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ABSTRACT

Type Ia supernovae (SNe Ia), the thermonuclear explosion of a white dwarf, were

once considered standard candles. However, increased observations reveal inhomogeneities

in chemical composition and luminosity behavior, roughly dividing SNe Ia into three lu-

minosity classes; super-luminous, sub-luminous, and normally-luminous. After introducing

the problem in the context of previous observations and modeling, this thesis explores the

physical processes occurring in a SN Ia after explosion, and discusses observations of SN

light curves.

A simple model of the expanding ejecta calculates the energy deposition from the

decay of radioactive 56Ni as well as photon diffusion. It produces light curves that match

early bolometric observations of normal SNe Ia. Variable chemical composition of the ejecta

allows for testing a number of explosion scenarios. It becomes apparent that the shape of the

light curve is sensitive to the amount and location of synthesized 56Ni. Monitoring gamma

ray transport through Compton scattering indicates that gamma rays escape at late times.

At this epoch an assumption of instantaneous deposition of energy is inaccurate. It is

unclear whether positrons escape the ejecta or are trapped at even later times.

The photometry of SN2007ax proved it to be the dimmest and reddest SN Ia ob-

served. SN2008D was serendipitously observed in X-rays before it was even visible in optical

light, revealing that an early x-ray outburst may accompany every core collapse SN. Subse-

quent observations resulted in a well-sampled, multi-band early light curve. Observations

of SN2006D, another SN Ia, in B, V,R, I up to ∼ 500 days after maximum light are also

presented. The light curve may answer questions about the physics of SNe at late times, if

more observations can be included. Future modifications of the simple model and strategies

for useful observations are discussed.
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CHAPTER 1

INTRODUCTION

A supernova is the explosive end to a massive star’s life, or, for a low mass star, is a

fiery alternative to an otherwise dismal smoldering existence. These explosions can produce

100 times as much energy as the sun produces in its entire lifetime, and can temporarily

rival the brightness of an entire galaxy. They enrich their surroundings with heavy elements

formed in the explosion, and the next generation of stars inherits these heirlooms as they

begin their own lives.

Type Ia supernovae have served as “standard candles,” enabling astrophysicists to

measure distances to galaxies over 1000 Mpc away. They have shed light on the shape and

cosmological fate of the universe and may also play a major role in the emission of 511keV

positron annihilation photons seen mostly in the bulge of the Galaxy. Their astrophysical

importance begs further understanding.

Supernova Classification

Types of supernovae (SNe) were first distinguished phenomenologically through

spectroscopic analysis. They were broken up into two main classes: those which con-

tained no hydrogen lines (Type I), and those that exhibited strong hydrogen lines (Type

II). Type I SNe were broken down further into categories of; Type Ia: those with strong

silicon lines, Type Ib: strong helium lines, and Type Ic: neither strong silicon nor helium

lines. A spectrum of each type can be seen in Figure 1.1. However, the physical differences

in these systems categorizes the groups much differently.
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Figure 1.1 From Filippenko (1997). The early spectrum of the Type Ia,b,c and Type II
supernova. t and τ are time after B-band maximum, or time after core collapse. Note the

presence/abscence of Hydrogen/Helium which defines the SN Type.
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1.1 Core Collapse Supernovae

Type II, Type Ib, and Type Ic SN are each the result of a massive star undergoing

gravitational collapse and are thus collectively called core-collapse SNe (CC-SNe). After

the helium burning stage, stars that are more massive than about 8 M� undergo burning

of their carbon core, then succesively neon, oxygen, and silicon, generating progressively

more massive products. These phases of nuclear burning temporarily halt the gravitational

contraction by generating outward radiation pressure — photons ”pushing” their way out

of the star. Silicon burning produces a number of nuclei (incremented by alpha particles)

all the way up to 56Ni — the nucleus at which the binding energy per nucleon peaks for the

4He capture chain. The reactions occur as:

28Si + 4He → 32S + γ (1.1)

32S + 4He → 36Ar + γ (1.2)

etc

52Cr + 4He → 56Fe + γ. (1.3)

At this point the pressure is so great, and the temperature high enough (T ∼

2.5 × 109) that photons have enough energy to destroy heavy nuclei in a process known

as photodisintegration (essentially the reverse of the above silicon burning) (Kotake et al.,

2006). The photodisintegration of 4He is,

4He + γ → 2p+ + 2n. (1.4)

This deprives the star’s core of thermal energy it would otherwise use to keep itself from

collapsing. Heavy nuclei and protons (produced from the photodisintegration of 4He) begin

capturing the free electrons that had helped support the star through degeneracy pressure.

Thus the star contracts rapidly until the repulsive nuclear strong force halts the inner

core at a density ρ > 3 × 1014g/cm3 (Kotake et al., 2006). The inner core rebounds,

sending pressure waves into the infalling outer core. The pressure waves reach the speed of

sound and turn into a shockwave, creating high temperatures as it travels through the still

inwardly-traveling iron core. This instigates photodisintegration which saps the shock of

3



its energy. Here, the shock would stall if it were not for the neutrinos also created during

the photodisintegration and electron capture. Though neutrinos are typically considered

non-interacting particles, the density of the core is such that the energy of about 5% of the

neutrinos is deposited into material just behind the shock. This deposition re-invigorates

the shock. The production of neutrinos is enormous, and just 5% of their total energy is

enough to generate a CC-SN of E = 1× 1051 ergs1 (Kotake et al., 2006).

The spectroscopic difference between SNe II, Ib, and Ic derives from the fact that

these massive stars are at different stages in mass loss when Si burning begins. SNe Ib

progenitors have had their outer hydrogen shell stripped away by stellar winds prior to the

time of explosion, while SNe Ic progenitors have had even their helium shell stripped away.

Because core-collapse supernovae are associated with massive stars, they are usually found

in younger stellar populations — typically in the arms of spiral galaxies. None have been

found in elliptical galaxies.

1.2 Type Ia Supernovae

Unlike CC-SNe, Type Ia supernovae (SNe Ia) are found in all types of galaxies

— indicating that their progenitors have long lifetimes. Observationally, most SNe Ia have

similar peak absolute magnitudes, brightness decline rates (light curves), and spectral evolu-

tion. This remarkable homogeneity led to their use as distance indicators and subsequently

allowed astronomers to conclude that the universe is expanding at an accelerated rate (see

appendix A).

The historically accepted explosion model that agrees well with most SNe Ia ob-

servations is the single-degenerate Chandrasekhar-mass explosion model (Hillebrandt and

Niemeyer, 2000). In this case “single-degenerate” refers to one white dwarf (of mostly car-

bon and oxygen) whose core is electron degenerate. Left to its own devices, the white dwarf

(WD) would spend its years simply cooling off (see appendix B). However, in a close binary

system with another star, it may accrete mass from its companion and so begin the path to

a more violent death. The WD increases in mass until it reaches the Chandrasekhar mass

1 1× 1051 ergs is also known as one “foe,” or one “bethe.”
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limit (1.39 M� for a carbon-oxygen WD) where electron degeneracy pressure can no longer

support it against its own gravity. The star contracts enough to ignite its core of carbon

resulting in a Chandrasekhar-mass explosion.

The burning front moves subsonically (a deflagration) – up to 30% the speed of sound

– through the star, consuming fuel and releasing energy, until “quenched by expansion”

(Hillebrandt and Niemeyer, 2000, and references therein). The deflagration creates iron

peak elements in the central regions where the density is the highest. Yet in the outer layers,

there is incomplete nuclear burning which produces intermediate mass elements (IME) such

as 40Ca, 32S, 28Si, & 20Ne and even leaves unburned 12C & 16O, & 24Mg (Hillebrandt and

Niemeyer, 2000). The W7 model by Nomoto et al. (1984) is a widely accepted deflagration

model that successfully reproduces the observed light curve (Section 1.2.1) and spectra

(Section 1.2.2) of most SNe Ia. Other possible explosion scenarios are discussed in Sections

1.3.3 & 1.4.3.

Each observation produces more constraints on the explosion mechanism of SNe Ia.

Most observations consist of 1) monitoring the rate of decline in luminosity — quantified in

what is called a light curve, or 2) taking spectra, which indicate the chemical compostion

and speed of the ejecta.

1.2.1 Light Curve

Figure 1.2 shows composite light curves from 22 SNe Ia from Riess et al. (1999)

in B,V,R,I. The optical light curves are characterized by a fast rise-time and a delayed

decline (.06 mag/day at early times, and .107 mag/day later) (Filippenko, 1997). However,

to understand the shape of the light curve, we must examine the processes that occur in

the ejecta.

5



Figure 1.2 From Riess et al. (1999). A composite of 22 SNe Ia light curves up to ∼ 100
days after maximum light, normalized so that maximum light is at a magnitude of 0.

The initial thermal energy of the SN explosion is transformed into kinetic energy by

adiabatic expansion before it can be radiated. Thus the observed luminosity of SNe Ia must

have another source. Colgate and McKee (1969) were the first to suggest that the beta

decay of the radioactive 56Ni, synthesized in the explosion, powers the continual expansion

and luminosity of SNe Ia. The decay schemes of 56Ni → 56Co → 56Fe (Nadyozhin, 1994)

are shown in Figure 1.3. 56Ni electron capture decays with a lifetime of τNi = 8.80 days to

an excited state of 56Co, which decays — cascading through subsequent excited states —

to the ground state, releasing photons of average energy 1.72 MeV.

56Ni + e− → 56Co∗ + νe (1.5)

56Co∗ → 56Co + γ’s (1.6)

6



56Co then decays with a lifetime of τCo = 111.3 days into an excited state of 56Fe through

electron capture 81% of the time, and through beta decay 19% of the time.

56Co + e− → 56Fe∗ + νe (81%) (1.7)

56Co → 56Fe∗ + e+ + νe (19%) (1.8)

After which, the excited state (56Fe∗) decays through multiple photon emissions to the

stable ground state of 56Fe.

56Fe∗ → 56Fe + γ’s (1.9)

The decay produces gamma rays of typical energy ∼ 1 MeV, while the positron may have

kinetic energy ranging from 0-1.459 MeV (with typical energy being 0.632 MeV) (Nadyozhin,

1994). If the positron annihilates, it will also produce photons. For more on positrons in

SNe Ia, see Section 1.6.1.

At early times the SN Ia ejecta are optically thick, and all 56Ni gamma rays

are deposited, predominantly through Compton scattering (see section 2.5.1). This cre-

ates energetic electrons which then thermalize through excitation/de-excitation and ion-

ization/recombination. The optical photons created in this manner diffuse through and

eventually escape from the outer photosphere-like layers of the ejecta. At this “diffusion

dominated” point, the radiative output can be approximated as a blackbody. But the

ejecta, traveling at 11-13,000 km/s, continue to expand, and from 100 to 200 days after

maximum light, the SN transitions to a nebular phase. The optical depth decreases, the

diffusion timescale is shortened, trapping is less-efficient, and light escapes from further

and further into the ejecta. Once in the nebular phase, the material is optically thin and

completely transparent to the gamma rays. Now, only the deposition of kinetic energy of

the positrons from the 56Co → 56Fe decay power the light curve. The fraction of positrons

that do not escape is dependent on the configuration of the magnetic field (Milne et al.,

2001, and references therein).

Thus, the light curve shapes (as seen in Figures 1.2 & 1.4) are built from the

evolution of escaping thermal photons. In the beginning, the ejecta is optically thick,

so the random walk of these photons requires a long time before they reach the surface.

7



Figure 1.3 The simplified decay schemes of 56Ni → 56Co (left) and of 56Co → 56Fe
(right) from Nadyozhin (1994). The number in parentheses at each transition is the

percentage of photons per decay that undergo that transition, while the number in bold (if
present) indicates the energy (in MeV) of the photon emitted.
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Consequently, the light curve is initially dim, but progessively increases in luminosity as

enough time has passed for more and more of these photons to escape. It is not until

the amount of escaping energy catches up to the amount of built up energy that we see a

maximum in the light curve (perhaps 18 days after explosion). The decrease that follows is

due, in part, to the decreasing opacity. More gamma rays escape, thus less are energizing

the ejecta.

Radiated photons in the ejecta tend to be in the UV and blue wavelengths, how-

ever the opacity at these wavelengths is very large. Radiation absorbed at these energies

is redistributed through repeated fluorescences (Pinto and Eastman, 2000). An energetic

photon excites a high-energy atomic transition, which de-excites in a cascade of lower en-

ergy transitions. The amount of light seen in an energy band depends on the number of

transitions resulting in, and the monochromatic opacity for, each line in that energy band.

Thus, each band exhibits a differently shaped light curve (as seen in Figure 1.4 taken from

Kasen (2006)), which evolves differently with time.

At late times, the light curve in the infrared becomes more important as it begins

to better trace the bolometric behavior. Section 1.6.2 discusses this in more depth.

1.2.2 Optical Spectra

While light curves reveal much about the energy release, spectra afford a peak into

the chemical make-up, which tells much about the explosion mechanism.

Early spectra reveal deep Si II absorption lines and those of other IME, indicating

that burning does not reach nuclear statistical equilibrium (NSE) in outer layers (Branch,

1982). Figure 1.5 shows the early spectrum of three typical SNe Ia. All exhibit the tell-tale

deep Si absorption lines (at 6150 Å) as well as other IME lines (e.g., Ca II at ∼ 8300 Å).

Note how remarkably similar these spectra are.

As time progresses, and the photosphere receeds further into the ejecta, we see fewer

IME and more iron-group elements. Figure 1.6 shows the progression of spectra for a typical

SN Ia.

Note at early times, the Si II absorption at λ6355 Å is strong, but starts to weaken

after 2 weeks (t ≥ 14 days). Also at 2 weeks, Fe II emission (λ ∼ 6500 Å) and absorption
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Figure 1.4 Taken from Kasen (2006), the light curves of the normally luminous SN Ia
SN2001el (circles) plotted with models for U,B,V,R,I,J,H,K bands. Note the different

timing of maximum light and disimilar shapes for each band — particularly, the secondary
maximum in the NIR
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Figure 1.5 From Filippenko (1997), the optical spectra of SNe Ia (from top to bottom:
SN1990N, SN1987N, SN1987D) arbitrarily offset vertically for better viewing. The deep Si

II trough at 6150 Å is from blue-shifted Si II 6347 Å and 6371 Å lines — collectively
called λ6355 Å. The early Si signature indicates incomplete nuclear burning in the outer
layers of SNe Ia. The homogeneity of SNe Ia is evident in the notches present in each

spectra (e.g., near 4550 Å, 4650 Å, and 5150 Å)
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Figure 1.6 The progression of the optical spectra of normal SN Ia SN1994D from
Filippenko (1997). Time is labeled on the left with t = 0 occuring at maximum light. See

text for qualitative explanation. The last two spectra are of the similar SN1987L.
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emerges, which is a hint that we’re beginning to see the iron-rich core. There are still Ca II

lines visible (λ ∼ 3800 Å), but Co lines dominate and dozens of forbidden Fe emission lines

can be seen. The decrease of Co lines is at a rate consistent with radioactive decay of 56Co.

The single-degenerate Chandrasekhar-mass deflagration models seem to agree very

well with the light curves and spectra seen in Figures 1.2 through 1.6. However, as obser-

vations increase, it becomes apparent that SNe Ia are not as homogeneous as previously

assumed. Some SNe Ia appear much brighter (superluminous — see Section 1.3), and some

much dimmer (subluminous — see Section 1.4), each accompanied by spectra that devi-

ate from the typical (normally luminous) SNe Ia. The anomalous spectra and light curves

might indicate different explosion mechanisms. These are discussed in the respective sec-

tions (1.3.3 & 1.4.3) relating to the luminosity class they describe. Though these peculiar

SNe Ia have been observed in increasing numbers (e.g. Appendix C), “normal” SNe account

for 64% of observed SNe Ia according to Li et al. (2001b). Only 20% of observed SNe Ia

are superluminous and 16% are subluminous (See also Figure 1.13).

1.3 Superluminous SNe Ia

SN1991T, discovered April 13, 1991 4:05 UT by Stephen Knight well before maxi-

mum light, exhibited an unusual early-time spectrum and bright maximum light.

1.3.1 Superluminous Light Curves

The peak brightness of the light curve of SN1991T exceeds that of “normally-

luminous” SNe by at least 0.6 magnitudes at visual wavelengths (Filippenko et al., 1992). It

also shows a slower rise and decline rate, creating the longer, broader light curve shown in

Figure 1.7 from Filippenko et al. (1992). The decline rate in V was 0.052 ± 0.002 mag/day

(Phillips et al., 1992), as compared to a normal decay of about 0.06 mag/day (Filippenko,

1997).

In fact, it turns out that all SNe Ia exhibit this relationship between peak magnitude

and steepness of decline. Phillips (1993) suggested this be quantified in the term ∆m15(B),

which measures the “total amount in magnitudes that the light curve decays from its peak

brightness” during 15 days. SN1991T has a ∆m15(B) = 0.94±0.07 (Phillips, 1993), whereas
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Figure 1.7 Taken from Phillips et al. (1992), the B and V light curves of superluminous
SN Ia 1991T (symbols as marked) compared with normal SNe Ia templates (lines) from
Leibundgut (1988). The templates are arbitrarily placed. SN1991T exhibits a broader
light curve than normal SNe Ia, and (when plotted in terms of absolute magnitudes) is

also much brighter.
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normal SNe Ia typically have 1.1 ≤ ∆m15(B) ≤ 1.68 (Mazzali et al., 2001; Lair et al., 2006).

Woosley et al. (2007, for example) found that maximum luminosity is related to the amount

of 56Ni produced in the explosion. It looks as if SN1991T produced a mass of 1.0M� ≤ M ≤

1.4M� of 56Ni (Filippenko et al., 1992) as opposed to the normal 0.6M� ≤ M ≤ 0.8M�

(Hoeflich and Khokhlov, 1996).

1.3.2 Superluminous Spectra

Early spectra of SN1991T show Fe lines (atypical of SNe Ia), and a lack of the

typical IME absorption. They also indicate a higher expansion velocity than that of normal

SNe Ia. Figure 1.8 compares the spectrum of SN1991T with those of two other normal SNe

Ia taken at roughly a week before maximum light (Filippenko, 1997).

Figure 1.8 Reproduced from Filippenko (1997), the early spectra of SN1991T is
compared against that of two SNe Ia (SN1994D & SN1990N). The Si and Ca lines, so

pronounced in the top spectra, are missing in the SN1991T spectrum. Instead, Fe lines are
prominent.
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It is not until t = 2 days that the Si II lines (that phenomenologically define the

SN as Type Ia) appear. Subsequent spectral comparisons, as in Figure 1.9 one week after

maximum light, show IME lines developing (though weak). However, now the expansion

velocity is the same as in normal spectra.

Figure 1.9 From Filippenko et al. (1992), a comparison of SN1991T with the SNe
SN1990N, SN1987N, and SN1987D at a week past maximum light. IME lines appear, but

aren’t as strong as normal.

After 20 days, the spectrum is even closer to that of normal SNe Ia, but forbidden

lines are emerging — indicating it has reached the nebular phase early. At 50 days, the

spectra are practically identical, and now the Fe II lines dominate. These epochs are shown

in Figure 1.10 from Filippenko et al. (1992).

Because spectra reveal the composition of deeper layers of the ejecta as time pro-

gresses, SN1991T’s early spectrum indicates that iron peak elements are present in its outer
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Figure 1.10 Reproduced from Filippenko et al. (1992), the spectra of SN1991T and
more normal SN1990N at t ∼ 20 days (top) and t ∼ 50 days (bottom) after maximum
light. At 20 days, the IME absorption features are present but not as strong, but at 50

days the spectrum from the two SNe are indistinguishable.
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layers. The intermediate layers contain Si, S, and Ca, but deeper in the ejecta, the com-

position is again iron peak elements, indicating that while the central regions burned to

complete NSE, the medial portions did not.

1.3.3 Possible Super-luminous Explosion Scenarios

Other SNe Ia were soon discovered that had the same characteristic broad light

curves and unusual early spectra. It appears that there exists a (so-called ”superluminous”)

subclass of SNe Ia stemming from a different explosion mechanism than that of the normally

luminous SNe Ia.

One idea is that superluminous SNe undergo delayed detonation. An accreting WD

ignites carbon at its center. The burning front propogates outward slowly, increasing in

speed, but giving the ejecta time to expand. This is called a deflagration. As it reaches

the density drop at outer layers, the burning front turns supersonic — transitioning into a

detonation — and burns the surface C & O to heavy elements (Khokhlov, 1991).

This scenario synthesizes more 56Ni than the single-degenerate Chandrasekhar-mass

explosion model (Section 1.2) and also explains the production of iron peak elements in the

core and surface, with IME in between. Thus it accounts for both the unusual brightness

and chemical composition of superluminous SNe. However, if 56Ni is synthesized in the

outer layers, one might expect to see a different light curve shape. If the gamma rays from

the decaying 56Ni are deposited closer to the surface, the subsequent optical photons should

take less time to escape — giving rise to a faster light curve rise time. However, Sn1991T

and other bright SNe Ia exhibit a slow rise time.

Another proposed explosion scenario is that of a WD-WD merger (also known as

a “double degenerate” model). As the two WD’s orbit each other, the less massive one

is disrupted and forms an accretion disk around the more massive one. The massive WD

accretes a carbon envelope and ignition can occur either in the core of the more massive star,

or at the contact surface (Hillebrandt and Niemeyer, 2000, and references therein). This

scenario ensures that no H is present and perhaps produces greater amounts of 56Ni. But

problems with gravitational stability and accretion rates indicate that accretion induced
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collapse (as talked about in Section 1.4.3) rather than thermonuclear explosion is much

more likely to occur (Hillebrandt and Niemeyer, 2000, and references therein).

It is possible that the perfect combination of deflagration and delayed detonation

reproduces the observed luminosity and chemical composition. However, results in section

2.4.4 show that large amounts of 56Ni in outer layers of the ejecta cause the light curve to

have a quick rise and decline time, when in fact, the opposite is observed in superluminous

SNe. Thus, matching both chemical composition and luminosity behavior with a given

model is difficult. Inhomogeneity in SNe light curves and spectra could perhaps be explained

by variations in burning front propagations due to differing density or C-O composition in

the WD progenitor, but exactly how, is not understood. It is worth noting that SNe

belonging to this bright subclass seem to be found in young stellar populations (e.g. Branch

et al., 1996).

1.4 Subluminous SNe Ia

Just as SN1991T exemplifies the superluminous class of SNe, SN1991bg is a well-

observed example for subluminous SNe Ia. It, and others in this subclass (e.g. SN1992K,

SN1986G, SN1992bo), appear much dimmer and fade more quickly than normal SNe Ia.

They tend to be redder at maximum, and their spectra show an abundance of intermediate

mass elements.

1.4.1 Subluminous Light Curve

The light curve of SN1991bg, reproduced in Figure 1.11 from Turatto et al. (1996),

is the converse of SN1991T. It exhibits a fast decline of 0.117 mag/day in V and 0.146

mag/day in B (Turatto et al., 1996). With a maximum light of ∼ 2.5 mag fainter than

normal SNe, it has a ∆m15(B) = 1.88± 0.10 (Phillips, 1993). This low luminosity indicates

that a smaller amount of 56Ni was produced in the explosion — roughly 0.07M� (Mazzali

et al., 1997). Also, the R light curve curiously did not possess the secondary maximum of

typical SNe Ia (e.g., Figure 1.4).
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Figure 1.11 From Turatto et al. (1996), the bolometric (including B, V, R, I or flux
calibrated spectra) light curve of SN1991bg (dots). The bolometric light curve of normally
luminous SN1992A is plotted (solid line) for comparison. Note the dim maximum light,

and steep decline of SN1991bg.

1.4.2 Subluminous Spectra

Figure 1.12 (from Turatto et al. (1996)) shows a progression of the spectrum of

SN1991bg along with comparisons to normal SNe Ia. Early and late spectra are similar

to those of normal SNe Ia, indicating that the photospheric and interior layers are under

similar “normal” conditions. However, narrow absorption lines indicate a smaller expansion

velocity than that of normal SNe Ia. At t ∼ 50 days, the Ca II lines in SN 1991bg are much

stronger than those seen in normal SNe spectra, showing incomplete NSE burning even in

the intermediate layers. The evolution of Co III lines is again consistent with the idea that

the decay chain of 56Ni → 56Co → 56Fe powers the SN.

1.4.3 Possible Sub-luminous Explosion Scenarios

The smaller expansion velocity and lower production of 56Ni may indicate the ex-

plosion occured before the accreting WD had a chance to reach the Chandrasekhar mass
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Figure 1.12 From Turatto et al. (1996), the progression of the spectrum of SN1991bg
(second from the top in each frame) compared with normal SNe Ia SN1986G, SN1989B, &
SN1994D. Both early and late spectra agree fairly well, but at t ∼ 50 days, pronounced Ca

II lines can be seen in SN1991bg.
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limit. If its companion still has a helium/hydrogen shell, the WD will have accumulated

an outer layer of helium. This layer can ignite and prompt a burning front that travels

into the core, initiating thermonuclear explosion (Whelan and Iben, 1973). Possible prob-

lems with this route to explosion, based on accretion rates, can be found in Hillebrandt

and Niemeyer (2000) and references therein. This “sub-Chandrasekhar-mass” scenario has

progenitor mass varying from 0.65 to 1.1M� and produces an adequately small amount of

56Ni. It seems to explain the observed characteristics of subluminous SN1991bg well, except

for a predicted high-velocity outer layer of Ni and He, which is not seen in spectra (Nugent

et al., 1997).

Another scenario that might explain subluminous SNe is not a thermonuclear explo-

sion, but an “accretion induced collapse” of a WD. Instead of carbon core ignition, electron

capture can lead to a collapse. Less mass is ejected and less 56Ni is synthesized than in

other scenarios.

1.5 Width-Luminosity Relation

It was the discovery of a phenomenological relationship between the peak light

magnitude and luminosity decline rate in each SN that salvaged the use of SNe Ia as

distance indicators. The relationship between the peak brightness and the width of the

light curve around maximum can be parameterized by the decline rate (first introduced in

Section 1.3.1), ∆m15(B) as suggested by Phillips (1993), by a ”stretch-factor” (Perlmutter

et al., 1997), or by multi-parameter nonlinear fits (Riess et al., 1996). Plotted in the top

frame of Figure 1.13 from Perlmutter (2003) are the light curves of nearby SNe. One can

see an almost perfect sequence of nested progressively less luminous light curves. SN1991T

is the most luminous and SN1991bg is the least. Simply by stretching the time scales by

appropriate amounts, and renormalizing maximum light, these SNe fit the same light curve

(bottom frame of Figure 1.13).

Now, as “standardizable candles,” they continue to map out the fate of the universe.

Their use, combined with results of the Wilkinson Microwave Anisotropy Probe (WMAP),

led to a stunning realization — the universe is expanding at an accelerating rate. See

Appendix A for more on the cosmological implications of SNe Ia. This profound conclusion
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Figure 1.13 From Perlmutter (2003), the light curves of nearby SNe Ia. The top frame
shows the nesting of light curves as each one has both a progressively decreasing

luminosity, and decreasing width. The top light curve is that of SN1991T, while the
bottom is that of SN1991bg. Most SNe Ia light curves fall neatly along the yellow band in

the middle. By applying the appropriate stretch factor and renormalizing the point of
maximum luminosity, each SNe can be made to fit the same light curve (bottom frame).
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comes under the assumption that SNe Ia can be standardized and used as accurate distance

indicators. In fact there are SNe Ia that do not follow the width-luminosity rule, e.g.

SN2000cx (Li et al., 2001a) and SN2002cx (Li et al., 2003), showing that not all SNe are

standardizable.

1.6 Late Times

Most observations of SNe Ia are made at early times or in the optical bands, where

the SN is bright and easy to see. However, it is at late times, when the density of the ejecta

is low enough that light from the center of the SN can escape.

1.6.1 Positron Deposition and Escape

At early times, all gamma rays from radioactive decays are deposited in the ejecta

and their energies go towards powering the light curve. However, as the ejecta expands,

more gamma rays escape. Though they deposit a minimal amount of energy on their way

out, via compton scattering, most of their energy is lost. At later epochs, all gamma rays

escape the ejecta, and it is only the deposition of the kinetic energy of positrons (from

3.5% of 56Co decays) that powers the light curve. It is the nature of the magnetic field

that determines how far positrons may travel before thermalizing or, at late times, what

fraction of positrons escape the ejecta. Figure 1.14, reproduced from Milne et al. (2001),

models the bolometric light curve of SNe Ia, showing the luminosity evolution for different

assumptions of gamma ray and positron depositions. Note that beginning at t ∼ 500 days,

the light curve is steeper without positron deposition, because the energy that would be

added to power the light curve instead escapes.

Magnetic Field Considerations

WDs (the progenitors of SNe Ia) have been observed to have magnetic fields of 3 × 105

to 109 G when alone or in non-interacting binary systems (Liebert, 1995). The magnetic

fields of these WDs change very little over their lifetime. However, the magnetic field of

an accreting WD may evolve if the accretion rate is larger than the rate of ohmic diffusion

(the time scale during which the currents generating the magnetic field of a WD dissapate)

(Cumming, 2004). An accretion rate greater than 1 to 5 × 10−10 M�/yr may reduce the
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Figure 1.14 From Milne et al. (2001), predicted bolometric light curves assuming
instantaneous deposition of all decay energy (dashed line D), gamma-ray deposition
accounting for escape due to late-time diffuse ejecta (dotted line G), and gamma-ray

deposition with varying degrees of positron deposition (middle lines R through T). The
dark band (R) shows the range of curves for a radial field configuration, the light band (T)

is the range for a trapping field, while the line in-between (labeled In)is the curve for
instantaneous in-situ deposition of positron energy. Ranges correspond to different

ionization fractions of the ejecta.

25



surface magnetic field. Also, accreting WDs have been observed to have magnetic fields of

7×106 to 3×108 G (Cumming, 2004). Both the non-interacting and accreting WDs usually

have complex (non-dipolar) fields. In fact Reinsch et al. (2004) found that the field is more

complex than a 5-component multipole expansion.

It is uncertain what effect the SN explosion has on the magnetic field lines. However,

Ruiz-Lapuente and Spruit (1998) suggest 3 possible magnetic field configurations at late

times. First, the field may not be strong enough to contain the positrons, in which case,

the positrons travel in free trajectories (straight-lines), and some portion escape the now

transparent ejecta. Second, the ejecta of a SN could drag the field lines (of any original

dipole magnetic field — or perhaps even an aribitrarily complicated field )) along as it

homologously expands, leaving the field radially-combed (Colgate et al., 1980). Positrons

spiral along magnetic field lines while their pitch angle (the angle between the magnetic

field lines and the particle’s velocity) changes to encourage a radially outward trajectory

and, thus, escape (Chan and Lingenfelter, 1993). Milne et al. (1999) discovered, through

modeling, that positrons in the weak field and those in the radially-combed field travel the

same mean path to freedom from the ejecta. In the third configuration, the magnetic field is

strong and turbulently disordered with lines tangled, perhaps from the “violent explosion”

of the SN (Axelrod, 1980). Here, the positron mirrors frequently, but does not leave the

mass coordinate of its birth, and is trapped in the ejecta.

The positrons that do not escape the ejecta will likely thermalize (though not all

trapped positrons do) and donate their energy to the SN luminosity. Milne et al. (2001)

compared the light curves of SNe Ia with models of different magnetic field configurations.

Shown in Figure 1.15 are the V -band light curves of 22 SNe Ia fitted to the model DD23C (a

delayed-detonation Chandrasekhar-mass model). The gray band (R) is the bolometric light

curve of the radially-combed magnetic field model (and equivalently of the weak magnetic

field), where positrons escape radially. The darker band (T) is the bolometric light curve

characterizing the turbulently disorded magnetic field scenario, where the positrons meander

a bit, but are ultimately trapped). These scenarios are also plotted in Figure 1.14 but

calculated for the model HED8.
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Figure 1.15 From Milne et al. (2001), V -band light curves of 22 SNe Ia (subluminous
are open circles, normally luminous are filled circles, and subluminous are crosses)
compared with delayed-detonation Chandrasekhar-mass model DD23C for trapped

positrons (dark band T), and for radially escaping positrons (light band R).

The super-luminous (open circles) and normally luminous (filled circles) SNe light

curves seem to evolve similarly at late times, and are better fitted by the radially escaping

positron model. However, the sub-luminous SNe (crosses) are distinct in their evolution, and

seem less energetic than the delayed-detonation Chandrasekhar-mass model even without

positron deposition. It would appear that the positrons escape through either a radially-

combed or weak magnetic field. We can also calculate the total number of positrons that

escape from a SN Ia, as Milne et al. (1999) does, to be 8× 1052 e+/SN . These conclusions

rest on the assumption that the V -band scales with the total luminosity, and there is little

to no color evolution. Milne et al. (1999) argue from BVRI observations of SNe that color

evolution is minimal after 175 days.
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1.6.2 The Importance of the Infrared

Axelrod (1980) suggests that at late epochs there may be a significant shift in

emission to the IR. Because the rate of collisions in the ejecta is fast relative to radiative

transitions, thermal emissions dominate. At early times, the thermal ejecta is hot and

emissions are mainly in the optical bands, however at later times, the ejecta has cooled,

and the emission in the IR becomes more important. At low temperatures, optical atomic

levels aren’t excited, and the fine structure transitions of iron dominate emission. Axelrod

(1980) suggests that all emission will shift quickly to the far-IR, which cannot currently be

observed. This instability is termed the infrared catastrophe. Though, late observations

have not yet seen a sudden drop at visual magnitudes to suggest the infrared catastrophe

occurs, one can see evidence that the emission shifts (if gradually) to longer wavelengths.

1.6.3 Previous Late Infrared Observations

While observing seven normally luminous and superluminous SNe Ia, Lair et al.

(2006) found that while the B, V, and R bands declined at 1.4 mag per 100 days at epochs

of 200-500 days, the I decline rate was shallower at 0.94 mag per 100 days. Only a handful

of SNe Ia have been observed at late times in the near-IR. Sollerman et al. (2004) observed

SN2000cx in the UVOIR up to 480 days past maximum. In observations between 360 and

480 days past maximum, the optical light curves continually declined by about 1.4 mag per

100 days, the I -band light curve only declined by .8 mag per 100 days, and the J,H -band

light curves were actually increasing in magnitude! The light curve of combined UVOIR

bands is shown in Figure 1.16.

The dot-dashed line is Sollerman et al. (2004)’s model for the contribution from

deposited gamma rays, and the dashed line is the contribution from positrons. The light

curve of SN2000cx (diamonds) seems to indicate that the positrons are trapped. The cause

for the difference in positron deposition conclusions between Sollerman et al. (2004) and

Milne et al. (2001) is the inclusion of the contribution of the increasingly important near-IR.

The V -band follows the steeper slope consistent with positron escape, the bolometric light

curve is shallower suggesting positron energy is deposited in the ejecta. It seems that the

color evolution is such that it mimics the effect of positron escape in the BVRI.
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Figure 1.16 From Sollerman et al. (2004), the (UVOIR) light curve of SN2000cx
(diamonds) plotted against a model of 56Co decay (solid line). The dot-dashed line shows

the contribution from gamma rays, and the dashed line is the contribution from the
positrons assuming all energy is deposited in the ejecta. The fit of SN2000cx seems to

indicate positron trapping is occurring.

SN2001el, a normal SN Ia, was also observed to have a significant contribution from

the near-IR (Stritzinger and Sollerman, 2007). From 310 to 445 days, the percentage of

flux from the JHK bands increased from 6% to 25%. The decline rate of Stritzinger and

Sollerman (2007)’s UVOIR light curve indicates the majority of positrons are deposited in

the ejecta, favoring a trapping magnetic field configuration. SN2004S exhibits practically

identical characteristics to SN2001el, widening our pool of late IR observations. Though

there has not yet been observed a significant decrease in the late B, V light curves indi-

cating the beginning of the infrared catastrophe, there is no doubt that important energy

information is contained in the near-IR at late times.

1.7 Unanswered Questions

Though these observations suggest a trapping magnetic field, it is not clear that

this is the case. Models must be refined and more late IR observations increased before the
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problem of positron escape can be addressed with certitude. There are also a number of

other unanswered questions.

Observations of SN2000cx, SN2001el, and SN2004S agreed very well, but it appears

they are all normal SNe. As seen in Figure 1.15, even the optical light curve of subluminous

SNe Ia behave drastically differently than their normal and super-luminous counterparts.

How do bolometric late light curves (ones that include at least B, V,R, I, J,H, K) of sublu-

minous SNe stack up against the other subclasses? Perhaps there is a hint to the difference

in progenitor for each class buried in late light curves (where, after all, the observed light

is coming from the center of the ejecta).

We have also not seen the total evolution of the late IR luminosity. At what point

does the increase stop, and start declining again. If the near-IR does not fall as the 56Co de-

cay, there must be another power source. Extensive studies of SNe Ia of different luminosity

classes at late times in the IR must be done.

In this thesis we seek to understand the processes SNe Ia undergo to produce their

perhaps “standardizable” luminosity.
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CHAPTER 2

MODELING

SNe Ia are complex beasts, and though attempts to model a SN Ia have been

undertaken at certain epochs (see Hillebrandt and Niemeyer, 2000, and references therein),

no one has modeled a SN all the way from conception to very late times. In this thesis, we

will model, in a very simple way, the early time physics of SNe Ia. The goal is to reproduce

and understand the overall behavior of a light curve at this epoch, and contrast it with the

late time behavior.

2.1 Nuclear Energy

As the WD undergoes nuclear burning, energy is released when carbon and oxygen

are burned to IME or iron-peak elements. One can estimate the amount of energy by

considering the chemical make-up of the white dwarf and of the ejecta. The nuclear energy

released is the difference of the sum of the binding energy (BE) of all nucleons before (b)

and after (a) the explosion:

E =
∑

i

N b
i BEi −

∑
i

Na
i BEi, (2.1)

where Ni is the number of nuclei of type i, and the sum is taken of each type of nuclei

present. Most of the nuclear energy released comes from the transformation of C and O

into IME like Si and S. For a 1.4 M� (Chandrasekhar) WD of equal parts carbon and

oxygen, whose resulting ejecta is composed of .6 M� of 56Ni, .3 M� of 28Si, .25 M� of 12C,

and .25 M� of 16O, the energy released is

E = 1.324× 1051ergs. (2.2)

Some of this energy goes into lifting the WD out of its own gravitational potential

well — blowing apart the WD. Gravitational potential energy is

U = −Gm1m2

r
, (2.3)
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where G is the gravitational constant, m1 and m2 are interacting masses, and r is the

distance between them. Integrating over the whole WD in layers of concentric shells with

m1 as the mass of the shell
(
4πr2ρdr

)
and m2 as the mass interior to the shell

(
4/3πr3ρ

)
yields

U = −
∫ R

0

16
3

Gπ2ρ2r4dr, (2.4)

where ρ is the density of the material. Assuming ρ is constant with radius r,

U = −3GM2

5r
. (2.5)

A Chandrasekhar WD, at 1.4 M�, has a gravitational potential energy of

U = −3.104× 1050ergs, (2.6)

and a net energy (Enet = E + U) of

Enet = 1.013× 1051ergs = 1.013 foes. (2.7)

Observations of the ejecta of SNe indicate a kinetic energy of ∼ 1 foe, which, within uncer-

tainties, accounts for the rest of the nuclear energy.

2.2 Decay

Thus, the energy needed for the prolonged luminosity must be generated elsewhere.

It comes from the radioactive decay of 56Ni, which was synthesized in the nuclear explosion.

56Ni decays to 56Co which then decays to 56Fe. These produce gamma rays and positrons

(as described in equations 1.5–1.9 and surrounding text), which may deposit their energy in

the ejecta. Without this additional energy, the SN would fade as quickly as it brightened.

One can determine the amount and evolution of the power generated from radioactive decay.

The numbers of atoms of 56Ni, 56Co, and 56Fe over time are given by

NNi(t) = NNi0e
− t

τNi (2.8)

NCo(t) = NNi0
τCo

τCo − τNi

(
e
− t

τCo − e
− t

τNi

)
(2.9)

NFe(t) = NNi0

(
1 +

τNi

τCo − τNi
e
− t

τNi − τCo

τCo − τNi
e
− t

τCo

)
, (2.10)
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and the rate of decays by

dNNi

dt
(t) =

NNi0

τNi
e
− t

τNi (2.11)

dNCo

dt
(t) =

NNi0

τCo

τCo

τCo − τNi

(
e
− t

τCo − e
− t

τNi

)
, (2.12)

where, NNi0 is the initial number of 56Ni atoms, τNi = 5.5 days is the lifetime of 56Ni, and

τCo = 111.3 days is the lifetime of 56Co (Nadyozhin, 1994).

For ejecta containing 0.6 M� of 56Ni, the number of each element can be seen in

Figure 2.1.

Figure 2.1 Number of nuclei of 56Ni (star), 56Co (diamonds), and 56Fe (crosses) in the
ejecta. Notice that the number of 56Co increases as the number of 56Ni decays, and as

56Co decays, 56Fe numbers increase.

Multiplying the rate of decay by the average total energy released in gamma rays

and/or positron per decay gives the energy released at a certain time. The time evolution

is plotted in Figure 2.2. Initially the dominant contribution of power comes from 56Ni

decay, but at 35 days, the total power begins to trace the 56Co decay. Overall, the power
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Figure 2.2 Energy from the decays of 56Ni (star), 56Co (diamonds), and total energy
(triangles) at a given time. The total energy released from decays declines as there are

fewer and fewer radioactive nuclei left to decay.

decreases, steeply at first, but much more gradually as the 111 day lifetime of 56Co becomes

important. Though Figure 2.2 shows the total power available to the ejecta, it does not

have the familiar shape of the light curves of SNe Ia in Figures 1.2 and 1.4. This is because

the energy takes some time to “diffuse” from its place of production to its escape from

the ejecta. Among other factors, this diffusion time depends on where in the SN 56Ni is

produced, and how dense the ejecta is. As the ejecta expands, the density decreases, and

the diffusion time is itself a function of time. A model is needed to see exactly how the light

curve shapes up.

2.3 Expansion

Our model begins after the nuclear burning has occurred, so that the expanding

ejecta already contain some radioactive 56Ni. The ejecta are divided up into four spherical

shells (shown in Figure 2.3), allowing one to assign different values of expansion velocity,
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chemical make-up, and thus opacity to each shell according to depth. The initial radius to

Figure 2.3 The model divides the ejecta into 4 concentric spherical shells each with a
different radius and expansion velocity as well as its own chemical make-up. The distance

between shells, d(t), though a function of time, is the same for each shell. Shells are
numbered so that 1 is the central sphere, and 4 is the outer shell.

the outer edge of each shell is

Rn(t = 0) =
n

4
R4(0), (2.13)

where n is the number of the layer in question and R4(0) = 109 cm is the inital radius of the

outer shell. n ranges from from 1 to 4 — the smaller number indicating closer proximity to

the center of the ejecta. The ejecta is expanding homologously, meaning the outer layers of

the ejecta expand faster than the inner. To simulate this, each shell is assigned an expansion

velocity,

Vn =
n

4
V4, (2.14)
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where V4, the velocity of the outer shell, is 109 cm/s. The outer radius of the expanding

shell (shown in Figure 2.3) is thus

Rn(t) =
n

4
(R4(0) + V4t) , (2.15)

and the distance from the inner edge of a shell to the outer edge is the same for each shell:

dn(t) =
R4(0) + V4t

4
= d(t), (2.16)

where t is time in seconds. However, the volume still differs:

Voln(t) =
4π

3

(
R4(0) + V4t

4

)3 [
n3 − (n− 1)3

]
, (2.17)

We assume there is no mass transport from shell to shell — only energy is transferred.

Though the radius steadily increases, the mass remains constant and the density decreases.

2.4 Early Times

At early times, the ejecta is thick, and the gamma rays deposit their energy in situ.

For this epoch, the model focuses on the diffusion of energy through the expanding shells.

However, at later times, our assumptions of energy deposition and propogation become less

accurate (see section 2.5.1), neccesitating a very different approach.

2.4.1 Diffusion Time

The time it takes for the energy to diffuse to an outer layer depends on the density

of the nearby ejecta. The mean free path — how far a photon can travel before collision

and a change in direction occurrs — can be found from the opacity and density as:

l =
1
κρ

. (2.18)

If we assume all the energy begins at the back of the shell, the photon has to travel the

distance d(t) before it reaches the next shell. This distance can be quantified as the number

of mean free paths, d = τ l. However, in a random walk, it takes τ2 steps to actually traverse

this distance. So, the photon travels a total distance τ2l at the speed of light, c, in a time:

tdiff =
τ2l

c
. (2.19)
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We take this to be the diffusion time for a photon to escape from a goven shell to an outer

one. In addition to being the number of mean free paths in the distance d, τ = dκρ is also

known as the optical depth. Thus, for a given shell n,

tdiff
n (t) =

d2(t)κn(t)ρn(t)
c

. (2.20)

2.4.2 Opacity

At early times, all gamma rays are thermalized as described in section 2.5.1, thus we

consider transport of thermal photons. While the true opacity is dependent on the spectrum

of propagating photons and is a complicated function of absorption and re-emission in each

wavelength, one may look at a frequency averaged 〈κ〉 to get an approximation.

The dominant source of opacity for thermal photons is free-free absorption (thermal

bremsstrahlung). This occurs as an electron moving in the field of an ion absorbs a photon.

From Clayton (1983), the free-free opacity is

κff (ν) =
∑

i

XiNi

Ai
σff (Zi, ν), (2.21)

where the sum is taken over all elements present, Xi is the mass fraction of element i, Ai is

the atomic mass, and the free-free cross section for photons of frequency ν is

σff = 3.69× 108 Z2negff

T
1
2 ν3

cm2. (2.22)

ne is the electron number density, T is temperature, and gff is the temperature averaged

gaunt factor, which is unity for most astrophysical circumstances. Taking the Rosseland

mean (a weighted average over frequency) of just the free-free opacity, yields

〈κff 〉 = 0.125
ne

T 3.5

∑
i

Z2
i Xi

Ai
cm2/g. (2.23)

Unfortunately, this evaluates to too small a value to generate the correct light curves.

Instead of causing the early-generated-energy to build up and escape at some later timestep,

the small opacity permits escape immediately after deposition. In the end, it was simpler

to vary the opacity as a free parameter until the delay of escaping energy corresponded to

37



a light curve peak at ∼ 20 days (see Figure 2.4). The suitable value was 0.2 cm2/g and is

taken to be constant across all shells and all times.

For perspective, the opacity of the central regions of the sun is 0.4 cm2/g. This

region of completely ionized hydrogen differs from a SN’s mixture of singly ionized Fe, Ni,

Co, Si, S, Ca, C, O. If the sun’s opacity is predominantly due to free-free absorption,

κ� ∝ Nfree−e
� , (2.24)

where Nfree−e
� = NA is the number of free electrons per gram, and NA = 6.022 × 1023 is

Avogadro’s number. However, the number of free electrons per gram in the SN ejecta is

Nfree−e
SN =

∑
i

Zi

Ai
XifiNA, (2.25)

where fi is the ionization fraction (take singly ionized Si for an average: fSi = 1
14), and

Zi
Ai
∼ 1

2 . Applied to the sun’s opacity,

κSN ∼ 1
14

1
2
κ� = 0.014. (2.26)

The value chosen in our model is about that of completely ionized carbon and oxygen.

2.4.3 Energy

The energy over time is tracked for each shell. It may be altered by the deposit

of energy from a 56Ni or 56Co decay, by the loss/escape of energy as photons propogate

outward over some diffusion time, or by the addition of energy as photons arrive from an

interior shell. Thus the equation for the change in energy for the nth shell over one time

step, ∆t, is:

∆En(t) =

(
ENi

dNNi

dt
(t) + ECo

dNCo

dt
(t)− En(t)

tdiff
n (t)

+
En−1(t)
tdiff
n−1(t)

)
∆t, (2.27)

where dNNi
dt (t) and dNCo

dt (t) are the rates of decay of Ni and Co respectively at time t,

ENi = 1.75 MeV and ECo = 3.73 MeV are the respective average energies released (including

gamma rays and positrons) per decay. En(t) and En−1(t) are the total energies contained

in shell n and n-1 respectively at time t, while tdiff
n (t) and tdiff

n−1(t) are the respective diffusion

times. In this model, the energy only propagates outward — there is no contribution from
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exterior shells. The energy escaping from the fourth shell should portray the same behavior

as an observed bolometric SNe Ia light curve.

2.4.4 Results

The generated light curve is shown in Figure 2.4, along with the power deposited by

decay from Figure 2.2. The delay in escape is evident at early times, though at late times

the escaping power converges with that deposited. This evolution is due to the decreasing

diffusion time tdiff(t) which follows the decreasing density. By our assumption of instant

and total deposition, all decay power goes into the light curve. Therefore, the area under

each curve shold be equal.

Figure 2.4 The light curve generated from our model of a SN ejecta plotted with the
energy deposited by decay. The escape of the deposited energy is delayed at early times by
the dense ejecta, but as the ejecta thins, more energy may escape in a small diffusion time
tdiff(t). Notice that the light curve peaks at ∼ 20 days as determined by our choice of κ.
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There is an almost imperceptible bump in the light curve around 50 days. This is

probably not a physical manifestation, but rather a result of the coarse resolution of the

ejecta. It is likely caused by a sharp opacity decrease for an inner shell, releasing some built

up power. With a higher resolution — a larger number of shells, the light curve should

smooth out. Even with only four shells, our attempt to generate the features of a SN Ia

is successful. Figure 2.5 compares our light curve with a number of observed “bolometric”

light curves from Contardo et al. (2000). The model light curve has a generally similar

Figure 2.5 The light curve generated from our model (left) and the bolometric
(U,B, V, R, I bands) light curves of a number of observed SNe Ia from Contardo et al.

(2000) (right) plotted for comparison. The overall shapes are similar, though the observed
light curves tend to be smoother. The peak shape tends to span about 20 days in both

modeled and observed.

shape to the observations, although the bolometric SNe light curves seem more smooth and

rounded. Perhaps this mismatch is again due to the low resolution of the simple model.

The peak rise and decline time takes overall 20 days for the model, as well for the normally

luminous SNe.

The simple model allows the initial chemical make-up of each shell to be specified so

that the radioactive 56Ni may be placed at different depths. This allows one to examine the

effects of various product placements suggested by burning scenarios like those mentioned

in sections 1.3.3 and 1.4.3. Figure 2.6 contrasts the light curve of a model with 56Ni at the
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Figure 2.6 The light curve generated from a model with 56Ni in the inner shell (left), and
from a model with 56Ni in both the inner and outer shells (right). Notice the light curve

peaks sooner and at higher energies for the model with 56Ni in the outer layer than that of
the model with 56Ni in only the inner shell, though at later times less energy is escaping.

center and of a model with 56Ni in both the center and outer layers. The light curve peaks

earlier (at ∼ 15 days) and at higher energies for the model with 56Ni in the outer layers than

does the light curve of 56Ni in only the center, which peaks at ∼ 20 days. This is as one

might expect. The deposited energy in the outer layers needs only diffuse through one layer

(the least dense) in order to escape, while in the other scenario, the energy must traverse

the entire ejecta. Consequently, more energy is able to escape more quickly in the former,

building to an early and powerful peak light, However, because much of the energy escapes

early, there is less left over for later times,causing the light curve to dim more steeply at

25 days than that of the other scenario. Light curves like the one on the left in Figure 2.6

are not observed — in fact, (as discussed in section 1.5) light curves of brighter peak light

typically exhibit a slower decline than their dimmer counterparts.

The timing of maximum light and shape of the light curve depend on the placement

of radioactivity, but these characteristics are also sensitive to the amount of 56Ni present in

the ejecta. This abundance is suggested to be the variable that determines whether a SN

appears super or sub-luminous. We can test what effect varied amounts of 56Ni have on the

model light curve. Shown in Figure 2.7 is the light curve of a SN with 1 M� of 56Ni — the
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amount suggested to have been synthesized in SN1991T. Figure 2.8 shows a SN light curve

with 0.07 M� which is the lowest amount of 56Ni SN1991bg is suggested to have produced

(Mazzali et al., 1997). The peak light occurs at an early 15 days and a ∼ 1.6× 1045 ergs/s

Figure 2.7 The light curve of a SN with 1 M� of 56Ni generated from our simple model.
The light curve portrays a higher and earlier peak light than that of the lesser amount of

56Ni.

for 1 M� of 56Ni. The overall power is much lower for the lesser amount of 56Ni and is

released over a longer period of time.

2.4.5 Assumptions

Though our model has proven it can reproduce the important characteristics of a

SN Ia light curve, there are a number of key assumptions made that should be noted. Our

first assumption is that the physics of the ejecta can be captured by modeling only four

separate pieces. In actuality, the SN varies on much smaller scales. With a finer resolution,

which would allow a finer tweaking of expansion parameters and chemical composition,
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Figure 2.8 The light curve of a SN with 0.07 M� of 56Ni generated from our simple
model. The light curve exhibits a much lower peak light and much more broad/curved

shape than that of the SN with more 56Ni

the model light curve should better miimc the smooth shape of Contardo et al. (2000)’s

bolometric observations. Also, our choice of a constant opacity throughout the ejecta over

all times and frequencies is a very broad assumption. Although the model would benefit

from a self-consistant, time-dependent opacity calculated from first principles, it would be

notoriously complex to do so. Perhaps the next step would be to employ a monte carlo

simulation of individual photons. Additionally, we assume that energy only propogates

outward. However in a true random walk, there would be as much chance of backward

motion as forward. It is possible that the density gradient that decreases with radius would

encourage the forward propogation of photons. The backwards scattering of light would

serve to prolong the light curve — pushing the escape of energy to later epochs.

Though each assumption mentioned above alters the apperance of the light curve,

arguably the most imporant is the assumption of in situ deposition of gamma rays and
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positrons. While this is an accurate assumption for early times, when the ejecta is dense,

at some point the gamma rays are able to escape.

2.5 Late Times

At late times, the assumption of immediate deposition of decay energy is no longer

valid. As the ejecta expand, the opacity decreases, and more gamma rays escape without

depositing their energy. It is important to know when this transition between early and

late epochs occurs so that assumptions are applied at only the epochs they characterize.

2.5.1 Gamma Ray Transport & Deposition

Gamma rays from radioactive decays lose their energy through compton scattering.

This is illiustrated in Figure 2.9 where a photon scatters off an electron, transferring some

of its energy in the process. Conservation of momentum leads to the expression for the

Figure 2.9 An incident photon hits an electron, transferring some energy, the photon
leaves with a different energy at a scattering angle, θ while the electron leaves with some

kinetic energy at an angle φ.

change in wavelength of the photon:

∆λ = λc(1− cosθ), (2.28)

where θ is the scattering angle of the photon, and λc ≡ h
mec is the Compton wavelength. The

maximum change in energy occurs when the photon back scatters, θ = π and ∆λ = 2λc. If
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the original wavelength is some fraction of the Compton wavelength, λ = λc
n (and energy

E = nhc
λc

), the photon after scattering leaves with wavelength,

λ′ =
2n + 1

n
λc = (2n + 1)λ (2.29)

and energy,

E′ =
E

2n + 1
. (2.30)

Thus, the potential for energy loss scales with the initial photon energy. Multiple scatters

quickly reduce the energy of gamma rays to thermal energies. The energized electron goes

on to excite atomic transitions which de-excite, adding to the spectrum of escaping light.

However, as the ejecta expands, the density of electrons decreases, and compton

scattering becomes infrequent. The ejecta becomes completely transparent to gamma rays

when the compton scattering optical depth (τc) becomes less than one. At this point, a pho-

ton can traverse the entire medium without being absorbed. For a gamma ray undergoing

compton scattering, the optical depth is

τc = neσcd, (2.31)

where ne is the number density of all electrons (gamma rays don’t discriminate between

bound or free electrons), d is the distance across the medium, and the Compton scattering

cross section is

σc = σT
3
4

[
1 + x

x3

(
2x(1 + x)

1 + 2x
− ln(1 + 2x)

)
+

ln(1 + 2x)
2x

− 1 + 3x

(1 + 2x)2

]
, (2.32)

where σT is the Thompson cross section, and x = hν/mec
2. For a gamma ray of 1 MeV

undergoing compton scattering within a Chandrasekhar mass SN ejecta with 0.6 M� of

56Ni, tau was calculated for each shell. Figure 2.10 shows the total optical depth as a

function of time.

After 67 days, τc = 1 and all gamma rays escape from the ejecta without depositing

any energy — even those from the very core of the SN. This marks the beginning of the

nebular phase for gamma rays. However, some rays escape before this time. τc steadily

decreases, which means that in the time leading up to the nebular phase, gamma rays escape
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Figure 2.10 The optical depth for a 1 MeV gamma ray from the center shell to the outer
edge of the ejecta as a function of time. Note that it goes to one (crosses the straight
horizontal line) at 67 days, signifying the arrival of the nebular phase for gamma rays.
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after fewer and fewer scatters, perhaps retaining a significant portion of their energy. Also,

the optical depth reaches one sooner in the outer layers, so gamma rays escape earlier if

produced there. For various energies of photons, the subtle transition from photospheric

phase to nebular phase corresponds to the time from about 100 to 200 days. As the ejecta is

deprived of more and more energy, the light curve dims more quickly than at earlier epochs.

It is apparent that for our model, the light curve in Figure 2.4 cannot be trusted

after (and perhaps a short time before) 67 days. At this point, the model is overestimating

the amount of power contributed to the light curve.

2.5.2 Positron Transport & Deposition

With the total escape of gamma rays, the light curve is now powered only by the

deposited positron kinetic energy. Positrons are produced in 56Co decays with kinetic

energys ranging from 0 to 1.459 MeV, but with typical energies of 0.632 MeV (Nadyozhin,

1994). The deposition of a positron’s kinetic energy occurs in the same way as that of

the energetic electrons from Compton scatterings. Positrons may also annihilate with an

electron to form two photons of 511 keV each, or three photons whose energies add up to

2 × 511 keV. However, at late times when the contribution to the luminosity might have

been significant, the ejecta is transparent to these high energy photons, and their energy is

lost. See section 1.6.1 for a discussion on whether positrons escape the ejecta at late enough

times.
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CHAPTER 3

OBSERVATIONS

Observations discussed in this chapter are of SN2007ax, SN2008D, and SN2006D.

The two former SNe were observed with the Super-LOTIS 0.6m telescope in the optical,

while SN2006D was observed with Super-LOTIS, the Kuiper 1.54m telescope, and the

Mayall 4m telescope in both the optical and near-infrared.

3.1 Telescopes and Instruments

3.1.1 Super-LOTIS

Super-LOTIS (Livermore Optical Transient Imaging System) is a robotic telescope

situated at Kitt Peak National Observatory (KPNO) near Tucson, AZ that nightly observes

SNe, novae, and GRBs. It is currently supported by a collaboration that includes Steward

Observatory, Lawrence Livermore National Laboratory, NASA GSFC, Clemson University,

and UC Berkeley Space Sciences Laboratory. It has a 0.6m aperture, a 17’ x 17’ field of

view, and can take about 250 60-second exposures each night. Observations obtained with

Super-LOTIS were in B, V,R, I. However, since 2007, the telescope has only V,R, I and

Hα filters.

3.1.2 Kuiper Telescope

The Kuiper telescope, located on Mount Bigelow in the Catalina Mountains north of

Tucson, AZ, is operated by Steward Observatory. It has a field of view of 7.25’ in diameter

and observes in B, V,R, I, J,H, K.

3.1.3 Mayall

KPNO is also home to the Mayall telescope, which has an aperture of 4m and

can support a number of instruments. The two used in this study were MOSAIC and

FLAMINGOS. The MOSAIC instrument, designed for wide-field optical imaging, is made

of an array of 8 CCD chips with a field of view of 36’. FLAMINGOS is a wide-field IR
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imager and multi-slit spectrometer. For imaging, it affords a field of view of 10’ by 10’

in filters: J,H,K,Ks. While the portion needed to observe SNe is small relative to both

fields of view, the large field allows a SN field to be shifted without worry that it will be

accidentally positioned off the CCD.

3.2 Observational Analysis Techniques

Our observations of SNe Ia are captured first as charge from incident photons,

and then recorded as digital images. Understanding the science contained in these images

depends on our comprehension of the physics that goes into the method of measurement.

Thus, in this chapter we digress to examine the techniques needed to reduce and analyze

SNe Ia photometric observations.

3.2.1 Reductions

The physics of charge-coupled devices (CCDs) drives our data reductions. Incident

photons strike the mostly silicon CCD ejecting an electron via the photoelectric effect. The

resultant charge is collected by each pixel, read out by an output amplifier, and converted to

a digital number (Howell, 2000). The collection of digital numbers creates a digital image

with higher numbers (or counts) standing in for higher photon incidence — indicating

brighter objects. However, imperfections in the CCD and output processes introduce noise

that does not directly relate to photon flux.

Read Noise

The spread of values that occurs when transforming the stored charge to digital counts,

and the extra electrons generated by the electronics are both lumped under the umbrella

of “read noise.” In fact, the fluctuations due to each are inseparable in the output (Howell,

2000). To make sure the fluctuations never result in a negative value, a positive offset (the

bias) is added to each image. One can calibrate the bias and noise in two ways.

After an image has been read-out, additional rows or columns of pseudo-pixels can be

read-out and appended to the image. This is called an overscan strip, and it reveals what

is recorded when there is nothing to record. Alternately, images called “zeros” or “bias
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frames” are taken with a zero time exposure, indicating the bias level, but also betraying

any 2-dimensional structure that might exist across the bias.

To “zero” one’s image, one takes the mean value of the overscan region and subtracts

this number from each pixel, producing a bias-corrected image. Or one can take the median

of multiple zero images and do a pixel-by-pixel subtraction from all other images.

Dark Current

Dark current, the thermal generation of electrons in a silicon CCD, can also introduce

fluctuations in measurements. In an effort to minimize thermal effects, most CCDs and

surrounding equipment are cooled by liguid nitrogen, keeping the temperature at ∼ −100◦C.

“Darks,” images taken at the same exposure time as one’s science images, but with the

shutter closed, do well at measuring the dark current and approximating the rate of cosmic

ray strikes. Darks can also sample defective pixels on the CCD which might not be as

obvious in science images (Howell, 2000). Multiple darks can be averaged together into a

resultant “master dark,” which can be subtracted from the science images.

Flat-Fielding

Ideally the reduced images are now artificial-fluctuation-free, and have uniform illumination

across the background. But, as Mackay (1986) says, “The only uniform CCD is a dead

CCD.” Unfortunately, there still exist pixel-to-pixel variations, and one needs to obtain a

flat image with which to flatten science images. The technique for doing so is different if

one is observing in the optical or near-infrared (NIR) energy regimes.

Optical Flats

Many telescopes have a flat screen mounted within the dome that are illuminated as uni-

formly as possible by a light source. One can point the telescope at the screen and take

“flats.” Alternatively one can observe the twilight sky which acts as a fairly flat field. Be-

cause pixels respond differently to different colors of light, flats need to be taken in each

filter used in observations (Howell, 2000). Multiple flats can be averaged together to form

one master flat per filter. Then observation images can be divided by the master flat in

that filter.
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Near-Infrared Flats

Both the twilight sky and illuminated flat screen are too bright in the NIR to be used for

flats. So instead, one can create flats from the observation images.

For this to work, observations need to have been dithered. This means that after

each image is taken, the telescope moves slightly, placing the object at a different spot on the

CCD before another image is taken. The dithering is usually done in a pattern, repeating

after a set number of times. For a given image in a series, one can take a number of its

neighbors and combine them into a single flat image, slecting the median value pixel-by-

pixel. This is another form of sky flats, but here, there is a separate flat for each observation

image. Only the neighbors are used in case there is any time-variation in counts in the sky

background.

Image Reductions

Optical and NIR images were reduced using the Image Reduction and Analysis Facility

(IRAF) software package.1 Most of the tasks mentioned above were done with programs in

the CCDRED package. Images were overscan strip corrected and cropped with CCDPROC.

Bias frames were combined using ZEROCOMBINE, and subtracted from all images using

CCDPROC. Darks were combined with DARKCOMBINE and subtracted from flats and

object images according to exposure time (and if necessary scaled to the appropriate time)

using CCDPROC. For optical images, dome flats were median-combined into master flats

according to filter with FLATCOMBINE. Sky flats for NIR images were created in the

manner described above using COMBINE. Then each science image was divided by the

appropriate master flat.

3.2.2 Photometry

With the images appropriately reduced, one can measure the brightness of an object

using photometry. Photometry involves translating the value of counts of an object to an

1 IRAF is distributed by the National Optical Astronomy Observatories, which are oper-
ated by the Association of Universities for Research in Astronomy, Inc., under cooperative
agreement with the National Science Foundation, http://iraf.noao.edu
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actual apparent magnitude. We seek to measure the magnitude of a SN Ia, but the same

methods can be applied to almost any point source.

Aperture photometry is generally done by recording the total counts in a small

aperture about the point source. The size of the aperture should be such that most of

the source photons are included, but small enough that not too much of the background is

enclosed. The sky background in counts is also sampled from a larger ring known as the

sky annulus as is shown in Figure 3.1. The background is then subtracted from the source

Figure 3.1 In photometry, an aperture is placed around an object (black dot) and the
annulus, used to sample background counts is placed in a ring further out from the source.

to determine the flux of the star. For times when the SN was faint, a small aperture was

chosen, and was then aperture corrected using the task MKAPFILE. This examines how

the magnitudes change for different sized apertures (curve of growth) for other, brighter,

objects, and corrects for the smaller sized aperture about the SN. In this way, the SN and

any other stars measured (field stars) are assigned an instrumental magnitude.

The instrumental magnitudes can be translated into actual apparent magnitudes

through calibration by standard stars — stars whose apparent magnitudes are well known

in multiple filters. Observations are taken of the SN field, and also of standard star fields. A
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catalog of known apparent magnitudes is created using MKCATALOG. The differences be-

tween actual and instrumental magnitudes of stars depend on the color response of the filter

observed in, the amount of airmass through which the field was observed, and differences

in instrument characteristics. Thus, the transformation equations look like:

mB = (BV + V ) + b1 + b2 ∗XB + b3 ∗BV + b4 ∗BV ∗XB (3.1)

mV = V + v1 + v2 ∗XV + v3 ∗BV + v4 ∗BV ∗XV (3.2)

mR = (V − V R) + r1 + r2 ∗XR + r3 ∗ V R + r4 ∗ V R ∗XR (3.3)

mI = (V − V I) + i1 + i2 ∗XI + i3 ∗ V I + i4 ∗ V I ∗XI, (3.4)

where mB, mV , mR, and mI are the instrumental magnitudes. BV , V R and V I are the

colors B − V , V −R, and V − I respectively, where B, V,R, I are the actual magnitudes in

each filter. b1, v1, r1, i1 are offsets in magnitude, XB,XV,XR, XI are the airmass values

(how much of the Earth’s atmosphere is between the telescope and observation field) with

associated coefficients b2, v2, r2, i2. b3, v3, r3, i3 are the coefficients for the color terms. The

task FITPARAMS begins with initial guesses of coefficients, and then iterates until the fit

converges, or a maximum number of iterations is reached. If not all filters are observed, the

color terms in the above equations may be altered to reflect the filters one has. In order to

calculate the airmass coefficient, standard fields at different airmasses need to be observed.

The INVERTFIT task applies these recently calculated coefficents for standard stars

to the instrumental magnitudes of the SN and field stars, yielding (if all has gone well) the

coveted actual apparent magnitude of the SN. IRAF tasks compute uncertainties at each

step, which are reported with the apparent magnitudes.

Multiple images of the SN in each band are taken each night to increase the signal-

to-noise of the observations. One can calculate the apparent magnitude for each image

and then take the average value. Alternatively, one could first align and then combine

(“stack”) the images together to form a master object image per filter before calculating

the actual magnitude of the SN. Super-LOTIS observations were done in the latter manner.

All other observations were done both ways, but there was very little difference in the final

magnitudes.
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The process of observing zeros, darks, and flats should be done each night. It is

desirable to also observe multiple standard star fields each night, but if a night occurs in

which standard stars cannot be observed, one can use the field stars, calibrated from a

previous night, to solve for the parameters of the fit equation. This is known as relative

photometry.

3.3 SN2007ax

Supernova 2007ax was discovered on March 21, 2007 by Arbour (2007) in NGC

2577 at α = 08h22m43s.23, and δ = +22◦33′16′′.9. Spectra were obtained on March 27 by

Blondin et al. (2007) and Morrell and Folatelli (2007) which indicated it was a SN Ia at

maximum light with characteristics similar to SN1991bg. It was added to the Super-LOTIS

queue on April 17, 2007 and was observed almost nightly until June 4.

Super-LOTIS scripts automatically reduce the SN images and attempt to stack

each band of observations at the end of the night. However, the stacked images are poorly

aligned and often contain blurry or streaked images. I performed quality control, cropped,

and aligned every image before median-combining them to make master object images in

each filter. In the process I refined some Super-LOTIS scripts and wrote one of my own

called slotis imcrop.

On February 14, 2008 another observation of the SN2007ax field was made with

Super-LOTIS. Images acquired this late no longer show a SN and were used as subtraction

images. By subtracting the SN-free field from the science image, any extra light from the

nearby galaxy that might have contaminated SN magnitudes should have been removed.

Then photometry was done in a similar manner to that described in section 3.2.2.

Combining the Super-LOTIS data with observations at earlier times and in other

filters, a bigger story about this SN is revealed. Figure 3.2 shows the light curve modified

from Kasliwal et al. (2008). It is difficult to accurately gauge the ∆m15(B) because a change

in slope occurs ∼ 10 days after max — before the parameter can be measured. Kasliwal

et al. (2008) choose to classify subluminous SNe Ia by the time (tb) after maximum light that

this change in slope occurs. Out of a sample of 6 subluminous SNe, SN2007ax’s tb = 10.3

days is the shortest by 4.5 days.
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Figure 3.2 The light curve of SN2007ax in multiple bands. Observations were made as
indicated in the key, by Swift UVOT, the Palomar 60’ telescope, the Bok 2.3m telescope,
and the Keck II Near Infra Red Camera 2. The R/r and I bands are offset as indicated for

clarity.
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At an absolute magnitude of MB = −15.9, SN2007ax is the dimmest SN observed.

It is also the reddest with a B − V = 1.2 at maximum B light. Figure 3.3 compares

the SN2007ax light curve to the light curve of the archetype subluminous SN1991bg, and

another subluminous SN1991by from Garnavich et al. (2004). The light curve in B is similar

to SN1991bg, but seems to decline a bit faster. Other lines appear relatively similar.

Figure 3.3 The light curve of SN2007ax (color) from Kasliwal et al. (2008), overlaid
with those of SN1991bg (labeled lines), and SN1999by (black symbols) from Garnavich

et al. (2004). The U,R, and I light curves of SN1991bg and SN1999by are offset in
magnitude (by eye) to match those of SN2007ax.

It has been suggested that the number of subluminous SNe Ia is underestimated

because dimmer objects are less likely to be seen. However, an observation of a SN this dim

indicates that the technology is in place to observe these subluminous phenomena. There

may be a continuum of SNe of decreasing magnitude, perhaps correlated with explosions
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that produce less and less 56Ni. It is unkown just how far it extends. Observations, like

this of SN2007ax, expand the known limits of SNe Ia. Once thought to be a homogeneous

group, SNe Ia are delevoping a higher degree of diversity as observations increase. For more

on SN2007ax, see Appendix C.

3.4 SN2008D

On January 9, 2008 while observing SN2007uy in the galaxy NGC 2770 with the

Swift X-ray Telescope, Berger and Soderberg (2008) witnessed a bright x-ray outburst

at α = 09h9m30s.65, δ = +33◦08′20′′.3 (See Figure 3.4). 1.4 hours later, the Ultravio-

let/Optical Telescope (UVOT) on Swift revealed a UV-optical counterpart.

Spectra taken 1.74 days later (Soderberg et al., 2008), and subsequent spectra by

Page et al. (2008) and Li and Filippenko (2008) revealed that this was a type Ibc SN2008D

— a core-collapse SN the displays a lack of H and Si, like those discussed in section 1.1. It

is likely the X-ray outburst had its origins in the break-out of the SN shockwave (Soderberg

et al., 2008). This is when the outflow decreases in density enough that the optical depth

becomes one, and optical and x-ray light are able to escape. These emerging photons are

then upscattered (comptonized) by the surrounding dense material left by stellar winds. It

is likely that this intense X-ray outburst occurs before every core-collapse SN.

Because SN2008D was discovered well before maximum light, observations in mul-

tiple wavelengths were able to map a full light curve. Super-LOTIS was already observing

the field to monitor SN2007uy when SN2008D was discovered, and would have had excellent

early data were it not for some untimely maintenance. Observations by Super-LOTIS were

reduced in the same fashion as those of SN2007ax. The multi-band light curve constructed

from observations by Super-LOTIS and other telescopes is seen in Figure 3.5. See Appendix

D for more on SN2008D.

3.5 SN2006D

SN2006D was discovered January 11, 2006 by Colesanti et al. (2006) of the Brazilian

Supernovae Search (BRASS). It was located at α = 12◦52′34.7′′ and δ = −09◦46′36′′ in

the galaxy MCG-01-33-034, at ∼ 36.5 Mpc away. On January 14, Aldering et al. (2006)
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Figure 3.4 X-ray (left) and ultraviolet (right) images of NGC 2770, showing the x-ray
out burst and UV component of SN2008D which occurred during observations of

SN2007uy.
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Figure 3.5 Light curve of SN2008D in multiple bands. Data were obtained with Swift
UVOT (circles), the Palomar 60-inch telescope (squares), Gemini/GMOS (diamonds), and

Super-LOTIS (triangles), and have been offset arbitratily in bands for clarity.
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Figure 3.6 A Super-LOTIS image observed in the V band. SN2006D is circled in green
and is just the right of its host galaxy, nestled in a spiral arm. Another galaxy, edge-on
can be seen as a thick line in the upper right corner, just below a bright star. The color

bar on the bottom indicates the contrast in brightness in counts.
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obtained spectra and classified SN2006D as a SN Ia about one week prior to maximum with

an unusually strong carbon feature.

3.5.1 Early Times

Super-LOTIS started nightly observations of SN2006D in B, V,R, I on January 22

and continued until May 25, 2006. From April 19 to May 12, 4 nights of observations

were made with the Kuiper telescope in B, V,R, I and one night in H,J . Unfortunately,

the dithering was minimal for the H,J observations, and a flat could not be made. Thus,

photometry could not be reliably done. An observation of the SN2006D field was also made

with the Bok 2.3m telescope in R, but the quality was too poor to make out the SN.

The Super-LOTIS images were reduced in a manner similar to 2007ax, however,

image subtraction has not yet been done. Kuiper images were reduced and magnitudes

calculated in the fashion described in sections 3.2.2 and 3.2.1. The composite light curves

in B, V,R, I from these telescopes are shown in Figure 3.7. The B, V, I light curves are

Figure 3.7 Early observations of SN2006D from Super-LOTIS (open symbols) and
Kuiper (filled symbols) telescopes in B, V,R, I. The light curves are offset arbitrarily and
fitted with B, V, I templates based on SN1992A from Hamuy et al. (1996). SN1992A is

characterized as having a ∆m15(B) = 1.47mag.
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fitted with templates from Hamuy et al. (1996). These particular templates are based on

the observed light curve of normal SN1992A which had a ∆m15(B) = 1.47mag. Indeed,

the shape of the light curves match those of the normal SNe seen in Figures 1.2 and 1.4.

Around 100 days, the Kuiper B magnitudes are slightly higher than those of Super-LOTIS.

A color correction term of −0.2 × (B − V ) is not included in the data. The bluer edge of

Super-LOTIS’s filter cuts off, thus underestimating B magnitudes by as much as 0.3mag.

Perhaps this is the cause of the mismatch between Kuiper and Super-Lotis data.

3.5.2 Late Times

May 24 and 25, 2007 afforded additional observations of the SN field in V,R with

MOSAIC, and in H,J with FLAMINGOS. However, these late observations are severly

influenced by contamination light from the galaxy. The location of SN2006D makes pho-

tometry exceptionally difficult (see Figure 3.6). When nestled in the crook of the galaxy

spiral arm, counts from the SN are hard to differentiate from counts contributed by the

host galaxy. The sky annulus, if placed around the SN (see Figure 3.1), would not estimate

an accurate sky background. Thus, a subtraction image is necessary to remove the host

galaxy before photometry can be done. Because they are taken at an impressive 490 days

after maximum light, the H,J observations have enough contamination that the SN cannot

be picked out. The SN can be seen in the MOSAIC images, but as Figure 3.8 reveals, the

magnitudes are higher than expected, suggesting a large amount of contaminant light. Thus

subtraction images are also needed in V,R. If the bright late magnitudes are approximately

correct, it may indicate that SN2006D is a “Shallow R” SNe Ia like some observed by Lair

et al. (2006). In Figure 3.8, the decline rate r1 is that of typical SNe Ia at 200+ days,

but r2, which seems to fit better, is the decline rate observed by Lair et al. (2006). This

possibility makes it even more imperative to acquire optical subtraction images.

Though the light curve of SN2006D looks somewhat sparse, there are plans to col-

laborate with other observers who acquired not only photometry, but also spectra (Thomas

et al., 2007). Also, with subtraction images, and thus accurate photometry, reliable late
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Figure 3.8 The late light curve of SN2006D in V,R combines early observations by
Super-LOTIS and one late observation using MOSAIC on the Mayall telescope. The

dotted lines are projected declination rates from 100-200 days, and greater than 200 days.
The high magnitudes of the late observation may indicate host galaxy contamination. Of
the two 200+ R decline rates, r1 is that of normal SNe Ia, while r2 is the observed slope of

“shallow R” SNe as observed by Lair et al. (2006).
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NIR and V,R magnitudes may shed more light on the late time behavior of SN2006D. Sub-

traction images have already been observed with Super-LOTIS and can be used, along with

color correction, to refine the early light curve.

With more experience in observing, reducing, and analyzing SN images, future en-

deavors can only get better, and with it, an enhanced understanding of SNe Ia.
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CHAPTER 4

CONCLUSIONS

4.1 Models and Observations

SNe Ia evolution can be characterized with two epochs: a photospheric phase and

nebular phase. The physics occurring at these epochs is very different. Initially, the power

is supplied by the almost instant deposition of energy from gamma rays and positrons. It

takes time for this energy to diffuse through and escape from the thick ejecta. The energy

that escapes per unit time increases as the ejecta density decreases. However, the decrease in

power from decays causes the light curve to turn over, and begin decreasing. This observed

peak in the light curve usually ocurrs around 18 days after explosion.

Through experimentations with a simple model of an expanding SN ejecta, it is

obvious that the shape and timing of the light curve is sensitve to both the amount and

placement of 56Ni.

Eventually the ejecta become diffuse enough for gamma rays to escape without

depositing all of their energy. This transition period corresponds to around 100-200 days,

and the loss creates a faster decline rate in the light curve. When the optical depth for a

gamma ray << 1, the only power comes from the deposition of positron kinetic energy. It

is not yet fully understood whether positrons eventually escape or are trapped by magnetic

fields at late times. At this late epoch, low temperatures mean observations in the NIR

and IR are better at tracing the escaping energy.

As observations of SNe increase, our understanding grows. Well-sampled light curves

with spectra are becoming the norm (see Appendices D and C). These require observations

from multiple telescopes in multiple bands and, often, multiple observers. Observations

serve to confirm or constrain models. SN2007ax showed us that the continuum of SNe Ia

extends even farther into the subluminous than previously thought, and challenges theory

to construct models that explain the brightest to the dimmest SNe. The serendipitous
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observation of the early SN2008D confirmed core-collapse SNe models and allowed for a well-

sampled light curve even before maximum light. SN2006D has afforded me an opportunity

to increase my skills in observing, image reduction and photometry in multiple wavelengths.

With subtraction images and collaboration data, SN2006D may shed some light on late time

physics — in particular, it may add to the sample of “shallow R” SNe Ia as seen in Lair

et al. (2006).

4.2 Future Work

Subtraction images have been obtained by Super-LOTIS that can be used to cor-

rect early observations of SN2006D. Future scheduled observing runs on KPNO’s Mayall

telescope will include acquiring V,R, J, H subtraction images for late observations. Super-

LOTIS continued to monitor SN2008D and complementary late images have already been

taken with an infrared imager on the Mayall. This will be a great addition to the already

well-sampled early light curve. More multi-wavelength, multi-epoch, multi-telescope obser-

vations of SNe are planned. Well-sampled LC’s of each SNe subclass could lead to a better

understanding of the characteristics of the explosion mechanism. Multi-band observations

and bolometric reconstructions, especially at late times, are needed to decipher if positron

escape occurs.

The simple model examined in this work revealed a great deal about the physics of

SNe Ia. With increased resolution and refined energy transport, more can be learned about

the light curve shape’s dependence on 56Ni abundance and placement. More explosion

scenarios (specifically those of the luminous subclasses) can be tesed with comparisons of

model-generated light curves to bolometric observations. The model should also be able

to predict light curves seen in certain bands by keeping track of the temperature of the

“photosphere” as it receeds in mass coordinates further into the ejecta. This would allow

comparisons to observations of just one band — a considerably smaller, and easier to acquire,

amount of data than a bolometric light curve.

As in any field, observations and theoretical models must work in tandem: models

attempting to explain observations, and observations constraining models to the actual

physics. A refinement in both will be needed to understand the nuances of SNe Ia — why
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there seems to be a spectrum in magnitudes and decline rates, and why some SNe deviate

from this. Ultimately, this will have an impact on cosmological conclusions as we determine

just how standard these standard candles are.
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Appendix A

COSMOLOGICAL IMPLICATIONS

Type Ia supernovae have played a guiding role in our “Adventures in Cosmology.1 ”

Slipher (1915)’s spectroscopic observations of distant “nebulae” — later determined to be

galaxies — indicated they were receeding from Earth. Hubble (1929), using the world’s

most powerful telescope (which, in the 1920’s, was the 100 inch telescope on Mt. Wilson),

determined that there was a linear relationship between a galaxy’s distance away and at

what velocity it was receeding. Hubble (1929)’s plot of radial velocity vs distance for a

number of galaxies is reproduced in Figure A.1. This relationship is characterized by the

Figure A.1 From Hubble (1929), radial velocities of galaxies are plotted against
distances from the Milky Way. The black discs represent individual galaxies, and the solid

line is the best linear fit. The open circles are averages of groups of galaxies, while the
dotted line is the fit for these. There appears to exist a linear relationship between

distance and recession velocity of a galaxy.

1 The title of a leaflet by Hubble (1938) on using distance measurements and redshifts
to determine the state of the universe.
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slope of the line, which is now called the Hubble constant. Hubble measured a slope of

H0 = 464 km/sec/Mpc.

Hubble’s discovery, taken with the cosmological principle — that there is no pre-

ferred position nor direction in the universe — allowed one to conclude that everything

was moving away from everything else. This was strong evidence that the universe was not

static, but rather expanding, and it supported the idea of the “big bang.”

Hubble’s measurements of distance were derived from cepheid variable stars, but

with some inaccuracies. He also did not account for peculiar velocities of galaxies (which

can be several hundred km/s). Also, cepheid variable stars can measure distances up to

only 16 Mpc. SNe Ia are a standard candle that allow more distant measurements of

galaxies. Their uniformity and width-luminosity relation discussed in section 1.5 means

their brightness can be determined from the shape of a light curve. Cepheids can be used

to calibrate the distance to nearby SNe Ia, and distances out to ∼ 400 Mpc can be accurately

obtained. Measurements done in this way confirm the relationship observed by Hubble, but

lead to a much smaller Hubble constant. Two groups using the Hubble telescope measured

Hubble constants of H0 = 72 ± 8 km/sec/Mpc (Freedman et al., 2001) and H0 = 57 ± 4

km/sec/Mpc (Sandage et al., 2006).

If the rate of expansion has remained constant, we can use the Hubble law to de-

termine how long ago everything was at the same place (i.e. when the big bang occurred).

The Hubble law is:

V =
dD

dt
= H0 ∗D, (A.1)

where V is the recession velocity of a galaxy and D is the distance between the Milky Way

and that galaxy. Thus the age of the universe would be t = 1
H0

= 13.2 or 16.7 billion years

old.

Intuition might suggest that gravity would have slowed down the outward rush from

the big bang, but observations of distant SNe Ia at high redshift tell us a different story of

how cosmic expansion has changed over time. Two groups, the High-z Supernova Search

Team, and the Supernova Cosmology Project have observed dim SNe at unexpectedly great

distances (see Figure A.2 from Riess et al. (1998)). These observations indicate that the
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expansion of the universe has been accelerating. This surprising accelerated expansion

suggests the existence of some force pulling the universe apart. We give this force a place-

holder name of “dark energy.”

Though Riess et al. (1998) have done their best to drive down systematic errors

in their data, there are a number of uncertainties still remaining in the use of SNe Ia as

standard candles. Inhomogeneity in SNe Ia light curves exists, threatening their status as

standard candles. Also, it is unclear how their light curves and luminosity vary with redshift.

Perhaps SNe Ia worked differently in the distant past. More observations and better models

are needed to address these and perhaps other questions, to ensure our understanding of

the expansion of the universe is accurate.
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Figure A.2 From Riess et al. (1998). In the top panel, the distance moduli measured
from SNe Ia by both the Supernova Cosmology Project (red) and the High-z Supernova

Search Team (blue) plotted against redshift. The bottom panel shows the difference
between the data and a model of cosmic expansion for a constantly accelerating universe.
Also plotted are models for an accelerated expanding universe (solid line) and that of a

decelerated expanding universe. Though at small redshifts, the difference in the models is
indiscernible, at redshifts, the data seem to indicate the accelrated expansion model is

correct.
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Appendix B

WHITE DWARF

Type Ia supernovae are professed to be the result of a thermonuclear explosion of a

white dwarf. Usually this white dwarf is thought to be in a binary with another star from

which it continually accretes mass until it cannot support itself against the inward force of

gravity. To understand the mechanics of a supernova, it behooves us to seek to understand

a little more about its progenitor.

White dwarfs are the leftovers of stars of mass ranging from 1 solar mass to 8 or 9

solar masses. These post AGB stars eject their outer envelope and leave a still hot naked

core of mostly Carbon and Oxygen. Most white dwarfs are around 0.6 solar masses and are

about the size of the Earth. These very dense stars no longer have any fusion occurring,

and are thus supported only by electron degeneracy pressure. Electron degeneracy occurs

because of the immense gravitational pressure inwards. Each electron wants to occupy

the lowest energy level, but, according to the Pauli-exclusion principle, no two fermions

may occupy the same quantum state simultaneously. So each electron occupies the lowest

unoccupied energy state, and a degeneracy pressure is built up. The star is stable as long

as the electron degeneracy pressure is greater than the force of gravity.

Even though fusion no longer takes place in a white dwarf, these stars are still lumi-

nous for billions of years. The electron degeneracy lends itself to high thermal conductivity

through electron conduction. Because of this, the star can be considered as isothermal ex-

cept for a small outer convective envelope. In this envelope, the material is partially ionized

and partially degenerate. The light that one sees is simply the slow cooling process of the

white dwarf. The coolest white dwarfs are the oldest stars in our galaxy, and estimating

the age of cool white dwarfs has led to an estimation of the age of the galaxy as being 9.3

+/− 2 gigayears (Winget et al., 1987).
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Appendix C

SN 2007ax: AN EXTREMELY FAINT TYPE Ia SUPERNOVA

The following was published in The Astrophysical Journal (2008, August 10)
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ABSTRACT

We present multiband photometric and optical spectroscopic observations of SN 2007ax, the faintest and
reddest Type Ia supernova (SN Ia) yet observed. With and , this SN is over halfM p �15.9 (B � V ) p 1.2B max

a magnitude fainter at maximum light than any other SN Ia. Similar to subluminous SN 2005ke, SN 2007ax
also appears to show excess in UV emission at late time. Traditionally, has been used to parameterizeDm (B)15

the decline rate for SNe Ia. However, the B-band transition from fast to slow decline occurs sooner than 15 days
for faint SNe Ia. Therefore we suggest that a more physically motivated parameter, the time of intersection of
the two slopes, be used instead. Only by explaining the faintest (and the brightest) supernovae can we thoroughly
understand the physics of thermonuclear explosions. We suggest that future surveys should carefully design their
cadence, depth, pointings, and follow-up to find an unbiased sample of extremely faint members of this subclass
of faint SNe Ia.

Subject headings: supernovae: individual (SN 2007ax, SN 1991bg, SN 1999by, SN 2005ke) —
supernovae: general — ultraviolet: stars

Online material: color figure

1. INTRODUCTION

Inspired by the application as a standard cosmological can-
dle, the progress in understanding Type Ia supernovae (SNe
Ia) has grown in leaps and bounds. However, the understanding
of their weakest subluminous cousins has been purposefully
overlooked as their atypical light curve and atypical spectra
make them contaminants for cosmological studies. We suggest
here some characteristics that make the physics of the explo-
sions of faint SNe Ia intriguing in their own right.

In this Letter, we present SN 2007ax which, with a peak
absolute magnitude of and , isM p �15.9 (B � V ) p 1.2B max

the faintest and reddest Type Ia supernova yet discovered. Al-
though the class of SNe Ia is remarkably homogenous, sub-
luminous SNe Ia show atypical spectral and light curve features
(Garnavich et al. 2004; Taubenberger et al. 2008). Photometr-
ically, not only do they fade much faster than predicted by the
Phillips relation, they are also very red at maximum and (at
least SN 2005ke and SN 2007ax) appear to show UV excess
at late time. Spectroscopically, they have broad Ti ii features
and moderate expansion velocities.

SN 2007ax was discovered in NGC 2577, at a p
08h22m43.23s, d p 22�33�16.9�, on UT 2007 March 21.978 by
Arbour (2007) at an unfiltered magnitude of 17.2. Upper limits
of 118.5 mag on March 17.636 and 119.0 mag on March 9.959
were also reported. Spectra obtained on March 26 by Blondin
et al. (2007) and Morrell & Folatelli (2007) showed that it was
a SN Ia near maximum light similar to SN 1991bg.
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In this Letter, we present multiepoch, multiband imaging and
spectroscopic follow-up of SN 2007ax including optical, ul-
traviolet, and near-infrared. We summarize our observations in
§ 2, present our analysis and comparison with other faint SNe
Ia in § 3, and discuss possible scenarios for faint thermonuclear
explosions in § 4. We conclude with how future surveys can
systematically design their cadence, limiting magnitude, and
pointings to search for more members belonging to this subclass
of faint SNe Ia.

2. OBSERVATIONS AND DATA REDUCTION

The automated Palomar 60 inch (1.5 m) telescope (Cenko
et al. 2006) started daily observations of SN 2007ax on UT
2007 March 29 in and bands. Data were reduced using′ ′g r
custom routines. Aperture photometry was done after image
subtraction using two custom modifications of the ISIS algo-
rithm (Alard & Lupton 1998), hotpants8 and mkdifflc
(Gal-Yam et al. 2004, 2008). The two reductions gave consis-
tent results. Errors were estimated by first placing artificial
sources of the same brightness and at the same distance from
the galaxy center as the SN and then measuring the scatter in
measured magnitudes. Finally, the zero point was calibrated
with reference magnitudes of stars from the Sloan Digital Sky
Survey (Adelman-McCarthy et al. 2007).

We triggered Target of Opportunity observations to obtain
spectra with the Double Beam Spectrograph (Oke & Gunn
1982) on the Hale 200 inch (5 m) telescope. Two spectra were
obtained around maximum light (UT 2007 March 29 and March
30) and a third a fortnight later (April 13). Spectra were taken
using the red grating 158/7500, blue grating 300/3990, and a
dichroic to split the light at 5500 . This gave us a totalÅ
wavelength coverage of 3800–9000 and dispersion of 4.9Å

8 See http://www.astro.washington.edu/becker/hotpants.html.
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Fig. 1.—Multiband light curve of SN 2007ax based on data from P60, Swift
UVOT, SLOTIS, Bok, and Keck II NIRC2. Unfiltered magnitudes from Arbour
(2007). Note that similarly to subluminous SN 2005ke (dashed line), SN
2007ax also appears to show an excess in UV emission at days whilet 1 20
typical SNe Ia (SN 2005am; dotted line) continue to decline.

TABLE 1
Comparison of Faint SNe Ia

Supernova Galaxy DM
MB,max

(mag)
a

(mag day�1)
b

(mag day�1)
tb

(days)
(B � V)max

(mag) Reference

SN 2007ax . . . . . . NGC 2577 32.2 �15.9 � 0.2 0.16 0.04 10.3 1.2 This Letter
SN 1991bg . . . . . . NGC 4374 31.2 �16.6 � 0.3 0.16 0.03 14.8 0.8 Leibundgut et al. (1993),

Filippenko et al. (1992)
SN 1998de . . . . . . NGC 252 34.3 �16.8 � 0.2 0.18 0.03 14.5 0.7 Modjaz et al. (2001)
SN 2005ke . . . . . . NGC 1371 31.8 �17.0 � 0.2 0.15 0.02 14.9 0.7 Immler et al. (2006)
SN 2005bl . . . . . . NGC 4070 35.1 �17.2 � 0.2 0.18 0.03 14.0 0.6 Taubenberger et al. (2008)
SN 1999by . . . . . . NGC 2841 30.9 �17.3 � 0.2 0.18 0.02 16.0 0.5 Garnavich et al. (2004)

and 2.1 pixel on the red and blue side, respectively. Data�1Å
were reduced using the standard IRAF9 package apall.

We triggered Swift Target of Opportunity observations for
SN 2007ax starting UT 2007 March 29.84 and obtained eight
epochs of roughly 5 ks each distributed between the ,uvw2

, , , , and bands. We also obtained a referenceuvm2 uvw1 u b v
image over 8 months after peak to subtract galaxy light. Ap-
erture photometry was performed using a 3� circular radius.
To estimate the galaxy brightness at this location, a 3� aperture
at the supernova position in the reference image was used.
Poole et al. (2008) photometric zero points were applied after
appropriately scaling for aperture size. For consistency with
calibration, a 5� aperture was used in the computation of co-
incidence loss. The supernova is detected in in four ep-uvw1
ochs, and not detected in the and filters. The b-uvw2 uvm2
band light curve was independently reduced using image
subtraction with consistent results. We note that due to the
faintness of the supernova and brightness of galaxy back-
ground, coincidence loss is dominated by the galaxy light and
not a point source, possibly introducing a systematic error in
the Swift u, b, and bands.v

Further late-time BVRI observations were obtained using the
SLOTIS and Bok telescopes and light curves were obtained
using image subtraction based on ISIS and IRAF routines. We
also obtained near-infrared imaging using the Keck NIRC2′K

9 IRAF is distributed by the National Optical Astronomy Observatories,
which are operated by the Association of Universities for Research in As-
tronomy, Inc., under cooperative agreement with the National Science
Foundation.

instrument with Natural Guide Star adaptive optics on UT 2007
April 4.

3. ANALYSIS

We present analysis of the optical and ultraviolet light curve
and optical spectrum of SN 2007ax below. We also compare
it to other subluminous SN Ia. We adopt a distance modulus
of 32.2 (B. Tully 2007, private communication)10 to NGC 2577.

3.1. Optical Light Curve

We plot the multiband light curve of SN 2007ax in Figure 1.
The key characteristic of SN 2007ax is its rapid decline. Tra-
ditionally, (the difference between the peak B magnitudeDm15

and the B magnitude 15 days after the peak) has been used to
parameterize the decline of the light curve. However, this pa-
rameter can be misleading when applied to the faint SNe Ia
because the knee in their light curve (transition from fast initial
decline to slow late-time decline) is sooner than 15 days from
the peak. Therefore, we choose to compare the light curves of
subluminous Ia using three parameters first introduced by Pskov-
skii (1984): initial slope (b), late-time slope (g), and the time of
intersection of the two slopes ( ). This time of intersection pa-tb

rameter (defined from maximum in B magnitude) was also used
by Hamuy et al. (1996) as and shown to be empirically pro-Bt2

portional to for some SNe Ia.Dm15

For the subclass of faint SNe Ia, we find that is bettertb

correlated with the peak absolute B magnitude than the b and
g slopes of the B-band light curve. We fit an empirical relation
to the intersection time as a function of peak absolute mag-
nitude and find that .M p �13.7(�0.5) � 0.22(�0.03) # tB b

Moreover, this transition to slower decline should represent the
time at which the optical depth to thermalized radiation be-
comes thin. We report these three parameters for a sample of
subluminous SNe Ia in Table 1 and show the linear fits in
Figure 2.

Another crucial property of subluminous SNe Ia is that the
fainter they are, the redder they are at maximum. We find that
SN 2007ax is consistent within uncertainties of the empirical
relation derived first by Garnavich et al. (2004): MB p �18.7
� (B � V)max # 2.68(�0.32). This relation predicts a color in
the range of 1.0–1.3 mag and we observe 1.2 � 0.1 mag. This
color has been derived based on synthetic photometry of the
spectra around maximum.

3.2. Ultraviolet Light Curve

In Figure 1, we compare the Swift UVOT light curve of SN
2007ax to another subluminous SN Ia 2005ke (Immler et al.
2006) and a typical SN Ia 2005am (Brown et al. 2005). The
key similarity between SN 2005ke and SN 2007ax is that both

10 Extragalactic Distance Database, http://edd.ifa.hawaii.edu/.
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Fig. 2.—B-band light curve of SN 2007ax in comparison with other sub-
luminous SNe Ia. The best linear fits are overplotted and give the early-time
and late-time slopes. We note that the time of intersection of the early-timetb

and late-time slopes is more strongly correlated with the absolute magnitude
than the slopes, a and b.

Fig. 3.—Three epochs of P200 DBSP spectra of SN 2007ax (with arbitrary
vertical offsets for clarity). Overplotted is another subluminous Type Ia su-
pernova, SN 1991bg, 1 day, 2 days, and 16 days after the peak (scaled by a
multiplicative factor for comparison). [See the electronic edition of the Journal
for a color version of this figure.]

show an excess in UV starting ≈20 days after the peak. Immler
et al. (2006) propose that SN 2005ke showed a UV excess due
to circumstellar interaction. Perhaps, subluminous supernovae
are optically thin below 3800 simply due to lower productionÅ
of iron-group elements. The question of whether UV excess is
a more general property of faint SNe Ia merits further inves-
tigation with timely follow-up of a larger sample. With a larger
sample, one could also consider whether the break in the UV
light curve also depends on absolute magnitude.

3.3. Spectral Evolution

We compare optical spectra of SN 2007ax to SN 1991bg in
Figure 3. The prominent absorption features are Ti ii, O i, Si ii,
and Ca i. The presence of intermediate-mass elements like
oxygen and titanium is indicative of the presence of unburned
material or a low burning efficiency. The absorption features
become broader as the supernova evolves. Comparing our spec-
tra to SN 1991bg 1 day, 2 days, and 16 days after maximum
in B band, we find that the spectra are very similar. In the first
epoch, we see a hint of carbon in the small bump immediately
redward of the Si ii feature at 6150 . However, the signal-Å
to-noise ratio in the spectrum is too low for any conclusive
evidence.

Using the technique described by Nugent et al. (1995) we
estimate the temperature diagnostic R(Si ii)—the ratio of the
depths of the two Si ii features at 5800 and 6150 —to beÅ
0.33. This is smaller than what is implied by the empirical
relations derived by Garnavich et al. (2004) and Taubenberger
et al. (2008).

We also measure the velocity of the Si ii 6150 line in theÅ
two epochs around maximum and we obtain 9300 and 8800
km s . This is consistent with lower velocities observed in�1

other faint SNe Ia (Benetti et al. 2005).

3.4. NIR Imaging and Extinction

We measure a magnitude of 16.7 � 0.1 on UT 2007′K
April 4. We determined the contribution of galaxy light at the
supernova position by fitting a Sérsic profile to the galaxy using
GALFIT (Peng et al. 2002). The best-fit parameters are a Sérsic
index of 1.90, axis ratio of 0.60, effective radius of 4.98�,
position angle of 105.6�, and diskiness of �0.14. We find no

evidence of dust lanes in this image, suggesting that the host
extinction is minimal. This is also consistent with the absence
of the interstellar Na D line at 5893 . We compute an upperÅ
limit on the equivalent width as 0.1 . Using the relationsÅ
derived in Turatto et al. (2003) we get an upper limit of

mag on the extinction.E(B � V ) ! 0.01
Based on the Galactic , , the extinctionl p 201.1� b p 29.6�

along the line of sight is mag (Schlegel etE(B � V ) p 0.054
al. 1998). Therefore, we account for andA p 0.23 A pB v

in our calculations of absolute magnitude and luminosities.0.18

3.5. Bolometric Luminosity and Mass56Ni

Arnett et al. (1985) gives an estimate of the 56Ni mass in the
ejecta using the peak bolometric luminosity and the rise time:

�1M p L [6.31 exp (�t /8.8) � 1.43 exp (�t /111)] .Ni 43 r r

For SN 2007ax, the extinction-corrected peak bolometric lu-
minosity is 2.3 # 1042 ergs s . We estimate this by using the�1

photometric points to calibrate our spectrum near maximum
light and integrating. The rise time is unknown and unfortu-
nately the literature somewhat arbitrarily assumes 17 days for
faint SNe Ia and 19.5 days for typical SNe Ia. Recently, Tau-
benberger et al. (2008) used SN 1999by early-time data to
estimate a rise time of 14 days. The only observational con-
straint we have for SN 2007ax is that the rise time is longer
than 6 days. Thus, for the range of rise times from 6 to 14
days, we find a 56Ni mass of 0.05–0.09 M . This is consistent,

with other techniques for estimating 56Ni of faint SNe Ia—for
SN 1991bg, Cappellaro et al. (1997) model the V-band light
curve and obtain a mass of 0.1 M , and Mazzali et al. (1997),

model the photospheric and nebular-epoch spectra and obtain
a 56Ni mass of 0.07 M .,

4. DISCUSSION

To summarize, the primary observational characteristics of
subluminous SNe Ia (of which SN 2007ax is an extreme case)
are small in the optical B-band light curve, extremely redtb

color at maximum, possible excess in UV emission atB � V
late time, presence of intermediate-mass elements in spectra,
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medium ejecta velocities, low 56Ni mass in ejecta, and short
rise times.

Several theoretical models have been proposed to explain
faint SNe Ia: complete detonation of a sub-Chandrashekhar-
mass white dwarf, a delayed detonation model, a failed neutron
star model, and a small-scale deflagration model. The deto-
nation of a sub-Chandrashekhar C-O white dwarf (e.g., Livne
1990; Woosley & Weaver 1994) produces more 56Ni than ob-
served and is more blue at maximum than observed (Hoeflich
& Khokhlov 1996). If we consider detonation of a sub-Chan-
drashekhar O-Ne-Mg white dwarf (Isern et al. 1991), the total
nuclear energy is smaller and the predicted ejecta velocities are
lower than observed (Filippenko et al. 1992). Mazzali et al.
(2007) use detailed spectral modeling to show a common ex-
plosion mechanism for all SNe Ia, likely delayed detonation.
The failed neutron star model (Nomoto & Iben 1985) suggests
that if the accretion rate of carbon and oxygen from a com-
panion onto a white dwarf is high enough, it may prematurely
ignite CO on the white dwarf surface. Thus, instead of a neutron
star, we may see a faint SNe Ia. Small-scale deflagration models
suggest that either the burning is restricted to the outer layers
or that it occurs slowly.

Another intriguing theoretical possibility recently proposed
by Bildsten et al. (2007) is faint thermonuclear supernovae from
ultracompact double degenerate AM CVn systems. This su-
pernova is tantalizingly at the brightest end of their predictions
( to �16, timescale p 2–6 days, M,).M p �14 M ! 0.1V ej

However, the decay time predicted by these models is much
shorter and the 56Ni mass less than that observed in SN 2007ax.
Also, the spectrum does not show any feature which suggests
being powered by different radioactive material (48Cr, 44Ti, 52Fe)
produced by some of these models.

None of the above models convincingly explain all the ob-
served characteristics of subluminous SNe Ia. SN 2007ax com-
pels the question of what is the (and whether there is a) lower
limit of 56Ni mass in a thermonuclear explosion. Only if we
can explain the extremely faint (and the extremely bright) su-
pernovae will we thoroughly understand the limitations in phys-
ical processes involved in the thermonuclear explosion, in par-
ticular, the 56Ni mass production.

Future supernova surveys which have a shorter cadence and
a deeper limiting magnitude will provide invaluable clues to
understanding the nature of subluminous SNe Ia. Follow-up of
these supernovae with well-sampled UV light curves and well-

calibrated multiepoch UV spectra would also be important to
understand the apparent excess at late time.

We suggest how a near-future survey, for example, the Palomar
Transient Factory,11 can systematically search for faint SNe Ia. The
parameters of the survey design are sky coverage, cadence, depth,
filter, and choice of pointings. Howell (2001) shows that faint SNe
Ia occur preferentially in early-type galaxies and Taubenberger et
al. (2008) suggest that they occur in lower metallicity, old stellar
mass populations. Since they decline by a magnitude in 5 days, the
cadence of the search should be faster than 5 days so that the
detection sample is complete. Since faint SNe Ia are extremely red
at maximum, we should choose a red filter for the search. To max-
imize sky coverage, searching with a single red filter should suffice
(with multiband follow-up). Since the local universe is clumpy (e.g.,
≈25% of the total light at the distance of Virgo is in the Virgo
supercluster), the sky coverage must include concentrations in stellar
mass, such as the Virgo, Perseus, and Coma galaxy clusters. The
rate of normal SNe Ia is 3 per 1011 L, per century (Scannapieco
& Bildsten 2005). Li et al. (2001) estimate a rate for subluminous
SNe Ia to be 16% of the normal SNe Ia rate based on the LOSS
and BAOSS surveys. To a depth of absolute magnitude of �15.5,
and with a limiting magnitude of 20.5, the survey volume would
be 1.5 # 107 Mpc3. Using the 2MASS K-band luminosity function
of 5.1 # 108 L, Mpc (Karachentsev & Kutkin 2005; Kochanek�3

et al. 2001), we expect a rate of the faintest subluminous supernovae
to be ≈370 all sky per year. The Palomar Transient Factory plans
a 5 day cadence 2700 deg2 experiment which would give ≈24 faint
SNe Ia per year.

We thank Nick Scoville, Milan Bogoslavejic, and the Swift team
for performing our Target of Opportunity observations flawlessly.
We would like to thank Brent Tully for providing his catalog of
nearby galaxies. L. B. acknowledges NSF grants PHY 05-51164
and AST 07-07633. Some of the data presented herein wereobtained
at the W. M. Keck Observatory, which is operated as a scientific
partnership among the California Institute of Technology, the Uni-
versity of California, and the National Aeronautics and Space Ad-
ministration. The Observatory was made possible by the generous
financial support of the W. M. Keck Foundation.

Facilities: PO:1.5m, Hale (DBSP), Keck:I (LRIS), Keck:II
(NIRC2), Swift (UVOT), Bok

11 The Palomar Transient Factory is a dedicated time-domain astronomy
project to come online on the Palomar 48 inch in 2008 November.
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Appendix D

AN EXTREMELY LUMINOUS X-RAY OUTBURST AT THE BIRTH OF A SUPERNOVA

The following was published in Nature (2008, May 22)
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An extremely luminous X-ray outburst at
the birth of a supernova
A. M. Soderberg1,2, E. Berger1,2, K. L. Page3, P. Schady4, J. Parrent5, D. Pooley6, X.-Y. Wang7, E. O. Ofek8,
A. Cucchiara9, A. Rau8, E. Waxman10, J. D. Simon8, D. C.-J. Bock11, P. A. Milne12, M. J. Page4, J. C. Barentine13,
S. D. Barthelmy14, A. P. Beardmore3, M. F. Bietenholz15,16, P. Brown9, A. Burrows1, D. N. Burrows9, G. Byrngelson17,
S. B. Cenko18, P. Chandra19, J. R. Cummings20, D. B. Fox9, A. Gal-Yam10, N. Gehrels20, S. Immler20, M. Kasliwal8,
A. K. H. Kong21, H. A. Krimm20,22, S. R. Kulkarni8, T. J. Maccarone23, P. Mészáros9, E. Nakar24, P. T. O’Brien3,
R. A. Overzier25, M. de Pasquale4, J. Racusin9, N. Rea26 & D. G. York27

Massive stars end their short lives in spectacular explosions—supernovae—that synthesize new elements and drive
galaxy evolution. Historically, supernovae were discovered mainly through their ‘delayed’ optical light (some days after
the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As
a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated.
Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely
luminous X-ray outburst. We attribute the outburst to the ‘break-out’ of the supernova shock wave from the progenitor star,
and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future
wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

Stars more massive than about eight times the mass of the Sun meet
their death in cataclysmic explosions termed supernovae. These
explosions give birth to the most extreme compact objects—neutron
stars and black holes—and enrich their environments with heavy
elements. It is generally accepted that supernovae are triggered when
the stellar core runs out of fuel for nuclear burning and thus collapses
under its own gravity (see ref. 1 and references therein). As the col-
lapsing core rebounds, it generates a shock wave that propagates
through, and explodes, the star.

The resulting explosion ejects several solar masses of stellar mater-
ial with a mean velocity2 of about 104 km s21, or a kinetic energy of
about 1051 erg. Less than a solar mass of 56Ni is synthesized in the
explosion, but its subsequent radioactive decay powers1 the luminous
optical light observed to peak 1–3 weeks after the explosion. It is
through this delayed signature that supernovae have been discovered
both historically and in modern searches.

Although the general picture of core collapse has been recognized
for many years, the details of the explosion remain unclear and most
supernova simulations fail to produce an explosion. The gaps in our
understanding are due to the absence of detailed observations in the
first days after the explosion, and the related difficulty in detecting the
weak neutrino3 and gravitational wave signatures of the explosion.

These signals offer a direct view of the explosion mechanism but
require the discovery of supernovae at the time of explosion.

In this Article we describe our serendipitous discovery of an extre-
mely luminous X-ray outburst that marks the birth of a supernova of
type Ibc. Prompt bursts of X-ray and/or ultraviolet emission have
been theorized4,5 to accompany the break-out of the supernova shock
wave through the stellar surface, but their short durations (just
seconds to hours) and the lack of sensitive wide-field X-ray and
ultraviolet searches have prevented their discovery until now.

Our detection enables an unprecedented early and detailed view of
the supernova, allowing us to infer6 the radius of the progenitor star, its
mass loss in the final hours before the explosion, and the speed of the
shock as it explodes the star. Drawing on optical, ultraviolet, radio and
X-ray observations, we show that the progenitor was compact (radius
R* < 1011 cm) and stripped of its outer hydrogen envelope by a strong
and steady stellar wind. These properties are consistent7 with those of
Wolf-Rayet stars, the favoured8 progenitors of type Ibc supernovae.

Wolf-Rayet stars are also argued9 to give rise to c-ray bursts
(GRBs), a related but rare class of explosions characterized by highly
collimated relativistic jets. Our observations, however, indicate an
ordinary spherical and non-relativistic explosion and we firmly rule
out a GRB connection.
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Most importantly, the inferred rate of X-ray outbursts indicates
that all core-collapse supernovae produce detectable shock break-out
emission. Thus, we predict that future wide-field X-ray surveys will
uncover hundreds of supernovae each year at the time of explosion,
providing the long-awaited temporal and positional triggers for
neutrino and gravitational wave searches.

Discovery of the X-ray outburst

On 2008 January 9 at 13:32:49 UT, we serendipitously discovered an
extremely bright X-ray transient during a scheduled Swift X-ray
Telescope (XRT) observation of the galaxy NGC 2770 (distance
d 5 27 Mpc). Previous XRT observations of the field just two days earlier
revealed no pre-existing source at this location. The transient, hereafter
designated as X-ray outburst (XRO) 080109, lasted about 400 s, and was
coincident with one of the galaxy’s spiral arms (Fig. 1). From observa-
tions described below, we determine that XRO 080109 is indeed located
in NGC 2770, and we thus adopt this association from here on.

The temporal evolution is characterized by a fast rise and expo-
nential decay, often observed for a variety of X-ray flare phenomena
(Fig. 1). We determine the onset of the X-ray emission to be 9z20

{8 s
before the beginning of the observation, implying an outburst start
time (t0) of January 9.5644 UT. The X-ray spectrum is best fitted by a
power law (N(E) / E2C, where N and E are the photon number and
energy, respectively) with a photon index of C 5 2.3 6 0.3, and a
hydrogen column density of NH~6:9z1:8

{1:5|1021 cm{2, in excess of
the absorption within the Milky Way (see Supplementary
Information). The inferred unabsorbed peak flux is FX,p <
6.9 3 10210 erg cm22 s21 (0.3–10 keV). We also measure significant
spectral softening during the outburst.

The XRO was in the field of view of the Swift Burst Alert Telescope
(BAT; 15–150 keV) beginning30 minbefore andcontinuing throughout
the outburst, but no c-ray counterpart was detected. Thus, the outburst
was not a GRB (see also Supplementary Information). Integrating over
the duration of the outburst, we place a limit on the c-ray fluence of
fc= 8 3 1028 erg cm22 (3s), a factor of three times higher than an
extrapolation of the X-ray spectrum to the BAT energy band.

The total energy of the outburst is thus EX < 2 3 1046 erg, at least
three orders of magnitude lower10 than GRBs. The peak luminosity is
LX,p < 6.1 3 1043 erg s21, several orders of magnitude larger than the
Eddington luminosity (the maximum luminosity for a spherically
accreting source) of a solar mass object, outbursts from ultra-luminous
X-ray sources and type I X-ray bursts. In summary, the properties of
XRO 080109 are distinct from those of all known X-ray transients.

The birth of a supernova

Simultaneous observations of the field with the co-aligned
Ultraviolet/Optical Telescope (UVOT) on board Swift showed no
evidence for a contemporaneous counterpart. However, UVOT
observations just 1.4 h after the outburst revealed11 a brightening
ultraviolet/optical counterpart. Subsequent ground-based optical
observations also uncovered11–13 a coincident source.

We promptly obtained optical spectroscopy of the counterpart
with the Gemini North 8-m telescope beginning 1.74 d after the
outburst (Fig. 2). The spectrum is characterized by a smooth con-
tinuum with narrow absorption lines of Na I (wavelengths 5,890
and 5,896 Å) at the redshift of NGC 2770. More importantly, we
note broad absorption features near 5,200 and 5,700 Å and a drop-
off beyond 7,000 Å, strongly suggestive of a young supernova.
Subsequent observations confirmed these spectral characteristics11,14,
and the transient was classified11,15 as type Ibc SN 2008D based on the
lack of hydrogen and weak silicon features.

Thanks to the prompt X-ray discovery, the temporal coverage of
our optical spectra exceeds those of most supernovae, rivalling even
the best-studied GRB-associated supernovae, and SN 1987A (Fig. 2).
We see a clear evolution from a mostly featureless continuum to
broad absorption lines, and finally to strong absorption features with
moderate widths. Moreover, our spectra reveal the emergence of
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Figure 1 | Discovery image and X-ray light curve of XRO 080109/
SN 2008D. a, X-ray (left) and ultraviolet (right) images of the field obtained
on 2008 January 7 UT during Swift observations of the type Ibc supernova
2007uy. No source is detected at the position of SN 2008D to a limit of
=1023 counts s21 in the X-ray band and U> 20.3 mag. b, Repeated
ultraviolet and X-ray observations of the field from January 9 UT during which
we serendipitously discovered XRO 080109 and its ultraviolet counterpart.
The position of XRO 080109 is right ascension a 5 09 h 09 min 30.70 s,
declination d 5 33u 089 19.10 (J2000) (63.50), about 9 kpc from the centre of
NGC 2770. c, X-ray light curve of XRO 080109 in the 0.3–10 keV band. The
data were accumulated in the photon counting mode and were processed using
version 2.8 of the Swift software package, including the most recent calibration
and exposure maps. The high count rate resulted in photon pile-up, which we
correct for by fitting a King function profile to the point spread function (PSF)
to determine the radial point at which the measured PSF deviates from the
model. The counts were extracted using an annular aperture that excluded the
affected 4 pixel core of the PSF, and the count rate was corrected according to
the model. Error bars, 61s. Using a fast rise, exponential decay model (red
curve), we determine the properties of the outburst, in particular its onset
time, t0, which corresponds to the explosion time of SN 2008D. The best-fit
parameters are a peak time of 63 6 7 s after the beginning of the observation,
an e-folding time of 129 6 6 s, and peak count rate of 6.2 6 0.4 counts s21

(90% confidence level using Cash statistics). The best-fit value of t0 is January 9
13:32:40 UT (that is, 9 s before the start of the observation) with a 90%
uncertainty range of 13:32:20 to 13:32:48 UT.
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strong He I features within a few days of the outburst (see also ref. 16).
Thus, SN 2008D is a He-rich type Ibc supernova, unlike17 GRB-
associated supernovae. Observations at high spectral resolution fur-
ther reveal significant host galaxy extinction, with AV < 1.2–2.5 mag
(see Supplementary Information).

The well-sampled ultraviolet/optical light curves in ten broadband
filters (2,000–10,000 Å) exhibit two distinct components (Fig. 3).
First, an ultraviolet-dominated component that peaks about a day
after the X-ray outburst, and which is similar to very early observa-
tions18 of the GRB-associated SN 2006aj. The second component is
significantly redder and peaks on a timescale of about 20 d, consistent
with observations of all type Ibc supernovae. Accounting for an
extinction of AV 5 1.9 mag (Fig. 3), the absolute peak brightness of
the second component is MV < 216.7 mag, at the low end of
the distribution19 for type Ibc supernovae and GRB-associated
supernovae.

A shock break-out origin

As some type Ibc supernovae harbour GRBs, we investigate the
possibility that the XRO is produced by a relativistic outflow. In
this scenario, the X-ray flux and simultaneous upper limits in the
ultraviolet/optical require the outflow to be ultra-relativistic with a
bulk Lorentz factor c < 90, but its radius to be only R < 1010 cm; here
c ; (1 2 b2)21/2 and b ; v/c, where v is the outflow velocity and c is
the speed of light. However, given the observed duration of the out-
burst, we expect20 R < 4c2ct < 1017 cm, indicating that the relativistic
outflow scenario is not self-consistent (see Supplementary Infor-
mation for details).

We are left with a trans- or non-relativistic origin for the outburst,
and we consider supernova shock break-out as a natural scenario.
The break-out is defined by the transition from a radiation-mediated
to a collisional (or collisionless21) shock as the optical depth of the
outflow decreases to unity. Such a transition has long been pre-
dicted4,5 to produce strong, thermal ultraviolet/X-ray emission at
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Figure 3 | Optical and ultraviolet light curves of XRO 080109/SN 2008D,
and model fit. a, Optical and ultraviolet light curves. Data are from Swift
UVOT (circles), Palomar 60-inch telescope (squares), Gemini/GMOS
(diamonds), and the SLOTIS telescope (triangles). Tables summarizing the
observations and data analysis are available in Supplementary Information.
The data have not been corrected for host galaxy extinction and have been
offset (as labelled) for clarity. We fit the data before 3 d with a cooling envelope
blackbody emission model6 (dashed lines) that accounts for host extinction
(AV). We find a reasonable fit to the data with R*< 1011 cm, EK < 2 3 1051 erg,
Mej < 5 M8 and AV < 1.9 mag, consistent with the constraints from the high-
resolution optical spectrum. The radius and temperature of the photosphere at
1 d are Rph < 3 3 1014 cm and Tph < 104 K, respectively. Error bars are 1s;
down-pointing arrows are upper limits (3s). b, The absolute bolometric
magnitude light curve (corrected for host extinction). The dashed lines are the
same cooling envelope model described above, while the short-dashed lines are
models of supernova emission powered by radioactive decay. The solid lines
are combined models taking into account the decay of 56Ni (thin line) and
56Ni156Co (thick line). The supernova models provide an independent
measure of EK and Mej, as well as MNi (see Supplementary Information for a
detailed discussion of the models). We find values that are consistent to within
30% with those inferred from the cooling envelope model.
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Figure 2 | Optical spectra of XRO 080109/SN 2008D, and model fit. a, The
spectra are plotted logarithmically in flux units and shifted for clarity. b, A
model fit to the January 25 UT spectrum using the spectral fitting code
SYNOW. We identify several strong features attributed to He I, O I and Fe II,
indicating a type Ibc classification. In addition, we find an absorption feature
at 6,200 Å that can be identified as Si II or high velocity H I (HV H; see
Supplementary Information for details). The observations were performed
using the following facilities: The Gemini Multi-Object Spectrograph
(GMOS) on the Gemini North 8-m telescope (black); the Dual Imaging
Spectrograph (DIS) on the Apache Point 3.5-m telescope (blue); the Double
Spectrograph (DBSP) on the Palomar Hale 200-inch telescope (green); and
the Low Resolution Spectrograph (LRS) on the Hobby-Eberly 9.2-m telescope
(magenta). The details of the observational set-up and the exposure times are
provided in Supplementary Information. The data were reduced using the
gemini package within the Image Reduction and Analysis Facility (IRAF)
software for the GMOS data. All other observations were reduced using
standard packages in IRAF. The supernova spectra were extracted from the
two-dimensional data using a nearby background region to reduce the
contamination from host galaxy emission. Absolute flux calibration was
achieved using observations of the standard stars Feige 34 and G191B2B.
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the time of explosion. A non-thermal component at higher energies
may be produced22 by multiple scatterings of the photons between
the ejecta and a dense circumstellar medium (bulk comptonization).

We attribute the observed non-thermal outburst to comptonized
emission from shock break-out, indicating that the associated
thermal component must lie below the XRT low energy cut-off,
,0.1 keV. With the reasonable assumption that the energy in the
thermal (Eth) and comptonized components is comparable, we
constrain6 the radius at which shock break-out occurs to
Rsbo> 7 3 1011(T)24/7(EX)3/7 cm (here T is in units of 0.1 keV, and
EX in units of 2 3 1046 erg). This is consistent with a simple estimate
derived from the rise time of the outburst, Rsbo 5 cdt < 1012 cm, and
larger than the typical radii of Wolf-Rayet stars23, ,1011 cm. We
therefore attribute the delayed shock break-out to the presence of
a dense stellar wind, similar6,18 to the case of the GRB-associated
supernova SN 2006aj.

The shock velocity at break-out is6 (cb)= 1.1 and the outflow is
thus trans-relativistic, as expected24 for a compact progenitor. Using
these constraints, the inferred optical depth of the ejecta to thermal
X-rays is tej < 1.5(EX)(Rsbo)22(c 2 1)21 < 3 (here EX is normalized
as above, and Rsbo is in units of 7 3 1011 cm), and comptonization is
thus efficient, confirming our model. Equally important, as the ejecta
expand outward the optical depth of the stellar wind decreases and
the spectrum of the comptonized emission is expected22 to soften, in
agreement with the observed trend.

The shock break-out emission traces the wind mass-loss rate of the
progenitor, _MM , in the final hours leading up to the explosion. The
inferred density indicates _MM<4pvwRsbo=k<10{5 M8 yr{1; here
k < 0.4 cm2 g21 is the Thomson opacity for an ionized hydrogen
wind and vw < 103 cm s21 is the typical7 wind velocity for Wolf-
Rayet stars. The mass-loss rate is consistent7 with the average values
inferred for Galactic Wolf-Rayet stars, and, along with the inferred
compact stellar radius and the lack of hydrogen features, leads us to
conclude that the progenitor was a Wolf-Rayet star.

Two ultraviolet/optical emission components

The early ultraviolet/optical emission (t= 3 d, where t is time since
t0) appears to be a distinct component, based on its different tem-
poral behaviour and bluer colours (Fig. 3). We attribute this early
emission to cooling of the outer stellar envelope following the passage
of the shock through the star and its subsequent break-out (marked
by the X-ray outburst). The expected blackbody radiation is charac-
terized6 by the photospheric radius and temperature, which evolve
with t respectively as Rph / t0.8 and Tph / t20.5, and depend on the
total ejecta kinetic energy (EK) and mass (Mej), and on the stellar
radius before the explosion (R*).

The model light curves provide a good fit to the early ultraviolet/
optical data (Fig. 3). The implied stellar radius is R* < 7 3 1010 cm,
consistent with that expected23 for a Wolf-Rayet progenitor.
Moreover, this value is smaller than the shock break-out radius,
confirming our earlier inference that the break-out occurs in the
extended stellar wind.

The ratio of EK and Mej also determines the shape of the main
supernova light curve (see, for example, ref. 25), and the mass of
56Ni synthesized in the explosion (MNi) determines26 its peak optical
luminosity. To break the degeneracy between EK and Mej, we measure
the photospheric velocity from the optical spectra at maximum light,
vph 5 0.3(EK/Mej)

1/2 < 11,500 km s21; this is comparable to that of
ordinary type Ibc supernovae, but somewhat slower17 than GRB-
associated supernovae (Fig. 2 and Supplementary Information). We
find that both light curve components are self-consistently fitted with
EK < (2–4) 3 1051 erg, Mej < 3–5 M8, and MNi < 0.05–0.1 M8 (Fig. 3).

Long-lived X-ray and radio emission

Whereas ultraviolet/optical observations probe the bulk material,
radio and X-ray emission trace fast ejecta. Our Swift follow-up obser-
vations of the XRO revealed fainter X-ray emission several hours after

the explosion, with LX < 2 3 1040 erg s21 (t < 0.2 d). This emission
exceeds the extrapolation of the outburst by many orders of mag-
nitude, indicating that it is powered by a different mechanism. Using
a high-angular-resolution observation from the Chandra X-ray
Observatory on January 19.86 UT, we detect the supernova with a
luminosity LX 5 (1.0 6 0.3) 3 1039 erg s21 (0.3–10 keV), and further
resolve three nearby sources contained within the 18-arcsec resolu-
tion element of XRT. Correcting all XRT observations for these
sources, we find that the long-lived X-ray emission decays steadily
as FX / t20.7 (Supplementary Information).

Using the Very Large Array (VLA) on January 12.54 UT, we further
discovered a new radio source at the position of the supernova that
was not present on January 7 UT. Follow-up observations were
obtained at multiple frequencies between 1.4 and 95 GHz using the
VLA, the Combined Array for Research in Millimeter-wave
Astronomy (CARMA) and the Very Long Baseline Array (VLBA).

The broadband radio emission on January 14 UT reveals a spectral
peak, np < 43 GHz, with a flux density, Fn,p < 4 mJy, and a low fre-
quency spectrum, Fn / n2.5. Subsequent observations show that np

cascades to lower frequencies, similar to the evolution observed in
other type Ibc supernovae (see, for example, ref. 27). The passage of
np through each frequency produces a light curve peak. We measure
Fn / t1.4 and Fn / t21.2 for the light curve rise and decline, respec-
tively (Fig. 4).

We note that our X-ray and radio observations of SN 2008D are
the earliest ever obtained for a normal type Ibc supernova. At
t < 10 d, the X-ray and peak radio luminosities are several orders
of magnitude lower28,29 than those of GRB afterglows but compar-
able30,31 to those of normal type Ibc supernovae.

The properties of the fast ejecta

Radio synchrotron emission is produced32 by relativistic electrons
accelerated in the supernova shock as they gyrate in the amplified
magnetic field. Self-absorption suppresses the spectrum below the
peak to Fn / n2.5, in excellent agreement with our observations. In
this context, we infer33,34 the radius of the fast ejecta, using the mea-
sured np and Ln,p, to be R < 3 3 1015 cm at t < 5 d. The implied mean
velocity is b < 0.25, clearly ruling out relativistic ejecta.

With this conclusion there are two possibilities for the ejecta
dynamics. First, the supernova may be in free expansion, R / t,
consistent with observations of type Ibc supernovae (see, for
example, ref. 27). Alternatively, the ejecta may have been relativistic
at early time and then rapidly decelerated, leading to R / t2/3. In the
latter scenario, the dynamics are governed35 by the Sedov-Taylor
solution. As discussed in Supplementary Information, the temporal
evolution of the radio light curves is clearly inconsistent with the
Sedov-Taylor model, ruling out even early relativistic expansion.

Thus, the radio emission is produced by freely expanding ejecta,
indicative of the broad velocity structure expected24 for ordinary
core-collapse supernovae. The standard formulation27 provides an
excellent fit to the data (Fig. 4) and indicates that the energy coupled
to fast material is EK,R < 1048 erg (here subscript K,R indicates kinetic
energy probed by radio observations), just 0.1% of the total kinetic
energy. Moreover, the inferred density profile is r(r) / r22 (where r
is the radius from the explosion site), as expected for a steady stellar
wind. The inferred mass-loss rate, _MM<7|10{6 M8 yr{1, is in
agreement with our shock break-out value, indicating a stable mass
loss rate in the final ,3 yr to ,3 h of the progenitor’s life.

The radio-emitting electrons also account for the late X-ray
emission through their inverse Compton (IC) upscattering of the
supernova optical photons (with a luminosity Lopt). The expected6

X-ray luminosity is LIC < 3 3 1039 (EK,R)(Lopt)(t)22/3 erg s21 (where
EK,R is units of 1048 erg, Lopt in 1042 erg s21, and t in days), in excellent
agreement with the observations by XRT and the Chandra X-ray
Observatory. We note that the synchrotron contribution in the
X-ray band is lower by at least two orders of magnitude.
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Finally, we note that neither the late X-ray emission nor the
radio emission show evidence for a rising component that could be
attributed36 to an off-axis GRB jet spreading into our line of sight. This
conclusion is also supported by the unresolved size of the radio super-
nova from VLBA observations at t < 1 month, R= 2.4 3 1017 cm
(3s), which constrains the outflow velocity to be cb= 3.

The rate of XROs

To estimate the rate of XROs, we find that the on-sky effective mon-
itoring time of the XRT from the launch of Swift through to the end
of January 2008, including only those exposures longer than 300 s, is

about two years. Along with the XRT field of view (24 arcmin on
a side), the number density of L* galaxies (w < 0.05 L* Mpc23), and
the detectability limit of XRT for events like XRO 080109
(d= 200 Mpc), we infer an XRO rate of >1023 L{1

� yr21 (95% con-
fidence level, Fig. 5); here L* is the characteristic luminosity of gal-
axies37. This rate is at least an order of magnitude larger than for
GRBs38,39. On the other hand, with a core-collapse supernova rate40

of 1022 L* yr21, the probability of detecting at least one XRO if all
such supernovae produce an outburst is about 50%.

We find a similar agreement with the supernova rate using the
sensitivity of the BAT. The estimated39 peak photon flux of the out-
burst is 0.03 cm22 s21 (1–1,000 keV), which for a 102 s image trigger41

is detectable to about 20 Mpc. The BAT on-sky monitoring time of
3 yr and the 2 sr field of view thus yield an upper limit on the XRO
rate of =105 Gpc23 yr21, consistent with the core-collapse super-
nova rate42 of 6 3 104 Gpc23 yr21.
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(24 arcmin on a side), the number density of L* galaxies
(w < 0.05 L* Mpc23), and the detectability limit of XRT for events like
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Also shown are the rates40 of core-collapse supernovae (CC; solid horizontal
line) and type Ibc supernovae (dashed horizontal line) as determined from
optical supernova searches. The rate of events like XRO 080109 is consistent
with the core-collapse rate at the 50% probability level.
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Figure 4 | Radio light curves, spectra and image of XRO 080109/
SN 2008D. Radio data from 1.4 to 95 GHz were obtained with the VLA,
CARMA and the VLBA (circles are detections and inverted triangles
represent 3s upper limits). Error bars are 1s. The flux measurements and a
description of the data analysis are provided in Supplementary Information.
a, Radio light curves with a model of synchrotron self-absorbed emission
arising27 from shocked material surrounding the freely expanding
supernova. We adopt a shock compression factor of g 5 4 for the post-shock
material and assume that the electrons and magnetic fields each contribute
10% to the total post-shock energy density. The best-fit model (solid lines)
implies the following physical parameters and temporal evolution:
R < 3 3 1015(t)0.9 cm, EK,R < 1048(t)0.8 erg and B < 2.4(t)21 G, where B is the
magnetic field strength (here t is in units of 5 d). The implied density profile
is r(r) / r22, as expected for the wind from a massive star. b, Broadband
radio spectra. The spectral peak of the radio synchrotron emission cascades
to lower frequencies over the course of our follow-up observations with
np / t21. The low frequency turn-over is consistent with expectations for
synchrotron self-absorption (grey lines). c, Radio image from a VLBA
observation on February 8 UT. The colour scale goes from 20.2 mJy per
beam (black) to 1.4 mJy per beam (white). We place an upper limit on the
angular size of the ejecta of 1.2 mas (3s), corresponding to a physical radius
of =2.4 3 1017 cm. This limit is a factor of 16 times larger than, and
therefore consistent with, the radius derived from the radio supernova
model. However, it places a limit of (cb)= 3 on the expansion velocity.
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Finally, we note that NGC 2770 hosted an unusually high rate of
three type Ibc supernovae in the past 10 yr. However, the galaxy has
a typical luminosity (0.3 L*) and a total star formation rate of only
0.5–1 M8 yr21 (see Supplementary Information), two orders of
magnitude lower than the extreme starburst galaxy Arp 220, which
has43 a supernova rate of 4 6 2 yr21. The elevated supernova rate in
NGC 2770, with a chance probability of ,1024, may simply be a
statistical fluctuation, given the sample of ,4 3 103 known super-
nova host galaxies. Alternatively, it may point to a recent episode of
increased star formation activity, perhaps triggered by interaction
with the companion galaxy NGC 2770B at a separation44 of only 22 kpc.

Implications for supernova progenitors

Our observations probe the explosion ejecta over a wide range in
velocity, ,10,000–210,000 km s21. Taken together, the material
giving rise to the X-ray outburst, the radio emission, and the optical
light traces an ejecta profile of EK / (cb)24 up to trans-relativistic
velocities. This profile is in good agreement with theoretical
expectations24 for a standard hydrodynamic spherical explosion of
a compact star, but much steeper39 than for relativistic GRB-
associated supernovae.

On the other hand, we note the similarity between the shock
break-out properties of the He-rich SN 2008D and the He-poor
GRB-associated SN 2006aj, both suggestive of a dense stellar wind
around a compact Wolf-Rayet progenitor. In the context of type Ibc
supernovae and GRB progenitors, this provides evidence for con-
tinuity (and probably a single progenitor system) between He-rich
and He-poor explosions, perhaps including GRBs.

Looking forward, our inference that every core-collapse supernova
is marked by an XRO places the discovery and study of supernovae on
the threshold of a major change. An all-sky X-ray satellite with a
sensitivity similar to that of the Swift/XRT would detect and localize
several hundred core-collapse supernovae per year, even if they are
obscured by dust, at the time of explosion. As we have shown here,
this would enable a clear mapping between the properties of the
progenitors and those of the supernovae. Most important, however,
X-ray outbursts will provide an unprecedented positional and tem-
poral trigger for neutrino and gravitational wave detectors (such as
IceCube and Advanced LIGO), which may ultimately hold the key to
unlocking the mystery of the supernova explosion mechanism, and
perhaps the identity of the compact remnants.
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My Brief Communication about thermoelectricity in shark gels
neglected a systematic effect of surface electrochemistry: electrode
potentials vary with temperature in electrolyte solutions. However,
silver leads in sea water1 and accepted values for likely electrode
reactions2 show a sign opposing the gel signals, making it unlikely
that an artefactual signal is the origin. Our subsequent work3 dis-
cussed artefacts and repeated the signal with platinum electrodes.
Although another report4 finds a zero signal using salt bridges, it
ignores thermopower in gel-filled leads, which risks building a ‘null
thermocouple’ from two similar materials (see ref. 5, for example). A
temperature function of the electrosensors is not known, but the
thermoelectric transduction hypothesis still stands.

1. Sanford, T. B. Measurements and Interpretations of Motional Electric Fields in the Sea.
PhD thesis, Massachusetts Institute of Technology (1967).

2. Milazzo, G. & Caroli, S. Tables of Standard Electrochemical Potentials (John Wiley
and Sons, New York, 1978).

3. Brown, B. R., Hughes, M. E. & Russo, C. Thermoelectricity in natural and synthetic
hydrogels. Phys. Rev. E 70, 031917 (2004).

4. Fields, R. D., Fields, K. D. & Fields, M. C. Semiconductor gel in shark sense organs?
Neurosci. Lett. 426, 166–170 (2007).

5. Kasap, S. O. Principles of Electronic Materials and Devices 278–284 (McGraw Hill,
San Francisco, 2000).

CORRIGENDUM
doi:10.1038/nature07134

An extremely luminous X-ray outburst at the
birth of a supernova
A. M. Soderberg, E. Berger, K. L. Page, P. Schady, J. Parrent, D. Pooley,
X.-Y. Wang, E. O. Ofek, A. Cucchiara, A. Rau, E. Waxman, J. D. Simon,
D. C.-J. Bock, P. A. Milne, M. J. Page, J. C. Barentine, S. D. Barthelmy,
A. P. Beardmore, M. F. Bietenholz, P. Brown, A. Burrows,
D. N. Burrows, G. Bryngelson, S. B. Cenko, P. Chandra,
J. R. Cummings, D. B. Fox, A. Gal-Yam, N. Gehrels, S. Immler,
M. Kasliwal, A. K. H. Kong, H. A. Krimm, S. R. Kulkarni,
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