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ABSTRACT 

 

 

This research evaluated a mixed vehicle environment that included connected and 

non-connected vehicles in which connected vehicles (CV) were allowed to pay a small 

fee to request priority at a signalized intersection, similar to a transit signal priority 

system. Connected vehicles with signal priority were simulated with penetration levels 

ranging from 10% to 100% as well as with various priority directions (all directions, 

major street movements in both directions, and major street movements in the direction 

of highest flow) being allowed to request priority. These scenarios were compared to 

optimized signal timings to determine the effectiveness of the technology in terms of 

average delay, then benefit-cost analysis was performed to assess the viability of this 

strategy that allows connected vehicles to receive signal priority for a fee. 

 It was discovered that connected vehicles with signal priority experience less 

delay than non-connected vehicles for all priority direction scenarios studied up to a 

certain point. When all directions and major street movements in both directions are 

allowed to request priority, the advantage for CV was statistically significant up to 20% 

CV penetration. When priority was only allowed to be requested in the direction of 

highest flow, CVs experienced lower delay at a statistically significant level up to 40% 

CV penetration levels. Above these thresholds connected and non-connected vehicles 

experience similar delay. Average delay for all vehicles on the network, including 

connected and non-connected vehicle types, was also analyzed and revealed that average 

delay tended to increase as the CV penetration levels increased. When priority was 

permitted in only the major direction of travel, the average delay for all vehicles on the 
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network was significantly less than the base scenario for up to 50% CV penetration 

levels. Delay for all vehicles types was higher than the base scenario when priority was 

permitted in all directions and in both directions on the main corridors.  

A benefit-cost analysis was performed for the major flow direction priority 

scenario because it was the only scenario that outperformed the optimized signal timing 

scenario with no CV. A benefit-cost analysis based solely on revenue generated from CV 

requesting priority at intersections and the system cost resulted in a benefit-cost ratio 

greater than 1 at as low as 20% CV penetration levels. When the benefit-cost analysis 

added the benefit of decreased network delay for all vehicles, benefit-cost ratios as high 

as 3 were observed at 10% CV penetration levels. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

1.1 Problem Statement 

According to the most recent Urban Mobility report, the average American spent 

38 hours in traffic congestion in 2011 (Texas A&M Transportation Institute 2012). Some 

of this congestion occurs at signalized intersections where inefficient signal phasing 

causes delay (Goodall 2013).  The cost of widening roadways in an urban setting has 

become more expensive than ever before, and many times it is not viable due to right-of-

way restrictions, thus adding additional lanes at intersections is a less viable option 

(Wachs 2006).  

As a result researchers turned their efforts to finding ways to increase efficiency 

at intersections without adding lanes. In the 1990’s adaptive traffic signals on urban 

corridors running on SCATS, SCOOT, and RHODES logic began to be widely 

implemented (Stevanovic 2010). These systems took advantage of traffic detectors which 

allowed traffic signals to perform better than traditional actuated signals because it 

introduced other parameters like minimum green time, maximum green time, and passage 

time which improved signal phasing adjustment (McShane et al. 2013). Unfortunately, 

these systems are still limited in how effective they can be at reducing delay at 

intersections due to the limited range of equipment used to detect traffic. For example, 

the highest recommended sensor setback for a road with speeds of 40 mph is 170 feet 

with some agencies limiting the distance to 120 feet (Klein et al. 2003). 
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The inability of these systems to consistently reduce traffic delay at intersections 

became a major problem for transit agencies. Transit riders expect for busses to be 

reliable and arrive to stops according to a pre-set schedule. However, this task can be 

very difficult during peak hours when traffic backs up at busy intersections. One of the 

strategies employed to combat this issue is transit signal priority (TSP). TSP works by 

allowing transit vehicles to communicate with equipped traffic signals to give notice that 

the vehicle is approaching the intersection. With this knowledge the controller then 

adjusts signal phasing at the intersection to allow the transit vehicle to continue on its 

route in a timely manner. TSP has been thoroughly researched and implemented over the 

past couple of decades. According to most studies, TSP results in better schedule 

adherence for transit due to decreased delay at intersections, while having a minimal 

impact on cross-street traffic as long as the cross street is not nearing capacity (Garrow 

and Machemehl 1997; Smith et al. 2005). A 2013 survey showed that 26% of transit 

agencies use transit signal priority for their fixed route bus services (Gordon and Trombly 

2014; Gordon and Trombly 2014). 

 The concept behind transit signal priority systems may soon be able to be applied 

to other vehicles as well. Recent advancements in short to medium range wireless 

communication technology, including dedicated short range communication or DSRC 

with  IEEE 802.11p protocol (IEEE Standards Association 2001), Wi-Fi, cellular, and 

infrared data link technology (Papadimitratos et al. 2009) has paved the way for vehicles 

to communicate with other vehicles (V2V) and surrounding transportation infrastructure 

(V2I), such as traffic signals. As these technologies become increasingly mature, 
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governments have increased efforts in the development of standards and laws to require 

vehicles to be equipped with communications devices. In early 2014 the National 

Highway Transportation Safety Administration (NHTSA) announced its intention to 

move forward with plans to enable V2V communication technology for light vehicles 

(National Highway Traffic Safety Administration 2014). Later that year NHTSA released 

a comprehensive report about the state of V2V technology and outlined exactly what 

research is still necessary before moving forward with rule-making for a deployment-

level V2V communication system mandate (Harding et al. 2014). Intelligent 

transportation systems and connected vehicle technology related real-time applications 

have shown to be viable traffic management strategies to reduce traffic delay and 

improve energy consumption (Ma et al. 2009a; Ma et al. 2009b; Bhavsar et al. 2007; 

Bhavsar et al. 2014).  This rapid development of new technologies has led researchers to 

look at increasing efficiency at intersections using connected vehicle technology (CVT) 

to anticipate demand at an intersection and make adjustments to the signal phasing plan 

ahead of time instead of reacting to demand as current technologies allow. 

 While these technologies have the potential to have a major impact on the existing 

transportation system, it is becoming increasingly difficult to fund transportation projects. 

Traditional means of funding transportation projects, like the gas tax, are generating less 

revenue as inflation continues to rise and recent technological advances are drastically 

increasing vehicle fuel efficiency (Katz and Puentes 2005). Many innovative funding 

approaches have been explored to fund transportation projects, such as local sales tax 

initiatives and public-private partnerships. A common suggestion among professionals is 
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that a more robust user fee finance system consisting of vehicle miles traveled fees or 

congestion pricing strategies can help mitigate anticipated transportation finance crisis by 

providing additional revenue while encouraging more cost-conscious travel behavior 

(Wachs 2006; Morris 2006).  

The idea of paying for access to a roadway has deeps roots in the United States. In 

the early 19th century, the “turnpike era” resulted in thousands of miles of toll roads being 

built for wagon traffic in Pennsylvania, New York, New Jersey, Maryland, and a few 

other states (McCarty 1951). Today drivers are able to use transponders to easily pay tolls 

on toll roads and on high occupancy toll lanes. The introduction of connected vehicles 

into the transportation system may make this process even more streamlined (Kuennen 

2011). If the payment process were to be more efficient it may result in more situations 

where users are asked to pay a fee for specific uses of the transportation system. 

There is a growing body of research that proposes to use market-based strategies 

to control intersections in a connected vehicle environment. Suggestions for this type of 

control range from allowing some users to pay for enhanced service at an intersection to 

requiring all users to pay a small fee to use an intersection, to requiring travelers to outbid 

all other travelers at an intersection to be granted permission to use the intersection 

(Vasirani and Ossowski 2012; Isukapati 2014; Carlino et al. 2013). However, like with all 

user fees, these policies raise the ethical question about how access to vital transportation 

facilities should be controlled. 
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1.2 Objectives of the Thesis 

 This research will evaluate several aspects of a signal priority request strategy for 

connected vehicles to increase efficiency at intersections and generate revenue using 

connected vehicle technology. The first objective is to evaluate performance of a signal 

priority request system at different connected vehicle penetration levels and at different 

permitted priority directions for connected vehicle. Additionally, this research will 

identify a critical value for connected vehicle penetration level at which the connected 

vehicle signal priority system performs better than a non-priority system. 

 This research proposes that users be charged to request priority at an intersection 

therefore, the second objective includes a benefit to cost comparison for the connected 

vehicle supported signal priority system at different payment levels and different system 

cost estimates. The third objective is to anticipate some of the social implications of a 

“pay for priority” system by posing questions like, “What type of user will benefit most 

from this system?” and “Is that fair?”  

 

1.3 Statement of Contribution  

 Connected vehicles will undoubtedly impact operation of traffic signals, however 

the question still remains as to what is the best approach to utilize connected vehicle data 

at signalized intersections. This research explores applying a strategy similar to transit 

signal priority for connected vehicles. A unique aspect of this research is that it proposes 

a payment plan to be considered in conjunction with the priority system to help offset the 

costs of intersection improvements. 
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 The findings of this research will expand our understanding of how connected 

vehicle information may be used at signalized intersections. Additionally, the idea that 

connected vehicle technology could allow users to pay for priority at a signalized 

intersection will encourage more discussion among policy makers about the place that 

this type of user fee may have in a connected vehicle environment. 

 

1.4 Organization of Thesis 

 Chapter 2 reviews literature pertaining to the use of connected vehicle technology 

to increase efficiency at intersection, market-based approaches to intersection control, 

public perception of fee-based transportation strategies, and the expected cost of a traffic 

signal system that can communicate with connected vehicles and adjust its timings plans. 

Chapter 3 goes into detail about the methods used in this thesis including how simulation 

models were developed and research data was generated. Chapter 4 evaluates average 

network delay from the simulation model to compare different connected vehicle traffic 

scenarios. Chapter 5 is an economic evaluation of the pay for priority policy proposed in 

this research. Finally, Chapter 6 presents conclusions and recommendations based on the 

research outcomes. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

The first section of this chapter (Section 2.1) reviews various studies that have 

used connected vehicle technology to manage traffic at signalized intersections. The 

second section (Section 2.2) examines recent research into market-inspired intersection 

control strategies. The next section, (Section 2.3) explores the public opinion concerning 

charging drivers for use of the transportation system while using the studies reviewed in 

section 2.2 as examples. The final section (Section 2.4) identifies the expected cost to 

equip signalized intersections with V2I technology. 

 

2.1 Utilizing Connected Vehicle Technology to Increase Efficiency at Signalized 

Intersections 

 An early study on the utilization of CVT at intersections was introduced by 

Gradinescu et al. in 2007 which suggested calculating demand through communication 

with vehicles within a few miles of an intersection to calculate optimum cycle length and 

phase splits at the beginning of each cycle (Gradinescu et al. 2007). A similar approach 

was used by Wang et al. in 2013 (Wang et al. 2013). Both studies concluded that with 

100% connected vehicle penetration this method resulted in reduced vehicle delay and 

therefore more efficient intersection operation. These method uses many of the same 

theories used to calculate pre-timed signal plans and uses real-time data to run these 

calculations each cycle however it requires substantial data processing power to work as 

quickly as necessary. A different approach would be to use only a subset of vehicle data 
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to determine optimum signal timing. For example, Kari et al. developed an algorithm that 

uses only queue length information available from communication with vehicles and 

resulted in up to 61% reduction in travel time and 32% reduction in system wide fuel use 

(Kari et al. 2014). 

 All studies discussed so far have assumed 100% connected vehicle penetration 

level. However, this is an unrealistic assumption in the near term because a complete 

turnover of the US vehicle fleet once vehicle communication technology becomes a 

requirement would take 15 or more years (Information Handling Services 2014). 

Therefore it is important to determine at what penetration level connected vehicles would 

be useful to increase intersection efficiency. In 2009 a study was published that varied the 

penetration level of connected vehicles in an urban network with 9 signalized 

intersections and concluded that 33% penetration was the critical value where utilizing 

connected vehicle information led to a more efficient intersection than existing 

conditions. (Priemer and Friedrich 2009). 

 Many existing studies that attempt to demonstrate the benefits of CVT at 

intersections compare their algorithms to pre-timed signal plans which are notoriously 

inefficient compared to other signal designs. A more fair assessment of the benefits of 

information from connected vehicles would be to compare a scenario utilizing connected 

vehicle data to an actuated or adaptive signal timing plan. Goodall compared his 

algorithm to minimize vehicle delay along a corridor of four signalized intersections to a 

base scenario of Synchro coordinated actuated signal plans (Goodall 2013). Goodall 

came to a similar conclusion as previous study and found that as few as 25% of vehicles 
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would need to be equipped with CVT for his algorithm to outperform the baseline timing 

plans. 

 Another consideration that is not addressed often in literature on this topic is that 

the transportation network is a multimodal system. He et al. proposed a mixed integer 

linear program designed to minimize multimodal delay (He et al. 2012). The simulation, 

which accounted for passenger cars and transit vehicles, compared their algorithm with 

Synchro optimized actuated coordinated timing plans and found that multimodal delay 

could be reduced as much as 8% along the 8 intersection corridor. This study also varied 

connected vehicle penetration and found the critical connected vehicle penetration was 

40%. A more recent study by the same authors suggests allowing only priority eligible 

modes (pedestrians, transit, and emergency vehicles) to request priority at an intersection 

while passenger cars must rely on standard signal actuation (He et al. 2014). This method 

is essentially an expansion of existing transit signal priority operation and is meant to 

solve the issue of connected vehicle market penetration. The simulation results showed 

that transit and pedestrian delay was reduced by 25.9% and 14% respectively without 

having a significant impact on passenger car delay. 

 Connected vehicle technology will undoubtedly make an impact on intersection 

efficiency in the near future. Similarly the development of a fully autonomous vehicle 

with CVT will have a significant impact. Many companies, like Google and BMW, are 

working toward building an autonomous vehicle that can be sold to the public therefore it 

is important to look at the impact that automation may have on increasing efficiency at 

intersections in the future. One of the earliest attempts to create autonomous-like control 
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at intersections using emerging connected vehicle technology analyzed the possibility of 

combining cooperative adaptive cruise control, new technologies coming out of the 

IntelliDrive program, and smart traffic signals to adjust signal timings in real time to 

improve mobility (Malakorn and Byungkyu Park 2010). This study predicted that these 

types of systems could reduce delay as much as 91% while also reducing fuel use by 

75%. 

Jin et al. has suggested that vehicles with automation capabilities will be able to 

use feedback from signal controllers to adjust vehicle trajectory to minimize emissions 

and fuel consumption (Jin et al. 2012a). The simulation results in this study showed a 

94% reduction in CO2 emissions. This is an important study because it suggests that 

autonomous vehicles will be able to take advantage of the communication capabilities of 

intersections above and beyond what a normal connected vehicle would be able to 

without having to wait for full market penetration of autonomous vehicles. 

 There have been a few studies that have imagined a future without traffic signals 

at all. In this scenario all vehicles on the road would be fully automated and use CVT to 

communicate with a controller at each intersection to adjust vehicle trajectory and avoid 

collisions with crossing traffic without the use of conventional traffic signals. Jin et al. 

simulated this theory at an isolated intersection and observed up to 60% reduction in 

stops which resulted in a 58% reduction in travel time variability (Jin et al. 2012b). Lee 

and Park conducted a similar study at an isolated intersection and observed a 99% 

reduction in stop delay at the intersection (Lee and Park 2012). In a follow up study Lee 

et al. wanted to quantify the environmental impacts of such a drastic change along a four 
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intersection corridor (Lee et al. 2013). The study found that delay time was reduced as 

much as 100% and resulted in reduced travel time as well as up to 36% reduction in CO2 

emissions and up to 37% fuel savings. 

  

2.2 Market-Based Strategies for Intersection Control 

 Some researchers are focusing on non-traditional means of controlling 

intersections in the age of connected vehicles. For example, market-inspired intersection 

control would accept payment at intersections and disburse priority based on the amount 

paid. In 2012, Vasirani and Ossowski published research that utilizes a market-based 

approach to intersection control by requiring travelers pay to reserve a specific time at a 

signal for them to move through the intersection (Vasirani and Ossowski 2012). The 

initial price of a time slot is set by an intersection manager and is based on demand at that 

intersection. If a specific time slot has multiple reservations travelers will be able to bid 

for the disputed slot. The algorithm proposed in this study rewards the traveler who 

values their time the most with less delay at the intersection. However, this is not an 

inherently fair method to determine signal timing because simulation shows that while 

delay decreases for winning bidders, overall delay at the intersection increases. 

Furthermore, in a network of intersections if a traveler is unable or unwilling to pay the 

minimum price for a reservation that vehicle is forced to choose another route with less 

expensive minimum payments. 

 A study published soon after the previously discussed article took a similar 

approach to intersection control except that it allows “free-riders” who do not make bids 
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at any intersections as well as travelers who will not make a bid if the minimum price is 

above their predesignated limit (Carlino et al. 2013). In this case, instead of forcing 

travelers who do not wish to pay to choose a different route the intersection system will 

reward travelers who wait in a long queue or choose a lane with a short queue so that no 

one will have to wait indefinitely to be served. The researchers tested this algorithm on 

street networks in four major U.S. cities and found that system travel times decreased in 

three of the four cities when compared to a FIFO intersection control strategy. However, 

there was no comparison of travel time for bidders versus non-bidders or winners versus 

losers. 

 Another researcher took yet another slightly different approach to market-based 

intersection control. In his dissertation Isukapati proposes requiring a base initial fee from 

all drivers, regardless of demand at the intersection, and then allowing drivers to 

contribute more money based on their perceived value of time (Isukapati 2014). 

Additionally, instead of granting individual vehicles permission to move through the 

intersection, like the previous market-based studies, in this scenario all vehicles for a 

specific movement are grouped together and each movement is competing for the right to 

move through the intersection. This method also takes metrics like queue length and time 

since last green indication into account when determining the “winner.” This strategy was 

simulated with an intersection of a high volume and low volume road and compared to 

actuated control. The overall intersection delay did not change significantly between the 

market-based control and actuated control, however delay was more evenly distributed 

between the high volume approach, which experienced longer delays during actuated 
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control, and the low volume approach, which experienced much shorter delay during 

actuated control. Additionally, travelers who valued their time more were found to pay 

higher amounts at the intersection but experienced similar quality of service to those who 

did not pay extra. 

   

2.3 Public Perception on Different Pay for Priority Strategies 

Any change in the status quo of transportation finance is inevitably met with a 

surge of public interest and often public opposition. In a recent study about public 

opinion on congestion pricing one of the two specific factors that were found to have the 

most influence people’s perception of congestion pricing was the driver’s ability to 

choose (Swanson and Hampton 2013). The same study also found that the “fairness” of a 

pricing proposal was an important factor to consider. Another study released by the 

FHWA that gauged public opinion with regards to tolls and road pricing concluded that 

some of the factors necessary to bolster positive public opinion for a user fee 

transportation project include equity and fairness for users as well as simplicity (Zmud 

Johanna and Arce 2008).  

The three market-based intersection control strategies described in section 2.2 

take very different approaches to the level of freedom a traveler has to choose. In all 

cases travelers are given the choice to decrease their delay at an intersection by paying 

more than the travelers around them. On the other hand, only Carlino et al. allow 

travelers a choice of whether or not they wish to pay at all. Isukapati suggests requiring 

an initial fee for all travelers based on the operating cost of the system and thus does not 
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change over short time periods. Vasirani and Ossowski’s intersection control proposal 

restricts traveler’s choices the most because the minimum payment required at an 

intersection is in constant flux based on the demand at that intersection and requiring 

travelers to win a bid before being allowed to enter the intersection. This method makes it 

difficult for travelers to plan their route and travel time due to uncertainty of traffic 

conditions on their desired route. 

 The perceived fairness of a policy can refer to a number of factors. The most 

common concern when discussing the fairness is how the policy will affect low income 

individuals. The policies suggested by Vasirani & Ossowski and Isukapati will raise the 

financial cost of driving for all travelers because they require payment to use the 

intersection. Additionally, Vasirani and Ossowski presented data that proves that 

individuals who are not willing or able to pay the minimum bid or pay to compete for the 

most desirable time slots will experience increased delay (Vasirani and Ossowski 2012). 

The researchers justify this finding in their research by claiming their policy will promote 

system equilibrium. While the policy proposed by Carlino et al. does not require travelers 

to pay at an intersection the article does not provide enough data to determine if those not 

paying at the intersection are negatively affected in the form of increased delay. 

However, the researchers recognize that even if individuals who cannot pay are not 

negatively affected, they still will not be able to experience the positive aspects of the 

system either. In order to combat this perceived unfairness the researchers propose a 

system that grants a fixed number of credits to drivers to use at intersections which is 
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renewed on a weekly or monthly basis (Carlino et al. 2013). This approach will level the 

playing field for all travelers and encourage prudent use of their limited credits. 

 The pricing structure of the three market-based intersection control strategies is a 

good representation of varying levels of simplicity for pay for priority policies. The 

policy proposed by Carlino et al. is the most complex of the three because it utilizes a 

complex algorithm that supplements user bids with other factors like queue length and 

time since last green. Additionally there are several payment options including no 

payment, static payment which will only bid a predetermined amount, and a fair payment 

method which spreads predetermined budget for trip out over all signalized intersections 

on the route (Carlino et al. 2013). This system is very different from any system currently 

used for road traffic and make it difficult to garner positive public opinion without 

tangible examples and user experience to back up the policy (Zmud Johanna and Arce 

2008). The policy proposed by Vasirani and Ossowski is the middle of the road policy in 

terms of simplicity. The model is relatively simple, pay the minimum bid plus more if 

you wish to decrease your delay, however the mechanics behind the varying minimum 

bid may elude some of the public. Fortunately, this method is similar to congestion 

pricing on freeways which is becoming more prevalent throughout the country. Finally, 

Isukapati’s proposal that requires a fixed minimum payment plus more to decrease delay 

is the most simple policy for the public to grasp. It is similar to the structure of toll roads 

in that the initial fee is fixed and the public will generally understand the concept of 

paying more money to decrease delay. 
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2.4 System Cost for Signal Priority System 

 The cost to implement a priority payment system has yet to be thoroughly 

researched. The USDOT has developed a cost estimation tool, called co-pilot, to assist 

agencies with budgeting a pilot program. According to a co-pilot analysis the cost of an 

intelligent traffic signal system without the inclusion of new loop detectors, which are 

already present on the corridor being studied for this research, suggests that the system 

would cost about $12,000 per intersection (USDOT 2015). 

Transit signal priority (TSP) is a similar system that is widely adapted across the 

country and may be able to provide a good range of cost estimates. A recent study by the 

transit cooperative research program estimates that the cost of implementing a TSP 

system can vary greatly, between $5000 and $30,000 per intersection, depending on the 

type of detection system used and if the intersection is in need of any upgrades to support 

the system (Danaher 2010). Similar ranges have been estimated in previous studies of 

TSP implementation cost research (Smith et al. 2005; Baker et al. 2002) 

Nearly all of the studies reviewed have ignored the cost of supporting connected 

vehicle technology at a signalized intersection. Isukapati suggested in his research that 

money collected at each intersection controlled by a market-based system may be used to 

cover the cost of infrastructure and operations (Isukapati 2014). 

 

2.5 Summary of Literature Review 

 Many researchers have developed algorithms to utilize information available 

through connected vehicle technology to increase efficiency at signalized intersections. 
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While some studies only researched affects when connected vehicle penetration was at 

100% penetration as low as 25% has been shown to decrease overall intersection delay. 

Another approach that will undoubtedly utilize connected vehicle technology is market-

based approaches to intersection control. Three different proposed policies were reviewed 

which showcased a wide range of policy options and levels of success at reducing delay 

at signalized intersections. The main difference between the research reviewed in section 

2.1 and section 2.2 is that in section 2.1 use of data from connected vehicles benefited all 

users equally while in section 2.2 users who were able and chose to spend the most 

money generally experienced less delay than travelers who did not spend extra.  

The market-based intersection control policies were compared based on research 

on how the public perceives transportation fees. Research has shown that the public 

values choice, fairness, and simplicity while also gravitating towards policies they have 

seen before or that are similar to methods already in use. Each market-based control 

policy had pros and cons based on this criteria and there was no clear “best” policy based 

on public perception. 

Finally, there is limited literature about the expected cost of an intelligent 

signalized intersection like the one evaluated in this research. The most similar system 

that has experienced widespread adoption are transit signal priority systems, the cost of 

which range from $5,000 to $30,000 per intersection. This research evaluated revenue 

stream of a signal priority system for connected vehicles at intersections in an attempt to 

offset the costs of the system while also decreasing delay for all travelers in the network. 
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CHAPTER THREE 

RESEARCH METHOD 

 

This research examines the use of connected vehicle technology to increase 

efficiency at signalized intersection in a mixed traffic environment. This will be done by 

creating a micro-simulation model of a corridor in Clemson, SC using traffic volume, 

geometry, signal timing, and travel time data collected from the field. The calibrated 

model will then be used to evaluate several alternate traffic scenarios with different 

connected vehicle penetration levels. This research will analyze the affect that allowing 

connected vehicles to request priority has on non-connected vehicles using a similar 

simulation strategy. The steps shown in Figure 3.1 were used to create and generate 

output from each scenario and are discussed throughout the rest of this chapter. 

 

Figure 3.1 – Model Development and Data Generation Process 
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3.1 Data Collection 

The transportation network used in this research consists of two main corridors in 

Clemson, SC, SC 93/Old Greenville Highway and SC 133/College Avenue surrounding 

Clemson University main campus. These two corridors meet at a busy intersection in the 

Clemson downtown (Figure 3.2). The study area extends about 1 mile in each direction 

away from the intersection and includes 8 signalized intersections and 11 unsignalized 

intersections which are stop-controlled on the minor streets. Figure 3.2 shows an aerial 

snapshot of the network to be studied and identifies the name and location of each 

intersection. 

The time period that will be studied in this research is the peak afternoon hours 

from 4:00 PM to 6:00 PM. Vehicle volume and turning movement data was manually 

collected with the assistance of JAMAR traffic count boards at each of these intersections 

over the course of the spring 2015 semester. JAMAR traffic count boards were set to 5 

minute intervals so that the change in volume over time could be observed to incorporate 

into the model. Data was only collected on Tuesdays and Thursdays to avoid any 

interference the beginning and end of the work week may have on traffic data. Finally, 

data was only collected on “normal” school days, meaning if the school was closed due to 

extreme weather or a scheduled holiday data was not collected on that day. The vehicle 

volume and turning movement raw data that was collected can be found in Appendix A. 
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Figure 3.2 – Study Network and List of Intersections 
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 Field data for travel time was collected between 4:00 and 6:30 on Thursday, May 

22, 2015. The smart phone application “MapMyRide” was used to collect data for each 

run (MapMyRide, 2015). This application is meant to be used by bicyclists to record the 

route, travel time, speed, and other metrics of a bicycle workout. Each recorded workout 

can be accessed at a later time on a personal computer via the company’s website at 

mapmyride.com. Utilizing this application allowed the driver to start a workout from a 

safe location off the roadway then drive a designated route before again pulling over to a 

safe location to stop and save the data. This tool was used to collect data for 6 routes on 

US 93 and College Avenue and then process the data to find the travel times from exact 

locations using the internet interface and MS Excel software. 

 The sample size of travel times to be collected for each corridor was determined 

following the procedure outlined in chapter 3 of the ITE Transportation Planning 

Handbook (Anderson Bomar 2009). The equation 𝑁 = 𝑍𝛼
2 (𝐶𝑉)

2

𝑒2
 was used to calculate the 

sample size needed to obtain data with a 95% confidence interval and an error of 10%. In 

this equation, N is the sample size to be collected, Z is the normal standard variate based 

on a desired confidence level of (1-α), CV is the coefficient of variation, and e is the 

specified relative error. A coefficient of variation of 10% was chosen from the 

Transportation Planning Handbook to calculate sample size based on the largest AADT 

along these segments of roadway, about 15,000 vehicles per day (SCDOT, 2015).  The 

resulting sample size rounded up to 6 samples per corridor. This estimation is similar to 

another source in literature that suggests a sample size of 8 for an arterial street with 3-6 

traffic signals per mile and a desired confidence interval of 95% with a 10% error (Turner 
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et al. 1998). A sample size of 8 was decided on because both sample size estimates were 

easily attainable and a slightly larger sample size was considered desirable for this 

research. 

  

3.2 Existing Condition Model Development in VISSIM 

 The microsimulation software VISSIM was chosen for this research because it 

can support signal priority requests using the ring barrier controller add-on. The 

“VISSIM Quick Start Checklist” from the user manual was used as a guide to build the 

study network from scratch (PTV Planung Transport Verkehr AG 2012). After importing 

and scaling the background image, the first step was to create default speed distributions. 

The default speed distributions in VISSIM, which are in km/hr, were modified to 

represent speed distributions needed for this network in mi/hr. Speed limits that occur 

within the study network include 15 mph, 25 mph, 35 mph, and 40 mph.  

 The next step was to check vehicle types and classes. A new field was created, 

called “CV” for connected vehicles. While there are no connected vehicles in the 

existing/base scenario, CV scenarios are defined in the initial model development process 

to facilitate creation of alternate scenarios after calibration. The CV vehicle type and class 

is a replica of the “car” type and class with a different label to distinguish between regular 

and connected vehicles at intersections and for priority requests. After ensuring the vehicle 

types and classes were all correct, the vehicle compositions had to be specified. The default 

composition is 98% cars and an assumed 2% heavy vehicle. At this time the vehicle 
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composition for the connected vehicle scenarios was also created. Table 3.1 lists the 

composition for each scenario. 

Table 3.1 – VISSIM Vehicle Compositions 

 

 

After the initial file set up the links and connectors were overlaid on the 

background image to create the base network. Vehicle inputs were placed at network 

endpoints in terms of vehicles per hour (vph) for each 15 minute interval, the sum of 

three 5 minute intervals counted in the field. A 10 minute warm-up period was used at the 

beginning of the simulation using vehicle inputs that were 75% of the average measured 

flow. Routing decisions were placed at each intersection and the total flow for each 

movement was used to assign turning movement percentages on each approach to an 

intersection. After all routing decisions were created it was noted that the routing decision 

point on 133 NB between N. Clemson Rd. and Sloan St. were very close together due to 

the intersection geometry. For this situation the route before Sloan St. and all routes on 

the approaches at the intersection of 133 and N. Clemson Rd. were combined to create a 

Composition Name Car CV HV

Default 98% 0% 2%

10 Percent 88% 10% 2%

20 Percent 78% 20% 2%

30 Percent 68% 30% 2%

40 Percent 58% 40% 2%

50 Percent 48% 50% 2%

60 Percent 38% 60% 2%

70 Percent 28% 70% 2%

80 Percent 18% 80% 2%

90 Percent 8% 90% 2%

100 Percent 0% 98% 2%
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continuous routing decision through the tight intersections (Intersections 13 and 14 in 

Figure 3.2).   

The rest of the network development involved setting up traffic control 

regulations for the vehicles on the network. Desired speed decisions were added at 

vehicle inputs and where speed limits changed to match posted speed limits. Reduced 

speed zones were added at sharp turns at intersections to account for the slowing down of 

vehicles over a short distance. Stop signs were added and conflict areas defined at 

unsignalized intersections. Finally, ring barrier control (RBC) signal controllers were 

created for each intersection with the exception of Parkway Dr. and Calhoun Dr.  

(Intersections 10 and 11 in Figure 3.2) which used the same signal controller. Signal 

heads and detectors corresponding to the appropriate signal controller were added and 

conflict areas were defined for permissive left turns and right turn on red situations. 

 Appendix B presents the signal timing plans procured from SCDOT and the City 

of Clemson to generate the RBC signal timing plans used in VISSIM and as a base for 

Synchro models, discussed in Section 3.4. 

Appendix C contains a screenshot of the entire VISSIM network and close up 

screenshots of each signalized intersection to detail signal head, detector, and stop sign 

placement. The RBC signal timing plans used at each intersection is also included.  

 

3.3 Calibration of Existing Condition Model 

 To calibrate the existing model several types of traffic data had to be collected. 

Nodes were created around each signalized intersection and the output file was 
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configured to determine the volume of vehicles making each movement at the 

intersection every 15 minutes to allow for comparison to field volumes collected. Six 

travel time segments were created which corresponded to segments evaluated in the field 

and the simulation output file was configured to calculate the average travel time over the 

2 hour simulation period. 

Before the model could be declared calibrated the average travel time and vehicle 

volumes from 8 simulation runs had to closely match the field observations (10%). Initial 

travel times were off for some routes. Changes made to make the model match field 

observations include increasing the speed allowed in some reduced speed zones, 

shortening the length of or eliminating some reduced speed zones, adjusting the 

placement of speed decisions, and finally making slight adjustments to the desired speed 

distributions used for the model. The results of the field travel time analysis as well as the 

final travel times of the calibrated model can be seen in Table 3.2. The fact that the 

average travel time for each route in the calibrated VISSIM model is within the 95% 

confidence interval (CI) based on the field tests verifies that the model is calibrated. 

While the model was being calibrated by travel time it was also being checked to 

ensure the correct volume for each movement at signalized intersections using the node 

output information. After the initial run, two routing decision errors were found and 

corrected which helped account for some of the travel time discrepancies. The vehicle 

volumes for all movements at signalized intersections were found to be within ±10% of 

the observed field volumes.  

 



 26 

Table 3.2 – Travel Time Analysis for Model Calibration 

 

3.4 Development of Alternate Scenarios 

 Once the existing condition model was calibrated the alternate scenarios defined 

two scenarios were developed as variations on the existing condition model to compare 

the results from the CV simulation with. In the first of these cases signalized intersections 

were optimized individually, isolated from other intersections, in Synchro. The second 

case uses optimized and coordinated signal timings generated in Synchro to model the 

system as a coordinated network of traffic signals. This was accomplished by creating the 

same study network in Synchro as was created in VISSIM. The software Sychro 9 was 

chosen for this task because it is the standard software used in industry for traffic signal 

operations and optimization. After the existing conditions network was created the file 

was copied and modified for the “isolated optimized scenario” and the “coordinated 

scenario.” For the isolated optimized scenario, each signal was optimized individually 

Route 1 Route 2 Route 3 Route 4 Route 5 Route 6

Field Run 1 116 99 125 89 129 94

Field Run 2 91 84 140 89 117 171

Field Run 3 86 90 106 100 73 110

Field Run 4 163 83 123 133 124 101

Field Run 5 129 89 160 90 114 182

Field Run 6 153 98 124 79 191 110

Field Run 7 73 84 160 90 131 90

Field Run 8 131 94 136 82 93 118

Field Average 117.8 90.1 134.3 94.0 121.5 122.0

Standard Deviation 32.3 6.4 18.8 16.9 34.3 35.0

-95% CI 95.3 85.7 121.2 82.3 97.7 97.8

+ 95% CI 140.2 94.5 147.3 105.7 145.3 146.2

Calibrated VISSIM Average 137.6 88.4 134.5 97.1 110.2 141.5

Travel Time [s]
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used the “optimize cycle length” command followed by the “optimize splits” command. 

The coordinated scenario was created following the procedure described in chapter 17, 

Signal Optimization Routine, in the Synchro 9 user manual (Trafficware 2014). In the 

“optimize network cycle lengths” command Sychro was directed to analyze cycle lengths 

between 50 seconds and 160 seconds at 5 second increments, uncoordinated intersection 

were allowed rarely, and the extensive offset optimization analysis was selected. All 

other variables were default. Synchro chose 126 seconds as the optimal cycle length with 

some lower volume intersections operating at a half cycle length of 63 seconds. While a 5 

second increment has been specified for cycle length analysis, Synchro automatically 

added 1 second to the analyzed cycle length when it was an odd number because only 

even cycle lengths were allowed. The next step was to “optimize network offsets” which 

also optimized splits at each intersection. A step size of 1 second was used to optimize 

offsets. 

 After the new signal timing plans for the isolated optimized and coordinated 

scenarios were generated, the RBC timing plans in the corresponding VISSIM files were 

updated to match these timings. Appendix D contains the Sychro reports generated for 

the isolated optimized scenario and the coordinated scenario, each of which only contains 

reports about signalized intersections. The isolated optimized scenario resulted in the best 

network performance and was used for all alternative scenarios that include connected 

vehicles to ensure that any improvement in system performance did not include 

improvements that could be made by simply retiming the existing signal system. 
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Three priority direction scenarios were created to be studied. The first scenario 

allowed priority to be requested by CV from all directions at a signalized intersection. 

The second scenario only allowed vehicles traveling on US 93 or College Avenue to 

request priority. The third scenario reduced the permissions further to only allow CV 

traveling in the main direction of travel, determined by volume, on US 93 and College 

Avenue. For the third scenario directions that were allowed to request priority include 

East to West on US 93 from the Eastern beginning of the network to the US 93/College 

Avenue intersection, West to East on US 93 from the Western beginning of the network 

to the US 93/College Avenue intersection, and South to North on College Avenue from 

the US 93/College Avenue intersection to the Northern end of the network.  

For these scenarios all directions allowed to request priority have the same 

relative priority and the priority mode was set as “early/extend” which allows for early 

return or extension of the priority signal group.  The extend limit was determined by 

allocating 20% of the cycle length proportionally to phases serving vehicle movements at 

a signal. The 20% of cycle length is based on an observation noted in literature that a 

change in the cycle length as much as 20% does not cause significant delay to competing 

movements (Smith et al. 2005). All check-in detectors were placed 600 feet behind the 

stop bar on major streets and 300 feet behind the stop bar on minor streets, the only 

exception is in cases where another intersection is less than 600 feet away from the 

signalized intersection, in that case check in detectors were placed immediately 

downstream of the adjacent intersection so that only vehicles traveling to the signalized 

intersection would be considered. The travel time was calculated using the distance and 
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speed limit of the approaches. Check-out detectors were placed immediately past the stop 

bar for all movements. Detectors used to activate the TSP function were set to only detect 

the “CV” class of vehicles as transit vehicles. Appendix E contains screenshots of 

signalized intersections that includes check-in and check-out detector placement as well 

as the RBC signal timings plans used for each intersection where priority was allowed to 

be requested in only one direction on the major streets. 

  

3.5 Research Data Generation  

Each scenario created in VISSIM was run 8 times, based the results of the 

statistical sampling formula mentioned in Section 3.1, for each CV penetration level 

defined in Table 3.1 with different seed numbers to calculate average travel time at 

defined travel time segments and delay at intersections. The multi-run function in 

VISSIM was used to run the simulation. A random number generator was used to pick a 

starting seed and interval number which resulted in the simulation using seeds 14, 46, 78, 

110, 142, 174, 206, and 238. Data collected from these runs include the average network 

delay for all vehicle types, cars only, and connected vehicles only as well as the average 

green time distribution within a cycle and the total number of connected vehicles that 

move through each intersection over the 2 hour simulation period. Appendix F contains 

example VISSIM output files created during each simulation run. 
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CHAPTER FOUR 

OPERATIONAL ANALYSIS 

 

 This chapter identifies trends in average delay per vehicle that emerge from the 

results of simulation studies for each traffic scenario modeled. Findings from simulation 

outputs are grouped by connected vehicles (CV), non-connected vehicles (non-CV), and 

all vehicle types combined. The priority permission scenario where CV are allowed to 

request priority from all directions is referred to as the “all-way” scenario. The priority 

permission scenarios where CV are only allowed to request priority on the main street are 

called “two-way” when both directions may request priority and “one-way” when only 

the direction with the highest volume may request priority. 

 

4.1 Analysis of Non-Connected versus Connected Vehicle Delay 

 The idea behind allowing CVs to request priority at a signalized intersection is 

that it will results in decreased delay for CVs when compared to non-CVs. The three 

simulation models with different CV priority direction permissions in mixed traffic 

conditions were simulated for CV penetration levels of 10% to 100% at 10% increments.  

It was observed that CVs generally experienced less delay than non-CVs, 

especially at low CV penetration levels. Table 4.1 presents the average delay per vehicle 

for non-CVs and CVs for the all-way priority request scenario, and graphically presented 

in Figure 4.1. 
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Table 4.1 – Average Delay per Vehicle for Non-Connected and Connected Vehicles (All-

Way Scenario) 

 

 

Figure 4.1 – Average Delay per Vehicle for Non-Connected and Connected Vehicles 

(All-Way Scenario) 

% CV Non-CV Delay [s] CV Delay [s]

10% 55.54 52.41

20% 57.38 56.50

30% 60.54 59.60

40% 61.13 61.09

50% 61.33 61.44

60% 64.00 64.05

70% 63.95 64.21

80% 64.04 64.08

90% 66.55 66.77

100% - 64.52
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A statistical analysis was conducted to determine if the difference in delay is 

statistically significant between reductions in CVs delay compared to non-CVs. The 

results of this statistical significance test can be seen in Table 4.2. Assuming that α=0.05 

the difference in delay is statistically significant up to 20% CV penetration levels. This 

analysis is similar to results found by Isukapati, who proposed a pay for priority method 

at signalized intersections, mentioned in Section 2.2 (Isukapati 2014). He found that 

drivers who paid higher amount at a signalized intersection to gain priority experienced 

similar level of service to those who did not pay extra and that is true for most of the CV 

penetration levels studied for this scenario. 

 

Table 4.2 – Statistical Analysis of Difference in Delay between Non-Connected and 

Connected Vehicles (All-Way Scenario) 

 

 

Table 4.3 presents the average delay per vehicle for non-CVs and CVs for the 

two-way priority request scenario, and graphically presented in Figure 4.2. 

% CV
Average 

Difference [s]

St. Dev. of 

Difference [s]
tobs p-value

10% -3.14 1.96 -4.51 0.001

20% -0.88 0.83 -2.99 0.01

30% -0.94 1.91 -1.39 0.10

40% -0.05 1.44 -0.09 0.46

50% 0.11 1.66 0.20 0.57

60% 0.05 1.19 0.13 0.55

70% 0.26 1.08 0.69 0.74

80% 0.05 1.88 0.07 0.53

90% 0.23 1.19 0.54 0.70
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Table 4.3 – Average Delay per Vehicle for Non-Connected and Connected Vehicles 

(Two-Way Scenario) 

 

 

Figure 4.2 – Average Delay per Vehicle for Non-Connected and Connected Vehicles 

(Two-Way Scenario) 

% CV Non-CV Delay [s] CV Delay [s]

10% 47.58 43.86

20% 51.70 50.14

30% 53.59 53.05

40% 57.65 57.19

50% 59.41 59.13

60% 60.38 60.38

70% 61.97 61.40

80% 62.20 61.64

90% 62.68 63.28

100% - 63.87
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A statistical analysis was conducted to determine when the difference in delay is 

statistically significant between reductions in CV delay compared to non-CVs. The 

results of this statistical significance test can be seen in Table 4.4. Assuming that α=0.05 

the difference in delay is statistically significant up to 20% CV penetration levels. Even 

after removing priority requests from the minor streets the resulting difference in delay is 

similar to the all-way signal priority request scenario. This suggests that it is the 

conflicting requests made by the traffic flowing opposite the heaviest flow on the main 

street that is causing the controller to not work as efficiently as possible to serve the CV 

requests. 

Table 4.5 presents the average delay per vehicle for non-CVs and CVs for the 

one-way priority request scenario, and graphically presented in Figure 4.3. 

 

Table 4.4 – Statistical Analysis of Difference in Delay between Non-Connected and 

Connected Vehicles (Two-Way Scenario) 

 

% CV
Average 

Difference [s]

St. Dev. of 

Difference [s]
tobs p-value

10% -3.72 1.39 -7.56 0.0001

20% -1.56 0.87 -5.05 0.001

30% -0.54 1.27 -1.20 0.13

40% -0.47 1.05 -1.26 0.12

50% -0.28 1.86 -0.43 0.34

60% -0.01 1.94 -0.01 0.50

70% -0.57 1.60 -1.00 0.17

80% -0.57 1.97 -0.81 0.22

90% 0.60 1.86 0.91 0.80
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Table 4.5 – Average Delay per Vehicle for Non-Connected and Connected Vehicles 

(One-Way Scenario) 

 

 

Figure 4.3 – Average Delay per Vehicle for Non-Connected and Connected Vehicles 

(One-Way Scenario) 

% CV Non-CV Delay [s] CV Delay [s]

10% 42.06 38.62

20% 42.38 40.68

30% 42.62 41.44

40% 43.94 42.85

50% 45.14 44.55

60% 47.73 47.82

70% 47.93 48.08

80% 48.77 49.34

90% 50.54 50.21
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A statistical analysis was conducted to determine when the difference in delay is 

statistically significant between reductions in CV delay compared to non-CVs. The 

results of this statistical significance test can be seen in Table 4.6. Assuming that α=0.05 

the difference in delay is statistically significant up to 40% CV penetration levels. This is 

likely the best outcome that can be achieved on this network because priority requests 

from competing directions are not allowed in the one-way scenario. The reason CV do 

not always experience less delay than non-CVs at higher penetration levels (>40%) is 

because the controller is not allowed to infinitely extend the green time to accommodate 

all priority requests in the major direction.  

 

Table 4.6 – Statistical Analysis of Difference in Delay between Non-Connected and 

Connected Vehicles (One-Way Scenario) 

 

 

 

 

% CV
Average 

Difference [s]

St. Dev. of 

Difference [s]
tobs p-value

10% -3.44 1.38 -7.05 0.0001

20% -1.70 0.92 -5.21 0.001

30% -1.18 0.85 -3.93 0.003

40% -1.09 0.73 -4.23 0.002

50% -0.59 1.07 -1.56 0.08

60% 0.08 1.65 0.14 0.56

70% 0.15 1.36 0.30 0.61

80% 0.57 1.52 1.07 0.84

90% -0.33 1.03 -0.90 0.20
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4.2 Analysis of Delay for All Vehicle Types 

The average delay per vehicle for all vehicle types on the network was studied for 

CV penetration levels of 0% (optimized timing conditions) to 100% at 10% increments. 

The average delay per vehicle is shown in Table 4.7 and graphically illustrated in Figure 

4.4. The results of comparing the average delay per vehicle for each priority permission 

scenario with the optimized conditions delay without CV shows that the best solution in 

terms of delay for all vehicles is the one-way scenario. A statistical analysis was 

performed to compare the difference in average delay per vehicle for the one-way 

scenario to the optimized conditions. The results of this analysis can be seen in Table 4.8. 

Assuming a confidence interval of 95% (α=0.05), the average delay per vehicle is 

significantly lower for all CV penetration levels up to 50%.  

 

Table 4.7 – Average Delay per Vehicle for All Vehicle Types 

 

All-Way 

Delay [s]

Two-Way 

Delay [s]

One-Way 

Delay [s]

10% 55.37 47.28 41.83

20% 57.31 51.49 42.15

30% 60.33 53.54 42.37

40% 61.21 57.55 43.61

50% 61.48 59.35 44.98

60% 64.11 60.46 47.90

70% 64.22 61.65 48.17

80% 64.16 61.79 49.37

90% 66.82 63.31 50.37

100% 64.63 63.95 50.42

Sceanrio

% CV
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Figure 4.4 – Average Delay per Vehicle for All Vehicle Types 

 

Table 4.8 – Statistical Analysis of Delay for All Vehicle Types 
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% CV
Average 

Difference [s]

St. Dev. of 

Difference [s]
tobs p-value

10% 6.55 1.16 15.95 0.0000005

20% 6.23 1.48 11.88 0.000003

30% 6.01 2.19 7.75 0.0001

40% 4.77 2.50 5.40 0.001

50% 3.40 2.89 3.32 0.01

60% 0.48 5.68 0.24 0.41

70% 0.21 6.08 0.10 0.46

80% -0.99 4.98 -0.56 0.70

90% -1.99 6.12 -0.92 0.81

100% -2.04 6.51 -0.89 0.80
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This finding, along with the fact that the average delay per vehicle increases as 

the CV penetration levels increase, resembles the market based approach proposed by 

Vasirani & Ossowski who found that while connected vehicles experience less delay at a 

signalized intersection, the overall delay at the intersection is increased (Vasirani and 

Ossowski 2012). The biggest difference between the finding of Vasirani & Ossowski’s 

research and this research is that there are levels of CV penetration where the network 

delay is decreased. This is likely due to the fact that the intersections in this study are still 

controlled by traffic signals which allows non-connected vehicles to be served alongside 

CVs. 
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CHAPTER FIVE 

BENEFIT-COST ANALYSIS 

 

 This chapter considers the scenario where CV traveling in the direction of highest 

flow on the major corridors (one-way scenario), at different CV penetration levels, are 

requesting priority at a signalized intersection. The revenue that could be generated by 

this scale of requests is calculated and compared to the cost of the priority system 

deployment and maintenance. Another benefit-cost analysis includes the benefit of 

decreased delay on the network for up to 50% CV perpetration levels. For a project to be 

considered a viable investment the benefit-cost ratio should be greater than 1.00. 

 

5.1 Revenue Generation 

The benefits assessed for the benefit-cost analysis is the revenue generated by 

allowing CVs to request and receive priority at intersections for the one-way scenario. 

For the priority request system, revenue is generated by charging CVs that wish to 

request priority a small fee to do so. A range of fees (low, average, and high) were 

calculated based on the value of time estimates published by the US DOT and assuming 

travel time savings of 1 second for the low estimate, 2 seconds for the average estimate, 

and 4 seconds for the high estimate (US Department of Transportation 2014). This range 

was chosen because the average delay savings between CV and non-CV when the 

difference was significantly different (<50% CV penetration) ranged from 1 second to 4 

seconds with an average of 2 seconds. The base value used for benefit assessment is 
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$12.80 per person-hour. This research makes the conservative estimate that there is only 

one person in each vehicle. The low, average, and high fees to request priority were 

assumed as follows: 

 Low = $0.00356/request 

 Average = $0.00711/request 

 High = $0.01422/request 

Table 5.1 presents the annual revenue from weekday traffic that can be expected for 

each level of CV penetration across the range of assumed cost per priority request at each 

intersection. Revenue was calculated by multiplying the number of vehicles requesting 

priority during the simulated peak hour (i.e., only CV moving through the intersection in 

the direction of highest flow), with an assumed cost per request. The conservative 

assumption was made that the 2 hour afternoon peak simulated in this study generates 

half of daily weekday revenue therefore the peak hour revenue was multiplied by 2 then 

by 260 (the number of weekdays in a year) to get the results shown in the tables. Table 

5.2 combines the revenue at all intersections to present the total expected annual revenue 

for the network. 

A similar approach was used to estimate the benefit of decreased delay per vehicle for 

all vehicles types on the network. The benefit was only calculated for CV penetration 

levels up to 50% because there was no significant reduction of network delay past this 

point. Each CV penetration level had a different range of delay reductions per vehicle 

based on the simulation results. The range of delay reductions per vehicle used as well as 

the corresponding monetary benefit per vehicle is shown in Table 5.3. Annual benefit to 

society due to the reduction of average delay per vehicle was calculated as described in 
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the previous paragraph, by multiplying the benefit per vehicle by the number of vehicles 

on the network, multiplying that number by 2 to get the daily benefit, then multiplying by 

the number of weekdays per year, 260. The results of this calculation are shown in Table 

5.4. Finally, Table 5.5 shows the total benefit to society when the benefit from revenue 

generated by priority requests is combined with the benefit due to reduction in average 

delay per vehicle for all CV penetration levels. 

 

Table 5.1 – Expected Annual Revenue per Intersection Based on Weekday Traffic 

 

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low $81 $162 $247 $332 $415 $499 $580 $661 $756 $820

Average $162 $324 $494 $663 $829 $999 $1,161 $1,323 $1,511 $1,639

High $324 $648 $987 $1,327 $1,658 $1,998 $2,322 $2,646 $3,023 $3,279

Low $147 $288 $441 $588 $746 $884 $1,040 $1,191 $1,342 $1,460

Average $294 $577 $882 $1,176 $1,492 $1,768 $2,080 $2,382 $2,683 $2,921

High $588 $1,153 $1,764 $2,352 $2,985 $3,535 $4,161 $4,764 $5,367 $5,842

Low $556 $1,114 $1,675 $2,214 $2,768 $3,324 $3,876 $4,436 $4,979 $5,408

Average $1,112 $2,227 $3,351 $4,428 $5,536 $6,648 $7,753 $8,872 $9,957 $10,817

High $2,224 $4,455 $6,701 $8,857 $11,073 $13,297 $15,505 $17,744 $19,915 $21,633

Low $49 $494 $720 $974 $1,210 $1,445 $1,688 $1,926 $2,148 $2,348

Average $475 $987 $1,440 $1,949 $2,420 $2,891 $3,377 $3,852 $4,297 $4,696

High $950 $1,975 $2,879 $3,897 $4,839 $5,781 $6,754 $7,704 $8,593 $9,392

Low $198 $407 $601 $818 $1,012 $1,206 $1,402 $1,602 $1,800 $1,969

Average $396 $814 $1,202 $1,636 $2,024 $2,412 $2,804 $3,204 $3,599 $3,938

High $791 $1,628 $2,405 $3,271 $4,048 $4,824 $5,608 $6,407 $7,199 $7,877

Low $158 $334 $497 $650 $810 $995 $1,148 $1,300 $1,466 $1,590

Average $317 $667 $995 $1,300 $1,621 $1,990 $2,295 $2,601 $2,932 $3,181

High $633 $1,334 $1,990 $2,601 $3,241 $3,980 $4,591 $5,201 $5,864 $6,362

Low $207 $441 $650 $854 $1,070 $1,306 $1,519 $1,728 $1,952 $2,116

Average $415 $882 $1,300 $1,707 $2,141 $2,612 $3,038 $3,456 $3,905 $4,232

High $829 $1,764 $2,601 $3,415 $4,281 $5,224 $6,075 $6,912 $7,809 $8,465

93/Williamson 

Rd.

Intersection Charge
Percent of Vehicles Requesting Priority

93/Perimeter 

Rd.

College 

Ave./Keith St.

College 

Ave./Edgewood 

Ave.

93/College Ave.

93/Calhoun Dr.

93/Cherry
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Table 5.2 – Total Expected Annual Revenue for Network Based on Weekday Traffic 

 

Table 5.3 – Range of Delay Reductions per Vehicle and Equivalent Benefit per Vehicle 

 

Table 5.4 – Expected Annual Benefit from Reduced Network Delay up to 50% CV 

Penetration Based on Weekday Traffic 

 

Table 5.5 – Sum of Expected Annual Revenue and Expected Annual Benefit from 

Reduced Delay 

 

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low $1,396 $3,239 $4,832 $6,430 $8,032 $9,660 $11,254 $12,844 $14,442 $15,712

Average $3,170 $6,479 $9,663 $12,859 $16,063 $19,319 $22,508 $25,689 $28,885 $31,425

High $6,339 $12,957 $19,327 $25,719 $32,126 $38,639 $45,016 $51,377 $57,770 $62,850

Charge
Percent of Vehicles Requesting Priority

Delay 

Reduction 

[s]

Benefit/ 

Vehicle 

[$]

Delay 

Reduction 

[s]

Benefit/ 

Vehicle 

[$]

Delay 

Reduction 

[s]

Benefit/ 

Vehicle 

[$]

Delay 

Reduction 

[s]

Benefit/ 

Vehicle 

[$]

Delay 

Reduction 

[s]

Benefit/ 

Vehicle 

[$]

Low 2.5 $0.00889 0.5 $0.00178 0.5 $0.00178 0.5 $0.00178 0.0 $0.00000

Average 3.5 $0.01244 1.5 $0.00533 1.0 $0.00356 1.0 $0.00356 0.5 $0.00178

High 4.5 $0.01600 2.5 $0.00889 1.5 $0.00533 1.5 $0.00533 1.0 $0.00356

Range of 

Delay 

Reduction

Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50%

10% 20% 30% 40% 50%

Low 43,356 8,671   8,671   8,671   -       

Average 60,699 26,014 17,343 17,343 8,671   

High 78,042 34,685 26,014 26,014 17,343 

Delay 

Reduction

Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low $44,753 $11,911 $13,503 $15,101 $8,032 $9,660 $11,254 $12,844 $14,442 $15,712

Average $63,869 $32,493 $27,006 $30,202 $24,734 $19,319 $22,508 $25,689 $28,885 $31,425

High $84,381 $56,314 $45,341 $51,733 $49,469 $38,639 $45,016 $51,377 $57,770 $62,850

Charge/

Delay 

Percent of Vehicles Requesting Priority
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5.2 System Cost 

The cost to implement the priority payment system with the ability to retime 

traffic signals also had to be estimated for this analysis. In Section 2.4 the cost of a TSP 

system was estimated to range from $5,000 to $30,000 per intersection while a Co-Pilot 

analysis suggested a cost of about $12,000 per intersection. To be on the conservative 

side, the lowest cost considered for the system will be the $12,000 per intersection 

estimated by Co-Pilot and $30,000 per intersection will be the upper limit of the potential 

cost. These values were then converted to annual costs assuming a 5% interest rate and a 

5 and 10 year payback period. The annual system cost per intersection is estimated to 

range from $2,772 - $6,929 and $1,554 - $3,885 for the 5 and 10 year payback periods 

respectively. For analysis these costs will be multiplied by 7, the number of signalized 

intersections in the study network.  

5.3 Results of Benefit-Cost Analysis 

Tables 5.6 – 5.9 show the results of the benefit-cost analysis for each case 

considered based only on revenue from CV.  Based on these results it is possible that the 

project cost could be recovered solely through revenue generated by allowing CVs to 

request priority in the major direction of flow.  

The highest CV penetration level at which there was a statistically significant 

advantage for connected vehicles over non-connected vehicles was 40%. The lowest CV 

penetration level at which a benefit-cost ratio greater than 1.00 is 20%. At 40% CV 

penetration levels three scenarios have a benefit-cost ratio greater than 1.00: i) a low 

system cost with 5 year payback period and high price to request priority, ii) a low 
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system cost with a 10 year payback and high price to request priority, and iii) a low 

system cost with a 10 year payback and an average price to request priority. 

Tables 5.10 – 5.13 show the results of the benefit-cost analysis for each case when 

revenue and the benefit of reduced delay are both considered. For this case 5 of the 12 

scenarios have a benefit-cost ratio greater than 1.00 for all CV penetration levels. The 

large reduction in delay at 10% CV penetration levels results is a benefit-cost ratio 

greater than 1.00 for 11 of the 12 scenarios. This is a very promising result because it 

shows that even if the project cost cannot be made up for with revenue from connected 

vehicle priority requests at penetration levels less than 20%, the added benefit of 

enhanced network performance makes up for the revenue shortfalls from the priority 

requests of connected vehicles.   
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Table 5.6 – B/C Results: $12,000 Installation Cost, 5 Year Payback, Revenue Only 

 

Table 5.7 – B/C Results: $30,000 Installation Cost, 5 Year Payback, Revenue Only 

 

Table 5.8 – B/C Results: $12,000 Installation Cost, 10 Year Payback, Revenue Only 

 

Table 5.9 – B/C Results: $30,000 Installation Cost, 10 Year Payback, Revenue Only 

  

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 0.07 0.17 0.25 0.33 0.41 0.50 0.58 0.66 0.74 0.81

Average 0.16 0.33 0.50 0.66 0.83 1.00 1.16 1.32 1.49 1.62

High 0.33 0.67 1.00 1.33 1.66 1.99 2.32 2.65 2.98 3.24

Charge
Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.26 0.30 0.32

Average 0.07 0.13 0.20 0.27 0.33 0.40 0.46 0.53 0.60 0.65

High 0.13 0.27 0.40 0.53 0.66 0.80 0.93 1.06 1.19 1.30

Charge
Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 0.13 0.30 0.44 0.59 0.74 0.89 1.03 1.18 1.33 1.44

Average 0.29 0.60 0.89 1.18 1.48 1.78 2.07 2.36 2.66 2.89

High 0.58 1.19 1.78 2.36 2.95 3.55 4.14 4.72 5.31 5.78

Charge
Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 0.05 0.12 0.18 0.24 0.30 0.36 0.41 0.47 0.53 0.58

Average 0.12 0.24 0.36 0.47 0.59 0.71 0.83 0.94 1.06 1.16

High 0.23 0.48 0.71 0.95 1.18 1.42 1.66 1.89 2.12 2.31

Charge
Percent of Vehicles Requesting Priority
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Table 5.10 – B/C Results: $12,000 Installation Cost, 5 Year Payback, Revenue & Benefit 

from Delay Reduction 

 

Table 5.11 – B/C Results: $30,000 Installation Cost, 5 Year Payback, Revenue & Benefit 

from Delay Reduction 

 

Table 5.12 – B/C Results: $12,000 Installation Cost, 10 Year Payback, Revenue & 

Benefit from Delay Reduction 

 

Table 5.13 – B/C Results: $30,000 Installation Cost, 10 Year Payback, Revenue & 

Benefit from Delay Reduction 

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 2.31 0.61 0.70 0.78 0.41 0.50 0.58 0.66 0.74 0.81

Average 3.29 1.67 1.39 1.56 1.27 1.00 1.16 1.32 1.49 1.62

High 4.35 2.46 2.34 2.67 2.55 1.99 2.32 2.65 2.98 3.24

Charge/Delay 

Reduction

Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 0.92 0.25 0.28 0.31 0.17 0.20 0.23 0.26 0.30 0.32

Average 1.32 0.67 0.56 0.62 0.51 0.40 0.46 0.53 0.60 0.65

High 1.74 0.98 0.93 1.07 1.02 0.80 0.93 1.06 1.19 1.30

Charge/Delay 

Reduction

Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 4.11 1.09 1.24 1.39 0.74 0.89 1.03 1.18 1.33 1.44

Average 5.87 2.99 2.48 2.78 2.27 1.78 2.07 2.36 2.66 2.89

High 7.76 4.38 4.17 4.76 4.55 3.55 4.14 4.72 5.31 5.78

Charge/Delay 

Reduction

Percent of Vehicles Requesting Priority

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low 1.65 0.44 0.50 0.56 0.30 0.36 0.41 0.47 0.53 0.58

Average 2.35 1.19 0.99 1.11 0.91 0.71 0.83 0.94 1.06 1.16

High 3.10 1.75 1.67 1.90 1.82 1.42 1.66 1.89 2.12 2.31

Charge/Delay 

Reduction

Percent of Vehicles Requesting Priority
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CHAPTER SIX 

CONCLUSIONS AND RECCOMENDATIONS 

 

6.1 Conclusions 

 This research evaluated traffic operation efficiency of urban corridors when 

connected vehicles were allowed to pay a small fee to request priority at a signalized 

intersection, similar to a transit signal priority system, in a mixed traffic environment that 

included connected and non-connected vehicles. An existing network containing 8 

signalized and 11 signalized intersections was modeled in VISSIM. Initially, the 

scenarios not containing connected vehicles, the existing conditions, optimized signal 

timings, and coordinated signal plans, were compared to one another. The lowest delay of 

all scenarios not containing connected vehicles was the scenario in which each 

intersection’s cycle length and split was optimized individually. Conversely, the 

coordinated scenario produced the highest delay in the study, probably due to the fact that 

the Synchro analysis placed too much focus on US 93 and not enough on the College 

Avenue corridor. The alternate scenarios containing connected vehicles were compared 

to the optimized signal timing condition to eliminate any bias due to inaccurately timed 

signals. 

Next, several alternate scenarios containing different priority request direction 

permissions and different connected vehicle penetration levels were simulated. 

Connected vehicle penetration levels ranging from 0% (no connected vehicles) to 100% 

were evaluated and delay difference between connected and non-connected vehicles was 
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analyzed and the delay for all vehicle types was compared to the results from the 

optimized signal timing scenario to determine the effectiveness of the concept presented 

in this thesis.  

 Analysis of network delay for connected versus non-connected vehicles revealed 

that, on average, connected vehicles experience less delay than non-connected vehicles 

up to 20% CV penetration levels when priority was allowed to be requested from all 

directions and in both directions on the major corridors at a signalized intersection. 

Additionally, CVs experienced less delay than non-connected vehicles at up to 40% CV 

penetration levels when priority was only allowed to be requested in the direction of 

highest flow on the major corridors. 

The delay for all vehicle types was also analyzed which revealed that the scenario 

which allowed connected vehicles to request priority in only one direction was the only 

scenario where the average delay per vehicle was consistently less than the average delay 

per vehicle for the optimized signal timing scenario. The one-way scenario had 

significantly less delay up to 50% CV penetration levels. Another observation is that the 

average delay per vehicle increased as the CV penetration levels increased. This is 

probably due to the fact that vehicles were selfishly competing for green time instead of 

sharing information and trying to optimize the signal timing for all vehicles. Thus, as 

more vehicles tried to request green time for themselves, the average delay per vehicle 

increased. Instead of determining a critical value where the system with connected 

vehicles performed better than the comparison scenario, this research identified a critical 
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value of 50% CV penetration for one-way priority requests where the network actually 

performs worse than the comparison scenario. 

 A benefit-cost analysis was performed for the one-way priority request scenario 

because it was the only scenario that outperformed the base scenario. It was found that 

when the benefits only included revenue generated by connected vehicles requesting 

priority, the lowest CV penetration levels with a benefit-cost ratio higher than 1.00 was 

20%. This is a good finding because it shows that once the CV penetration levels are high 

enough, the system can pay for itself and generate some profit. 

 An additional benefit-cost analysis was performed that included the revenue 

generated by CV priority requests as well as the reduction in overall network delay as 

benefits to society. For this case the large reduction of average delay per vehicle at the 

lower levels of CV penetration helped to greatly boost the benefit-cost ratios. 11 of the 12 

scenarios had a benefit-cost ratio greater than 1.00 at a 10% CV penetration level while 5 

of the 12 scenarios maintained a benefit-cost ratio of at least 1.00 for all levels of CV 

penetration. This result helps to prove the viability of system implementation because 

even if the system cannot pay for itself immediately in terms of revenue the system is still 

generating enough benefits in terms of reduced delay to cover the gap in revenue. 

 The pay for priority system proposed in this paper offers travelers the choice to 

pay a very small fee to request priority at a signalized intersection. This fee is not 

required and all travelers may use the intersection like normal regardless of ability or 

willingness to pay. Theoretically, this type of system would benefit the wealthy travelers 

who have more money to spend on services and who may place a higher value on their 
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time than the average person. This type system behavior is observed at CV penetration 

levels up to 20% for all-way and two-way priority permission scenarios and up to 40% 

for the one-way priority permission scenario. Once CV penetration levels increase above 

these thresholds all vehicle types were found to experience similar quality of service. The 

fact that the intersection remains under signalized control means that when a payer 

receives a green indication, all other non-payers on that approach are also allowed to 

enter the intersection. While the all-way and two-way scenarios display advantages for 

connected vehicles when compared to non-connected vehicles, the average delay per 

vehicles is actually greater than the base conditions for these scenarios therefore it is 

unlikely that they will ever be implemented. However, the one-way scenario performs 

better than the base scenario up to 50% CV penetration levels. Because of this, non-

payers can experience faster travel times on the network as long as the percentage of CV 

paying to request priority stays below 50%. This seems like a logical assumption because 

CV payers only experience an advantage over non-payers up to 40% penetration levels of 

CV paying for priority. Therefore, as long as the level of CV paying to request priority 

stays at or below 50%, this is a fair system for everyone on the traffic network including 

non-connected vehicles and connected vehicles. 

 

6.2 Recommendations for Future Research 

 A pay for priority system that uses connected vehicle technology to allow 

travelers to request priority in the direction of highest flow at a signalized 
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intersections is a viable project for the future with connected vehicles on the 

arterials. 

 Future attempts to model vehicles requesting signal priority in VISSIM may 

consider creating a custom code to specifically deal with issues of many 

conflicting signal priority requests. Researchers could also explore alternate 

VISSIM add-ons that will do a better job simulating connected vehicle 

communication in the model, such as integrating VISSIM with a network 

communication simulator Version 3 (ns-3). 

 The concept of allowing travelers to pay for priority at an intersection has merit 

from a financial standpoint if enough drivers are willing to pay. This concept 

should be explored in further detail through additional simulation studies as well 

as public opinion studies. When presenting the idea to the public it is important to 

keep the policy as simple as possible and to compare it to other transportation 

strategies that people are familiar with, such as transit signal priority. 

 Future studies should take revealed public opinion on the policy into account and 

make necessary changes to make the connected vehicle signal priority concept 

presented in this thesis as appealing as possible to the public. 
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Appendix A 

Vehicle Volume and Turning Movement Data from Field Collection 
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 0 0 0 0 0 24 1 1 10 0 25 0 27 13 0 0

4:05 PM 0 0 0 0 0 24 6 0 14 0 34 0 25 22 0 1

4:10 PM 0 0 0 0 0 13 3 0 13 0 38 0 24 15 1 0

4:15 PM 0 0 0 0 0 18 8 0 14 0 35 0 10 17 1 1

4:20 PM 0 0 0 3 0 14 2 3 10 0 23 0 18 24 0 6

4:25 PM 0 0 0 0 0 26 7 0 15 0 15 0 21 17 0 0

4:30 PM 1 0 0 0 0 20 3 0 15 0 40 0 24 23 0 0

4:35 PM 0 0 0 0 0 33 6 0 19 0 42 1 22 22 0 0

4:40 PM 0 0 1 0 0 26 8 0 18 0 38 0 18 26 0 1

4:45 PM 0 0 0 1 0 18 5 0 16 0 43 0 24 8 0 0

4:50 PM 0 0 0 0 0 23 9 0 25 0 26 1 31 24 0 0

4:55 PM 0 0 0 0 0 17 4 0 18 0 31 0 12 12 0 1

5:00 PM 0 0 0 0 0 18 6 0 20 0 25 0 34 15 0 12

5:05 PM 0 0 0 0 0 34 7 0 18 0 40 0 18 14 0 23

5:10 PM 0 0 0 0 0 31 14 0 14 0 35 0 22 25 0 0

5:15 PM 1 0 0 0 0 31 10 0 23 0 27 0 29 18 0 0

5:20 PM 0 0 0 0 0 19 7 0 17 0 48 0 30 18 0 0

5:25 PM 0 0 0 0 0 26 8 0 17 0 40 0 36 27 0 0

5:30 PM 0 0 0 0 0 20 4 0 13 1 43 0 36 18 0 2

5:35 PM 0 0 1 0 0 26 7 0 13 0 29 0 23 15 0 1

5:40 PM 0 0 1 0 0 16 3 0 17 2 25 0 20 19 0 0

5:45 PM 0 0 0 0 0 15 7 0 9 0 32 0 32 20 0 1

5:50 PM 0 0 0 0 0 13 8 1 11 0 19 0 18 14 0 0

5:55 PM 0 0 0 0 0 20 1 0 12 0 27 0 12 17 0 0

Total 2 0 3 4 0 525 144 5 371 3 780 2 566 443 2 49

15 Minute Volumes

15 0 0 0 0 0 61 10 1 37 0 97 0 76 50 1 1

30 0 0 0 3 0 58 17 3 39 0 73 0 49 58 1 7

45 1 0 1 0 0 79 17 0 52 0 120 1 64 71 0 1

60 0 0 0 1 0 58 18 0 59 0 100 1 67 44 0 1

75 0 0 0 0 0 83 27 0 52 0 100 0 74 54 0 35

90 1 0 0 0 0 76 25 0 57 0 115 0 95 63 0 0

105 0 0 2 0 0 62 14 0 43 3 97 0 79 52 0 3

120 0 0 0 0 0 48 16 1 32 0 78 0 62 51 0 1

File Name: 93 @ Perimeter

Start Date: 3/12/2015

Start Time: 4:00:00 PM

Site Code: 00312151

Comment 1: Intersection #1

Comment 2: Data collected by: Melissa Gende

Comment 3:

Comment 4:

From North From East From South From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 2 0 2 0 3 0 0 0 0 0 0 1 0 0 2 0

4:05 PM 2 0 4 0 1 0 0 0 0 0 0 0 0 0 5 0

4:10 PM 5 0 3 2 2 0 0 0 0 0 0 0 0 0 4 0

4:15 PM 3 0 2 0 0 0 0 0 0 0 0 1 0 0 7 0

4:20 PM 3 0 5 0 3 0 0 0 0 0 0 4 0 0 4 0

4:25 PM 3 0 2 0 4 0 0 0 0 0 0 0 0 0 5 0

4:30 PM 7 0 0 1 0 0 0 0 0 0 0 6 0 0 8 0

4:35 PM 7 0 3 1 3 0 0 0 0 0 0 0 0 0 7 0

4:40 PM 6 0 2 0 4 0 0 0 0 0 0 2 0 0 1 0

4:45 PM 2 0 2 0 1 0 0 0 0 0 0 0 0 0 1 0

4:50 PM 7 0 4 0 10 0 0 0 0 0 0 0 0 0 8 0

4:55 PM 3 0 3 1 4 0 0 0 0 0 0 2 0 0 11 0

5:00 PM 9 0 5 0 4 0 0 0 0 0 0 0 0 0 4 0

5:05 PM 4 0 2 0 4 0 0 0 0 0 0 1 0 0 9 0

5:10 PM 5 0 3 0 3 0 0 0 0 0 0 1 0 0 6 0

5:15 PM 6 0 2 0 4 0 0 0 0 0 0 0 0 0 3 0

5:20 PM 5 0 3 0 4 0 0 0 0 0 0 0 0 0 5 0

5:25 PM 6 0 4 1 3 0 0 0 0 0 0 1 0 0 3 0

5:30 PM 5 0 4 2 4 0 0 0 0 0 0 0 0 0 1 0

5:35 PM 4 0 4 0 2 0 0 0 0 0 0 0 0 0 5 0

5:40 PM 5 0 3 0 1 0 0 0 0 0 0 0 0 0 10 0

5:45 PM 2 0 3 0 0 0 0 0 0 0 0 0 0 0 4 0

5:50 PM 2 0 2 0 1 0 0 0 0 0 0 1 0 0 8 0

5:55 PM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 101 0 65 8 64 0 0 0 0 0 0 19 0 0 113 0

15 Minute Volumes

15 9 0 9 2 6 0 0 0 0 0 0 1 0 0 11 0

30 9 0 9 0 7 0 0 0 0 0 0 5 0 0 16 0

45 20 0 5 2 7 0 0 0 0 0 0 8 0 0 16 0

60 12 0 9 1 15 0 0 0 0 0 0 2 0 0 20 0

75 18 0 10 0 11 0 0 0 0 0 0 2 0 0 19 0

90 17 0 9 1 11 0 0 0 0 0 0 1 0 0 11 0

105 14 0 11 2 7 0 0 0 0 0 0 0 0 0 16 0

120 4 0 5 0 1 0 0 0 0 0 0 1 0 0 12 0

File Name: 93 @ Oak

Start Date: 3/24/2015

Start Time: 4:00:00 PM

Site Code: 324152

Comment 1: Intersection #2

Comment 2: Data Collected by: Melissa Gende

Comment 3:

Comment 4:
                        

From North

                        

From East

                        

From South

                        

From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 0 0 1 0 0 29 0 0 6 0 1 1 0 31 0 6

4:05 PM 0 0 0 0 0 33 2 2 2 0 0 0 0 29 0 6

4:10 PM 0 0 0 1 1 21 0 2 3 0 0 0 0 16 0 5

4:15 PM 0 0 0 0 0 16 0 4 9 0 3 1 0 37 0 4

4:20 PM 0 0 0 4 0 18 1 0 8 0 1 0 1 29 0 10

4:25 PM 0 0 0 0 0 27 0 0 1 0 0 0 0 25 0 3

4:30 PM 0 0 1 2 0 25 0 1 6 0 2 1 0 31 0 5

4:35 PM 0 0 1 0 0 45 0 1 7 0 1 0 0 42 0 4

4:40 PM 0 0 0 1 0 40 0 2 5 0 3 0 0 50 0 6

4:45 PM 1 0 0 0 1 31 0 0 6 0 0 0 0 38 0 6

4:50 PM 0 0 0 1 0 37 2 1 4 0 1 0 0 40 0 5

4:55 PM 0 0 0 3 1 34 0 0 11 0 2 0 0 38 0 1

5:00 PM 0 0 0 0 0 30 3 2 3 0 2 0 0 58 1 7

5:05 PM 0 0 2 0 1 46 1 0 10 0 1 0 0 32 0 10

5:10 PM 1 1 2 0 0 46 1 0 5 0 0 0 0 49 0 5

5:15 PM 0 0 0 1 1 44 0 1 4 0 2 0 0 27 0 2

5:20 PM 0 0 0 0 0 53 0 0 2 0 0 0 0 45 0 4

5:25 PM 0 0 0 0 0 32 0 1 5 0 1 0 0 40 0 8

5:30 PM 0 0 0 0 0 35 1 2 4 0 2 0 0 38 0 5

5:35 PM 0 0 0 1 1 34 1 0 1 0 1 0 0 56 0 2

5:40 PM 1 0 0 0 0 28 0 3 1 0 1 0 0 25 1 12

5:45 PM 0 0 1 0 0 19 0 0 4 0 1 0 0 25 1 3

5:50 PM 0 0 0 3 0 25 0 0 2 0 2 0 0 36 0 6

5:55 PM 0 0 0 0 0 22 0 3 1 0 0 1 0 27 0 9

Total 3 1 8 17 6 770 12 25 110 0 27 4 1 864 3 134

15 Minute Volumes

15 0 0 1 1 1 83 2 4 11 0 1 1 0 76 0 17

30 0 0 0 4 0 61 1 4 18 0 4 1 1 91 0 17

45 0 0 2 3 0 110 0 4 18 0 6 1 0 123 0 15

60 1 0 0 4 2 102 2 1 21 0 3 0 0 116 0 12

75 1 1 4 0 1 122 5 2 18 0 3 0 0 139 1 22

90 0 0 0 1 1 129 0 2 11 0 3 0 0 112 0 14

105 1 0 0 1 1 97 2 5 6 0 4 0 0 119 1 19

120 0 0 1 3 0 66 0 3 7 0 3 1 0 88 1 18

File Name: 93 @ Centennial

Start Date: 3/24/2015

Start Time: 4:00:00 PM

Site Code: 00324153

Comment 1: Intersection #3

Comment 2: JMAR #3

Comment 3: Data Collected by: Melissa Gende

Comment 4:
                        

From North

                        

From East

                        

From South

                        

From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

06:00 PM 2 1 1 0 2 12 4 0 26 1 15 0 4 19 0 3

06:05 PM 0 0 0 0 2 13 14 0 32 0 22 2 5 22 0 0

06:10 PM 2 0 2 0 1 15 15 0 22 0 14 0 5 21 0 1

06:15 PM 2 2 4 0 1 14 20 0 25 0 7 2 8 25 0 1

06:20 PM 1 4 7 0 0 16 17 0 31 0 9 1 6 22 0 1

06:25 PM 0 1 1 0 4 19 16 0 27 1 12 1 8 22 0 0

06:30 PM 2 1 2 1 3 20 13 0 29 1 13 0 6 32 0 2

06:35 PM 4 2 2 0 1 22 9 0 32 7 25 1 9 23 0 2

06:40 PM 4 5 7 1 0 14 11 2 36 4 15 0 3 33 0 2

06:45 PM 1 4 5 1 0 30 21 0 39 0 10 2 7 15 0 2

06:50 PM 2 2 2 0 1 17 16 0 43 3 12 2 4 32 0 4

06:55 PM 0 2 4 0 1 27 18 0 32 2 8 0 4 36 0 1

07:00 PM 4 3 5 1 2 22 13 0 45 3 16 1 7 42 0 0

07:05 PM 2 5 5 0 1 23 12 0 39 4 11 0 4 40 0 0

07:10 PM 4 3 5 0 4 18 12 1 34 3 14 0 3 34 0 0

07:15 PM 3 3 6 0 2 28 25 0 19 3 9 4 5 40 0 0

07:20 PM 7 3 6 1 2 26 14 0 36 0 5 0 2 45 0 2

07:25 PM 2 0 3 0 2 23 13 1 35 0 7 0 4 27 0 0

07:30 PM 1 2 3 1 0 18 12 1 29 1 5 1 7 34 0 2

07:35 PM 1 2 5 0 1 15 12 0 33 0 11 0 7 24 0 1

07:40 PM 1 2 3 0 0 15 13 1 23 2 8 1 3 26 0 0

07:45 PM 4 3 4 2 0 22 18 0 22 1 7 1 1 35 0 4

07:50 PM 4 2 4 0 1 15 10 0 23 0 7 1 7 19 0 1

07:55 PM 0 5 7 0 0 19 18 0 27 6 8 2 9 16 0 5

Total 53 57 93 8 31 463 346 6 739 42 270 22 128 684 0 34

15 Minute Volumes

15 4 1 3 0 5 40 33 0 80 1 51 2 14 62 0 4

30 3 7 12 0 5 49 53 0 83 1 28 4 22 69 0 2

45 10 8 11 2 4 56 33 2 97 12 53 1 18 88 0 6

60 3 8 11 1 2 74 55 0 114 5 30 4 15 83 0 7

75 10 11 15 1 7 63 37 1 118 10 41 1 14 116 0 0

90 12 6 15 1 6 77 52 1 90 3 21 4 11 112 0 2

105 3 6 11 1 1 48 37 2 85 3 24 2 17 84 0 3

120 8 10 15 2 1 56 46 0 72 7 22 4 17 70 0 10

Comment 3: Data Collected by: Melissa Gende

Comment 4:

From Pine

                        

From East From Williamson

                        

From West

Site Code: 00416155

Comment 1: Intersection #5

Comment 2: JMAR #3

File Name: 93 @ Williamson/Pine

Start Date: 4/16/2015

Start Time: 4:00:00 PM
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 0 0 1 0 0 22 0 0 0 0 0 0 0 51 1 0

4:05 PM 1 0 0 0 0 33 0 0 0 0 0 0 0 53 0 0

4:10 PM 1 0 0 0 1 34 0 0 0 0 0 0 0 49 1 0

4:15 PM 2 0 0 0 0 39 0 0 0 0 0 0 0 63 1 0

4:20 PM 3 0 1 0 1 36 0 0 0 0 0 0 0 55 0 0

4:25 PM 1 0 1 0 1 27 0 0 0 0 0 0 0 49 0 0

4:30 PM 0 0 0 0 0 31 0 0 0 0 0 0 0 60 1 0

4:35 PM 1 0 1 0 0 30 0 0 0 0 0 0 0 64 1 0

4:40 PM 0 0 0 0 0 22 0 0 0 0 0 0 0 62 0 0

4:45 PM 0 0 1 0 2 39 0 0 0 0 0 0 0 65 0 0

4:50 PM 1 0 0 0 0 37 0 0 0 0 0 0 0 72 2 0

4:55 PM 2 0 1 0 0 42 0 0 0 0 0 0 0 67 1 0

5:00 PM 1 0 1 0 0 26 0 0 0 0 0 0 0 79 0 0

5:05 PM 2 0 0 0 1 29 0 0 0 0 0 0 0 81 0 0

5:10 PM 1 0 1 0 0 28 0 0 0 0 0 0 0 62 1 0

5:15 PM 0 0 0 0 0 43 0 0 0 0 0 0 0 73 1 0

5:20 PM 1 0 0 0 1 41 0 0 0 0 0 0 0 51 0 0

5:25 PM 3 0 1 0 0 36 0 0 0 0 0 0 0 58 2 0

5:30 PM 1 0 0 0 1 36 0 0 0 0 0 0 0 60 1 0

5:35 PM 0 0 0 0 0 29 0 0 0 0 0 0 0 68 1 0

5:40 PM 1 0 0 0 0 23 0 0 0 0 0 0 0 54 0 0

5:45 PM 1 0 1 0 0 26 0 0 0 0 0 0 0 58 1 0

5:50 PM 1 0 0 0 0 21 0 0 0 0 0 0 0 44 1 0

5:55 PM 0 0 0 0 0 28 0 0 0 0 0 0 0 48 0 0

Total 24 0 10 0 8 758 0 0 0 0 0 0 0 1446 16 0

15 2 0 1 0 1 89 0 0 0 0 0 0 0 153 2 0

30 6 0 2 0 2 102 0 0 0 0 0 0 0 167 1 0

45 1 0 1 0 0 83 0 0 0 0 0 0 0 186 2 0

60 3 0 2 0 2 118 0 0 0 0 0 0 0 204 3 0

75 4 0 2 0 1 83 0 0 0 0 0 0 0 222 1 0

90 4 0 1 0 1 120 0 0 0 0 0 0 0 182 3 0

105 2 0 0 0 1 88 0 0 0 0 0 0 0 182 2 0

120 2 0 1 0 0 75 0 0 0 0 0 0 0 150 2 0

15 Minute Volumes

File Name: 93 @ Mountain View

Start Date: 4/9/2015

Start Time: 4:00:00 PM

Site Code: 00416155

Comment 1: Intersection #6

Comment 2: JMAR #3

Comment 3: Data Collected by: Melissa Gende

Comment 4:
                        

From North

                        

From East

                        

From South

                        

From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 9 0 14 6 35 17 0 2 0 0 0 1 0 32 13 0

4:05 PM 10 0 23 25 21 19 0 3 0 0 0 3 0 37 21 0

4:10 PM 10 0 14 17 29 17 0 9 0 0 0 4 0 28 24 0

4:15 PM 10 0 19 25 29 27 0 5 0 0 0 2 0 40 18 0

4:20 PM 8 0 20 20 21 23 0 0 0 0 0 7 0 34 18 0

4:25 PM 14 0 29 17 22 15 0 0 0 0 0 9 0 22 11 0

4:30 PM 9 0 20 29 19 31 0 9 0 0 0 7 0 42 9 0

4:35 PM 8 0 30 26 37 36 0 2 0 0 0 4 0 47 19 0

4:40 PM 6 0 24 16 23 32 0 5 0 0 0 9 0 60 23 0

4:45 PM 12 0 36 18 27 24 0 2 0 0 0 14 0 42 18 0

4:50 PM 6 0 21 31 31 26 0 10 0 0 0 9 0 58 21 0

4:55 PM 11 0 38 29 31 38 0 1 0 0 0 10 0 50 22 0

5:00 PM 5 0 21 21 31 17 0 6 0 0 0 7 0 61 28 0

5:05 PM 6 0 24 20 41 43 0 7 0 0 0 5 0 72 21 0

5:10 PM 15 0 30 27 22 33 0 2 0 0 0 11 0 37 19 0

5:15 PM 9 0 23 17 32 39 0 2 0 0 0 7 0 59 26 0

5:20 PM 11 0 34 17 28 27 0 0 0 0 0 7 0 28 17 0

5:25 PM 7 0 20 13 32 26 0 2 0 0 0 2 0 51 25 0

5:30 PM 11 0 24 29 33 25 0 7 0 0 0 9 0 40 16 0

5:35 PM 13 0 15 18 27 31 0 2 0 0 0 16 0 51 26 0

5:40 PM 17 0 25 19 31 33 0 2 0 0 0 15 0 40 20 0

5:45 PM 10 0 14 13 28 24 0 5 0 0 0 7 0 43 26 0

5:50 PM 13 0 34 28 31 34 0 5 0 0 0 8 0 32 19 0

5:55 PM 9 0 16 14 32 26 0 9 0 0 0 6 0 53 19 0

Total 239 0 568 495 693 663 0 97 0 0 0 179 0 1059 479 0

15 Minute Volumes

15 29 0 51 48 85 53 0 14 0 0 0 8 0 97 58 0

30 32 0 68 62 72 65 0 5 0 0 0 18 0 96 47 0

45 23 0 74 71 79 99 0 16 0 0 0 20 0 149 51 0

60 29 0 95 78 89 88 0 13 0 0 0 33 0 150 61 0

75 26 0 75 68 94 93 0 15 0 0 0 23 0 170 68 0

90 27 0 77 47 92 92 0 4 0 0 0 16 0 138 68 0

105 41 0 64 66 91 89 0 11 0 0 0 40 0 131 62 0

120 32 0 64 55 91 84 0 19 0 0 0 21 0 128 64 0

File Name: 93 @ College Ave

Start Date: 3/31/2015

Start Time: 4:00:00 PM

Site Code: 00331157

Comment 1: Intersection #7

Comment 2: JMAR #3

Comment 3: Data Collected by: Melissa Gende

Comment 4:
                        

From North

                        

From East

                        

From South

                        

From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 10 0 11 0 3 0 0 8 0 0 0 0 0 0 7 0

4:05 PM 4 0 4 0 11 0 0 6 0 0 0 0 0 0 3 0

4:10 PM 6 0 5 0 4 0 0 3 0 0 0 0 0 0 6 0

4:15 PM 4 0 4 0 2 0 0 6 0 0 0 0 0 0 1 0

4:20 PM 2 0 8 1 4 0 0 9 0 0 0 0 0 0 6 0

4:25 PM 2 0 11 0 4 0 0 6 0 0 0 0 0 0 1 0

4:30 PM 8 0 10 0 8 0 0 6 0 0 0 0 0 0 2 0

4:35 PM 9 0 15 0 6 0 0 13 0 0 0 0 0 0 4 0

4:40 PM 7 0 10 1 6 0 0 13 0 0 0 0 0 0 4 0

4:45 PM 9 0 11 0 5 0 0 16 0 0 0 0 0 0 6 0

4:50 PM 7 0 12 1 12 0 0 22 0 0 0 0 0 0 3 0

4:55 PM 3 0 9 0 11 0 0 26 0 0 0 0 0 0 5 0

5:00 PM 9 0 3 0 2 0 0 8 0 0 0 0 0 0 4 0

5:05 PM 3 0 5 0 7 0 0 8 0 0 0 0 0 0 4 0

5:10 PM 8 0 5 0 5 0 0 15 0 0 0 0 0 0 4 0

5:15 PM 3 0 5 0 7 0 0 5 0 0 0 0 0 0 11 0

5:20 PM 4 0 8 0 8 0 0 5 0 0 0 0 0 0 6 0

5:25 PM 3 0 5 1 14 0 0 12 0 0 0 0 0 0 7 0

5:30 PM 6 0 8 1 6 0 0 8 0 0 0 0 0 0 4 0

5:35 PM 3 0 8 0 10 0 0 9 0 0 0 0 0 0 3 8

5:40 PM 7 0 11 1 12 0 0 5 0 0 0 0 0 0 3 0

5:45 PM 4 0 7 0 7 0 0 1 0 0 0 0 0 0 3 1

5:50 PM 5 0 9 0 5 0 0 10 0 0 0 0 0 0 7 0

5:55 PM 8 0 3 1 8 0 0 7 0 0 0 0 0 0 6 0

Total 134 0 187 7 167 0 0 227 0 0 0 0 0 0 110 9

15 Minute Volumes

15 20 0 20 0 18 0 0 17 0 0 0 0 0 0 16 0

30 8 0 23 1 10 0 0 21 0 0 0 0 0 0 8 0

45 24 0 35 1 20 0 0 32 0 0 0 0 0 0 10 0

60 19 0 32 1 28 0 0 64 0 0 0 0 0 0 14 0

75 20 0 13 0 14 0 0 31 0 0 0 0 0 0 12 0

90 10 0 18 1 29 0 0 22 0 0 0 0 0 0 24 0

105 16 0 27 2 28 0 0 22 0 0 0 0 0 0 10 8

120 17 0 19 1 20 0 0 18 0 0 0 0 0 0 16 1

File Name: 93 @ Nu Kappa & Sherman

Start Date: 4/14/2015

Start Time: 4:00:00 PM

Site Code: 00414159

Comment 1: Intersection #8/9

Comment 2: Data Collected by: Kweku Brown

Comment 3:

Comment 4:
                        

From North

                        

From East

                        

From South

                        

From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 5 46 0 11 0 0 0 0 0 34 8 9 3 0 5 0

4:05 PM 3 54 0 2 0 0 0 3 0 63 11 1 5 0 3 0

4:10 PM 5 46 0 3 0 0 0 8 0 41 6 3 4 0 2 0

4:15 PM 3 36 0 3 0 0 0 2 0 40 8 4 3 0 3 0

4:20 PM 7 36 0 2 0 0 0 6 0 41 14 20 3 0 3 0

4:25 PM 13 61 0 1 0 0 0 10 0 57 12 13 2 0 5 0

4:30 PM 9 52 0 4 0 0 0 10 0 53 16 5 5 0 10 0

4:35 PM 15 62 0 2 0 0 0 18 0 52 10 7 20 0 19 0

4:40 PM 24 62 0 2 0 0 0 21 0 59 4 12 4 0 4 0

4:45 PM 17 59 0 6 0 0 0 18 0 59 9 25 3 0 7 0

4:50 PM 18 62 0 12 0 0 0 36 0 55 13 46 8 0 11 0

4:55 PM 20 62 0 7 0 0 0 18 0 49 13 15 9 0 8 0

5:00 PM 9 56 0 2 0 0 0 8 0 36 12 6 10 0 11 1

5:05 PM 13 80 0 5 0 0 0 7 0 67 11 4 6 0 5 0

5:10 PM 5 66 0 4 0 0 0 10 0 71 17 10 7 0 6 0

5:15 PM 6 54 0 5 0 0 0 10 0 52 16 12 6 0 5 0

5:20 PM 9 71 0 4 0 0 0 6 0 57 7 23 3 0 6 0

5:25 PM 7 55 0 8 0 0 0 5 0 53 11 14 6 0 8 0

5:30 PM 8 59 0 3 0 0 0 8 0 64 13 2 5 0 5 0

5:35 PM 10 43 0 6 0 0 0 11 0 55 12 6 3 0 4 0

5:40 PM 7 36 0 7 0 0 0 7 0 45 18 7 6 0 8 0

5:45 PM 10 50 0 5 0 0 0 4 0 49 20 7 3 0 7 0

5:50 PM 9 50 0 8 0 0 0 10 0 45 9 17 9 0 4 0

5:55 PM 10 51 0 1 0 0 0 5 0 57 9 1 9 0 6 0

Total 242 1309 0 113 0 0 0 241 0 1254 279 269 142 0 155 1

15 Minute Volumes

15 13 146 0 16 0 0 0 11 0 138 25 13 12 0 10 0

30 23 133 0 6 0 0 0 18 0 138 34 37 8 0 11 0

45 48 176 0 8 0 0 0 49 0 164 30 24 29 0 33 0

60 55 183 0 25 0 0 0 72 0 163 35 86 20 0 26 0

75 27 202 0 11 0 0 0 25 0 174 40 20 23 0 22 1

90 22 180 0 17 0 0 0 21 0 162 34 49 15 0 19 0

105 25 138 0 16 0 0 0 26 0 164 43 15 14 0 17 0

120 29 151 0 14 0 0 0 19 0 151 38 25 21 0 17 0

File Name: 93 @ Parkway & Calhoun

Start Date: 4/14/2015

Start Time: 4:00:00 PM

Site Code: 04141511

Comment 1: Intersections # 10/11

Comment 2: JMAR #3

Comment 3: Data Collected by: Melissa Gende

Comment 4:
                        

From North

                        

From East

                        

From South

                        

From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

04:00 PM 0 0 0 0 0 37 6 0 15 0 11 0 9 40 0 0

04:05 PM 0 0 0 0 0 39 16 0 9 0 22 0 5 49 1 0

04:10 PM 0 0 0 0 0 39 9 0 18 0 22 0 12 46 0 0

04:15 PM 0 0 0 0 0 46 11 0 12 0 17 0 12 35 0 0

04:20 PM 1 0 0 0 0 49 13 0 17 0 15 0 6 38 0 0

04:25 PM 0 0 0 0 0 40 15 0 17 0 21 0 11 59 0 0

04:30 PM 0 0 0 0 0 39 11 0 26 0 17 0 14 39 0 0

04:35 PM 0 0 0 0 0 27 14 0 39 0 29 0 16 75 1 0

04:40 PM 2 0 0 0 0 55 19 0 23 0 21 0 17 67 0 0

04:45 PM 0 0 0 0 0 47 17 0 25 0 35 0 18 55 0 0

04:50 PM 0 0 0 0 0 57 19 0 24 0 16 0 14 65 0 0

04:55 PM 0 0 0 0 0 45 23 0 33 0 15 0 15 64 0 0

05:00 PM 0 0 0 0 0 43 8 0 23 0 21 0 25 81 0 0

05:05 PM 0 0 0 0 0 49 13 0 19 0 29 0 12 57 0 0

05:10 PM 0 0 0 0 0 41 16 0 15 0 24 0 14 72 0 0

05:15 PM 0 0 0 0 0 53 17 0 13 0 24 0 8 67 0 0

05:20 PM 0 0 0 0 0 50 19 0 15 0 30 0 11 75 0 0

05:25 PM 0 0 0 0 0 39 14 0 22 0 16 0 13 60 0 0

05:30 PM 0 0 0 0 0 46 14 0 14 0 18 0 12 60 0 0

05:35 PM 0 0 0 0 0 43 13 0 13 0 20 0 20 62 0 0

05:40 PM 0 0 0 0 0 58 16 0 19 0 18 0 9 27 0 0

05:45 PM 0 0 0 0 0 31 25 0 10 0 24 0 12 37 0 0

05:50 PM 0 0 0 0 0 51 18 0 16 0 23 0 11 49 0 0

05:55 PM 0 0 0 0 0 52 14 0 13 0 12 0 10 45 0 0

Total 3 0 0 0 0 1076 360 0 450 0 500 0 306 1324 2 0

15 Minute Volumes

15 0 0 0 0 0 115 31 0 42 0 55 0 26 135 1 0

30 1 0 0 0 0 135 39 0 46 0 53 0 29 132 0 0

45 2 0 0 0 0 121 44 0 88 0 67 0 47 181 1 0

60 0 0 0 0 0 149 59 0 82 0 66 0 47 184 0 0

75 0 0 0 0 0 133 37 0 57 0 74 0 51 210 0 0

90 0 0 0 0 0 142 50 0 50 0 70 0 32 202 0 0

105 0 0 0 0 0 147 43 0 46 0 56 0 41 149 0 0

120 0 0 0 0 0 134 57 0 39 0 59 0 33 131 0 0

File Name: 93 @ Cherry

Start Date: 4/16/2015

Start Time: 4:00:00 PM

Site Code: 04161512

Comment 1: Intersection #12

Comment 2: JMAR #4

Comment 3: Data Collected by: Yucheng An

Comment 4:

From North From East From South From West
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Start Time Right Thru Left Peds Right Lt. 2 Sl. Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 2 23 0 8 1 7 0 8 0 43 0 0 1 0 1 10

4:05 PM 2 33 0 19 0 2 0 3 0 38 1 0 0 0 3 7

4:10 PM 1 29 0 14 0 5 0 10 0 62 0 0 1 0 2 7

4:15 PM 1 27 0 15 1 3 0 6 0 47 4 0 2 0 0 14

4:20 PM 5 31 0 12 1 5 0 3 0 42 0 0 2 0 1 9

4:25 PM 3 25 0 12 0 5 0 6 0 34 3 0 1 0 1 12

4:30 PM 4 33 0 9 2 8 0 5 0 52 1 0 1 0 2 4

4:35 PM 5 34 0 23 0 5 0 9 0 57 2 0 1 0 0 7

4:40 PM 1 37 0 22 1 4 0 10 0 53 0 0 2 0 5 13

4:45 PM 3 33 0 21 3 8 0 12 0 55 3 0 0 0 0 6

4:50 PM 2 38 0 18 0 2 0 9 0 47 1 0 4 0 1 10

4:55 PM 1 27 0 16 0 2 0 4 0 43 0 0 4 0 5 14

5:00 PM 0 36 0 21 2 5 0 5 0 53 0 0 3 0 3 5

5:05 PM 3 38 0 24 1 6 0 8 0 54 1 0 1 0 2 14

5:10 PM 2 32 0 21 4 9 0 3 0 56 1 0 2 0 1 14

5:15 PM 2 27 0 21 2 8 0 8 0 54 2 0 0 0 0 12

5:20 PM 5 40 0 14 1 9 0 18 0 51 1 0 2 0 1 6

5:25 PM 2 42 0 21 2 5 0 8 0 50 0 0 2 0 1 17

5:30 PM 2 34 0 13 1 6 0 4 0 49 0 0 5 0 1 5

5:35 PM 0 24 0 20 0 2 0 10 0 49 2 0 1 0 1 15

5:40 PM 6 36 0 30 0 6 0 10 0 58 1 0 1 0 1 9

5:45 PM 1 25 0 15 2 4 0 3 0 48 3 0 1 0 0 9

5:50 PM 1 36 0 27 2 7 0 4 0 51 4 0 0 0 2 14

5:55 PM 1 36 0 21 1 2 0 13 0 38 3 0 3 0 2 11

Total 55 776 0 437 27 125 0 179 0 1184 33 0 40 0 36 244

15 Minute Volumes

15 5 85 0 41 1 14 0 21 0 143 1 0 2 0 6 24

30 9 83 0 39 2 13 0 15 0 123 7 0 5 0 2 35

45 10 104 0 54 3 17 0 24 0 162 3 0 4 0 7 24

60 6 98 0 55 3 12 0 25 0 145 4 0 8 0 6 30

75 5 106 0 66 7 20 0 16 0 163 2 0 6 0 6 33

90 9 109 0 56 5 22 0 34 0 155 3 0 4 0 2 35

105 8 94 0 63 1 14 0 24 0 156 3 0 7 0 3 29

120 3 97 0 63 5 13 0 20 0 137 10 0 4 0 4 34

File Name: College @ N Clemson & Sloan

Start Date: 4/7/2015

Start Time: 4:00:00 PM

Site Code: 00471513

Comment 1: Intersection 13/14

Comment 2: JMAR #3

Comment 3: Data Collected by: Melissa Gende

Comment 4:

College Ave SB Sloan St Veh College Ave NB N. Clemson Ave EB
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 0 24 0 4 0 0 0 9 1 33 0 8 0 0 0 2

4:05 PM 0 39 0 0 0 0 0 0 5 57 0 9 0 0 0 2

4:10 PM 0 29 0 0 0 0 0 1 3 51 0 9 0 0 0 0

4:15 PM 0 27 1 0 0 0 0 14 3 47 0 6 0 0 0 0

4:20 PM 0 25 0 8 0 0 0 5 6 32 0 2 0 0 0 0

4:25 PM 0 28 0 0 0 0 0 9 1 46 0 0 0 0 0 0

4:30 PM 0 29 0 4 0 0 0 6 4 36 0 1 0 0 0 0

4:35 PM 0 26 1 4 0 0 0 10 3 39 0 6 0 0 0 0

4:40 PM 0 37 3 0 0 0 0 5 3 37 0 1 0 0 0 0

4:45 PM 0 25 2 0 0 0 0 10 5 41 0 0 0 0 0 0

4:50 PM 0 35 1 0 0 0 1 10 1 33 0 2 0 0 0 0

4:55 PM 0 30 0 4 0 0 0 27 0 47 0 0 0 0 0 0

5:00 PM 0 24 1 0 0 0 0 17 2 45 0 3 0 0 0 0

5:05 PM 0 43 1 0 0 0 0 12 9 49 0 2 0 0 0 0

5:10 PM 0 50 3 0 0 0 0 11 2 58 0 0 0 0 0 0

5:15 PM 0 30 2 2 0 0 0 3 4 47 0 3 0 0 0 0

5:20 PM 0 44 0 3 0 0 0 6 6 32 0 0 0 0 0 0

5:25 PM 0 24 0 0 0 0 0 9 2 53 0 0 0 0 0 0

5:30 PM 0 38 3 3 0 0 0 13 7 54 0 6 0 0 0 0

5:35 PM 0 34 1 0 0 0 0 6 3 46 0 5 0 0 0 0

5:40 PM 0 43 4 0 0 0 0 8 3 41 0 3 0 0 0 0

5:45 PM 0 31 4 4 0 0 0 9 4 28 0 2 0 0 0 0

5:50 PM 0 36 0 2 0 0 0 5 4 38 0 0 0 0 0 0

5:55 PM 0 38 2 0 0 0 0 10 8 26 0 0 0 0 0 0

Total 0 789 29 38 0 0 1 215 89 1016 0 68 0 0 0 4

15 Minute Volumes

15 0 92 0 4 0 0 0 10 9 141 0 26 0 0 0 4

30 0 80 1 8 0 0 0 28 10 125 0 8 0 0 0 0

45 0 92 4 8 0 0 0 21 10 112 0 8 0 0 0 0

60 0 90 3 4 0 0 1 47 6 121 0 2 0 0 0 0

75 0 117 5 0 0 0 0 40 13 152 0 5 0 0 0 0

90 0 98 2 5 0 0 0 18 12 132 0 3 0 0 0 0

105 0 115 8 3 0 0 0 27 13 141 0 14 0 0 0 0

120 0 105 6 6 0 0 0 24 16 92 0 2 0 0 0 0

Comment 3: Data Collected by: Nabarjun Vashisth

Comment 4:
                        

From North

                        

From East

                        

From South

                        

From West

Site Code: 04141515

Comment 1: Intersection #15

Comment 2: JMAR #1

File Name: College @ Earle

Start Date: 4/16/2015

Start Time: 4:00:00 PM
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 3 24 4 1 8 0 4 8 5 28 4 9 3 0 4 0

4:05 PM 0 28 5 3 7 0 4 0 1 39 1 3 2 1 4 2

4:10 PM 0 17 4 1 4 1 2 0 0 27 0 8 6 0 3 1

4:15 PM 1 29 8 2 5 1 0 0 3 35 1 4 6 0 3 3

4:20 PM 3 26 5 4 5 0 8 1 4 32 4 3 5 1 4 1

4:25 PM 2 22 2 6 7 0 3 2 5 34 4 1 4 0 2 4

4:30 PM 3 36 1 4 4 0 3 2 3 32 1 5 11 2 6 3

4:35 PM 2 27 5 0 7 1 3 2 1 43 0 7 6 0 6 9

4:40 PM 2 32 5 6 6 0 10 4 0 42 1 6 7 1 7 9

4:45 PM 2 33 5 8 8 0 6 4 2 32 4 6 6 0 3 7

4:50 PM 3 28 5 3 10 1 9 1 4 39 2 6 8 0 5 10

4:55 PM 3 25 2 2 16 0 3 2 5 37 1 6 9 0 7 3

5:00 PM 2 26 4 7 8 0 3 2 2 27 3 8 8 0 7 10

5:05 PM 2 27 3 4 14 1 5 3 2 42 1 7 10 1 7 10

5:10 PM 1 30 6 3 15 0 6 2 5 35 6 8 6 0 7 4

5:15 PM 0 16 4 7 6 3 5 0 6 48 9 6 6 0 6 8

5:20 PM 3 30 6 1 3 0 8 4 3 33 4 1 2 2 3 4

5:25 PM 4 19 4 13 9 1 2 4 0 34 12 3 2 1 5 9

5:30 PM 3 24 3 3 7 0 5 2 2 34 5 3 3 0 4 7

5:35 PM 3 28 7 3 8 0 4 0 4 22 5 5 5 1 3 14

5:40 PM 1 26 5 3 9 2 6 4 4 35 4 7 6 0 8 3

5:45 PM 6 31 2 5 7 0 10 2 2 32 5 2 5 0 1 4

5:50 PM 6 37 4 4 6 1 4 5 2 23 5 7 7 0 3 3

5:55 PM 3 32 6 4 9 0 7 5 4 32 3 3 7 0 10 8

Total 58 653 105 97 188 12 120 59 69 817 85 124 140 10 118 136

15 Minute Volumes

15 3 69 13 5 19 1 10 8 6 94 5 20 11 1 11 3

30 6 77 15 12 17 1 11 3 12 101 9 8 15 1 9 8

45 7 95 11 10 17 1 16 8 4 117 2 18 24 3 19 21

60 8 86 12 13 34 1 18 7 11 108 7 18 23 0 15 20

75 5 83 13 14 37 1 14 7 9 104 10 23 24 1 21 24

90 7 65 14 21 18 4 15 8 9 115 25 10 10 3 14 21

105 7 78 15 9 24 2 15 6 10 91 14 15 14 1 15 24

120 15 100 12 13 22 1 21 12 8 87 13 12 19 0 14 15

File Name: College @ Keith

Start Date: 4/16/2015

Start Time: 4:00:00 PM

Site Code: 04161516

Comment 1: Intersection #16

Comment 2: JMAR #2

Comment 3: Data Collected by: Logan Reed

Comment 4:

From North From East From South From West
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 0 22 1 1 1 0 10 0 9 35 1 2 5 0 0 0

4:05 PM 0 42 0 3 1 0 5 1 7 30 2 1 3 0 1 3

4:10 PM 0 45 1 5 3 0 18 1 10 23 2 0 3 0 2 0

4:15 PM 4 43 0 1 0 0 10 0 6 30 1 1 1 1 0 0

4:20 PM 1 47 0 1 1 0 10 0 4 24 2 2 1 0 0 0

4:25 PM 1 37 1 0 0 2 7 0 9 29 3 0 5 0 0 0

4:30 PM 1 38 0 0 0 0 21 0 5 28 0 2 3 0 4 0

4:35 PM 3 49 1 1 1 0 9 0 13 35 6 2 0 0 0 0

4:40 PM 1 58 1 0 0 2 15 0 10 17 2 2 3 0 0 0

4:45 PM 0 40 0 3 2 0 23 0 8 42 4 1 3 0 2 0

4:50 PM 1 44 0 0 1 0 10 0 14 38 2 3 4 0 0 0

4:55 PM 1 52 0 2 0 0 23 0 9 35 4 2 6 2 1 0

5:00 PM 0 49 0 2 1 1 23 0 7 32 1 1 4 1 0 0

5:05 PM 2 49 0 3 3 0 23 0 9 25 3 0 5 0 0 2

5:10 PM 2 58 0 2 2 0 23 0 6 27 2 4 3 0 1 0

5:15 PM 0 60 1 0 0 0 15 0 11 28 2 3 5 0 0 0

5:20 PM 1 46 0 4 1 0 16 0 10 29 0 5 2 0 0 0

5:25 PM 1 39 0 2 0 1 19 1 13 34 6 1 4 0 0 0

5:30 PM 1 60 0 0 0 0 16 0 9 26 4 2 1 0 3 0

5:35 PM 1 59 0 6 0 0 10 0 8 34 3 3 4 1 0 2

5:40 PM 0 37 0 0 2 1 18 0 7 23 1 6 4 0 1 0

5:45 PM 3 46 0 6 1 0 14 0 8 41 3 14 2 0 1 1

5:50 PM 0 40 0 0 2 0 16 0 6 42 0 14 3 2 2 0

5:55 PM 2 45 0 2 2 1 13 0 10 34 1 7 6 0 1 0

Total 26 1105 6 44 24 8 367 3 208 741 55 78 80 7 19 8

15 Minute Volumes

15 0 109 2 9 5 0 33 2 26 88 5 3 11 0 3 3

30 6 127 1 2 1 2 27 0 19 83 6 3 7 1 0 0

45 5 145 2 1 1 2 45 0 28 80 8 6 6 0 4 0

60 2 136 0 5 3 0 56 0 31 115 10 6 13 2 3 0

75 4 156 0 7 6 1 69 0 22 84 6 5 12 1 1 2

90 2 145 1 6 1 1 50 1 34 91 8 9 11 0 0 0

105 2 156 0 6 2 1 44 0 24 83 8 11 9 1 4 2

120 5 131 0 8 5 1 43 0 24 117 4 35 11 2 4 1

File Name: College @ Edgewood

Start Date: 3/26/2015

Start Time: 4:00:00 PM

Site Code: 03261517

Comment 1: Intersection #17

Comment 2: JMAR #3

Comment 3: Data Collected by: Melissa Gende

Comment 4: JMAR Board was upside down while counting, fixed lables below.

From South From West From North From East
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Start Time Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds

4:00 PM 2 34 0 1 6 0 2 0 0 54 1 1 2 0 1 0

4:05 PM 3 23 2 3 2 0 0 0 1 65 0 0 1 0 1 0

4:10 PM 2 36 3 4 2 0 1 0 1 56 1 0 3 0 3 0

4:15 PM 2 36 0 0 2 0 0 0 0 61 1 1 2 0 1 0

4:20 PM 0 34 5 1 0 0 0 0 1 54 0 0 2 0 1 0

4:25 PM 1 48 1 1 2 0 1 0 1 55 2 1 7 0 2 0

4:30 PM 0 30 1 1 3 0 0 0 0 62 2 0 3 0 1 0

4:35 PM 4 41 1 1 1 0 0 0 0 62 0 2 1 0 1 1

4:40 PM 1 41 3 0 3 0 1 0 0 58 0 1 9 0 1 0

4:45 PM 3 42 3 7 2 0 1 0 0 67 1 0 8 0 3 0

4:50 PM 5 43 2 2 4 0 0 0 1 52 4 2 2 0 5 0

4:55 PM 2 49 3 1 2 0 2 0 1 78 1 1 3 0 1 0

5:00 PM 1 51 2 0 3 1 1 0 2 78 1 1 1 0 3 0

5:05 PM 3 40 1 0 4 0 0 0 0 83 1 0 6 0 1 0

5:10 PM 1 41 3 0 6 0 0 0 2 79 0 0 1 0 2 0

5:15 PM 2 47 0 1 3 0 0 0 2 73 0 4 3 0 6 0

5:20 PM 2 36 3 2 4 0 2 1 1 64 1 0 1 0 1 0

5:25 PM 1 41 2 6 2 0 0 0 0 68 1 0 8 0 2 0

5:30 PM 2 36 2 0 1 0 2 0 1 56 3 0 8 0 2 0

5:35 PM 2 31 3 0 2 0 0 0 0 71 6 0 2 0 2 0

5:40 PM 3 34 3 1 1 0 0 0 0 66 2 2 5 0 4 0

5:45 PM 4 36 4 3 1 0 1 0 0 56 1 1 3 0 1 0

5:50 PM 3 38 1 2 2 0 2 0 0 68 2 0 5 0 0 0

5:55 PM 0 50 3 2 1 1 0 0 1 54 2 0 7 0 1 0

Total 49 938 51 39 59 2 16 1 15 1540 33 17 93 0 46 1

15 Minute Volumes

15 7 93 5 8 10 0 3 0 2 175 2 1 6 0 5 0

30 3 118 6 2 4 0 1 0 2 170 3 2 11 0 4 0

45 5 112 5 2 7 0 1 0 0 182 2 3 13 0 3 1

60 10 134 8 10 8 0 3 0 2 197 6 3 13 0 9 0

75 5 132 6 0 13 1 1 0 4 240 2 1 8 0 6 0

90 5 124 5 9 9 0 2 1 3 205 2 4 12 0 9 0

105 7 101 8 1 4 0 2 0 1 193 11 2 15 0 8 0

120 7 124 8 7 4 1 3 0 1 178 5 1 15 0 2 0

File Name: 133 @ Strode

Start Date: 4/2/2015

Start Time: 4:00:00 PM

Site Code: 00421518

Comment 1: Intersection #18

Comment 2: JMAR #3

Comment 3: Data Collected by: Melissa Gende

Comment 4:
                        

From North From Strode

                        

From South From Keowee
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Appendix B 

Signal Timing Plans from SCDOT and City of Clemson 
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Figure B-1: US 93 @ Perimeter Rd Signal Timing from SCDOT 

 

Figure B-2: US 93 @ Williamson Rd Signal Timing from SCDOT 
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Figure B-3: US 93 @ College Avenue Signal Timing from SCDOT 

 

Figure B-4: US 93 @ Parkway/Calhoun Dr. Signal Timing from SCDOT 
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Figure B-5: US 93 @ Cherry Rd Signal Timing from SCDOT 

 

Figure B-6: College Ave @ Keith St Signal Timing from City of Clemson 
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Figure B-7: College Avenue @ Edgewood Dr Signal Timing from SCDOT 
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Appendix C 

Existing Network VISSIM Screenshots and RBC Signal Timing 
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Figure C-1: Network Layout 

 

Figure C-2: US 93 @ Perimeter Rd. 
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Figure C-3: US 93 @ Williamson Rd. 

 

Figure C-4: US 93 @ College Ave. 
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Figure C-5: US 93 @ Parkway Dr./Calhoun Dr. 

 

Figure C-6: US 93 @ Cherry Rd. 
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Figure C-7: College Ave. @ Keith St. 

 

Figure C-8: College Ave. @ Edgewood Ave. 
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Figure C-9: VISSIM Timing Inputs for US 93 @ Perimeter Rd. 
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Figure C-10: VISSIM Timing Inputs for US 93 @ Williamson Rd. 
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Figure C-11: VISSIM Timing Inputs for US 93 @ College Ave. 
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Figure C-12: VISSIM Timing Inputs for US 93 @ Parkway Dr./Calhoun Dr. 
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Figure C-13: Figure C-9: VISSIM Timing Inputs for US 93 @ Cherry Rd. 
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Figure C-14: VISSIM Timing Inputs for College Ave. @ Keith St. 
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Figure C-15: VISSIM Timing Inputs for College Ave. @ Edgewood Ave. 
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Appendix D 

Synchro Reports – Optimized and Coordinated Scenarios 
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Appendix E 

Connected Vehicle Network Screenshots and RBC Timing  
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Figure D-1: US 93 @ Perimeter Rd. with CV Detectors 
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Figure D-2: US 93 @ Williamson Rd. with CV Detectors 
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Figure D-3: US 93 @ College Ave. with CV Detectors 
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Figure D-4: US 93 @ Parkway Dr/Calhoun Dr. with CV Detectors 
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Figure D-5: US 93 @ Cherry Rd. with CV Detectors 
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Figure D-6: College Ave. @ Keith St. with CV Detectors 
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Figure D-7: College Ave. @ Edgewood Ave. with CV Detectors 
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Figure D-8: VISSIM Timing Inputs for US 93 @ Perimeter Rd. with CV Detectors 
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Figure D-9: VISSIM Timing Inputs for US 93 @ Willaimson Rd. with CV Detectors 
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Figure D-10: VISSIM Timing Inputs for US 93 @ College Ave. with CV Detectors 
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Figure D-11: VISSIM Timing Inputs for US 93 @ Pkwy Dr/Calhoun Dr. with CV Det. 
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Figure D-12: VISSIM Timing Inputs for US 93 @ Cherry Rd. with CV Detectors 
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Figure D-13: VISSIM Timing Inputs for College Ave. @ Keith St. with CV Detectors 
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.  

Figure D-14: VISSIM Timing Inputs for College Ave. @ Edgewood Ave. with CV Det. 
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Appendix F 

Sample VISSIM Simulation Outputs 
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Sample 1: Network Delay for 4% CV Scenario, Seed 14 

 

Network Performance 

 

File:     c:\gende\new\vissimnet - cv3.0\sat.inp 

Comment:   

Date:     Monday, June 08, 2015 6:12:02 PM 

VISSIM:   5.40-08 [38878] 

 

Simulation time from 600.0 to 7800.0. 

 

 Parameter                                                             ;          Value; 

 Average delay time per vehicle [s], All Vehicle Types                 ;         54.324; 

 Average delay time per vehicle [s], Vehicle Class Car                 ;         54.434; 

 Average delay time per vehicle [s], Vehicle Class CV                  ;         52.614; 
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Sample 2: Node Data Collection for 8% CV Scenario, Seed 238 

 

Node evaluation 

 

File:     c:\gende\new\vissimnet - cv3.0 - copy\sat.inp 

Comment:   

Date:     Monday, June 08, 2015 7:38:15 PM 

VISSIM:   5.40-08 [38878] 

 

Node 1: 93/College  

Node 2: Perimeter 

Node 3: Williamson 

Node 4: Calhoun 

Node 5: Cherry 

Node 6: Keith 

Node 7: Edgewood 

 

Node: Node Number 

FromLink: Number of the link entering node 

ToLink: Number of the link leaving node 

veh(11): Number of Vehicles, Vehicle Class CV 

Delay(All): Average delay per vehicle [s], All Vehicle Types 

Delay(10): Average delay per vehicle [s], Vehicle Class Car 

Delay(11): Average delay per vehicle [s], Vehicle Class CV 

aveQueue: Average Queue Length [ft] 

 

Node; FromLink; ToLink; veh(11); Delay(All); Delay(10); Delay(11); aveQueue;  

   1;        7;      8;      31;       26.7;      26.6;      30.6;     75.9;  

   1;        7;     16;      26;       32.8;      31.9;      40.6;     75.9;  

   1;       48;     46;      25;       37.5;      37.8;      33.2;     54.5;  

   1;       48;     16;      30;       25.0;      25.4;      21.2;     54.5;  

   1;       50;     46;      11;       47.2;      46.4;      55.2;     95.5;  

   1;       50;      8;      29;       44.8;      44.2;      49.6;     95.5;  

   1;        0;      0;     152;       33.4;      33.2;      36.3;     75.3;  

   2;        1;     28;      15;        0.6;       0.5;       0.7;      0.0;  

   2;        1;      2;      20;       18.8;      19.2;      16.0;     12.8;  

   2;       27;     26;      31;       15.1;      15.0;      15.1;     17.5;  

   2;       27;      2;      20;        7.4;       7.5;       5.7;     17.5;  

   2;       31;     26;      22;        6.9;       7.0;       5.7;      4.5;  

   2;       29;     28;       9;       14.1;      13.7;      16.1;      4.2;  

   2;        0;      0;     117;       10.1;      10.1;      10.1;      9.4;  

   3;       43;      6;      27;        9.7;       9.7;      10.3;      0.8;  

   3;       43;     38;       7;       15.8;      16.0;      13.0;     14.3;  

   3;       44;     42;      17;        7.9;       8.0;       6.7;      6.3;  
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   3;       44;     38;      20;        5.8;       5.8;       4.6;      6.3;  

   3;        5;     42;       8;       12.0;      12.0;      11.3;     17.4;  

   3;        5;      6;      33;       13.3;      13.1;      13.9;     17.4;  

   3;        0;      0;     112;       10.5;      10.4;      10.0;     10.4;  

   4;       64;     58;       7;       32.8;      33.8;      24.8;     14.2;  

   4;       65;     12;       1;        7.2;       7.0;       5.2;      0.0;  

   4;       10;     63;       6;       13.6;      13.0;      26.7;     27.5;  

   4;       10;     12;      56;       16.6;      16.6;      16.5;     35.5;  

   4;       60;     61;      16;       37.7;      38.1;      31.7;     53.3;  

   4;       60;     58;      49;       19.5;      19.2;      23.3;     53.3;  

   4;        0;      0;     135;       19.4;      19.2;      21.6;     30.6;  

   5;       14;     72;       6;       15.4;      15.2;      21.2;     12.0;  

   5;       69;     60;      43;        7.6;       7.5;       8.1;     10.1;  

   5;       71;     13;      17;       13.7;      13.7;      13.3;     12.4;  

   5;       71;     60;      23;       25.1;      25.6;      22.3;     37.4;  

   5;       12;     13;      47;       11.3;      11.2;      13.0;     18.6;  

   5;       12;     72;      12;        9.4;       8.8;      15.1;      6.4;  

   5;        0;      0;     148;       12.6;      12.5;      13.6;     16.1;  

   6;       86;     87;       1;       16.7;      16.5;      17.9;      5.6;  

   6;       86;     81;       6;       11.0;      11.3;       9.7;      5.6;  

   6;       86;     20;       7;       10.5;      10.2;      13.9;      2.1;  

   6;       88;     85;       0;       64.4;      64.4;       0.0;     16.9;  

   6;       88;     81;       5;       18.9;      18.1;      34.4;      6.3;  

   6;       88;     20;       7;       26.2;      24.9;      32.2;     16.9;  

   6;       82;     85;       3;       41.7;      43.7;      24.4;    129.4;  

   6;       82;     87;       7;       60.1;      61.8;      49.6;    164.8;  

   6;       82;     20;      38;       40.3;      40.1;      42.4;    164.8;  

   6;       83;     85;       3;       46.7;      48.1;      30.5;     78.3;  

   6;       83;     87;       0;       30.8;      30.8;       0.0;     57.5;  

   6;       83;     81;      27;       32.9;      32.7;      34.8;     78.3;  

   6;        0;      0;     104;       33.2;      33.0;      34.9;     60.5;  

   7;       96;    101;      16;        5.2;       5.4;       4.5;     10.6;  

   7;       96;    102;       3;        7.0;       6.6;      10.6;     10.6;  

   7;       96;     84;      28;        6.2;       6.1;       7.1;     10.6;  

   7;       99;     22;       2;        6.5;       7.2;       0.7;      0.2;  

   7;       99;    101;       1;       10.3;       8.8;      14.7;      1.3;  

   7;       99;     84;       0;       18.7;      18.7;       0.0;      1.3;  

   7;      100;     22;      12;       23.7;      24.1;      18.9;     23.8;  

   7;      100;    102;       0;       20.3;      20.3;       0.0;     23.8;  

   7;      100;     84;       2;       11.3;      11.6;       9.7;      6.9;  

   7;       21;     22;      51;       10.1;      10.2;       9.8;     16.3;  

   7;       21;    101;       0;        5.8;       5.8;       0.0;     16.3;  

   7;       21;    102;       1;       10.5;      10.9;       6.6;      6.4;  

   7;        0;      0;     116;       10.4;      10.5;       9.2;     10.7;  
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   0;        0;      0;     884;       18.7;      18.6;      19.7;     31.6;  

   1;        7;      8;      49;       23.4;      23.4;      24.2;     71.2;  

   1;        7;     16;      23;       33.0;      32.4;      34.4;     71.2;  

   1;       48;     46;      27;       40.7;      39.8;      44.4;     63.4;  

   1;       48;     16;      35;       30.1;      29.9;      31.5;     63.4;  

   1;       50;     46;      11;       41.1;      42.2;      27.3;     78.1;  

   1;       50;      8;      19;       46.9;      46.7;      47.7;     78.1;  

   1;        0;      0;     164;       33.9;      33.8;      33.4;     70.9;  

   2;        1;     28;      29;        0.8;       0.8;       0.6;      0.1;  

   2;        1;      2;      18;       15.2;      15.0;      16.1;     10.8;  

   2;       27;     26;      30;       13.9;      13.9;      12.6;     14.8;  

   2;       27;      2;      20;        7.2;       7.1;       7.5;     14.8;  

   2;       31;     26;      36;        5.4;       5.3;       6.6;      4.7;  

   2;       29;     28;      15;       12.6;      12.6;      12.0;      4.1;  

   2;        0;      0;     148;        8.8;       8.8;       8.5;      8.2;  

   3;       43;      6;      38;        9.3;       9.3;       8.4;      1.8;  

   3;       43;     38;      15;       14.8;      14.8;      12.1;     15.2;  

   3;       44;     42;      10;        7.1;       7.0;       5.9;      5.4;  

   3;       44;     38;      30;        4.5;       4.9;       1.8;      5.4;  

   3;        5;     42;       7;       14.4;      13.2;      19.9;     18.0;  

   3;        5;      6;      34;       12.8;      12.8;      12.6;     18.0;  

   3;        0;      0;     134;        9.8;       9.8;       8.8;     10.6;  

   4;       64;     58;      12;       37.5;      35.9;      48.3;     18.9;  

   4;       65;     12;       7;        7.1;       7.1;       7.2;      0.0;  

   4;       10;     63;      10;       17.9;      18.6;       8.0;     52.6;  

   4;       10;     12;      51;       22.2;      22.1;      21.3;     62.0;  

   4;       60;     61;      11;       40.4;      40.4;      41.1;     55.5;  

   4;       60;     58;      46;       20.7;      20.5;      23.5;     55.5;  

   4;        0;      0;     137;       22.8;      22.6;      24.3;     40.7;  

   5;       14;     72;       7;       18.1;      17.9;      13.9;     14.0;  

   5;       69;     60;      40;        7.7;       7.6;       8.4;     11.1;  

   5;       71;     13;      15;       12.5;      12.2;      14.7;      9.6;  

   5;       71;     60;      16;       23.0;      23.5;      17.0;     30.6;  

   5;       12;     13;      50;       10.9;      10.7;      10.6;     20.7;  

   5;       12;     72;       7;       10.3;      10.0;      17.0;      9.8;  

   5;        0;      0;     135;       12.1;      12.1;      11.6;     16.0;  

   6;       86;     87;       1;        2.9;       0.5;       7.7;      7.7;  

   6;       86;     81;       2;       12.7;      13.1;       7.2;      7.7;  

   6;       86;     20;       8;       13.9;      13.7;      14.9;      3.8;  

   6;       88;     85;       0;       56.0;      56.0;       0.0;     16.7;  

   6;       88;     81;       8;       17.2;      18.3;       8.2;      4.7;  

   6;       88;     20;       2;       33.2;      34.6;       1.5;     16.7;  

   6;       82;     85;       3;       39.5;      39.3;      41.7;    199.2;  

   6;       82;     87;       2;       61.9;      60.1;     105.6;    235.2;  



 125 

   6;       82;     20;      36;       45.8;      46.6;      38.0;    235.2;  

   6;       83;     85;       6;       58.2;      57.4;      64.9;    106.1;  

   6;       83;     87;       4;       32.6;      30.0;      45.5;     84.9;  

   6;       83;     81;      24;       40.6;      40.7;      41.2;    106.1;  

   6;        0;      0;      96;       38.1;      38.4;      36.2;     85.3;  

   7;       96;    101;       9;        2.9;       3.2;       0.4;      8.6;  

   7;       96;    102;       4;       10.4;       9.5;      11.5;      8.6;  

   7;       96;     84;      32;        5.4;       5.5;       5.6;      8.6;  

   7;       99;     22;       1;        7.6;       7.1;       6.4;      0.3;  

   7;       99;    101;       0;       22.2;       0.0;       0.0;      2.0;  

   7;       99;     84;       0;       35.1;      35.1;       0.0;      2.0;  

   7;      100;     22;      10;       30.7;      30.4;      31.7;     31.5;  

   7;      100;    102;       0;       23.5;      23.5;       0.0;     31.5;  

   7;      100;     84;       1;       26.0;      30.0;       7.6;     12.0;  

   7;       21;     22;      45;        9.5;       9.2;      10.1;     17.1;  

   7;       21;    101;       0;        0.0;       0.0;       0.0;     17.1;  

   7;       21;    102;       0;        3.3;       3.3;       0.0;      6.3;  

   7;        0;      0;     102;       11.0;      10.9;      10.0;     12.2;  

   0;        0;      0;     916;       19.5;      19.4;      18.9;     37.9;   
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