 
A 

Round 
B 

AVG 
Round 

A 
Round 

B 
AVG 

Round 
A 

Round 
B 

AVG 
Round 

A 
Round 

B 
AVG 

1 2.41 2.06 2.24 4.55 0.84 2.69 18.9 0.63 9.81 11.0 26.8 18.9 

10 1.70 0.56 1.13 0.55 0.59 0.57 2.01 6.68 4.35 0.98 0.88 0.93 

50 0.74 0.70 0.72 0.40 0.40 0.40 0.00 0.79 0.40 0.37 0.39 0.38 

100 0.48 0.59 0.54 0.10 1.32 0.71 0.91 0.07 0.49 0.62 0.59 0.60 

280 0.45 0.73 0.59 0.22 0.22 0.22 0.00 0.90 0.45 0.81 0.35 0.58 

500 1.49 0.81 1.15 1.00 0.69 0.84 1.07 0.99 1.03 0.38 0.24 0.31 

750 0.63 0.76 0.70 0.69 0.67 0.68 1.45 1.21 1.33 1.61 0.84 1.22 

1000 1.22 0.32 0.77 0.28 0.64 0.46 0.00 0.85 0.42 1.14 0.83 0.99 
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Table A.11. Experiment 4a, meters’ averaged turbidity readings. Each repetition is an 
average of five readings. 

 
Construction Site 

t=20 min 
Construction Site 

t=30 min 
Construction Site 

t=60 min 

 
Hach 1 Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW 

Rep 1 408 406 290 297 2030 2059 1621 1430 1864 1854 1418 1289 

Rep 2 430 429 291 307 2022 2025 1643 1400 1850 1853 1366 1296 

Rep 3 427 423 298 307 2070 2074 1560 1436 1831 1834 1349 1307 

Rep 4 434 431 299 313 2071 2089 1607 1474 1852 1886 1377 1298 

Rep 5 426 426 292 312 2211 2201 1655 1511 1933 1942 1432 1340 

AVG 425 423 294 307 2081 2090 1617 1450 1866 1874 1388 1306 

 

Construction Site 
t=150 min 

Hunnington Creek BG's Pond 

 
Hach 
1 

Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW 

Rep 1 1001 1010 966 846 9.6 9.0 6.7 7.0 884 863 353 417 

Rep 2 1002 1006 974 849 9.6 9.4 6.8 6.7 879 859 352 417 

Rep 3 1043 1055 1052 866 9.0 8.6 6.5 6.2 898 874 356 433 

Rep 4 1079 1086 1053 898 9.2 9.2 7.1 6.4 879 871 352 448 

Rep 5 1161 1147 1053 955 8.6 8.9 6.4 6.6 887 875 359 444 

AVG 1057 1061 1020 883 9.2 9.0 6.7 6.6 886 868 354 432 

 

 

Table A.12. Experiment 4a, meter’s standard deviation [NTU] for each field sample15. 

 Construction 
Site 

t=20 min 

Construction 
Site 

t=30 min 

Construction 
Site 

t=60 min 

Construction 
Site 

t=150 min 

Hunnington 
Creek BG's Pond 

 
Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Hach 1 425 2081 1866 1057 9.2 886 

Hach 2 423 2090 1874 1061 9.0 868 

LaMotte 294 1617 1388 1020 6.7 354 

GW 307 1450 1306 883 6.6 432 

Average 362 1809 1608 1005 7.9 635 

St. Dev 71.5 326 304 83.5 1.43 281 

   

                                                           
15

 Averaged Rep NTU values obtained from averages calculated in Table A.11.  
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Table A.13. Experiment 4b, meters’ averaged turbidity readings. Each replication, ‘Rep’, 
is an average of five readings16. 

 
Construction Site 

t=20 min 
Construction Site 

t=30 min 
Construction Site 

t=60 min 

 
Hach 1 Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW 

Rep 1 380 382 266 327 2049 2077 1397 1651 1798 1854 1397 1434 

Rep 2 387 390 274 344 2047 2072 1317 1604 1820 1859 1415 1485 

Rep 3 2055 2086 1649 1620 1838 1889 1367 1438 

Rep 4 2027 2061 1537 1618 1836 1870 1372 1446 

Rep 5 2130 2157 1696 1678 1958 1995 1502 1564 

AVG 383 386 270 336 2062 2091 1519 1634 1850 1893 1411 1474 

 

Construction Site 
t=150 min 

Hunnington Creek BG's Pond 

 
Hach 1 Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW Hach 1 Hach 2 Lamotte GW 

Rep 1 1014 1013 984 992 12.1 12.1 10.7 9.3 828 845 390 443 

Rep 2 1002 1022 1004 995 11.1 10.8 8.2 7.9 861 870 392 449 

Rep 3 1014 1016 963 996 9.9 9.9 7.3 7.5 862 873 401 456 

Rep 4 1007 1010 988 974 9.2 9.6 7.0 7.5 871 871 411 460 

Rep 5 1003 1026 997 975 9.9 9.7 7.4 7.3 790 799 397 463 

AVG 1008 1017 987 986 10.4 10.4 8.1 7.9 842 852 398 454 

 

 

Table A.14. Experiment 4b, meter’s standard deviation [NTU] for each field sample 17. 

 
Construction 

Site 
t=20 min 

Construction 
Site 

t=30 min 

Construction 
Site 

t=60 min 

Construction 
Site 

t=150 min 

Hunnington 
Creek 

BG's Pond 

 
Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Avg Rep 
[NTU] 

Hach 1 383 2062 1850 1008 10.4 842 

Hach 2 386 2091 1893 1017 10.4 852 

LaMotte 270 1519 1411 987 8.1 398 

GW 336 1634 1474 986 7.9 454 

Average 344 1826 1657 1000 9 637 

St. Dev 54.2 292 250 15.4 1.40 244 

  

                                                           
16

 Not enough sample was collected from ‘Construction Site at t=20 min’ to carry out five replications. 
17

 Averaged Rep NTU values obtained from averages calculated in Table A.13. 
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APPENDIX B. 

Soil properties of the selected South Carolina soils 

 

Appendix B encompasses size distributions for each of the selected soil series 
based on soil’s physiographic South Carolina region. Regions include the upstate 
Piedmont region, the mid-state Central region and the Coastal Plains region. The first 
table for each region compares the size distributions obtained from the aggregate size 
distribution (ASD) analysis and the primary particle size distributions (PSD) from the 
hydrometer analysis. Following this includes the tabular data from the ASD analysis.  
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Table B.1. Piedmont soils’ ASD (‘Measured’) and primary PSD (‘Hydrometer’). Values 
are percent finer [%] 

 

Soil Series 
Measured Hydrometer 

Sand18 Silt19 Clay20 Silt+Clay Sand Silt Clay Silt+Clay 
Georgeville Top 51.00 36.58 12.42 49.00 59.62 27.72 12.66 40.38 
Herndon Top 65.00 28.58 6.42 35.00 56.54 31.58 11.88 43.46 

Pacolet Top 91.00 7.48 1.52 9.00 65.98 18.22 15.81 34.02 

Wilkes Top 88.50 10.06 1.44 11.50 72.90 14.50 12.59 27.10 
Cataula Top 88.00 10.58 1.42 12.00 58.98 26.22 14.81 41.02 

Appling Top 87.00 11.98 1.02 13.00 74.76 12.50 12.74 25.24 

Cecil Top 91.00 8.13 0.87 9.00 69.40 15.72 14.88 30.60 
Madison Top 91.00 8.23 0.77 9.00 68.62 18.43 12.95 31.38 

Hiwassee Top 93.50 5.75 0.75 6.50 64.83 20.29 14.88 35.17 

Wilkes Sub 76.50 15.19 8.31 23.50 74.98 12.29 12.74 25.02 
Hiwassee Sub 80.50 13.76 5.74 19.50 73.26 12.00 14.74 26.74 

Madison Sub 73.00 23.04 3.96 27.00 71.26 13.93 14.81 28.74 

Cataula Sub 82.00 17.52 0.48 18.00 71.26 14.86 13.88 28.74 
Cecil Sub 92.00 7.66 0.34 8.00 78.05 9.22 12.74 21.95 

Appling Sub 88.50 11.35 0.15 11.50 75.83 11.36 12.81 24.17 

Herndon Sub 67.00 32.91 0.09 33.00 63.19 23.86 12.95 36.81 
Pacolet Sub 90.00 9.93 0.07 10.00 75.19 12.07 12.74 24.81 

Georgeville Sub 46.00 53.97 0.03 54.00 54.98 27.22 17.81 45.02 
  

                                                           
18

 For ASD analysis, Sand refers to aggregate and particle sizes ranging from 2 to 0.05 mm 
19

 For ASD analysis, Silt refers to aggregate and particle sizes ranging from 0.05 to 0.002 mm 
20

 For ASD analysis, Clay refers to aggregate and particle sizes less than 0.002 mm 
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Table B.2. Piedmont top soils’ ASD tabular data.  

Georgeville Herndon Pacolet Wilkes Cataula Appling Cecil Madison Hiwassee 
Particle 

Size [mm]
Percent finer [%] 

2.000 100 100 100 100 100 100 100 100 100 

1.180 96.4 89.2 98.8 92.2 97.6 97.9 94.6 96.9 98.9 

0.425 91.8 83.3 68.1 83.8 85.9 84.1 78.3 75.3 66.5 

0.150 86.4 75.7 34.2 53.3 37.8 39.8 37.8 40.6 25.1 

0.075 74.9 57.0 16.8 24.2 20.8 20.6 16.1 18.6 12.3 

0.063 56.4 42.7 10.2 13.7 13.3 14.4 10.6 10.9 7.79 

0.062 52.7 38.7 9.49 12.6 12.1 13.8 9.68 9.46 7.02 

0.031 43.8 29.1 8.40 10.0 10.6 11.0 8.33 8.04 5.77 

0.016 43.2 23.9 7.10 6.59 4.72 4.09 5.17 5.43 4.33 

0.008 22.7 11.82 3.82 2.64 4.21 2.69 3.02 2.45 2.12 

0.004 16.7 8.85 2.68 2.64 2.50 1.92 1.75 1.49 1.30 

0.002 12.4 6.42 1.52 1.44 1.42 1.02 0.87 0.77 0.75 

 

 

 Table B.3. Piedmont subsoils’ ASD tabular data. 

Georgeville Herndon Pacolet Wilkes Cataula Appling Cecil Madison Hiwassee 
Particle 

Size [mm]
Percent finer [%] 

2.000 100 100 100 100 100 100 100 100 100 

1.180 99.9 82.1 99.5 97.7 99.3 99.0 92.9 99.2 97.4 

0.425 97.5 76.3 89.2 90.2 86.2 87.1 83.3 84.6 90.7 

0.150 90.0 61.9 51.6 60.9 43.4 38.8 38.5 57.3 51.1 

0.075 74.4 46.4 22.1 32.1 28.7 21.4 14.7 35.6 28.3 

0.063 59.3 36.9 14.8 25.4 19.8 14.5 10.0 28.3 21.0 

0.062 55.0 34.5 13.8 23.9 18.6 13.2 9.1 27.2 20.0 

0.031 50.5 27.3 3.94 22.6 16.2 7.22 5.97 25.4 18.4 

0.016 0.43 0.51 0.26 16.9 1.07 0.38 1.31 9.63 20.3 

0.008 0.09 0.16 0.08 10.9 0.92 0.24 0.87 4.95 12.7 

0.004 0.05 0.12 0.09 10.9 0.75 0.22 0.70 4.71 8.03 

0.002 0.03 0.09 0.07 8.31 0.48 0.15 0.34 3.96 5.74 
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Table B.4. Central soils’ ASD (‘Measured’) and primary PSD (‘Hydrometer’). Values are 
percent finer [%] 

 

Measured Hydrometer 
Soil Series Sand21 Silt22 Clay23 Silt+Clay Sand Silt Clay Silt+Clay 

Ailey Top 88.00 10.38 1.62 12.00 71.05 14.36 14.59 28.95 
Johnston Top 89.00 9.84 1.16 11.00 58.05 28.29 13.66 41.95 
Lakeland Top 96.00 3.39 0.61 4.00 82.76 4.50 12.74 17.24 
Dothan Top 93.00 6.50 0.50 7.00 75.47 10.58 13.95 24.53 
Fuquay Top 98.00 1.56 0.44 2.00 85.05 2.22 12.74 14.95 
Troup Top 96.00 3.68 0.32 4.00 81.40 6.72 11.88 18.60 
Bonneau Top 92.50 7.24 0.26 7.50 62.83 24.22 12.95 37.17 
Blanton Top 97.50 2.28 0.22 2.50 83.33 4.79 11.88 16.67 
Vaucluse Top 97.00 2.85 0.15 3.00 81.40 5.72 12.88 18.60 
Wagram Top 94.00 5.99 0.01 6.00 75.54 10.50 13.95 24.46 

Dothan Sub 84.50 12.21 3.29 15.50 79.34 8.78 11.88 20.66 
Bonneau Sub 80.50 16.94 2.56 19.50 63.26 23.86 12.88 36.74 
Blanton Sub 94.00 4.49 1.51 6.00 85.05 2.22 12.74 14.95 
Troup Sub 92.00 6.66 1.34 8.00 80.12 7.14 12.74 19.88 
Vaucluse Sub 94.00 4.79 1.21 6.00 81.12 6.22 12.66 18.88 
Wagram Sub 94.00 5.22 0.78 6.00 74.12 13.14 12.74 25.88 
Fuquay Sub 97.00 2.40 0.60 3.00 86.05 3.22 10.74 13.95 
Johnston Sub 89.50 10.27 0.23 10.50 81.12 6.14 12.74 18.88 
Ailey Sub 88.00 11.80 0.20 12.00 79.05 8.22 12.74 20.95 
Lakeland Sub 97.00 2.86 0.14 3.00 84.19 4.14 11.66 15.81 

 
  

                                                           
21

 For ASD analysis, Sand refers to aggregate and particle sizes ranging from 2 to 0.05 mm 
22

 For ASD analysis, Silt refers to aggregate and particle sizes ranging from 0.05 to 0.002 mm 
23

 For ASD analysis, Clay refers to aggregate and particle sizes less than 0.002 mm 
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Table B.5. Central top soils’ ASD tabular data.  

Ailey Blanton Bonneau Dothan Fuquay Johnston Lakeland Troup Vaucluse Wagram 
Particle 
Size[mm]

Percent finer [%] 

2.000 100 100 100 100 100 100 100 100 100 100 

1.180 99.6 99.8 99.8 99.8 99.9 99.5 99.5 99.5 99.6 99.9 

0.425 93.9 97.3 78.4 94.7 98.5 86.7 91.6 97.0 95.4 98.8 

0.150 45.7 34.5 35.5 51.7 37.7 38.1 21.6 51.1 55.0 45.8 

0.075 19.9 9.32 19.8 13.7 6.20 22.0 8.17 13.4 12.8 17.2 

0.063 14.5 3.37 9.01 8.17 2.66 12.8 4.35 5.21 3.72 7.76 

0.062 13.2 2.71 8.16 7.39 2.40 11.7 3.94 4.45 3.04 6.55 

0.031 10.8 1.96 5.38 6.14 2.22 9.98 3.40 3.54 2.25 4.58 

0.016 8.91 1.45 2.11 4.77 2.15 7.82 3.19 2.52 1.43 2.21 

0.008 4.38 0.69 1.18 2.58 1.12 3.74 1.79 1.12 0.55 1.05 

0.004 2.73 0.44 0.93 1.35 0.76 2.34 1.18 0.57 0.28 0.36 

0.002 1.62 0.22 0.26 0.50 0.44 1.16 0.61 0.32 0.15 0.01 

 

Table B.6. Central subsoils’ ASD tabular data. 

Ailey Blanton Bonneau Dothan Fuquay Johnston Lakeland Troup Vaucluse Wagram 

Particle 
Size[mm] 

Percent finer [%] 

2.000 100 100 100 100 100 100 100 100 100 100 

1.180 97.5 99.9 99.8 97.3 99.9 98.9 99.3 99.3 99.1 99.93 

0.425 89.7 97.6 98.6 92.6 98.4 89.9 93.5 97.7 95.7 99.20 

0.150 26.7 44.5 62.4 40.9 56.3 30.4 31.5 66.1 55.7 71.34 

0.075 16.6 12.0 29.3 21.9 7.13 15.4 7.78 18.2 17.5 26.60 

0.063 12.6 7.04 21.7 16.6 3.45 11.6 3.78 9.04 7.31 16.25 

0.062 11.9 6.41 20.4 15.7 3.23 11.1 3.39 8.18 6.68 15.01 

0.031 10.5 5.68 17.68 14.6 2.91 8.71 2.61 7.13 5.80 11.45 

0.016 0.75 6.22 12.95 14.8 2.64 1.02 0.97 6.99 5.62 8.71 

0.008 0.33 3.19 8.29 8.1 1.49 0.45 0.41 3.86 3.47 4.37 

0.004 0.26 2.34 4.93 5.2 1.08 0.36 0.25 2.24 1.83 2.35 

0.002 0.20 1.51 2.56 3.29 0.60 0.23 0.14 1.34 1.21 0.78 
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Table B.7. Coastal soils’ ASD (‘Measured’) and primary PSD (‘Hydrometer’). Values are 
percent finer [%] 

 

Measured Hydrometer 
Soil Series Sand24 Silt25 Clay26 Silt+Clay Sand Silt Clay Silt+Clay 

Goldsboro Top 86.50 11.12 2.38 13.50 73.34 10.07 16.59 26.66 

Lynchburg Top 77.50 20.51 1.99 22.50 64.76 21.36 13.88 35.24 

Coxville Top 92.00 7.16 0.84 8.00 60.95 20.65 18.40 39.05 

Norfolk Top 89.00 10.31 0.69 11.00 75.40 12.72 11.88 24.60 

Rains Top 87.50 11.90 0.60 12.50 62.40 24.79 12.81 37.60 

Noboco Top 93.00 6.79 0.21 7.00 66.62 20.50 12.88 33.38 

Coxville Sub 64.50 27.83 7.67 35.50 71.34 14.00 14.66 28.66 

Goldsboro Sub 82.00 13.85 4.15 18.00 65.26 24.86 9.88 34.74 

Noboco Sub 76.50 21.53 1.97 23.50 67.19 18.93 13.88 32.81 

Rains Sub 86.00 12.70 1.30 14.00 73.12 13.22 13.66 26.88 

Lynchburg Sub 69.00 30.01 0.99 31.00 71.26 16.93 11.81 28.74 

Norfolk Sub 83.00 16.12 0.88 17.00 79.05 10.22 10.74 20.95 
 

 
 

  

                                                           
24

 For ASD analysis, Sand refers to aggregate and particle sizes ranging from 2 to 0.05 mm 
25

 For ASD analysis, Silt refers to aggregate and particle sizes ranging from 0.05 to 0.002 mm 
26

 For ASD analysis, Clay refers to aggregate and particle sizes less than 0.002 mm 
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Table B.8. Coastal top soils’ ASD tabular data. 

Coxville Goldsboro Lynchburg Norfolk Rains 
Particle Size 

[mm] 
Percent finer [%] 

2.000 100 100 100 100 100 

1.180 99.3 99.4 99.8 99.5 99.8 

0.425 69.3 94.3 92.7 97.0 91.8 

0.150 25.9 45.4 59.3 53.1 46.9 

0.075 14.1 24.1 41.5 23.6 25.7 

0.063 8.79 14.5 27.9 14.1 14.6 

0.062 8.18 13.7 24.9 12.0 13.6 

0.031 6.90 12.4 18.6 8.81 10.6 

0.016 4.79 9.32 13.4 6.06 6.67 

0.008 2.67 4.21 6.39 3.17 2.73 

0.004 1.62 4.21 3.88 1.49 1.23 

0.002 0.84 2.38 1.99 0.69 0.60 

 

Table B.9. Coastal subsoils’ ASD tabular data.  

Coxville Goldsboro Lynchburg Norfolk Rains 
Particle Size 

[mm] 
Percent finer [%] 

2.000 100 100 100 100 100 

1.180 99.9 97.0 99.9 99.4 99.7 

0.425 94.7 72.7 95.1 91.5 97.2 

0.150 59.5 39.1 65.6 50.4 46.6 

0.075 47.6 24.7 45.3 28.5 26.6 

0.063 38.8 19.5 33.4 19.5 16.7 

0.062 36.9 18.4 30.5 17.9 15.1 

0.031 32.1 16.4 29.0 14.1 12.0 

0.016 24.6 9.16 3.48 2.61 9.43 

0.008 17.1 5.66 1.76 1.42 4.32 

0.004 12.4 5.66 1.61 1.20 2.59 

0.002 7.67 4.15 0.99 0.88 1.30 
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APPENDIX C. 
 

Tabular data for selected soils’ turbidity as a function of suspended sediment 
concentration 

 

Appendix C contains raw data used to establish relationships between turbidity 
and suspended sediment concentration. First, turbidity versus suspended sediment 
concentration is plotted for all top soils and subsoils. Next, soils are evaluated based on 
South Carolina physiographic region. Tables include all concentration and corresponding 
turbidity values for each region’s top soil and subsoils. This tabular data was used for 
subsequent figures that plot region’s top soil turbidity versus suspended sediment 
concentration and region’s subsoil turbidity versus suspended sediment concentration.  
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Figure C.1. Relationship of turbidity versus suspended sediment concentration for all top 

soils. 
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Figure C.2. Relationship of turbidity versus suspended sediment concentration for all 

subsoils. 
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Table C.1. Piedmont top soils27 

Appling Cataula Cecil Georgeville Hiwassee 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

8090 12548 4670 5864 7100 7780 37580 33370 5130 5158 

4980 10244 2630 4214 2680 4178 21650 31740 2590 3718 

2670 7480 1500 3094 1280 2542 14180 27740 1170 2278 

1980 5132 1470 2937 910 2030 11680 19270 900 1735 

1620 4084 1080 2224 600 1461 9990 19236 650 1403 

1270 3315 910 1721 430 1028 8990 17532 480 1042 

380 657 520 628 160 267 5350 7972 190 332 

250 378 400 357 90 139 4350 4996 160 158 

150 190 330 192 90 94.9 3110 2261 140 86.5 

150 103 280 145 110 74.2 2610 1366 150 111 

20 58.6 260 76.8 100 70.9 1980 673 130 82.4 

Madison Pacolet Herndon Wilkes 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

6750 6228 6520 7788 27660 21240 9260 16956 

2940 4078 3800 5536 12100 15126 5080 14712 

1360 2500 2180 4086 6920 12100 2810 12156 

880 1826 1640 3430 6020 11596 2220 11252 

710 1624 1400 2832 5360 10064 1610 10436 

600 1191 1120 2099 4520 7456 1170 7808 

270 419 450 725 2730 4118 490 5466 

140 198 250 259 2230 2409 320 3917 

110 93.4 170 158 1560 1272 220 2400 

130 127 150 152 1290 594 160 1204 

100 138 120 109 1170 503 70 417 

 

  

                                                           
27

 Turbidity values are an average of five readings 
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Figure C.3. Piedmont top soils’ relationship of turbidity versus suspended sediment 

concentration. 
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Table C.2. Piedmont subsoils28. 

Appling Cataula Cecil Georgeville Hiwassee 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

8720 8440 11870 12264 5860 6960 37400 37340 14040 22500 

400 671 640 1301 1850 3156 150 1601 10620 22926 

120 223 270 629 770 1744 40 32.8 7230 18294 

90 208 270 597 650 1518 50 22.6 6130 16830 

90 202 280 609 600 1290 40 15.1 5170 16758 

90 153 260 555 350 931 40 11.4 4530 9704 

0.001 31.6 80 147 130 354 10 7.27 2860 4570 

0.001 19.0 60 112 160 321 0 5.31 2250 2882 

20 9.12 60 45.6 30 75.5 0 2.71 1750 1974 

0.001 4.41 50 31.8 10 37.1 0 0.76 1300 1051 

0.001 1.85 50 20.0 30 47.5 0 2.88 910 334 

Madison Pacolet Herndon Wilkes 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

17770 28608 9900 12174 28410 20070 17380 16956 

4170 10824 190 274 280 378 12250 14712 

2740 5928 50 98.4 80 77.9 8630 12156 

2680 5710 40 79.5 40 70.5 7680 11252 

2490 5396 40 66.0 60 71.8 6690 10436 

2250 4746 30 53.7 50 56.6 5990 7808 

990 1781 0 10.36 20 17.9 4290 5466 

600 1077 0 3.66 10 8.29 3460 3917 

320 503.4 0 1.82 0 3.91 2770 2400 

160 234.8 0 2.71 10 8.60 1670 1204 

90 145.2 0 1.04 0 3.64 900 417 

 

 

  

                                                           
28

 Turbidity values are an average of five readings 
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Figure C.4. Piedmont subsoils’ relationship of turbidity versus suspended sediment 

concentration.   
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Table C.3. Central top soils29. 

Ailey Bonneau Wagram Blanton Lakeland 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

9300 9032 3736 3810 3540 3042 1960 1555 2560 2788 

5360 6916 1864 2330 1150 1454 880 1100 1620 2094 

2590 4878 676 1297 470 774 490 933 680 1183 

1970 3512 415 972 300 585 290 539 420 888 

1620 2978 300 756 170 272 230 476 450 872 

1320 2347 186 563 120 260 200 393 270 547 

500 632 86 132 20 52 50 153 140 232 

340 271 79 175 10 24 50 94 90 153 

310 207 50 82 10 19 60 93 100 113 

250 163 40 67 10 14 60 109 120 155 

240 113 50 41 20 11 50 54 80 71 

Troup Vaucluse Dothan Fuquay Johnston 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

3380 2400 2220 1277 5400 4580 1840 1970 6620 5794 

1470 1574 810 903 2970 3642 1320 1714 3730 3952 

590 964 300 477 1370 2476 740 1306 960 1519 

460 866 200 358 940 1946 660 1223 1020 1608 

350 648 100 218 640 1392 420 862 700 1033 

300 561 100 203 420 986 290 670 370 539 

70 158 10 51 140 367 130 256 360 328 

20 66 10 57 80 163 90 151 140 153 

20 62 20 58 70 109 80 131 80 96 

20 61 10 38 80 130 20 56 70 82 

20 47 10 26 80 90 60 93 90 106 

 

  

                                                           
29

 Turbidity values are an average of five readings 
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Figure C.5. Central top soils’ relationship of turbidity versus suspended sediment 

concentration.  
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Table C.4. Central subsoils30. 

Ailey Bonneau Wagram Blanton Lakeland 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

8730 11136 10480 13060 8320 7248 5090 5822 2620 2230 
1140 1830 6160 11436 4300 7058 3370 4800 1350 1576 
420 911 3530 8148 1620 4028 2120 3770 560 811 
420 812 2700 8946 1390 3662 1720 3609 390 794 
370 704 1990 6478 880 2669 1670 3551 320 575 
320 521 1430 4706 510 1585 1270 2657 150 263 
20 36 390 1038 100 266 630 1051 60 132 
20 11 260 444 40 73 440 601 60 36 
20 22 180 192 20 48 300 265 0 14 
10 10 50 96 30 41 230 206 0 8 
10 5 80 70 20 35 170 125 0 19 

Troup Vaucluse Dothan Fuquay Johnston 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

6510 6818 5520 5996 11070 13172 2580 2864 8040 9230 
4270 6526 3590 5274 7940 11488 1690 2142 830 1078 
2440 4420 2200 4352 4960 11172 1020 1738 260 349 
1720 3544 1650 3382 3810 10284 850 1456 230 316 
1510 3303 1250 2856 3080 7720 660 1311 220 299 
1060 2310 940 2069 2360 6116 550 1004 150 252 
280 478 290 573 1100 2009 210 320 50 75 
170 216 180 251 780 810 100 161 30 16 
100 135 110 126 600 383 50 70 30 15 
90 102 100 105 470 257 50 42 10 6 
80 70 80 72 360 165 40 43 40 3 

  

                                                           
30

 Turbidity values are an average of five readings 
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Figure C.6. Central subsoils’ relationship of turbidity versus suspended sediment 
concentration. 
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Table C.5. Coastal top soils31.  

Coxville Goldsboro Lynchburg 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

7290 9744 8850 15336 14890 11316 

3670 5476 4900 10686 6610 14058 

1760 3586 2780 7568 3030 7754 

1340 2933 2190 5932 2230 6022 

1020 2357 1850 4800 1650 4498 

780 1802 1080 2970 1600 4126 

360 621 510 1012 640 1248 

220 292 360 520 460 529 

140 147 170 189 320 260 

130 99 140 139 200 175 

120 63 150 107 190 129 

Norfolk Rains Noboco 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

6760 11568 9490 7740 5180 4644 

3330 6548 4250 6156 1310 1712 

1640 4192 1260 2850 530 931 

940 2752 950 2464 340 747 

700 2120 490 1226 180 421 

500 1479 420 941 190 390 

120 331 110 192 130 195 

100 151 110 113 90 47 

50 65 90 63 50 48 

50 50 60 68 60 39 

30 72 40 71 20 24 

                                                           
31

 Turbidity values are an average of five readings 
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Figure C.7. Coastal top soils’ relationship of turbidity versus suspended sediment 

concentration. 
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Table C.6. Coastal subsoils32. 

Coxville Goldsboro Lynchburg 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

20200 28370 10410 10968 15460 16524 

13760 25740 6130 11816 3220 6192 

8530 23060 4130 8650 1890 4160 

7370 21170 3530 7134 1540 3635 

6220 23200 3220 5920 1330 1702 

5150 18500 2670 5028 1160 2548 

2930 4724 1510 2010 430 600 

2340 2967 1020 1127 230 245 

1800 1681 650 494 60 51 

1110 577 300 228 50 46 

730 309 190 122 10 26 

Norfolk Rains Noboco 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

Conc. 
[mg/L] 

Turbidity 
[NTU] 

11750 16324 8260 12732 14710 17862 

1550 3416 4500 7920 9240 16632 

760 1893 2170 5370 4500 15744 

670 1637 1560 4134 3760 13596 

610 1596 1260 3480 2600 8344 

490 1247 900 2370 1830 6564 

140 291 290 622 580 1595 

110 177 200 284 360 647 

160 53 100 133 260 361 

10 48 50 83 170 166 

10 38 70 62 150 101 

                                                           
32

 Turbidity values are an average of five readings 
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Figure C.8. Coast subsoils’ relationship of turbidity versus suspended sediment 

concentration. 
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APPENDIX D 
 

Tabular data for selected soils’ turbidity as a function of sediment settling time 
 

 

Appendix D contains raw data used to establish relationships between turbidity 
and sediment settling time. First, turbidity versus settling time is plotted for all top soils 
and subsoils. Next, soils are evaluated based on South Carolina physiographic region. 
Tables include all sample times and corresponding turbidity values for each region’s top 
soil and subsoils. This tabular data was used for subsequent figures that plot region’s top 
soil turbidity versus settling time and region’s subsoil turbidity versus settling time.  
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Table D.1. Piedmont top soils. 

Appling Cataula Cecil Georgeville Hiwassee 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

0 12548 0 5864 0 7780 0 33370 0 5158 

5 10244 5 4214 5 4178 5 31740 5 3718 

30 7480 30 3094 30 2542 30 27740 30 2278 

60 5132 60 2937 60 2030 60 19270 60 1735 

120 4084 120 2224 120 1461 120 19236 120 1403 

240 3315 240 1721 240 1028 240 17532 240 1042 

1440 657 1440 628 1440 267 1440 7972 1440 332 

2880 378 2880 357 2880 139 2880 4996 4320 158 

5760 190 5760 192 5760 95 5760 2261 7200 87 

11520 103 11520 145 10080 74 10080 1366 10080 111 

23040 59 30240 77 20160 71 20160 673 20160 82 

Madison Pacolet Herndon Wilkes 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU]   

0 6228 0 7788 0 21240 0 6876 

5 4078 5 5536 5 15126 5 6374 

30 2500 30 4086 30 12100 30 4846 

60 1826 60 3430 60 11596 60 4004 

120 1624 120 2832 120 10064 120 3276 

240 1191 240 2099 240 7456 240 2326 

1440 419 1440 725 1440 4118 1440 784 

4320 198 4320 259 2880 2409 2880 361 

7200 93 7200 158 5760 1272 5760 235 

10080 127 10080 152 10080 594 10080 136 

20160 138 20160 109 20160 503 20160 76 
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Figure D.1. Piedmont top soils’ relationship of turbidity and sediment settling time. 
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Table D.2. Piedmont subsoils. 

Appling Cataula Cecil Georgeville Hiwassee 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 8440 1 12264 1 6960 1 37340 1 22500 

5 671 5 1301 5 3156 5 161 5 22926 

30 223 30 629 30 1744 30 33 30 18294 

60 208 60 597 60 1518 60 23 60 16830 

120 202 120 609 120 1290 120 15 120 16758 

240 153 240 555 240 931 240 11 240 9704 

1440 32 1440 147 1440 354 1440 7 1440 4570 

2880 19 2880 112 2880 321 2880 5 2880 2882 

5760 9 5760 46 5760 75 5760 3 5760 1974 

10080 4 10080 32 10080 37 10080 1 10080 1051 

20160 2 30240 20 20160 48 20160 3 20160 334 

Madison Pacolet Herndon Wilkes 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU]   

1 28608 1 12174 1 20070 1 16956 

5 10824 5 274 5 378 5 14712 

30 5928 30 98 30 78 30 12156 

60 5710 60 80 60 70 60 11252 

120 5396 120 66 120 72 120 10436 

240 4746 240 54 240 57 240 7808 

1440 1781 1440 10 1440 18 1440 5466 

2880 1077 2880 4 2880 8 2880 3917 

5760 503 5760 2 5760 4 5760 2400 

10080 235 10080 3 10080 9 10080 1204 

20160 145 20160 1 20160 4 20160 417 
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Figure D.2. Piedmont subsoils’ relationship of turbidity and sediment settling time.  
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Table D.3. Central top soils. 

Ailey Bonneau Wagram Blanton Lakeland 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 9032 1 3810 1 3042 1 1555 1 2788 

5 6916 5 2330 5 1454 5 1100 5 2094 

30 4878 30 1297 30 774 30 933 30 1183 

60 3512 60 972 60 585 60 539 60 888 

120 2978 120 756 120 272 120 476 120 872 

240 2347 240 563 240 260 240 393 240 547 

1440 632 1440 132 1440 52 1440 153 1440 232 

2880 271 2880 175 2880 24 2880 94 2880 153 

5760 207 7200 82 5760 19 5760 93 7200 113 

11520 163 10080 67 11520 14 10080 109 11520 155 

21600 113 20160 41 23040 11 20160 54 21600 71 

Troup Vaucluse Dothan Fuquay Johnston 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 2400 1 1277 1 4580 1 1970 1 5794 

5 1574 5 903 5 3642 5 1714 5 3952 

30 964 30 477 30 2476 30 1306 30 1519 

60 866 60 358 60 1946 60 1223 60 1608 

120 648 120 218 120 1392 120 862 120 1033 

240 561 240 203 240 986 240 670 240 539 

1440 158 1440 51 1440 367 1440 256 1440 328 

2880 66 2880 57 2880 163 2880 151 2880 153 

5760 62 5760 58 5760 109 5760 131 7200 96 

10080 61 10080 38 10080 130 10080 56 11520 82 

20160 47 20160 26 20160 90 20160 93 20160 106 
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Figure D.3. Central top soils’ relationship of turbidity and sediment settling time.  
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Table D.4. Central subsoils. 

Ailey Bonneau Wagram Blanton Lakeland 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 11136 1 13060 1 7248 1 5822 1 2230 

5 1830 5 11436 5 7058 5 4800 5 1576 

30 911 30 8148 30 4028 30 3770 30 811 

60 812 60 8946 60 3662 60 3609 60 794 

120 704 120 6478 120 2669 120 3551 120 575 

240 521 240 4706 240 1585 240 2657 240 263 

1440 36 1440 1038 1440 266 1440 1051 1440 132 

2880 11 2880 444 2880 73 2880 601 2880 36 

5760 22 5760 192 5760 48 5760 265 5760 14 

11520 10 11520 96 11520 41 10080 206 11520 8 

21600 5 30240 70 23040 35 20160 125 20160 19 

Troup Vaucluse Dothan Fuquay Johnston 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 6818 1 5996 1 13172 1 2864 1 9230 

5 6526 5 5274 5 11488 5 2142 5 1078 

30 4420 30 4352 30 11172 30 1738 30 349 

60 3544 60 3382 60 10284 60 1456 60 316 

120 3303 120 2856 120 7720 120 1311 120 299 

240 2310 240 2069 240 6116 240 1004 240 252 

1440 478 1440 573 1440 2009 1440 320 1440 75 

2880 216 2880 251 2880 810 2880 161 2880 16 

5760 135 5760 126 5760 383 5760 70 7200 15 

10080 102 10080 105 10080 257 10080 42 11520 6 

20160 70 20160 72 20160 165 20160 43 20160 3 
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Figure D.4. Central subsoils’ relationship of turbidity and sediment settling time. 
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Table D.5. Coastal top soils. 

Coxville Goldsboro Lynchburg 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 9744 1 15336 1 11316 

5 5476 5 10686 5 14058 

30 3586 30 7568 30 7754 

60 2933 60 5932 60 6022 

120 2357 120 4800 120 4498 

240 1802 240 2970 240 4126 

1440 621 1440 1012 1440 1248 

2880 292 2880 520 2880 529 

5760 147 5760 189 7200 260 

11520 99 10080 139 10080 175 

30240 63 20160 107 20160 129 

Norfolk Rains Noboco 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 11568 1 7740 1 4644 

5 6548 5 6156 5 1712 

30 4192 30 2850 30 931 

60 2752 60 2464 60 747 

120 2120 120 1226 120 421 

240 1479 240 941 240 390 

1440 331 1440 192 1440 195 

2880 151 2880 113 2880 47 

5760 65 7200 63 7200 48 

10080 50 10080 68 10080 39 

20160 72 20160 71 20160 24 

 
  



139 

 

  

Figure D.5. Coastal top soils’ relationship of turbidity and sediment settling time.  
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Table D.6. Coastal subsoils. 

Coxville Goldsboro Lynchburg 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 28370 1 10968 1 16524 

5 25740 5 11816 5 6192 

30 23060 30 8650 30 4160 

60 21170 60 7134 60 3635 

120 23200 120 5920 120 1702 

240 18500 240 5028 240 2548 

1440 4724 1440 2010 1440 600 

2880 2967 2880 1127 2880 245 

5760 1681 5760 494 7200 51 

11520 577 11520 228 10080 46 

30240 309 30240 122 20160 26 

Norfolk Rains Noboco 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

Time 
[min] 

Turbidity 
[NTU] 

1 16324 1 12732 1 17862 

5 3416 5 7920 5 16632 

30 1893 30 5370 30 15744 

60 1637 60 4134 60 13596 

120 1596 120 3480 120 8344 

240 1247 240 2370 240 6564 

1440 291 1440 622 1440 1595 

2880 177 2880 284 2880 647 

7200 53 7200 133 5760 361 

10080 48 10080 83 10080 166 

20160 38 20160 62 20160 101 
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Figure D.6. Coastal subsoils’ relationship of turbidity and sediment settling time.  
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APPENDIX E 

Tabular data for selected soils’ turbidity as a function of particle diameter 
 

Appendix E contains raw data used to establish relationships between turbidity 
and aggregate/particle size. From applying Stoke’s Law, particle diameters evaluated 
included 0.063, 0.014, 0.006, 0.004, 0.003, and 0.002 mm based on the previous sample 
times of 0 min, 5 min, 30 min, 1 hr, 2 hr and 4 hr. Particles sizes were compared to their 
corresponding turbidities and concentrations that were determined from previous 
procedures. Actual turbidity and concentration values were calculated using a subtraction 
method. Next, in order to compare all soils, the ratio of actual turbidity to concentration 
was calculated. All tabular data are reported in Appendix E tables for each region’s top 
soil and subsoil. Lastly, subsequent figures plot region’s top soil versus the ratio of 
turbidity to concentration and region’s subsoil turbidity versus the ratio of turbidity to 
concentration.  
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Table E.1. Piedmont top soils. 

Soil Series D [mm] 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Georgeville 0.063 37580 33370 15930 1630 0.10 

0.014 21650 31740 7470 4000 0.54 

0.006 14180 27740 2500 8470 3.39 

0.004 11680 19270 1690 34 0.02 

0.003 9990 19236 1000 1704 1.70 

0.002 8990 17532 8990 17532 1.95 

Herndon 0.063 27660 21240 15560 6114 0.39 

0.014 12100 15126 5180 3026 0.58 

0.006 6920 12100 900 504 0.56 

0.004 6020 11596 660 1532 2.32 

0.003 5360 10064 840 2608 3.10 

0.002 4520 7456 4520 7456 1.65 

Appling 0.063 8090 12548 3110 2304 0.74 

0.014 4980 10244 2310 2764 1.20 

0.006 2670 7480 690 2348 3.40 

0.004 1980 5132 360 1048 2.91 

0.003 1620 4084 350 769 2.20 

0.002 1270 3315 1270 3315 2.61 

Cataula 0.063 4670 5864 2040 1650 0.81 

0.014 2630 4214 1130 1120 0.99 

0.006 1500 3094 30 157 5.23 

0.004 1470 2937 390 713 1.83 

0.003 1080 2224 170 503 2.96 

0.002 910 1721 910 1721 1.89 

Cecil 0.063 7100 7780 4420 3602 0.81 

0.014 2680 4178 1400 1636 1.17 

0.006 1280 2542 370 512 1.38 

0.004 910 2030 310 569 1.84 

0.003 600 1461 170 433 2.55 

0.002 430 1028 430 1028 2.39 

Hiwassee 0.063 5130 5158 2540 1440 0.57 

0.014 2590 3718 1420 1440 1.01 

0.006 1170 2278 270 543 2.01 

0.004 900 1735 250 332 1.33 

0.003 650 1403 170 361 2.12 

0.002 480 1042 480 1042 2.17 
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Soil Series D [mm] 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Madison 0.063 6750 6228 3810 2150 0.56 

0.014 2940 4078 1580 1578 1.00 

0.006 1360 2500 480 674 1.40 

0.004 880 1826 170 202 1.19 

0.003 710 1624 110 433 3.94 

0.002 600 1191 600 1191 1.99 

Pacelot 0.063 6520 7788 2720 2252 0.83 

0.014 3800 5536 1620 1450 0.90 

0.006 2180 4086 540 656 1.21 

0.004 1640 3430 240 598 2.49 

0.003 1400 2832 280 733 2.62 

0.002 1120 2099 1120 2099 1.87 

Wilkes 0.063 9260 6876 4180 502 0.12 

0.014 5080 6374 2270 1528 0.67 

0.006 2810 4846 590 842 1.43 

0.004 2220 4004 610 728 1.19 

0.003 1610 3276 440 950 2.16 

0.002 1170 2326 1170 2326 1.99 
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Figure E.1. Piedmont top soils’ relationship of particle diameter and the ratio of turbidity 

to concentration.    
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Table E.2. Piedmont subsoils. 

Soil Series D [mm] 
Conc. 
[mg/L] 

Turbidity 
[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Hiwassee 0.063 14040 22500 3420 0 0.00 

0.014 10620 22926 3390 4632 1.37 

0.006 7230 18294 1100 1464 1.33 

0.004 6130 16830 960 72 0.07 

0.003 5170 16758 640 7054 11.02 

0.002 4530 9704 4530 9704 2.14 

Madison 0.063 17770 28608 13600 17784 1.31 

0.014 4170 10824 1430 4896 3.42 

0.006 2740 5928 60 218 3.63 

0.004 2680 5710 190 314 1.65 

0.003 2490 5396 240 650 2.71 

0.002 2250 4746 2250 4746 2.11 

Wilkes 0.063 17380 16956 5130 2244 0.44 

0.014 12250 14712 3620 2556 0.71 

0.006 8630 12156 950 904 0.95 

0.004 7680 11252 990 816 0.82 

0.003 6690 10436 700 2628 3.75 

0.002 5990 7808 5990 7808 1.30 

Cataula 0.063 11870 12264 11230 10963 0.98 

0.014 640 1301 360 672 1.87 

0.006 270 629 0 20 0.00 

0.004 270 597 0 0 0.00 

0.003 280 609 20 54 2.68 

0.002 260 555 260 555 2.14 

Cecil 0.063 5860 6960 4010 3804 0.95 

0.014 1850 3156 1080 1412 1.31 

0.006 770 1744 120 226 1.88 

0.004 650 1518 50 228 4.56 

0.003 600 1290 250 359 1.44 

0.002 350 931 350 931 2.66 

Georgeville 0.063 37400 37340 37250 37179 1.00 

0.014 150 161 100 128 1.28 

0.006 40 33 0 10 0.00 

0.004 50 23 10 8 0.75 

0.003 40 15 0 4 0.00 

0.002 40 11 40 11 0.28 
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Soil Series D [mm] Conc. 
[mg/L] 

Turbidity 
[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Herndon 0.063 28410 20070 9710 11900 1.23 

0.014 280 378 140 176 1.26 

0.006 80 78 10 19 1.89 

0.004 40 70 0 14 0.00 

0.003 60 72 10 15 1.52 

0.002 50 57 50 57 1.13 

Appling 0.063 8720 8440 8320 7769 0.93 

0.014 400 671 280 447 1.60 

0.006 120 223 30 15 0.51 

0.004 90 208 0 6 0.00 

0.003 90 202 0 49 0.00 

0.002 90 153 90 153 1.70 

Pacelot 0.063 9900 12174 9710 11900 1.23 

0.014 190 274 140 176 1.26 

0.006 50 98 10 19 1.89 

0.004 40 80 0 14 0.00 

0.003 40 66 10 12 1.23 

0.002 30 54 30 54 1.79 
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Figure E.2. Piedmont subsoils’ relationship of particle diameter and the ratio of turbidity 

to concentration.    
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Table E.3. Central top soils. 

Soil 
Series D [mm] Conc. 

[mg/L] 
Turbidity 

[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Ailey 0.063 9300 9032 3940 2116 0.54 
0.014 5360 6916 2770 2038 0.74 
0.006 2590 4878 620 1366 2.20 
0.004 1970 3512 350 534 1.53 
0.003 1620 2978 300 631 2.10 
0.002 1320 2347 1320 2347 1.78 

Johnston 0.063 6620 5794 2890 1842 0.64 
0.014 3730 3952 2710 2344 0.86 
0.006 960 1519 0 0 0.00 
0.004 1020 1608 320 575 1.80 
0.003 700 1033 330 494 1.50 
0.002 370 539 370 539 1.46 

Bonneau 0.063 3736 3810 1872 1480 0.79 
0.014 1864 2330 1188 1033 0.87 
0.006 676 1297 261 325 1.24 
0.004 415 972 115 217 1.88 
0.003 300 756 114 193 1.70 
0.002 186 563 186 563 3.02 

Wagram 0.063 3540 3042 2390 1588 0.66 
0.014 1150 1454 680 680 1.00 
0.006 470 774 170 189 1.11 
0.004 300 585 130 313 2.40 
0.003 170 272 50 13 0.25 
0.002 120 260 120 260 2.16 

Blanton 0.063 1960 1555 1080 455 0.42 
0.014 880 1100 390 168 0.43 
0.006 490 933 200 394 1.97 
0.004 290 539 60 63 1.05 
0.003 230 476 30 83 2.77 
0.002 200 393 200 393 1.96 

Lakeland 0.063 2560 2788 940 694 0.74 
0.014 1620 2094 940 911 0.97 
0.006 680 1183 230 295 1.28 
0.004 420 888 0 16 0.00 
0.003 450 872 180 325 1.80 
0.002 270 547 270 547 2.03 
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Soil 
Series D [mm] Conc. 

[mg/L] 
Turbidity 

[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Troup 0.063 3380 2400 1910 826 0.43 
0.014 1470 1574 880 610 0.69 
0.006 590 964 130 98 0.76 
0.004 460 866 110 218 1.98 
0.003 350 648 50 87 1.73 
0.002 300 561 300 561 1.87 

Vaucluse 0.063 2220 1277 1410 374 0.27 
0.014 810 903 510 426 0.83 
0.006 300 477 100 120 1.20 
0.004 200 358 100 140 1.40 
0.003 100 218 0 15 0.00 
0.002 100 203 100 203 2.03 

Dothan 0.063 5400 4580 2430 938 0.39 
0.014 2970 3642 1600 1166 0.73 
0.006 1370 2476 430 530 1.23 
0.004 940 1946 300 554 1.85 
0.003 640 1392 220 406 1.85 
0.002 420 986 420 986 2.35 

Fuquay 0.063 1840 1970 520 256 0.49 
0.014 1320 1714 580 408 0.70 
0.006 740 1306 80 83 1.04 
0.004 660 1223 240 361 1.50 
0.003 420 862 130 193 1.48 
0.002 290 670 290 670 2.31 
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Figure E.3. Cental top soils’ relationship of particle diameter and the ratio of turbidity to 

concentration.    
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Table E.4. Central subsoils.  

Soil 
Series D [mm] Conc. 

[mg/L] 
Turbidity 

[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Bonneau 0.063 8320 7248 4020 190 0.05 
0.014 4300 7058 2680 3030 1.13 
0.006 1620 4028 230 366 1.59 
0.004 1390 3662 510 993 1.95 
0.003 880 2669 370 1084 2.93 
0.002 510 1585 510 1585 3.11 

Dothan 0.063 2580 2864 890 722 0.81 
0.014 1690 2142 670 404 0.60 
0.006 1020 1738 170 282 1.66 
0.004 850 1456 190 145 0.76 
0.003 660 1311 110 307 2.79 
0.002 550 1004 550 1004 1.83 

Wagram 0.063 5090 5822 1720 1022 0.59 
0.014 3370 4800 1250 1030 0.82 
0.006 2120 3770 400 161 0.40 
0.004 1720 3609 50 58 1.16 
0.003 1670 3551 400 894 2.24 
0.002 1270 2657 1270 2657 2.09 

Blanton 0.063 2620 2230 1270 654 0.51 
0.014 1350 1576 790 765 0.97 
0.006 560 811 170 17 0.10 
0.004 390 794 70 219 3.13 
0.003 320 575 170 312 1.83 
0.002 150 263 150 263 1.76 

Troup 0.063 5520 5996 1930 722 0.37 
0.014 3590 5274 1390 922 0.66 
0.006 2200 4352 550 970 1.76 
0.004 1650 3382 400 526 1.32 
0.003 1250 2856 310 787 2.54 
0.002 940 2069 940 2069 2.20 

Vaucluse 0.063 11070 13172 3130 1684 0.54 
0.014 7940 11488 2980 316 0.11 
0.006 4960 11172 1150 888 0.77 
0.004 3810 10284 730 2564 3.51 
0.003 3080 7720 720 1604 2.23 
0.002 2360 6116 2360 6116 2.59 
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Soil 
Series D [mm] Conc. 

[mg/L] 
Turbidity 

[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Ailey 0.063 8730 11136 7590 9306 1.23 
0.014 1140 1830 720 919 1.28 
0.006 420 911 0 99 0.00 
0.004 420 812 50 109 2.17 
0.003 370 704 50 183 3.65 
0.002 320 521 320 521 1.63 

Johnston 0.063 10480 13060 4320 1624 0.38 
0.014 6160 11436 2630 2490 0.95 
0.006 3530 8148 830 0 0.00 
0.004 2700 8946 710 2468 3.48 
0.003 1990 6478 560 1772 3.16 
0.002 1430 4706 1430 4706 3.29 

Lakeland 0.063 6510 6818 2240 292 0.13 
0.014 4270 6526 1830 2106 1.15 
0.006 2440 4420 720 876 1.22 
0.004 1720 3544 210 241 1.15 
0.003 1510 3303 450 993 2.21 
0.002 1060 2310 1060 2310 2.18 

Fuquay 0.063 8040 9230 7210 8152 1.13 
0.014 830 1078 570 729 1.28 
0.006 260 349 30 33 1.11 
0.004 230 316 10 17 1.70 
0.003 220 299 70 47 0.68 
0.002 150 252 150 252 1.68 
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Figure E.4. Central subsoils’ relationship of particle diameter and the ratio of turbidity to 

concentration.    
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Table E.5. Coastal top soils. 

Soil Series D [mm] Conc. 
[mg/L] 

Turbidity 
[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Goldsboro 0.063 8850 15336 3950 4650 1.18 
0.014 4900 10686 2120 3118 1.47 
0.006 2780 7568 590 1636 2.77 
0.004 2190 5932 340 1132 3.33 
0.003 1850 4800 770 1830 2.38 
0.002 1080 2970 1080 2970 2.75 

Lynchburg 0.063 14890 11316 8280 0 0.00 
0.014 6610 14058 3580 6304 1.76 
0.006 3030 7754 800 1732 2.17 
0.004 2230 6022 580 1524 2.63 
0.003 1650 4498 50 372 7.44 
0.002 1600 4126 1600 4126 2.58 

Coxville 0.063 7290 9744 3620 4268 1.18 
0.014 3670 5476 1910 1890 0.99 
0.006 1760 3586 420 653 1.55 
0.004 1340 2933 320 576 1.80 
0.003 1020 2357 240 555 2.31 
0.002 780 1802 780 1802 2.31 

Norfolk 0.063 6760 11568 3430 5020 1.46 
0.014 3330 6548 1690 2356 1.39 
0.006 1640 4192 700 1440 2.06 
0.004 940 2752 240 632 2.63 
0.003 700 2120 200 641 3.21 
0.002 500 1479 500 1479 2.96 

Noboco 0.063 5180 4644 3870 2932 0.76 
0.014 1310 1712 780 781 1.00 
0.006 530 931 190 184 0.97 
0.004 340 747 150 326 2.17 
0.003 180 421 0 31 0.00 
0.002 190 390 190 390 2.05 

Rains 0.063 9490 7740 5240 1584 0.30 
0.014 4250 6156 2990 3306 1.11 
0.006 1260 2850 310 386 1.25 
0.004 950 2464 460 1238 2.69 
0.003 490 1226 70 285 4.07 
0.002 420 941 420 941 2.24 
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Figure E.5. Coastal top soils’ relationship of particle diameter and the ratio of turbidity to 

concentration.    
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Table E.6. Coastal subsoils. 

Soil Series D [mm] Conc. 
[mg/L] 

Turbidity 
[NTU] 

Actual 
Conc. 
[mg/L] 

Actual 
Turbidity 

[NTU] 
Turb./Conc. 

Coxville 0.063 20200 28370 6440 2630 0.41 
0.014 13760 25740 5230 2540 0.49 
0.006 8530 23060 1160 0 0.00 
0.004 7370 21170 1150 0 0.00 
0.003 6220 23200 1070 4700 4.39 
0.002 5150 18500 5150 18500 3.59 

Noboco 0.063 14710 17862 5470 1230 0.22 
0.014 9240 16632 4740 888 0.19 
0.006 4500 15744 740 2148 2.90 
0.004 3760 13596 1160 5252 4.53 
0.003 2600 8344 770 1780 2.31 
0.002 1830 6564 1830 6564 3.59 

Goldsboro 0.063 10410 10968 4280 0 0.00 
0.014 6130 11816 2000 3166 1.58 
0.006 4130 8650 600 1516 2.53 
0.004 3530 7134 310 1214 3.92 
0.003 3220 5920 550 892 1.62 
0.002 2670 5028 2670 5028 1.88 

Lynchburg 0.063 15460 16524 12240 10332 0.84 
0.014 3220 6192 1330 2032 1.53 
0.006 1890 4160 350 525 1.50 
0.004 1540 3635 210 1087 5.18 
0.003 1330 1702 170 0 0.00 
0.002 1160 2548 1160 2548 2.20 

Norfolk 0.063 11750 16324 10200 12908 1.27 
0.014 1550 3416 790 1523 1.93 
0.006 760 1893 90 256 2.84 
0.004 670 1637 60 41 0.68 
0.003 610 1596 120 349 2.91 
0.002 490 1247 490 1247 2.54 

Rains 0.063 8260 12732 3760 4812 1.28 
0.014 4500 7920 2330 2550 1.09 
0.006 2170 5370 610 1236 2.03 
0.004 1560 4134 300 654 2.18 
0.003 1260 3480 360 1110 3.08 
0.002 900 2370 900 2370 2.63 
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Figure E.6. Coastal subsoils’ relationship of particle diameter and the ratio of turbidity to 
concentration. 
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