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ABSTRACT

The objective of this thesis is to provide an efficient and accurate corrective solution to a
system that is on verge of voltage collapse. This thesis describes, in detail, the
development of an optimization scheme that aims to alleviate power system instability
and voltage collapse condition based on the principles of an evolutionary approach called
Genetic Algorithm. The state of a system is determined using a voltage stability identifier
termed Collapse Proximity Index (CPI) and the critical loading condition is identified.
Applying principles of Genetic Algorithm, the critical system is brought back to a stable
operating region. The sequential procedure and application of this scheme is primarily

discussed in this thesis.

The thesis is structured to include theoretical discussion of the Collapse Proximity Index,
development of a Genetic Algorithm — based solution to the voltage collapse problem and
its simulated implementation on a test system, along with result analysis and suggestions
for future development. Conclusions are drawn based on the efficiency of the application

in maintaining system stability.

ii



DEDICATION

Dedicated to my parents,
my brother Raghav,
all the graduate Power students in ECE Department,
and all those who have helped me through my two year graduate study at Clemson

University

iii



TABLE OF CONTENTS

Page
TITLE PAGE......ccioiiiiiiiii it s 1
ABSTRACT ..o s i
DEDICATION.......oiiiiiiiiiii it il
LIST OF FIGURES ......cociiiiiiiii e vii
LIST OF PLOT ..o ix
LIST OF TABLES ... e X
CHAPTER
I. INTRODUCTION......cccooiiiiiiiiiiiiiiicie i 1
L. Background........cooovoiiiiiiii 1
ii. Overview of Voltage Collapse........ccccevvuvevvivieniiieinieinnieennienns 3
iii. Review of Available Techniques in Voltage Collapse
Identification..........ccoovviviiiiiiiiiiiicc 11
iv. Control Actions for Voltage Collapse Mitigation..............c......... 14

iv



2. COLLAPSE PROXIMITY INDEX — FORMULATION........ccccovvveneene 18

1. Equivalent SYStem........ccccvvevvieeriieeiiie et 18
ii. Index Development.........ccovveeviieeriieeiiie et 20
iii. Properties of Collapse Proximity IndeX........cccceovveeciienvinnienncen. 24
iv. Similarities with other Indices...........ccoccevviniiiiiiiiiinic 26
V. AdVANEAZES...ovveiiiieiiiieiiiie et 28
vi. Index implementation on Test SYStemS......c.cccovvvevvierieeneeneennnen. 30
3. OVERVIEW OF GENETIC ALGORITHM......c..ccocvvvineirieierieniennnn. 43
L INtroduCtion........c.ccoovvviiiiiiiiiiiii i 43
ii. Steps Involved in Genetic Algorithms.........ccooeevieciiniinnnnees 46
iil. General Applications of GAS.......ccccevveevieeiieniireccecee, 59
iv. Sequence of Steps in Applying Genetic Algorithms.................... 64
v. Software Programs Employed..........ccccooviiiniiiiniiiiniiiienee 77

4. TESTING THE GA-BASED VOLTAGE COLLAPSE MITIGATION

SCHEME.......cooiiiitit ettt st 78
L INtrodUCtiON. ..c.eevviieeiicciiee e 78
ii. Load Bus to be examined..........ccccceoeerrirnienieceeniinccceee 80
iii. Loading Capability Analysis for Bus 153.......ccccooeiviiininnennn. 82
iv. Voltage Collapse Mitigation using Genetic Algorithms.............. 86
v. Simulation Results and Observations..........ccccceeceeevveernieniceneennn 95
vi. Conclusion and Recommendations...........ccoceeecveereirneenieeneennne. 104



APPENDICES . ......ooiiii e 107

A, APPENDIX A. ..o 107
B. APPENDIX B......coooiiiiiiiiiiiii i 112
C. APPENDIX C....ccoviiiiiiiiiiiiiiicci i 121
D. APPENDIX D.....oooviiiiiiiiiiiiiiiic s 124
BIBLIOGRAPHY ....coooiiiiiiiii s 145

vi



FIGURE

1.1

1.2

1.3

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

34

3.5

3.6

3.7

LIST OF FIGURES

Two Bus Equivalent system
P-V curves for a stable system
Q-V curves for a stable system
Categorization of a large Interconnected System

Regions of Orientation

Single line representation of the PSS/E ‘SAVNW? test system..........

Single line representation of the IEEE 39 Bus test system

Load Bus 203 (PSS/E system) Identification..............c.ccocceviincntl

Load Bus 23 (IEEE system) Identification

Genetic Algorithm Terminology......ccovvvviiiiiieiiiiiiiiiiiiie e

Genetic Algorithm Process

Roulette Wheel Sections

Roulette Wheel Selection Process. ........veevviennvveerimiiieieeneeenennnn.
Single Point Crossover Example...........c.cooooiiiiiiiiiii e,

Two — Point Crossover Example.........ccooooeviiiiiiiiiiiineeennn,

Mutation Process

vii



3.8

3.9

3.10

4.1

4.2

4.3

4.4

4.5

GA Based Combinatorial Optimization Approach to

Voltage Collapse Mitigation..........cvuviiiiiiiiieiiniiii i, 61
Operation Flow for CPI Integrated GA Approach.........c...c..ocoeeeenn. 62
Flowchart for Application of Genetic Algorithms.........cocoeeveneinaen.. 76
Load Bus 153 (PSS/E system) Identification............c..ccccoeceeennen..... 81

Single line representation of the PSS/E ‘SAVNW? test system

with respect to Load Bus 153.... ... 82
Encoded Chromosome structure for transformer tap setting.............. 89
Encoded Chromosome structure for capacitor bank setting............... 89
Multi-point Crossover between two parent Strings...........ccoceeevneenn... 93

viii



PLOT

2.1

2.2

2.3

4.1

4.2

4.3

4.4

LIST OF PLOTS

PAGE
CPI vs % Loading for Bus 203 (PSS/E System).......c..ccovveinvinnennnn 37
P-V curve for Bus 203.........c i 38
CPI vs % Loading for Bus 23 (IEEE System).........c..ccoeeviiiiiiian, 42
CPI vs % Loading for Bus 153 (PSS/E System)......c..cccceveiniinnennnn 85
P-V curve for Bus 153.... ... 86

CPI vs % Loading for Bus 153 (PSS/E System) with Control Actions
generated USing GA.....oooieiiiii e 100
P-V curve comparison for Bus 153 with Control Actions

generated using GA.......oiiiiiii 101

ix



TABLE

1.1

2.1

2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

LIST OF TABLES

Control Actions based on modes of application.................
Collapse Proximity Index Table for Bus 203 (PSS/E system)...........
Voltage and Active Power demand comparison for Bus 203............

Collapse Proximity Index Table for Bus 23 (IEEE system)...

Sample Chromosome set with fitness values....................

Collapse Proximity Index Table for Bus 153 (PSS/E system)

Voltage and Active Power demand comparison for Bus 153............

Initial Randomly generated Population for
Transformer Tap Positions.............oooiiiiiiiiiiiiiiia.
Initial Randomly generated Population for

Capacitor Bank Settings........ccccooviiiiiiiiiiiiiiiiiiin.

Fitness values of randomly generated Population Strings.................

Best-fit Control Action combination obtained using GA..................

Comparison of System Parameters with and without control actions.. 97

Comparison of CPI values with and without control actions..



CHAPTER 1

INTRODUCTION

1.1 Background

An important component of transmission planning is to examine the adequacy of a power
system. Planning involves optimized methodologies in analyzing any change in network
topology and system loading. With ever-increasing power demand over the recent years,
transmission networks have to be utilized more efficiently than ever before.
Consequently, it is important for planners to identify the loading capability limits of the

system.

The determination of adequate capacity limits remains constrained as long as the
behavior of system components remains uncertain. When a heavy loading condition
stresses a power system, there is a substantially different response to system parameters
than compared to that of a non-stressed system. System voltage instability increases as

the transmission system becomes more broadly loaded [1].

Under such critical loading, a relatively small disturbance or additional load perturbation

may cause a complete system upset and lead to a system collapse.



In addition to the local system breakdown, large areas of the interconnected system may

also be affected by the small perturbation.

Numerous instances from the past highlight the importance of transmission planning for
pre-determined overloaded conditions. The August 14™ 2003 Blackout in US-Canada
region [2] can be attributed to overloading of the system as a secondary consequence to a
generator outage (Eastlake 5) and a fault on one of the lines (345 kV) due to excessive
strain and sag, with the assumption that system voltage remained stable. Inadequate
planning and lack of periodical contingency analysis resulted in a complete blackout for a
number of regions in North-eastern United States and regions of Canada. The voltage
levels dropped severely resulting in a cascading effect and formation of numerous power

system islands.

The blackout in Italy on September 28™ 2003 [2] also portrays the closeness of a system
to voltage collapse under overloaded conditions. The result of the overload was a very
low system voltage in Northern Italy and consequential tripping of a number of
generating stations. Despite countermeasures being implemented, such as load shedding,
the loss of generation made it impossible for the system to restore back to its stable state,

leading to a complete blackout.



The 2003 September 23" blackout in Sweden and Denmark [2] is another clear example
of system voltage collapse due to overloading in some parts of the system. An
unscheduled drop in generation from a nuclear station resulted in system overloading,

ultimately leading to voltage collapse and a system blackout.

1.2 Overview of Voltage Collapse

1.2.1 Voltage Stability
IEEE Power System Relaying Committee report [3] defines Voltage Stability as the
ability of a system to maintain voltage such that when load admittance is increased, load

power will increase thereby making power and voltage controllable.

Two most important conditions for a stable system voltage profile, as prescribed by Hill
et al [4] are that:
e System voltages must lie within an acceptable band

e The power system must be in a voltage regular operating point

CIGRE [5] defines voltage stability in a general way similar to other dynamic stability
problems. According to its definition, a power system at a given operating state and
subject to a given disturbance is voltage stable if voltages near loads approach pre-

equilibrium values.



Voltage stability is classified based on a system’s dynamic behavior. A common
classification of voltage stability is as follows:
¢ Small Disturbance voltage stability: A power system at a given operating state
is small disturbance stable if following any small disturbance, its voltages are
identical to or close to their pre-disturbance equilibrium values.
e Large disturbance voltage stability: A power system at a given operating state
and subject to a given large disturbance is large disturbance voltage stable if the

voltages approach post-disturbance equilibrium values.

1.2.2 Voltage Instability

According to CIGRE’s definition, Voltage instability is the absence of voltage stability,
resulting in progressive voltage decrease or increase. A power system at a given
operating state and subject to a given disturbance is said to be unstable if voltages near
loads are far away from their pre-disturbance equilibrium values.

A system enters a state of voltage instability when a disturbance, increase in load, or
system changes causes voltage to drop quickly or drift downward, and operators and
automatic system control fail to halt the decay. The voltage decay may take just a few

seconds or minutes. If the decay continues uninterrupted, voltage collapse will occur.



1.2.3 Voltage Collapse

Voltage collapse is a phenomenon observed when a heavily loaded system is disturbed by
a load perturbation or a small disturbance. Voltage Collapse, according to the IEEE
definition [3] is the process by which voltage instability leads to loss of voltage in a
significant part of the system. Under a voltage collapse situation, the post-disturbance

voltage values do not reach their pre-disturbance equilibrium conditions.

The major symptoms of voltage collapse as specified by the IEEE Power System
Relaying Committee are:

* Low voltage profiles

® Heavy reactive power flows

¢ Inadequate reactive support

¢ Heavily loaded system

1.2.4 Relation between Power and Voltage (P-V & Q-V curves)
A two bus equivalent system of a three phase power system [1] is considered as shown in

Fig 1.1.
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Fig 1.1

Two — Bus Equivalent System

The power transfer equation from Bus 1 to bus 2 is obtained as:

Psg = Vs> G - IVSIIVRIG * cos (8) + IVIIVgIB * sin (3) (1.1)
Qsr = IVsl® B - [VslIVRIB * cos (8) - IVsIIVRIG * sin (3) (1.2)
The complex Power expression can be written as:

Sp=Pp (1 +j tan 3) (1.3)
With respect to the load at the receiving-end Bus, power demand is defined by the power
transferred between the two buses:

Pp = Psg = IVlIVRIB * sin (3) “(1.4)

Neglecting transmission

Qp = Qsg = IVgI* B - IVIIVRIB * cos (3) (1.5) line conductance




Assuming the constant B and equating the expressions for Pp and Qp, an expression
relating Voltage and the Power demand at the load bus is as follows:

(IVRI?)?+[ 2 PpB/B) - Vs’ IVe + (Pp/B*) [1 +B°]1=0 (1.6)
Solving the quadratic equation with respect to the receiving-end voltage:

IVrl*= (IVs*)/ 2 = (Pp B/ B) = [ IVsI*/4 — (Pp/ B)( (Pp/B) + B IVs*) 12 0.5 (1.7)

Assuming that the sending end voltage is [Vsl = 1.0 pu, the expression for the receiving-

end voltage with respect to the Power demand is obtained as:

Relating Vg and Pp:

IVeP=(1-B*Pp+[1-Pp, (Ppb+28)]"0.5)/B (1.8)
Similarly, an expression relating the reactive power demand and receiving-end voltage
can be obtained by replacing the active power demand from the above expression in
terms of Qp and B.

Relating Vg and Qp:

VR’ =(1-Qp=[1-(Qpn/B) ((Qp/B)+2B)]1*0.5)/B (1.9)

The above-defined expression is useful in obtaining the P-V and Q-V plots.



A set of P-V curves for a stable system is obtained as shown:
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Fig 1.2

P-V curves for a stable system

The Q-V curve for a stable system is obtained as shown:
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Q-V curves for a stable system

As shown in figures 1.2 and 1.3, a system would be in its stable operating region as long
as the pu Voltage with respect to the pu power transferred is above the critical point

(Point of Maximum Loadability — PML).

When the voltage at the selected bus goes below a pre-defined criterion, then the transfer
at which this occurs is the Low Voltage transfer limit for that bus. Ignoring the low
voltage and continuing to increase transfer would eventually bring the curve to a point

where the system collapses called the Critical Point.



When a system reaches a condition where the voltage profile extends beyond its critical

point, system voltage collapse is imminent.

Maximum Loadability refers to the condition where the load at the receiving end-bus
reaches its maximum permissible value beyond which the system would observe a
voltage collapse situation. The point of maximum loading capacity can be determined by
either solving the 1% derivative of the P-V equation or by evaluating the load flow
Jacobian Matrix singularity. A detailed theoretical explanation to on this topic can be

found in Chapter 2, Section 2.2 on Index formation.

1.2.5 Load Model

In analyzing voltage instability, it is important to consider the network under various
voltage profiles. Voltage Stability depends on the level of current drawn by the loads.
The level of current drawn by the loads can depend on the voltage seen by the loads.
Therefore, voltage instability analysis requires a model of how the load responds to
voltage variations. The system should supply the loads at all times. Consequently, the
system must manage all load-voltage dependencies without restraints. All types of
electrical loads behave differently. One possible way to describe the static voltage-power
relation is to use the relations [6]:

P =Po [ p1(V/Vo) *+ p2(V/Vo) + p3] (1.10)

Q=Qo[qi (V/Vo)* +q2 (VIVo) +q3] (1.11)

10



Where the subscript ‘0’ indicates the initial operating condition.
The load model is composed of three components:

¢ Constant impedance component (p1, q1)

¢ Constant current component (pa, )

¢ Constant power component (ps3, q3)

Since voltage instability causes voltage decline, alleviation of voltage instability results if

demand reduces with voltage decline.

1.3 Review of Available Techniques in Voltage Collapse Identification
In order to understand the degree of voltage instability in the system, a number of static

analysis based voltage stability indicators or indices have been developed over the years.

1.3.1 Voltage Stability Indices based on Power flow analysis

A number of voltage stability studies were developed based on power flow analysis,
concentrating on Jacobian matrix singularity and load flow feasibility. The paper
presented by B.Gao et al [7] concentrated on voltage stability assessment of a system
using modal analysis. The measure of voltage instability was identified using Eigen

values and associated eigenvectors of a reduced Jacobian matrix.

11



A problem identified with the proposed theory was that steady state equations used in
determining the system state became singular at the bifurcation point resulting in

numerical instabilities in the proposed method when close to the collapse point.

Y.Tamura et al [8] and P.Kessel et al [9] described indices based on load flow feasibility
studies, concentrating on identifying the relationships between voltage instability and
multiple load flow solutions in a power system. The authors of the latter defined an
indicator L. with a range between 0 and 1 using the basic load flow information. Though
the proposed indicator had advantages with respect to simplicity and expressiveness, the
authors limited its use to situation where thermal limits were violated or protective
devices were tripped off rather than focusing on incremental loading of a system and

planning analysis of voltage stability.

C.A.Canizares et al [10] and P.A.Lof et al [11] proposed their theories based on the use
of Jacobian matrix singular values. One of the proposed methods included a reduction of
load flow Jacobian with respect to the critical bus of the system. As computation-time
consumption in these earlier proposals was a major factor, a fast method to calculate
minimum singular value and corresponding singular vectors that utilized the sparsity of
the power flow Jacobian matrix was also proposed. The major disadvantage associated
with these models was the difficulty in accurately identifying system voltage stability

margins.

12



1.3.2 Voltage Stability Indices based on local measurements

Taking into consideration, the disadvantages among models based on Power-flow
feasibility, direct measurement voltage stability indices involving bus voltage and
sensitivity factors based on dynamic analysis have been widely implemented in

protective devices.

Local measurements and non-linear aspects of voltage stability have been given greater
importance over the recent years [12] - [16]. Khoi Vu et al [15] proposed a data-
processing method to estimate the proximity to voltage collapse using local
measurements of bus voltage and load current. The proposed theory calculated the
strength of the transmission system relative to the bus. The collapse point was identified
based on the local load and its closeness to the strength calculated. The primary
disadvantage in implementing the proposed theory was the complexity in initiating
remedial control actions based on local measurements, as the optimal pickup values of

these measurement-based indices were difficult to determine.

With emerging wide spread real time data transmission through SCADA and
synchrophasors, dynamic stability indices have also been proposed [17], [18], [19]. The
platform of these dynamic stability indices is based on the possibility of building Wide

Area Monitoring Systems (WAMS) and high-speed communication networks.

13



WAMS help in taking snapshots of the power system variables where the synchronized
phasor measurement units are installed and help in developing wide area stability
assessment and protection applications for early detection and prevention of potential
voltage instabilities. The application of these dynamic indices is concentrated only for

real-time operations and would not be helpful in the planning phase of a power system.

1.4 Control Actions for Voltage Collapse Mitigation
With the accurate identification of system stability margin for a given loading condition,
it is essential in implementing voltage stability-enhancing techniques to tackle instability

issues.

Over the years, several studies within the industry have determined a number of practical
control actions that can be initiated in order to mitigate voltage instability. On a broader
scale, these include

¢ Addition of reactive power compensators

¢ Changing transformer tap settings

e System reinforcement

¢ (Coordinating relays and control

¢ Load shedding

14



IEEE Power System Relaying Committee has put forward a detailed description of the
above mentioned control actions in its report on Voltage Collapse Mitigation [3]. With
reference to Voltage Collapse mitigation techniques, T.V. Cutsem [20] has highlighted
the most practical and widely used control actions being implemented in the industry. A
tabulated form of various control actions depending on the mode of application can be

observed as shown in Table 1.1

Table 1.1

Control Actions based on modes of application for Voltage Collapse Mitigation

New Transmission lines

Construction of generating stations with low pf
System Reinforcement | Series compensation

Shunt compensation

SVCs

Line-drop compensation in AVRs

Devices and Control | Control of Generator step-up transformer taps
Automatic Shunt compensation switching
Operational Planning | Voltage Security Assessment

Voltage profile monitoring

Generator Rescheduling

System Protection HVDC modulation
schemes Emergency Load Shedding

Real-time operation

15



1.5 Genetic Algorithms and Voltage Collapse Mitigation

In order to determine the best-fit control action for a given voltage collapse condition, it
would be practical to use one of the many optimization techniques used in present day
technology. Genetic Algorithm (GA) is a preferred choice among different optimization

techniques suited for this application.

Genetic Algorithm is stochastic search technique used in computing to determine the
exact or approximate solution to an optimization problem. GAs are evolutionary
algorithms that use techniques inspired by evolutionary biology such as inheritance,

mutation, selection and crossover.

This thesis concentrates on the applications of Genetic Algorithms in determining the
appropriate combination of control actions to be taken in bringing a critically loaded
system back to its stable operating condition. A modified voltage instability indicator
termed as Collapse-Proximity Index (CPI) is developed and used in applying the

evolutionary algorithm into voltage collapse mitigation study.

The thesis can be summarized as follows:

Chapter 2 concentrates on the theory, development and implementation of the Collapse-

Proximity Index, with its application on two test systems.

16



Chapter 3 sheds light on the basic principles of Genetic Algorithms along with the
various processes involved in the evolution of an optimized solution.

The chapter also covers, in depth, the application of Genetic Algorithms in Voltage
Collapse mitigation, including all the steps in utilizing CPI to obtain the best-fit control
actions for voltage stability mitigation.

Chapter 4 describes the implementation of the developed algorithm on a real-time test
system with simulations to portray the applications and advantages of the proposed
algorithm. Final remarks and future recommendations are included in the Conclusion

Section of Chapter 4.

17



CHAPTER 2

VOLTAGE COLLAPSE PROXIMITY INDEX

In order to determine the voltage stability of a system, an index has to be formulated
which would facilitate the computation of accurate system stability identification. Taking
into consideration the different advantages and disadvantages of the earlier proposed
indices, a modified index termed as Collapse Proximity Index (CPI) is developed. The
modified index is used as an identifier in determining the appropriate control actions for a

system using the principles of Genetic Algorithms.

2.1 Equivalent system
Equivalent systems [24] are useful in two circumstances:
e To allow larger areas of major interconnected systems to be represented in
studies
e To achieve improved computational speed in simulations by removing buses

and branches that influence system behavior, but are not of specific interest.

18



2.1.1 Background on Equivalent system

Every large interconnected power system can be categorized into three different
categories: Internal system, Boundary system and External system as shown in Fig 2.1.
The external system is that part of the system that needs to be equivalenced. The internal

system is that part of the system that is under consideration.

N ' 7
Internal H External
System i System
S/ -
Boundary
System
Fig. 2.1

Categorization of a large interconnected power system

The internal system can be classified into three sub-categories:
¢ Load Bus Sub-system: Includes buses that are connected to loads
¢ Source Bus sub-system: Includes buses that are connected to generators

¢ Tie Bus sub-system: Includes buses that have neither loads nor generators

19



2.1.2 Two-Bus Equivalent system representation

A simple two-bus equivalent system model is taken into consideration for formulation of
the Voltage Collapse-Proximity index, as shown in Fig 1.1. The two-bus system consists
of a source with voltage magnitude Vs. A load with active power P, reactive power Q is
supplied from the source through a transmission line of line impedance Z (Z = R + jX).

The load bus voltage magnitude is taken as Vr.

2.2 Index Development

The load demand on the receiving-end bus can be expressed as a relation between Load
bus voltage Vr and the current I flowing through the transmission line from source to
load [15], [17].

S=P+jQ=Vg I 2.1)
The expression for current flowing through the line can be expressed in terms of the
voltage drop and the transmission line impedance Z as:

I=(Vs£d-Vr £0)/ (R +jX) (2.2)

2.2.1 Power Voltage relation

Substituting for the current in 2.1:
P+jQ = Ve [(Vs£8- Vg £0)/ (R +jX)] "

= Vg [(Vscos (8) +j Vssin (§) - VR)] '/ (R - jX)

20



= Vg [(Vscos (8) - VR) R + Vssin (8) X]/ (R + X?)
+j Ve [(Vscos (8) - V) X - Vgsin (8) R] / (R* + X?) (2.3)
Separating real and imaginary parts for 2.3:
P = Vg [(Vscos (8) - V) R + Vssin (8) X] / (R* + X?) (2.4)
Q= Vg [(Vscos (8) - VR) X - Vgsin (§) R] / (R* + X?) (2.5)
To determine the maximum transferrable power from source to the load, it is necessary to
obtain a relationship between the sending-end and receiving end voltages, Vs and Vg

with respect to the load P, Q.

2.2.2 Expression for Vg

Squaring and adding equations 4 and 5:

P’ + Q%= Vi*/ (R* + X2 [[(Vs cos (8) - VR) R + Vsssin (8) X]*+ [(Vscos (8) - Vr) X -
Vs sin (8) R]’]

Separating Vg to obtain a quadratic expression:

Vr®= ((Vs*/2) - (QX + PR) £ V[(Vs*/4) — (QX + PR) Vs’ — (PX - QR)’])**

(2.6)

From the above equation, the term in the square root can be extracted out as:

C = [(Vs'/4) — (QX + PR) V¢* — (PX — QR)’] (2.7)

21



2.2.3 Maximum Transferrable Power
The maximum transferrable power can be obtained from the expression C obtained in
(2.7) [17].
For a solution to be obtained for Vg from (2.6), the part of the expression within the
square root should be positive.

(i.e.) Cz=0 (2.8)

[(Vs*4) — (QX + PR) V¢* — (PX - QR)’]1 2 0 (2.9)

For maximum power to be transferred between the source and the load for the two-bus
equivalent system, the value of C should not exist, or:

C=0

[(Vs*4) - (QX + PR) Vs* — (PX - QR)’] =0 (2.10)
Under the condition described in (2.10), the load would be

Smax = Pmax + jQumax

This transforms (2.10) as:

[(Vs'/4) — (QuaxX + PyaxR) Vi? — (PyaxX — QuaxR)*] = 0

For Maximum Active power demand:

[(Vs'/4) — (QX + PymaxR) Vs* — (PumaxX — QR)’] =0

Solving for Vsz,
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2Vs® = (QX + PyaxR) + V[(QX + PyaxR)” + (PyaxX — QR)]
Extracting Pyiax from the above equation:

2PyaxX’= 2QRX — V&R + Vs V[(R? + X)(Vs® - 4QX)]

Pyax = (QR/X) = (Vs'R + Vs VI(R? + X*)(Vs® - 4QX)]) / 2X°
(2.11)
The above expression derives a relationship between the Maximum Active Power
demand with respect to reactive power demand and the source voltage of the two-bus
system.

For Maximum Reactive power demand:

[(Vs"/4) - (QuaxX + PR) V5™ - (PX - QuaxR)"] = 0

Solving for Vsz,

2Vs” = (QuaxX + PR) £ V[(QuaxX + PR)” + (PX — QuaxR)’]
Extracting Qmax from the above equation:

2QmaxR?= 2PRX - V¢?X + Vs V[(R? + X?)(Vs® — 4PR)]

Qumax = (PX /R) - (V§’X + Vs V[(R? + X*)(Vs® - 4PR)]) / 2R?
The above expression derives a relationship between the Maximum Reactive Power
demand with respect to active power demand and the source voltage of the two-bus

system.

23



2.2.4 Relating Pyiax and P through CPI

The maximum transferrable active power demand determines the upper limit of the load
flow that would be possible for the given system parameters. If a condition is reached
where the active power demand exceeds the maximum transferrable power for the given
system loading condition, a system voltage collapse is imminent.

As a measure of accurately identifying the proximity of the system to such a voltage
collapse condition, the Collapse Proximity Index (CPI) is defined.

The Collapse Proximity Index can be expressed as:

(2.12)

2.3 Properties of Collapse Proximity Index
The Index defined above has the following prominent properties:

e The ratio of PMAX to P represents the extent to which the system is stressed. If
current loading condition is approximately equal to the Maximum transferrable
active power demand:

CPI = 1
PMAX/P=1 = PMAX =P
The above expression represents the boundary condition for system stability. The

system is said have a Boundary Value (Margin B) of Voltage Stability.
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If the current system loading condition were to be greater than the maximum
permissible active power demand, the Collapse Proximity Index value would
reduce below the boundary value of 1.

CPI < 1

PMAX/P<1 = PMAX <P
The system would now move to an unstable state, leading to voltage collapse. In
other words, the system would be in the Voltage Collapse Region (Region C).
On the other hand, if the Index shows a value much greater than 1, it represents
the current loading condition of the system to be much less than the permissible
maximum active power that can be transferred from the source to the load.

CPI >> 1

PMAX/P>1 = PMAX >>P
As the power currently being transferred is well within its maximum limit, the
power system would be in a stable condition during the existence of the above
said condition. In other words, the system would be in the Stable Operating
Region (Region A) in terms of system voltage stability.
The different operating regions based on the Collapse Proximity Index can be

portrayed as shown in Region of Orientation, Fig 2.2:
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Fig 2.2

Regions of CPI Orientation

2.4 Similarities with other Indices

The Collapse Proximity Index is a modified version of existing indices. As the maximum
power demand for a two-bus equivalent system forms the basis for the formulation of the
index, it can be compared to a lot of other indices that have been developed on the same

platform.

The index formulated in [17] is also based on the maximum power transferred in a two-
bus equivalent system.

The index is devised as:

VSI= mln( Pmargin/P Maxs Qmargin/ QMaX, Smargin/ SMax)
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where Prargin, Qmargin, Smargin are the load margins calculated as a difference between the

maximum permissible loading and the actual loading.

The modified CPI derived in this chapter is a close extension to the above-defined VSI as
both the indices are completely based on the maximum transferrable power theory. The
modified CPI provides a more accurate and broader variation in its values, ranging

between 10 and 1.00 as the system loading reaches its critical loading condition.

The technique proposed in [14], utilizing a Stability Monitoring And Reference Tuning
(SMART) Device, concentrates on the use of local measurements to estimate the
proximity of the system to voltage collapse. The developed device calculates the strength
of the transmission system relative to the bus. The collapse point is identified based on

the local load and its closeness to the strength calculated.

The proposed CPI and the SMART Device voltage collapse identifier follow similar
patterns in voltage collapse point identification as both indices have a decreasing index
trend with increase in system loading. Just as in the case of the CPI, the identifier
proposed in [14] portrays a weakened system as the index reaches a value of 1.00. At the
voltage collapse point, the value of the Thevenin equivalent impedance (Zrhey) i equal to
the magnitude of the apparent impedance (Zapp) making the index value equal to 1.00.

This represents a condition similar to the one described in Section 2.3 and Fig. 2.2.
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2.5 Advantages

The following lists the advantages of implementing CPI for determining system closeness

to voltage collapse:

Accurate System State projection:

As the proposed CPI shows a greater range-variation for the three different system
states — Stable, Marginally Stable, Unstable — the accuracy of system collapse
prediction is high and accurate. The index provides a closer and precise look at
the degree of closeness to the voltage collapse point by determining the threshold
and the marginal limits. As previously described, the index accurately portrays the

system state to be in critical condition as it moves closer to the 1.00 mark.

Simpler Implementation:

With complete formulation of the index based on basic principles of power flow
and two-bus equivalent systems, it remains simple and easy to understand and
implement in different system studies. The fundamental background in
determining the closeness of the system to the voltage collapse point is based on
the basic principles of identifying the maximum power demand that the system
can take in. This simple yet powerful base helps in better understanding of the

index and improved applications to it.
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Easier application of remedial actions
As described, the optimal pickup values of the CPI are easier to determine. This
helps in improved applications of remedial actions, like the ones described in the

latter sections of this thesis.

Extensive use in Transmission Planning Studies:

The utilization of the two-bus equivalent system reduction in determining the
closeness of the system to voltage collapse in itself underlines the importance of
its extensive use in Transmission system planning operations. The index can be
used not just in determining the system state for a given loading condition, but
can also be used in identifying the maximum loading capability for a given bus
based on the present loading conditions and implementation of appropriate control
actions. This can be a very important tool in load forecasting, as it would help
transmission planners in observing the load trend and making certain that the

system load incrementation does not reach beyond its maximum capability limit.

Possible applications in system dynamics:
With the application of synchrophasors and real time monitoring equipments,
time-synchronized measurements can be obtained and utilized in determining the

current system state and closeness of the system to voltage collapse.
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2.6 Index Implementation on Test Systems
The proposed index is applied on two test systems. The degree of closeness to voltage
collapse condition is determined by observing the value of the index and its underlying

region according to Fig 2.2.

2.6.1 Test systems
Two test systems are considered for implementing the index and observing its

effectiveness in determining a voltage collapse situation.

A PSS/E test system consists of 23 buses, including 6 generators. The test system
includes of a number of loads, transformers and capacitor banks. The single line

representation of the test system is represented as shown in Fig 2.3.

An IEEE 39 Bus New England Test system is also used to check for voltage collapse-
identifying situations using the proposed index. This test system consists of 10 generating
units along with a number of loads and transformers. The single line diagram for the 39-

bus test system is shown in Fig 2.4.
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2.6.2 Implementation on PSS/E test system
In order to determine the effectiveness of the index in determining a voltage collapse
situation, a load bus from the PSS/E test system is considered. Load incrementation is

performed at this bus and the system is observed for voltage instability.

2.6.2.1 Steps in Index evaluation
The following steps are performed to identify the critical loading condition at a specific
bus on the IEEE test system using the proposed index:
e [dentification of the test load bus:
The load bus to be monitored is identified as Bus 203 with a base-case loading of

300 MW, 150 MV AR, as shown in Fig 2.5.
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Fig 2.5

Load Bus 203 (PSS/E system) Identification
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The reasons for selection of Bus 203 for simulation analysis are
e Lightly loaded bus under normal operating conditions
® Bus voltage well within the upper and lower limits
¢ (Closeness to a central district
System reduction to a two-bus equivalent:
The system is reduced to a two-bus equivalent behind the load Bus 203; system
swing bus being Bus 3011.
Calculation of Pyax for different loading conditions
The value of Pyax is obtained based on the expression derived in 2.11 of Section
2.23.
Load increment
Load is incremented by approximately 60 MVA.
Calculation of CPI
The Collapse Proximity Index for each loading condition is calculated based on
the expression described in (2.12) of Section 2.2.3.
Observing the region of orientation
The Collapse Proximity Index is observed in the region of orientation, as
described in Figure 2.2. The region of orientation portrays a distinct variation in

CPI as loading at Bus 203 approaches 220% of its base case loading condition.
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e Determining the critical loading point
The critical loading condition, based on the orientation of the indices is
determined. It can be observed that the critical loading condition is reached when

the load is 220% of the base case loading at Bus 203 for the PSS/E test system.

2.6.2.2 Tabulation of observed CPI and Inferences
The following table (Table 2.1) represents the value of the Collapse Proximity Index for
the corresponding loading condition at Bus 203 of the PSS/E SAVNW test case. Table

2.2 represents the load bus voltage with respect to different loading condition.

The results obtained from Table 2.1 clearly indicate the existence of crifical loading
condition beyond 220% and voltage collapse situation beyond 240%. It can be
determined from the Collapse Proximity Index data that as the index value approaches

1.00, the system moves from a stable state to a region of critical/marginal stability.
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Table 2.1

Collapse Proximity Index Table for Bus 203 (PSS/E system)

% of Base case
P Load (MW) Loading CPI
300 100 3.0421
360 120 2.441
420 140 2.0083
480 160 1.6804
540 180 1.422
600 200 1.2118
660 220 1.1018
720 240 0.8855

From Table 2.2, it is clear that beyond the loading of 660MW at Bus 153, the bus voltage
Vr shows a sharp drop to 0.14pu form a value of 0.92p.u. This clearly indicates the
usability of the index in determining the state of the system as it moves to a region of

instability resulting in voltage collapse.

Table 2.2

Voltage and Active Power demand comparison for Bus 203

P Load (MW) Vi

300 0.9665
360 0.9556
420 0.9438
480 0.931

540 0.9169
600 0.9013
720 0.0254
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The following plot shows the trend observed for the Collapse Proximity Index with
respect to the load increment. It can be observed the region between 200% and 220% of

base case loading refers to the critical loading region.

i 56 i8¢ 150 LAY 250 3043
Y of Base Loadiag
100 %,

% of Maximum Loading

Plot 2.1

CPI vs % of Base loading for Bus 203
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The corresponding P-V curve for the above loading is obtained as shown in Plot 4.2.

Load Bus Voltage VR

e -
4.6 -
.

8.3 -

P-V curve

9 o8 20 MM 48 580 o "‘ii B

Active Power Loading {MW)

100 %
% of Maximum Loading

Plot 2.2

P-V curve for Bus 203

2.6.3 Implementation on IEEE New England test system

The effectiveness of the index in determining a voltage collapse situation is ascertained

by incrementing the load at a bus for the IEEE 39 Bus New England Test System.

2.6.3.1 Steps in Index evaluation

The following steps are performed to identify the critical loading condition at a specific

bus on the IEEE test system using the proposed index:
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e [dentification of the test load bus:
The load bus to be monitored is identified as Bus 23 with a base-case loading of

247.5 MW, 84.6 MV AR, as shown in Fig 2.5.
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Fig 2.6

Load Bus 23 (IEEE system) Identification

The reasons for selection of Bus 23 for simulation analysis are as described in
Section 2.6.2.1.

e System reduction to a two-bus equivalent:
The system is reduced to a two-bus equivalent behind the load Bus 23; system

swing bus being Bus 39.
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e Calculation of Pyax for different loading conditions
The value of Pyax is obtained based on the expression derived in 2.11 of Section
2.23.

® [Load increment
Load is incremented by 20 % of base-case loading.

e Calculation of CPI
The Collapse Proximity Index for each loading condition is calculated based on
the expression described in 2.12, Section 2.2.3.

e (Observing the region of orientation
The Collapse Proximity Index is observed in the region of orientation, as
described in Figure 2.2. The region of orientation portrays a distinct variation in
CPI as loading at Bus 23 approaches 220% of its base case loading condition.

e Determining the critical loading point
The critical loading condition, based on the orientation of the indices is
determined. It can be observed that the critical loading condition is reached when

the load is 230% of the base case loading at Bus 23 for the 39-bus test system.

2.6.2.2 Tabulation of observed CPI and Inferences

The following table (Table 2.3) represents the value of the Collapse Proximity Index for

the corresponding loading condition at Bus 23 of the IEEE 39-bus test case.
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The results obtained from Table 2.3 clearly indicate the existence of crifical loading
condition beyond 230% and voltage collapse situation beyond 240%. It can be
determined from the Collapse Proximity Index data that as the index value approaches

1.00, the system moves from a stable state to a region of critical/marginal stability.

Table 2.3

Collapse Proximity Index Table for Bus 23 (IEEE system)

% of Base-Case
P Load (MW) Loading CPI

247.5 100 3.1423

297 120 2.5578
346.5 140 2.139

396 160 1.8236
420.75 170 1.6933
470.25 190 1.4729
519.75 200 1.2933
544.5 220 1.2153
569.25 230 1.1438
59400 240 0.0108

The following plot (Plot 2.3) shows the trend observed for the Collapse Proximity Index
with respect to the load increment. It can be observed the region between 230% and

240% of base case loading refers to the critical loading region.
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CHAPTER 3

GENETIC ALGORITHM - OVERVIEW AND APPLICATION

3.1 Introduction

Genetic algorithms (GAs) are stochastic global search and optimization methods that
mimic the metaphor of natural biological evolution. GAs operates on a population of
potential solutions applying the principle of survival of the fittest to produce successively
better approximations to a solution. At each generation of a GA, a new set of
approximations is created by the process of selecting individuals according to their level
of fitness in the problem domain and reproducing them using operators borrowed from
natural genetics. This process leads to the evolution of populations of individuals that are
better suited to their environment than the individuals from which they were created, just

as in natural adaptation.

Genetic Algorithms are based on the Theory of Evolution - 'survival of the fittest' [21]. In
nature, individuals that are more fit are more likely to breed and pass their characteristics
on to future generations. Genetic Algorithms retain their identity from nature, modeling
complex and difficult-to-solve problems as genetic objects. These algorithms are inspired
by Darwin's theory about evolution. Solution to a problem solved by genetic algorithms

is evolved.
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In Genetic Algorithms, an initial population is built using individuals representing
random solutions. Each subsequent population that is built uses the previous population

as a base - taking the more fit individuals to breed better solutions.

Genetic Algorithms breed solutions. An initial population is built using individuals
representing random solutions. Each subsequent population that is built (each subsequent
generation) uses the previous population as a base - taking the more fit individuals to

breed better solutions.

These algorithms have been used in the past to help solve very complex problems not

easily solved using standard, problem-specific methods.

3.1.1 Terminology used in Genetic Algorithms
Certain expressions used in the GA have been derived from their biological roots [21].
Some of the most common terms used in this thesis with reference to Genetic Algorithms
are as follows:

¢ Individual - Any possible solution to the applied problem

¢ Population - Group of all individuals randomly generated for optimization

e Search Space - All possible solutions to the problem

¢ Chromosome — Blueprint (coding) of an individual
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e Trait - Possible aspect of an individual

e Locus - The position of a gene on the chromosome

¢ Fitness — Degree of acceptability of an individual

e Allele - Possible settings for a trait

e Selection, Crossover, Mutation — Operators used on chromosome population
based on Fitness

A clear representation of the above used vocabulary is shown as follows in Fig 3.1:

Chromosomel = R EY SN

. Selection
E{L} Crossover ‘»---->

Mutation

08722772 2 7227

Population

Fig 3.1

Genetic Algorithm Terminology
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3.1.2 Characteristics of Genetic Algorithms
Genetic algorithms (GAs) differ from more traditional optimization techniques with the
following characteristics:
® (GAs use objective function information to guide the search, not derivative or
other auxiliary information, making it a global search optimization technique.
e Coding of parameters is utilized in Genetic Algorithms to calculate the objective
function in guiding the search rather than utilizing the parameters themselves.
This helps in maintaining the originality of the given parameters while
manipulating with their coded counterparts for a best-fit solution.
® (GAs search through many points in solution space at one time, not a single point.
The broadened search space facilitates in greater accuracy and greater
optimization.
® (GAs use probabilistic rules not deterministic rules in moving from one set of

solution to the next.

3.2 Steps Involved in Genetic Algorithms
Genetic Algorithms require a definite set of steps to be followed in order to optimize a
given problem. A pictorial representation providing an overview of the steps can be

observed in Fig 3.2 as follows:
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Fig 3.2

Genetic Algorithm Process

The following sequence of steps help yield an optimized solution:

o  Randomly generated initial population strings:

A given search space is selected to randomly generate a Population for the given
optimization problem. The Population consists of all the Individuals that can be generated
within the given search space. These individual members are also termed as Problem

Variables.

o  Individual Encoding:

Encoding forms the basis for initiating a Genetic Algorithm process for an optimization

problem.
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The randomly generated problem variables (individuals) are ‘Encoded’ or in other words,
converted to suitable strings. The reason for conversion is due to the underlining principle
of genetic algorithms that they do not modify the authenticity of the generated individuals
but perform manipulations on these encoded strings. Encoding is further classified into
four categories

¢ Binary Encoding

¢ Permutation Encoding

¢ Value Encoding

¢ Tree Encoding
Of these, Permutation, Value and Tree encoding procedures are operation and problem

dependent. A brief description of Binary Encoding procedure is as follows.

Binary Encoding

Binary encoding is the most common encoding used in practice. Initial research in
Genetic Algorithms started with binary encoding and has been widely used primarily due
to its relative simplicity. The binary strings that are generated are termed as

Chromosomes as they represent the biological components of a gene in a binary form.

As the name suggests, every chromosome formulated through binary encoding consists of

a string of bits - 0 or 1.
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Binary encoding gives many possible chromosomes even with a small number of alleles.
However, a major drawback that this coding encounters is that the binary form is often
not natural for many problem variables and hence requires corrections to be made after

crossover and/or mutation operations.

o  FEvaluating Fitness value

Fitness value forms the primary basis is selecting the best-fit chromosomes from the
population. The fitness value for each chromosome is obtained based on a problem
specific expression called Fitness Function.

A fitness function is a particular type of objective function that quantifies the optimality
of a chromosome in a genetic algorithm so that the particular chromosome may be ranked
against all the other chromosomes. An ideal fitness function correlates closely with the

algorithm's goal, and yet may be computed quickly.

o Selecting the Best set of parent strings

Based on the fitness value obtained for each chromosome, the Best-Fit Individuals are
selected for further GA operations. The best-fit chromosomes are also termed as Optimal
Chromosomes for their ability to approach an optimal solution to the problem. Optimal
chromosomes, or at least chromosomes which are closer to being optimal, are allowed to
breed and mix their datasets by any of the several techniques, producing a new generation

of chromosomes that would be even better fit when compared to the parent strings.
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There are a number of selection processes that are utilized and implemented in GA. The

most widely used selection procedures are:
® Roulette Wheel Selection
® Rank Selection
® Steady State Selection

® Elitism

a. Roulette Wheel Selection
Parent strings are selected according to their fitness. The better the chromosomes are, the
more chances they have to be selected. A roulette wheel is where all the chromosomes in
the population are placed. The size of the section in the Roulette wheel is proportional to
the value of the fitness function of every chromosome - the bigger the value is, the larger
the section is.
The following algorithm can describe this process:

1. Sum: Calculate the sum (S) of fitness of all chromosome in a population

2. Select: Generate random number (r) from the interval (0,S)

3. Loop: Analyze (Rotate) the population and the fitness sum from 0 to sum S.

When the sum § is greater than r, stop and return the current chromosome.

The step 1 is performed only once for each population.
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For example, a sample set of chromosomes with the following fitness values and

corresponding % of the total fitness is considered as shown in Table 3.1

Table 3.1

Sample Chromosome set with fitness values

Chromosome Fitness Value % of Total
1 6.82 31
2 1.11 5
3 8.48 38
4 2.57 12
5 3.08 14

It can be observed from the above table that Chromosome 3 has the highest fitness value
while Chromosome 2 has the least. The percentage fitness values are used to configure
the Roulette Wheel. Fig 3.3 highlights that Chromosome 3 has a segment equal to 38% of
the total area. The Roulette Wheel sections indicate the clear share of the total fitness for

the given sample parent set.
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Roulette Wheel Sections

The number of times the roulette wheel is spun is equal to size of the population. As can
be seen from the way the wheel is now divided, each time the wheel stops, the fitter
individuals have the greatest chance of being selected for the next generation compared

to the other chromosomes. This can be observed in Fig 3.4 as shown below.
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b. Rank Selection

Roulette Wheel Selection will have problems when there are greater differences in fitness
values among various individual population elements. Rank selection ranks the
population first and then every chromosome receives fitness value determined by this
ranking. This selection process ensures that all chromosomes have a chance to be
selected. The primary disadvantage of this procedure is the fact that this method could
lead to a slower convergence. This is because the best chromosomes do not differ much

with respect to their fitness values from the rest.

53



c¢. Steady State Selection
The main principle applied in this selection process is that a large number of

chromosomes survive to the next generation while the un-fit get neglected.

d. Elitism

When creating a new population by the processes of crossover and mutation, there is a
high probability that the best chromosome is lost in the milieu of operations. Elitism is
the process of selecting better individuals, or more specifically, selecting individual with
a bias towards the better ones. Elitism is a method that first copies the best chromosome
(or few better chromosomes) to the new population. The rest of the population is
constructed using the above-mentioned techniques like Roulette Wheel, Rank or Steady
State Selection. Elitism can rapidly increase the performance of GA as it prevents a loss

of the best-found solution.

o (reating new strings by applving crossover and mutation operators

The final important step in the Genetic Algorithm optimization is performing operations
to obtain the child strings from the evolved best-fit parent strings. These operations
include Selection, Crossover and Mutation - terms largely based on the biological
evolution theory. These operations yield new child strings that carry the best attributes of

both the parent strings, resulting in a better-fit child population.
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A fitness value check of all the individuals from the child string population brings out the
best-fit child string, which undoubtedly is the most optimum solution to the objective

function.

a. Crossover Operation
Every individual of a population is defined by its genetic information - stored in nature
using a DNA strand. With the help of the Crossover operator, certain genes from parent

chromosomes are selected to create new offsprings, called child strings.

The primary purpose of the crossover operator is to get genetic material from the
previous generation to the subsequent generation. When two individual strings undergo
crossover operation, the resulting individuals” DNA reflects some of the information

from each of the parent strings.

After having been selected, two individual chromosomes swap genetic material to create
‘offsprings’, called child strings. The idea is that, through this swapping of material, even

two relatively average individuals can create even more fit offspring.

Crossover Classifications
Based on the methodology applied to generate child strings from two parent binary

strings, the crossover operation can be classified into four categories as explained below.
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a.1 Single point crossover
In this type of operation, only one crossover point exists. Binary string from the
beginning of the chromosome to the crossover point is copied from the first parent while

the rest is copied from the other parent.

The operation of a single point crossover can be explained from the example shown

below in Fig 3.5

Parent A Parent B Offspring

11001011 + 11011111 = 11001111
Fig 3.5

Single Point Crossover Example

a.2 Two-point crossover

As indicated in the name, two crossover points are selected here. Binary string from the
beginning of the chromosome to the first crossover point is copied from the first parent,
the part from the first to the second crossover point is copied from the other parent and

the rest is copied from the first parent again.
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The operation of a Two-point crossover can be explained from the example shown below

in Fig 3.6

Parent A Parent B Offspring

R

11001011 + 11011111 11011111

Fig 3.6

Two — Point Crossover Example

a.3 Uniform crossover
There is no specific number of crossover points in this classification. Bits are randomly

copied from the first or from the second parent string to form the child string.

a.4 Arithmetic crossover
Arithmetic operations including AND, OR, NAND & NOR operators are the basis for

generation of child strings from parent chromosomes using this crossover classification.
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Crossover Probability
Crossover probability determines the frequency of performing a crossover operation. If
there is no crossover, offspring (child stings) are exact copies of the parent strings. If
there is crossover, offspring are made from parts of both parent's chromosome.
e If crossover probability is 100%, all offspring are generated through crossover
operations.
e If the probability is 0%, a whole new generation is made from exact copies of

chromosomes from the parent population.

b. Mutation Operation
Over time, all of the individuals remaining in the population may have lost a specific
attribute. Mutation allows for the reintroduction of attributes, by randomly altering the

characteristics of an individual.

The purpose of mutation in GAs is to allow the algorithm to avoid local minima by
preventing the population of chromosomes from becoming too similar to each other, thus
slowing or even stopping evolution. In other words, mutation prevents failing of all
solutions in population and presents a local optimum solution to the problem. The new
offspring child strings can be changed randomly using Mutation. For binary encoding, a

few randomly chosen bits can be interchanged from 1 to 0 or from 0 to 1.
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The following individual shows the effects of mutation:

BEFORE: 1101101001101110
AFTER: 1101108001101110

Fig 3.7

Mutation Process

Mutation Probability
Mutation probability determines how often parts of chromosome will be mutated. If there
is no mutation, offspring are generated immediately after crossover (or directly copied)
without any change. If mutation is performed, one or more parts of a chromosome are
changed.

¢ If mutation probability is 100%, the entire binary structure of the chromosome is

changed
¢ On the other hand, if the probability is 0%, no part of the chromosome is

changed.

3.3 General applications of Genetic Algorithms
With a complete generic overview of the basic structural organization in implementing
Genetic Algorithms, it makes it necessary to understand their applications in real-time

problems.
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Genetic Algorithms have successfully been applied to a wide range of optimization
problems. On a more specific note, Genetic Algorithms (GAs) have been implemented
with an illustrious reputation in solving combinatorial optimization problems — problems
in which optimization fortifies a fundamental solution in addition to an intermediate
solution. The use of Genetic Algorithms in a number of these special optimization

problems has produced improved solutions than most of the other conventional methods.

3.3.1 Voltage Stability Specific Application

With reference to Power system voltage stability, a few theories have been proposed on
varied topics, involving contingency ranking [22], [23], system robustness measure and
economic impact analysis. A more viable combinatorial optimization problem appears in

mitigating voltage collapse condition appearing on a system.

The primary objective of voltage collapse mitigation is to use appropriate control actions

to bring back system stability.

Before finalizing on the necessary mitigatory measures, it is essential to determine the
collapse loading condition and identify the critical point of the system for given system
parameters. As a result, critical point identification forms an intermediate problem that

needs to be handled before a solution to voltage collapse mitigation is determined.
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The need to optimize a fundamental problem in addition to an intermediate issue
classifies it as a combinatorial optimization problem with Genetic Algorithm as a more
suitable optimization approach. The technique proposed in this chapter concentrates on
bringing out the optimizing capabilities of Genetic Algorithms in determining the
appropriate combination of control actions to be taken in bringing a critically loaded
system back to its stable operating condition. The intermediate solution that it utilizes
would be the critical loading point determined by the Collapse Proximity Index (CPI)

described in Chapters 2 of this thesis.

The Genetic Algorithm based combinatorial optimization approach to voltage collapse

mitigation can be represented as shown in Fig 3.8.

Critical point
identification

using CPI
A PN .
& \ -
Critically loaded Applying GA to
makc the system
ystem Stable
Region of Intermediate
__________________ Solution
Fundamental Problem Optimized Solution
Fig 3.8

GA Based Combinatorial Optimization Approach to Voltage Collapse Mitigation
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3.3.2 Integrating CPI and Genetic Algorithms for Voltage Collapse Mitigation

The following Fig 3.9 represents schematically, the operation flow in using the
formulated Collapse Proximity Index as an intermediate solution in generating optimized
control actions based on the principles of Generic Algorithms to mitigate a voltage
collapse condition. Integrating the index along with Genetic Algorithms makes it a

combinatorial optimization problem.

Perfor

Power Flow Perfarm

: Fowar Flow

Fig 3.9

Operation Flow for CPI Integrated GA Approach

The entire process leading to Voltage collapse mitigation, as shown in the above figure,

can be categorized into three sections:
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° Load Incrementation
° Critical Point Identification

o Voltage Collapse Mitigation

a. Load Incrementation
In order to identify the critical loading point for a given system at a load bus, the most
efficient procedure is to increment the load by a defined margin and observe the system

operation.

Load Incrementation is performed starting from 100% loading condition of the base-case
load at a particular load bus with load increment of the order of 10% - 20% of the actual
(base case) active power load value. The defined load increment pattern helps in
identifying the critical loading point efficiently and accurately. The value of
Incrementation depends on the closeness to the critical loading point as defined in by the

Collapse Proximity Index.

b. Critical Point Identification using CPI

As mentioned in detail in Chapter 2, the Collapse Proximity Index provides an accurate
indication of the critical loading point for a load at a particular bus in a system. The
identification of the Critical loading condition forms the Intermediate solution to the

Combinatorial Optimization Problem.
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c¢. Voltage Collapse Mitigation using GA

Incorporating the principles of Genetic Algorithms, the best-fit combination of earmarked
control actions are generated, helping push the system away from a voltage collapse
condition.

The control actions that can be utilized to mitigate voltage collapse have been identified
and discussed in detail in Chapter 1, Section 1.4. As each power system has varied
system parameters, the control actions selected for implementation are problem-specific

and cannot be generalized.

3.4 Sequence of Steps in Applying Genetic Algorithms

The following algorithm presents an outline of all the steps implemented using Genetic

Algorithms to mitigate a voltage collapse situation:

1. Population Size determination:

Before initiating a Genetic Algorithm process, the population size of the randomly
generated strings has to be assumed. Population size would vary depending on the
accuracy and the time-consumption requirements for a given problem. As the
given combinatorial optimization technique requires higher accuracy and lesser

time consumption, a population size of ‘20’ is selected for computation.
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2. Appropriate control action identification:

In order to initiate the GA process, the control actions required for mitigating a
collapse situation have to be identified. As specified in Chapter 1, Section 1.4, a
number of control actions can be implemented based on system parameters and
economic liabilities. Some of the most commonly implemented control actions

include Transformer tap settings and Capacitor bank settings.

3. Initial Population generation.

Based on the selected control actions, an initial population of identified
population size is generated. Individual population is generated for each control
action. All individuals in the population are randomly generated, but are

maintained within the specified boundary values for each control action.

4. Population Encoding:

Taking into consideration, all the advantages associated when comparing to other
encoding techniques, Binary Encoding is selected to convert all population

individuals into binary strings called Chromosomes.

5. Fitness Value determination.:

One of the most vital steps in Genetic Algorithms is to determine the fitness value

of individuals based on the Objective (Fitness) function.
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As the collapse mitigation problem is a combinatorial optimization issue, an
intermediate solution based on the Collapse-Proximity Index (CPI) is utilized in

the fitness function.

Hence, for this optimization problem, the Genetic Algorithm is implemented with

respect to the following fitness function f:

fO=1/[1+pn*CPI(3)]
3.1)

where:
1 = Individual from the generated Population
CPI = Collapse Proximity Index

u = Precision Identifier

Population member i represents one set of combination of different control
actions randomly generated in Step 3. As each combination refers to a distinct
system configuration, the load flow and consequential equivalent circuit reduction

would result in a distinct Collapse Proximity Index.

The importance of Precision Identifier u is to help improve the accuracy of the

fitness value calculated.
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The range of p is limited for a simple reason that a very high value would result in
an extremely small fitness value while smaller values of p would yield
indistinguishable fitness values. A value of 0.01 has been identified as a more
favorable value for p. The fitness value calculated for each population member is

stored in an array of size equal to the total population size.

Selection of Best-fit chromosomes:

Roulette Wheel Selection scheme is implemented in identifying the best-fit
chromosomes from the population. As Roulette Wheel selection is simpler to
implement and provides a greater probability of selecting strings with higher
fitness values more often than those that are less fit, the child strings to be
generated are expected to be of better attributes than with those implemented on

other schemes.

The three steps in Roulette Wheel Selection process — Sum, Select and Rotate —

are followed and the best-fit strings are isolated from the rest of the population for

further operations. An overview of all the steps performed in the Roulette Wheel

Selection Process is as follows:

1. The fitness values of all the individual population members are stored.
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ii. The population counter is initialized to 1 = 0 and incremented by
counteri=1i+1

iii. The selection counter is initialized as j = 0 and the cumulative sum
(fitness total) as S=0

iv. A random number X is generated

v. Selection counter is incremented as j=j + 1

vi. The cumulative sum of fitness is calculated as

S=S+f@{)/ L)

vii. Till the value of X >= S, Step (vi) is repeated.

viii.  When the above condition is satisfied, the individual is selected
and stored as SEL,;.

ix. The whole process from Step (iii) is repeated for the entire population
of chromosomes.

x. SEL represents the best-fit chromosomes selected from the population.

7. Generation of Crossover site:

Before performing Crossover operation on the best-fit strings, it is necessary to
identify the Crossover Site — the position at which crossover between two parent

strings has to be performed.
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In order to generate crossover sites for parent strings, the maximum string size of
the parent string has to be taken into consideration. It should be noted that the
maximum position of crossover couldn’t exceed or equate to the total binary

string length.

For example, considering a binary string A & B as shown below for a crossover
operation:
A —-1000100101001001

B-1011110110001011

As the maximum string length is 16,

Crossover Site < 16

Also, a pair of the best-fit chromosomes would have one common crossover site.
Taking all these factors in view, random number initiation is implemented in

obtaining crossover sites for each pairs of best-fit parent binary strings.

Hence, for a best-fit chromosome population of size N, N/2 Crossover sites are

generated.
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8. Crossover Operation:

For the crossover operation, the crossover probability for this Genetic Algorithm
optimization problem is taken to be /00%. In other words, the entire string of the
child string is formed by crossover operation. The ideal crossover type that can be
effectively implemented in this combinatorial optimization problem is the Single-

Point Crossover.

As the binary string length of each chromosome is not constant over different
populations, Single point crossover is more advantageous here, making it simpler

and efficient for programming and comprehending.

Crossover is performed between pairs of chromosomes in each parent string
population. It is to be noted that crossover is performed between pairs within the
same population only. As each population represents a randomly generated array
of a particular control action value, crossover cannot be performed between two

individuals from two different populations (two different control action elements).

Upon crossover, a new population of binary chromosomes, called Child Strings is

generated. These child strings have the best attributes of both the parent strings.
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9.

10.

Child String fitness evaluation after Crossover Operation:

While the arrays of newly formed child strings are in their binary forms, there is a
need to convert these binary strings to their decimal equivalents in order to

evaluate their fitness.

The binary-to-decimal conversion yields a new set of individual elements
representing various combinations of control actions in each population. In order
to calculate the fitness value for each population member, respective control
action combinations are incorporated into the power system. The two-bus
equivalent system produces a specific Collapse Proximity Index (CPI) for each
control action combination and this Child string — based CPI is utilized in the

fitness function.

Fitness value for each of the population member is calculated using the expression

from 3.1. All the fitness values are tabulated for best-fit child string selection.

Repeated Crossover:

From the above fitness value evaluation, if the fitness values of at least 50% of the
child strings from a population are less than or equal to the fitness value of the
best-fit parent string from the parent population, multiple crossover operations are

performed.
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11.

Repeated crossover is performed on the child strings until the fitness value
evaluation yields a population of child strings of which 50% or more are more fit
than compared to their best-fit parent string. Repeated crossover greatly increases
the possibility of obtaining the best-fit child chromosomes as the search space is

limited and possibility of local minima stagnation is drastically reduced.

The Genetic Algorithm based for this specific optimization problem restricts the
maximum repetitions in crossover operation to 10. If the requirement for a
repetitive crossover operation exceeds beyond 10, mutation operation is

performed.

Mutation Operation:

Mutation is not implemented for all population strings. Depending on the fitness
values obtained for the child strings, the applicability of mutation operation is

decided.

If the fitness values of all the child strings in a population generated by ten

repetitive crossover operations are less than or equal to that of the best-fit parent

string for that population, mutation operation is performed.
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12.

If on the other hand, all child strings for a population have fitness values greater
than that of the best-fit parent string for that population, mutation is not required

and the best-fit child string among the lot is selected as the optimized solution.

If, upon fitness value analysis, it has been determined that mutation operation is
inevitable, a mutation probability of 1% (0.01) is considered for the operation.
The reason for low mutation probability is due to the fact that a higher probability
would turn the process into a primitive random search. A low mutation
probability helps prevent the child string population from stagnating at local

optima.

As binary encoding is put into operation, Flip-Bit mutation process is performed

on the child strings as shown in Fig 5.11 of Chapter 5. The flip bit process inverts

the value of a chosen gene, changing bit O to 1 and vice-versa.

Child String Fitness Evaluation after Mutation Operation:

Mutation yields child strings that are more optimized and fit than their
predecessors. The fitness of these better-optimized strings is calculated by

repeating the fitness evaluation procedure as before.
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Upon identification of the highest fitness value from the array, the corresponding
mutated child string is extracted out and the decimal values for the different
control actions are generated. The control action values obtained are the best-fit

optimized control actions that would bring the system back to its stable operating

condition.

If mutation operation is not performed, the most optimized control actions are
extracted from identification of best-fit child strings obtained after crossover (or

repeated crossover) operations.

A flow chart representing the sequence of events implemented for the above described

Combinatorial Optimization Problem based on the principles of Genetic Algorithm is as

shown in Fig 3.10.
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Flowchart for Application of Genetic Algorithms
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Flowchart for Application of Genetic Algorithms
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3.5 Software Programs Employed
In order to implement the Genetic Algorithm-based approach on a system with critical
loading conditions, a combination of Power system related software programs is utilized.
The list of software packages employed in program development are as follows:

e Siemens PTI’s PSS/E (Version 31) [24]

e Mathworks’ MATLAB (Version R2007a) [25]

e MATPOWER (Version 3.2) [26]

An overview of all the Softwares utilized for this scheme can be observed in Appendix C

(Pgs. 121).
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CHAPTER 4

TESTING THE GA-BASED VOLTAGE COLLAPSE MITIGATION SCHEME

4.1 Introduction

The Genetic Algorithm — based combinatorial optimization technique developed in
Chapter 3 is simulated on a test system. The critical loading point of the system with
respect to a load bus is identified and an appropriate combination of control actions is
generated to bring the system out of the voltage collapse condition using the principles of

Genetic Algorithms.

4.1.1 PSS/E New England test system — System under consideration

A PSS/E sample system named ‘SAVNW — New England Test System’ is considered to
implement the proposed optimization technique. Siemens Power Technologies
International has developed the system as a sample system based on a New England

power system model.

Some key features of the test system are as shown below:

e The given system is a 3-area, 4-zone, 23 bus system which includes 21.6kV,

230kV and 500kV bus subsystems
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e There are 6 generating units in the system, with a maximum generation of up to
800MW

e The system consists of 23 transmission lines connecting 18 load buses and 6
generator buses. 2 multi-section lines are also put in place to connect a hydro
station to a 230kV sub-station

¢ Bus 3011 is considered to be the swing bus of the system

e 8 PQ loads are connected to the system with loads ranging between 200MW to
1200MW depending on the proximity to the central district

e The system also consists of 11 two-winding transformers

e 5 Capacitor shunt banks are placed at strategic locations on the system

A single-line representation of the above mentioned system could be observed in Fig 2.3.
The system network data is tabulated and can be observed in Tables A-1 to A-4,

Appendix A.

4.1.2 Normal Operation Conditions for the system

The test system mentioned above shows no Voltage violations in its normal operating
condition. The system convergence is met in one iteration. The p.u voltage values for the
system under Normal Operating conditions can be observed in Table A-1 in Appendix

(Pg 107).
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4.2 Load Bus to be examined
In order to effectively implement the proposed GA-based control action procedure for
voltage collapse mitigation, it is necessary to identify the load bus that encompasses the
following attributes:

e Lightly loaded under normal operating conditions

® Bus voltage well within the upper and lower limits

o (loseness to a central district

Taking all the above-mentioned factors into consideration, Load Bus 153 is selected for
load increment and voltage collapse mitigation simulation. Load Bus 153 displays the

following features to form an ideal test load point:

¢ Bus 153 has a steady-state loading condition of 200 MW, 100 MV AR, one of the
lowest compared to the rest of the loads in the system, making it a highly likely
test bus for the load increment simulation.

e The normal operating voltage at Bus 153 is 0.9930 p.u, well within the lower
voltage limit of 0.94 p.u and upper limit of 1.08 p.u.

e The location of the bus is one of the most important features for its selection.
Load Bus 153 is situated in the Midtown region of Area 1. The closest bus to Bus

153 is the Bus 154, situated in Downtown region of Area 1.
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From transmission planning perspective, this makes Bus 153 an ideal bus for
addition of load when a situation arises where load expansion in the area is
inevitable. This raises more creditability in selecting Bus 153 for the load

increment simulation.

A clearer understanding of the advantages of Bus 153 as a test point for the GA-based

simulation can be obtained from Fig 4.1, depicting the location of Bus 153 in Area 1.

= Ar=al

.. Busl153

 Brrsreariisy,

Fig 4.1

Load Bus 153 (PSS/E system) Identification
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4.3 Loading Capability Analysis for Bus 153
4.3.1 Simulation
The maximum loading capability of Load Bus 153 is determined as an intermediate
solution before optimization is applied for voltage collapse mitigation. Collapse
Proximity Index is utilized in determination of the critical point of loading, beyond
which, the system moves to voltage instability region. The following steps are included in
determination of the critical loading point:
e System reduction to a two-bus equivalent:
The entire system is reduced to a two-bus equivalent behind load Bus 153. System
swing bus at Bus 3011 is considered to be the equivalent system source. The two-
bus equivalent is obtained by repeated Kron reduction of the entire system. The

equivalent system is observed as shown in Fig 4.2:

Bus 3011 Bus 153
Z,, = 0.00304 +j 0.04416

[ ]
L J

Incremented
Source Load
P+jQ

Fig 4.2

Single line representation of the PSS/E ‘SAVNW? test system with respect to Bus 153
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Load increment

The load at Bus 153 is incremented by approximately 20 MVA. For every load

increment, the value of Pyax is calculated for CPI calculation based on Equation

2.11 in Chapter 2.

Calculation of CPI

The Collapse Proximity Index is calculated based on the expression described in
2.12 in Chapter 2. The value of the index is tabulated for each loading condition
based on the Pyax calculated as shown in Table 4.1. The voltage variations at

Load Bus 153 observed with respect to the loading increment is also tabulated as

shown in Table 4.2.

Collapse Proximity Index Table for Bus 153 (PSS/E system)

Table 4.1

P Load % of Maximum Base- CPI

(MW) Case Loading
200 100 5.27734
240 120 4.269395848
280 140 3.582853636
320 160 3.066368032
360 180 2.663210144
480 240 1.850730342
600 300 1.351804197
620 310 1.285003386
660 330 1.164931925
680 340 1.100242129
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Table 4.2

Voltage and Active Power demand comparison for Bus 153

P Load v

(Mw) "
200 0.993
240 0.9887
280 0.9841
320 0.9794
360 0.9744
480 0.9582
600 0.9393
620 0.9358
660 0.9158
680 0.1427

4.3.2 Result Analysis

e (Observing the region of orientation
The Collapse Proximity Index is observed in the region of orientation, as
described in Figure 2.2. The tabulated CPI values for different loading conditions
determined are observed and their trend is noted. The region of orientation
portrays a distinct variation in CPI as loading at Bus 153 approaches 300% of its
base case loading condition.

e Determining the critical loading point
The critical loading condition, based on the orientation of the indices is

determined.
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It can be observed that the critical loading condition is reached when the load is

330% of the base case loading at Bus 153 for the PSS/E test system.

The following plot (Plot 4.1) shows the trend observed for the Collapse Proximity Index
with respect to the load increment. It can be observed the region between 300% and

330% of base case loading, shown as a shaded region in the plot, refers to the critical

loading region.

CPlvs % Loading

P

s Geitiall |

¥ S ke Y A Faty 330 IHG AQ0 450 B0

Plot 4.1

CPI vs % Loading for Bus 153 (PSS/E System)
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The corresponding P-V curve for the above loading is obtained as shown in Plot 4.2.
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Plot 4.2

P-V curve for Bus 153

The P-V curve clearly shows that beyond a loading of 660 MW, the system voltage drops

drastically, leading to a voltage collapse condition.

4.4 Voltage Collapse Mitigation using Genetic Algorithms
The application of Genetic Algorithms into the voltage collapse mitigation problem is a

combinatorial optimization technique, as observed from Fig 3.12, Chapter 3.
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The sequence of steps involved in mitigating voltage collapse condition at Bus 153 from

the test system, thereby improving the voltage profile, by the application of Genetic

Algorithms is as follows:

1.

2.

Population Size determination:

As the given combinatorial optimization technique requires higher accuracy, a

population size of ‘20’ is selected for computation.

Appropriate control action identification:

A number of control actions can be implemented based on system parameters and
economic liabilities. The PSS/E SAVNW New England test system consists of
Capacitor banks and transformer taps, two of the most commonly used control
actions for voltage collapse mitigation. Load shedding is an alternative but is
consciously shunned as it negates the eventual objective of the optimization

scheme — increasing the loading capability of the system.

Taking all the factors into consideration, Transformer tap settings and Capacitor

bank settings are considered as the two sets of control actions to be implemented.

Initial Population generation.

Based on the two selected control actions, an initial population of with a

population size of 20 is generated for each control action.
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All individuals in the population are randomly generated, but are maintained

within the specified boundary values for each control action.

The boundary limits for

¢ Transformer tap position — 1 to 33

e (Capacitor Bank settings — 0 MVAR to 1000MVAR

Population Encoding:

Binary Encoding is utilized in converting all population elements into binary

strings called chromosomes.

A few of the converted populations strings are obtained as shown in Tables 4.3
and 4.4 for both the control actions (transformer tap settings, capacitor bank

settings) respectively.

As there are 11 Transformer tap settings and 5 Capacitor bank settings to be
monitored, the initial population binary arrays are of the size [20 x 66] and [20 x
50] respectively. Sample structures of encoded chromosomes representing all
transformer tap and capacitor bank settings are shown in Fig 4.3 and Fig 4.4

respectively.
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Fig 4.3
Encoded Chromosome structure for Transformer Tap setting

Fig 4.4

Encoded Chromosome structure for Capacitor Bank setting

Tabular representation of Control Actions:

Table 4.3

Initial randomly generated Population for Transformer Tap Positions
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Table 4.4

Initial Randomly generated Population for Capacitor Bank Settings

Decimal Values Binary Equivalent
36 0J]0|J0f0|1]|]0]|]0]1]|0]0O
110 0[0|Of1]1fO0]1]1]1]0
448 0l1|1f{1]0]0]|]0|0O]|0O]0O
480 OJ1|1f1]1]0]|]0]|0]|0O]0O
328 0J1|0f1]0]|0]1]|0]|0O]0O
381 Of1]0f1)1f1]1]1]0]1
43 0/0|JO[O]1]0])1|0Of1]1
449 Ol1|1f[1]0]|0|J0O|0Of0O]1
462 Of1j1f1]j0f0jJ1j1]1]0
63 0(0]OfO)1[1]1]1]1]1

5. Fitness Value determination.:

Using the expression from 3.1, Chapter 3, the fitness values of all individual
elements from the two population spaces are calculated. As the collapse
mitigation problem is a combinatorial optimization issue, an intermediate solution

based on the Collapse-Proximity Index (CPI) is utilized in the fitness function.

Population member i from the fitness function represents one set of combination
of the two control actions randomly generated in Step 3. As each combination
refers to a distinct system configuration, the load flow and consequential

equivalent circuit reduction result in a distinct Collapse Proximity Index.
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The value of the precision identifier p is taken to be 0.01 for the fitness function.

The fitness value calculated for each population member is stored in an array of
size equal to the total population size. A fitness value table representing values of

population strings from a random generation are shown in Table 4.5.

Table 4.5

Fitness values of randomly generated Population Strings

Population Number Fitness Value
1 0.9874
2 0.9849
3 0.9866
4 0.9864
5 0.9853
6 0.9856
7 0.9842
8 0.9856
9 0.9869
10 0.9841
11 0.9854
12 0.9851
13 0.985
14 0.9853
15 0.9854
16 0.9876
17 0.9858
18 0.9865
19 0.9848
20 0.986
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6. Selection of Best-fit chromosomes:

Taking into considerations all the advantages associated with it, Roulette Wheel
Selection scheme is implemented in identifying the best-fit chromosomes from the
population. All the steps mentioned under Roulette Wheel Selection in Section

3.2, Chapter 3 are performed and the best-fit strings are selected.

7. Generation of Crossover Site:

Crossover Sites are generated for all the best-fit parent strings in order to perform
crossover operation. A crossover site is commonly generated for a pair of parent

strings of the population.

As mentioned earlier, the maximum position of crossover cannot exceed or equate
to the total binary string length. In this optimization problem, two populations of

best-fit parent strings exist, each with different binary string length.

Binary String length for
¢ Population representing Transformer Tap positions:
6 (for each tap position, totaling to 66 for 11 transformer tap positions)
¢ Population representing Capacitor Bank Setting:

50 (combined strings for 5 capacitor banks, each of length 10 bits)
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Hence, the crossover site for the best-fit parent strings from the two populations

should not exceed the following limits:
¢ For Transformer Tap position strings : Maximum Crossover Site — 5

¢ For Capacitor bank setting strings  : Maximum Crossover Site — 49

Crossover Operation:

The crossover probability for this Genetic Algorithm optimization problem is
taken to be /00%. Crossover is performed between pairs of chromosomes in each

parent string population depending on the position of the crossover point.

As there are two population sets of best-fit parent strings - each representing a
particular control action, crossover is performed between pairs of parent strings
within the same population only. Also, care is taken to perform crossover
individually for each pairs of sub-parent strings from the transformer tap position
population, similar to a multi-point crossover operation. This can be explained

clearly from an example shown below in Fig 4.5.

)
Parent 1 ] 1 1 0 9] 1 a 0 0 1 1
Parent 2 y] 1 0 1 1 Q Q 1 1 1 1 ¢]
Child String 1 [0 1 0 1 1 o | o 0 0 1 1 0
Fig 4.5

Multi-point Crossover between two parent strings
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Two tap positions of two best-fit parent strings are shown in the above figure.
Crossover operation is performed at locations 3 and 4 respectively on the parent
strings. The child string generated is shown containing the traits of the two parent

strings in both its sub-strings.

Child String Fitmess Evaluation and Repeated Crossover:

The newly formed child strings, which are in their binary forms, are converted

into their decimal equivalents in order to facilitate fitness evaluation.

Fitness values of these strings are determined using the fitness function described
in 3.1, Chapter 3. On analysis, it can be observed that there is a need of applying

repeated crossover operations till the best-fit individual chromosome is obtained.

Repeated crossover is performed on the child strings until the fitness value

evaluation yields a population of child strings of which 50% or more are more fit

than compared to their best-fit parent string.

As the best-fit child string is determined in the process of repeated Crossover

operations, the necessity of mutation operation is eliminated.
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The complete list of tabulated parent and child string populations along with their

fitness values and crossover sites can be observed in Appendix B, tables B1-BS.

The MATLAB program developed to generate the desired control actions using Genetic

Algorithms for Voltage Collapse Mitigation can be observed in Appendix D.

4.5 Simulation Results and Observations
The above implemented Genetic Algorithm — based Voltage Collapse Mitigation Scheme
for the PSS/E ‘SAVNW’ New England test system generates a combination of control

actions that reduce the system instability considerably.

4.5.1 Best Fit Control Actions
On performing repeated Crossover operations and evaluating the fitness values on the

generated child stings, a combination of best-fit control actions is obtained.

The two sets of Control Actions implemented in this scheme are:
¢ Transformer Tap settings — for 11 transformers in the system and

e (Capacitor Bank settings — for 5 shunt capacitors attached to the system

A Best-fit combination of two control actions generated using Genetic Algorithms is

obtained as shown in Table 4.6.

95



Table 4.6

Best-fit Control Action combination obtained using GA

Best Transformer Tap Best Capacitor Bank
Settings Settings
21 732
18 265
7 539
2 185
27 741
34
15
26
4
12
28

In order to ensure that the implementation of these control actions into the system does
not violate any of the system voltage conditions, a power flow analysis on system is
performed, taking into consideration, the loading condition of 340% (Voltage Collapse

point) at Bus 153.

4.5.2 Power flow with Control Actions at Collapse Point of 340% loading
The power flow beyond base-case critical loading proves the effectiveness of this scheme
by demonstrating the following results:

® No Voltage collapse is observed at 340% loading at Bus 153 on the system

® No voltage limits are violated in the entire system with the control actions put

into effect
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e System stability is maintained

e (Collapse Proximity Index (CPI) is at a higher value (>1.1)

The following table, Table 4.7 depicts the improvement in system stability at 340%

loading condition with the addition of control actions generated from a Genetic

Algorithm run.

Table 4.7

Comparison of System Parameters with and without control actions

At 340% Loading at Bus 153

No Control Actions

With Control Actions

Voltage at Bus 153 0.1427 0.94433
Critical loading reached Yes No
Voltage Violations in rest of the

system Yes No
Collapse Proximity Index 1.1092 1.3664

4.5.3 CPI Analysis with control actions-implemented system

The Collapse Proximity Index variation with respect to % Load Increment at Bus 153 for

the PSS/E test system under normal operating conditions can be observed in Plot 4.1.

With the implementation of the GA — generated control actions on the system, there is

bound to be a variation in the Index values when compared to those obtained in the

absence of control actions.
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The GA — based control actions are incorporated into the system and load incrementation

is performed in a manner similar to the procedure specified in Section 4.4.1.

It can be observed that the new Collapse Proximity Indices for different load
incrementations with the new system parameters have higher values than their
predecessors. A comparative study marking the differences in the old and the new values

can be achieved from the following Table 4.8:

Table 4.8

Comparison of CPI values with and without control actions

P Load % of Base Case CPI (initial) CPI (with Control

(MW) Loading Actions)
200 100 5.27734 6.1543
240 120 4.269395848 5.0034
280 140 3.582853636 4.2332
320 160 3.066368032 3.6714
360 180 2.663210144 3.0988
480 240 1.850730342 2.2438
600 300 1.351804197 1.6587
620 310 1.285003386 1.5476
660 330 1.164931925 1.4872
680 340 1.100242129 1.3664
800 400 0.827804642 1.1109
840 420 0.7872 1.0122
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It can be clearly observed from the above table that system stability improves to a great
extent with inclusion of GA — generated control actions. The system, which was
previously in a critical operating state at 330% loading, now remains stable till 400% of

base case loading is reached.

4.5.3.1 New Ceritical Loading Condition
From Table 4.8, it can be pointed out that the new critical loading point has shifted from

330% to 400%.

A graphical comparison of the two Collapse Proximity Indices reveals a more detailed

region of critical stability. (Plot 4.3)

99



P

2
“

6 5D 100 150 280 28D 380 350 400 450 508

R Fevey ¥ ‘:iz oY \‘w“z
sacing ab Bug 183

Plot 4.3

CPI vs % Loading for Bus 153 (PSS/E System) with Control Actions generated using GA

It can be observed the region between 390% and 415% of base case loading, shown as a

shaded region in the plot, refers to the critical loading region.

4.5.4 P-V curve Analysis

The P-V curve for the PSS/E New England test system without control actions can be

compared with the system, which has control actions implemented. The distinction can be

observed in Plot 4.4 as shown below.
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P - V Curve Comparison
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Plot 4.4

P-V curve comparison for Bus 153 with Control Actions generated using GA

In the above plot, Vr represents the receiving end Voltage at Bus 153, as shown along the

vertical axis. The horizontal axis represents the active load demand at the load bus.

The plot provides a comparative study of the effect of GA — generated control actions on
the P-V curves for the test system. The plot points a noticeable shift in the nose of the P-

V curve towards right, indicating an extended stability region.
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As explained in the previous section, the stability region now extends to 400% loading

beyond which critical system stability is observed.

This is a perceptible improvement in stability of the system as, in the absence of control
actions, the system shows a critical loading region beyond 330%, with a collapse point of

340%.

4.5.5 Inference — Advantages of the developed scheme
The Genetic Algorithm — based combinatorial optimization technique, focusing on

voltage collapse mitigation, provides a comprehensive solution to system instability.

A number of advantages can be associated with the proposed scheme. Some of the

practically important advantages are:

— Shift in Critical Point of Voltage Instability:
The Implementation of the proposed scheme on a test system portrays the shift

of the critical point to a higher loading condition — indicating an improved

loading condition to the system.
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Improved P-V profile:
An increased system Loadability results in an improved P-V profile. The

scheme implements control actions that help in increasing the area under

stable operating region.

Optimized Control Actions:

The Genetic Algorithm procedure ensures that optimized control actions are

selected for the bringing the system back to stable operating condition.

Highly beneficial from Planning perspective:

The proposed scheme provides an improved loading capability of a load bus,
thereby helping transmission planners in analyzing load sharing and load
expanding possibilities. From the test system utilized and the results obtained,
it can be observed that the load bus under consideration (load bus 153) can be

expanded for incorporating future loads that the area (Area 1) can expect.

Flexibility of the Algorithm:
The algorithm has been designed and formulated in a layout such that it can be
readily applied on any system, taking into consideration, the format of loading

system data and varying control action requirements.
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4.6 Conclusion and Recommendations

Voltage Collapse and system instability have been some of the most critical, yet difficult-
to-handle issues faced by system planners in transmission planning and operation. This
thesis provides an efficient and accurate corrective solution to a system that is on verge of

voltage collapse.

Voltage Collapse Mitigation requires implementation of appropriate control actions to
bring back system stability. The approach proposed in this thesis concentrates on
bringing out the optimizing capabilities of a stochastic global search technique called
Genetic Algorithm in determining the appropriate combination of control actions to be

taken in bringing a critically loaded system back to its stable operating condition.

A Collapse Proximity Index to determine the critical loading point for a load bus in a
system is formulated as an intermediate solution in generating optimized control actions
based on the principles of Genetic Algorithms for voltage collapse mitigation. Integrating
the index along with Genetic Algorithms makes it a combinatorial optimization problem
— a complex classification of problem in which optimization provides a fundamental

solution, taking into consideration, the effect of the intermediate solution.

The proposed scheme for Voltage Collapse mitigation is put to test on a three-area test

system.
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The conclusions drawn from the test results vindicate the accuracy and efficiency of the

Genetic Algorithm — based method.

Integrating Collapse Proximity Index with the Genetic Algorithm scheme provides a
comprehensive solution to the system instability problem. An apparent shift in the critical
loading point indicates an improved loading condition as a result of implementing the GA

— based scheme.

The scheme implements control actions that help in increasing the area under stable
operating region observed in the P-V curve representation, portraying an improved
voltage profile for the load bus. The developed algorithm’s flexibility and its generic

organization make it an expedient tool for voltage collapse mitigation.

From a power system planner’s perspective, the designed technique would not only
determine the appropriate control actions to mitigate a critical stability situation, but
would also assist in analyzing load-expanding and load-sharing capabilities in an area

based on the area’s forecasted load data.

A recommendation for future research on this thesis would be to widen the control action
search space to facilitate the inclusion of a number of other practically applied control

actions including system reinforcement and possibly, load shedding.
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Another interesting extension to the thesis would be to assimilate the proposed GA —
based mitigation scheme with an improved load forecasting technique, based on the
principles of Genetic Algorithm. The load-forecasting tool could be utilized to predict
expected loading conditions at a bus and the proposed collapse mitigation scheme could

be implemented to improve system stability at these load levels.
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PSS/E ‘SAVNW’ New England Test Case

Bus Data
Table A -1
System Bus Data

BUS CODE AREA | VOLTAGE (P.U.) ANGLE
101 2 1 1.02 16.55
102 2 1 1.02 16.55
151 1 1 1.0119 10.89
152 1 1 1.0171 -1.12
153 1 1 0.993 -3.24
154 1 1 0.9389 -9.89
201 1 2 1.04 6.16
202 1 2 1.0088 -1.32
203 1 2 0.9665 -6.92
204 1 2 0.9787 -3.73
205 1 2 0.949 -9.18
206 2 2 1.0236 -2.97
211 2 2 1.0404 12.92
3001 1 5 1.0298 -1.37
3002 1 5 1.0279 -1.83
3003 1 5 1.0233 -2.25
3004 1 5 1.0165 -3.43
3005 1 5 0.9948 -5.18
3006 1 5 0.994 -3.79
3007 1 5 0.9637 -8.54
3008 1 5 0.9586 -9.05
3011 3 5 1.04 0
3018 2 5 1.0218 -4.08
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PSS/E ‘SAVNW’ New England Test Case

e Branch Data

Table A -2

System Line Data

FROM TO
BUS BUS LINE R LINEX | LINEB | RATEA | RATEB | RATEC
151 152 0.0026 0.046 3.5 1200 1300 1
151 152 0.0026 0.046 3.5 1200 1300 1
151 201 0.001 0.015 1.2 1200 1300 1
152 202 0.0008 0.01 0.95 1200 1300 1
152 3004 0.003 0.03 25 0 0 1
153 154 0.005 0.045 0.1 300 350 1
153 154 0.006 0.054 0.15 300 350 1
153 3006 0.001 0.012 0.03 0 0 1
154 203 0.004 0.04 0.1 200 250 1
154 205 0.0003 0.0033 0.09 600 660 1
154 3008 0.0027 0.022 0.3 400 440 1
201 202 0.002 0.025 2 1200 1300 1
201 204 0.003 0.03 25 1200 1300 1
203 205 0.005 0.045 0.08 200 250 1
203 205 0.005 0.045 0.08 200 250 1
3001 3003 0 0.008 0 0 0 1
3002 3004 0.006 0.054 0.09 0 0 1
3003 3005 0.006 0.054 0.09 0 0 1
3003 3005 0.006 0.054 0.09 0 0 1
3005 3006 0.0035 0.03 0.07 0 0 1
3005 3007 0.003 0.025 0.06 0 0 1
3005 3008 0.006 0.05 0.12 0 0 1
3007 3008 0.003 0.025 0.06 0 0 1
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PSS/E ‘SAVNW’ New England Test Case

Transformer Data

Table A -3
System Transformer data

RATE | RATE | RATE | TRANSFORMER
FROM | TO R X A B C TAP

101 151 | 0.0003 | 0.0136 [ 1250 1350 1750 0.9848
102 151 | 0.0003 | 0.0136 [ 1250 1350 1750 0.9848
152 153 0 0.005 2500 3000 3500 1
201 211 | 0.0007 | 0.0212 800 1000 1120 1.015
202 203 | 0.0004 | 0.0162 800 1040 1200 1
204 205 | 0.0003 | 0.015 800 1040 1200 1
205 206 | 0.0003 | 0.0133 900 1080 1350 1.015
3001 3002 [ 0.0003 | 0.015 800 1040 1200 1
3001 3011 [ 0.0002 | 0.01 1300 1560 1820 1.015
3004 3005 [ 0.0004 | 0.0162 800 1040 1200 1
3008 3018 [ 0.0002 | 0.085 150 200 250 1.015

110




PSS/E ‘SAVNW’ New England Test Case

Load Data
Table A -4
System Load data

BUS P LOAD QLOAD SHUNT G SHUNT B
101 0 0 0 0
102 0 0 0 0
151 0 0 0 600
152 0 0 0 0
153 600 330 0 0
154 1000 800 0 300
201 0 0 0 300
202 0 0 0 0
203 300 150 0 50
204 0 0 0 0
205 1200 700 0 300
206 0 0 0 0
211 0 0 0 0
3001 0 0 0 0
3002 0 0 0 0
3003 0 0 0 0
3004 0 0 0 0
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Table B-1

Initial Random Parent Population for Capacitor Bank Setting

Cap. Bank 1 Cap. Bank 2 Cap. Bank 3 Cap. Bank 4 Cap. Bank 5
677 426 957 948 466
427 479 916 48 791

68 244 430 322 96
376 875 318 57 911
711 456 573 636 992
704 943 540 92 645
464 137 700 609 560
823 166 274 852 953
678 1017 902 250 737
244 782 669 705 960
167 25 846 975 261
424 17 418 608 374
345 171 446 743 613
408 920 445 534 604
425 349 752 118 295
956 364 38 590 784
672 750 985 297 136
870 957 212 912 990
247 933 668 15 408
991 843 434 303 361
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Table B-2

Initial Random Parent Population for Transformer Tap Settings

TAP | TAP | TAP | TAP | TAP | TAP | TAP | TAP | TAP TAP TAP
1 2 3 4 5 6 7 8 9 10 11
27 22 15 25 12 6 4 29 26 19 22
30 2 13 9 28 27 32 21 13 10 13
5 29 26 17 20 11 2 12 8 25 27
31 31 27 24 19 18 26 17 14 7 18
21 23 7 30 31 6 27 14 4 23 12
4 26 17 32 10 20 29 3 5 7 31
10 25 15 19 25 9 3 8 32 13 29
19 13 22 5 25 22 14 5 32 21 19
32 22 24 5 13 23 9 7 19 26 21
32 6 25 9 19 25 27 8 2 3 20
6 24 10 28 3 15 15 14 8 31 7
33 2 23 9 2 3 31 2 12 26 10
32 10 22 27 18 8 7 30 28 17 16
17 2 6 9 26 31 9 32 2 15 8
27 4 4 31 31 6 5 17 2 15 28
5 28 17 12 5 28 5 17 6 11 7
14 23 32 7 19 18 29 12 22 17 8
31 11 12 9 16 33 20 30 25 17 6
27 32 20 21 2 3 19 13 22 27 8
32 2 8 16 12 15 5 4 15 27 15
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Table B -3

Initial Collapse Proximity Index

Collapse Proximity
Index

5.2271
4.2694
3.5837
3.068
2.6654
1.853
1.3551
1.2896
1.1696
1.1143
0.8326
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Table B-4

Capacitor Bank 1 with initial binary population equivalent

0

0

0

1

01010

1

01010

01010
010

1

0(0]0]0

1

1

010

1

0

1

0

0/10]0]0]0

01010

01010

0[0]0[0]0]0

0

1

Binary Equivalent

0

1

1
1

010

0

01010

Decimal

Value

677
427

68
376
711
704
464
823
678
244

167
424
345
408
425
956
672

870
247
991
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Table B -5

Transformer Tap 1 with initial binary population equivalent

1

1

0

0

0

1

1

1

1

010

01010

Binary Equivalent

0/0[0|0O]O
0/0[0|0O]O

010]0]0

0/0[0|0O]O

1

0]0[0]0O]O

0]0(0

0]0(0

0
1
1

0]0(0
1
1

0

0]0(0

1

Decimal Value

27

30

31

21

10
19
32
32

33
32

17
27

14
31

27

32
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Table B-6

Crossover Positions for Parent Strings in a repeated Crossover Operation

Crossover Points
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Table B -7

Fitness Values for Child strings generated from a repeated Crossover Operation

Population Individual Fitness Value
1 0.9856
2 0.9853
3 0.9862
4 0.9852
5 0.9861
6 0.9853
7 0.9852
8 0.9856
9 0.987
10 0.9857
11 0.9864
12 0.9857
13 0.9864
14 0.986
15 0.987
16 0.9857
17 0.987
18 0.987
19 0.987
20 0.987
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Table B —

8

Best — fit Child Strings

Best-fit Child Strings from Repeated Crossover Operation

Best - fit Cap. Setting

Best - fit Tx. Tap Setting

732 21
265 18
539 7
185 2
741 27
34
15
26
4
12
28
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C.1 Overview of PSS/E

Since its introduction in 1976, the Power System Simulator for Engineering (PSS/E) tool
has become the most comprehensive, technically advanced, and widely used commercial
program of its type. It is widely recognized as the most fully featured, time-tested and

best performing commercial program available.

PSS/E is utilized for load Incrementation and identification of the critical operating point

based on the Collapse Proximity Index (CPI).

C.2 MATLAB overview

MATLAB is a numerical computing environment and fourth generation programming
language. Built around the MATLAB language, MATLAB as an application resembles
an advanced version of Object oriented Programming, with similar features of other OOP

languages like C++, Java and Python.

MATLAB is extensively employed for scripting the entire Genetic Algorithm program
along with inclusion of Power system operations from MATPOWER. With data
generated from PSS/E and MATPOWER accumulated into MATLAB workspace, a

Genetic Algorithm-based program is scripted to generate the best-fit control action set.
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C.3 MATPOWER application

MATPOWER is a package of MATLAB M-files for solving power flow and optimal
power flow problems. It is intended as a simulation tool for researchers and educators
that is easy to use and modify. MATPOWER is designed to give the best performance

possible while keeping the code simple to understand and modity.

MATPOWER is utilized to run power flow solutions and perform two-bus equivalent
system reductions for CPI calculations based on updated Child String sets generated from
Genetic Algorithms. With a number of repetitive child string generations, it is imperative
to have an in-built power flow program within the MATLAB environment.

MATPOWER is employed along with the GA script to satisfy this purpose.
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Vs=1.04;
Vsvect=complex(1.04,0);
R=0.00304;

X=0.04416;

Zthev=complex (0.00304,0.04416);
Zthevmod=abs (Zthev) ;

%of £=J:11
P i=P (1)
Q_1=0Q(1)

~e e

N PR

Pmax= ((Q 1i*R)/X) - ((Vs~2)*R)/(2%(X"2)) +
(Zthevmod*Vs* ((Vs™2)—(4*Q 1*X))"0.5)/(2*(X"2));

N o~

CPT_1(i)=Pmax/P_i;

NN

plot (C

Ny

PT 1)

end
CpPI_1;

disp( ‘Mat Fower Caloulat 1YY
[MVAbase, branch_new] =
runpf (7 3307Y);

clc
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ytapl= bell(rand(zo 11) *33) ;
for 1=1:20
for j=1:11

if ytapl (i, j)==1
ytapl (i, j)=2;
>nd
end
end
taplbin=zeros(20,11);
clear tapl;
tapl= zeros(ZO 66);

for 1= 1 20
for j=1:11
str=dec2bin(ytapl (i, j));
taplbin(i, j)=str2num(str) ;
aa = taplbin(i, j)/100000;
if aa>=1
tapl (i, (6%(j-1))+1)=1;

end

bb = mod(taplbin(i, 7),100000);

bbl=bb/10000;
if bbl>=1

tapl(i, (6*(j-1))+2)=
end
cc = mod(bb,10000) ;
ccl=cc/1000;
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if ccl>=1

tapl (i, (6*(j-1))+3)=1;

end

dd = mod(cc,1000);

dd1l=dd/100;
if ddl>=1

tapl (i, (6*(j-1))+4)=1;

end

ee = mod(dd,100);

cel=ee/10;
if eel>=1

tapl (i, (6*(j-1))+5)=1;

end

ff = mod(ee,10);

ffl=£ff/1;
if ffl>=1

tapl (i, (6*(j-1))+6)=1;

end
ytapl;
tapl;
clear
clear }
clear bli;
bz=zeros (20,10);
bll=zeros (20,50);
bl=zeros (20,50);
clear viul;
ybl=zeros (20, 5);

for count=1:5
count;
clear Lz;
bz=randn (20, 10)<0
for 1=1:20
x=1;

for j=((count-1)*10)+1: ((count-1)*10)+10
bl(i, j)=bz(i,11-x);

x=x+1;
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for j=1:10

pow=pow+ (bz (1, 3)*2"(j-1));

end
ybl (i, count)=pow;

baseMVA = 100; )
[MVAbase, bus_new_changed_1, gen_new_changed_1,
branch _new_changed_1] = runpf (‘pasge _savn 118310

LA BN NI G

Pmax_reduced = ((3.30*R_reduced)/X_reduced) -
((Vs"2)*R_reduced)/ (2* (X _reduced™2)) +

(212 _red_mod*Vs* ((Vs"2) -
(4*3.30*X_reduced))~0.5)/(2* (X _reduced"2));

CPI_1_reduced (popnum)=Pmax_reduced/6.60;

TR o vra tiisy Taloniation
HEE IR <l : L]

fitness_ 1

'ét(ﬁépnum5=l/(1+(0.0l*CPI_l_reduced(popnum)));
fitness_total=fitness_total+fitness_list (popnum);

end

clc

CPI_1 reduced;

fitness_list;

P T o x N *
] PERSA IR S AN AL

N = Do

A o < R S
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for 1=1:20

s=s+(fitness_list(i)/fitness_total);
while x>=s
J=3+1;
s=s+(fitness_list(i)/fitness_total);
end
sel _1(i)=7;
if sel 1(1)>20
sel_1(1)=20;

ond
1f sel 1(1)<=0
sel 1(1)=1;

~nd

:O;
end
sel 1;
il;é;,.ﬂw.J che Best Y1t by lings
12=0;

clear popsel 15
popsel_l=zeros (1, 20);

for g=1:19
while rand<0.9

ql=g+1;

il=l+round(g*rand) ;

i2=1+round(gl*rand) ;

popsel_1(qg)=11;

if popsel_1(q)==
popsel_1(qg)=popsel_1(q)+1;

end

popsel_1(gl)=i2;

if popsel_1(gl)==
popsel_1(gl)=popsel_1(gl)+1;

end
end
end
popsel_1;
y=20;

clear vpops=211_1;

for 1=1:20
popsell_1(i)=popsel_1(y);
if popsell_1(i)==
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popsell_1(i)=popsel_1(i)+1;

end
y=y-1;

end

popsell_1;
clear zell
tabl=[sel_1
popsell_17;

for 1=1:20

xx=popsell_1(i);

1f xx>20

xx=20;

end

sell 1(i)=sel_1(xx);
end

sell 1;

Ve
L

clear bn=awl;

o~ . - R i ¥ - §OCH e : . Dt
T N T o ALUS TSmO TATDATITO
[N e AT R e SRS - PRSI ) ” ek L

1i=1:20
yy=sell_ 1(i);
for zz=1:50
bnewl (i,zz)=bl(yy,zz);
end
end
bl;
bnewl;

clear tapnewli;
Geanaerating new Stap’ valuas C

i=1:20
yy=sell_ 1(i);
for zz=1:66

for

tapnewl (i, zz)=tapl(yy,zz);
end
end
tapl;
tapnewl;
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for 1i=1:10

while rand<0.9 && rand>0
il=1+round(csb*rand) ;
1f 1i1>=49
11=49;
end
csbsingle_1(i)=i1l;

locbl=csitebl (i) ;

for j=1:locbl
blchild (i, j)=bnewl (i, j);
blchild (i+1, j)=bnewl (i+1,j);

end

for j=locbl+1:50
blchild (i, j)=bnewl (i+1,j);
blchild (i+1, j)=bnewl (i, J);

end

for col=1:11
i=1;
for j=1:10
csitetapl(i,col)=cstapsingle_1(j,col);
i=i+1;
csitetapl(i,col)=cstapsingle_1(j,col);
i=i+1;
end

end

csitetapl;

col=1:11
for i=1:2:20
loctapl=csitetapl (i, col);
for j=(6*(col-1))+1:(6*(col-1))+loctapl
taplchild (i, j)=tapnewl (i, j);
taplchild (i+1, j)=tapnewl (i+1, 3);
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for j=(6*(col-1))+loctapl+l: (6*col)
taplchild (i, j)=tapnewl (i+1, 3);
taplchild (i+1, j)=tapnewl (i, J);

end

end
end
csitetapl;
tapnewl;
taplchild;

j=0;
yblchild=zeros (20,5);
for count=1:5
for 1i=1:20
pow=0;
exp=0;
for j=(10*(count-1))+10:-1:(10*(count-1))+1
pow=pow+ (blchild (i, j) *2"exp) ;
exp=exp+l;

end
yblchild (i, count)=pow;
end
end
N = \\ D = . '\ . o o
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fitness list_child (popnum)=1/(1+(0.01*CPT_1_redcued child (po
pnum) ) ) ;

fitness_total_child=fitness_total_child+fitness_list_child(p
opnum) ;

if CPI_1_redcued child (popnum) > 1.25*CPT_1(10)
popnum_best=popnum_best+1;
CPIlchild_best (popnum_best, 1)=popnum_best;

CPIlchild_best (popnum_best, 2)=CPI_1_redcued_child (popnum) ;
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yvtaplchild_best (popnum best, :)=
yvtaplchild (popnum, :) ;
yblchild_best (popnum_best, :)=yblchild (popnum, :) ;

elge if CPI_1_redcued_child(popnum) >= 1.1667*CPI_1(10)
&& CPI_1_redcued_child(popnum) <= 1.25*CPI_1(10)
if bus_new_changed _1(:,8) <= 1.09
popnum_bestZ2=popnum_best2+1;
CPIlchild_best?2 (popnum _best2,1)=popnum best?2;

CPIlchild_best2 (popnum best2,2)=CPI_1_redcued_child (popnum) ;
ytaplchild_best?2 (popnum best2, :)=

yvtaplchild (popnum, :) ;

yblchild_best2 (popnum_best2, :)=yblchild(popnum, :) ;

end

end
end
=2nd
if popnum;best > 0 ) )
sort (CPIlchild _best, 2, ‘dascend?);
CPIlchild_best (1,1);
end
if popnum_best2 > 0
popnum_best2;
end
popnum_best_2=0;
popnum_best2_2=0;
if popnum_best2 == 0

for 1i=1:10
while rand<0.9 && rand>0
il=1+round(csb*rand) ;
if i1>=49
11=49;
end

csbsingle_1(i)=i1l;
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for 1=1:2:20
locbl=csitebl (i) ;

for j=1:locbl
b2child (i, j)=blchild (i, j);
b2child(i+1, j)=blchild(i+1, J);

end

for j=locbl+1:50
b2child (i, j)=blchild(i+1, J);

b2child(i+1, j)=blchild(i, J);
end

end

for col=1:11
i=1;
for j=1:10
csitetapl(i,col)=cstapsingle_1(j,col);
i=i+1;
csitetapl(i,col)=cstapsingle_1(j,col);
i=i+1;
end

end

csitetapl;

Slenvyay At Yoy T oy o FiT et @ e e eT A Ay TieY Y Y S 4 O e v
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for col=1:11

for 1=1:2:20

loctapl=csitetapl (i, col);

for j=(6*(col-1))+1:(6*(col-1))+loctapl
tap2child (i, j)=taplchild (i, j);
tap2child(i+1, j)=taplchild(i+1, 3);

end

for j=(6*(col-1))+loctapl+l: (6*col)
tap2child (i, j)=taplchild(i+1, J);
tap2child(i+1, j)=taplchild (i, j);

end

end
end
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fitness list child (popnum)=1/(1+(0.01*CPT_2 redcued_child (po
pnum) ) ) ;

fitness_total_child=fitness_total_child+fitness_list_child(p
opnum) ;

if CPI_2_ redcued_child(popnum) > 1.25*CPI_1(10)
popnum_best_2=popnum_best_2+1;
VSI2child best (popnum _best_2,1)=popnum best_2;

VSI2child _best (popnum_best_2,2)=CPI_1_redcued_child (popnum) ;
ytap2child_best (popnum_best_2, :)=

ytap2child (popnum, :) ;
yb2child_best (popnum_best_2, :)=yb2child(popnum, :) ;

elge 1f CPI_2_redcued_child(popnum) >= 1.1667*CPI_1(10)
&& CPI_2_ redcued_child(popnum) <= 1.25*CPI_1(10)

if bus_new_changed _1(:,8) <= 1.09

popnum_best2_2Z2=popnum_best2_2+1;

VSI2child best2 (popnum_best2_2,1)=popnum_best2_2;
VSI2child_best2 (popnum_best2_2,2)=CPI_2_ redcued_child (popnum
)i

ytap2child_best2 (popnum _best2_2,:)=
ytap2child (popnum, :) ;

yb2child_best2 (popnum_best2_2, :)=yb2child (popnum, :) ;

end
end
and
end
end
clc
FoAkw o ;! oS G ¢ IR

popnum_best2_3 = popnum_best2_2;
brk_count = 0;

while popnum best2_3 == 0
load ("psse_savnw_data _busib3id433070)
brk_count = brk_count + 1;
% Calling function for Begh - Fio chnilad s tap %)

[popnum_best2_3, ytap2child best3, yb2child_best3,
b3child, tap3child] = function_bestfit_childstring
(b2child, tap2child, bus, gen, branch, areas);
b3child = b2child;
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tap3child = tap2child;
if brk_count == 7

popnum_bestZ2_3 = 1;
yvtap2child_best3 = ytaplOchild;
yb2child _best3 = yblOchild;

end
if popnum_best2_3 > 0

break; ;

yblchild
ytaplchild

disp (===~
disp (' (& 2

CPI_2 redcued chlld
disp (°
dlsp (

dlsp (“
ytapZChlld best3
disp (' &e L
yb2child . best3

disp ("= e )
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e
1

b3child

e

function

14

[popnum_best2_3, ytap3child best2,

yb3child_best2,

tap3child] = function_bestfit_childstring (b2child,
tap2child, bus, gen, branch, areas)

disp (‘Control pass ato i
Vs = 1.04;

dels = 0;

popnum_bestZ2_3 = 0;

VSI_1 _1(10) = 1.1143;
ytap3child_best2 = zeros(1l,11);

yb3child_best2 = zeros(1l,5);

S R T T S

)

csb=49;

N

csbsingle_l=zeros(1,10);

ii;l;"

for 1=1:10
while rand<0.9 && rand>0

il=1+round(csb*rand) ;
1f 11>=49

11=49;
end
csbsingle_1(i)=i1l;
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for j=1:10
csitebl (i)=csbsingle_1(3);

i=i+1;
csitebl (i)=csbsingle_1(3);
i=i+1;

=nd

for 1i=1:2:20
locbl=csitebl (i) ;

for j=1l:locbl
b3child (i, j)=b2child (i, j);
b3child(i+1, j)=b2child(i+1, J);

end

for j=locbl+1:50
b3child (i, j)=b2child(i+1, J);
b3child(i+1, j)=b2child (i, J);

end
end
& roOTR.
clear <
cstap=5;
i1=1;
for col=1:11
for 1=1:10
while rand<0.9 && rand>0
il=l+round(cstap*rand) ;
1f 1il1>=5
i1=5;
end
cstapsingle_1(i,col)=il;
end
>nd
end
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col=1:11
i=1;
for j=1:10
csitetapl(i,col)=cstapsingle_1(j,col);
i=i+1;
csitetapl(i,col)=cstapsingle_1(j,col);

i=i+1;
and
end

csitetapl;

5 Genervating Tx. tap ohild strings using orossovar
for col=1:11
for 1=1:2:20
loctapl=csitetapl (i, col);
for j=(6*(col-1))+1l:(6*(col-1))+loctapl
tap3child (i, j)=tap2child (i, J);
tap3child (i+1, j)=tap2child(i+1, J);
end
for j=(6*(col-1))+loctapl+l: (6*col)
tap3child (i, j)=tap2child (i+1, 3);
tap3child (i+1, j)=tap2child (i, j);
end

and

end

j=0;
yb2child=zeros (20,5);
for count=1:5
for 1=1:20
pow=0;
exp=0;
for j=(10*(count-1))+10:-1:(10*(count-1))+1
pow=pow+ (b3child (i, ) *2"exp) ;
exp=exp+l;

end
yb3child (i, count)=pow;
>nd
end
j=0; )
for count=1:11

for 1=1:20
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pow=0;
exp=0;

for j=(6*(count-1))+6:-1:(6* (count-1))+1
pow=pow+ (tap3child (i, j) *2"exp) ;
exp=exp+l;

end

yvtap3child (i, count)=pow;

STt erat

bus_changed=bus;
gen_changed=gen;

branch;
branch_changed=branch;
areas_changed=areas;
fitness list=zeros(20,1);
fitness_total_child=0;

DTN enwn T rm e S aes e e T e JP L 1 L i R P S
o iac g DL LI AL WLTD 08w 140 and Cap, valuss

for

>bopﬁﬁm;1;éd

branch_changed (24, 9)=1-(ytap3child (popnum, 1) /330);
prangh_changed(ZS,9)=1—(ytap30hild(popnum,2)/330);
o éigﬁZh_changed(23+i,9)=1+(ytap3chi1d(1,i)/330);
;Eingh_changed(3l,9)=1—(ytap30hild(popnum,8)/330);
o ézzgié_changed(23+i,9)=1+(ytap30hild(popnum,i)/330);
Eag_changed(B,6)=—yb3child(popnum,1);

bus_changed (6, 6)=yb3child (popnum, 2) ;
bus_changed (7, 6)=yb3child (popnum, 3) ;
bus_changed (9, 6)=yb3child (popnum, 4) ;
bus_changed (11, 6)=yb3child (popnum, 5)

14

BN

delete-
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baseMVA = 10 ;
[MVAbase, bus_new_changed_1, gen_new_changed_1,
branch_new_changed_1] = runpf (‘pssse_savnw_ DusiS3idadszi_mod);

SN T T v TR Vi@ WA P arana iAo vyer o W
W WL L EE AT LLREW W LI L L nid e

PR

[rows_bus, cols_bus]=size(bus_new_changed_1);

bus_new_changed_l=sortrows (bus_new_changed_1,1);

for i1=1:rows_bus
comp_matrix (i, 1l)=bus_new_changed 1(i,1);
bus_new_changed_1(i,1)=1i;
comp_matrix (i, 2)=bus_new_changed_1(i,1);

end

[rows_branch, cols_branch]=size(branch_new_changed 1) ;

branch_new_changed_Z2=zeros(rows_branch,11);

branch_new_changed_2(:,1:11)=branch_new_changed_1(:,1:11);
for 1=1:rows_branch
for j=l:rows_bus
if branch_new_changed_2(i,1)==comp_matrix(j, 1)
branch_new changed_2(i,1l)=comp_matrix(3j,2);
end
end
for j=l:rows_bus
if branch_new_changed_2 (i, 2)==comp_matrix(j, 1)
branch_new_ changed_2(i,2)=comp_matrix(3j,2);

end
end

end

[Ybus, Y£,
Yt]=makeYbus_psse_savnw_busl531d330_withnewval (baseMVA,
bus_new_changed_1, branch_new_changed_2);

Ybus;

for i1i=1:rows_bus

for j=l:rows_bus
Ybus_1 (i, j)=Ybus (i, j);

end
end
Ybus_1;

Ybus_new=Ybus_1;
for 1=2:rows_bus
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Ybus new(l,1)=Ybus 1(22,1);
Ybus new(i,1l)=Ybus new(l,1i);
end
for 1=2:rows_bus
Ybus new(22,1i)=Ybus 1(1,1);
Ybus new (i, 22)=Ybus new(22,1);
end
for 1=1:rows_bus
Ybus new(2,1)=Ybus 1(5,1);
Ybus new (i, 2)=Ybus new(2,1i);
end
for 1=1:rows_bus
Ybus new(5,1)=Ybus 1(2,1);
Ybus new (i, 5)=Ybus new(5,1i);
end

Ybus_new (2, 2)=Ybus_1(5,5);
Ybus_new (5, 5)=Ybus_1(2,2);
Ybus_new (2, 5)=Ybus_1(5,2);
Ybus_new (5, 2)=Ybus_1(2,5);

Ybus_new;

v 3
e ermn ya
ARG

K=§bus;né&ki:2:i:2);
L=Ybus_new(l:2,3:23);

[

M=Ybus new(3:23,3:23);
Ybus_reduced=K- (L*inv (M) *transpose (L)) ;
212 _reduced=-(Ybus_reduced(1l,2))"-1;
R_reduced=real (Z12_reduced) ;
X_reduced=imag(z12_reduced) ;

212_red mod=abs(Z12_ reduced) ;

Pmax_reduced = ((3.30*R_reduced) /X_reduced) -
((Vs™2)*R_reduced) / (2* (X_reduced”2)) +
(212 _red_mod*Vs* ((Vs"2) -
(4*3.30*X_reduced))”"0.5)/(2* (X_reduced”2));
CPI_2_redcued_child (popnum)=Pmax_reduced/6.60;
fitness_list_child(popnum)=1/(1+(0.01*CPI_2_redcued_child(po
pnum) ) ) ;
fitness_total_child=fitness_total_child+fitness_list_child(p
opnum) ;

if CPI_2_ redcued_child(popnum) >= 1.1667*VSI_1_1(10) &&
CPI_2_redcued_child(popnum) <= 1.25*VSI_1_1(10)
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if bus_new_changed 1(:,8) <= 1.10
popnum_best2_3=popnum_best2_3 + 1;
VSI2child _best2 (popnum_best2_3,1)=popnum_best2_3;

VSI2child _best2 (popnum_best2_3,2)=CPI_2_redcued_child (popnum
)i
yvtap3child_best2 (popnum_best2_3, :)=
yvtap3child (popnum, :) ;
yb3child_best2 (popnum_best2_3, :)=yb3child (popnum, :) ;
end
end
end
clc
end
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