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ABSTRACT 

Watermelon grafting methods used in Europe and Asia vary, but are based on 

efficiency, skill and needs. China mainly practices the whole insertion grafting method, 

whereas, Europe and Japan employ the one cotyledon (splice/slant-cut) grafting method. 

These methods are not suitable for grafting production in the U.S. due to the labor intensive 

and high labor cost necessary to successfully produce grafted transplants. This thesis 

introduced a modified grafting technique called the “Cotyledon Devoid Method” and in three 

experiments determined; 1) the rootstock leaf number stage (RLNS) at which the greatest 

grafting success is achieved; 2) the relationship between total soluble carbohydrates in 

rootstock hypocotyl seedlings and grafting success; and 3) the effects of root excision 

performed after grafting but prior to healing on grafting success and hypocotyl carbohydrate 

depletion. Grafting was performed on ten plants in five replications using four different 

rootstocks: Lagenaria siceraria ‘Emphasis’, Citrullus lanatus var. citroides ‘Ojakkyo’, 

Cucurbita moschata x Cucurbita maxima ‘Strong Tosa’, and Citrullus lanatus var. lanatus 

‘Tri-X 313’. All scion material was Citrullus lanatus var. lanatus ‘Tri-X 313’. Rootstocks 

and scion material were developed in synchrony to the appearance of the first (9-15 days), 

second (13-18 days), and third (19-24 days) leaf number stage. Aerial measurements were 

taken on both the rootstocks and scion material before grafting. Both rootstock cotyledons 

were removed at time of grafting to eliminate any potential rootstock regeneration. 

Furthermore, roots were excised from the hypocotyl of one set of grafted seedlings to reduce 

the need to maintain an active root system during healing which allowed the hypocotyl 

energy reserves to be conserved to initially heal the graft union and then generate new roots 

(Excision treatment). Grafts were randomly placed inside a healing chamber for 7 days and 

evaluated 14 days later for grafting success. The second and third experiments were designed 
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to analyze total soluble carbohydrates accumulated in the rootstock plant tissues before and 

after grafting at each of the three RLNS with and without roots present. Plants were carefully 

dissected on the day of grafting and 7 days after grafting to measure individual plant organs 

including root, hypocotyl, cotyledon, and leaf or scion hypocotyl, scion cotyledon, and scion 

leaf area. All individual plant organs measurements consisted of ten plants per samples 

replicated five times. Carbohydrates were extracted using the methanol-chloroform-water 

method. The carbohydrate concentrations were determined using the phenol sulfuric acid 

assay and read by the micro plate spectrophotometer. Measured samples for carbohydrate 

analysis consisted of a subsample taken from ten plants ground samples replicated five times. 

Each ten-plant sub sample was determined by the mean of two read replications on the micro 

plate with the coefficient of variation values generally less than 10. Grafting success 

increased with each increase in RLNS. Aerial dimensions taken before grafting revealed that 

the rootstock hypocotyl diameter, length, and area increased from the first to the third RLNS 

and were related to grafting success. Total carbohydrate measurements taken from each 

rootstock hypocotyl organ before grafting increased from the first to the third RLNS 

suggesting a relationship between grafting success and hypocotyl carbohydrates. The overall 

carbohydrate concentration remained the same among RLNS, but the increase in dry weight 

from the first to the third RLNS accounted for the vast increase in total carbohydrates per 

hypocotyl and thereby increased grafting success. Rootstock hypocotyl total carbohydrates 

greatly decreased when roots were left intact versus excised, indicating root excision can be 

employed to conserve hypocotyl carbohydrate to encourage healing which is also essential 

for mechanical grafting. Excising the rootstock root prior to healing but after grafting did not 

decrease grafting success at the second or third RLNS on three of the rootstocks tested. The 

“Cotyledon Devoid Method” provides a successful option that may have potential to reduce 
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grafting cost by successfully removing rootstock regeneration; however, precise seed 

germination and seedling development guidelines must be followed in order to achieve 

acceptable grafting success.  
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PREFACE 

Watermelon grafting is an important part of watermelon production to avoid soil-

borne diseases and/or chemical fumigation in areas where land rotation is not feasible (Cohen 

et al., 2007; Oda, 1995; Yetişir and Sari, 2003). For many years grafting in watermelons has 

been viewed as an option solely in areas where labor costs are minimal. With the ongoing 

search for alternatives from band fumigants such as methyl bromide, grafting in watermelons 

has come under the spot light as a possible alternative (Cohen et al., 2004; Cohen et al., 2007; 

Koren and Edelstein, 2004). Grafting has great potential to have a very positive effect for 

commercial production in the United States by overcoming soil-borne pathogen impediments 

(Cohen et al., 2007; Kurata, 1994; Lee, 1994; Lee and Oda, 2003; Oda, 1995; Yetişir et al., 

2003), increasing fruit quality (Cohen et al., 2007; Core, 2005; Davis and Perkins- Veazie, 

2005-2006), and improving the plants overall environmental efficiency (Cohen et al., 2007; 

Koren and Edelstein, 2004; Lee, 1994; Oda, 1995; Pulgar et al., 2000; Venema et al., 2008; 

Yetişir and Sari, 2003).  

A major problem inhibiting the use of grafting is rootstock re-growth occurring after 

grafting. Rootstock re-growth occurs in the current commercial grafting practices and has 

prevented introduction to the United States agriculture market because of increased cost 

during transplant production. Re-growth initiates at the base of the cotyledon and will cause 

the graft to weaken, abort, or delay production if left intact. Re-growth removal is labor 

intensive, and very costly. An alternative grafting method which eliminates potential re-

growth is needed in order for grafting technology and benefits to successfully increase into 

the United States. Current commercial grafting practices depend on maintaining at least one 

rootstock cotyledon during the healing period following grafting for survival (Cushman, 

2006; Hassell et al., 2008; Oda, 1995). Removal of both cotyledons in a one step fashion at 
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time of grafting, eliminates all potential re-growth and potentially reduces overall grafting 

cost. I have observed that the rootstock hypocotyl begins to yellow, decline and senesce when 

grafted at the 1st true rootstock leaf number stage (RLNS) which is customary for current 

commercial grafting techniques. The removal of both cotyledons during grafting initiates a 

steady decline of the hypocotyl resulting in rootstock death suggesting the hypocotyl had 

insufficient nutrient reserves prior to grafting. Without this stored supply of carbohydrates, 

the hypocotyl cannot live long enough to benefit from photosynthates elaborated by the 

newly grafted vegetative tissue (Bisognin et al., 2005; Lovell and Moore, 1971; Lovell and 

Moore, 1970). When plants are allowed to mature to the appearance of the 2nd or 3rd true leaf, 

hypocotyl deterioration does not occur, suggesting perhaps that more reserves were available 

with maturity to maintain the rootstock until graft healing takes place. The objectives of this 

research study were: 1) to determine the developmental stage at which grafting success is 

achieved while removing both cotyledons during the grafting procedure; 2) to determine plant 

tissue carbohydrate concentration in four different rootstocks at each 1st, 2nd and 3rd true leaf 

developmental stages before grafting; and 3) to determine whether rootstock hypocotyl 

carbohydrate levels relate to grafting success at the three developmental stages for each 

rootstock. Specific research data to achieve my objectives include determining: 1) organ 

carbohydrate concentration in rootstock seedling leaves, cotyledon, hypocotyl, and roots 

tissues at time of grafting for three developmental stages; 2) the carbohydrate concentration 

of scion material at three developmental stages; 3) the carbohydrate concentrations in grafted 

seedling tissues after healing takes place with and without roots present: hypocotyl, scion 

hypocotyl, scion cotyledons, and scion leaves; 4) hypocotyl length, diameter and area before 

grafting; 5) leaf and cotyledon area before and after grafting; 6) leaf and cotyledon 

chlorophyll content before and after grafting; and 7) the relationship of carbohydrate 
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accumulation in rootstock hypocotyls with grafting success with and without roots present. 

My research goal is to enable transplant producers in the United States to successfully 

produce grafted watermelon transplants as an alternate to methyl bromide fumigation at a 

potentially lower cost to the grower. 
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LITERATURE REVIEW 

United States Watermelon Production History 

Since the introduction of watermelon into the Americas from Africa (Mallick and 

Masui, 1986), its production has become a significant crop in the United States, reaching as 

high as 4.3 billion lbs in 2007 and revenues surpassing $475.8 million (USDA, 2008). 

Watermelons are produced on crop rotation fields once every 5-6 years due to the 

accumulation of soil borne pathogens that severely reduce and limit crop yield (Bruton, 1998; 

Yetişir and Sari, 2003). Inadequate rotation has perhaps contributed the greatest to increased 

incidence and severity of soil borne diseases (Bruton et al., 1998). 

In some areas where land rotation is not feasible, such as Asia, watermelon grafting 

is an important part of production to avoid soil-borne diseases and/or chemical fumigation 

(Cohen et al., 2007; Oda, 1995; Yetişir and Sari, 2003). Growers in the United States have 

used fumigants such as methyl bromide, to overcome soil borne diseases, and successfully 

harvest their crop. Beginning in 1995, a partial ban and now a full ban, was placed on the use 

of methyl bromide according to the Montreal Protocol to prevent the depletion of the ozone 

layer, and to conserve other non-targeted organisms (Ristaino and Thomas, 1997). Since the 

ongoing limiting use of fumigants, grafting has become of greater interest as an alternative to 

methyl bromide fumigation for disease avoidance (Cohen et al., 2004; Cohen et al., 2007; 

Koren and Edelstein, 2004). 

Grafting History 

Grafting is the union of two or more plant tissues that subsequently grow as a single 

plant (Andrews and Marquez, 1993). Plant grafting has been performed in China before 1500 

B.C. (Lee and Oda, 2003; Oda, 1995). The first vegetable crops to be grafted date back to the 

seventeenth century; however, it did not become popular until the late 1920’s. Farmers in 
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Korea and Japan grafted watermelon plant onto a gourd rootstock (Lagenaria siceraria) to 

provide resistance to soil borne diseases caused by successive cropping (Ashita, 1927). Many 

areas with intense watermelon production and/or little land availability such as Turkey, 

China, Korea, Japan, and Israel have had to overcome infestations of soil borne pathogens in 

watermelon that arise from the inability to rotate crops (Cohen et al., 2007; Oda, 1995; 

Yetişir and Sari, 2003). Current uses in other countries confirm the feasibility of grafting the 

horticultural designed cultivars on a resistant cucurbit rootstock as an alternative method to 

crop rotation and disease avoidance.  

Watermelon breeding programs have attempted to increase the resistance to soil 

borne diseases by cross breeding lines exhibiting resistance (Bruton, 1998). Successful 

breeding advances continue to allow watermelon cultivation in the U.S. at high costs. 

Attempts to breed for genetic resistance are very time consuming and costly due to the nature 

of introducing wild type resistance with unacceptable morphological characteristics into 

highly selected cultivars ready for market consumption. These unacceptable characteristics 

must be bred out while maintaining the resistance and increasing the fruit quality. These costs 

are further amplified when the resistance is overcome by mutating diseases and then new 

additional disease resistance genes must be introduced (Bruton, 1998). New ways of 

incorporating and maintaining resistance is continuously sought by breeding researchers. 

Countries such as: Japan, Korea, China, Turkey, and Israel, began grafting watermelon 

cultivars onto resistant rootstocks to overcome crop loss from disease infection (Cohen et al., 

2007; Kurata, 1994; Lee, 1994; Lee and Oda, 2003; Oda, 1995; Yetişir et al., 2003). Today a 

watermelon graft consists of a vegetative horticultural designed cultivar portion called a scion 

that is united with a desired cucurbit hypocotyl and root hypocotyl termed the rootstock.  
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By breeding resistance into the rootstock, breeding time is reduced significantly 

because the screening traits are fewer. In watermelons, there are at least three species 

available to find different plausible rootstocks suited for grafting and disease resistance. 

Watermelon is currently grafted on Lagenaria siceraria (bottle gourd), Citrullus lanatus 

(wild watermelon), Cucurbita moschata x Cucurbita maxima (inter-specific squash hybrid), 

squash hybrids, (Cucurbita moschata x Cucurbita maxima). Lagenaria siceraria can be used 

to control Fusarium wilt (Yetişir and Sari, 2003). Over 95% of the commercial watermelon 

seedlings are grafted in Japan, Korea and Greece where farming areas are small, very 

intensive and crop rotation is an uncommon practice to overcome soil-borne pathogens 

(Kurata, 1994; Lee, 1994; Traka-Mavrona et al., 2000). 

Current Grafting Methods in Watermelon 

Many different watermelon grafting techniques are available today namely “the 

tongue approach graft”, “one cotyledon graft”, “hole insertion graft”, and the “side insertion 

graft” (Cushman, 2006; Hassell et al., 2008; Lee, 1994; Lee and Oda, 2003; Oda, 1995). The 

approach graft is one of the original grafting methods performed (Lee and Oda, 

2003);however, the one cotyledon and hole insertion grafts are most commonly used today in 

commercial production. Preferences to grafting techniques are a compromise among a 

number of influential factors to maximize the benefit to fit the individual’s needs and 

available resources. These contributing factors include the ease and technicality of grafting, 

success rate, and overall cost (Davis et al., 2008; Hassell et al., 2008; Lee, 1994).  

1- Tongue Approach Graft 

The “tongue approach graft”, or simply known as the “approach graft”, is relatively 

simple to graft (Fig. 1) (Hassell et al., 2008). It is the oldest grafting technique, which became 

widely used in the 1920’s in Asia due to its higher success rate (Lee and Oda, 2003) and the 
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growth uniformity (Hassell et al., 2008). This method continues to be preferred by 

inexperienced growers because of its simplicity, high success rate, and little care since it does 

not require healing chambers (Lee and Oda, 2003). Referring to figure 1 at the first true 

RLNS and older RLNS a diagonal slice is made below the cotyledons, in both hypocotyls of 

1)the scion and 2), rootstock; slices should be opposite to one another, upward and 

downward, respectively (Cushman, 2006; Oda, 1995). Each cut should be comparable in 

length so they can match up together, 3). Each slit acts like a tongue and both are fitted 

together and sealed with an aluminum wrap to allow healing to take place. The rootstock 

meristem and cotyledons are 4) completely removed three days after grafting and 5) the scion 

rootstock is removed at seven days after grafting. The scion is now solely dependent on the 

new rootstock (Oda, 1995). The plants must be individually handled manually at the time of 

grafting, again at three days after grafting to remove the meristem from the rootstock, and 

once more at day seven to remove the root portion from the scion. This makes it a very labor 

intensive and time consuming grafting method. Both rootstocks are then replanted together 

during the grafting procedure to increase the proximity during the healing time. This is a 

significant drawback if it’s being done in a greenhouse as it occupies twice the amount of 

space and is costly to maintain (Cushman, 2006). Because all meristematic tissue from the 

rootstock is removed during the grafting procedure, rootstock re-growth can no longer occur.  

2- One Cotyledon Graft 

The “one cotyledon graft” is also known as “splice”, “slant” or “tube” graft. This 

graft is moderately simple being less labor intensive than the approach graft (Fig. 2) (Hassell 

et al., 2008). The one cotyledon graft can be completed at one time and minimizes 

greenhouse occupancy making this method the most popular grafts among experienced 

growers and commercial nurseries in Korea. It is performed by either by hand, semi-
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automatic, and with automatic robots (Kobayashi et al., 2006; Kurata, 1994; Lee and Oda, 

2003). Plants are ready for grafting when the first true leaf is present on the rootstock or as 

young as the scion cotyledon stage (Cushman, 2006; Oda, 1995). The meristematic region 

becomes increasingly difficult to completely remove when the rootstock plant material ages 

past the first true RLNS. The procedure is as follows: 1) the scion is cut at an opposing 45º to 

65º angle to the rootstock, approximately one inch below the cotyledons to facilitate 

clamping; 2) the rootstock meristem and one of the cotyledons are cut simultaneously from 

the plant at a 45º to 65º angle to maximize the grafting surface area; 3) the sliced portion of 

the scion and rootstock hypocotyl is then joined together to ensure the vascular tissues are 

contacting each other: and 4) the graft secured with a spring clamp that is placed around the 

outside region of the splice. Immediately following grafting, plants require special 

environmental conditions for healing. This includes: high levels of shade and humidity, and 

healed at approximately 25 ºC in a healing chamber. The healing chamber minimizes 

environmental stresses to allow newly grafted plants to heal without undue environmental 

stress rather than continue with photosynthetic activity until healing is complete. Under low 

light conditions, the stomata on the leaf close forcing gas exchange and photosynthetic 

activity to cease which slow wilting to maintain the plant vascular system at optimal 

survivability. The high humidity prevents the plant from excessive wilting and assists in 

maintain high tugor pressure which aids in graft healing. Newly grafted seedlings should be 

kept in the healing chamber for the duration of the graft healing lasting approximately seven 

days. Three days into graft healing, light intensity is increased, and humidity is gradually 

decreased in the healing chamber to prepare the seedlings for ambient environmental 

conditions outside the chamber. 
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The overhead cost of the humidity chamber increases the overall cost to produce a 

quality grafted transplant. The unique spring loaded clips which are used require labor costs 

for placement and removal. Finally, removal of meristematic re-growth which occurs using 

this graft method increases overall cost. Costs can be further increased using this method if 

grafting is performed on older plants. Rootstock re-growth occurs at even higher rates 

because it is more difficult to remove all meristematic tissue during grafting which adds to 

the cost of labor even once the seedlings are planted in the field. 

3- Hole Insertion Graft 

The “hole insertion graft”, which is also called “terminal”, “cut” or “top insertion” 

graft (Fig. 3) (Hassell et al., 2008), is favored by watermelon growers in Japan because of the 

shorter growing time required for scion material compared to the rootstock (Lee and Oda, 

2003). Grafting can begin once the first leaf emerges from the rootstock. The scion is ready 

for grafting during the cotyledon stage and up to the first true leaf. Some experts report that it 

can be used even as soon as the shoot emerges from the soil (Lee and Oda, 2003).  

The procedure for this method is outlined in figure 3 as follows: 1) the scion 

hypocotyl is cut 2 cm below the cotyledons at a slant on opposing sides to expose the 

vascular tissue; 2) During this step as much of the meristematic tissue should be removed as 

possible; 3)A specialized tool, such as a bamboo stick or small drill bit, is used to make a 

hole that is slant to the longitudinal direction between the cotyledons and into the hypocotyls 

which should slightly pass through the hypocotyl on one side for the scion hypocotyl to be 

inserted allowing the vascular system of both hypocotyls to come into contact with each 

other; 4) The pointed region on the scion is then snuggly inserted through the slanted hole in 

the hypocotyl to complete the graft ; and 5) This method does not require the same 

scion/rootstock hypocotyl slant cut matchup, does not require clips, and the newly grafted 
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plant is then placed inside a healing chamber for seven days as described previously. There is 

a high success rate on rootstocks that are compatible with Lagenaria; however, a great 

concern lies within the high rate of remaining meristematic tissue since which will necessitate 

future re-growth removal and increasing grafting cost. Rootstock plants that have a 

pronounced hollow stem, such as inter-specific squash hybrids, are less likely to work 

because of hollow stem creates a gap which prevents the scion from adhering to the rootstock 

and/or inserting the seedling into the pith cavity of the rootstock. By doing so allows 

adventitious roots from the scion to elongate downward through the pith center and into the 

soil which will void the resistance and lead to complete rootstock decline (Lee and Oda, 

2003). This technique has not been successfully automated because of the technicalities of 

performing this graft.  

4- Side Insertion Graft 

The “side insertion graft”, also known as the “cleft” or “splice” graft (Fig. 4) (Hassell 

et al., 2008), is a modified whole insertion graft (Lee and Oda, 2003). Seedlings are ready to 

be grafted at the first true RLNS. The graft is as follows: 1) using a sharp blade, the scion is 

cut at an angle on both sides of the hypocotyl below the cotyledons to form a v-shape; 2) cut 

a small vertical slit through the middle of the rootstock stem instead of at the top of the 

meristem; 3) The slit is propped open with a toothpick; 4) The scion is then inserted into the 

slit at an approximate 30º to the rootstock tip and a clip is placed over the union to secure the 

graft during the healing process, but its removal will be required once healing is complete; 

and 5) Three days after grafting carefully cut off the rootstock vegetative tissue just below its 

cotyledons. This grafting technique seems very simple, but inserting the scion into the 

rootstock can be somewhat difficult. The involvment of toothpick, makes it more time 

consuming and cumbersome. Once grafting is complete, the seedlings must be placed inside a 
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healing chamber for three days after grafting, but an intense amount of labor is required to 

remove the rootstock shoot above the graft once the embedded scion has healed. Because of 

this step, this procedure cannot be automated; however, meristematic re-growth is no longer a 

problem. A further reason why this grafting technique is unpopular is the failure of vascular 

bundles to align sufficiently for a strong healing to take place to secure the graft.  

Watermelon Grafting Benefits and Disadvantages 

Advantages 

Valuable benefits can also be introduced from grafting watermelons on intra- and 

interspecific rootstocks (Cohen et al., 2007). Resistant rootstocks can be alternated to 

overcome disease to maintain high watermelon production yields (Edelstein, 2004a). 

Fusarium oxysporum f. sp. melonis can be avoided by using interspecific rootstocks (Cohen 

et al., 2007). Some rootstocks from Lagenaria are able to confer resistance in Cucurbitaceae 

against carmine spider mite, Tetranychus cinnabarinus, (Edelstein et al., 2000). Other 

rootstocks display tolerance for other soil-borne pathogens such as Monoaporascus and 

Macrophomia (Koren and Edelstein, 2004). Another highly positive benefit is that some 

rootstocks have been known to effect fruit quality (Core, 2005; Davis and Perkins- Veazie, 

2005-2006). By grafting watermelons on to different rootstocks, the quality of the fruit has 

been known to increase fruit firmness and thus increase shelf life. These results have added to 

the quality of the fruit, in other countries, when shipping to foreign lands. This is a valuable 

potential preservation characteristic for this country in the fact that this may extend fruit 

longevity for both a harvest window for growers and on the shelf storage for produce buyers. 

It could also open new markets for the fresh cut industry. One benefit is that some grafts 

increase nutrient and water uptake due to a higher capacity for nitrogen uptake and transport 

to the scion, which greatly increases its growth (Pulgar et al., 2000). This advantage allows 
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the plants to better use fertilizers and other nutrients that would have been left in the soil. The 

absorption efficiency of water is increased by vigorous rootstocks (Lee, 1994). These benefits 

have the potential to lower nutrient costs and amount of required water per plant to harvest 

the same yield.  

Grafted plants show a greater cold tolerance which is a great benefit since non-

grafted watermelon plants have such little tolerance for low temperatures (Oda, 1995; 

Venema et al., 2008). Water logging is another watermelon production problem which causes 

the root to suffocate and crop production to halt. Studies show an increase in water logging 

tolerance with grafted plants (Yetişir and Sari, 2003). In another study, grafted watermelons 

had a greater tolerance when watered with saline water than did the non-grafted plants 

(Cohen et al., 2007) which implied the increase in drought tolerance in grafted plants as well 

(Koren and Edelstein, 2004).  

Disadvantages 

Although there are many impressive advantages to grafting, some disadvantages have 

discouraged this technology from use in the U.S. These disadvantages are distributed between 

incompatibility, fruit quality, and cost. Incompatibility is the failure of the scion to unite and 

adhere to the rootstock. Lesser but still problematic incompatibilities occur when the plant is 

unable to grow in a healthy manner, or exhibits premature death (Garner, 1979). Other 

incompatibilities can cause poor fruit quality, yield reduction, and possibly plant collapse. 

This may be due to the reduction in or blocking of photosynthate transport. Vascular bundles 

must come in contact with each other in order for grafting to be successful and to avoid 

incompatibility (Oda et al., 1993). In order for healing to take place, vascular bundles from 

the scion and rootstock, severed during grafting, must come into intimate contact with one 

another for correct healing to take place. Vascular tissue differentiation from the callusing 
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cells occurs in compatible grafts only (Andrews and Marquez, 1993). Grafting success can be 

increased by increasing the surface area and contact region between the scion and rootstock 

by increasing the sliced region allowing the vascular bundle on the whole to increase contact. 

Different plant species have a varying number of vascular bundles. This may increase the 

difficulty to adequately align vascular bundles from the rootstock and scion if they are 

unequal to achieve a successful graft (Oda et al., 1993). Some studies also shown that 

rootstocks can adversely affect the taste and shape of watermelon fruits (Edelstein, 2004a). 

Plant proteins, either structural or nonstructural that are synthesized in the root, are 

translocated to the scion can give the fruit an off flavor that has been reported. These 

discrepancies are not reported in all rootstocks and can be overcome through screening 

procedures to evaluate for rootstock performance. 

Overall cost versus benefit becomes the bottom line when growers think about 

production within the United States: A grafted seedling in the U.S. is estimated to cost more 

than  $ 0.75, as suggested by Taylor et al. (2008) being far more than $ 0.28 for a non-grafted 

seedling. There is an additional cost for growing the rootstock seedlings in comparison with a 

non-graft seedling transplant. This cost can be broken down into twice the amount of growing 

material, space, and time. Additionally equipment is needed for grafting such as a sharp 

blade, clips and a healing chamber. Labor is necessary to carefully handle the seedlings while 

performing the grafting procedure and with removing rootstock re-growth and this removal 

can be very expensive and of major concern due to overall cost. Rootstock re-growth occurs 

at the base of the rootstock cotyledons where meristematic tissue is present. Current grafting 

techniques attempt to remove all meristematic tissue during the grafting procedure. When the 

meristematic tissue is not removed, re-growth occurs at high rates. Even when grafting 

experience is increased and rootstock re-growth minimized, the remaining re-growth is yet 
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too costly to remove at a reasonable cost. Overall cost must be decreased in order for grafting 

technology to be considered for commercial practice within the United States. This problem 

can be reduced by completely removing the cotyledon during grafting which eliminates the 

meristematic region; however, some attempts to successfully graft by removing both 

rootstock cotyledons in a one step fashion has not been successful (Oda et al., 2002). 

Plant Physiology: Role of Cotyledons 

The cotyledon leaf appears to play an important role in successful grafting. Although 

it is ultimately the ability of the vascular bundles to come into alignment and interact with 

one other that determines success, the cotyledons play an initial role that is not fully 

understood. Graft healing appears to be dependent on hormonal signaling manufactured in the 

cotyledons that successfully heal the wounded region which will be explained below.  

The cotyledons are the initial energy source for the developing seedling, and are 

responsible for 80% of the CO2 fixation (Lasley and Garber, 1978). After emerging, the 

cotyledons continue to expand from 14-(Bisognin et al., 2005) to 50-fold and become leaf-

like to photosynthesize the needed carbohydrates for the plant’s developing organs (Lovell 

and Moore, 1970). Bisognin et al. (2005) suggested that cotyledons should not be damaged 

until leaf surface area is equivalent to cotyledon surface to prevent a large decrease in CO2 

exchange and possible plant death. In cucurbits, cotyledons undergo a high rate of expansion 

growth involving an increase in cell number and size with the development of functional 

stomata on both sides of the leaf after emergence (Bisognin et al., 2005; Lovell and Moore, 

1970). The overall CO2 exchange rate is much higher per area than those of leaves (Lasley 

and Garber, 1978) 

Tissue below ground can display an even stronger dependence on cotyledons 

(Bisognin et al., 2005). If the cotyledons are removed within the first days of germination, the 
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seedlings growth and development will be delayed and may result in death. The young 

seedling development is dependent on cotyledon photosynthetic activity (Penny et al., 1976) 

as the tissue below ground is still maturing and requires a vast amount of energy. The 

establishment of cucumbers is highly dependent on cotyledons (Bisognin et al., 2005). 

Because of the role of the cotyledon in supplying necessary energy for the developing 

seedling during the young stages of development, a deficit in stored reserves during grafting 

at early stages would be detrimental to grafting success. Removing cotyledons to prevent 

rootstock re-growth immediately after germination would prevent cell tissue from maturing 

resulting in graft failure.  

Plant Physiology: Graft Healing 

Graft healing and survival greatly depend on the compatibility of scion and rootstock 

combinations which can be anatomical, physiological, and genetic variables (Edelstein, 

2004a; Edelstein, 2004b). A low survival rate in grafted plants can be due to two main 

characteristics: 1) the removal of the cotyledons from the rootstock; and 2) limited number of 

the vascular bundles that contact the scion to the rootstock (Oda et al., 1994).  

Hormonal interactions such as gibberellins, auxins, and cytokinins have also been 

shown to affect graft healing. Gibberellic acid is a product produced in the cotyledons that is 

essential to the cell division in reuniting the cortex of the graft union (Asahina et al., 2002). 

To better understand the involvement of the cotyledons in the healing process, the cotyledons 

were removed and cell division was inhibition during tissue reunion (Asahina et al., 2002). 

This inhibition was further reversed upon the application of gibberellins to the apical tip of 

the cotyledon-less plant. Reports showed that this inhibition was also present in a GA-

deficient gib-1 mutant of tomato (Lycopersicon esculentum). These results conflicted with a 

previous study on tomato which showed that the addition of gibberellic acid in a culture 
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medium was inhibitory to the graft development (Parkinson and Yeoman, 1982), which 

suggested they could be specific to a species, or they did not get the rate right.  

Cytokinins and auxins are also considered very important in grafting. A deficit in 

cytokinins is associated with incompatible grafting combinations (Andrews and Marquez, 

1993). Further investigations showed that the application of kinetin to a culture medium 

stimulated the graft development (Parkinson and Yeoman, 1982). In regards to auxin, the 

application of one indole-3-acetic acid to the apical end was suggested to be an absolute 

requirement for healing success (Parkinson and Yeoman, 1982). Furthermore in a preliminary 

study by Shan-fa et al. (1996), an optimal level of plant hormone including the auxins, IBA 

and cytokinin 6-BA, was found to control the formation of graft unions by influencing the 

number of vascular bridges formed between rootstock and scion. 

There are differing opinions on whether a difference in hypocotyl diameters between 

scion and rootstock affect grafting incompatibility. Both Oda et al. (1993) and Traka-

Mavrona et al. (2000) reported that the smaller differences in the hypocotyl diameter between 

the cucumber scion and squash rootstock may increase compatibility and the quantity of 

vascular bundles has no effect. Edelstein et al. (2004b) found no correlation with the 

difference between scion and rootstock hypocotyl diameters or vascular bundles and the 

survival rate of the grafts and concluded that the difference was attributed to different 

grafting techniques being. 

Role of Carbohydrates and Sink-Source Relationship 

The role of the cotyledon in graft success and seedling survival, suggest a correlation 

between the two, and merits additional research to understand the sink/source relationship in 

relation to grafting success. During the developmental process and seedling establishment, 

plant tissues can be classified as either a source or sink to define the patterns of carbohydrate 
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translocation. Areas that produce more photosynthate than is consumed become a source. 

Photosynthate is translocated from the “source” (the sight of photosynthesis) to a “sink” 

(another plant organ that is consuming photosynthate at a higher rate than it is producing for 

development or storage). Sink areas may shift during plant development. The major sinks 

during vegetative growth are the shoot and root tips. The seeds and fruits become dominant 

sinks for the duration of reproductive development (Taiz and Zeiger, 2006).  

 In a study to better understand the distribution and effect of the cotyledons on 

carbohydrates, Mayoral et al. (1985) found that with a 12-day-old seedling, the sucrose and 

starch contents of the cotyledon increased upon the removal of the primary leaf. With the 

primary leaf still intact, the removal of one cotyledon decreased the carbohydrate content of 

the remaining cotyledon. This redistribution and fluctuations of carbohydrates appears to 

coincide with the source/sink relationship of the developing organs; the cotyledons being the 

source, and leaf being the sink. The removal of either cotyledon will increase the dependence 

for the demand in carbohydrates for the developing leaf resulting from the remaining 

cotyledon. By removing the developing leaf, the high demand for carbohydrates will cease 

thereby decreasing the translocation of photosynthates from the cotyledons. 

Carbohydrates play an important role in the survival of the seedling including 

construction of the carbon skeletons, energy source, osmotic effects, induce signal 

transduction, and modulating gene expression (Rapaka et al., 2007a). Sampling time affects 

carbohydrate levels in leaves and stem tissue. Portulaca grandiflora cuttings harvested earlier 

in the day have fewer carbohydrates than those harvested later (Rapaka et al., 2007b). Total 

carbohydrate concentration in the plant is dependent conjointly on sunlight intensity and 

overall accumulated carbohydrates during the day. By the end of the dark period the 

carbohydrates are completely remobilized (Rapaka et al., 2007a). Further studies have 
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demonstrated that changes in carbohydrate levels affect postharvest shelf life of leafy green 

vegetables with lower carbohydrate concentrations having a shorter storage life (Rapaka et 

al., 2007a). Additionally adventitious rooting intensity was also correlated with carbohydrate 

concentration. Cuttings with higher carbohydrate concentrations had greater rooting intensity 

than those with lower concentrations (Rapaka et al., 2005).   

Watermelon seedlings contain various carbohydrates in petiole and leaf tissue. These 

carbohydrates are fructose and glucose, found mainly in the petiole and sucrose, raffinose and 

stachyose found in the leaf (Ranwala et al., 2002). Within Cucurbitaceae, stachyose and 

sucrose appear to be the major translocated carbohydrates with stachyose the predominant 

carbohydrate within the cantaloupe leaf, and monosaccharides are the most abundant 

carbohydrates present in young fruit and stem tissue (Bruton et al., 1998).  

The involvement of carbohydrates in grafting has not been previously reviewed. The 

interaction and redevelopment of the graft union in large extent should be dependent on the 

amount of carbohydrates present in the plant at the time of grafting due to the role of the 

cotyledons in supplying energy, and the complex ways in which carbohydrates are used 

within a plant. At grafting, the growing shoots and roots will be the main sinks. During 

healing, grafts are placed in low light levels until the graft is healed, the synthesis of new 

carbohydrates would be prevented and the seedling would be completely reliant on stored 

carbohydrates for survival.  

Grafting success appears to be dependent on a variety of characteristics which are not 

completely understood including environmental conditions, plant vigor, carbohydrate content, 

and the proper alignment of vascular bundles (Bisognin et al., 2005). According to Oda 

(1995) newly grafted plants must be placed in a humidity chamber with low light intensity for 

healing to take place. The ability of the rootstock and scion to heal the wound created through 
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grafting may be dependent on the total energy available. Studies showed that grafting success 

is determined greatly to the extent that vascular bundles for the scion and rootstock are 

aligned (Oda et al., 1994). Other reports showed that auxin, gibberellic acid and cytokinin 

promote vascular cambium formation as discussed previously. Additionally, the cut regions 

of both seedlings should not be allowed to dry. After grafting, the grafted seedlings should be 

kept in 100% humidity for three days followed by a gradual drying until day seven. The light 

intensity should be at 3-5 klx (Oda, 1995) and the temperature should be maintained at 25oC 

(Cushman, 2006). 

Grafting costs increase due to meristematic re-growth which occurs at high 

frequencies as long as active meristematic regions remain on the rootstock after grafting with 

current commercial grafting procedures. The splice graft method is also not cost effective in 

the United States because of the intense manual labor involved. General re-growth does not 

occur at the same time which necessitates removal at different times to ensure complete 

removal. Cost for removal are further escalated when the workers are required to walk the 

field to individually remove the re-growth once the grafted plants are planted out in the field. 

(Cushman, 2006; Lee and Oda, 2003; Oda, 1995).  
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MATERIALS AND METHODS 

Seedling Development 

Four rootstocks were tested: Lagenaria siceraria cv. Emphasis (bottle gourd), 

Citrullus lanatus var. citroides cv. Ojakkyo (wild watermelon), Cucurbita moschata x 

Cucurbita maxima cv. Strong Tosa (inter-specific squash hybrid), and Citrullus lanatus var. 

lanatus cv. Tri-X 313 (triploid seedless watermelon). Scion material was Citrullus lanatus 

var. lanatus cv. Tri-X 313(triploid seedless watermelon). All seeds were provided by 

Syngenta Seeds, Inc., Boise, Idaho. The soilless mix was a custom mix prepared by Conrad 

Fafard Inc., Anderson, SC with the following composition: 75% NB (New Brunswick) 

nursery peat, 25% coarse perlite, 2.04g/m of dolomitic limestone, and 453.6g/ m of gypsum. 

This mix is similar to the 3B mix (Conrad Fafard Inc.) but without a nutrient charge. 

Rootstocks were grown in 72 square vented plug trays (cell depth of 5.7 cm with top and 

bottom cell diameters tapering from 4.0cm to 2.5 cm TLC Polyform, Inc. Morrow, GA). The 

scions were seeded in 288 square plug trays (cell depths of 3.8 cm with top and bottom cell 

diameters tapering from of 2.1 cm. to 1.1 cm TLC Polyform, Inc. Morrow, GA). Rootstock 

and scion seeds were sown in a truss built glass greenhouse at the United States Department 

of Agriculture Vegetable Laboratory in Charleston, SC during the fall 2008 and winter 2009. 

The greenhouse was one compartment from the multi-greenhouse structure. The greenhouse 

area and specifications were as follows: 289.6 m2. The environmental conditions were 

controlled using a step 50 alpha control system (Wadsworth Co., Arvada, CO). This control 

system controlled the TF-75 gas fired heater (Sterling Co., Westfield, MA), the evaporative 

(6.7 m long) cooling system (Aerotech Amunters Co., Madison, MI), circular vent fan 50.8 

cm patented plant-air VS20PA circulation and the 40.6 in direct drive flush mount style 
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variable speed exhaust fan placed in the gable (Schaefer, Souk Rapids, MN), and two 76.2 cm 

fans (Acme Engineering and Manufacturing Corp., Muskogee, OK). 

Each rootstock and scion seeds were sown (30 trays of each) at different dates based 

on a preliminary study (data not shown) to coincide with the development of each respective 

1st, 2nd, and 3rd rootstock leaf number stage (RLNS) (see Table I & Appendix-A). The RLNS 

development in this study is defined as follows: The 1st RLNS is when the cotyledons are 

fully expanded and the appearance of the 1st leaf is visible to the eye; the 2nd RLNS is when 

cotyledons and the 1st true leaf are fully expanded and the appearance of the 2nd leaf is 

visible to the eye; and the 3rd RLNS is when the cotyledons, 1st, and 2nd true leaf are fully 

expanded and the appearance of the 3rd leaf is visible to the eye. Rootstock seeds were sown 

at approximately 1.5 cm depth in the soilless mix and maintained moist until germination was 

complete. Scion ‘Tri-X 313’ seeds were sown at approximately 1 cm depth in soilless mix 

using germination methods developed by Hassell and Schulthies (2002). All seedlings were 

fertilized with 100 ppm with 15-5-15 fertilizer (Scotts-Sierra Horticultural Products Co., 

Marysville, OH) using the Anderson Injector Series S (H.E. Anderson Co., Muskogee, OK) 

once cotyledons were fully extended and as needed to prevent excessive etiolating and to 

maintain healthy plants.  

New Grafting Method and Analysis 

Rootstocks species were grafted at separate times starting with interspecific squash 

hybrid, followed by the bottle gourd, wild watermelon, and the seedless hybrid watermelon at 

three different RLNS each. All rootstock plants were grafted using the cotyledon devoid 

grafting method.  
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Cotyledon Devoid Graft 

The cotyledon devoid grafting technique is a new method aimed at eliminating 

rootstock re-growth and is the method under investigation. The cotyledon devoid graft is 

described as follows: 1) using a sterile single edge Kobalt blade (Warner Manufacturing 

Company, Minneapolis, MN) rootstocks were first cut just below both the cotyledons at a 

180º angle to remove all possible meristematic regions (Fig. 5 & Appendix-A). This was 

performed to increase accessibility and precision for the grafting slant cut. An approximate 

65º slant cut was then made at the tip of the hypocotyl. 2) The scion was cut at the base from 

the roots in large quantities and set on sterile paper towels. It was then individually cut at 

approximately 2 cm below the cotyledons with an opposing 65 o angle to the rootstock slice 

and preserved in a 3.8 L zip-lock bag to help prevent wilting until it was used. 3) Exposed 

vascular tissue in the scion and rootstock hypocotyl was then joined together as precisely as 

possible to maximize the contact region between the two and immediately secured with a 

spring loaded clip to finalize the grafting procedure (Syngenta Seeds Inc., Boise, ID). 4) 

Using a sterile blade, the rootstock was then excised below the soil line, and 5) stuck in new 

soil media for re-rooting. 

Grafting Experiment 

The night prior to grafting, 10 flats (at the first true leaf) of the original 30 of both the 

rootstock (72 cell count) and scion (128 cell count) material were placed inside the head 

house with approx. room temperature at 23ºC. This was done to promote the closure of the 

stomata prior to grafting to minimize wilting. One flat from each (scion and rootstock) was 

randomly selected and set aside for plant growth analysis. Within this flat, plants were 

randomly divided into ten plant subsamples with five replications. While keeping the plants 

intact, relative chlorophyll content for each of the 10 plant subsamples was individually 
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measured of the cotyledon and leaf (if present) using the Chlorophyll Meter SPAD-502 

(Minolta Inc., Ramsey, NJ). Each value measured by the SPAD meter corresponds to the 

amount of chlorophyll present in the plant tissue being measured. One reading was taken 

from each tissue of interest. These values are calculated based on the amount of light 

transmitted by the leaf in two wavelength (red and infrared) regions in which the absorbance 

of chlorophyll is different.  

These same subsamples were then severed from the roots at the soil line and then 

further divided into cotyledons, leaves, and hypocotyls for leaf area measurements of the 

vegetative tissue using a LI-3100 area meter (Li-Cor, Inc., Lincoln, NB). Hypocotyl diameter 

and length were recorded using a digimatic caliper (Mitutoyo Corp., Aurora, IL).  

A second flat of pre-grafting plants were used for carbohydrate analysis. Each sample 

consisted of a subsample of ten plants that was replicated five times. Samples were taken at 

random within each subsample and were partitioned according to the leaves, cotyledons, 

hypocotyl, and roots. The hypocotyls were severed from the roots at the media surface line. 

The hypocotyl, cotyledons and leaf were partitioned and placed in plastic 0.5 L size freezer 

bags and immediately stored in the -80ºC ULT 1786 Revco freezer (Kendro Laboratory 

Products, Asheville, NC) for preservation. Roots were then hand washed by first gently 

rinsing of the bulk soil in a sink. The roots were then placed on a custom made box sieve, 

made from 3.2 mm stainless steel hardware cloth on a 60cm x 47cm wood frame, which 

would allow small particles of soilless mix to wash through while keeping the roots intact. 

They were then sprayed using a fine mist spray nozzle (low-flow spray valve asm) (T&S 

Brass, Simi Valley, CA) to remove the remaining debris and then stored in a zip-lock bag in 

the -80ºC freezer. The scion material tissue samples consisted of the complete scion portion 
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of the leaves, cotyledon and partial hypocotyl (used in grafting) all still intact. These samples 

were also placed in the -80ºC freezer at the same time as the rootstock samples. 

The remaining eight flats were grafted using the “Cotyledon Devoid Method”. 

Within those eight flats, four flats were grafted as explained previously (excluding steps 4 

and 5) and randomly placed in the healing chamber. The other four flats were also grafted but 

had the roots excised and repotted as a final step (Fig.5, step 5). This was done by cutting the 

hypocotyl just below the soil baseline using a sharp blade. Cutting below the baseline ensured 

minimal root primordia would remain to help speed the rooting process. The amount of root 

primordia left varied with each excision. Seedlings were then replanted in pre-moistened 

soilless mix within a 72 cell tray and were randomly-placed inside the same healing chamber 

as the other four. The custom made healing chamber was located inside the greenhouse and 

was tunnel shaped to keep humidity in, while allowing sun light to reach the plant leaves. It 

was constructed using wire hoops on top of a rectangular wood box with the following 

dimensions: width of 86 cm, a length of 300 cm, and a depth of 14 cm. The covering 

consisted of 6mm thick clear polyethylene sheeting. The hoops over the box top increased the 

height 28 cm above the wood frame box. The humidity was maintained using the 707U-duct 

mount centrifugal atomizer humidifier (Herrmidifier, Effingham, IL) located at one end of the 

chamber, and was recorded in conjunction with the temperature using the Watchdog model 

100 water resistant button loggers (Spectrum Technologies, Inc., Plainfield, IL). 

Photosynthetic light was measured using the quantum light sensor (Spectrum Technologies, 

Inc., Plainfield, IL). Temperatures inside the chamber varied from 21.1 oC to 35.6 oC during 

the night and day respectively. The relative humidity was maintained close to 100%. 

Seedlings were grown under low light intensity, with photosynthetic active radiation (PAR) at 

286 µM/m2s at noon. Low light reduced phototranspiration to prevent plant wilting. Forty-
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eight hours after grafting, light intensity was increased to approximately 900 µM/ m2s PAR 

by removing shade cloths. Humidity was gradually reduced after day three in the humidity 

chamber 

One day prior to healing completion and seven days post grafting, four flats were 

removed from the healing chamber, two from each treatment (with roots or without roots). 

From each of these treatments, one flat was used to take additional subsamples from the post-

grafted plants in preparation for carbohydrate analysis as described before and the second was 

used for plant growth analysis. This time plant tissue samples consisted of the leaves, 

cotyledons, and hypocotyl from the scion, and the hypocotyl and root (if present) from the 

rootstock. Subsamples were taken in a destructive manner as before, consisting of ten plants, 

with five replications. The scion portion was severed from the grafted plants, and the 

hypocotyl and vegetative portions were then separated and immediately stored in the -80ºC 

freezer. The rootstock hypocotyl was cut off of the roots (if present) for sub-sampling and 

also stored in the -80ºC freezer. Available roots were then washed to remove soilless media as 

the same manner as described before and then stored in the -80ºC freezer. The second tray 

was used to measure leaf/organ area and chlorophyll measurements from the cotyledons and 

leaves. 

Eight days after grafting, the remaining four trays of transplants, were then removed 

first thing in the morning from the healing chamber and placed randomly on the greenhouse 

benches and watered to saturation with 100 ppm fertilizer treatment of 15 (N)-5 (P2O2)-15 

(K2O). Grafting clips were removed nine days after grafting. Graft survival was then 

evaluated and recorded using the subjective rating system outlined in Table 1, eleven days 

after healing completion. Plants were evaluated and scored depending on the degree of 

survival of each plant. Rating score ranged between 1-10, with one being completely dead, 



 
 

30 
 

and 10 being very alive. Values in between the range indicated relative survival or 

desiccation.  

 Grafting and plant analysis for the second and third RLNS for ‘Strong Tosa’ 

rootstock took place at a later date (Table 2) and was performed in the same manner as 

described for the first leaf. Additionally, ‘Emphasis’, ‘Ojakkyo’, and ‘Tri-X 313’were 

subsequently individually grafted, evaluated, and prepared for carbohydrate analysis at each 

RLNS (1st, 2nd, and 3rd) using a different time table but using the same method as was 

described for the ‘Strong Tosa’ rootstock (Table 2).  

Carbohydrate Analysis  

Plant subsamples, consisting of plant tissue from 10 plants each were removed from 

the -80ºC freezer and immediately freeze dried using a Vertis-Genesis 25EL freeze dryer (FP 

Industries, Gardiner, NY) for approximately 7 days until completely dry. All subsamples 

were then ground, before proceeding to the carbohydrate extraction, using the A11 Basic S1 

Analytical Mill with the A 11.1 SS grinding blade (IKA Works, Inc., Wilmington, NC) and 

placed into 20 ml vials and re-stored in a -20 ºC (8.8 cu. Ft Chest Freezer Frigidaire, 

Martinez, GA) to prevent carbohydrate and tissue disintegration. The dry weight for each 

composited 10 plant sample was recorded. 

For each sample, fifty mg (+.03mg) of dried plant tissue was weighed using the 

Analytic Sartorius Weigh Balance (Brinkmann Instruments, Inc., Westbury, NY). All 

extractions followed a methanol-chloroform-water extraction protocol (Miller and Langhans, 

1989). Once carbohydrate extraction was complete, five ml of the final volume of extracted 

carbohydrates was dispensed into five 1 ml micro-tubes in preparation to remove methanol 

from the extract. Samples were dehydrated for approx. four hours using the Thermo Savant 

SC100 SpeedVac Centrifugal Vacuum (Thermal Scientific, Waltham, MA). Samples were 
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then prepared for quantification by suspending the dried sample in 1 ml pure H2O: 50ul of the 

carbohydrate-H2O solution was transferred into two wells each on a 96-well flat bottom 

bacterial micro-plate (VWR International, LLC, Suwanee, GA). Total carbohydrates were 

then further prepared using the phenol-sulfuric acid method (Masuko, 2005) and immediately 

analyzed in the SpectraMax Plus 384, a high throughput micro plate spectrophotometer 

(Molecular Devices, Sunnyvale, CA) for total carbohydrates. Each micro-plate contained a 

standard prepared from D- (-) Fructose (Life Sciences and Biochemicals, St. Louis, MO). The 

standard consisted of the following concentrations: 31µg/ml, 62µg/ml, 100 µg/ml, 150µg/ml, 

200 µg/ml, and 250 µg /ml. This protocol gave us total carbohydrate concentration within the 

sample based off of calorimetric reaction. Carbohydrates per plant organ were then calculated 

based of the total dry weight of the10 plant composite sample and total carbohydrate 

concentration measured. 

Statistical Analysis 

Data were analyzed using PROC GLM procedure of PC SAS (SAS v.8, Cary, N.C.) 

to determine the effects of rootstock, RLNS and root treatment and their interactions. If the F 

test was significant at P=0.05 and 0.01, the means were separated by LSD at P = 0.05 and 

0.01. The relative importance of the rootstock, RLNS and root treatment factors and 

uncontrolled error were determined by partitioning of the total sum of squares in the analysis 

of variances (ANOVA) into main and interaction effects and expressing these individual 

contributions to variation as a percentage of the total sum of squares for the model. The value 

of these percentages is that they become very useful indicators to compare which factors 

contributed most variation to growth, quality and yield variables relative to the other factors. 

Significant differences will be referred in this thesis simply as a decrease or increase if 
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significant. Insignificant increases or decreases will not be mentioned unless stated as not 

significant. 

Once plants were grafted and put in the healing chamber, the experimental design 

was a complete randomized design. Data was then analyzed as a three factor design. The third 

factor was rootstock treatments where roots were left intact or excised and re-rooted in fresh 

media. ANOVA was performed on main effects (rootstock scion, leaf stage and root 

treatment) and interactions using the GLIMMIX procedure (Table 11). 
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Figure 1. Tongue approach graft 1) the rootstock and 2) scion being cut; 3) union of scion and 

rootstock; 4) complete removal of rootstock meristem; and 5) complete removal of scion 
root. Picture provided by (Hassell et al., 2008). 

 

 
 
 
 

 
 
Figure 2. One cotyledon graft 1) cut scion at an approximate 65o angle; 2) remove apical 

meristem and one cotyledon; 3) cut off cotyledon at an approximate 65o angle; 4) attach 
scion onto rootstock; and 5) secure the graft with a clip. Picture provided by (Hassell et 
al., 2008). 

 

  



 
 

34 
 

 

 
 
Figure 3. Hole insertion grafting method 1) the scion is cut at approximately 65º on two sides 

forming a point; 2) meristematic tissue is removed; 3) a hole for the scion to be fitted in is 
drilled at a slant between the cotyledons and just through the hypocotyl of rootstock; 4) 
the scion is aligned to fit snugly in the rootstock; and 5) it is then securely inserted into 
the rootstock. Picture provided by (Hassell et al., 2008). 

 
 

 

 
 
Figure 4. Side graft 1) the scion is cut at approximately 65º on two sides forming a point; 2) 

a simple slice is made through the rootstock hypocotyl; 3) the splice is then prop open 
using a toothpick or stick; 4) the scion is inserted into the rootstock, and secured with a 
graft clip; and 5) the vegetative portion from the rootstock is cut just below the 
cotyledons. Picture provided by (Hassell et al., 2008). 
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Figure 5. Cotyledon devoid grafting method 1) both cotyledons are cut from the rootstock 

removing all meristematic tissue at an approximate 65o angle; 2) the scion is cut at an 
approximate 65o opposing slant to the rootstock; 3) the scion and rootstock wounded 
regions are joined and secured with a clip; 4) the rootstock hypocotyl is cut just below the 
baseline; and 5) the grafted seedling is then planted in a new cell with soil media.  
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Table 1. Subjective qualitative rating scale to describe the condition of the grafted 
transplants after healing and hardening occurred. 

 

Rating Degree of 
condition Description Notes 

 Very poor 0 Dead Dead 
poor 1 Alive but survival 

highly unlikely 
Almost dead 

2 Moderating between surviving or not 
3 Borderline but will probably die 

Poor to fair 4 Will survive but be 
slowed and stunted 

Severely stunted 
5 moderately stunted 
6 Somewhat stunted 

Fair 7 Survive but growth 
less than optimal 

Fair but not acceptable 
8 Borderline acceptable 

Good 9 Satisfactory or 
acceptable, survival, 
growth and vigor 

Good and acceptable but not the best 
Acceptable 

Superb 10 Impressive and 
optimal growth, vigor 

Optimal results 
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Table 2. Scheduled dates when each rootstock, scion and leaf number (RLNS) were seeded and 
treatment data recorded. 

 
 

Rootstock 
Rootstock 

RLNS 
Rootstock 
planting 
dates 

Scion 
planting 
dates 

Data Collection 

typez Ay Bx 

 
 

     Strong Tosa C.mo. x C.ma. 1 20-Oct 17-Oct 30-Oct 8-Nov 
 2 20-Oct 17-Oct 4-Nov 13-Nov 
 3 20-Oct 17-Oct 10-Nov 19-Nov 

Emphasis L.s. 1 17-Nov 18-Nov 2-Dec 11-Dec 
 2 17-Nov 18-Nov 5-Dec 14-Dec 
 3 17-Nov 18-Nov 11-Dec 20-Dec 

Ojakkyo C.l Var.c. 1 8-Feb 6-Feb 17-Feb 24-Feb 
 2 6-Feb 3-Feb 19-Feb 26-Feb 
 3 8-Feb 6-Feb 27-Feb 6-Mar 

Tri-X 313 C.l. Var.l(3x) 1 4-Mar 4-Mar 16-Mar 23-Mar 
 2 4-Mar 4-Mar 19-Mar 28-Mar 
 3 4-Mar 4-Mar 25-Mar 1-Apr 

zType is C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l Var.c.=Citrullus lanatus 
Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
yA includes dates consist of when area measurements and carbohydrate preparation prior to grafting. 
xB includes dates consist of when area measurements and carbohydrate preparation were recorded after seven days in the healing chamber. 
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RESULTS AND DISCUSSION  

Aerial Growth Results Prior to Grafting 

The ANOVA for aerial growth indicated that rootstock genotype interacted with 

RLNS for hypocotyl, cotyledon and leaf variables (Table 3). Even though there were 

interactions, the amount of variation assigned to the main effects varied among each aerial 

growth factor. The main effects of rootstock and RLNS were similar with the hypocotyl 

length, diameter and area. Rootstock main effect accounted for most of the variation in 

cotyledon area yet RLNS main effect accounted for most of variation in color. RLNS 

accounted for most of variation in leaf area and leaf color. The hypocotyl length and area, 

cotyledon area and color, and leaf area and color had low error values indicating the model 

accounted for most of uncontrolled error. Hypocotyl diameter had the greatest error value; 

even though the coefficient of variation was low. The hypocotyl length and area, and leaf area 

had the greatest coefficients of variation then other variables. The hypocotyl diameter, 

cotyledon area and color and leaf color all had low coefficients of variances, indicating a 

better degree of precision. 

Rootstock genotype interacted with RLNS affecting all pre-grafting aerial growth 

variables (Table 4). Rootstocks will be referred to simply by its cultivar name.  Hypocotyl 

length, total area, and leaf area of ‘Strong Tosa’ increased as each RLNS increased. 

Hypocotyl diameter as well as the cotyledon area remained similar at the first and second 

RLNS, but increased at the third RLNS. Rootstock cotyledon color decreased as RLNS 

increased from first to third RLNS. The leaf color decreased from the second RLNS to the 

third RLNS. ‘Emphasis’ hypocotyl diameter, hypocotyl area and leaf area increased at each 

RLNS. Hypocotyl length and cotyledon area were similar at the first and second RLNS, but 

increased at the third RLNS; however, the cotyledon color remained unchanged for the first 
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and second RLNS and decreased at the third RLNS. The leaf color was unaffected by RLNS. 

Hypocotyl length, diameter, and total area, and leaf area of ‘Ojakkyo’ increased as RLNS 

increased. The cotyledon color decreased as each RLNS increased. The cotyledon area 

increased from the first to the second RLNS and then leveled, and remained unchanged at the 

third RLNS. Leaf color increased from the second to the third RLNS. With the ‘Tri-X 313’, 

the hypocotyl diameter, leaf area and leaf color increased as RLNS increased, however, 

cotyledon color decreased. The hypocotyl length remained unaffected by RLNS. 

Subsequently, the total area of the hypocotyl remained the same at the first and second RLNS 

but increased at the third. The cotyledon area were fully developed once they reached the 

second RLNS and leveled without any further increases at the third RLNS. The leaf color 

increased from the second to the third RLNS. Not only did RLNS affect rootstock genotype, 

but scion hypocotyl, cotyledon and leaf also showed similar effects. 

With scion ‘Tri-X 313’, RLNS main effect accounted for the majority of variation in 

the hypocotyl, cotyledon and leaf aerial growth and cotyledon and leaf color (Table 5). The 

hypocotyl diameter, hypocotyl area and cotyledon area had the greatest unexplained error 

values. Scion plant growth factors, hypocotyl area and leaf area had the greatest coefficients 

of variation values. All other error and coefficients of variation values were considered 

minimal. The scion ‘Tri-313’, which was also a rootstock cultivar, developed in a similar 

manner (Table 6). The hypocotyl length, hypocotyl area, and leaf area increased as each 

RLNS increased however, this did not occur when used as a rootstock. The explanation for 

this difference is as follows: these plants were grown in a smaller tray size with half the 

surface area; therefore, the hypocotyl continued to stretch to compete for enough sunlight for 

growth. The cotyledon color decreased with each RLNS increase. The cotyledon area 

increased up to the second RLNS and remained unchanged at the third RLNS. There was no 
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difference in the leaf color at the second and third RLNS. Leaf and cotyledon chlorophyll 

color readings varied among the first, second and third RLNS (all scion material appeared to 

be healthy at the time of grafting). The average SPAD values recorded represents a healthy 

value at each respective first, second, and third RLNS. Readings below 20 SPAD units can be 

considered very low in chlorophyll color and in poor health. 

Carbohydrate Tissue Concentration Prior to Grafting 

The carbohydrate ANOVA indicated that rootstock genotype interacted with RLNS 

for rootstock cotyledon, hypocotyl, leaf and root tissues, but not with scion ‘Tri-X 313’ tissue 

(Table 7). Additionally, the amount of variation accounted by the main effects varied among 

the carbohydrate growth variables. The majority of variation on hypocotyl and root 

carbohydrates was attributed to the main effect of rootstock; however, RLNS greatly affected 

leaf carbohydrates. Scion carbohydrates were only affected by both main effects of rootstock 

and RLNS. The rootstock cotyledon, hypocotyl, and roots possessed great levels of 

unexplained error; however, the hypocotyl coefficients of variance were quite low. Rootstock 

leaf carbohydrates had the greatest level of unexplained error of all. Rootstock leaf error was 

low, with a high coefficient of variation.  

Rootstock genotype interacted with rootstock RLNS treatment indicating that 

rootstock genotype developed differently at each of the pre-grafted RLNS (Table 8). The 

carbohydrate concentrations in ‘Strong Tosa’ was unaffected by the change in RLNS in the 

cotyledon, hypocotyl, leaf or root tissues. ‘Emphasis’ cotyledon carbohydrates decreased at 

the third RLNS only. The carbohydrate concentration within the hypocotyl, leaf, and root 

were similar by RLNS, identical effect as with ‘Strong Tosa’. ‘Ojakkyo’ carbohydrate 

concentrations decreased in the cotyledon from the first to the second RLNS and stayed 

stationary at the third RLNS. The hypocotyl and root carbohydrate concentrations decreased 



 
 

41 
 

from the first to the second RLNS, but returned to the same levels as the first RLNS. Leaf 

tissue carbohydrate concentration increased from the second to the third RLNS. ‘Tri-X 313’ 

carbohydrate concentration in the cotyledon progressively decreased from the first through 

the third RLNS but the only significant decrease difference was from the first to the third 

RLNS. The hypocotyl carbohydrate concentration was similar as the first and second RLNS 

and then increased at the third RLNS. Leaf carbohydrate concentrations were unaffected by 

the change in RLNS. Root carbohydrate concentrations were similar at the first and third 

RLNS, but decreased at the second RLNS. The scion ‘Tri-313’ total plant carbohydrates were 

similar and greater at the first and third RLNS, but reduced at the second RLNS (Table 6). 

Total Plant Organ Carbohydrates Prior to Grafting 

The ANOVA for total carbohydrate per plant organ revealed that rootstock interacted 

with RLNS for each of the plant organs (Table 9). Amount of variation attributed to the main 

effects varied among the plant organs. Both rootstock and RLNS accounted for the main 

source of variation in the cotyledon, but the change in RLNS accounted for the main source 

of variation in the hypocotyl, leaf and scion tissue. The rootstock, however, was the main 

source of variation in the root. The amount of unexplained error was very low, but the 

coefficient of variation was slightly high for each of the response variables. Scion tissue 

showed the greatest coefficient of variation. 

Rootstock genotype interacted with rootstock RLNS treatment indicating that 

rootstock genotype developed differently at each RLNS (Table 10). ‘Strong Tosa’ increased 

in total carbohydrates per sample at each increase in RLNS in the cotyledon, hypocotyl, leaf 

and root organs. ‘Emphasis’ increased in carbohydrates at each increase in RLNS in the 

hypocotyl and roots, but increased only at the second RLNS and remaining unchanged at the 

third RLNS in the cotyledon organ. The total carbohydrates in the leaf increased from the 



 
 

42 
 

second to third RLNS. ‘Ojakkyo’ carbohydrates did not increase at any RLNS in the 

cotyledon organ; however, a non-significant rise was observed at each RLNS. The hypocotyl 

carbohydrates did increase at the second RLNS from the first RLNS and remained unchanged 

through the third RLNS. The leaf carbohydrates increased from the second to the third RLNS. 

The roots carbohydrates increased from the first RLNS through the third RLNS. ‘Tri-X 313’ 

cotyledon carbohydrates increased at the third RLNS compared to the first, while the second 

RLNS did not differ from either of the first or third RLNS. The carbohydrates for the 

hypocotyl increased at the third RLNS. The leaf carbohydrates did not increase at either 

RLNS while the total carbohydrates in the root increased at the first through the third RLNS. 

When using the ‘Tri-X 313’ as the scion material, total plant organ carbohydrates increased at 

the third RLNS (Table 6). 

Aerial Growth and Carbohydrate Discussion Prior to Grafting 

Each of the four rootstock’s aerial growth variables increased from the first to the 

third RLNS. The rootstock hypocotyl is of greatest interest because it’s the organ specifically 

used in grafting. As the hypocotyl increased from the first to the third RLNS, the length, 

diameter, and area also increased. The carbohydrate analysis revealed that hypocotyl 

carbohydrates per gram of tissue did not increase directly with any increase in RLNS. 

However, calculations of sample dry weight with its respective carbohydrate concentration 

suggested that total carbohydrates within the plant organ greatly increased from the first to 

the third RLNS, due to the fact that the organ was larger. ‘Tri-X 313’ hypocotyl area 

increased only at the third RLNS even though the diameter increased with each increasing 

RLNS. Apparently, indicating grafting should be delayed until the appearance of the third 

RLNS in order to allow the hypocotyl to fully develop before it is excised for grafting.  
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The rootstock hypocotyl may not be fully developed at the first RLNS. At the 

appearance of the first RLNS, the rapid developing seedling appeared to be very tender more 

than at the second or third RLNS suggesting the inferior structural development and a greater 

dependency for photosynthates at this first RLNS stage. At the third RLNS, leaf area greatly 

increased, the hypocotyl should have decreased its need to grow at this point to not compete 

with the true leaves as a sink, during this critical growth change. The strength of the sink 

dictates where the photosynthates accumulate Taiz and Zeiger (Taiz and Zeiger, 2006).  If the 

true leaf should grow rapidly before the hypocotyl is fully developed, the hypocotyl may not 

be able to compete for photosynthates, which will impede its ability to grow and support the 

aerial tissues’ demand.  

Aerial Growth After Grafting 

Variation assigned to interactions and main effects differed among the scion aerial 

growth variables (Table 11). Leaf area interacted with rootstock, RLNS and root treatment. 

Of the three factors, RLNS accounted for most of the variation in all factors. Leaf color also 

exhibited a three way interaction with the source of variation almost equivalent among the 

rootstock, RLNS. The scion cotyledon area displayed three, two way interactions; root 

treatment by RLNS, rootstock by RLNS, rootstock by root treatment with RLNS contributing 

the greatest amount of variation. The scion cotyledon color also had a three way interaction 

with RLNS contributing for most of the variation than the other factors. Grafting success, like 

other variables, also had a three way interaction with RLNS assigned the majority of 

variation. In contrast to all variables, the scion leaf color, cotyledon area and color had the 

greatest levels of unexplained error. The leaf color and grafting success coefficient of 

variation were low but, scion leaf area, cotyledon area and color in contrast had greater 

coefficient of variation.  
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Rootstock, RLNS and root treatment interacted, affecting scion cotyledon, scion leaf 

and overall success of the graft (Table 12). Evaluating only the roots treatment intact, 

rootstock cultivars interacted with RLNS on scion cotyledon color, scion leaf color, scion leaf 

area and grafting success. When grafted on ‘Strong Tosa’, scion cotyledon and true leaf color 

decreased at each RLNS while the scion leaf area increased at each RLNS. Grafting success 

score increased with each RLNS and reached 8.4 by the third RLNS (highest level reached 

with roots intact) judged by the criteria on Table 1. With ‘Emphasis’, the scion cotyledon 

color decreased at each RLNS; however, the scion leaf color decreased only at the third 

RLNS. The scion leaf area increased as RLNS increased. Grafting success score increased at 

each RLNS and reached 9.8 by the third RLNS. The scion cotyledon color of ‘Ojakkyo’ 

decreased at each RLNS; however, the scion leaf color increased from the first to the second 

RLNS and then slightly decreased at the third RLNS. The scion leaf area increased with each 

RLNS. The grafting success score increased from the first to the second RLNS achieving 10, 

and remained the same through the third RLNS. When grafted on ‘Tri-X 313’, the scion 

cotyledon chlorophyll color decreased at each RLNS; however, the scion leaf chlorophyll 

color decreased from the first to the second RLNS and remained unchanged at the third 

RLNS similar to the first RLNS. The scion leaf area increased from the first to the second 

RLNS and remained unchanged at the third RLNS. Grafting success score increased only 

from the second to the third RLNS and reached a final score of 9.5.  

In evaluation of only root treatment excised, rootstock cultivars interacted with 

RLNS affecting the scion cotyledon, scion leaf and overall success of the graft (Table 12). 

When grafted on ‘Strong Tosa’, scion cotyledon color remained unchanged from the first to 

the second RLNS and decreased at the third RLNS while leaf area increased at each RLNS. 

The scion leaf color increased from the first to the second RLNS, but decreased from the 
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second to the third RLNS. Grafting success score increased from the first to the second RLNS 

and remained unchanged at the third RLNS reaching its highest score of 8.9. With ‘Emphasis, 

the scion cotyledon color decreased at each leaf stage while the scion leaf area increased from 

the first to the second RLNS and remained unchanged at the third RLNS. The scion leaf color 

remained unchanged from the first to the second RLNS but decreased at the third RLNS 

compared to the first RLNS. Grafting success score increased at each of the three RLNS and 

peaked at 98. With ‘Ojakkyo’, the scion cotyledon color decreased at each leaf stage while 

the scion leaf area increased at each RLNS. The scion leaf color however, decreased from the 

first to the second RLNS and remained unchanged at the third RLNS. The grafting success 

score increased from the first to the second RLNS reaching 10 and then remained unchanged 

through the third RLNS. When grafted on ‘Tri-X 313’ the cotyledon color remained 

unchanged from the first to the second RLNS and decreased at the third RLNS while the 

scion leaf area increased from the first to the second RLNS, but decreased at the third RLNS; 

however, this decrease remained greater than the first RLNS. Scion leaf color decreased at 

the third RLNS only. Grafting success score increased with each RLNS reaching 88 by the 

third RLNS.  

Rootstock cultivars interacted with RLNS, regardless of root treatment, affecting 

scion cotyledon area (Table 13). When grafted on rootstock, ‘Strong Tosa’, ‘Emphasis’ or 

‘Ojakkyo’ scion cotyledon area increased at the second RLNS and remained the same at the 

third RLNS. ‘Tri-X 313’ also increased at the second RLNS, similar to ‘Strong Tosa’, 

‘Emphasis’ and ‘Ojakkyo’, but decreased at the third RLNS. ‘Strong Tosa’ and ‘Emphasis’ 

had the greatest cotyledon area at both the second and third RLNS compared to ‘Ojakkyo’ 

and ‘Tri-X 313’.  
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Rootstock interacted with root treatment regardless of RLNS affecting scion 

cotyledon area (Table 14). ‘Emphasis’ had the greatest scion cotyledon area with roots left 

intact. ‘Strong Tosa’ and ‘Tri-X 313’ equally followed with ‘Ojakkyo’ having the smallest 

cotyledon area of all rootstocks. ‘Strong Tosa’ and ‘Emphasis’ scion cotyledon had the 

largest scion cotyledon area when roots were excised. When grafted on ‘Ojakkyo’ and ‘Tri-X 

313’, the scion cotyledon area decreased equally having the smallest area of the four 

rootstocks. ‘Emphasis’ and ‘Tri-X 313’ decreased in scion cotyledon area with roots excised. 

‘Strong Tosa’ and ‘Ojakkyo’ remained unchanged regardless to root treatment.  

RLNS interacted with root treatment regardless of rootstock affecting scion 

cotyledon area (Table 15). After grafting, the scion cotyledon area increased at the second 

RLNS without further increase at the third RLNS with roots left intact. With roots excised, 

the scion cotyledon area also increased at the second RLNS with no further increase at the 

third RLNS. The third RLNS decreased in area when roots were excised versus intact. The 

scion cotyledon area appeared greatest at second RLNS with roots left intact or at the third 

RLNS with roots excised. 

Carbohydrate Tissue Concentration After Grafting 

The ANOVA from the carbohydrate concentrations confirmed that a three way 

rootstock by RLNS by root treatment interaction existed for the rootstock hypocotyl and in 

the scion hypocotyl (Table 11). With the rootstock hypocotyl interaction, root treatment and 

RLNS main effects were similar in amount of variation each contributed. The root treatment 

effect contributed the majority of variation in the scion hypocotyl. The rootstock by RLNS 

interaction affected rootstock roots, with RLNS contributing most of the variation. The scion 

cotyledon and leaf had three two-way interactions of rootstock by RLNS, rootstock by root 

treatment and RLNS by root treatment. The variation in scion cotyledon rootstock by RLNS 
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interaction dominated over the other two interactions with the rootstock as the major source 

of variation. The rootstock by root treatment interaction contributed most of the variation to 

scion leaf carbohydrates with rootstock being the more dominant effect. The rootstock roots, 

rootstock hypocotyl, scion cotyledon, scion hypocotyl and scion leaf variables, all possessed 

very large amount of unexplained error. The rootstock roots and hypocotyl both had larger 

coefficient of variation but scion cotyledon, hypocotyl and leaf had smaller coefficient of 

variation, indicating greater precision in predicting a response. 

Carbohydrate analysis from the post-graft seedling material displayed a three way 

rootstock by RLNS by root treatment interaction with rootstock roots, rootstock hypocotyl, 

and scion hypocotyl (Table 16). With rootstock roots left intact, rootstock interacted with 

RLNS development for rootstock roots, rootstock hypocotyl, and scion hypocotyl. The 

rootstock roots and rootstock hypocotyl from grafted ‘Strong Tosa’ increased in carbohydrate 

concentration from the second to the third RLNS. Carbohydrates in the grafted scion 

hypocotyl portion decreased from the first RLNS to the second, but then returned to the same 

level at the third RLNS as in the first RLNS. Similar to ‘Strong Tosa’ and ‘Emphasis’ 

rootstock roots and hypocotyl carbohydrates increased only at the third RLNS. The 

carbohydrate concentration in the ‘Emphasis’ rootstock grafted scion hypocotyl remained 

unchanged at any of the three RLNS. Carbohydrate concentrations in ‘Ojakkyo’ roots and 

scion hypocotyl increased at the second RLNS, and remained unchanged at the third RLNS. 

‘Ojakkyo’ root carbohydrate levels were lower at the third RLNS compared to ‘Strong Tosa’ 

and ‘Emphasis’ root carbohydrate levels. ‘Ojakkyo’ rootstock hypocotyl carbohydrates 

increased at the third RLNS compared to the first, but was not different from the second 

RLNS. The roots from grafted ‘Tri-X 313’ progressively increased in carbohydrates at each 

of the three RLNS. At the first and second RLNS, ‘Tri-X 313’ rootstock roots had the 
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greatest carbohydrate levels than the other rootstocks at the same RLNS. The third RLNS 

root carbohydrate levels were similar to levels found in ‘Strong Tosa’ and ‘Emphasis’ third 

RLNS roots. The rootstock hypocotyl and scion hypocotyl remained unchanged through the 

all three RLNS for ‘Tri-X 313’.  

With rootstock roots excised, RLNS and rootstocks interacted, affecting rootstock 

and scion hypocotyl carbohydrates (Table 16). Rootstock roots were absent after having been 

excised prior to healing. ‘Strong Tosa’ rootstock and scion hypocotyl soluble carbohydrate 

concentration did not differ at any of the RLNS. ‘Emphasis’ hypocotyl increased in 

carbohydrates at the third leaf only compared to the first and second RLNS. The grafted scion 

cotyledon displayed no increase at any RLNS but remained large and unchanged through the 

third RLNS. For ‘Ojakkyo’, the carbohydrates in the rootstock and scion hypocotyl did not 

differ at any of the three RLNS. ‘Tri-X 313’ hypocotyl increased in carbohydrates at the third 

RLNS in contrast to the first and second RLNS. The scion hypocotyl was not at the three 

RLNS.  

Rootstock hypocotyls maintained greater levels of carbohydrate concentrations when 

roots were excised versus left intact during healing (Table 16). ‘Strong Tosa’ hypocotyl 

decreased over seven-fold in carbohydrate concentration with roots intact at the first RLNS. 

At both the second and third RLNS, hypocotyl carbohydrate concentrations decreased over 

three-fold with roots intact. ‘Emphasis’ decreased over three-fold in carbohydrate 

concentration at the first and second leaf with roots intact, but had comparable concentrations 

at the third leaf with roots intact versus excised. With roots excised, ‘Ojakkyo’ hypocotyl 

maintained over three-fold greater carbohydrate concentrations at the first RLNS. At both the 

second and third RLNS, carbohydrate concentrations decreased over two-fold with roots 

intact. ‘Tri-X 313’ hypocotyl did not differ in carbohydrate concentration at the first and 
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second RLNS with roots excised over left intact. At the third RLNS, the rootstock hypocotyl 

decreased slightly in carbohydrate concentration at the third RLNS with roots intact. The 

scion hypocotyl had similar carbohydrate concentration with roots left intact or excised for all 

rootstocks. 

Rootstock interacted with RLNS (pooled over root treatment) affecting the grafted 

scion cotyledon and leaf soluble carbohydrate concentration (Table 13). ‘Strong Tosa’ 

rootstock’s scion cotyledon carbohydrate concentration decreased at the second RLNS only, 

but increased at the third RLNS similar to the first RLNS. ‘Emphasis’ rootstock’s scion 

cotyledon carbohydrate concentration increased at the third RLNS compared to the first. The 

second RLNS did not differ from the first or third RLNS. ‘Ojakkyo’ rootstock’s scion 

cotyledon carbohydrate concentration was similar at the first and second RLNS, but 

decreased at the third RLNS. ‘Tri-X 313’ rootstock’s cotyledon carbohydrates did not differ 

at any of the three RLNS. The scion leaf carbohydrate concentration remained unchanged for 

‘Strong Tosa’, ‘Emphasis’, and ‘Tri-X 313’; however, ‘Ojakkyo’ rootstock’s scion leaf 

carbohydrate concentration increased from the first to the second without further increase in 

the third RLNS. 

Rootstock also interacted with root treatment affecting the scion cotyledon and leaf 

carbohydrate concentration regardless of RLNS (Table 17). ‘Strong Tosa’, ‘Emphasis’, and 

‘Tri-X 313’ rootstock’s scion leaf carbohydrate concentration did not differ whether roots left 

intact or excised. ‘Ojakkyo’ rootstock’s scion leaf concentration was lower in contrast to the 

three other rootstock cultivars when roots were left intact. Excising the roots, though, showed 

greater carbohydrates present that were equivalent to the other rootstocks concentration. With 

roots left intact, the scion cotyledon carbohydrate concentration appeared to be greatest with 

‘Emphasis’. ‘Strong Tosa’ and ‘Tri-X 313’ cotyledon carbohydrates were lower compared to 
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‘Emphasis’ when roots were left intact. ‘Ojakkyo’ had the lowest scion cotyledon 

carbohydrate concentration among the rootstocks with roots left intact. However, with roots 

excised, both ‘Emphasis’ and ‘Tri-X 313’ had the greatest amount of scion cotyledon 

carbohydrate concentration. ‘Strong Tosa’ and ‘Ojakkyo’ also had great scion cotyledon 

concentration values, but both had lower carbohydrate concentration compared to ‘Emphasis’ 

and ‘Tri-X 313’. 

RLNS also interacted with root treatment in the scion cotyledon and leaf 

carbohydrate concentration regardless of rootstock (Table 18). The scion leaf carbohydrates 

had the lowest concentration at the first RLNS with roots intact. The second and third RLNS 

increased in carbohydrate concentration compared to the first RLNS, but did not differ from 

one another. When roots were excised both the first and third RLNS had the lowest 

concentration; however, these concentrations were greater than when roots were left intact. 

The second RLNS had the greatest amount of carbohydrate concentration, but did not differ 

from the third RLNS. The scion cotyledon carbohydrate concentration did not differ at any of 

the three RLNS with roots left intact. With roots excised, the first RLNS had the greatest 

amount of carbohydrates and was also greater than when roots remained intact. At the second 

RLNS the carbohydrate concentration decreased, and did not differ from the third RLNS 

which also did not differ from the first RLNS.  

Total Plant Organ Carbohydrate After Grafting 

The interaction of greatest interest in the ANOVA for rootstock hypocotyl plant 

organ carbohydrates after grafting was a three-way interaction of rootstock by RLNS by root 

treatment (Table 19). The RLNS main affect contributed the greatest portion of variation for 

the hypocotyl carbohydrates. Rootstock interacted with RLNS affecting carbohydrates in the 

rootstock roots, scion cotyledon, scion hypocotyl and scion leaf; root treatment had no effect 
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on these variables. The RLNS effect contributed the most variation to carbohydrates in 

rootstock roots and scion hypocotyl. Rootstock and RLNS both affected the scion cotyledon 

and scion leaf variation apparently similarly. All variables, rootstock and scion organ types 

have small uncontrolled and unexplained errors, and small coefficients of variance, indicating 

precision. 

Root and hypocotyl total organ carbohydrate levels varied with rootstock genotype, 

RLNS and root treatment (Table 20). ‘Strong Tosa’ and ‘Emphasis’ rootstock roots increased 

in total carbohydrates per plant organ at the third RLNS only, but ‘Ojakkyo’ and ‘Tri-X 313’ 

rootstock root organ incrementally increased in total carbohydrates at each of the three 

RLNS. When grafted with the root intact, ‘Strong Tosa’, ‘Emphasis’, ‘Ojakkyo’ and ‘Tri-X 

313’ hypocotyl total carbohydrates per plant organ all increased at the third RLNS only. With 

roots excised, ‘Strong Tosa’ increased in hypocotyl organ carbohydrates at each change in 

RLNS. ‘Emphasis’, ‘Ojakkyo’ and ‘Tri-X 313’ however, had no increase in hypocotyl total 

organ carbohydrates until the third RLNS.  

When comparing across root treatment, in general, rootstock hypocotyl carbohydrates 

decreased between 2 and 9x when roots were left intact, but not all differences appeared to be 

significant (Table 20). ‘Strong Tosa’ hypocotyl carbohydrates decreased over 8x with roots 

intact but at a lower rate than the second and third RLNS with roots excised at the first 

RLNS. At the second RLNS the carbohydrates per plant hypocotyl organ greatly decreased 

over 16x with roots intact, but at the third RLNS the carbohydrates per plant hypocotyl organ 

decreased more than 2x. This difference was much greater than the 9x decrease at the first 

RLNS. ‘Emphasis’ had more than a 16x decrease in the carbohydrates per plant hypocotyl 

organ at the first RLNS and more than a 22x decrease at the second RLNS with roots intact. 

At the third RLNS, the carbohydrates per plant hypocotyl organ decreased just over 2x. 
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‘Ojakkyo decreased over 9x in carbohydrates per plant hypocotyl organ at the first RLNS 

with roots intact and displayed more than a 3x decrease at the second RLNS but was not 

significant. At the third RLNS, the carbohydrates per plant hypocotyl organ decreased over 

3x with roots intact. ‘Tri-X 313’ showed no difference in carbohydrates per plant hypocotyl 

organ at the first or second RLNS whether intact or excised. Only the third RLNS decreased 

over 2x in carbohydrates per plant hypocotyl organ with intact roots. 

Rootstock genotype interacted with RLNS among the scion aerial carbohydrates per 

organ variables when pooled over root treatment (Table 21). ‘Strong Tosa’ and ‘Emphasis’ 

increased in scion cotyledon, hypocotyl and leaf at each increasing RLNS. When grafted on 

‘Ojakkyo’, however, only the scion hypocotyl increased at each RLNS without any change to 

the scion cotyledon and leaf total sample carbohydrates at any of the RLNS. When grafted on 

‘Tri-X 313’, scion cotyledon decreased in total sample carbohydrates at the second RLNS 

compared to the first RLNS, and remained unchanged through the third RLNS versus the first 

RLNS. The scion leaf carbohydrates remained unchanged from the first to the third RLNS.  

Grafting Success 

In order for grafting to be successful, success rates need to reach a rating of 9 or 

above (personal communication, Jim McConnell, Syngenta Seeds Inc.) on the scale in Table 

1. Grafting success scores interacted with rootstocks, RLNS and root treatment (Table 11). 

When comparing across root treatments, cultivars at the three RLNS responded differently 

when the rootstock roots were left intact or excised prior to healing (Table 12). ‘Strong Tosa’ 

grafting success did not differ at the first or third RLNS with roots left intact compared to 

roots excised. At the second RLNS, grafting success increased by 39% when roots were 

excised. At the first RLNS, ‘Emphasis’ grafting success increased 30% with roots excised 

rather than with roots left intact without any improvement at the second and third RLNS. 
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‘Ojakkyo’ was not influenced by root treatment at any RLNS. ‘Tri-X 313’ did not react 

favorably to root excision prior to healing. At the first and second RLNS, grafting success 

dropped over 75% and 66% respectively when roots were excised. At the third RLNS, 

however, grafting success rate dropped only 6% when roots were excised.  

The main reason for excising the roots prior to healing, was to allow for 

mechanization, reduce greenhouse space and facilitate commercialization that would 

potentially lower grafting costs. In order to add this root treatment (roots excised), all 

rootstocks must be able to be adapted. However, it was apparent that each rootstock reacted 

differently at each RLNS. Even though this reaction was not always at the grafting success 

desired (at least 9), it still gave us a guidelines to follow. ‘Strong Tosa’ reached the critical 

RLNS for root removal at the second RLNS, but this increase was not enough to reach the 

critical score of 9. With ‘Emphasis’ the third RLNS is critical to reach the score of 9 and the 

removal of the existing root didn’t impair this success rate. With ‘Ojakkyo’, the second 

RLNS was critical to reaching the score of 9 and the removal of the existing roots also did not 

impair the success rate. ‘Tri-X 313’ reacted negatively to root excision; however, this 

reaction was greatly diminished as the rootstock grew from the first to the third RLNS. Once 

the third RLNS had been reached grafting success had reached a successful level and existing 

roots could be removed with no significant detrimental effect. 

Relationship between Hypocotyl Carbohydrates and Grafting Success 

Rootstock hypocotyl total carbohydrates and grafting success varied at each RLNS, 

and there was an apparent relationship between total carbohydrates in the rootstock hypocotyl 

and grafting success scores at each RLNS depending on rootstock (Fig. 6). ‘Strong Tosa’ 

rootstock hypocotyl had 105.04 µg total carbohydrates at the first RLNS and a grafting 

success score of a low 1.5 (roots intact) and 0.8 (roots excised); however, total carbohydrates 
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levels increased nearly 5x (504.13 µg) at the second RLNS and grafting success score 

increased by 4x (6) and 10x (8.3) when roots were left intact or excised, respectively. Total 

carbohydrates further increased 1.3x (643.23 µg) in the rootstock hypocotyl from the 2nd to 

the 3rd RLNS with grafting success increased by 1.4x (8.4) and 1.1x (8.9) with roots left intact 

versus excised, respectively. The relationship between total carbohydrates and the grafting 

score appeared strong at all three RNLS.  

‘Emphasis’ hypocotyl increased in carbohydrates at each RLNS. Total hypocotyl 

carbohydrates was 260.75 µg at the first RLNS when grafting success was about 3.9 and 

considered very low (roots intact) and 5.1 (roots excised); however, total carbohydrate levels 

increased 1.3x (349.43 µg) at the second RLNS where grafting success score increased by 

2.2x (8.5) and 1.7x (8.4) when roots were left intact or excised respectively. Total 

carbohydrates further increased 2.1x (728.39 µg) in the rootstock hypocotyl from the 2nd to 

the 3rd RLNS where as grafting success scores also increased by 1.2x (9.8) and 1.2x (9.8) 

with roots intact versus excised, respectively. The relationship between total carbohydrates 

and the grafting score also appeared strong at the 1st and 3rd RNLS but not as strong at the 2nd 

RLNS.  

‘Ojakkyo’ hypocotyl increased in carbohydrates from the first to the third RLNS but 

not at the second RLNS. The hypocotyl had 56.12 µg total carbohydrates at the first RLNS 

when grafting success score was also low being 5.8 (roots intact) and 5.0 (roots excised); 

however, total carbohydrates levels decreased 1.2 fold (45.47 µg) to the second RLNS where 

grafting success score increased by 1.7x (10) and 2.0x (10) when roots were left intact or 

excised respectively. Total carbohydrates then increased 9.4x (428.71 µg) in the rootstock 

hypocotyl form the 2nd to the 3rd RLNS where as grafting success scores remained the same 
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with roots intact verse excised respectively. The relationship between total carbohydrates and 

the grafting score also appears strong at the 1st and 3rd RNLS but weak at the 2nd RLNS.  

‘Tri-X 313’ hypocotyl followed a similar carbohydrate levels as ‘Ojakkyo’ but did 

increase at each RLNS. The hypocotyl had 51.27 µg total carbohydrates at the first RLNS 

when grafting success score was high 7.5 (roots intact) and low 1.9(roots excised); however, 

total carbohydrates levels increased 1.3x (68.05 µg) to the second RLNS where grafting 

success score increased by 1.1x (8.3) and 2.0x (3.7) when roots were left intact or excised 

respectively. Total carbohydrates then increased 5.6x (382.08 µg) in the rootstock hypocotyl 

form the 2nd to the 3rd RLNS where as grafting success scores also increased by 1.1x (9.5) and 

2.4x (8.8) with roots intact verse excised respectively. The relationship between total 

carbohydrates and the grafting score appears weak with roots intact at any of the RLNS. 

However the relationship appears strong when roots were excised at all three RLNS.  

Grafting Success Prediction Analysis 

The goal was to determine the relationship between grafting success and total 

hypocotyl organ carbohydrates (Fig. 6) that predicts the carbohydrate levels that coincide 

with a grafting success score of 9. This information allows growers and researchers to know 

the minimal level of carbohydrates necessary to achieve acceptable grafting success.  

Regression of grafting success scores with total hypocotyl organ carbohydrates predicted the 

model that best explained the desired total hypocotyl organ carbohydrates (Fig. 7). Each 

rootstock cultivar followed a different pattern suggesting different total carbohydrate levels 

may be required for each rootstock to achieve the minimally ideal grafting success score of 9. 

Values given by r2 varied among rootstocks and whether their roots were excised or left 

intact. Both ‘Strong Tosa’ and ‘Emphasis’ rootstocks had high and fair r2 values (0.90 and 

0.70, respectively) regardless of whether the roots were left intact or excised. ‘Tri-X 313’ 
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rootstock had a similar high r2 value (0.92) when roots were excised but r2 decreased when 

they were left intact (0.59). ‘Ojakkyo’ had the lowest r2 (0.21) of all rootstocks regardless of 

root treatment. 

The overall carbohydrate concentration and hypocotyl dry weight values were also 

individually regressed with grafting success (data not shown) to determine their status at 9 

grafting success score. Table 22 summarizes the scale of level of hypocotyl carbohydrates, 

carbohydrate concentration and dry weight that correspond to the grafting success score of 9. 

Overall, total carbohydrates in hypocotyl organ required to reach a success score of 9 varied 

with rootstock but were minimally affected by root treatment. For example the carbohydrate 

concentration (µg/ml) among rootstock cultivar hypocotyls ranged between 250 µg/ml and 

308 µg/mg at success score of 9 and reflected smaller differences between rootstocks than the 

overall carbohydrates (µg) per whole hypocotyl organ. ‘Strong Tosa’ had the greatest amount 

of hypocotyl carbohydrates (µg) and overall dry weight (g/hypocotyl) at time of grafting 

among all rootstocks. ‘Emphasis’ had the second greatest amount of carbohydrates (µg) and 

dry weight value per hypocotyl. ‘Ojakkyo’ possessed the smallest amount of carbohydrates 

(µg) and dry weight per hypocotyl, which indicated a greater grafting success with less 

carbohydrates present. This could be attributed to ‘Ojakkyo’ having the closest family 

relationship with the scion than the ‘Strong Tosa’ and ‘Emphasis’ rootstocks. The self graft 

control ‘Tri-X 313’ had second to the smallest overall carbohydrates (µg) and dry weight per 

hypocotyl. By negating the roots excision, the carbohydrate (µg) and dry weight per 

hypocotyl are very close to the ‘Ojakkyo’ rootstock hypocotyl, and also support the idea that 

less carbohydrates (µg) and dry weight per hypocotyl are needed in obtaining the minimally 

grafting success score of 9. Hypocotyls that possess more carbohydrates are heavier. In 

general, hypocotyl carbohydrate concentration remained similar among rootstocks and 
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overall dry weight accounted for the vast increase in total carbohydrates per hypocotyl. The 

hypocotyl weight and size affected the overall carbohydrates present and grafting success 

even though the carbohydrate concentration tended to remain unchanged. This study suggests 

that the size of the hypocotyl increases grafting success, not only by increasing the diameter 

as suggested by Oda et al. (1993) but also through an increased amount of carbohydrates (µg) 

stored within the rootstock hypocotyl.  

Aerial Growth and Carbohydrate Discussion After Grafting 

Grafting success score increased as the rootstock and scion seedling matured from 

the first to the third RLNS not only in response to an increased diameter but also from 

increased carbohydrate levels present. The increase in hypocotyl length, diameter and area at 

each RLNS increased with grafting success score. Oda et al. (1993) suggested that the 

increased diameter also contributes to an increase in contact region between vascular bundles 

which increases grafting success. Although this may have contributed to an increased success 

score, it does not stand alone since the cotyledon plays a varied and vital role in grafted 

seedling survival, being the main source or photosynthates. Furthermore, ‘Strong Tosa’ had 

the largest diameter out of the four rootstocks but did not have the greatest grafting success 

score, but to the contrary, had the lowest score among the other rootstocks when grafted at 

the second RLNS as opposed to the first. This indicates additional factors influenced and 

contributed to the increased success such as carbohydrates.  

Hypocotyl carbohydrates increased with overall size. The increase in hypocotyl area 

at each increased RLNS also suggested that a larger storage capacity is present in the 

hypocotyl to store reserves. Carbohydrates per gram of hypocotyl tissue did not increase with 

grafting success scores; however, the overall amount of total carbohydrates present in the 

rootstock hypocotyl organ increased from the first to the third RLNS with grafting success 
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scores (Fig. 6). This was true with few exceptions for most rootstocks. As the carbohydrates 

in the plant hypocotyl increased at each RLNS, so did grafting success scores at each RLNS 

for ‘Strong Tosa’ and ‘Emphasis’.  

In general, the root excised hypocotyl had  greater amounts of total carbohydrates 

versus the hypocotyl with the root intact suggesting greater amounts are needed during the 

healing period to maintain the roots and heal the graft (Tables 16 and 20). Removing the root 

allows for mechanization and increased productivity at lower costs. Mechanical equipment 

that is used for the one cotyledon graft method currently excises the root to facilitate the 

grafting procedure, and can easily be adjusted to perform this graft if the root can be removed 

while maintaining grafting success score. If mechanization is not available, growers should 

consider not excising the roots but keeping the root intact. Greater nutrient reserves remained 

present in the hypocotyl during healing with the removal of one major sink (growing root 

tips). This great depletion indicated that carbohydrates were consumed during the healing 

process and plays a major role in sustaining the grafted seedling. Another important point is 

that the scion hypocotyl tissue had greater total carbohydrate levels at each RLNS than the 

rootstock hypocotyl at each RLNS. This suggests perhaps, that rootstock incompatibility 

could be restricting the translocation of carbohydrates to the rootstock through the graft 

union. Further research is necessary to determine if there is a particular carbohydrate being 

restricted or if there are many different carbohydrates being restricted or if fertility can 

moderate carbohydrates and grafting success.  

‘Ojakkyo’ did not follow the same carbohydrate and grafting success score trends as 

‘Strong Tosa’ and ‘Emphasis’. At the first RLNS ‘Ojakkyo’ grafting success score was very 

close to 5 when roots were left intact or excised, being the greatest grafting success score 

over all rootstocks of interest at that RLNS (Table 12). ‘Ojakkyo’ is the closest related 
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rootstock to the scion material (besides the self graft control) and had the greatest grafting 

success with the lowest amount of carbohydrates present among the rootstocks. 

Incompatibility between the rootstock and scion is expected to be less with a closer related 

scion and rootstock (Andrews and Marquez, 1993). This being the case, we should also 

expect a greater success score in the scion self graft control, and lower carbohydrates present 

to obtain realistic grafting success.  

‘Tri-X 313’ hypocotyl carbohydrates followed a similar trend as ‘Ojakkyo’, but not 

grafting success score which resembled ‘Strong Tosa’ and ‘Emphasis’ more similarly. At the 

first RLNS ‘Tri-X 313’ grafting success score was the greatest with roots left intact having 

greatly decreased with roots excised. The hypocotyl carbohydrate levels were low at the first 

and second RLNS, but increased at the third RLNS. These ‘Tri-X 313’ grafted plants had a 

lower root regeneration rate which showed a sensitive hypocotyl rerooting response (being a 

triploid hybrid with flat stems) which also accounts for the low grafting success score with 

roots excised. When roots were left present, the predicted carbohydrate (µg/ hypocotyl) level 

was similar to those that correspond to ‘Ojakkyo’.  

Rootstock genotype reacted differently; however, planting days may account for 

some of the differences. Each rootstock genotype was grafted and sampled in a different 

month, from fall through spring. Light intensity was low and varied due to cloudy weather, 

and shorter day length. This was done due to the limited greenhouse space available, large 

population size, and available man power to carry out the grafting in one day to reduce the 

amount of variation and potential introduced error. Future studies may want to test if the 

variation between rootstock genotypes was due in part to this variable since light is the 

contributing source of photosynthates. The decrease in carbohydrate levels at the second 
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RLNS for ‘Ojakkyo’ and ‘Tri-X 313’ does not sound reasonable and may be direct error of 

these environmental conditions.  

The preferred rootstock genotype for commercial production is dependent on growers 

needs and resources; the RLNS at which grafting should be performed is also rootstock 

genotype dependant. Based on these findings and grafting scores, I recommend that ‘Strong 

Tosa’, and ‘Emphasis’ with scion ‘Tri-X 313’ seedlings be grown to the third RLNS before 

grafting (with roots left intact or excised) to maximize grafting success, and in order to 

successfully eliminate rootstock re-growth using the “Cotyledon Devoid Method”. ‘Ojakkyo’ 

grafted with scion ‘Tri-X 313’ can be grafted as early as the second RLNS to achieve optimal 

results. The greatest grafting success rate of all cultivars is achieved by grafting with 

‘Ojakkyo’ which is the rootstock of preference for scoring 10 by the second RLNS. It is the 

overall weight and size that affected the carbohydrate leaves and overall grafting success 

sores. By allowing the hypocotyl to develop past the first RLNS to the third RLNS (rootstock 

dependent), the overall weight and carbohydrate levels increased sufficiently to achieve 

realistic grafting success.    
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CONCLUSIONS 

In order for watermelon grafting to be successful in the United States, the cost of the 

transplants needs to be affordable to the grower. The costs are associated with labor both in 

performing the graft and then in maintaining the transplant. Current commercial methods 

being practiced throughout the world are both labor intensive and costly to maintain making 

them inadequate for our needs in the U.S. Besides labor, by not eliminating meristematic 

tissue causes the rootstock to regenerate the original rootstock plant causing possible scion 

abortion or yield reduction if not removed. With the introduction of the “Cotyledon Devoid 

Method” as described in this thesis, all the above concerns would be eliminated, thus 

reducing the costs of the transplant. Current automated equipment can be easily adapted to 

perform this new method. By eliminating the need for at least one cotyledon, these automated 

machines would not have to be constantly adjusted to remove the majority of meristematic 

growth while maintaining at least one cotyledon, thus reducing their costs as well. The 

differences found in the rootstock and scion material before and after grafting, indicated that 

the development of seedlings before grafting is critical for the success of the cotyledon 

devoid graft method.  

Before Grafting 

Rootstock and scion types germinate and grow at a much different rates. 

Seed emergence time varied among rootstock genotypes. Rootstock genotype 

Cucurbita moschata x Cucurbita maxima cultivar Strong Tosa emerged the earliest followed 

by Citrullus lanatus Var. Citroides cultivar Ojakkyo and finally Lagenaria siceraria cultivar 

Emphasis. After emergence, the rate of development to the second and third RLNS also 

varied between rootstock genotypes. ‘Strong Tosa’ developed at the fastest rate followed by 

‘Ojakkyo’ and finally ‘Emphasis’. Scheduling the planting times to coincide with RLNS 
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development is necessary to maximize grafting success. Furthermore, scheduling the planting 

times will also allow greenhouse space to be maximized by only allowing the seedlings to 

develop to the minimum number of days necessary to achieve greatest grafting success. Scion 

material (Triploid watermelon seed) needs to germinate and emerge uniformly; using strong 

vigorous seed lots and the germination process developed by Hassell and Schulthies (2002) 

will insure uniformity. Insuring that the rootstock and scion develop to the same stage of 

growth prior to grafting is essential for grafting success. Devising a germination and 

developmental growth parameter recommendation that would encompass all rootstocks is 

impossible. However, knowing the germination and growth rates of each of the rootstock 

genotypes and scion material is a first step to make this grafting method a success. 

Rootstock and scion aerial growth at each leaf developmental stage proved to be 

critical to grafting success.   

Generally, the rootstock hypocotyl length, diameter, and area of most cultivars and 

scion material (scion cotyledon area and color and scion leaf) increased at each RLNS and 

related to final grafting success. As the scion cotyledon and leaf area increased at each leaf 

stage of development, the grafting success score increased as well. Scion material quality 

played a significant role in grafting success. ‘Tri-X 313’ grafting success increased 

significantly only at the 3rd leaf stage when roots were excised indicating that the scion 

material may not be able to contribute nutritional reserves until it has reached the third 

RLNS. These results suggested that the more nutrient reserves accumulated in both the 

rootstock and the scion, the better the chance of a successful graft. Further research is needed 

to find methods to increase nutrient load within the rootstock and scion material prior to 

grafting to insure constant success of the graft, such as hormones, nutrients, or environmental 

manipulation.  
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After Grafting 

Rootstock roots influenced total hypocotyl carbohydrate concentration. 

When roots were excised, the rootstock hypocotyl maintained greater levels of total 

carbohydrates than when roots were left intact at each of the three RLNS regardless of 

rootstock. This suggested that the roots required a large amount of carbohydrates as a sink 

(Taiz and Zeiger, 2006) while remaining active once grafting has taken place. In addition to 

the increasing carbohydrate levels at the three RLNS, hypocotyl senescence no longer 

occurred at the second and third RLNS after healing which suggested sufficient nutrients 

were present to maintain the root system and heal the graft at these two RLNS. The overall 

depletion in hypocotyl total carbohydrates before and after grafting when roots were left 

intact versus excised at the three RLNS, demonstrated the strength of the roots as a sink. With 

each increasing RLNS greater than the first RLNS, more carbohydrates accumulated in the 

hypocotyl so when grafting occurred, sufficient nutrients remained in the hypocotyl to 

maintain root activity and heal the graft.  

Hypocotyl carbohydrates reserves increased from the first to the third RLNS.  

Rootstock hypocotyls showed different levels of total carbohydrates at different 

RLNS regardless of rootstocks roots being intact or excised for all cultivars. Total 

carbohydrates per hypocotyl organ increased from the first to the third RLNS, suggesting a 

relationship between carbohydrates and grafting success. The larger the hypocotyl, the more 

carbohydrates accumulated and a greater success score was achieved. Previous studies by 

Asahina et al. (2002),Oda et al. (1993), Traka-Mavrona et al. (2000), Andrews and Marquez 

(1993), and Shan-fa et al. (1996) have focused on and found that gibberellic acid, cytokinins 

and auxins such as IBA, larger hypocotyl diameters (which increase vascular contact region 

between the rootstock and scion) increase grafting success. This study also relates the overall 
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increase in weight of the hypocotyl from the first to the third RLNS increases overall 

carbohydrates per hypocotyl and increases grafting success with the cotyledon excised during 

the grafting procedure. Further research is needed to test the predicted levels indicated to 

confirm these results and next identify individual carbohydrates present within the hypocotyl 

organ to determine which is primarily important or are there many carbohydrates that 

influence grafting success.  

Rootstock genotype reacted differently to roots excision or left intact at different 

RLNS.  

Grafting success was not only influenced by RLNS but also by rootstock treatment 

(rootstock dependent). The “Cotyledon Devoid Method” was most successful when 

performed at the second or third RLNS to achieve the greatest grafting success. RLNS was 

the main determining factor in grafting success; however, the treatment of excising rootstock 

roots at each of the three RLNS did not decrease grafting success. Although scion leaf area 

was greater with roots present this difference was negligible for most rootstocks. ‘Strong 

Tosa’ increased in grafting success whether the rootstock roots were excised at the second 

RLNS. ‘Ojakkyo’ and ‘Emphasis’ did not differ in grafting success whether the roots were 

left intact or excised. ‘Tri-X 313’ responded, however, just the opposite with the best grafting 

success rate achieved when roots were left intact.  

Delay of rootstock hypocotyl root regeneration occurred with different rootstocks 

which decreased plant survival. Hypocotyl root regeneration occurred at acceptable rates only 

with ‘Strong Tosa’ and ‘Ojakkyo’. ‘Emphasis’ exhibited a greater inability to re-root when 

the roots were excised even though the nutrient reserves were great. This is further evidence 

that rootstock genotypes responded independently of each other making it difficult to make a 

standard recommendation across all cultivars to either leave the rootstock roots intact or 
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excised after grafting. The reason for less root regeneration is unknown. Further research is 

necessary to determine techniques to effectively stimulate rooting with difficult rootstocks 

such as rooting hormones, nutrient loads, and optimal rooting environment (humidity and 

temperature). The next step in this research is use grafted seedlings using the “Cotyledon 

Devoid Method” in a field study to examine how well they hold up to environmental stresses 

upon transplanting and also if crop yield is affected by the grafting procedure. 
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Table 3. Sources of variationz in the analysis of variance (ANOVA) for aerial growth and chlorophyll color 
index of four rootstocks at three different RLNSy before grafting. 
__________________________________________________________________________________________ 
 Percent of total sums of squares 
                                      _______________________________________________________________________ 
                    Hypocotyl        Cotyledon             Leaf  
 _____________________________ __________________ __________________ 
 Source of variation Length Diameter Area Area Colorx Area Colorx 
__________________________________________________________________________________________ 
 Replication   0.66   0.95   0.50   0.23   0.54   0.01   0.06 
 Rootstock  (RS) 31.27** 39.45** 25.94** 73.36**   6.25** 18.98**   1.38** 
 RLNS 29.86** 12.18** 23.11** 14.50** 49.58** 41.24** 96.61** 
 RS * RLNS 30.02** 35.60** 45.66** 10.07** 40.25** 39.30**   1.57** 
 Error   8.20 11.83   4.79   1.84   3.38   0.48   0.37 
 CV 12.03   8.56 16.36   7.75   3.69 13.68   5.11 
 

 
** F values significant at P = 0.01. 
zThe sum of squares for each factor in the ANOVA were converted to a percentage of the total sum of squares. 
yRLNS is rootstock leaf number stage. 

xDerived by SPAD measurements. 
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Table 4. Two-way interaction of four rootstocks and three different RLNSz at grafting on aerial growth and chlorophyll color index.  
____________________________________________________________________________________________________

                     Hypocotyly        Cotyledony           Leafy 
  _________________________ ________________ _________________ 

 Rootstock Rootstock   Length Diameter Area  Area Color   Area Color 
 cultivar genotypex RLNSw  (mm) (mm) (cm2)  (cm2) (SPAD) v   (cm2)  (SPAD)v 
____________________________________________________________________________________________________
 Strong Tosa C.mo. x C.ma. 1  39.3 du 3.6 b 1.3 d 18.2 b 73.5 a   0.3 f    ----- 
  2  48.6 c 3.3 cd 1.5 c 19.5 b 51.4 c-e   4.2 e  42.1 a 
  3  73.7 a 5.3 a 4.3 a 31.3 a 36.9 i 58.7 a  38.3 b 
 Emphasis L.s. 1  27.4 e 2.7 ef 0.7 f 14.8 cd 53.0 b-d   0.6 f    ----- 
  2  30.2 e 3.4 c 1.1 e 15.4 c 51.7 c-e   4.1 e  36.0 c 
  3  57.3 b 3.1 d 1.8 b 19.6 b 46.8 g 10.9 c  35.8 c 
 Ojakkyo C.l Var.c. 1  29.0 e 2.5 f 0.6 g   7.4 e 54.1 b   0.0 f    -----  
  2  37.9 d 2.8 e 1.1 e 13.4 d 48.0 fg   6.5 d  28.5 e 
  3  55.5 b 3.3 cd 1.8 b 14.4 cd 50.7 de 13.5 b  35.3 c 
 Tri-X 313 C.l. Var.l(3x) 1  28.2 e 2.3 g 0.7 fg   5.3 f 53.7 cb   0.3 f    ----- 
  2  31.6 e 2.8 e 0.8 f   7.1 e 49.6 ef   2.9 e  32.8 d 

  3  33.2 de 3.2 cd 1.1 e   7.9 e 39.4 h   9.5 c   36.0 c 
 

 
zRLNS is rootstock leaf number stage. 
yValues represent a mean of a ten plants replicated five times. 

xGenotype is C.mo. x C.ma. = Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l Var.c. = Citrullus 
lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
wThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as seeing the 
fully expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing the 1st and 2nd expanded 
true leaves and the unexpanded 3rd true leaf. 
vSPAD values are defined by Minolta as the relative amount of chlorophyll present in plant leaves; greater value means 
greener. 
uMeans within columns followed by a different letter are significant by LSD at P = 0.05.  
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Table 5. Sources of variationz in the analysis of variance (ANOVA) for scion aerial growth and chlorophyll 
color index at three different RLNSy before grafting. 
________________________________________________________________________________________ 
 Percent of total sums of squares 
                                      _____________________________________________________________________ 
 Hypocotyl        Cotyledon             Leaf  
 __________________________ _______________ __________________ 
 Source of variation Length Diameter Area Area Colorx Area Colorx 
________________________________________________________________________________________ 
 Replication   0.06   0.67   3.85   6.26   0.13   0.92   0.03 
 Rootstock  (RS) 44.41   4.91 23.08 14.90 11.07 13.46   1.80 
 RLNS 28.40** 18.57* 38.94** 44.44** 38.64** 67.85** 96.95** 
 RS * RLNS 22.86   8.25   9.13   8.98 15.64 14.78   1.01 
 Error   4.27 67.60 25.00 25.42   4.97   2.99   0.21 
 CV   6.65 10.68 17.51   7.92   3.34 18.81   3.87 
 

 
*,** F values significant at P = 0.05 or P = 0.01. 
zThe sum of squares for each factor in the ANOVA were converted to a percentage of the total sum of 
squares. 
yRLNS is rootstock leaf number stage. 

xDerived by SPAD measurements. 
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Table 6. Main effect of RLNSz (pooled over rootstocks) on sciony aerial growth, chlorophyll color index, carbohydratex concentration 
and total carbohydrates per scion organ before grafting initiation.  
____________________________________________________________________________________________________________
  Hypocotylw       Cotyledonw Leafw   
  ______________________ _____________ ______________     
 Scion  Length Dia. Area Area Color Area Color Carbohydratesv Carbohydratesv 
 cultivar RLNSu (mm) (mm) (cm2) (cm2) (SPAD)t (cm2)  (SPAD)t (µg/g) (µg/scion) 
________________________________________________________________________________________________________
 Tri-X 313 1 33.6 cs 2.7 b 0.7 c 5.6 b 53.5 a   0.6 c   ----- 226.8 a   48.41 b 

 2 43.7 b 3.0 a 1.2 b 6.9 a 48.5 b   4.7 b  33.8 a 153.1 b   67.60 b 
 3 48.3 a 3.1 a 1.3 a 6.5 a 41.2 c 10.4 a  34.7 a 212.7 a        169.92 a 

 

 
zRLNS is rootstock leaf number stage. 
yScion is defined as the grafted portion including the hypocotyl cotyledons, and leaf. 
xCarbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, galactose and raffinose.  

wValues represent a mean of a forty plants replicated five times. 
vValues represent a mean of two readings pooled forty plants replicated five times. 
uThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as seeing the fully 
expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing the 1st and 2nd expanded true leaves 
and the unexpanded 3rd true leaf. 
tSPAD values are defined by Minolta as the relative amount of chlorophyll present in plant leaves; greater value means greener. 
sMeans within columns followed by a different letter are significant by LSD at P = 0.05. 
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Table 7. Sources of variationz in the analysis of variance (ANOVA) for seedling total tissue carbohydratey 
concentration for entire plant including the scion and rootstocks at three different RLNSx before grafting. 
______________________________________________________________________________________________________________
 Percent of total sums of squares 

                                      _________________________________________________________________________________
 Source of variation Cotyledon Hypocotyl Leaf Root Scion 
______________________________________________________________________________________________________________
 Replications 10.81   2.29   0.38   7.28   0.67 
 Rootstock (RS) 22.06** 49.68**   8.89** 55.28** 31.92** 
 RLNS 16.26**   9.10** 79.12** 10.89** 23.11** 
 RS * RLNS 18.77**   9.43*   5.37** 13.70** 20.59 
 Error 32.10 29.51   6.24 12.84 23.71 
 CV 20.43   9.64 23.46 11.00 19.51 
 

 
*,** F values significant at P = 0.05 or P = 0.01. 
zThe sum of squares for each factor in the ANOVA were converted to a percentage of the total sum of squares. 
y Total carbohydrate is defined as the sum of sucrose, glucose and fructose.  

xRLNS is rootstock leaf number stage. 
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Table 8. Two-way interaction of four rootstocks and three different RLNSz at grafting on total tissue 
carbohydratey concentrations.  
____________________________________________________________________________________________ 
 Rootstock Rootstock  Cotyledon Hypocotyl Leaf Root 
 cultivar genotypex RLNSw (µg/ml)v (µg/ml)v (µg/ml)v (µg/ml)v 
____________________________________________________________________________________________ 
 Strong Tosa C.mo. x C.ma. 1 280.8 au 286.8 b-e  ----- 270.9 a 
  2 284.1 a 290.7 a-d 253.3 ab 275.8 a 
  3 276.3 a 278.6 c-f 279.7 a 282.5 a 
 Emphasis L.s. 1 239.0 a-c 323.1 a  ------ 268.7 a 
  2 236.1 a-c 298.3 a-c 186.4 cd 265.1 a 
  3 139.8 d 316.2 ab 215.2 bc 278.8 a 
 Ojakkyo C.l Var.c. 1 280.1 a 263.0 d-g  ------ 258.8 a 
  2 130.2 d 195.6 h 102.8 e 127.7 c 
  3 186.2 cd 256.1 e-g 179.2 cd 193.9 b 
 Tri-X 313 C.l. Var.l(3x) 1 252.2 ab 253.6 fg  ------ 202.4 b 
  2 209.0 bc 232.0 g 164.5 d 141.9 c 

  3 184.1 cd 267.5 c-f 174.8 d 185.0 b 
 

 
zRLNS is rootstock leaf number stage. 
yTotal carbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, 
galactose and raffinose. 

xGenotype is C.mo. x C.ma. = Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l Var.c. = 
Citrullus lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
wThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as seeing 
the fully expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing the 1st and 2nd 
expanded true leaves and the unexpanded 3rd true leaf. 
vValues represent a mean of two readings pooled from ten plants replicated five times. 
 uMeans within columns followed by a different letter are significant by LSD at P = 0.05. 
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Table 9. Sources of variationz in the analysis of variance (ANOVA) for seedling total carbohydrates per 
plant organ including the scion and rootstocks at three different RLNSy at grafting. 
___________________________________________________________________________________ 
 Percent of total sums of squares 
                                      ________________________________________________________________ 
 Source of variation Cotyledon Hypocotyl   Leaf  Root Scion 
___________________________________________________________________________________ 
 Replications   3.03     .40   0.05   1.53   1.07 
 Rootstock (RS) 43.03** 22.58** 15.45** 78.60** 39.74** 
 RLNS 46.96** 73.29** 82.93** 18.28** 55.69** 
 RS * RLNS   5.41**   3.52**   1.44**   0.99**   2.28** 
 Error   1.58     .20   0.13   0.59   1.23** 
 CV 37.66 17.22 22.33 16.22 45.08 
 

 
*,** F values significant at P = 0.05 or P = 0.01. 
zThe sum of squares for each factor in the ANOVA were converted to a percentage of the total sum of 
squares. 
yRLNS is rootstock leaf number stage. 

  



 
 

 

73 

Table 10. Two-way interaction of four rootstocks and three different RLNSz at grafting on total carbohydratesy 
per plant organ.  
____________________________________________________________________________________________ 
Rootstock Rootstock  Cotyledon Hypocotyl Leaf Root 
 cultivar genotypex RLNSw (µg)v (µg)v (µg)v (µg)v 
____________________________________________________________________________________________ 
 Strong Tosa C.mo. x C.ma. 1 124.61 cu 105.04 f    ----- 248.57 e 
  2 230.29 b 504.13 c   67.36 d 338.40 cd 
  3 340.40 a 643.23 b 649.88 a 739.04 a 
 Emphasis L.s. 1   54.09 de 260.75 e    ----- 115.47 fg 
  2 200.39 b 349.43 d 103.41 cd 348.32 c 
  3 220.85 b 728.39 a 532.33 b 583.64 b 
 Ojakkyo C.l Var.c. 1   65.27 c-e   56.12 f    -----   71.25 gh 
  2   79.89 c-e   45.47 f   61.68 e 165.99 f 
  3 115.99 cd 428.71 c 125.37 c 293.73 c-e 
 Tri-X 313 C.l. Var.l(3x) 1   36.09 e   51.27 f    -----   37.04 h 
  2   98.19 c-e   68.05 f   90.50 c-e 165.60 f 

  3 108.18 cd 382.08 d 116.39 c 280.60 de 
 

 
zRLNS is rootstock leaf number stage. 
yTotal carbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, 
galactose and raffinose. 

xGenotype is C.mo. x C.ma. = Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l Var.c. = 
Citrullus lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
wThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as seeing 
the fully expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing the 1st and 2nd 
expanded true leaves and the unexpanded 3rd true leaf. 
vValues represent a mean of two readings pooled from ten plants replicated five times. 
 uMeans within columns followed by a different letter are significant by LSD at P = 0.05. 
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Table 11. Sources of variationz in the analysis of variance (ANOVA) for scion aerial growth and color, carbohydratey concentration 
and grafting success, seven days after grafting at three different RLNSx with rootstock root treatmentw. 
___________________________________________________________________________________________________________
 Percent of total sums of squares 
_____________________________________________________________________________________________________________________
 Scion aerial growth Carbohydrates  
 __________________________________ ____________________________________________________________ 
  Leaf  Cotyledon  Rootstock Scion  
 _______________ ________________ __________________ _____________________________ Grafting 
 Source of variation Area Colorv Area Colorv Roots Hypocotyl Cotyledon Hypocotyl Leaf  success 
____________________________________________________________________________________________________________________ 
 Replication   0.19   0.38   2.27   0.03   2.95      0.62     4.42  11.34    4.94   0.14 
 Rootstock (RS) 11.02** 17.69** 10.53**   4.26** 14.16**      1.98*   28.72**    5.23    6.16* 12.44** 
 RLNS 61.04** 22.29** 34.69** 63.76** 46.60**    25.92**     0.92    1.41*    7.73 60.65** 
 RS * RLNS 16.48** 16.68**   5.28*   4.53** 17.38**      8.56**   13.85**  12.20    2.47*   7.07** 
 Root treatment (RT)   4.05**   0.27   1.60*   2.32**    -----    28.48**     1.40    8.42*    4.12*   1.40** 
 RS * RT   1.92**   6.25**   0.69*   0.40    -----      9.93**     8.24**    2.10  12.43**   8.53** 
 RLNS * RT   1.48**   1.96*   5.27**   0.31    -----      1.37*     1.40*    2.60    0.32*   0.98** 
 RS * RLNS * RT   0.54* 14.31**   3.50   3.32*    -----      9.53**     2.80    6.45**    4.24   3.68** 
 Error   3.27 20.16 36.18 21.16 18.    13.66   39.56  50.25  57.60   5.11 
 CV 13.47   8.51 14.94 15.60 31.75    23.37     9.26    9.19    6.75 10.84 
 

 
*,** F values significant at P = 0.05 or P = 0.01. 
zThe sum of squares for each factor in the ANOVA were converted to a percentage of the total sum of squares. 
yTotal carbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, galactose and raffinose. 

xRLNS is rootstock leaf number stage. 

wRoot treatment consist of rootstock roots excised or intact following grafting. 
vDerived by SPAD measurements. 
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Table 12. Three-way interaction of four rootstocks and three different RLNSz seven days after grafting on scion aerial growth, 
chlorophyll color index, and grafting success with rootstock roots intact or excised. 
____________________________________________________________________________________________________________ 
   Rootstock roots intact Rootstock  roots excisedy 
   ________________________________________ _________________________________________ 
   Cotyledonx Leafx Graftingw Cotyledonx Leafx Graftingw 

  __________ ___________________    success_  _________ ___________________  Success__ 
 Rootstock Rootstock  Color Area Color Score  Color Area Color Score 
 cultivar genotypev RLNSu (SPAD)t (cm2) (SPAD)t (0-10) (SPAD)t (cm2) (SPAD)t (0-10) 
____________________________________________________________________________________________________________________ 
 Strong  C.mo. x 1 52.8 as     2.6 lm     31.8 g-k    1.5 ij     42.0 b-e     1.4 mn 31.4 g-l    0.8 j 
 Tosa C.ma. 2     42.6 b-e  10.8 ef     39.4 b-d 6.0 f    44.2 bc    9.0 gh  42.0 a-c      8.3 de 
  3   30.8 g-i 21.0 a    28.8 lm      8.4 de    29.6 g-j    18.8 b    28.4 k-m       8.9 b-d 
 Emphasis L.s. 1   49.4 ab   1.0 n    43.0 ab    3.9 h    44.4 bc  1.0 n 39.2 cd     5.1 fg 
  2    43.8 b-d    8.2 hi     42.6 a-c      8.5 de   31.4 f-i   8.2 hi 38.0 de      8.4 de 
  3 20.6 k    9.8 fg   30.4 i-l      9.8 ab   22.6 jk 7.6 i  34.6 e-h      9.8 ab 
 Ojakkyo C.l. 1 56.0 a    3.8 kl      28.8 j-m     5.8 fg  51.2 a      1.6 mn     44.0 a    5.0 g 
 Var. c. 2    36.4 d-g 10.4 f     36.8 d-f  10.0 a     35.8 e-g 5.6 j 34.0 f-i  10.0 a 
  3    33.0 f-h 14.0 c     32.0 g-j  10.0 a      26.8 h-k 7.2 i  35.0 e-g  10.0 a 
 Tri-X 313 C.l.  1   44.6 bc    4.4 jk      34.4 e-h    7.5 e    44.6 bc   4.4 jk  34.4 e-h   1.9 i 
 Var. l.(3x) 2    38.8 c-f   11.8 de     31.0 h-l      8.3 de     38.8 c-f  11.8 de 31.0 h-l    3.7 h 
  3    25.2 i-k 12.6 d     32.2 g-j       9.5 a-c  21.6 k   8.2 hi 25.2 m      8.8 cd 
 

zRLNS is rootstock leaf number stage. 
yRootstock hypocotyls were excised from the root system just below the soil line and then placed in new media to re-root. 

xValues represent a mean taken from ten plants replicated five times. 
wGrafting success score taken from ten plants replicated five times; defined as 0 = complete death to 10 = completely alive. 
vGenotype is C.mo x C.ma. = Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l Var.c.=Citrullus lanatus Var. 
Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
uThe 1st RLNS is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as the unexpanded 2nd true leaf and the 
fully expanded 1st true leaf. The 3rd RLNS is defined as the unexpanded 3rd true leaf and the 1st and 2nd expanded true leaves. 
tSPAD values are defined by Minolta and indicate relative amount of chlorophyll present in plant leaves; greater value means greener. 
sMeans within columns and rows for the same variable that are followed by a different letter are significant by LSD at P = 0.05.
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Table 13. Two-way interaction of four rootstocks and three different RLNSz (pooled over root treatment) seven 
days after grafting on scion: cotyledon area, cotyledon carbohydrates and leaf carbohydratesy. 
________________________________________________________________________________________

  Cotyledon  Cotyledon                 Leaf                 
   _____________     ________________ _________________

 Rootstock   Rootstock  Areax Carbohydratesx Carbohydratesx 

 cultivar genotypew RLNSv (cm2) (µg) (µg) 
________________________________________________________________________________________
 Strong  C.mo. x 1  4.2 eu          282.4 b-e 267.5 ab 
 Tosa C.ma. 2 6.9 a          236.0 f 279.9 ab 
  3 6.7 a          269.3 c-e          286.0 a 
 Emphasis L.s. 1 5.5 c          285.3 b-d 262.0 bc 
  2 6.8 a          300.4 ab 278.8 ab 
  3 6.6 a          317.5 a 274.0 ab 
 Ojakkyo C.l. 1 4.4 e          263.0 de          241.7 c 
 Var. c. 2 5.7 c          259.8 e 273.7 ab 
  3 5.5 c          234.9 f 261.1 bc 
 Tri-X 313 C.l.  1 4.8 d          289.1 bc 268.6 ab 
 Var. l. 2 6.2 b          290.5 bc 284.3 ab 
 (3x) 3 5.8 c          277.7 c-e 269.1 ab 
 
 
zRLNS is rootstock leaf number stage. 

yTotal carbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, 
galactose and raffinose. 

xValues represent a mean of two readings pooled from twenty plants replicated five times. 
wGenotype is C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l 
Var.c.=Citrullus lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
vThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as 
seeing the fully expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing the 
1st and 2nd expanded true leaves and the unexpanded 3rd true leaf. 
uMeans within columns followed by a different letter are significant by LSD at P = 0.05.
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Table 14. Two-way interaction of rootstock (pooled over RLNSz) on scion cotyledon area with roots intact or 
excised seven days after grafting.  
_________________________________________________________________________________________ 
  Scion cotyledony  area (cm2) 

  __________________________________________________
   Rootstock Rootstock Rootstock roots intact Rootstock roots excisedx 
   cultivar genotypew   
_________________________________________________________________________________________ 
   Strong Tosa C.mo. x C.ma.   5.93 bv     5.93 b 
   Emphasis L.s.  6.53 a     6.07 b 
   Ojakkyo C.l. Var. c.  5.33 c     5.07 c 
   Tri-X 313 C.l. Var. l.(3x)  5.87 b     5.33 c 
 

 
zRLNS is rootstock leaf number stage. 
yValues represent a mean of thirty plants replicated five times. 
xRootstock hypocotyls were excised from the root system just below the soil line and then placed in new media             
to re-root. 

wGenotype is C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l 
Var.c.=Citrullus lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
vMeans within columns and rows that are followed by a different letter are significant by LSD at P = 0.05. 
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Table 15. Two-way interaction of RLNSz (pooled over rootstock) on scion cotyledon area with roots intact 
or excised seven days after grafting. 

________________________________________________________________________________________ 
 Scion cotyledony area (cm2) 
 _________________________________________________________________ 
 Rootstock roots intact Rootstock roots excisedx 

RLNSw   
________________________________________________________________________________________ 

1   4.50 cu  4.90 c 
2  6.65 a   6.15 ab 
3  6.60 a 5.74 b 

 

zRLNS is rootstock leaf number stage. 
yValues represent a mean of a forty plants replicated five times. 
xRootstock hypocotyls were excised from the root system just below the soil line and then placed in new 
media to re-root. 
wThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined 
as seeing the fully expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as 
seeing the 1st and 2nd expanded true leaves and the unexpanded 3rd true leaf. 
vSPAD values are values defined by Minolta which indicate the relative amount of chlorophyll present in 
plant leaves; greater value means greener. 
uMeans within columns and rows that are followed by a different letter are significant by LSD at P = 0.05. 
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Table 16. Three-way interaction of four rootstocks and three different RLNSz seven days after grafting on rootstock and scion tissue 
carbohydratey concentrations with rootstock roots intact or excised. 
________________________________________________________________________________________________________________
  Rootstock roots intact Rootstock roots excisedx 

  ______________________________________________ __________________________________
  Rootstock Scion Rootstock Scion 

Rootstock Rootstock  _____________________________     _______________ _______________ _________________
cultivar genotypev RLNSu Rootsw (µg/ml) Hypocotylw (µg/ml) Hypocotylw (µg/ml) Hypocotylw (µg/ml) Hypocotylw (µg/ml) 
________________________________________________________________________________________________________________
Strong  C.mo. x 1    24.0 gt  34.6 j    283.0 a-c  263.0 a-c    287.4 ab 
Tosa C.ma. 2     29.5 fg     64.8 h-j 262.4 c      231.2 bc    287.8 ab 
  3 158.0 a     83.8 de   297.6 ab  263.2 a-c  302.6 a 

Emphasis L.s. 1      56.5 de   51.6 ij    279.2 a-c  182.0 de    291.0 ab 
  2       47.9 d-f   50.4 ij   276.4 bc 159.6 ef    292.4 ab 
  3 140.8 a 261.8 a    279.8 a-c 271.8 ab    288.4 ab 

Ojakkyo C.l. 1       37.8 e-g   58.8 ij  228.4 d  224.2 cd    289.2 ab 
 Var. c. 2       66.4 cd     73.8 h-j    280.8 a-c   179.6 d-f    295.2 ab 
  3       65.5 cd     95.4 g-i   278.0 bc 224.8 cd    279.6 bc 

Tri-X 313 C.l.  1    78.4 c   133.0 fg    283.6 a-c   94.8 g-i    297.2 ab 
 Var. l. 2  100.5 b   133.2 fg   297.0 ab  111.0 gh    298.4 ab 
 (3x) 3 146.9 a  169.0 ef   278.2 bc 276.0 ab     281.0 a-c 

 
 

zRLNS is rootstock leaf number stage. 

yTotal carbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, galactose and raffinose. 

xRootstock hypocotyls were excised from the root system just below the soil line and then placed in new media to re-root. 
wValues represent a mean of two readings pooled from ten plants replicated five times. 
vGenotype is C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l Var.c.=Citrullus lanatus Var. 
Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
uThe 1st RLNS in this study is defined as first unexpanded true leaf. The 2nd RLNS is defined as the unexpanded 2nd true leaf and the 
fully expanded 1st true leaf. The 3rd RLNS is defined as the unexpanded 3rd true leaf and the 1st and 2nd expanded true leaves. 
tMeans within columns and rows for the same variable that are followed by a different letter are significant by LSD at P = 0.05. 
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Table 17. Three-way interaction of rootstock (pooled over RLNSz) seven days after grafting on scion cotyledon 
and leaf tissue carbohydratey concentration with rootstock roots intact or excised. 
___________________________________________________________________________________________
  Rootstock roots intact Rootstock roots excised 

 _____________________________ ______________________________
__

Rootstock Rootstock Scion leafx Scion cotyledonx Scion leafx Scion cotyledonx 
 cultivar genotypew (µg/ml) (µg/ml) (µg/ml) (µg/ml) 
___________________________________________________________________________________________
___ 
 Strong  Tosa C.mo. x C.ma.  277.53 av   267.67 cd 278.07 a  257.60 d 
 Emphasis L.s. 276.53 a 305.40 a 266.67 a   296.73 ab 
 Ojakkyo C.l. Var. c. 236.80 b 232.40 e 280.87 a    272.73 cd 
 Tri-X 313 C.l. Var. l.(3x) 268.07 a   279.73 bc 279.93 a    291.80 ab 
 

 
 

zRLNS is rootstock leaf number stage. 

yTotal carbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, 
galactose and raffinose. 

xValues represent a mean of two readings pooled from thirty plants replicated five times. 
wGenotype is C.mo x C.ma. = Cucurbita moschata x Cucurbita 80áxima, L.s. = Lagenaria siceraria, C.l 
Var.c.=Citrullus lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
vMeans within columns and rows for the same variable that are followed by a different letter are significant by 
LSD at P = 0.05. 
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Table 18. Two-way interaction of RLNSz and cotyledon (pooled over rootstock) seven days after grafting on scion leaf 
and cotyledon tissue carbohydratey concentration with rootstock roots intact or excised. 
_____________________________________________________________________________________________
 Rootstock roots intact Rootstock roots excised 
 __________________________________________ ________________________________________
 Scion leafx Scion cotyledonx Scion leafx Scion cotyledonx 
RLNSw (µg/ml) (µg/ml) (µg/ml) (µg/ml) 

_____________________________________________________________________________________________
1              252.35 cv   274.50 bc  267.55 b 285.45 a 
2              273.00 b 267.55 c 285.35 a   275.80 bc 
3              268.85 b   271.90 bc   276.25 ab   277.90 ab 

 
 

zRLNS is rootstock leaf number stage. 

yTotal carbohydrate is defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, 
galactose and raffinose. 

xValues represent a mean of two readings pooled from forty plants replicated five times. 
wThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as seeing 
the fully expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing the 1st and 2nd 
expanded true leaves and the unexpanded 3rd true leaf. 
vMeans within columns and rows for the same variable that are followed by a different letter are significant by 
LSD at P = 0.05. 
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Table 19. Sources of variationz in the analysis of variance (ANOVA) for total carbohydratesy per plant organ, 
seven days after grafting at three different RLNSx with rootstock root treatmentw. 
_________________________________________________________________________________________
 Percent of total sums of squares 
 ___________________________________________________________________
 Rootstock Scion 
 _______________________ __________________________________________
 Source of variation  Roots Hypocotyl  Cotyledon Hypocotyl Leaf 
_________________________________________________________________________________________
 Replication      .16     .39   1.01     .10     .07 
 Rootstock (RS)        4.81**       2.08**     36.63**       9.61**     44.34** 
 RLNS      91.85**     50.07**     36.84**     73.05**     40.67** 
 RS * RLNS       2.74**       1.04**     22.97**     16.50**     14.42** 
 Root treatment (RT) -----     37.92**     .38     .02     .09 
 RS * RT -----       1.61**   1.03     .18     .16 
 RLNS * RT -----       6.46**     .38     .03     .06 
 RS * RLNS * RT -----         .66**     .52     .29     .16 
 Error     .44         .13**     .25     .21     .03 
 CV 50.80 33.12 18.70 19.85 11.22 
 

 
** F values significant at P = 0.01. 
zThe sum of squares for each factor in the ANOVA were converted to a percentage of the total sum of squares. 
yTotal carbohydrates are defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, 
stachyose, galactose and raffinose. 

xRLNS is rootstock leaf number stage. 

wRoot treatment consist of rootstock roots excised or intact following grafting. 
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Table 20. Three-way interaction of four rootstocks and three different RLNSz seven days after grafting on 
rootstock total carbohydratesy per plant organ with rootstock roots intact or excised. 

 

zRLNS is rootstock leaf number stage. 

yTotal carbohydrates are defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, stachyose, galactose 
and raffinose. 
xRootstock hypocotyls were excised from the root system just below the soil line and then placed in new media to re-root. 
wValues represent a mean of two readings pooled from ten plants replicated five times. 
vGenotype is C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l Var.c.=Citrullus 
lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
uThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as seeing the fully 
expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing the 1st and 2nd expanded true 
leaves and the unexpanded 3rd true leaf. 
tMeans within columns and rows for the same variable that are followed by a different letter are significant by LSD at P 
= 0.05.

___________________________________________________________________________________________
  Rootstock  roots intact Rootstock roots excisedx 

  __________________________ _______________________
Rootstock Rootstock  Rootsw Hypocotylw Hypocotylw 
cultivar genotypev RLNSu (µg) (µg) (µg) 
___________________________________________________________________________________________
 Strong  C.mo. x 1       8.23 fgt   9.52 j   83.42 h 
 Tosa C.ma. 2    33.82 ef   18.79 ij 308.29 d 
  3 236.10 a 152.37 g 425.41 c 
 Emphasis L.s. 1     7.32 g    9.06 j 147.18 g 
  2    19.80 fg    7.96 j  182.24 fg 
  3 102.49 c 262.43 e 583.20 a 
 Ojakkyo C.l. 1    10.91 fg    5.71 j    54.99 hi 
 Var. c. 2     59.46 de   12.82 ij     46.25 h-j 
  3   218.64 ab 149.02 g 490.14 b 
 Tri-X 313 C.l.  1     7.32 g   14.99 ij   17.25 ij 
 Var. l. 2   67.28 d   26.15 ij   34.32 ij 
 (3x) 3 196.64 b 200.85 f 413.53 c 
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Table 21. Two-way interaction of four rootstocks and three different RLNSz (pooled over root treatment) 
seven days after grafting on scion carbohydratesy per plant organ. 
_______________________________________________________________________________________

  Scion 

  __________________________________________________
Rootstock Rootstock  Cotyledonx Hypocotylx Leafx 

 cultivar genotypew RLNSv (µg) (µg) (µg) 
_______________________________________________________________________________________
  Strong  C.mo. x 1    92.31 efu  61.08 i    69.47 ef 
  Tosa C.ma. 2         109.28 d 184.86 c 448.10 c 
  3         155.18 b 427.02 a 692.82 a 
  Emphasis L.s. 1     95.08 ef  50.53 j    66.91 ef 
  2         137.39 c          107.37 h 364.14 d 
  3         375.24 a  348.31 b 672.79 b 
  Ojakkyo C.l. 1   85.36 f    43.76 k    68.18 ef 
 Var. c. 2     93.27 ef  158.32 e   62.09 f 
  3   88.44 f  172.63 d    64.04 ef 
  Tri-X 313 C.l.  1    102.39 de          146.86 f   78.87 e 
 Var. l. 2   85.25 f  187.73 c   77.48 e 
 (3x) 3     95.78 ef  140.59 g    66.87 ef 
 

 
zRLNS is rootstock leaf number stage. 

yTotal carbohydrates are defined as the sum of major carbohydrates such as: fructose, glucose, sucrose, 
stachyose, galactose and raffinose. 

xValues represent a mean of two readings pooled from twenty plants replicated five times. 
wGenotype is C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, C.l 
Var.c.=Citrullus lanatus Var. Citroides, C.I Var. 1(3x) = Citrullus lanatus Var. Lanatus (triploid). 
vThe 1st RLNS in this study is defined as seeing the first unexpanded true leaf. The 2nd RLNS is defined as 
seeing the fully expanded 1st true leaf and the unexpanded 2nd true leaf. The 3rd RLNS is defined as seeing 
the 1st and 2nd expanded true leaves and the unexpanded 3rd true leaf. 
uMeans within columns followed by a different letter are significant by LSD at P = 0.05. 
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Figure 6. Relationship between rootstock hypocotyl total organ carbohydrates ( ) measured at time of grafting with grafting success 
score where “0” = graft death and “10” = optimal growth (13 days after healing) with roots either excised ( ) or left intact ( ) 
prior to healing at three RLNS on rootstocks Cucurbita moschata x Cucurbita maxima (A), Lagenaria siceraria (B), Citrullus lanatus 
Var. Citroides (C), and Citrullus lanatus Var. Lanatus (D) a triploid. The 1st RLNS is defined as the first unexpanded true leaf. The 2nd 
RLNS is defined as the unexpanded 2nd true leaf with the 1st fully expanded true leaf. The 3rd RLNS is defined as the unexpanded 3rd true 
leaf with the 1st and 2nd expanded true leaves. Values represent a mean taken from ten plants per replication, replicated five times. Total 
carbohydrates are defined as the sum of major carbohydrates including: fructose, glucose, sucrose, stachyose, galactose and raffinose. 
Rootstock hypocotyls were excised from the root system prior to healing just below the soil line and then placed in new media to re-root.  
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Figure 7. Regression of total hypocotyl carbohydrates levels (prior to grafting) over grafting success score (13 days after grafting) of four 
rootstock cultivars C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima (A), Lagenaria siceraria (B), Citrullus lanatus Var. 
Citroides (C), Citrullus lanatus Var. Lanatus (D) a triploid. Each point represents a mean of 10 plants per replication with hypocotyl 
treatment after grafting of whether roots were left intact ( ) or excised ( ) prior to healing. The solid (───) and broken (••••••) lines 
(roots left intact or excised, respectively) represent regression lines generated for the entire population data polynomial regression 
analysis. Total carbohydrates are defined as the sum of major carbohydrates including: fructose, glucose, sucrose, stachyose, galactose and 
raffinose. Grafting success score were defined as “0” = graft death and “10” = optimal growth with a score of 90 being the lowest level of 
acceptability. Rootstock hypocotyls were excised from the root system prior to healing just below the soil line and then placed in new 
media to re-root. ns, *,**,*** = not significant or significant at P=.05, .01, and .001 respectively.   
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Table 22. Predicted rootstock hypocotyl organ carbohydratesz and dry weight status at 90 grafting 
success score of four rootstock cultivars  with roots left intact or excisedy (prior to healing).  

____________________________________________________________________________________
     
   Rootstock Rootstock Root 

treatment 
Carbohydratesw 
(µg/ hypocotyl) 

Carbohydratesw 
(µg/ml) 

Dry weightw 
(g/ hypocotyl)    cultivar genotypex 

____________________________________________________________________________________
   Strong Tosa C.mo. x C.ma. Intact 640 282   2.27 
  Excised 595 283   2.10 
   Emphasis L.s. Intact 485 308   1.57 
  Excised 477 306   1.56 
   Ojakkyo C.l. Var. c. Intact 212 243     .87    
  Excised 220 242     .91 
   Tri-X 313 C.l.  Var. l. Intact 236 251     .94 

  Excised 383 261   1.47 
 

 
zCarbohydrates represent a mean of two carbohydrate measurements taken from a subsample of ten 
plants replicated 15 times and are defined as the sum of major carbohydrates such as: fructose, 
glucose, sucrose, stachyose, galactose and raffinose. 

yRootstock hypocotyls were excised from the root system just below the soil line and then placed in new media 
to re-root. 
xGenotype is C.mo x C.ma.= Cucurbita moschata x Cucurbita maxima, L.s. = Lagenaria siceraria, 
C.l Var.c.=Citrullus lanatus Var. Citroides, C.1 Var. 1 = Citrullus lanatus Var. Lanatus (triploid). 
wValues represent a calculated number taken from the regression prediction model of hypocotyl total 
organ carbohydrates, carbohydrate concentration per dry weigh gram, and overall dry weight each 
with grafting success. 
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APPENDIX 
Additional pictures of rootstock and scion leaf number stages at which grafting took place, 
grafting, inside of healing chamber, and grafted seedlings.  
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Fig. A-2. Scion and rootstock at second leaf 
stage. 

Fig. A-3. Rootstock and scion at 
third leaf stage. 

Fig. A-4. Rootstock prepared for 
“Cotyledon Devoid” grafting. 

Fig. A-5. Scion prepared for grafting. 

Fig. A-1. Scion and rootstock at first leaf stage. 
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Fig. A-6. Excised grafted seedling immediately 
following grafting but prior to healing. 

Fig. A-7. Grafted seedling inside high humidity 
healing chamber immediately following grafting. 

Fig. A-8. First rootstock leaf number stage 
grafted seedlings after healing 

Fig. A-9. First leaf stage grafted rootstock hypocotyl 
and scion cotyledon senescence following healing. 
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Fig. A-10. Second rootstock leaf number stage 
grafted seedlings after healing. 

Fig. A-11. Second rootstock leaf number 
stage grafted seedlings after healing. 

Fig. A-13. Third rootstock leaf number 
stage grafted seedlings after healing. 

Fig. A-14. Third rootstock leaf number 
stage grafted seedlings after healing. 

Fig. A-15. Close up of grafted second 
rootstock leaf number stage seedling 
after healing. 
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