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ABSTRACT

The Lower Huron Shale (Upper Devonian) is considered the largest shale gas
reservoir in the Big Sandy Field in Kentucky and West Virginia. The potential for gas
shales, such as the Lower Huron, to produce natural gas is a function of type, amount,
and thermal maturation of their organic matter. Twenty-one Lower Huron Shale samples
from eight wells located in eastern Kentucky and southern West Virginia were analyzed
for biomarker content to interpret biological source of organic matter, depositional
environment conditions, and thermal maturity. The following biomarkers were identified:
n-alkanes (Cys to Cs;), pristane (Pr), phytane (Ph), steranes (aaoR, aaaS, appR, appfS
isomers of C,7 to Cg steranes), and hopanes (C,7, Cag, C30 and Cs; hopanes).

The TAR (terrigenous versus aquatic n-alkanes ratio), n-C17/n-Csy, Pr/n-Cy7, Ph/n-
Cis, and sterane distribution indicate the source of organic matter in the samples analyzed
is predominately marine algae and bacteria. The most source-specific biomarkers
identified in the samples were the Csq steranes indicative of marine brown algae. The
Pr/Ph, Prin-Cy7, Ph/n-Cyg, Ts/Tm ratios and sterane distribution indicate the samples were
deposited in a deep water (>150 m) environment with alternating oxic and anoxic
conditions. These results and paleogeographic information support a depositional model
involving a seasonally stratified water column.

The C,7-20S/(20S+20R), C25-20S/(20S+20R), C9-20S/(20S+20R), Cos-
afp/(apptaac), Cao- afp/(apfptaac), Ts/(Ts+Tm), and 22S/(22S+22R) ratio values
indicate thermal maturities within the early to peak oil generation stages. Contour maps

of the biomarker ratio values indicate increasing thermal maturities toward the southeast



within the study area, which corresponds to the direction of increasing maximum burial
depth. Biomarker data indicate that gas produced from the Lower Huron Shale in the
south-eastern region of the Big Sandy Field has reached a thermal maturity great enough
to generate natural gas. Biomarker data indicate that the Lower Huron Shale in the north-
western region of the Big Sandy Field was not buried to a great enough depth to generate
significant amounts of natural gas. This suggests that gas produced from this area in the
Big Sandy Field is biogenic or that thermogenic gas has migrated from more thermally

mature areas to the east.
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CHAPTER ONE
INTRODUCTION
1.1. Background

Natural gas-producing black shales of Devonian age occur throughout the
Appalachian Basin from eastern Tennessee northeastward into Ohio and New York
(Milici, 1993). Major production regions of these gas shales occur in southwestern
Virginia, eastern Kentucky, southern West Virginia, and southern Ohio. One of these
regions is Big Sandy Field in eastern Kentucky and southern West Virginia (Milici et al.,
2003). In 2002 the United States Geological Survey estimated total undiscovered gas
resources of Big Sandy Field to be 6 trillion cubic feet of gas (Milici et al., 2003). The
primary shale gas reservoir of Big Sandy Field is the Upper Devonian Ohio Shale
(Hamilton-Smith, 1993). Commercial production of natural gas from shale is dependent
on type, amount, and thermal maturity of organic matter found in the source rock (Tissot
and Welte, 1978).

Biomarkers are preserved remnants of molecules originally synthesized by
organisms with distinctive chemical structures closely related to the biological precursor
molecule (Peters et al., 2005; Olcott, 2007). Study of biomarkers is one of only a few
ways to directly address origin and history of extractable organic carbon in geological
samples. Biomarkers have proven useful for understanding important problems in
evolutionary biology, paleobiology, paleoecology, petroleum geology, sedimentary
geology, and environmental science (Peters et al., 2005). Biomarkers can vary in

abundance from less than one part per million in gas condensates to greater than one part



per hundred in thermally immature rock samples (Peters et al., 2005). Organic
geochemical research studying the origin and transformation of biomarkers in modern
environments has led to a large number of organic geochemical parameters used to
interpret the source of organic matter, environmental conditions during deposition and

burial, and thermal maturity of rocks (Peters et al., 2005).

1.2. Research Significance and Objectives

While gas shale reservoirs are becoming an increasingly important economic
resource in the United States, there are still many gaps in our understanding of the
processes and conditions that generate source beds and reservoirs in shales (Harris, 2005;
Piper and Calvert, 2009). Study of these processes and conditions is important to
understanding the mechanisms needed to create and preserve gas shale reservoirs through
geologic time. Biomarkers may be potentially useful to answer questions surrounding
rocks that make up these reservoirs because their complex structures can reveal
information about the origin of a that non-biomarker compounds and field observation
cannot (Peters et al., 2005). Based on a thorough literature review, no studies were found
that attempted to identify biomarkers in Devonian black shale of the Appalachian Basin
to address objectives similar to those of this research. The source of oil and gas reserves
in Cambrian and Ordovician reservoirs in Ohio was determined by Ryder et al. (1998)
using biomarkers in oils produced from these reservoirs and in Ordovician black shale
samples from the Appalachian Basin. Brown and Kenig (2004) used biomarkers
identified in Middle Devonian through Lower Mississippian black shales of the Illinois

and Michigan Basins to assess water column structure during deposition. Schwark and



Empt (2006) identified biomarkers in Ohio Shale samples from the eastern flank of the
Cincinnati Arch to assess Paleozoic algal evolution and extinction events. The major
objectives of this research were to 1) analyze samples of the Upper Devonian Lower
Huron Shale member of the Ohio Shale from eastern Kentucky and southern West
Virginia to determine if biomarkers are present and identify biomarkers; 2) interpret
biological origin of the biomarkers identified; 3) use the biomarkers to interpret
environmental conditions represented by the samples analyzed; and 4) use the biomarkers

to interpret thermal maturity of the samples.

1.3. Organization of Thesis
This thesis is organized into four chapters including the Introduction (Chapter 1)
and Conclusions (Chapter 4). The two body chapters of this thesis are written and
formatted as independent manuscripts intended for submission to scientific journals for
review and publication. Therefore, it was necessary to repeat some material and data
throughout the chapters. The manuscripts are:
Chapter 2: Organic Matter Source and Depositional Environment of the Lower
Huron Shale (Upper Devonian): A Biomarker Approach
Chapter 3: Thermal Maturity Interpretations of Lower Huron Shale (Upper
Devonian), Eastern Kentucky and Southern West Virginia, Using Biomarker
Maturity Ratios
The second chapter focuses on determining the biological source of organic matter in the
samples analyzed and depositional conditions that led to preservation of the organic

matter. The third chapter concentrates on using ratios of biomarkers identified in the



samples analyzed to interpret thermal maturity. Representative chromatograms of some

of the samples analyzed are included in the appendix.
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CHAPTER TWO
ORGANIC MATTER SOURCE AND DEPOSITIONAL ENVIRONMENT OF
THE LOWER HURON SHALE (UPPER DEVONIAN): A BIOMARKER
APPROACH
2.1 Abstract
N-alkanes (Cis to Ca), pristane (Pr), phytane (Ph), steranes (aaoR, acaS, aofR,

aafS isomers of Cy7 to Cap Steranes), and hopanes (C,7 hopanes and Cyg to C3; hopanes)
were identified in eighteen of twenty-one Lower Huron Shale (Upper Devonian) samples
from eight wells located in eastern Kentucky and southern West Virginia. Biomarker
ratios (terrigenous versus aquatic ratio, n-C17/n-Cs;, Pr/n-Cy7, Ph/n-Cyg) and sterane
distribution indicate the source of organic matter in the samples was predominately
marine algae and bacteria. The Czg steranes indicative of marine brown algae were the
most source-specific biomarkers identified. Pr/Ph, Pr/n-C,7, Ph/n-Cyg, and 18a(H)-
22,29,30-trisnorneohopane/17a(H)-22,29,30-trisnorhopane (Ts/Tm) ratios indicate the
samples represent deposition in an environment with alternating oxic and anoxic
conditions. The sterane distribution indicates deposition in a deep water (> 150 m)
environment. A depositional model is proposed for the Lower Huron Shale involving the
establishment and breakdown of a seasonal thermocline. During the warm season, anoxic
bottom waters allowed accumulation of phosphorous and nitrogen due to anaerobic
decomposition of organic matter. As seasonal temperatures cooled, the thermocline
broke down and mixing of shallow water and deep water occurred, allowing the bottom

water to become oxic and increasing algal productivity in the shallow water due to

upwelling of phosphorous and nitrogen.



2.2. Introduction

Black shales have long intrigued geologists due to their widespread distribution at
certain times in the geologic past and early recognition as a major source rock for oil and
gas deposits (Piper and Calvert, 2009). Black shales of Middle Devonian to Early
Mississippian age span North America from western Canada to the southeastern United
States (Ettensohn, 1994). A thorough understanding of the depositional environment
responsible for accumulation and preservation of these black shales can reduce oil and
gas exploration risk and, therefore, is economically important (Magoon and Dow, 1994).
This investigation focused on interpreting depositional conditions represented by the
Lower Huron Shale Member of the Upper Devonian Ohio Shale, which is the primary
shale gas reservoir of Big Sandy Field, in the Appalachian Basin. In 2002 the United
States Geological Survey estimated the total undiscovered gas resources of Big Sandy
Field to exceed 6 trillion cubic feet (Milici et al., 2003).

Tyson (1987) listed five factors that are important controls of black shale
deposition: sediment texture and grain size, water depth, sedimentation rate, rate of
organic matter supply, and bottom water oxygenation. Several different depositional
environments have been proposed for the organic rich Devonian black shales of the
Appalachian Basin. Rich (1951) suggested the Ohio Shale was deposited in the anoxic
portion of a marine basin at depths greater than 100 m based on presence of fine
stratifications, abundant organic matter, and phosphate nodules. A shallow water
environment (less than 30 to 40 m) was proposed by Conant and Swanson (1961) for the

Devonian Chattanooga Shale (Ohio Shale equivalent in Tennessee) based on presence of



a basal unconformity, shallow water sedimentary features, linguloid brachiopods, and
overlying sediments of deep water origin. Lineback (1968) suggested the New Albany
Shale (Ohio Shale equivalent in Illinois Basin) was deposited in a widespread inland sea
with generally shallow water depth (less than 30 to 40 m) and local areas of greater depth
(up to 100 m) based on sedimentologic and paleoecologic evidence.

Bottom water oxygenation has been a focus of depositional environment studies
of black shales in the Appalachian Basin. Ettensohn et al. (1988) and Kepferle (1989)
suggested Devonian black shale in Kentucky was deposited in an anaerobic environment
produced by depth-related stratification of basin water based on the identification of
aerobic, dysaerobic, and anaerobic strata. Based on carbon, sulfur, and iron relationships,
Beier and Hayes (1989) suggested that some black shale intervals of the New Albany
Shale were deposited under oxygenated conditions during a time of high organic
productivity. Alego el al. (1995) suggested black shale deposition during the Middle to
Late Devonian resulted from elevated productivity driven by an increase in terrestrially
derived nutrients delivered to the basin by rivers causing anoxic conditions.

More recent depositional interpretations of Upper Devonian black shales in the
Appalachian Basin focus on the interdependent roles of sedimentation, primary biological
productivity, and microbial decomposition (Murphy et al., 2000). Based on inorganic
geochemical data Murphy et al. (2000) suggested that the Devonian Geneseo Formation
of western New York was deposited in an environment in which the formation and
breakdown of a seasonal thermocline caused water column stratification and mixing,

coincident with decrease in a siliclastic input. Sageman et al. (2003) suggested based on



inorganic geochemical data that Middle to Upper Devonian black shales of western New
York were deposited in an environment in which biological productivity was increased
from upwelling of bio-limiting nutrient due to the establishment and breakdown of
seasonal thermoclines.

Sedimentary organic matter found in black shales can provide indicators of
depositional environments (Peters et al., 2005a). Organic matter in black shales contains
compounds, known as biomarkers, which are preserved remnants of molecules originally
synthesized by organisms with distinctive chemical structures closely related to the
biological precursor molecule (Peters et al., 2005a; Olcott, 2007). Organic geochemical
research on origin and transformation of biomarkers in the environment has led to a large
number of organic geochemical parameters which can be used to interpret the source of
organic matter, environmental conditions during deposition and burial, and thermal
maturity of rocks (Peters et al., 2005a). The biomarker components of a sediment extract
reflect precursor compounds in the organisms that contributed organic matter at the time
of sediment deposition, and therefore, can provide valuable information about the
environmental conditions during deposition Numerous researchers have interpreted
depositional environment conditions of black shales from biomarker data (Obermajer et
al., 1997; Pancost et al., 1998; Obermajer et al., 1999; Marynowski et al., 2000; Kotarba
and Clayton, 2003; Forster et al., 2004). Diverse approaches have been used previously
to interpret the paleoenvironmental conditions responsible for accumulation and
preservation of black shales in the Appalachian Basin. Obermajer et al. (1997) used

biomarkers identified in Middle Devonian Marcellus and Upper Devonian Kettle Point



black shales in southern Ontario to assess the source rock potential of those units. The
source of oil and gas reserves in Cambrian and Ordovician reservoirs in Ohio was
determined by Ryder et al. (1998) by identifying biomarkers in oils produced from these
reservoirs and in Ordovician black shale samples from the Appalachian Basin. Brown
and Kenig (2004) used biomarkers identified in Middle Devonian through Lower
Mississippian black shales of the Illinois and Michigan Basins to assess water column
structure during deposition. Paleozoic algal evolution and extinction events were
determined by Schwark and Empt (2006) from biomarkers in Ohio Shale samples from
the eastern flank of the Cincinnati Arch. However, based on a thorough literature review,
no published papers were found that attempted to identify biomarkers in Devonian black
shale of the Appalachian Basin in order to interpret depositional environment.
Biomarker analysis has the potential to be very useful in understanding
depositional environments of the Ohio Shale and the origin of organic matter in major
shale gas reservoirs of the eastern United States. Therefore, the objectives of this study
were to 1) identify biomarkers in the Lower Huron Shale member of the Ohio Shale in
eastern Kentucky and southern West Virginia; 2) interpret biologic source of organic
matter in the Lower Huron Shale using the biomarkers identified; and 3) interpret
depositional environment of the Lower Huron Shale using the biomarkers identified.
Well drilling and completions of the Ohio Shale most commonly target the Lower Huron
Shale member due to its high total organic carbon content and abundant natural fractures
(Nuttal et al., 2005). Cutting samples were analyzed from eight horizontal wells recently

drilled into the Lower Huron Shale for natural gas production.
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2.3 Geological Setting

The Appalachian Basin is a foreland basin that developed during the late
Proterozoic and Paleozoic (Roen, 1993). The basin trends northeast and is approximately
1500 km in length and 150 to 500 km in width. It extends from the Adirondack
Mountains in the north to the Black Warrior Basin in the south. To the northwest the
Findlay and Algonquin Arches separate the Appalachian Basin from the Michigan Basin,
and to the west the Cincinnati Arch separates it from the Illinois Basin (Roen, 1993)
(Figure 2.1A). The Appalachian Basin consists of Paleozoic strata ranging from 600 to
900 m thick along the Cincinnati Arch to more than 13,700 m thick to the east in Central
Pennsylvania (de Witt and Milici, 1989). Sedimentation in the basin was influenced by
three major orogenies: the Taconian (Middle to Late Ordovician), the Acadian (Early to
Middle Devonian), and the Alleghenian (Late Carboniferous to Permian) (Moody et al.,
1987). The Upper Devonian interval is referred to as the Ohio Shale east of the
Cincinnati Arch in eastern Kentucky and southern West Virginia and is subdivided into
five recognizable members: Cleveland Shale, Three Lick Bed, Upper Huron Shale,
Middle Huron Shale, and Lower Huron Shale (Figure 2.2) (Hamilton-Smith, 1993). The
Lower Huron Shale is grayish-black, brownish-black, and black shale interbedded with
minor green-gray shale (Hamilton-Smith, 1993). It contains zones of spheroidal to
ellipsoidal dolomitic limestone nodules and septaria and a few beds of limestone from 2.5
to 10.0 cm. thick (de Witt et al., 1993). In the study area the Lower Huron Shale ranges

in thickness from 24 to 43 m.
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Conant and Swanson (1961) and Lineback (1968) proposed depositional models
for the Chattanooga Shale (Ohio Shale equivalent in Tennessee) and the New Albany
Shale (Ohio Shale equivalent in Illinois Basin) involving black shale deposition in
shallow (<100 m) water depths based on sedimentologic and paleoecologic evidence.
Based on stratigraphic evidence Ettensohn et al. (1988) and Kepferle (1989) proposed
depositional models for Devonian-Mississippian black shale sequences in Kentucky
involving permanent pycnoclines with constantly anoxic bottom water.

2.4. Methods
2.4.1. Biomarker ldentification
2.4.1.1. Sampling

Twenty-one samples were collected and analyzed from drill cuttings from eight
recently drilled horizontal wells targeting the Lower Huron Shale (Figure 2.1B; Table
2.1). The wells were drilled using air, preventing the samples from being contaminated
by organic rich drilling muds. Rock cuttings were collected during the drilling process in
3 to 10 meter intervals and consist of chipped rock fragments and powder. In each well
one to four samples weighing 75 grams each were selected from the horizontal section of
the well. Selection criteria included high organic carbon content, determined using the
gamma and density logs for each well, and spacing of samples in the well bore.
2.4.1.2. Sample Preparation

Samples were prepared in four batches of five samples each with one procedural
blank in each batch. Samples were ground to a fine powder using a ceramic mortar and

pestle. Between samples the mortar and pestle were cleaned with hot tap water and
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rinsed with DI water, methanol (MeOH), and dichloromethane (DCM). The sequential
extraction procedure for the powdered sample and instrumental analysis of extract for
biomarker detection follows the methodology of Brocks et al. (2003), Forster et al.
(2004), and Sherman et al. (2007) (Table 2.2).

Soluble organic matter was extracted from 75 g of the powdered samples
ultrasonically with a Fisher Sonic Dismembrator Model 300 for 30 min in 40 ml DCM
(HPLC grade), and the extract was collected. Forty ml additional DCM was added to the
powdered sample and the ultrasonication process was repeated. Extracts were combined.
Copper pellets (Fisher Scientific C-430 Copper Metal) were placed ina 14 mm O.D.
chromatography tube plugged with cotton wool. The copper was rinsed with 37%
hydrochloric acid until it reached a bright color. The copper was then rinsed with DI
water, methanol, and DCM seven times each. Five g of the acid activated copper was
added to the vials containing the combined extracts and stirred for 8 h to remove
elemental sulfur. The extracts were filtered (Whatman 44 filter paper) to remove the
copper, and the filtrates were then reduced to 1 ml under a stream of ultra pure (99.998%)
nitrogen gas. Fifty ml of n-pentane (HPLC Grade) was added to the extracts and allowed
to sit 8 h to precipitate asphaltenes. The extracts were filtered (Whatman 44 filter paper)
to remove the asphaltenes and the asphaltene free extract was evaporated to dryness
under a stream of ultra pure nitrogen gas.

The extracts were separated into saturated (compounds with no double or triple
bonds) and aromatic (compounds with one or more benzene ring) fractions by liquid

chromatography using Pasteur pipettes. Silica gel (3 g) was activated by heating at 110
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°C for 8 h. The activated silica gel was cooled, and 5 ml hexane (HPLC grade) was
added to make a slurry. Pasteur pipettes were plugged with cotton wool and filled with
the slurry. The asphaltene free extracts were dissolved in 1 ml DCM and added to the top
of the column. Saturated hydrocarbons were eluted with hexane (4 ml) and aromatic
hydrocarbons with hexane:DCM (1:1 v/v, 4 ml). The fractions were evaporated to
dryness and dissolved in 1 ml DCM and put in autosampler vials for analysis. An
extraction variability of 1.6% was determined using three samples spiked with a 5B-
cholane standard.

2.4.1.3. Instrumental Analyses

2.4.1.3.1 Gas Chromatography-Flame lonization Detection (GC-FID)

GC analyses were performed on the saturated hydrocarbon fraction in order to
obtain normal (n)-alkanes, pristane, and phytane data with a Hewlett Packard 5890 Series
Il gas chromatograph equipped with a FID and autosampler. N-alkanes are compounds
consisting of carbon and hydrogen in which the carbon atoms are arranged linearly
(Peters et al., 2005a) (Figure 2.3). Pristane and phytane are acyclic isoprenoid
hydrocarbons (Figure 2.3) that are created by the phytyl side chain of chlorophyll a in
phototrophic organisms and bacteriochlorophyll a and b in purple sulfur bacteria (Peters
et al., 2005a). Samples (1.0 pl of each) were injected in splitless mode with helium as the
carrier gas onto a Zebron ZB-5 column (30 m x 0.25 mm inner diameter, 0.25 pm film
thickness). The helium flow rate was set at 1.0 ml/min. The flow rate of the air and
hydrogen were 300 ml/min and 30 ml/min respectively. The injector was programmed

for 250 °C and the detector for 310 °C. The oven was programmed at 40°C (2 min) and
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heated to 310°C at 4°C/min, with a final hold time of 15 min. The amounts of n-alkanes,
pristane, and phytane were determined from the integrated area of the chromatogram
peak of each compound.
2.4.1.3.2 Gas Chromatography-Mass Spectroscopy-Mass Spectroscopy

Gas chromatography-mass spectroscopy-mass spectroscopy (GC-MS-MS)
analyses was performed on the saturated fraction in order to obtain sterane and hopane
biomarker data with a VVarian Model 4000 GC/MS/MS equipped with an autosampler.
Sterane is a class of tetracyclic saturated biomarkers derived from sterols in eukaryotic
cells, and hopane is a class of pentacyclic saturated biomarkers derived from plasma
membranes in prokaryotic cells (Peters et al., 2005a) (Figure 2.3). Parent/daughter
transitions were analyzed in MS-MS mode with a collision energy of 70EV (Table 2.3).
The samples (1.0 pl of each) were injected in splitless mode with helium as the carrier
gas (1.0 ml/min flow rate) onto a Restek Rtx-5 column (30 m x 0.25 mm inner diameter,
0.25 pm film thickness). The GC oven was programmed at 40°C (2 min) and heated to
310°C at 4°C/min, with a final hold time of 15 min. The amounts of steranes and
hopanes identified were determined from the integrated area of the chromatogram peak of
each compound.
2.4.1.4 Distribution of Biomarkers Identified in the Samples

The samples analyzed were characterized based on abundance of the biomarkers
identified in each. The most abundant n-alkane, most abundant sterane, and most
abundant hopane were determined in each sample based on integrated peak areas of the

compounds identified. Also, the most abundant n-alkane between n-C,¢ to n-C;g and the
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most abundant n-alkane between n-C,; to n-Cs; were determined in each sample. The
distribution of steranes identified in the samples was determined based on the percentage
of each sterane (C,7, Czs, and C,g) making up the total of C,7 to Cyg Steranes.
2.4.2 Determination of Biological Source of Organic Matter

The identification of source-specific biomarkers is used to interpret the biological
source of organic matter. The carbon skeleton of biomarkers is identical or slightly
altered relative to the structure of their precursor compounds generated by living
organisms (Peters et al., 2005a). Some biomarkers indicate a general biological source
(e.g. marine plankton) and others indicate a highly specific biological source (e.g. certain
families of brown algae). The biological source of the organic matter in the Lower Huron
Shale was evaluated based on the terrigenous versus aquatic ratio (TAR), pristane/n-
heptadecane (Pr/n-Cy7), phytane/n-dotriacontane (Ph/n-Cjg), n-C17/n-Csy, and the
distribution of Cy; to C5 steranes. Ratio values were calculated using peak areas of
compounds. N-alkanes, pristane, and phytane standards were run and equivalent peak
areas were obtained indicating a similar response factor for each standard. Brocks et al.
(2003) showed that it is suitable to use uncorrected peak areas of steranes and hopanes to
calculate ratios.
2.4.3. Depositional Environment Interpretations

Biomarkers are used to interpret depositional environment based on the known
physiological, biological, and environmental limitations of organisms from which the
biomarkers originated (Peters et al., 2005b). Different depositional environments are

characterized by distinctive and unique assemblages of biomarkers (Peters et al., 2005b).
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The depositional environment of the Lower Huron Shale was interpreted based on the
Pr/Ph ratio, Pr/n-C,7 versus Ph/n-Cyg, 18a(H)-22,29,30-trisnorneohopane/17a(H)-
22,29,30-trisnorhopane (Ts/Tm), and the distribution of C,; to C,g Steranes. Ratio values
were calculated using peak areas of compounds.
2.5. Results
2.5.1. Biomarkers Identified
2.5.1.1. N-alkanes and Isoprenoids

N-alkanes ranging from n-C;g to n-Cs, pristane, and phytane were identified in all
samples except C3650, D5000, and D7270 (Table 2.4). The distributions based on
integrated peak areas of n-alkanes and isoprenoids identified in each sample are listed in
Table 2.5. The most abundant n-alkane in ten of the samples is n-Cy,. N-Cjy3, n-Cy4, and
n-Ci¢ are the most abundant n-alkane in two samples each, and n-Cis is the most
abundant n-alkane in one sample. The aquatic range of n-alkanes is defined as n-alkanes
with 16 to 18 carbon atoms because they typically originate from aquatic algae and
cyanobacteria (Peters et al., 2005a). The most abundant component in the aquatic range
of n-alkanes is n-C in seventeen samples. The land plant range of n-alkanes is defined
as n-alkanes with 27 to 33 carbon atoms because they orginate from waxes typical of land
plants (Peters et al., 2005a). The most abundant component in the land plant range of n-
alkanes is n-Cy7 in fourteen samples. Pristane is the most abundant isoprenoid in all of

the samples analyzed where isoprenoids were detected.
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2.5.1.2. Steranes

The aaaR, aaaS, aapR, and aafS isomers of cholestane (Cy7 Sterane), 24-
methylcholestane (C.g sterane), 24-ethylcholestane (C,g sterane), and 24-propycholestane
(C5p sterane) were identified in all samples except C3650, D5000, and D7270 (Table 2.6).
The distributions based on integrated peak areas of steranes identified in each sample are
listed in Table 2.5. The isomers of cholestane (C,;) are the most abundant sterane
isomers comprising 28-64% of the total C,7 to Cyg steranes, followed by 24-
ethylcholestane (C,g) comprising 14-51%, and 24-methylcholestane (Cog) comprising 12-
44% (Table 2.5). So(H),140(H),17a(H)-Cholestane-20S (C,raaa-S) is the most
abundant sterane isomer in eight samples (Table 2.5).
2.5.1.3. Hopanes

The following hopanes were identified in all samples except C3650, D5000, and
D7270: 18a(H)-22,29,30-trisnorneohopane (Ts), 17a(H)-22,29,30-trisnorhopane (Tm),
17a(H),21p(H)-30-norhopane (Cx9H), 18a(H)-norneohopane (Cy9Ts), 17a(H),21B(H)-
hopane (CsoH), 17a(H),21B(H)-homohopane-22S (C3;H-S), and 17a(H),21p(H)-
homohopane-22R (C3;H-R) (Table 2.6). The distributions based on integrated peak areas
of hopanes identified in each sample are listed in Table 2.5. CygH is the most abundant
hopane in all samples where hopanes were detected (Table 2.5).
2.5.2. Biological Source of Organic Matter
2.5.2.1. N-alkane Parameters

The use of n-alkanes to evaluate organic matter source is based on short chain

alkanes (n-C;s to n-Cy9) being derived from marine algae and long chain alkanes (n-Cys to
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n-Cs;) being derived from land plant waxes (Peters et al., 2005b). The TAR ratio is
defined as: (n-Cy7 + n-Cyg + N-C31)/(N-Cy5 + N-Cy7 + n-Cyg). Values >1 for this parameter
indicate more land plant sources than marine algae sources and low values (<1) indicate
more marine algae sources than land plant sources. TAR values for the analyzed samples
range from 0.10 to 0.33 (Table 2.7), which indicates that the biological source of organic
matter in the Lower Huron Shale is dominated by marine algae. A simplified parameter
that reflects the relative contribution of marine algae versus land plants to preserved
organic matter is the ratio of n-Cy7/n-C3;. Higher values (>2) for this parameter indicate
more marine algae sources than land plant sources, and low values (<2) indicate more
land plant sources than marine algae sources (Forster et al., 2004). N-C;;/n-Cs; values
range from 3.30 to 40.0 for the samples analyzed (Table 2.7). These high values (>2)
indicate the source of organic matter is dominated by marine algae, which is consistent
with the TAR values. Degradation of organic matter in sedimentary systems can alter the
n-alkane distribution causing errors in the TAR and n-C37/n-Cs; source signals by
enriching the more stable land derived n-alkanes through loss of the more labile algal
derived n-alkanes (Forster et al., 2004). The predominant marine algal signature in the
TAR and n-C;7/n-C3; parameters suggests conditions conducive to preservation were
present with little microbial degradation.
2.5.2.2. Pr/n-C17 versus Ph/n-C18

The relationship between the Pr/n-C;7 and Ph/n-Cyg biomarker parameters has
been shown to be related to the type (1, 11, 11/111) of kerogen in sedimentary organic

matter (Obermajer et al., 1999). A scatter plot of Pr/n-Cy7 versus Ph/n-Cyg indicates that
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kerogen in the samples analyzed can be classified as type Il (Figure 2.4). Type Il
kerogen is defined as having a hydrogen to carbon ratio greater then 1.25, an oxygen to
carbon ratio between 0.03 and 0.18, and originates from mixtures of zooplankton,
phytoplankton, and bacterial debris in marine sediments (Tissot and Welte, 1978).
2.5.2.3. Sterane Parameters

The use of the distribution of C,; to Cyg regular steranes in determining biological
source of organic matter is based on observations that C,; steranes originate
predominantly from marine algae; Cog Steranes from yeast, fungi, bacterial plankton, and
algae; and Cyg steranes from land plants (Peters et al., 2005b). The relationship between
sterane composition and biological source of ancient sediments was developed by Huang
and Meinschein (1979) and Volkman (2003). A ternary plot of the C,; to Cyg regular
steranes indicates that marine algae and bacteria are the dominant biological sources of
organic matter in the samples analyzed (Figure 2.5A).

The ratio of Cy9 aaaR to Cy7 acaR steranes (C,o/C,7) can be used to interpret the
contribution of marine algae to preserved organic matter relative to the contribution of
land plants (Samuel et al., 2009). Low values (<1) of this ratio indicate more algal
sources than land plant sources, and high values (>1) indicate more land plant sources
than algal sources (Peters et al., 2005b). The C,4/C,7 values range from 0.13 to 0.88
(Table 2.7) for the samples analyzed, indicating that the organic matter is dominated by
marine algal sources relative to land plant sources. Additional evidence from steranes

identified in the samples analyzed for dominance of marine algal sources is the presence
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of Cs steranes, which are diagnostic of marine chrysophyte algal contribution to
preserved organic matter (Samuel et al., 2009).
2.5.3 Depositional Environment Interpretations
2.5.3.1. Biomarker Parameters

Redox conditions at the time of sediment deposition were interpreted from three
biomarker parameters: Pr/Ph, Pr/n-Cy7 versus Ph/n-Cyg, and Ts/Tm. The distribution of
Co7 to Cyg steranes was used to interpret deep marine (>150 m) versus shallow marine
and lacustrine depositional environments at the time of sediment deposition.
2.5.3.1.1. Pr/Ph

The ratio of pristane to phytane can be used as an indicator of redox conditions in
ancient sediments (Didyk et al., 1978). Pristane and phytane may originate from the
oxidation or reduction, respectively, of the phytol side chain of chlorophyll, which is
controlled by oxic or anoxic conditions during sedimentation (Hughes et al., 1995).
Pr/Ph ratio values greater than 3.0 indicate oxic conditions, values below 1.0 indicate
anoxic conditions, and values between 1.0 and 3.0 indicate alternating oxic and anoxic
conditions (Didyk et al., 1978).

The Pr/Ph ratio values range from 1.14 to 1.69 in the samples analyzed (Table
2.7). These values indicate the Lower Huron Shale was deposited in alternating oxic and
anoxic conditions. Some researchers (ten Haven et al., 1987) have raised objections to
interpreting redox conditions from the Pr/Ph ratio, suggesting possible sources other than
chlorophyll for pristane and phytane and possible influence of thermal maturity on the

ratio. However, redox interpretations using the Pr/Ph ratio are consistent with
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interpretations using other biomarker redox indicators (Pr/n-C,7 versus Ph/n-Cyg and
Ts/Tm) in this study.
2.5.3.1.2. Pr/n-Cy7 versus Ph/n-Cyg

Redox conditions at the time of sediment deposition can be inferred from log-log
plots of Pr/n-Cy7 and Ph/n-Cyg (Lijmbach, 1975). The Pr/n-Cy7 versus Ph/n-Cyg plot for
the samples analyzed indicates sediment deposition in an environment with alternating
oxidizing and reducing conditions (Figure 2.6), which is consistent with Pr/Ph and Ts/Tm
redox interpretations in this study.
2.5.3.1.3. Ts/Tm

Oxidizing conditions in the depositional environment favor preservation of Tm
over Ts, while reducing conditions favor preservation of Ts over Tm (Moldowan et al.,
1986). Ts/Tm values greater than 2.0 indicate predominately anoxic conditions, values
less than 1.0 indicate predominately oxidizing conditions, and values between 1.0 and 2.0
indicate alternating oxic and anoxic conditions (Solevic et al., 2008). Ts/Tm values in
the samples analyzed range from 1.20 to 3.75 except for a value of 7.40 in one sample
(Table 2.7). The Ts/Tm value is between 1.0 and 2.0 in 11 of the 18 samples analyzed
indicating alternating oxic and anoxic conditions. This interpretation is consistent with
interpretations from Pr/Ph and Pr/n-C7 versus Ph/n-Cyg redox indicators in this study.
The Ts/Tm value in the remaining seven samples is greater than 2.0 indicating
predominately anoxic conditions during deposition, which is not consistent with the other
biomarker redox indicators. This inconsistency may be the result of the Ts/Tm values

greater than 2.0 having been altered by thermal maturation causing Tm to be converted to
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Ts (Peters et al., 2005b). However, these samples are not from areas where thermal
maturity is expected to be highest in the study area. These seven samples could also be
representative of sediment deposition during the warm season when anoxic conditions
persisted in deep (> 150 m) water due to a seasonal thermocline.
2.5.3.1.4. Sterane Distribution

The distribution of Cy; to Cyg Steranes can be used to interpret if sediment was
deposited in deep marine (>150 m) environments, shallow marine (<150 m)
environments, or lacustrine environments (Huang and Meinschein, 1979). Regions
depicting the distribution of steranes in sediment from different depositional
environments are shown on a ternary diagram of C,7 to Cyq Sterane (Figure 2.5B).
Distribution of steranes in the samples analyzed plot in the deep marine region of the
diagram indicating deposition in water at least 150 m deep (Figure 2.5B).
2.5.3.2. Depositional Model

Biomarker data indicate a depositional model for the Lower Huron Shale in

which algal productivity was high during each cool season and organic matter was
preserved in anoxic bottom waters during each warm season, which resulted in high
organic carbon content in the Lower Huron Shale. We interpret that a thermocline
developed during each warm season and then broke down during each cool season. The
Pr/Ph values, Pr/n-C,; versus Ph/n-Cyg crossplot, and Ts/Tm values in the samples
analyzed indicate oxic and anoxic conditions, which supports interpretation of a seasonal
thermocline. The distribution of C,7 to Cyg steranes in the samples analyzed indicates

that the Lower Huron Shale in the study area represents deposition in water deeper than
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150 m. We interpret that deep anoxic bottom water during each warm season allowed for
preservation of organic matter and anaerobic decomposition, which separated phosphorus
and nitrogen from carbon in the organic matter and produced carbon dioxide (Figure 2.7).
During each cool season, the thermocline was broken down as shallow water cooled and
mixed with deep water. Mixing brought oxygen into deep water causing oxic conditions
as indicated by the Pr/Ph values, Pr/n-C7 versus Ph/n-C,g crossplot, and Ts/Tm values in
the samples analyzed. Phosphorus, nitrogen, and carbon dioxide were transported to the
shallow water causing an elevation in algal productivity due to increased nutrient
availability. In modern environments increased nutrient supply due to cool season
breakdown of the thermocline favors development of algal blooms (Barnes and Hughes,
1982). In the western part of the South China Sea (average depth 1060 m) algal blooms
have been observed during the winter due to upwelling of nutrient-rich cold water
(Espenshade, 1984; Wang et al., 2008). Dwivedi et al. (2008) documented algal blooms
during the winter in the Arabian Sea (average depth 2734 m) due to upwelling of nutrient
rich cold water (Espenshade, 1984). Phaeocystis (marine phytoplanktonic algae) can
bloom in tropical to polar waters in nutrient enriched areas (Schoemann et al., 2005).

The n-alkane and sterane biomarkers in the samples analyzed indicate an environment
dominated by marine organisms (mainly algae) and support the interpretation of algal
blooms in response to increased nutrient supply. A seasonal thermocline model for
deposition of the Lower Huron Shale is consistent with interpretations by Murphy et al.
(2000) and Sageman et al. (2003), who suggested that Upper Devonian black shales in

western New York represent deposition in alternating oxic and anoxic conditions caused
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by establishment and then breakdown of a seasonal thermocline. Other environmental
factors such as monsoon winds and large scale ocean circulation could also have played a
role in creating alternating oxic and anoxic conditions (Wang et al., 2008).

Paleogeography of the Appalachian Basin and seasonal stratification of modern
oceans support a seasonal thermocline depositional model for the Lower Huron Shale.
During Late Devonian time the Appalachian Basin was located at approximately 30 to
35° south of the equator (Scotese and McKerrow, 1990) within a subtropical zone
(Ettensohn, 1992). Paleoclimatic indicators suggest warm and seasonably variable
temperatures, arid to semi-arid conditions, and frequent storm activity (Witzke and
Heckel, 1988). Modern subtropical oceans are characterized by a warm season with a
thin mixed layer and shallow thermocline (20-40 m), and during the cool season the
thermocline is broken down and intensity of mixing increases (Sageman et al., 2003).
The Red Sea (average depth 490 m) is a modern example of this (Espenshade, 1984;
Lindell and Post, 1995). During summer, the Red Sea is stratified due to a thermocline
and the shallow water is depleted of nutrients. During winter, the thermocline
deteriorates and mixing occurs for several months, enriching the shallow water with
nutrients (Lindell and Post, 1995).
2.6. Conclusions

Biomarkers identified in the samples analyzed provide consistent interpretation of
the source of organic matter in the samples and depositional conditions represented by
the samples. Based on the TAR ratio, n-C;7/n-Cs;, Pr/n-Cy7, Ph/n-Cyg, and sterane

distribution, the biological source of preserved organic matter in the Lower Huron Shale
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is interpreted to represent predominately marine algae and bacteria. The presence of C3o
steranes in samples analyzed indicates contribution by brown algae to the organic matter.
Pr/n-C47 and Ph/n-Cyg indicate organic matter in the samples analyzed is composed of
type 11 kerogen, which can be the source of both oil and gas. Redox conditions during
deposition represented by the samples analyzed were assessed using Pr/Ph, n-C17/n-Cay,
Pr/n-Cy7, and Ts/Tm ratios, which indicate alternating oxic and anoxic conditions.
Sterane distributions in the samples indicate deposition in deep waters (>150 m).
Biomarker data from the Lower Huron Shale support establishment and
breakdown of a seasonal thermocline during deposition. During the warm season of a
subtropical climate, anoxic bottom waters persisted and allowed accumulation of
phosphorus and nitrogen due to anaerobic decomposition of organic matter. As seasonal
temperatures cooled, the thermocline broke down resulting in mixing of the shallow and
deep waters, which allowed bottom waters to become oxic and increased algal
productivity due to the upwelling of phosphorus and nitrogen.
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Table 2.1: Samples and depth of samples analyzed.

Well County Sample Number MD' TVD?

A Floyd  A3440 3440 (1049) 2959 (902)
A Floyd  A4640 4640 (1414) 2968 (905)
A Floyd  A6100 6100 (1859) 2971 (906)
B Pike B4050 4050 (1234) 3923 (1196)
B Pike B5350 5350 (1631) 3971 (1210)
C Perry  C3470 3470 (1058) 3372 (1028)
C Perry  C3650 3650 (1113) 3423 (1043)
D Mingo D5000 5000 (1524) 4964 (1513)
D Mingo D6030 6030 (1838) 5169 (1576)
D Mingo D7270 7270 (2216) 5173 (1578)
E Pike E4060 4060 (1237) 3910 (1192)
E Pike E5160 5160 (1573) 3958 (1206)
E Pike E6340 6340 (1932) 3968 (1209)
E Pike E7100 7100 (2164) 3987 (1215)
F Letcher F4125 4125 (1257) 4036 (1230)
G Logan  G4640 4640 (1414) 4513 (1376)
G Logan G6260 6260 (1908) 4570 (1393)
G Logan G7100 7100 (2164) 4566 (1392)
H Knott  H3720 3720 (1134) 3486 (1063)
H Knott  H5310 5310 (1618) 3519 (1073)
H Knott  H6600 6600 (2012) 3537 (1078)

'Measured depth in feet (m) from ground level along length of wellbore

*True vertical depth in feet (m) from ground level to sample location
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Table 2.3: Parent to daughter transitions analyzed using GC/MS/MS for sterane and
hopane detection in this investigation.

Biomarker  *Parent Ion (m/z)  *Daughter Ion (m/z)

C,7 Steranes 372 217
Cyg Steranes 386 217
Cy9 Steranes 400 217
Cjo Steranes 414 217
Cy7 Hopanes 370 191
Cy9 Hopanes 398 191
Cso Hopanes 412 191
Cs; Hopanes 426 191

m/z = mass to charge ratio
*Peters et al. (2005a)



Table 2.4: N-alkane and isoprenoid biomarkers identified in samples analyzed with FID
and characteristics of each. All biomarkers listed were identified in all samples analyzed
except samples C3650, D5000, and D7270.

Molecular Weight

Biomarker Abbreviation Formula (amu) *Possible Origin

n-Alkanes
n-Decane n-Cy CioHy 142 Variable
n-Undecane n-Cy; Ci Hy 156 Variable
n-Dodecane n-Ci, Ci2Hays 170 Variable
n-Tridecane n-Ci; Ci3Hays 184 Variable
n-Tetradecane n-Cyy Ci4H;zo 198 Variable
n-Pentadecane n-Cis CisHs, 212 Marine algae
n-Hexadecane n-Cis CisHsy 226 Algae, Bacteria
n-Heptadecane n-Cy; Ci7H3s 240 Marine algae
n-Octadecane n-Cig CisHsg 254 Algae, Bacteria
n-Nonadecane n-Cyo CioHyo 268 Marine algae
n-Icosane n-Cy CyoHas 282 Algae, Bacteria
n-Henicosane n-Cy; CyHyy 296 Marine algae
n-Docosane n-Cy, CyHys 310 Algae, Bacteria
n-Tricosane n-Cy; Cy3Hus 324 Nonmarine algae
n-Tetracosane n-Cyy CyHso 338 Nonmarine algae
n-Pentacosane n-Css CysHs, 352 Nonmarine algae
n-Hexacosane n-Cyq CysHsy 366 Plant waxes
n-Heptacosane n-Cy; Cy7Hs6 380 Nonmarine algae
n-Octacosane n-Cyg CysHss 394 Plant waxes
n-Nonacosane n-Cyo Cy9Heo 408 Nonmarine algae
n-Triacontane n-Csg Cs3oHg, 422 Plant waxes
n-Hentriacontane n-Cs; Cs1Hgy 436 Plant waxes

Isoprenoids
Pristane Pr Ci9Hao 268 Purple sulfur bacteria
Phytane Ph CyoHyp 282 Purple sulfur bacteria

*Peters et al. (2005a)
amu = atomic mass unit
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Table 2.5: Characteristics of n-alkane, sterane, and hopane biomarkers identified in
samples analyzed.

MAC Cmax Cmax MAC MAC
Sample Alkane' Aquatic>  Waxes’ Sterane’ Hopane 27%°  28% 29%°
A3440 n-Ci; n-Cig n-Cyg Cyapp-R CyH 41 25 34
A4640 n-Cy, n-Cis n-Cy; Cy0BB-S CyH 38 26 36
A6100 n-Cp n-Cie n-Cy; Cp0BB-S  CyH 64 21 15
B4050 n-Cyy n-Cyg n-Cy; Cyoa0-S  CyH 41 44 15
B5350 n-Cyps n-Cig n-Cy; Cyuafp-R  CyH 41 40 19
C3470 n-Cys n-Cyg n-Cy; Cyuafp-R  CyH 28 36 36
C3650 nd nd nd nd nd nd nd nd
D5000 nd nd nd nd nd nd nd nd
D6030 n-Cy n-Cy; n-Cy; Cogaioa-S CyH 28 43 29
D7270 nd nd nd nd nd nd nd nd
E4060 n-Cp, n-Cig n-Cyg Cypafp-S  CyuH 41 28 31
E5160 n-Cy, n-Cis n-Cy; Cypafp-S  CyH 49 29 22
E6340 n-Cy n-Cig n-Cy; Cpoa0-S  CyH 39 20 41
E7100 n-Cp, n-Cg n-Cy; Cypafp-S  CyH 46 20 34
F4125 n-Cy; n-Cis n-Cyg Cyy000-S CyH 48 38 14
G4640 n-Cyg n-Cie n-Cy; Cypoa0-S  CypH 56 17 27
G6260 n-Cyy n-Cig n-Cyg Cyr000-S CyH 37 12 51
G7100 n-Cp n-Cyg n-Cy; Cyaoa-S  CyuH 42 19 39
H3720 n-Cp, n-Cie n-Cy; Cy000-S CyH 36 28 36
H5310 n-Cp, n-Cig n-Cyy Cyoaa-S  CypH 45 41 14
H6600 n-Cj, n-Cig n-Cy; Cpoao-R  CyH 41 27 32

' Most abundant n-alkane identified in sample

2 Most abundant n-alkane between n-C;¢ and n-C;s in sample

* Most abundant n-alkane between n-C,; and n-Cs; in sample

* Most abundant sterane identified in sample
> Most abundant hopane identified in sample
¢ (C17000(S+R) + CraBB(SHR))/(T. Ca7 to Cyo 0ita(S+R) + apP(S+R))
" (Cysuaa(SHR) + CogaBB(STR))/(T Car to Cag 000(SHR) + aBB(S+R))
8 (Cr0000(SHR) + Ca0afB(SHR))/(T. Ca7 to Cao aaia(S+R) + aff(S+R))

nd = not detected (below detection limit)
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Figure 2.2: Upper Devonian and Lower Mississippian stratigraphy of eastern Kentucky

and southern West Virginia (modified from Hamilton-Smith, 1993 and de Witt et al.,

1993).
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Figure 2.4: Pristane/n-C;7 versus Phytane/n-C g indicating samples analyzed contain type
IT kerogen. Kerogen types are defined by Tissot and Welte (1978) as: Type I —
Hydrogen:carbon ratio > 1.25, oxygen:carbon ratio < 0.15, and tends to produce oil; Type
II — Hydrogen:carbon ratio < 1.25, oxygen:carbon ratio 0.03 to 0.18, and tends to produce
oil and gas; and Type III — Hydrogen:carbon ration < 1.00, oxygen:carbon ratio 0.03 to
0.3, and tends to produce coal and gas. Regions of different kerogen types are from
Obermajer et al. (1999).
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Figure 2.5 Ternary diagrams of C,7 to Cy steranes indicating organic matter source and
depositional environment of samples analyzed. Plotted values are the percentage of each
sterane (Cy7, Cag, and Cy9) making up the total of Cyp7 to Cyg steranes. A. Indicates
organic matter is dominated by algal and bacterial organic matter sources. B. Indicates
sediment was deposited in a deep marine (> 150 m) environment. Organic matter source
regions and depositional environment regions are from Huang and Meinschein (1979).
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bio-limiting nutrients to shallow water and elevating algal productivity. The 3 to 10
meter interval represented by each sample is larger than the stratigraphic thickness of

warm season/cool season fluctuations. Ther

efore, depositional conditions of both the

cool season and warm season can be represented within each sample.
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CHAPTER THREE
THERMAL MATURITY INTERPRETATIONS OF LOWER HURON SHALE
(UPPER DEVONIAN), EASTERN KENTUCKY AND SOUTHERN WEST
VIRGINIA, USING BIOMARKER MATURITY RATIOS
3.1. Abstract
The Lower Huron Shale Member of the Ohio Shale (Upper Devonian) is
considered the largest shale gas reservoir in the Big Sandy Field in Kentucky and West
Virginia. The potential for gas shales, such as the Lower Huron, to produce natural gas is
a function of type, amount, and thermal maturation of their organic matter. Twenty-one
Lower Huron Shale samples from eight wells in the Big Sandy Field were analyzed for
biomarker content to interpret thermal maturity. The following biomarkers were
identified: n-alkanes (Cis to Ca), pristane (Pr), phytane (Ph), steranes (aaoR, aaasS,
aoPR, aofS isomers of Cy7 to Cg steranes), and hopanes (C,7, Cag, C3o and C3; hopanes).
Thermal maturities within the early to peak oil generation stages for the samples
analyzed are indicated by ratio values for C,7-20S/(20S+20R), C25-20S/(20S+20R), Cy9-
20S/(20S+20R), Cog-afp/(apptoaaa), Cae- app/(apptaca), Ts/(Ts+Tm), and
22S/(225+22R). Contours maps of Pr/n-C,7, Ph/n-Cg, C;5-20S/(20S+20R), Coo-
20S/(20S+20R), Cog-afp/(apptoaaa), Cao- app/(apptaca), Ts/(Ts+Tm), and
22S/(225+22R) ratio values indicate an increase in thermal maturity toward the southeast
within the study area.
Biomarker data suggest that gas produced from the Lower Huron Shale in the

south-eastern region of the Big Sandy Field has reached a thermal maturity great enough

to generate natural gas. Biomarker data indicate that the Lower Huron Shale in the north-
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western region of the Big Sandy Field was not buried to a great enough depth to generate
significant amounts of gas. This suggests that gas produced from this area in the Big
Sandy Field is biogenic or that thermogenic gas has migrated from more thermally

mature areas to the east.

3.2. Introduction

Although black shales represent a major source rock for oil and gas reserves in the
world, they are among the least understood of all sedimentary rocks (Wignall, 1994;
Harris, 2005; Piper and Calvert, 2009). Accurate and reliable measurement of thermal
maturity, the degree to which heat-driven reactions have converted kerogen to
hydrocarbon, is useful in characterizing the thermal and burial history of source rocks and
understanding the origin and distribution of oil and gas reserves (Tissot and Welte, 1978).
Thermal maturity interpretations can provide information on the quality and quantity of
hydrocarbons that may have been generated and, coupled with basin modeling, can help
simulate basin evolution and petroleum generation, expulsion, and migration. This study
focuses on interpreting the thermal maturity of the Upper Devonian Ohio Shale, which is
the primary shale gas reservoir of the Big Sandy Field, in the Appalachian Basin (Figure
3.1). In 2002 the United States Geological Survey estimated the total undiscovered gas
resources of the Big Sandy Field to be 6 trillion cubic feet of gas (Milici et al., 2003).

Vitrinite reflectance (Ry) is the most commonly measured thermal maturity
parameter in pre-Pennsylvanian age noncarbonate rocks of the Appalachian Basin
(Rowan, 2006 and Repetski et al., 2008). Numerous researchers have published R, data

for black shales in the Appalachian Basin. R, data for the Ohio Shale in eastern
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Kentucky and southern West Virginia show a southeastward increase from 0.50 to 2.20%
in a study by Curtis and Faure (1997) and from 0.50 to 2.00% in a study by Repetski et
al. (2008). R, data from within eastern Kentucky show a southeastward increase from
0.49 to 1.00% (Hamilton-Smith, 1993). These R, data suggest that the Ohio Shale
reached a level of thermal maturity adequate for abundant oil generation (“oil window” is
0.6 to 1.3% R,) at most places in eastern Kentucky and southern West Virginia.
However, R, values from a previous study of Devonian black shale are lower than R,
values in overlying Pennsylvanian coal beds in eastern Kentucky and southern West
Virginia (Repetski et al., 2008). These low R, values in Devonian shale may be related
to vitrinite suppression or retardation, which can lead to underestimation of the true
thermal maturity (Price and Barker, 1985; Carr, 2000). Suppression of vitrinite
reflectance may occur in rocks with high total organic carbon content that is rich in
liptinite dominated kerogens (Price and Barker, 1985). Retardation of vitrinite
reflectance may be caused by generation of overpressure in a sedimentary basin (Carr,
2000).

Detailed studies of sedimentary organic matter found in black shales can provide
a variety of indicators that can be used to interpret thermal maturity (Peters et al., 2005a).
Organic matter in black shales contains compounds, known as biomarkers, which are
preserved remnants of molecules originally synthesized by organisms with distinctive
chemical structures closely related to the biological precursor molecule (Peters et al.,
2005a and Olcott, 2007). Organic geochemical research studying the origin and

transformation of biomarkers in the environment has led to a large number of organic
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geochemical parameters used to interpret the source of organic matter, environmental
conditions during deposition and burial, and thermal maturity of rocks (Peters et al.,
2005a). Thermal maturity interpretations from biomarker data have proven to be
accurate and reliable for organic matter that has not undergone microbial degradation
(Requejo et al., 1997; Peters et al., 2005b; Shen and Huang, 2007; Arfaoui et al., 2007).
Based on a thorough literature review, no studies were found that attempted to identify
biomarkers in Upper Devonian black shale of the Appalachian Basin to interpret thermal
maturity. Obermajer et al. (1997) used biomarkers identified in Middle Devonian
Marcellus and Upper Devonian Kettle Point black shales in southern Ontario to assess the
source rock potential of those units. Brown and Kenig (2004) used biomarkers identified
in Middle Devonian through Lower Mississippian black shales of the Illinois and
Michigan Basins to assess water column structure during deposition. Schwark and Empt
(2006) identified biomarkers in Ohio Shale samples from the eastern flank of the
Cincinnati Arch to assess Paleozoic algal evolution and extinction events.

Biomarkers are potentially very useful in understanding thermal maturity of the
Ohio Shale and origin of the large volume of natural gas contained within the shale. Also,
biomarker data may help elucidate previous estimates of thermal maturity of the Ohio
Shale based on vitrinite reflectance. Therefore, the objectives of this research were: 1)
identify biomarkers in the Lower Huron Shale member of the Ohio Shale in eastern
Kentucky and southern West Virginia; 2) interpret thermal maturity of the samples using
the biomarkers identified; and 3) compare thermal maturity interpretations using

biomarker data to published interpretations based on R, values. The Lower Huron Shale
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was selected for study because drilling and completions of the Ohio Shale most
commonly target the Lower Huron Shale due to its high total organic carbon content and
abundant natural fractures (Nuttall et al., 2005). Cutting samples were analyzed from
eight horizontal wells recently drilled into the Lower Huron Shale for natural gas
production.
3.3. Geologic Setting

The Appalachian Basin is a foreland basin that developed during the late
Proterozoic and Paleozoic (Roen, 1993). The basin trends northeast and is approximately
1500 km in length and 150 to 500 km in width. It extends from the Adirondack
Mountains in the north to the Black Warrior Basin in the south. To the northwest the
Findlay and Algonquin Arches separate the Appalachian Basin from the Michigan Basin,
and to the west the Cincinnati Arch separates it from the Illinois Basin (Roen, 1993)
(Figure 3.1A). The Appalachian Basin consists of Paleozoic strata ranging from 600 to
900 m thick along the Cincinnati Arch to more than 13,700 m thick to the east in Central
Pennsylvania (de Witt and Milici, 1989). Sedimentation in the basin was influenced by
three major orogenies: the Taconian (Middle to Late Ordovician), the Acadian (Early to
Middle Devonian), and the Alleghenian (Late Carboniferous to Permian) (Moody et al.,
1987). As aresult of the Acadian Orogeny and subsequent erosion of the mountains, the
Catskill Delta developed. The Upper Devonian shales are interpreted to have
accumulated basinward of the Catskill Delta in an epeiric sea with periodic anoxic
bottom waters caused by depth related stratification (Kepferle, 1989) or the establishment

and breakdown of seasonal thermoclines (Sageman et al., 2003). The Upper Devonian
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interval is referred to as the Ohio Shale east of the Cincinnati Arch in eastern Kentucky
and southern West Virginia and is subdivided into five recognizable members: Cleveland
Shale, Three Lick Bed, Upper Huron Shale, Middle Huron Shale, and Lower Huron
Shale (Figure 3.2) (Hamilton-Smith, 1993).

The Lower Huron Shale is grayish-black, brownish-black, and black shale
interbedded with minor green-gray shale (Hamilton-Smith, 1993). It contains zones of
spheroidal to ellipsoidal dolomitic limestone nodules and septaria and a few beds of
limestone from 2.5 to 10.0 cm. thick (de Witt et al., 1993). In the study area the Lower
Huron Shale ranges in thickness from 24 to 43 m.

3.4. Methods
3.4.1. Biomarker ldentification
3.4.1.1. Sampling

Twenty-one samples were collected and analyzed from drill cuttings from eight
recently drilled horizontal wells targeting the Lower Huron Shale (Figure 3.1B; Table
3.1). The wells were drilled using air, preventing the samples from being contaminated
by organic rich drilling muds. Rock cuttings were collected during the drilling process in
3 to 10 meter intervals and consist of chipped rock fragments and powder. In each well
one to four samples weighing 75 grams each were selected from the horizontal section of
the well. Selection criteria included high organic carbon content, determined using the

gamma and density logs for each well, and spacing of samples in the well bore.
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3.4.1.2. Sample Preparation

Samples were prepared in four batches of five samples each with one procedural
blank in each batch. Samples were ground to a fine powder using a ceramic mortar and
pestle. Between samples the mortar and pestle were cleaned with hot tap water and
rinsed with DI water, methanol (MeOH), and dichloromethane (DCM). The sequential
extraction procedure for the powdered sample and instrumental analysis of extract for
biomarker detection follows the methodology of Brocks et al. (2003), Forster et al.
(2004), and Sherman et al. (2007) (Table 2.2).

Soluble organic matter was extracted from 75 g of the powdered samples
ultrasonically with a Fisher Sonic Dismembrator Model 300 for 30 min in 40 ml DCM
(HPLC grade), and the extract was collected. Forty ml additional DCM was added to the
powdered sample and the ultrasonication process was repeated. Extracts were combined.
Copper pellets (Fisher Scientific C-430 Copper Metal) were placed in a 14 mm O.D.
chromatography tube plugged with cotton wool. The copper was rinsed with 37%
hydrochloric acid until it reached a bright color. The copper was then rinsed with DI
water, methanol, and DCM seven times each. Five g of the acid activated copper was
added to the vials containing the combined extracts and stirred for 8 h to remove
elemental sulfur. The extracts were filtered (Whatman 44 filter paper) to remove the
copper, and the filtrates were then reduced to 1 ml under a stream of ultra pure (99.998%)
nitrogen gas. Fifty ml of n-pentane (HPLC Grade) was added to the extracts and allowed

to sit 8 h to precipitate asphaltenes. The extracts were filtered (Whatman 44 filter paper)

53



to remove the asphaltenes and the asphaltene free extract was evaporated to dryness
under a stream of ultra pure nitrogen gas.

The extracts were separated into saturated (compounds with no double or triple
bonds) and aromatic (compounds with one or more benzene ring) fractions by liquid
chromatography using Pasteur pipettes. Silica gel (3 g) was activated by heating at 110
°C for 8 h. The activated silica gel was cooled, and 5 ml hexane (HPLC grade) was
added to make a slurry. Pasteur pipettes were plugged with cotton wool and filled with
the slurry. The asphaltene free extracts were dissolved in 1 ml DCM and added to the top
of the column. Saturated hydrocarbons were eluted with hexane (4 ml) and aromatic
hydrocarbons with hexane:DCM (1:1 v/v, 4 ml). The fractions were evaporated to
dryness and dissolved in 1 ml DCM and put in autosampler vials for analysis. An
extraction variability of 1.6% was determined using three samples spiked with a 58-
cholane standard.
3.4.1.3. Instrumental Analyses
3.4.1.3.1 Gas chromatography-Flame lonization Detection (GC-FID)

GC analyses were performed on the saturated hydrocarbon fraction in order to
obtain normal (n)-alkanes, pristane, and phytane data with a Hewlett Packard 5890 Series
Il gas chromatograph equipped with a FID and autosampler. N-alkanes are compounds
consisting of carbon and hydrogen in which the carbon atoms are arranged linearly
(Peters et al., 2005a) (Figure 3.3). Pristane and phytane are acyclic isoprenoid
hydrocarbons (Figure 3.3) that are created by the phytyl side chain of chlorophyll a in

phototrophic organisms and bacteriochlorophyll a and b in purple sulfur bacteria (Peters
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et al., 2005a). Samples (1.0 pl of each) were injected in splitless mode with helium as the
carrier gas onto a Zebron ZB-5 column (30 m x 0.25 mm inner diameter, 0.25 pm film
thickness). The helium flow rate was set at 1.0 ml/min. The flow rate of the air and
hydrogen were 300 ml/min and 30 ml/min respectively. The injector was programmed
for 250 °C and the detector for 310 °C. The oven was programmed at 40°C (2 min) and
heated to 310°C at 4°C/min, with a final hold time of 15 min. The amounts of n-alkanes,
pristane, and phytane were determined from the integrated area of the chromatogram
peak of each compound.
3.4.1.3.2 Gas Chromatography-Mass Spectroscopy-Mass Spectroscopy

Gas chromatography-mass spectroscopy-mass spectroscopy (GC-MS-MS)
analyses was performed on the saturated fraction in order to obtain sterane and hopane
biomarker data with a VVarian Model 4000 GC/MS/MS equipped with an autosampler.
Sterane is a class of tetracyclic saturated biomarkers derived from sterols in eukaryotic
cells, and hopane is a class of pentacyclic saturated biomarkers derived from plasma
membranes in prokaryotic cells (Peters et al., 2005a) (Figure 2.3). Parent/daughter
transitions were analyzed in MS-MS mode with a collision energy of 70EV (Table 2.3).
The samples (1.0 pl of each) were injected in splitless mode with helium as the carrier
gas (1.0 ml/min flow rate) onto a Restek Rtx-5 column (30 m x 0.25 mm inner diameter,
0.25 pm film thickness). The GC oven was programmed at 40°C (2 min) and heated to
310°C at 4°C/min, with a final hold time of 15 min. The amounts of steranes and
hopanes identified were determined from the integrated area of the chromatogram peak of

each compound.
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3.4.1.4 Distribution of Biomarkers Identified in the Samples

The samples analyzed were characterized based on abundance of the biomarkers
identified in each. The most abundant n-alkane, most abundant sterane, and most
abundant hopane were determined in each sample based on integrated peak areas of the
compounds identified. Also, the most abundant n-alkane between n-C;¢ to n-C;g and the
most abundant n-alkane between n-C,; to n-Cs; were determined in each sample. The
distribution of steranes identified in the samples was determined based on the percentage
of each sterane (C,7, Czs, and C,g) making up the total of C,7 to Cyg Steranes.
3.4.2. Thermal Maturity Interpretation

Biomarkers can be used to interpret thermal maturity based on the ratio of the
chromatogram peak area of a complex biologically produced compound to the
chromatogram peak area of a thermodynamically stable compound that has been
produced by alteration of the less stable complex biological compound (Peters et al.,
2005a). Biomarker ratios used to interpret thermal maturity are listed in Table 3.4. Ratio
values were calculated using peak areas of compounds. N-alkanes, pristane, and phytane
standards were run and equivalent peak areas were obtained indicating a similar response
factor for each standard. Brocks et al. (2003) showed that it is suitable to use uncorrected
peak areas of steranes and hopanes to calculate ratios. These ratios were chosen
because they are commonly used to interpret thermal maturities from early to late oil
generation (Peters et al., 2005b). The vertical distribution of thermal maturity was
assessed by plotting the ratio values versus depth for all samples. The samples analyzed

range over a depth interval of approximately 800 m. In previous studies (Requejo et al.,
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1997; Forster et al., 2004) a depth interval of 300 to 1000 m has been shown sufficient to
detect a trend in thermal maturity. The horizontal distribution of thermal maturity was
assessed by contouring the average ratio values from each well.
3.4.3. Comparison with Published Interpretations

Thermal maturity interpretations using biomarker data from this investigation
were compared to previous thermal maturity interpretations using R, values (Hamilton-
Smith 1993; Curtis and Faure, 1997; Repetski et al., 2008). Comparisons were made
between the trend of biomarker ratios and the trend of R, values geographically within
the study area.
3.5. Results
3.5.1. Biomarkers Identified
3.5.1.1. N-alkanes and Isoprenoids

N-alkanes ranging from n-Cyo to n-Cs;y, pristane, and phytane were identified in all
samples except C3650, D5000, and D7270 (Table 3.5). The distributions based on
integrated peak areas of n-alkanes and isoprenoids identified in each sample are listed in
Table 3.6. The most abundant n-alkane in ten of the samples is n-Cy,. N-Cj3, n-Cy4, and
n-Ci¢ are the most abundant n-alkane in two samples each, and n-Cis is the most
abundant n-alkane in one sample. The aquatic range of n-alkanes is defined as n-alkanes
with 16 to 18 carbon atoms because they typically originate from aquatic algae and
cyanobacteria (Peters et al., 2005a). The most abundant component in the aquatic range
of n-alkanes is n-Cs; in seventeen samples. The land plant range of n-alkanes is defined

as n-alkanes with 27 to 33 carbon atoms because they orginate from waxes typical of land
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plants (Peters et al., 2005a). The most abundant component in the land plant range of n-
alkanes is n-Cy7 in fourteen samples. Pristane is the most abundant isoprenoid in all of
the samples analyzed where isoprenoids were detected.
3.5.1.2. Steranes

The aoaR, aaaS, aapR, and aafS isomers of cholestane (Cy7 Sterane), 24-
methylcholestane (C.g sterane), 24-ethylcholestane (C,g sterane), and 24-propycholestane
(C5p sterane) were identified in all samples except C3650, D5000, and D7270 (Table 3.7).
The distributions based on integrated peak areas of steranes identified in each sample are
listed in Table 3.6. The isomers of cholestane are the most abundant sterane isomers
comprising 28-64% of the total C,7 to Cyg steranes, followed by 24-ethylcholestane
comprising 14-51%, and 24-methylcholestane comprising 12-44% (Table 3.6).
5a(H),14a(H),17a(H)-Cholestane-20S is the most abundant sterane isomer in eight
samples (Table 3.6).
3.5.1.3. Hopanes

The following hopanes were identified in all samples except C3650, D5000, and
D7270: 18a(H)-22,29,30-trisnorneohopane (Ts), 17a(H)-22,29,30-trisnorhopane (Tm),
17a(H),21p(H)-30-norhopane (Cx9H), 18a(H)-norneohopane (Cy9Ts), 17a(H),21B(H)-
hopane (CsoH), 17a(H),21B(H)-homohopane-22S (C3;H-S), and 17a(H),21p(H)-
homohopane-22R (C3;H-R) (Table 3.7). The distributions based on integrated peak areas
of hopanes identified in each sample are listed in Table 3.6. CygH is the most abundant

hopane in all samples where hopanes were detected (Table 3.6).
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3.5.2. Thermal Maturity Interpretations
3.5.2.1 Alkane and Isoprenoid Maturity Ratios

Thermal maturity interpretation using biomarkers is based on the thermal cracking
of complex biologically produced isoprenoids to less complex n-alkanes (Tissot et al.,
1971). The ratios of pristane to n-C47 (Pr/n-C17) and phytane to n-Cyg (Ph/n-C1g) decrease
with increasing thermal maturity as more n-alkanes are generated by thermal cracking
(Tissot et al., 1971). Correlation between decreasing Pr/n-C47 and Ph/n-Cy5 and
increasing thermal maturity has been shown in an experiment where source rock samples
were pyrolyzed at 300 °C for varying times and the change in ratios was observed over
time (Alexander et al., 1981).

Pr/n-C,7 values range from 0.40 to 0.70 in the samples analyzed (Table 3.8). The
ratio values decrease with increasing depth of sample, indicating greater thermal maturity
with depth (Figure 3.4A). A contour map of the average Pr/n-C;7 values for each well in
the study area shows increasing thermal maturity toward the southeast (Figure 3.5A).

Ph/n-C,g values range from 0.32 to 0.52 in the samples analyzed (Table 3.8). The
ratio values decrease with increasing depth of sample (Figure 3.4A), indicating greater
thermal maturity with depth. A contour map of the average Ph/n-Cyg values in the study
area shows increasing thermal maturity toward the east-southeast (Figure 3.5B).
3.5.2.2. Sterane Maturity Ratios
3.5.2.2.1. 205/(205+20R)

In the 20S/(20S+20R) ratio, only the R configuration at C-20 (20R) is found in

steroid precursors in living organisms, and it gradually converts during burial and
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maturation to a mixture of the R and S sterane configuration (Peters et al., 2005b).
Therefore, values of 20S/(20S+20R) increase with increasing thermal maturity. The Cy;-
20S/(20S+20R), C25-20S/(20S+20R), and C,9-20S/(20S+20R) values range from 0.14 to
0.91, 0.50 to 0.90, and 0.55 to 0.77, respectively, in the samples analyzed (Table 3.8).
The C»7-20S/(20S+20R) ratio value in sixteen of the eighteen samples analyzed is above
the reported equilibrium value of 0.55 indicating thermal maturity at or above the peak of
oil generation (Peters et al., 2005b). The ratio value in sample E4060 is 0.50, which is
slightly below the equilibrium value. The ratio value in sample D6030 is 0.14, which
may be explained by the inversion of the C,7-20S/(20S+20R) ratio to lower values at
higher maturities (Peters et al., 1990). The general trend of ratio values shows an
increase with increasing depth, indicating greater thermal maturity with depth (Figure
3.4B). A contour map of the average C,7-20S/(20S+20R) ratio values for each well
shows an increase in thermal maturity toward the east within the study area (Figure
3.6A).

The C25-20S/(20S+20R) ratio value in thirteen of the eighteen samples analyzed is
above the reported equilibrium value of 0.55 indicating thermal maturity at or above the
peak of oil generation (Peters et al., 2005b). The C,3-20S/(20S+20R) ratio value in
samples A3440, E6340, E7100, G7100, and H6600 is 0.50. The ratio values show a
slight increase with increasing depth of sample, indicating greater thermal maturity with
depth (Figure 3.4B). A contour map of the average Cs-20S/(20S+20R) ratio values for

each well shows an increasing thermal maturity toward the southeast within the study
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area with the exception of well D (C,5-20S/(20S+20R) = 0.60) in Mingo County (Figure
3.6B).

The C2-20S/(20S+20R) ratio value in all of the samples analyzed is above the
reported equilibrium value of 0.55 indicating thermal maturity at or above the peak of oil
generation (Peters et al., 2005b). Ratio values increase with sample depth, indicating
greater thermal maturity with depth (Figure 3.4B). A contour map of the average Cyo-
20S/(20S+20R) ratio values for each well shows an increasing thermal maturity toward
the southeast within the study area (Figure 3.6C).
3.5.2.2.2. app/(aff+aoan)

Another maturity ratio derived from the C,g to Cyg Steranes is the proportion of the
5o(H), 14B(H), 17p(H) isomers (app) to the Sa(H), 14a(H), 170(H) isomers (aaa)
expressed as the ratio afjp/(afp+aac). As thermal maturity increases, the aoo isomers,
which are produced biologically, are converted gradually to a mixture of apf and oo
isomers (Peters et al., 2005b). The ratio values increase with increasing thermal maturity.
The Cog-afp/(app+aac) and Cage-app/(aff+aaan) ratio values range from 0.19 to 0.76 and
0.46 to 0.71, respectively, in the samples analyzed (Table 3.8).

The Cas-afp/(afp+aaa) ratio value in four of the eighteen samples analyzed is
above the reported equilibrium value of 0.70, indicating thermal maturity at or above the
peak of oil generation (Peters et al., 2005b). The Cag-app/(aff+aaan) ratio value of
thirteen of the samples analyzed is between 0.50 and 0.69, indicating thermal maturities
at the early oil generation stage. The ratio value of sample D6030 is 0.19, which may be

explained by the inversion of the Cog-afp/(app+aoca) ratio to lower values at higher
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maturities (Peters et al., 1990). The ratio values show a slight trend of increasing with
increasing sample depth, indicating greater thermal maturity with depth (Figure 3.4C). A
contour map of the average Cog-afjp/(app+aaca) values for each well shows increasing
thermal maturity toward the southeast (Figure 3.7A).

The Cog-afpf/(app+aaa) ratio value in two (D6030, F4125) of the eighteen
samples analyzed is greater than the reported equilibrium value of 0.70, indicating
thermal maturity at the peak of oil generation (Peters et al., 2005b). The Cyo-
afp/(apptoaac) ratio value in the remaining sixteen samples is between 0.46 and 0.66,
indicating thermal maturities at the early oil generation stage. The ratio values show a
general trend of increasing with increasing sample depth, indicating greater thermal
maturity with depth, (Figure 3.4C). The Cyg-app/(afff+aaa) values within the study area
indicate increasing thermal maturity toward the southeast (Figure 3.7B).
3.5.2.3. Hopane Maturity Ratios
3.5.2.3.1. Ts/(Ts+Tm)

Tm is produced biologically and it converts during burial and maturation to Ts
(Peters et al., 2005b). Therefore, Ts/(Ts+Tm) increases with increasing thermal maturity.
The thermal equilibrium value of Ts/(Ts+Tm) is 1.00, which is reached at the late oil
generation stage of maturity (Peters et al., 2005b). Ts/(Ts+Tm) ranges from 0.55 to 0.88
in the samples analyzed (Table 3.8). These values correspond to thermal maturities of
early to peak oil generation. The ratio values show a general trend of increasing with

increasing depth of sample, indicating greater thermal maturity with depth (Figure 3.4D).

62



The average Ts/(Ts+Tm) values for each well indicate an increasing thermal maturity
toward the southeast within the study area (Figure 3.8A).
3.5.2.3.2. 225/(225+22R)

The R configuration at C-22 (22R) in the 22S/(225+22R) ratio is biologically
produced, and it gradually converts during burial and maturation to a mixture of 22R and
22S isomers (Peters et al., 2005b). Therefore, 22S5/(22S+22R) increases with increasing
thermal maturity. The thermal equilibrium value of 22S/(22S5+22R) is 0.55, which is
reached at the early oil generation stage of maturity (Peters et al., 2005b). The
22S/(225+22R) values range from 0.55 to 0.84 in the samples analyzed (Table 3.8). The
22S/(225+22R) values in all of the samples analyzed is above the reported equilibrium
value of 0.55, indicating thermal maturity at or above the early oil generation stage. The
ratio values show a general trend of increasing with increasing sample depth, indicating
greater thermal maturity with depth (Figure 3.4D). The average 22S/(22S+22R) ratio
values for each well show an increase in thermal maturity toward the southeast within the
study area with the exception of well D [22S/(22S+22R) = 0.69] in Mingo County
(Figure 3.8B).

3.5.3. Comparison with Published Interpretations

Contours of R, values indicate increased thermal maturity toward the southeast
within the study area (Figure 3.9) (Hamilton-Smith, 1993; Curtis and Faure, 1997;
Repetski et al., 2008). An increase in this direction is expected, which corresponds to the
direction of increasing maximum burial depth. Contours of current burial depth of the

base of the Lower Huron Shale increase toward the southeast within the study area,
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similar to the trend of maximum burial depth (Figure 3.10) (Dillman and Ettensohn,
1980; Rowan, 2006). Contours of Pristane/n-C,7, Phytane/n-Cig, C,5-20S/(20S+20R),
C29-20S/(20S+20R), Cos-afp/(apptaaa), Co-afyf/(app+aac), Ts/(Ts+Tm), and
22S/(225+22R) also indicate increased thermal maturity toward the southeast (Figures
3.5t0 3.8). Contours of C,7-20S/(20S+20R) (Figure 3.6A) show an increase in thermal
maturity toward the east rather than southeast within the study area. This may be caused
by depositional environment and organic matter source, which have been shown to
influence the values of this ratio in addition to thermal maturity (Peters et al., 2005b).
Thermogenic gas generation from kerogen begins to occur within the oil
generation stage of thermal maturity (Jarvie et al., 2007; Lillis et al., 2007). Minor
amounts of gas can be generated during the early oil generation stage and during the peak
oil generation stage of thermal maturity oil generation is accompanied by significant
amounts of gas (Tissot and Welte, 1978). Biomarker data indicate that the Lower Huron
Shale within the south-eastern region of the study area was buried to a great enough
depth to generate significant amounts thermogenic gas. The C»7-20S/(20S+20R), Cos-
20S/(20S+20R), C29-20S/(20S+20R), Cog-afp/(appt+oaaa), Cae- app/(apptaca), and
Ts/(Ts+Tm) thermal maturity ratios for the samples analyzed in this study indicate that
the peak oil generation stage of thermal maturity was reached in the south-eastern region
(Table 3.9). Biomarker data indicate that the Lower Huron Shale within the north-
western region of the study area was not buried to a great enough depth to generate
significant amounts of thermogenic gas. The Cog-app/(apptaaa), Core- app/(afptaaa),

Ts/(Ts+Tm), and 22S/(22S+22R) thermal maturity ratios for the samples analyzed
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indicate that the early oil generation stage of thermal maturity was reached in the north-
western region of the study area. Biomarker data suggest that gas produced from the
Lower Huron Shale in the north-western region of the Big Sandy Field is biogenic or that
thermogenic gas has migrated there from the more thermally mature areas to the east. R,
data (Hamilton-Smith, 1993; Curtis and Faure, 1997; Repetski et al., 2008) also indicates
that the peak oil generation stage was reached in the south-eastern region of the study
area but not in the north-western region. Osborn and Mcintosh (2010) used chemical and
isotopic tracers to investigate the origin of natural gas in Devonian black shales in the
Appalachian Basin (western New York, eastern Ohio, northwestern Pennsylvania, and
eastern Kentucky). They determined that the origin of the vast majority of natural gas in
these shales is thermogenic. Therefore, gas produced from the areas that have not
reached the peak oil generation stage may have migrated there from a more thermally
mature rock to the east.
3.6. Conclusions

The following biomarkers were identified in DCM soluble extracts of Lower
Huron Shale samples from eastern Kentucky and southern West Virginia: n-alkanes (Cy
to Csy), pristane (Pr), phytane (Ph), steranes (aoaR, aoaS, aafR, aapS isomers of Cy7 to
Cao steranes), and hopanes (C,7, Co9, C3o and Cs; hopanes). Biomarker ratios used in
interpreting thermal maturity of the samples analyzed provide consistent interpretation
with each other. Thermal maturities within the early to peak oil generation stages for the
samples analyzed are indicated by ratio values for C,7-20S/(20S+20R), Cos-

20S/(20S+20R), C29-20S/(20S+20R), Cog-afp/(appt+oaaa), Cae- app/(apptaca),
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Ts/(Ts+Tm), and 22S/(22S+22R). Contour maps of ratio values (averaged for each well)
for Pr/n-Cy7, Ph/n-Cyg, C25-20S/(20S+20R), C2-20S/(20S+20R), Cas-app/(app+aaa),
Coo-app/(apptaaa), Ts/(Ts+Tm), and 22S/(22S+22R) indicate southeastward increase in
thermal maturity within the study area, which corresponds to the direction of increasing
maximum burial depth (Rowan, 2006). Biomarker maturity ratios indicate that samples
from wells A, C, and H have reached the early oil generation stage of thermal maturity
and samples from wells B, D, E, F, G in the far southeast of the study area have reached
the peak oil generation stage. These biomarker maturity ratios suggest that gas produced
from the Lower Huron Shale in the south-eastern region of the Big Sandy Field is
thermogenic and that gas produced in the north-western region has migrated from more
thermally mature strata.
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Table 3.1: Samples and depth of samples analyzed.

Well County Sample Number MD' TVD?

A Floyd  A3440 3440 (1049) 2959 (902)
A Floyd  A4640 4640 (1414) 2968 (905)
A Floyd  A6100 6100 (1859) 2971 (906)
B Pike B4050 4050 (1234) 3923 (1196)
B Pike B5350 5350 (1631) 3971 (1210)
C Perry  C3470 3470 (1058) 3372 (1028)
C Perry  C3650 3650 (1113) 3423 (1043)
D Mingo D5000 5000 (1524) 4964 (1513)
D Mingo D6030 6030 (1838) 5169 (1576)
D Mingo D7270 7270 (2216) 5173 (1578)
E Pike E4060 4060 (1237) 3910 (1192)
E Pike E5160 5160 (1573) 3958 (1206)
E Pike E6340 6340 (1932) 3968 (1209)
E Pike E7100 7100 (2164) 3987 (1215)
F Letcher F4125 4125 (1257) 4036 (1230)
G Logan  G4640 4640 (1414) 4513 (1376)
G Logan G6260 6260 (1908) 4570 (1393)
G Logan G7100 7100 (2164) 4566 (1392)
H Knott  H3720 3720 (1134) 3486 (1063)
H Knott  HS5310 5310 (1618) 3519 (1073)
H Knott  H6600 6600 (2012) 3537 (1078)

'"Measured depth in feet (m) from ground level along length of wellbore

True vertical depth in feet (m) from ground level to sample location
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Table 3.3: Parent to daughter transitions analyzed using GC/MS/MS for sterane and
hopane detection in this investigation.

Biomarker  Parent Ion (m/z) = Daughter Ion (m/z)

Cy7 Steranes 372 217
Cyg Steranes 386 217
Cyg Steranes 400 217
Csp Steranes 414 217
C,7 Hopanes 370 191
Cy9 Hopanes 398 191
Cso Hopanes 412 191
Cs; Hopanes 426 191

m/z = mass to charge ratio
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Table 3.5: N-alkane and isoprenoid biomarkers identified in samples analyzed with FID
and characteristics of each. All biomarkers listed were identified in all samples analyzed
except samples C3650, D5000, and D7270.

Molecular Weight

Biomarker Abbreviation Formula (amu) *Possible Origin

n-Alkanes
n-Decane n-Cig CioHy 142 Variable
n-Undecane n-Cy; Ci1Hyy 156 Variable
n-Dodecane n-Cp, CioHas 170 Variable
n-Tridecane n-Ci; Ci3Hyg 184 Variable
n-Tetradecane n-Cyy C14Hso 198 Variable
n-Pentadecane n-Cis CisHs 212 Marine algae
n-Hexadecane n-Cig CisHsq 226 Algae, Bacteria
n-Heptadecane n-Cy7 Ci7H36 240 Marine algae
n-Octadecane n-Cyg CigHss 254 Algae, Bacteria
n-Nonadecane n-Cyg Ci9Hyo 268 Marine algae
n-Icosane n-Cyo CyoHyo 282 Algae, Bacteria
n-Henicosaﬁe n-Cy; Cy1Hyy 296 Marine algae
n-Docosane n-Cy, CyHys 310 Algae, Bacteria
n-Tricosane n-Cys Cy3Hug 324 Nonmarine algae
n-Tetracosane n-Cy Cy4Hsg 338 Nonmarine algae
n-Pentacosane n-Cys Cy5Hs, 352 Nonmarine algae
n-Hexacosane n-Cyg CysHsy 366 Plant waxes
n-Heptacosane n-Cy; Cy7Hs6 380 Nonmarine algae
n-Octacosane n-Cyg C,3Hss 394 Plant waxes
n-Nonacosane n-Cyo Cy9Hgo 408 Nonmarine algae
n-Triacontane n-Csp CsoHg 422 Plant waxes
n-Hentriacontane n-Cs; C;0Hgs 436 Plant waxes

Isoprenoids
Pristane Pr CioHug 268 Purple sulfur bacteria
Phytane Ph CyoHus 282 Purple sulfur bacteria

*Peters et al. (2005a)

amu = atomic mass unit
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Table 3.6: Characteristics of n-alkane, sterane, and hopane biomarkers identified in

samples analyzed.

MAC Cmax Cmax MAC MAC
Sample  Alkane' Agquatic’  Waxes’ Sterane’ Hopane®  27%° 28%' 29%°
A3440  n-Cy; n-Cig n-Cyg CyaBB-R - CyH 41 25 34
A4640  n-Cpy n-Cyg n-Cy; CyopB-S  CyH 38 26 36
A6100 n-Cp, n-Cig n-Cy; CyapB-S  CyH 64 21 15
B4050 n-Cy n-Cye n-Cy; Cyaoa-S  CyH 41 44 15
B5350 n-Cy3 n-Cie n-Cys Cyuafp-R  CyH 41 40 19
C3470  n-Cys n-Cig n-Cy; Cypafp-R CyH 28 36 36
C3650 nd nd nd nd nd nd nd nd
D5000 nd nd nd nd nd nd nd nd
D6030 n-Cy, n-Cy; n-Cy; Cys000-S CyH 28 43 29
D7270  nd nd nd nd nd nd nd nd
E4060 n-Cyy n-Cig n-Cyg CypopB-S  CypH 41 28 31
E5160 n-Cy, n-Cyg n-Cyy CypapB-S  CypH 49 29 22
E6340 n-Cyy n-Cyg n-Cy; Cyaoo-S  CyH 39 20 41
E7100 n-Ci, n-Cig n-Cy; Cyafp-S  CyH 46 20 34
F4125 n-Cig n-Cig n-Cyg Cyoo0-S  CypH 48 38 14
G4640  n-Cyg n-Cis n-Cy; Cyo00-S  CyH 56 17 27
G6260 n-Ci, n-Cig n-Cyg Cyr0000-S CyH 37 12 51
G7100 n-Cp, n-Cig n-Cy; Cyaoo-S  CyH 42 19 39
H3720  n-Cp, n-Cg n-Cy; Cpaoa-S  CyH 36 28 36
H5310 n-Cy, n-Cis n-Cy; Cy000-S CyH 45 41 14
H6600 n-Cy, n-Cig n-Cy; Cyooo-R  CyH 41 27 32

' Most abundant n-alkane identified in sample

2 Most abundant n-alkane between n-Cy¢ and n-C,g in sample

3 Most abundant n-alkane between n-C,; and n-Cs; in sample

* Most abundant sterane identified in sample

> Most abundant hopane identified in sample

* (C000(S+R) + C0BB(SHR)/(T Car to Crg aaa(S+R) + aPfB(S+R))
7 (Cas0a0(S+R) + CosaPB(STR)/(T Ca7 to Cao aoia(S+R) + aPB(S+R))
* (Cooaa(S+R) + Coo0BB(S+R))/(T Car to Cag 000(S+R) + aPfB(S+R))

nd = not detected (below detection limit)
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Table 3.9: Thermal maturities represented by the samples analyzed for biomarker

maturity ratios.

Ratio Values Thermal Maturity
C»7-20S/(20S+20R) 0.14 -0.91 At or above peak oil generation
Cy5-20S/(20S+20R) 0.50-10.90 Early to peak oil generation
Cy9-20S/(20S+20R) 0.55-0.77 At or above peak oil generation
Cos-app/(app+oaca) 0.19-0.79 Early to peak oil generation
Cao- afp/(apptaca) 0.46 —0.71 Early to peak oil generation
Ts/(Ts+Tm) 0.55-0.88 Early to peak oil generation
225/(22S+22R) 0.55-0.84 At or above early oil generation
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Period Stage Age Ma E. Kentucky

Mississippian Sunbury Shale
363 Berea Sandstone
Cleveland
Shale
Three Lick Bed Ohio
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Figure 3.2: Upper Devonian and Lower Mississippian stratigraphy of eastern Kentucky
and southern West Virginia (modified from Hamilton-Smith, 1993 and de Witt et al.,
1993).
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Figure 3.4: Biomarker maturity ratios versus depth for samples analyzed. Thermal
maturity increases to the right on each graph. A = Pr/n-C;7 and Ph/n-C;g maturity ratios.
B = C,7-20S/(20S+20R), C,5-20S/(20S+20R), and C19-20S/(20S+20R) maturity ratios.
Early oil generation stage 0.40 to 0.55 and peak oil generation stage greater than 0.55
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(Peters et al., 2005b). C = Cyg-afp/(app+aaa) and Cyo-afp/(afpf+acc) maturity ratios.
Early oil generation stage 0.45 to 0.70 and peak oil generation stage greater than 0.70
(Peters et al., 2005b). D = Ts/(Ts+Tm) and 22S/(22S+22R) maturity ratios. Early oil
generation stage greater than 0.55 for 22S/(22S+22R) ratio (Peters et al., 2005b).
Ts/(Ts+Tm) values greater than 1.00 represent late oil generation stage (Peters et al.,
2005b).
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Figure 3.5: Contour maps of n-alkane and isoprenoid thermal maturity ratios. Mapped
value for each well is the average for all samples analyzed from that well. A = Contour
map of Pr/n-C,7 values indicating increase in thermal maturity toward the southeast. B =
Contour map of Ph/n-C;3 values indicating increase in thermal maturity toward the
southeast.
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Figure 3.6: Contour maps of sterane thermal maturity ratios. Mapped value for each



well is the average for all samples analyzed from that well. A = Contour map of Cy7-
20S/(20S+20R) values indicating increase in thermal maturity toward the east. The 0.14
value at well D may be caused by inversion of the ratio due to high thermal maturity
(Peters et al., 2005b). B = Contour map of C,3-20S/(20S+20R) values indicating increase
in thermal maturity toward the southeast. C = Contour map of C59-20S/(20S+20R)
values indicating increase in thermal maturity toward the southeast.
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Figure 3.7: Contour maps of sterane thermal maturity ratios. Mapped value for each
well is the average for all samples analyzed from that well. A = Contour map of Cys-
afp/(app+aaa) values indicating increase in thermal maturity toward the southeast. The
0.19 value at well D may be caused by inversion of the ratio due to high thermal maturity

(Peters et al., 2005b). B = Cyy-app/(app+aac) values increase in thermal maturity toward
the southeast.
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Figure 3.8: Contour maps of hopane thermal maturity ratios. Mapped value for each well
is the average for all samples analyzed from that well. A = Contour map of Ts/(Ts+Tm)
values indicating increase in thermal maturity toward the southeast. B = Contour map of
22S/(22S+22R) values indicating increase in thermal maturity toward the southeast.
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the study area (from Dillman and Ettensohn, 1980). Structural trend follows trend of
maximum burial depth (Rowan, 2000).
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CHAPTER FOUR
CONCLUSIONS

The following biomarkers were identified in Lower Huron Shale (Upper
Devonian) samples from eight wells located in eastern Kentucky and southern West
Virginia: n-alkanes (Cis to Css), pristane (Pr), phytane (Ph), steranes (aaoR, aaaS,
aoPR, aofS isomers of Cy7 to Cg steranes), and hopanes (C,7, Cag, C3p and Cs; hopanes).
The TAR (terrigenous versus aquatic n-alkanes ratio), n-C17/n-Csy, Pr/n-Cy7, Ph/n-Cys,
and sterane distribution indicate the biological source of preserved organic matter in the
Lower Huron Shale is predominately marine algae and bacteria. Pr/n-Cy7 and Ph/n-Cyg
indicate kerogen in the samples analyzed is type 11, which can be the source of both oil
and natural gas. The Pr/Ph, n-C17/n-Cs;, Pr/n-Cy7, and Ts/Tm ratios in the samples
analyzed indicate the Lower Huron Shale was deposited in alternating oxic and anoxic
conditions. Sterane distributions in the samples analyzed indicate the Lower Huron Shale
was deposited in deep waters (> 150 m).

The biomarker data coupled with published paleogeographical interpretations
support establishment and breakdown of a seasonal thermocline during deposition of
sediments represented by the Lower Huron Shale. During the warm season of a
subtropical climate anoxic bottom waters persisted and allowed accumulation of
phosphorus and nitrogen due to anaerobic decomposition of organic matter. As the
climate cooled the thermocline was broken down resulting in mixing of the shallow and
deep waters, which allowed the bottom waters to become oxic and increased primary

productivity due to the upwelling of phosphorus and nitrogen.

93



Biomarker maturity ratios indicate that the samples analyzed have reached the
early to late oil generation stages. Contour maps of the biomarker maturity ratio values
indicate increasing thermal maturity toward the southeast within the study area, which
corresponds to the direction of increasing maximum burial depth. Biomarker data
suggest that gas produced from the Lower Huron Shale in the south-eastern region of the
Big Sandy Field is thermogenic and that gas produced in the north-western region has
migrated from more thermally mature areas to the east.

Appalachian Basin Devonian shales are a major shale gas play in the United
States. This study was the first published study to identify biomarkers in the Lower
Huron Shale to interpret organic matter source, depositional environment, and thermal
maturity. A thorough geologic understanding of shale gas can aid in exploration of these
plays. The availability of large amounts of shale gas will allow the United States to
consume predominately a domestic supply of gas. By consuming gas produced
domestically the supply is not dependent on foreign producers and the delivery system is

less subject to interruption.
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Appendix A

Representative Chromatograms of Samples Analyzed and Standards
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Figure A.1: Chromatograms showing n-alkanes, pristane (Pr), and phytane (Ph) of two
representative samples. Numbers by the peaks give the number of carbon atoms in n-
alkanes. Time in minutes on x-axis and ion count on y-axis. A. Sample G7100. B.

Sample C3470.
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Figure A.2: Chromatograms showing n-alkanes, pristane (Pr), and phytane (Ph)
standards. Numbers by the peaks give the number of carbon atoms in n-alkanes. Time in
minutes on X-axis and ion count on y-axis.
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Figure A.3: Chromatograms showing isomers of C,; to Cs steranes identified in a
representative sample (A6100). Parent to daughter ion transitions are labeled on each
chromatogram. Time in minutes on x-axis and ion count on y-axis.
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Figure A.4: Chromatograms showing isomers identified of C,7, C,9, C39, and Cz; hopanes
in a representative sample (A6100). Parent to daughter ion transitions are labeled on each

chromatogram. Time in minutes on x-axis and ion count on y-axis.

22,29,30-Trisnorneohopane, Tm = 17a(H)-22,29,30-Trisnorhopane, CooH =
17a(H),21B(H)-30-Norhopane, Cy9Ts = 18a(H)-Norneohopane, C3oH = 17a(H),21B(H)-
Hopane, C31H-S = 17a(H),21B(H)-Homohopane-22S, Cs;H-R = 17a(H),21p(H)-

Homohopane-22R.

Ts = 18a(H)-
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Appendix B

Standard Operating Procedures for Biomarker Analysis

The standard operating procedures used to analyze rock samples for biomarkers are listed
below and found on the pages indicated.

Biomarker EXTraCtion .........cooovoeoeeee e 101
GC/FID ANAIYSIS ... 104
GC/MSIMS ANAIYSIS ...t 106
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METHOD FOR EXTRACTING BIOMARKERS FROM ROCK SAMPLES
John Kroon and James W. Castle

1.0 OBJECTIVE

Biomarkers are preserved remnants of molecules originally synthesized by organisms
with distinctive chemical structures closely related to the biological precursor molecule
(Peters et al., 2005 and Olcott, 2007). Biomarkers can be present in organic matter
preserved in sedimentary rocks. The objective of this method is to detail the procedure
used to extract biomarkers from rock samples for the subsequent separation and detection
of the biomarkers present in the samples using analytical instruments. The sequential
extraction procedure for the samples and instrumental analysis of extract for biomarker
detection follows the methodology of Brocks et al. (2003), Forster et al. (2004), and
Sherman et al. (2007).

2.0 HEALTH AND SAFETY
Proper lab attire, including scrubs, lab coat, gloves, and safety glasses must be worn at all
times.

3.0 PERSONNEL/TRAINING/RESPONSIBILITIES
Any graduate research assistant familiar with the equipment and laboratory techniques
and trained in this SOP may perform this procedure.

4.0 REQUIRED AND RECOMMENDED MATERIALS

4.1 Reagents

Deionized (DI) water
Dichloromethane (DCM)
37% Hydrochloric acid (HCL)
Methanol (MeOH)

N-pentane

Hexane

4.2 Supplies

Whatman 44 filter paper
Copper (Cu) pellets
Silica gel

Pasteur pipette

Cotton wool

Whole rock samples

4.3 Equipment
Bottle top vacuum filter
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Ceramic mortar and pestle
Magnetic stirrer

Drying oven
Ultrasonicator

5.0 PROCEDURE

Grind whole rock samples to a fine powder using a ceramic mortar and pestle. Between
samples clean the mortar and pestle with hot tap water and rinse with DI water, then
MeOH, and then DCM. Ultrasonicate (Fisher Sonic Dismembrator Model 300) 75 g of
powdered sample for 30 min in 40 ml of DCM. Filter to remove powdered sample using
a bottle top vacuum filter with Whatman 44 filter paper, collect extract, and repeat
ultrasonication of powdered sample with additional 40 ml DCM. Again using bottle top
vacuum filter and Whatman 44 filter paper collect extract and combine with the first
extract collected. Powdered sample can now be discarded.

Rinse Cu pellets (Fisher Scientific C-430 Copper Metal) with 37% HCL until Cu reaches
bright color. Then rinse with DI water, then methanol, then DCM. Add small amount of
Cu to vial containing extract and stir 8 h with magnetic stirrer, after stirring filter using a
bottle top vacuum filter with Whatman 44 filter paper to remove Cu. Reduce Cu free
extract to 1 ml under ultra pure (99.998%) nitrogen gas. Add 50 ml of n-pentane to
reduced extract and allow to sit 8 h to precipitate asphaltenes. Filter extract using a bottle
top vacuum filter with Whatman 44 filter paper to remove asphaltenes. Collect asphaltene
free extract and evaporate to dryness under ultra pure (99.998%) nitrogen gas. Dissolve
dried asphaltenes free extract in 1 ml DCM.

Activate silica gel by heating for 8 hours at 110°C. Mix 3 g silica gel with 5 ml hexane to
form slurry. Plug Pasteur pipette with cotton wool and fill with slurry. Add extract in 1
ml DCM to top of column. Elute fractions of increasing polarity by sequential elution
with 4 ml hexane (saturated fraction) then 2 ml hexane/2 ml DCM (aromatic fraction).
Collect the eluated fractions in clean vials, evaporate to dryness, and then dissolve in 1
ml DCM.

6.0 QUALITY CONTROL CHECKS AND ACCEPTANCE CRITERIA
All procedures are subject to review by the Quality Assurance Unit

7.0 REFERENCES

Brocks, J.J., Buick, R., Logan, G., and Summons, R.E., 2003, Composition and
syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount
Bruce Supergroup, Pilbara Craton, Western Australia: Geochimica et
Cosmochimica Acta, v. 67, p. 4289-43109.

Forster, A., Sturt, H., Meyers, P.A., and the Leg 207 Shipboard Scientific Party, 2004,
Molecular biogeochemistry of Cretaceous black shales from the Demerara Rise:
Preliminary shipboard results from sites 1257 and 1258, Leg 207: In Erbacher, J.,
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Mosher, D.C., Malone, M.J., et al., Proceedings of the Ocean Drilling Program,
Initial Reports: v. 207, p. 1-22.

Olcott, A.N., 2007, The utility of lipid biomarkers as paleoenvironmental indicators:
Palaios, v. 22, p. 111-113.

Peters, K.E., Walters, C.C., Moldowan, J.M., 2005, The Biomarker Guide: Volume 1
Biomarkers and Isotopes in the Environment and Human History: New York,
Cambridge University Press.

Sherman, L.S., Waldbauer, J.R., and Summons, R.E., 2007, Improved methods for

isolating and validating indigenous biomarkers in Precambrian rocks: Organic
Geochemistry, v. 38, p. 1987-2000.

103



METHOD FOR IDENTIFYING BIOMARKERS IN A ROCK EXTRACT WITH
GAS CHROMATOGRPAHY/FLAME IONIZATION DETECTION (GC/FID)

John Kroon and James W. Castle

1.0 OBJECTIVE

Gas chromatography (GC) can be used to separate complex mixtures of biomarkers in
solvent extracts from rock samples and a flame ionization detector (FID) can be used to
detect those biomarkers. The objective of this method is to detail the procedure used to
separate and detect normal (n)-alkanes, pristane, and phytane biomarkers present in rock
sample extracts using GC/FID. The instrumental analysis for biomarker detection
follows the methodology of Brocks et al. (2003), Forster et al. (2004), and Sherman et al.
(2007).

2.0 HEALTH AND SAFETY
Proper lab attire, including scrubs, lab coat, gloves, and safety glasses must be worn at all
times.

3.0 PERSONNEL/TRAINING/RESPONSIBILITIES
Any graduate research assistant familiar with the equipment and laboratory techniques
and trained in this SOP may perform this procedure.

4.0 REQUIRED AND RECOMMENDED MATERIALS

4.1 Supplies
Autosampler vials and caps

4.2 Equipment
Gas chromatograph equipped with a flame ionization detector and autosampler

5.0 PROCEDURE

Place 1 ml of rock sample extract in autosampler vials. With a Zebron ZB-5 column (30
m x 0.25 mm inner diameter x 0.25 pm film thickness) installed in the GC (Hewlett
Packard 5890 Series 1), program the oven for a 2 min hold at 40°C and then heat to
310°C at 4°C/min with a final hold time of 15 min. Set the flow rate on the air and
hydrogen at 300 ml/min and 30 ml/min respectively. Program the injector for 250 °C and
the detector for 310 °C. Inject 1.0 pl of each sample in splitless mode with helium as the
carrier gas at a flow rate of 1.0 ml/min. Retention times for compounds interested in can
be determined by running standards of those compounds with the same procedure. The
amount of n-alkanes, pristane, and phytane can be determined from the integrated
chromatogram peak area of each compound.

6.0 QUALITY CONTROL CHECKS AND ACCEPTANCE CRITERIA
All procedures are subject to review by the Quality Assurance Unit
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7.0 REFERENCES

Brocks, J.J., Buick, R., Logan, G., and Summons, R.E., 2003, Composition and
syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount
Bruce Supergroup, Pilbara Craton, Western Australia: Geochimica et
Cosmochimica Acta, v. 67, p. 4289-4319.

Forster, A., Sturt, H., Meyers, P.A., and the Leg 207 Shipboard Scientific Party, 2004,
Molecular biogeochemistry of Cretaceous black shales from the Demerara Rise:
Preliminary shipboard results from sites 1257 and 1258, Leg 207: In Erbacher, J.,
Mosher, D.C., Malone, M.J., et al., Proceedings of the Ocean Drilling Program,
Initial Reports: v. 207, p. 1-22.

Sherman, L.S., Waldbauer, J.R., and Summons, R.E., 2007, Improved methods for

isolating and validating indigenous biomarkers in Precambrian rocks: Organic
Geochemistry, v. 38, p. 1987-2000.
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METHOD FOR IDENTIFYING BIOMARKERS IN A ROCK EXTRACT WITH
GAS CHROMATOGRPAHY/MASS SPECTROSCOPY/MASS SPECTROSCOPY
(GCIMS/MS)

John Kroon and James W. Castle

1.0 OBJECTIVE

Gas chromatography (GC) can be used to separate complex mixtures of biomarkers in
solvent extracts from rock samples and a mass spectrometer (MS) can be used to detect
those biomarkers. The objective of this method is to detail the procedure used to separate
and detect sterane and hopane biomarkers present in rock sample extracts using
GC/MS/MS. The instrumental analysis for biomarker detection follows the
methodology of Brocks et al. (2003), Forster et al. (2004), and Sherman et al. (2007).

2.0 HEALTH AND SAFETY
Proper lab attire, including scrubs, lab coat, gloves, and safety glasses must be worn at all
times.

3.0 PERSONNEL/TRAINING/RESPONSIBILITIES
Any graduate research assistant familiar with the equipment and laboratory techniques
and trained in this SOP may perform this procedure.

4.0 REQUIRED AND RECOMMENDED MATERIALS

4.1 Supplies
Autosampler vials and caps

4.2 Equipment
Gas chromatograph equipped with a mass spectrophotometer and autosampler

5.0 PROCEDURE

Place 1 ml of rock sample extract in autosampler vials. With a Restek Rtx-5 column (30
m x 0.25 mm inner diameter, 0.25 um film thickness) installed in the GC (Varian Model
4000 GC/MS/MS) program the over for a 2 min hold at 40°C and then heat to 310°C at
4°C/min with a final hold time of 15 min. Set transfer line at 280°C, the mass
spectrophotometer (MS) source at 230°C, and electron impact at 70 eV. The MS is set to
MS/MS mode so that chosen parent mass fragments are detected in the first MS step and
daughter mass fragments are detected in the second MS step. C,; to Csp Steranes are
identified with 372, 386, 400, 414 as the parent mass fragments, respectively, and 217 as
the daughter mass fragment for each. C,; hopanes are identified with 370 as the parent
mass fragment and 191 as the daughter mass fragment. Cyq to C3; hopanes are identified
with 398, 412, and 426 as the parent mass fragments, respectively, and 191 as the
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daughter mass fragment for each. Inject 1.0 pl of each sample in splitless mode with
helium as the carrier gas at a flow rate of 1.0 ml/min. Retention times for compounds
interested in can be determined by running standards of those compounds with the same
procedure. The amount of steranes and hopanes in samples can be determined from the
integrated area of the chromatogram peak of each compound.

6.0 QUALITY CONTROL CHECKS AND ACCEPTANCE CRITERIA
All procedures are subject to review by the Quality Assurance Unit

7.0 REFERENCES

Brocks, J.J., Buick, R., Logan, G., and Summons, R.E., 2003, Composition and
syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount
Bruce Supergroup, Pilbara Craton, Western Australia: Geochimica et
Cosmochimica Acta, v. 67, p. 4289-43109.

Forster, A., Sturt, H., Meyers, P.A., and the Leg 207 Shipboard Scientific Party, 2004,
Molecular biogeochemistry of Cretaceous black shales from the Demerara Rise:
Preliminary shipboard results from sites 1257 and 1258, Leg 207: In Erbacher, J.,
Mosher, D.C., Malone, M.J., et al., Proceedings of the Ocean Drilling Program,
Initial Reports: v. 207, p. 1-22.

Sherman, L.S., Waldbauer, J.R., and Summons, R.E., 2007, Improved methods for

isolating and validating indigenous biomarkers in Precambrian rocks: Organic
Geochemistry, v. 38, p. 1987-2000.
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