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Abstract

The importance of verifiably correct software has grown enormously in recent years as

software has become integral to the design of critical systems, including airplanes, automobiles,

and medical equipment. Hence, the importance of solid analytical reasoning skills to complement

basic programming skills has also increased. If developers cannot reason about the software they

design, they cannot ensure the correctness of the resulting systems. And if these systems fail, the

economic and human costs can be substantial.

In addition to learning analytical reasoning principles as part of the standard Computer

Science curriculum, students must be excited about learning these skills and engaged in their practice.

Our approach to achieving these goals at the introductory level is based on the Test Case Reasoning

Assistant (TCRA), interactive courseware that allows students to provide test cases that demonstrate

their understanding of instructor-supplied interface specifications while receiving immediate feedback

as they work. The constituent tools also enable instructors to rapidly generate graphs of student

performance data to understand the progress of their classes. We evaluate the courseware using two

case-studies. The evaluation centers on understanding the impact of the tool on students’ ability to

read and interpret specifications.
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Chapter 1

Introduction

Computer science education is a cornerstone of future software development. A student

should leave their academic program with the ability to analyze a problem, design a solution, and

implement that solution. Some students will find themselves developing software for critical systems

like medical equipment, automobiles, aircraft, etc. If the software contains implementation errors,

the wrong set of conditions could bring about deadly results [20, 22, 27, 38, 12]. This is why

educators have been looking for ways to teach students to develop verifiably correct software. Three

important topics for the completion of this goal are: formal verification, computer-aided study tools,

and student performance monitoring.

1.1 Motivation

Formal Verification. There are several proposed remedies for error-prone development strategies:

formal methods, model checking, design-by-contract, etc. Many of these remedies rely on an indi-

vidual’s mathematical reasoning abilities. This requires that students have a reasonable background

in discrete mathematics, Boolean logic, state machines, and other topics.

These subject areas can be difficult for students as many of them are taught for a week

or two in one class and then never used again. Likewise, some computer science degree programs

require very little discrete math, focusing instead on calculus [18]. Another complication lies in the

ability of a student to practice this mathematical reasoning outside the classroom. Most practice

comes in the form of pen-and-paper problems given to students as homework. This has several
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intrinsic problems. To determine if the problem has been completed correctly, the student needs

some form of outside checking or feedback. This generally comes in the form of an instructor who

checks student work, but instructors are not always available. Pen-and-paper exercises are also time-

consuming for both students and instructors. Students must hand write each solution and may be

required to present several test cases per exercise which may involve writing the same information

more than once. Instructors must grade each solution by reading the test case and comparing it to

the specification. This can be very slow for non-trivial specifications, which increases the amount of

time until students receive feedback. This creates a need for automated verification software, which

is described in the next section.

Computer-aided Study Tools. Interactive courseware refers to a collection of programs that

enable students to practice the topic of instruction and receive immediate feedback. The feedback can

be tailored to provide varying levels of detail, from simple “right/wrong” feedback to explanations

of the problem and its solution. This feedback allows students to know immediately if they can

proceed to the next exercise or if their solution needs modification. Interactive courseware is also

intended to get students more engaged then they are when performing pen-and-paper exercises.

Examples of successful courseware are Pargas’ MessageGrid [28] and Kumar’s online tutor problets

[16]. The next paragraph describes how the results from the tools can be used to monitor student

understanding.

Student Performance Monitoring. An important property of interactive courseware is its abil-

ity to collect and summerize data on student performance. Performance data can be collected while

students use a given tool and stored for later analysis. This data may be difficult to interpret, so

tools are needed to help instructors make use of the data. Web-CAT [5], an online grading system,

uses several code qualities to determine a student’s grade for a given submission. Each quality has

an automated evaluator and supplies simplified performance for instructor viewing. This relieves

the instructor from combing through large amounts of data and student submissions, and preserves

the important information pertinent to student performance. Student performance data can also

be viewed over time to locate particular problem areas in the class. If the data shows that most

students performed below their usual level on a particular exercise, this may indicate that the topic

covered by the exercise requires more instruction time to be understood fully.
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Monitoring can also help in determining whether students are making random guesses until

they reach a solution. If student input values are viewable by the instructor, he can see how students

attempt to correct their errors. If a student is clearly not making changes to the incorrect part of

the solution, the instructor could choose to not give the student credit for that exercise or make a

point to review the exercise in class.

1.2 Problem Statement

Currently, no courseware exists that enables students to practice their formal verification

skills, provides immediate feedback, and enables instructors to monitor student performance during

practice. Students must rely on traditional pen-and-paper methods of practice and instructor feed-

back when it is available. Instructors only have tests, homework, and student questions to monitor

student performance. This thesis addresses the following problems:

• How can courseware help students study and practice software specifications more effectively?

• How can courseware help instructors better gauge student understanding of specifications?

1.3 Solution Approach

The courseware developed for this thesis is called the Test Case Reasoning Assistant (TCRA).

It enables students to read program specifications and create test cases that are validated program-

matically. The courseware then provides feedback based on the correctness of the test cast presented.

This provides students the ability to immediately identify their mistakes and correct them. By re-

peatedly correcting mistakes, students are able to better understand the specification content than

if they were to submit paper-based homework responses and receive feedback after the instructor

has had a chance to grade them.

Student inputs and correctness results are logged by the tool so that the instructor may

collect the logs for the purpose of grading and/or to determine how well the class understands the

material. The instructor-side of the tool generates several types of graphs from the collected logs

to make the data easy to interpret. If the instructor finds a common problem area in the student

results, they can revisit and focus on that specific area to help students understand better.
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1.4 Thesis Statement

This thesis defends the following statements:

• The use of TCRA improves student understanding of interface specifications with the use of

immediate feedback mechanisms.

• TCRA allows students to identify their mistakes, if present.

• TCRA improves student performance on class quizzes.

1.5 Summary

The remainder of this thesis is organized as follows. In Chapter 2, introduces the goals of

the course module and the design of the TCRA student and instructor modules is presented. API

design and use-cases are discussed in detail. Chapter 3 discusses the in-classroom case studies, and

the evaluation of the results. Chapter 4 relates TCRA to related work from the field, followed by a

summary of contributions and an overview of future work in Chapter 5.
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Chapter 2

Test Case Reasoning Assistant

(TCRA)

This chapter will introduce TCRA, a pair of Java [26] applications designed for student and

instructor use, respectively. The first section describes the classroom module that the tools target.

The next section introduces the specification approach and syntax. Next, the user view of both the

student and instructor tools will be described. Finally, the implementation view of both tools is

detailed.

2.1 Classroom Reasoning Module

The reasoning module is designed to be used in the first undergraduate course that covers

interface contracts. At Clemson, this is CpSc 215, Software Development Foundations. In the

module, students learn analytical reasoning principles related to abstract mathematical models,

formal interface specifications, and how to choose components based on interface specifications. The

reasoning module is introduced after the basics of specifications using pre- and post-conditions have

been taught.

The module begins with a short survey of the basic mathematical types used in program

specifications. These types include integers, reals, sets, and strings. More advanced types are

deferred to later modules or courses. Each type is introduced with examples of values an instance of
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the type may hold and the operations supported by the type. For example, students are shown String

instances such as <1,2,3>, a string containing three integers, as well as <>, the empty string.

They are then introduced to the length (||) and concatenation (*) operators. Simple examples are

used initially to ensure student understanding. After the mathematical types have been introduced,

existential and universal quantifiers are reviewed, and simple quantification expressions are discussed.

It is worth noting that this portion of the module is largely review; the concepts are familiar to most

students.

Next, students discuss how to map program types to their representative mathematical

types. For example, students are introduced to the string model in the context of a list object,

which students then extend to objects such as stacks and queues. Once several of these connections

have been identified, interface specifications are presented. For example, the RESOLVE specification

of the Push() operation defined for a stack component is introduced as follows:

1 Operation Push(preserves X: Integer,

2 updates S: Stack);

3 requires |S| < MAX_DEPTH;

4 ensures S = <X> * #S;

The parameter annotations indicate that Push() does not modify the value of X, but

may modify the value of S. Requires and ensures clauses represent the operation’s pre- and post-

conditions, respectively. The # symbol denotes the pre-conditional value of the corresponding vari-

able. Thus, Push() can be called if and only if the stack S contains fewer than MAX DEPTH elements,

a parameter defined as part of the stack abstract model. Upon termination, Push() adds the value

of X as the leftmost (topmost) entry of S. The Pop() operation is similarly defined; students may

be asked to try and write the specification for the operation.

Once several component specifications have been covered, students are given specifications

for mystery operations and asked to determine their behavior. These may be completed individually

or in small groups. An example mystery specification can be seen below:

1 Operation Mystery(updates S1, S2: Stack);

2 requires (|S1| > 0) and |(S2| < MAX_DEPTH - 1)

3 ensures there exists E: Integer, S: String of Object such that

4 #S1 = <E>*<S> and

5 S2 = <E>*<#S2>*<E>

6



After the mystery exercises are covered, students are asked to create test cases for the

exercises. Students provide pre- and post-conditional values for an operation’s variables to test

the behavior of the operation, demonstrating their ability to use component implementations based

on formal interface specifications. It is at this point that the Test Case Reasoning Assistant is

introduced.

2.2 Specification Approach and Syntax

TCRA consists of a pair of Java applications designed for student and instructor use, re-

spectively. The student application is designed to enable users to quickly work through an extensible

set of test case creation exercises, receive rapid feedback as they work, and benefit from performance

data collected automatically for online and offline analysis. These analysis services are provided by

the instructor application, which supports graphical reporting features.

2.3 User View

2.3.1 Student Interface

GUI Description. The student application is shown in Figure 2.1. The screen capture was taken

just after the user opened and began the exercise displayed. Note that the user interface design is

intentionally simple. The objective is to eliminate student learning time associated with using the

tool, focusing instead on the reasoning exercises themselves.

The student tool consists of four sections. The top left portion of the window displays the

interface specification under consideration. The front matter preceding the three document icons

characterizes the mathematical model. In this case, the Mystery interface is modeled as a String of

Integers. Each of the document icons represents an operation included as part of the interface. When

one of these icons is selected, the corresponding specification is shown in the top right portion of

the exercise window.

The bottom left portion is where users enter test cases, in the form of pre- and post-

conditional argument and return values. Basic syntax checking and error reporting are provided.

After the test case has been submitted for verification, the instantiated specification, derived by

substituting the student-provided values into the original specification, is shown in the bottom right

7



Figure 2.1: TCRA Student View
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portion of the window.

As is obvious in Figure 2.1, the syntax presented in the specifications is different from the

syntax used in previous examples. This is a feature that TCRA supports; the instructor can use

any specification notation they wish while the validation logic remains the same.

Tool Use. The student’s task is to provide, for each operation, test cases that satisfy the cor-

responding specification. The student begins by reading the specification carefully to understand

the method requirements. Once he believes they understand what the method requires, the student

enters pre-conditional and post-conditional values for each argument according to its mathematical

type. Two mathematical data types are supported in the current implementation: String of Object

and Integer. Along with the method arguments and return value if any, the student also enters the

pre-condtional and post-conditional values of the target object. When the student is ready to sub-

mit the test case for validation, he clicks the OK button. If both the requires and ensures assertions

evaluate to true in the instantiated specification, the system notifies the student that a correct test

case has been provided. He is then able to continue providing new test cases or move on to another

operation or exercise. Otherwise, an error is signaled and the student is prompted to correct the

mistake based on his understanding of the instantiated specification. The instantiation process not

only provides immediate feedback, but reinforces the process by which students are taught to reason

about pre- and post-conditional specifications (i.e., using instantiation).

Log Description. As students work their way through each exercise, the application monitors

their activity. This includes recording information about the exercises selected, the test cases pro-

vided (including correctness results), and the time at which each activity occurred. Each log is

tagged with a unique identifier chosen by the student when the application is first installed, sup-

porting longitudinal analysis without compromising student anonymity. This information can be

transmitted to the log repository at any time (through the Tools menu). During classroom exercises,

students might be prompted to submit their logs at regular intervals. Alternatively, students might

submit their logs from home after they’ve completed a set of assigned exercises. In either case, the

logs are collected in the repository for analysis. The address of the repository can be configured in

the associated tcra.config file by the instructor.

Before considering the instructor interface, it is worth emphasizing that while dozens of
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exercises are included with the tool, the exercise set is extensible and language neutral. Instructors

are not limited to the prescribed exercises, nor the RESOLVE specification and implementation

notation. Each exercise is implemented as a single class that conforms to an Exercise interface

supported by the tool. The design separates the presentation logic used to display the interface

signatures and specifications from the checking logic used to test the validity of the inputs provided.

These exercises are compiled independently of the TCRA tool, enabling instructors to quickly develop

new exercises involving the programming language and specification notation of their choice.

2.3.2 Instructor Interface

Tool Description The instructor interface of TCRA, shown in Figure 2.2 enables instructors to

produce graphs from student logs. The generated graphs can be used to grade students’ work and

to identify weaknesses in understanding. To begin, instructors may download student logs from the

repository specified in the tcra.config file at any time. The instructor tool includes the same

on-campus/off-campus options found in the student interface. The tool then downloads the logs onto

the local machine (to the same directory that the tool executes from). Data is stored in separate

dated folders so that the instructor can keep a history of student performance.

Next, the instructor chooses the files she wishes to include in a generated graph using the

“Choose Files” button. This button triggers a file-open dialogue used to navigate to the folder

containing the logs of interest. Once the logs are selected, the tool lists all the exercises identified

in the logs within the table labeled “Available Exercises.” This list is the union of all the exercises

found in the logs, so it is possible that some logs do not have test cases for that particular exercise.

However, if the tool is used for grading purposes, it is unlikely that a student did not attempt the

exercise at all.

Next, the instructor selects the exercises she would like to focus on and then clicks the

“Choose Exercises” button. In response, the tool populates the “Available Methods” table with the

method contracts that have been attempted by students. The instructor then chooses the contracts

she wishes to include in the graph (recall that an exercise may consist of multiple contracts).

Finally, the instructor enters a date range and time to further further focus on. Once

satisfied with her selections, the instructor clicks the “Generate Graph(s)” button. When the tool

is done generating the graph, an image viewer displays the new graphs automatically.
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Figure 2.2: TCRA Instructor View
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Graph Types Before generating the graphs, the instructor can choose the type of graph she

wishes to see. There are three types of graphs available. Some examples can be seen at the bottom

of Figure 2.2. The first option, “aggregate results per method,” creates one graph per method, each

capturing the number of right and wrong test cases presented by students. The second graph,

“individual results per student,” creates an graph for each student, showing the number of correct

and incorrect test cases for each method selected in the GUI. The final graph, “aggregate results for

all methods,” generates one graph. The graph is similar to that of the “aggregate results per method”

graph but concatenates the bar graphs, forming one large graph.

For each graph, the y-axis captures the number of test cases while the x-axis captures either

the name of the method contract, or the student id. The graph uses stacked format, with false

test-cases appearing in green on top of the true test cases in red.

2.4 Implementation View

In this section, the implementation of the two interfaces will be discussed. The description

focuses on component interaction and data flow during student and instructor use. A high-level

UML diagram shows the object organization of the student view in Figure 2.3.

2.4.1 Student Tool

Exercise Data Structure. A TCRA exercise is comprised of three components: an interface

header, a collection of method contracts, and information about the mathematical model that repre-

sents the interface. The header is displayed as the root of the tree that appears in the top-left pane

of the student view, and its child nodes display the names of the methods the exercise contains. The

interface may be as simple as “public interface Stack,” or it may give more detail about the

interface, such as length restrictions on the corresponding type. The mathematical model informa-

tion is used to inform the user of what data type #self and self are. For example, a queue is modeled

as a String of Object. An example exercise class can be seen in Listing 2.1.

The StackReasoningExercise is derived from the abstract TCRAExercise class. It

sets the interface header to the typical Java-style interface signature. Then the contracts Vector is

instantiated and method contracts are added in the order the instructor wishes them to be displayed.

The getMathRep() function is implemented to return a MathStringModel, signifying that #self
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Figure 2.3: TCRA UML Diagram
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Listing 2.1: Java-style Stack Reasoning Exercise

1 public class StackReasoningExercise extends TCRAExercise
2 {
3 public StackReasoningExercise()
4 {
5 super("public interface Stack");
6 contracts = new Vector<MethodContract>();
7 contracts.add(new StackPushContract());
8 contracts.add(new StackPopContract());
9 contracts.add(new StackTopContract());

10 contracts.add(new StackLengthContract());
11 contracts.add(new StackClearContract());
12 } // end ctor
13
14 public MathModel getMathRep() { return new MathStringModel(); }
15 } // end class

is represented by a String of Object.

Method contracts are more detailed. Consider Listing 2.3. StackPopContract is derived

from the abstract MethodContract class. It contains three protected variables that will store

the objects that result from parsing student input. They are used to avoid reparsing input when

toInstanceString() is called. The constructor sets the contract name, associates the pre- and

post-conditions with the appropriate Assertion objects, instantiates the Vector<MethodArgurment>,

and sets the returnType variable to the appropriate ProgrammingType object. It then sets the

protected variables to null for error-checking later.

The check() function parses the input passed down from the GUI using a MathStringParser

and a MathIntegerParser. The objects returned from the parse() function of these parsers

are stored in the protected variables and then checked to see if any of them remain to be null. If

so, a MathFormatException is thrown signifying that an error was encountered during parsing.

If the parsing was successful, the objects are stored in a Vector<MathType> and passed to the

Assertions’ check() methods. If either check() fails, false is returned, true otherwise.

toString() is used to print the specification. It uses HTML tags to allow for better

formatting in a single JLabel object in the GUI. toInstanceString() returns a similar String,

but uses the instantiated specification instead.

The most important component of a contract is a pair of assertions that define the behavior

of the method. The pre-condition assertion defines the conditions that must hold before the method
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can be invoked, and the post-condition assertion defines the conditions that must be true after the

method completes. An example check() function can be found on line 5 of Listing 2.2 and will

be discussed later. The contract also contains a collection of method arguments that represent the

programming types and formal names of the method’s arguments. These arguments are used to

build the user input table in the lower right pane of the student tool. The contract also contains a

field that represents the return type of the method. If a return type exists for the method, an extra

row is added to the input table. The GUI accesses the method arguments and return type through

accessor methods in MethodContract.

The assertions are the core of a method contract. They specify the conditions that must be

satisfied by the user’s test case through the check() method. Consider this example. Listing 2.2

shows how check() checks that #self is equal to self concatenated with pop. The assertions

also return strings representing their formal representation and the value instantiated specifica-

tion through toString() and toInstanceString(), respectively. This finishes decoupling the

checking logic from display logic throughout the TCRAExercise class structure.

An example Assertion is supplied in Listing 2.2. The check() method simply casts the

objects from the Vector argument into temporary variables of the appropriate type, which is safe to

do since the exercise developer controls the ordering of Vector elements throughout the exercise.

The if statements below check the values of lb self, self, and pop for errors. The first if

statement is used as a shortcut around the more expensive concat() and equals() functions in

the if statement below it. If self does not contain one fewer elements than lb self then false

can be returned immediately. Next, pop is concatenated onto self and then compared to lb self.

If the two are equal, true is returned. toString() returns the formal representation of the

assertion in any specification notation the developer wishes to use. toInstanceString() returns

the value instantiated specification by calling the toHTMLString() function of each MathType.

toHTMLString() is necessary since the “<” and “>” characters will not be displayed correctly in

an HTML context.

User Input Validation. When a user has entered a test case and clicks the OK button, in-

put validation begins. The input is passed to the method contract object through its check()

method. Within this method, the input strings are parsed into MathType objects using the

MathTypeParser appropriate for the type of input expected. Since the exercise developer knows
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the order and type of the arguments in the contract, she can parse the strings accordingly. If the

parse fails for any reason, a MathFormatException is thrown and an error window is shown

to the user. If everything parses correctly, the MathTypes are passed to the pre-condition and

post-condition objectsfor further validation as seen on line 32 of Listing 2.3.

To understand the validation process more fully, assume the following input to the StackPopContract

in Listing 2.3:

#self = <1,2,3,4>

self = <1,2,3>

pop() = 4

The input is passed from the GUI object, TestCaseReasoningAssistant, to the contract via

the check() method. StackPopContract parses the first two Java Strings to MathStrings

using a MathStringParser which, in turn, uses a MathIntegerParser to parse the elements

of the MathString to MathIntegers. The pop value is parsed with a MathIntegerParser to

a MathInteger as well. If there are any parsing errors, such as a missing “<” in a MathString,

the contract throws a MathFormatExepction, which is caught by the GUI, and a simple error

box is displayed to the user. If the objects are parsed successfully, they are saved to private class

variables so that when the toInstanceString() method is called, there is no need to reparse the

input. The objects are also put into a Java Vector and passed to the pre-condition Assertion

which checks that #self has a length greater than zero. If that condition passes, the Vector is

then passed to the post-condition shown in Listing 2.2 by invoking the Assertion’s check()

method. StackPostPopAssertion’s check() method begins by creating temporary copies of

the objects in the Vector that it can modify. Next, it makes a quick check of #self and self to

ensure that self contains exactly one less item than #self. If that is true, it checks to see if #self

is equal to self concatenated with pop. If that is also true, the check() function returns true.

StackPopContract’s check() method then returns true to the GUI object. The GUI then calls

the contract’s toInstanceString() method and displays the returned String, representing the

instantiated specification, in the bottom right panel. Finally, the GUI displays a message to the

user informing her of whether the test case satisfies the specification.

Log Submission. As a student uses the tool, TCRA keeps a log of his activity. This log can

be submitted at any time through the tool to a specific FTP server, where it is stored for the

16



instructor to download later through the instructor side tool. The configuration is handled through

the tcra.config file which is read when the student selects “Submit Log” through the Tools menu.

There are three lines in the configuration file:

1. An on-campus IP address (or fully-qualified computer name)

2. An off-campus version of the previous address

3. The directory in the FTP server used to store logs

The reason for having two addresses for the same repository is because of potential firewall restric-

tions. The server named by the first address may not be accessible from outside the firewall; likewise

the second address may be inaccessible from inside the firewall.

The student simply selects which site location he is in via a set of radio buttons in the

tools menu and then clicks “Submit Log.” TCRA then attempts to connect to the selected address

over an SSH tunnel (using the open-source J2SSH library [13]). The student is then prompted for

his username and password. After successfully opening the SSH tunnel, an FTP session is started

and the tool transmits the user log to the specified directory on the specified system. The tool

prepends the ID the student chose on the first run of the tool to the common tcra log filename

to ensure that no file overwrites another. If the student has previously uploaded a log, the old one

is overwritten. Since the logs create a running record of all activities since the first execution of

the tool, there is no data loss. The tool then notifies the student whether the upload completed

successfully.

2.4.2 Instructor Tool

Log Data Format. A portion of an example log is shown in Figure 2.4, every student log begins

with “id:” followed by the ID selected by the student. Each of the remaining data blocks inside the

log begins with one of four codes used to specify what type of event the block records:

• “000” specifies that the program was executed

• “001” denotes the opening of a file

• “010” represents the selection of a method contract

• “1xy” specifies a test case, where the integer xy specifies the number of inputs to the test case.
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id: new_version
000: Tue Mar 24 19:13:16 EDT 2009: Program executed
001: Tue Mar 24 19:13:27 EDT 2009: User opened file Q2MysteryInterfaceExercise.class
010: Tue Mar 24 19:13:27 EDT 2009: User selected method Mystery1
102: Tue Mar 24 19:13:43 EDT 2009:
#self = <1,2,3>
self = <1,2,3>
Test case was deemed false
104: Tue Mar 24 19:34:47 EDT 2009:
#self = <1, 3, 4>
String of Integer #b = <6, 8>
self = <1, 3, 4, 6, 8>
String of Integer b = <6, 8>
Test case was deemed true
010: Tue Mar 24 19:34:49 EDT 2009: User selected method Mystery2
106: Tue Mar 24 19:35:48 EDT 2009:
#self = <1, 3, 5, 6>
Integer #index = 2
String of Integer #b = <4>
self = <1, 3, 4, 5, 6>
Integer index = 2
String of Integer b = <4>
Test case was deemed true

Figure 2.4: Example Log File Data

Figure 2.5: TCRA Instructor UML Diagram
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<TCRA_Log id="jeremiy">
<Session timestamp="Fri Apr 24 19:32:12 EDT 2009">

<File name="Q3MysteryInterfaceExercise.class"
timestamp="Fri Apr 24 19:34:31 EDT 2009">

<Method name="Mystery1" timestamp="Fri Apr 24 19:34:31 EDT 2009">
<TestCase timestamp="Fri Apr 24 19:35:48 EDT 2009" correct="false">

#self = &lt;1,2,3&gt;<br/>
String of Integer #b = &lt;5&gt;<br/>
self = &lt;3,5&gt;<br/>
String of Integer b = &lt;5&gt;<br/>

</TestCase>
</Method>
<Method name="Mystery2" timestamp="Fri Apr 24 19:36:55 EDT 2009">

<TestCase timestamp="Fri Apr 24 19:38:20 EDT 2009" correct="false">
#self = &lt;1,2,3&gt;<br/>
Integer #index = 0<br/>
String of Integer #b = &lt;9&gt;<br/>
self = &lt;1,9,2,3&gt;<br/>
Integer index = 0<br/>
String of Integer b = &lt;9&gt;<br/>

</TestCase>
</Method>

</File>
</Session>

</TCRA_Log>

Figure 2.6: XMLLog Structure

Each code is followed by a timestamp. 001 blocks include the name of the file that was

opened. 010 block include the name of the method selected. 1xy blocks are followed by xy+1

blocks, xy of them being the inputs to the test case, and the last line indicating whether the test

case was correct or not.

LogParser and the XMLLog Data Structure. The data structure used to make the raw log

data more accessible programatically is built in the same fashion as an XML file. This data structure

makes it much easier to query the log and produce the graphs that instructors want to see.

The XMLLog object (whose UML diagram is part of Figure 2.5) contains the ID chosen by

the student and a Vector of XMLLog SessionEntrys. Each session entry contains the Java Date

of when the session began and a Vector of XMLLog FileEntrys. Each file entry contains the

Date of when the file was opened, the name of the file, and a Vector of XMLLog MethodEntrys.

The method entry contains the Date of when the contract was selected, the name of the method

contract, and a Vector of XMLLog TestCaseEntrys. The test case entry contains the Date of
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Figure 2.7: State Diagram of LogParser

when the test case verification was attempted, whether or not it was true, and a Vector of strings

containing the test case inputs. Figure 2.6 shows the output of an XMLLog’s toString() method

and helps visualize the data structure.

One XMLLog is generated for each log file opened by the instructor, and each one is used

during queries. This process is visualized by a state diagram in Figure 2.7, where the transitions

correspond to the block codes read, and the nodes represent the entry type being constructed. The

log parsing begins by creating the XMLLog object and storing the user id. Next, the parser expects

to read a “000” code; if it does read one, an XMLLog Session object is created. The session then

stores the timestamp in a Date object. If some other code is found, the LogParser throws an

error, notifying the instructor of a malformed log, which may signify log editing performed by the

student.

Next, the parser can read either a “001” code, which leads to the creation of an XMLLog FileEntry,

or it may find another “000”, signifying that the current session is empty and can now be stored in

the XMLLog. If the file entry is created, it stores the timestamp in a Date and the filename in a

String. If an unexpected code is found in place of “001,” the malformed log error is thrown.

Following a file entry, the parser can accept three different codes. “000” will add the file

entry to the session entry, and the session entry will be added to the XMLLog. “001” will add the

file entry to the session entry, but the session entry will remain current. “010” will create a new

XMLLog MethodEntry. The method entry stores the timestamp in a Date and the method name

in a String. If a “1xy” code is encountered, the malformed log error is thrown.

Finally, the parser can accept any code. “000” will add the method entry to the file entry,
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the file entry to the session entry, and the session entry to the XMLLog. “001” will add the method

entry to the file entry, and the file entry to to the session entry. “010” will add the method entry to

the file entry. “1xy” will create an XMLLog TestCaseEntry that adds the timestamp as a Date

and reads xy+1 lines, adding each one to the Vector that holds the input values.

Once the XMLLogs are built, getUniqueFilenames() is invoked on each XMLLog and

the returned Strings are put in the exercise table found below the list of opened files. Then,

after the instructor selects the exercise files of interest and clicks the Choose Exercises button,

getMethods() is invoked to get all the unique method names from each exercise and place those

in the method table. The instructor then selects the methods he or she wishes to graph, enters a

date range in the boxes below the table to further refine the query, and clicks the Generate Graph(s)

button. The tool then invokes the XMLLog’s correctnessQuery() method to get the number of

correct and incorrect test cases for the selected method contracts. Several parameters are passed to

the correctnessQuery() method; these include: exercise name, method name, correctness (true

or false), and the date range. These are passed down the tree, some being stripped off when they

are no longer relevant, such as the method entry not receiving the exercise name.

The XMLLog and the contained items also use the toString() method to generate a valid

XML file. This is included for instructors who wish to use the XML format for their own unique

purposes (e.g. extended analysis). It can be run from the a command line using java LogParser

tcra log.

This data collection provides the foundation for our evaluations studies in Chapter 4.

Graph Generation. The instructor tool generates graphs through the use of gnuplot version

4.2 [7]. An input data file is created by querying each XMLLog for the number of correct and

incorrect test cases for the selected methods within the designated time frame. These counts are

then processed by the graph-specific method in the tool. The receiving method then writes out the

input file to gnuplot. The “aggregate results per method” option creates one input file per method

each containing the number of right and wrong test cases presented by each user. This kind of graph

can be used to gauge understanding across the whole class. The “individual results per student”

option creates an input file for each student, each with the number of true and false test cases per

method selected in the GUI. This graph is useful for grading students based on completion of the

exercise. The “aggregate results for all methods” option generates one input file that contains all the
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data from the “aggregate results per method” plot option. This would allow the instructor viewing

the graph to see which exercise was most difficult due to a higher amount of false test cases than

average. Gnuplot is then run once for every file generated, using the script found in Figure 6.6 in

the Appendix. Finally, in a separate thread, an image viewer is opened to view the newly produced

images.
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Listing 2.2: Example Assertion - Pop Post-condition

1 public class StackPostPopAssertion implements Assertion
2 {
3 public StackPostPopAssertion() {}
4
5 public boolean check(List<MathType> l)
6 {
7 MathString<MathType> lb_self = (MathString<MathType>)l.get(0);
8 MathString<MathType> self = (MathString<MathType>)l.get(1);
9 MathType pop = (MathType)l.get(2);

10
11 if(self.length() != lb_self.length()-1) return false;
12 if(!lb_self.equals(self.concat(pop))) return false;
13
14 return true;
15 } // end check(List)
16
17 public String toString()
18 {
19 return("there exists A: String of Object, b:Object<p>" +
20 "(#self = A * &lt b &gt )<br>" +
21 "(self = A)<br>" +
22 "(pop( ) = b)");
23 } // end toString()
24
25 public String toInstanceString(List<MathType> l)
26 {
27 MathString<MathType> lb_self = (MathString<MathType>)l.get(0);
28 MathString<MathType> self = (MathString<MathType>)l.get(1);
29 MathType pop = (MathType)l.get(2);
30
31 return("there exists A: String of Object, b:Object<br>" +
32 "("+lb_self.toHTMLString()+"= A * &lt b &gt )<br>" +
33 "("+self.toHTMLString()+" = A)<br>" +
34 "("+pop+" = b)");
35 } // end toString()
36 } // end class
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Listing 2.3: Example MethodContract - Stack Pop Operation

1 public class StackPopContract extends MethodContract
2 {
3 protected MathString<MathType> lb_self;
4 protected MathString<MathType> self;
5 protected MathInteger pop;
6
7 public StackPopContract()
8 {
9 super("pop");

10 precondition = new StringLengthGTZAssertion();
11 postcondition = new StackPostPopAssertion();
12 args = new Vector<MethodArgument>();
13 returnType = new IntegerType();
14 lb_self = self = null;
15 pop = null;
16 } // end ctor
17 public boolean check(String[] l) throws MathFormatException
18 {
19 MathIntegerParser mip = new MathIntegerParser();
20 MathStringParser msp = new MathStringParser(mip);
21 lb_self = msp.parse(new StringBuilder(l[0]));
22 self = msp.parse(new StringBuilder(l[1]));
23 pop = mip.parse(new StringBuilder(l[2]));
24
25 if(lb_self == null || self == null || pop == null)
26 throw new MathFormatException(
27 "One or more unparsable arguments.");
28 Vector<MathType> args = new Vector<MathType>();
29 args.add(lb_self);
30 args.add(self);
31 args.add(pop);
32 return (precondition.check(args) && postcondition.check(args));
33 } // end check(List)
34 public String toString()
35 {
36 return("<html>" + returnType + " " + name + "( )<br>" +
37 "requires:<br>"+ precondition + "<br>ensures:<br>" + postcondition);
38 } // end toString()
39 public String toInstanceString()
40 {
41 Vector<MathType> argVals = new Vector<MathType>();
42 argVals.add(lb_self);
43 argVals.add(self);
44 argVals.add(pop);
45 return("<html>" + returnType + " " + name + "( )<br>" + "requires:<br>"+
46 precondition.toInstanceString(argVals) + "<br>ensures:<br>" +
47 postcondition.toInstanceString(argVals));
48 } // end toInstanceString()
49 } // end class
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Chapter 3

Related Work

This chapter describes work related to this thesis. The first section describes prior work

in teaching rigorous mathematical foundations. The second section surveys existing courseware for

computer science education. The third section covers works in collaborative learning. Finally, the

fourth section compares tools for teaching specifications with the TCRA tool.

3.1 Teaching Rigorous Foundations

The importance of teaching mathematical techniques to complement traditional program-

ming skills is well-documented by the community [8, 2, 18, 25, 33, 31, 32, 24, 29]. One of the most

well-known efforts is that of Henderson [10, 11], whose approach to teaching introductory computer

science involves weaving topics in discrete mathematics, problem solving, and algorithm design to

emphasize their interconnections. He advocates for an introductory class that models those of other

engineering disciplines, where the foundations are taught prior to the main discipline concepts. The

instructor would cover general problem solving, discrete math, algorithmic problem solving, basic

computer science concepts, and establish links between these areas to show how they support one

another. Our approach shares his emphasis on assertion-based program reasoning, including the use

of formal pre-conditions and post-conditions.

LeBlanc and Leibowitz [18] advocate a need for more discrete math content for computer

science students. They argue that one-semester of exposure to discrete mathematics is insufficient

for students to truly understand formal systems, proofs, and discrete structures in computing. They
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propose a two courses of discrete math. The first course would introduce students to several topics,

such as sets, relations, graphs, and logic, that will be repeated in the second course. These topics

are also related to their uses in computing. The second course teaches students about proofs and

algorithms that are associated with the topics taught in the first class. The authors believe that this

repeated exposure will give students a deeper understanding of discrete math topics and by relating

them to computing, a better chance of using these topics effectively in computer science classes.

This also relieves computer science instructors of having to cover the topics in detail.

The notion of teaching discrete math and programming together is supported by McMaster

et al. [25]. They also argue for a two semesters of discrete math and divide each course into

modules. Each module consists of a topic, such as “Sets, functions, and properties of integers,” and

a programming project that exercises these topics. Course evaluations suggest that students enjoy

and benefit from from this kind of course structure.

3.2 Teaching Tools

The pervasive availability of network-enabled desktops and laptops creates new opportuni-

ties for enhancing computer science education with interactive courseware [30, 16, 28, 9, 21, 3]. One

of the most successful efforts is led by Kumar [16, 17]. His problet approach involves computer-based

tutors that guide students through short program reasoning exercises that reinforce their under-

standing of programming language semantics. Kumar has developed several such problets, covering

topics such as: expression evaluation, predict loop output, and identification of syntax errors. Each

problet provides feedback to the user that explains the answer to the problet and how to arrive at

the answer. While our focus on formal reasoning distinguishes our work from that of Kumar, the

tools are similar in design. TCRA provides the student with a formal contract and accepts test

cases that are used to instantiate the contract. There is no pre-defined answer to the problem, so

TCRA’s feedback is limited to stating correctness of the test case. It was designed not to identify

the root cause of an error in the instantiated contract in order to encourage students to continue

testing until they succeed. The system for collecting student response data for instructor analysis

is also similar. Both approaches benefit from the rapid response feedback common to clicker-based

instructional techniques [28], but provide more detailed guidance in the event of reasoning errors.

Kumar’s problets have three levels of feedback: none, where the tutor tells the student to continue
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to the next problem; minimal, here correctness result is provided by the tutor; and detailed, where

the tutor explains the answer in a graphical or textual fashion. As stated above, TCRA’s feedback

is limited to providing a boolean correctness result and an instantiation of the contract under test.

Rodger et al. [35] have piloted JFLAP [34, 30] to make automata theory more interactive.

JFLAP was designed to enable students to practice problems that would be difficult with traditional

pencil-and-paper methods, which is a goal shared by our tool. The authors note that automated

test case verification relieves the instructor from the burden of grading hand-written assignments.

JFLAP can be used to build and simulate several types of machines such as finite automata, push-

down automata, and Turing machines; it can also convert from one machine to another. Students

are able to enter input strings and observe the behavior of the automata. Students can also test

their ability to convert from one machine to another by performing the conversion by hand and then

comparing against the output of the tool.

TCRA provides similar functions for students practicing formal reasoning. The tool verifies

the student’s input and rapidly provides feedback to the student. The feedback comes in two forms:

the student is told whether or not their test case is correct and the specification is instantiated with

the student’s input. The specification instantiation enables the student to determine where their

error lie without explicitly highlighting the error for the student. This was designed to encourage

the student to rethink the specification rather than simply continuing on with to the next exercise.

3.3 Collaborative Learning

The Peer Instruction approach pioneered by Mazur [23] is based on the concept of learning

through one’s peers and has proven effective through over a decade of experimentation. Though the

approach was originally developed in a physics context, the approach has more recently been applied

successfully in computer science classrooms by Chase and Okie [4], among others. Their experiment

compared two sections of an introductory computer science course, one taught traditionally and the

other using collaborative learning techniques. The experimental course had peer instructors that

helped students during labs and the students were assigned to groups during normal class meetings.

Group members were responsible for helping each other and for motivating each other to remain in

the class. The authors noted that the WDF rate (percentage of students withdrawing, or receiving

a D or F in the class) dropped from 56% to 32% in one experiment and 33% in the other. Many of
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these students received instead a C. Female students seemed to respond better to this kind of class,

as the female WDF rate dropped from 53% to 18% in one section and 12% in another.

Beck and Chizhik [1] found similar results in their classroom experiment. The control section

of the course used the traditional lecture-based format while the experimental section used shorter

lectures combined with mini-lectures, administrative topics, and general class discussion. Students

in the experimental section also also worked together to simulate program execution. This was done

whenever new concepts were introduced. The authors found that all students in the experimental

section benefited from the cooperative learning, but female and minority students displayed greater

improvement over their peers in the control section than white male students did.

3.4 Specification-Based Tools

Few tools have been developed that enable instructors to teach formal specifications in an

interactive manner. Feldman [6] surveyed several tools in hopes of using them in an educational

setting. Many of them were similar in function, so only iContract [15] is summarized below. The

other tools were not discussed in detail as they were found to be inappropriate for classroom use.

iContract is a tool that instruments Java source code with assertions that check pre- and

post-conditions specified by comments in the source files. A developer adds annotations to their

source code to specify pre-conditions, post-conditions, and invariants. The iContract preprocessor

creates executable assertions within the annotated functions, which are in turn tested during program

execution. If a contract is violated, a RuntimeException is thrown describing the violation.

While iContract seems to be useful for runtime checking, it seems limited in its usefulness in

education. To develop test cases for exercises written in iContract, a student would need to build a

test driver for the class in the exercise. This could be time-consuming and would focus more on the

students’ programming ability and less on their understanding of specifications. Also, if a student

needs to read source code to develop test drivers, they may be able to trace code to develop a correct

test case instead of understanding the specification’s details. Students also lose sight of the abstract

mathematical models that form specifications if they are able to read and infer behavior directly

from code.

The most serious problem with iContract is that the annotations do not accurately represent

the formal mathematical models. Consider an example:
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@post has(k) == ($ret != null)

As is obvious in the example, the annotations make reference directly to functions and

other programmatic elements, instead of the underlying models. This distracts from the formal

mathematical contracts being taught and may lead students to believe that this is proper syntax

in formal mathematics. Additionally, according to Feldman, students who used iContract found it

difficult to install, causing loss of valuable class time 1.

TCRA has been developed to overcome many of the problems associated with simple code

instrumentation. It enables instructors to create exercises that focus on abstract mathematical

models and supports arbitrary specification languages. Exercises have been developed to use Java-

style specifications as well as RESOLVE-style specifications. Student test case input has been

designed for fast creation, testing, and modification. The syntax used in the test cases comes

directly from the mathematical models it represents. For example, if a student needs to enter the

state of a string of integers, they might enter “<1,2,3>.” The students simply enter each test case

and click a button to verify their entry. There is no need to develop test drivers, which saves time,

enabling rapid exercise completion.

TCRA’s installation procedure is straightforward; it requires the extraction of an archive file

to a directory of the user’s choice. Scripts that execute the tool either on Windows- or Linux-based

systems are included. The scripts set the CLASSPATH at the time of execution, further simplifying

the install process. Since TCRA is written in Java, it is available on any platform that has an

associated Java Virtual Machine. It has already been tested on Windows XP and Vista, several

versions of Linux, as well as Mac OS X.

The benefits that come with TCRA do, however, come at the price of increased effort on

the part of the exercise developer. Instead of simply instrumenting source code with annotations,

the developer must implement an exercise class using the TCRA exercise API.

1iContract appears to no longer be available.
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Chapter 4

Evaluation

In this chapter we describe experiments performed to evaluate the tool’s benefit to students

in classroom situations. Specifically, we focus on evaluating: student performance on quizzes with

and without TCRA and the students’ ability to identify their mistakes in test cases while using

TCRA.

4.1 First Classroom Experiment

We first focused on determining whether student performance improved when using TCRA

to complete class quizzes.

Experimental Design. TCRA was used in an undergraduate software engineering class at Clem-

son (CPSC 372) where the RESOLVE specification approach [37] was taught. The experiment was

conducted after students had bee introduced to RESOLVE notation simple specifications. Each day,

students received a quiz to test their knowledge of the material covered in the preceding class. Each

quiz required that students present two test cases for each specification. The experiment began with

a quiz (Q1) before students used TCRA. Q1 was used to create a baseline of student understanding

of specifications. After the quiz, students were split into two groups selected non-deterministically,

one of which was given the tool to use for the next quiz (Q2), while the other was not. In the

next class, the students with the tool were allowed to use it to complete Q2, while the rest of the

students used the traditional pencil-and-paper method. Q2 allowed us to directly compare student
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Figure 4.1: Q1 Scores (Pre-Tool)

performance with pencil-and-paper exercises and performance with TCRA. After the quiz, the rest

of the students were given the tool. For the last quiz (Q3), all students used the tool to complete

the quiz 1.

Results. First we consider quiz scores. These measurements allows us to determine whether

the use of TCRA improves student quiz scores. Q1, the quiz administered before the tool was

distributed to the class, had an average score of 75%. Q2, for which half the students used the tool,

had an average of 84%. The students who used the tool averaged 94%, while those without the tool

averaged 78%. For Q3, the average was 90%. In Figures 4.1, 4.2, and 4.3, student scores have been

individualized for better visualization of performance.

Next, we consider the correctness of student provided test cases over time. This allows
1The specifications included in Q2 and Q3 can be found in Listing 6.1, in the appendix of this document.
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us to determine whether fewer incorrect test cases were presented as students used the tool. This

information is not yet available through the instructor view of TCRA, so the student logs had to

be manually examined and the data analyzed in a spreadsheet. For each test case, one point was

awarded for each true test case and zero for each false test case. The average of this score was

calculated and plotted after each test case, as summarized in Figures 4.4 and 4.5. The vertical

axis represents this average of test cases that are correct. The horizontal axis shows the number of

attempts made over the course of the quiz. The legend shows the correspondence between line type

and student. This kind of data could not be created for Q1 as there is no history data available from

pencil-and-paper exercises. Both figures show similar results; the line plots begin high as students

were able to reach a correct test case for the first specification on their first attempt. From there,

the lines drop as students proceed onto the next specification and present several incorrect test

cases. This is followed by a small spike upwards when a student finally creates a correct test case.

As students progress through the quiz, this long down slope and short up slope is repeated. This

shows that students continually require several attempts before reaching a correct test case, and

once students achieved a correct test case, they moved on to the next specification.

The final metric we looked at was the average inter-arrival rate of test cases. This was

measured as the number of seconds between test cases entered by the students. This allows us to

determine whether students presented test cases more rapidly as they used TCRA more. Again,

this type of data is not yet available in the instructor view of TCRA, so the data analysis had to

be performed via spreadsheet. The number of seconds between each test case was recorded and an

average was taken after each test case. The plot of these averages shows if a student uses more or less

time to enter a test case as they progress through the quiz. These plots can be seen in Figures 4.6

and 4.7. On these graphs, the vertical axis represents the average number of seconds between test

case entries. The horizontal axis measures the number of test cases entered. The legend shows the

correspondence between line type and student. As the figures show, most students began with a very

high average which quickly fell as they progressed. This suggests that students require “warm-up”

time to get used to the tool and read the specifications, but then begin to rapidly enter test cases

as they become more comfortable with the tool.

Other Observations. The logs received from students showed that even after presenting a suc-

cessful test case for a given specification, all of the students continued to test the specification with
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Figure 4.4: Correctness of Test Cases Over Time for Q2.
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Figure 4.5: Correctness of Test Cases Over Time for Q3.
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Figure 4.6: Number of Test Cases Submitted Over Time for Q2.
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Figure 4.7: Number of Test Cases Submitted Over Time for Q3.
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at least one additional test case. Many students presented both true and false test cases after the

first success. We postulate that the students did this to gain a better understanding that would be

unavailable to them without an interactive tool.

One of the questions in Q3 had no possible solution. The specification contained a small

contradiction that was difficult to recognize. The tool logs show that this question was tested by

more than half the students with more than ten test cases. Two students presented almost 40 test

cases each. This would not have been possible via the pen-and-paper testing method without a

considerable time investment.

4.2 Group Experiment

Overview. Next we focus on determining how student performance changes if exercises are com-

pleted in a group.

Experimental Design. The students from CPSC 372 were split into eight groups to test the

One Way List specification (Listing 6.2 in the appendix) using the tool. The exercise included ten

method contracts, as opposed to the three or four found on the quizzes. To increase the difficulty,

the One Way List data structure was not taught prior to the project; this way no prior knowledge

of the structure could be used to ignore the specifications’ details.

Results. The same metrics measured in the individual quiz logs were also measured for the group

project logs: score, correctness over time, and average inter-arrival rate over time. In terms of score,

every group made received 100% of the total points. In contrast to the quiz results, the majority

of the groups’ correctness average improved with time, as seen in Figure 4.8. The inter-arrival

rate trends are also opposite those found in the quizzes, as seen n Figure 4.9. All but one of the

groups had an increasing inter-arrival rate. We believe that the discussion that takes place in groups

explains the inversion of the two trends. Discussion takes place before the test case is presented to

the tool and modifications are made, causing the test case to take longer to present, but more likely

to be correct.

Other Observations. One group log appeared to have been a mixture of several individual logs.

This lead us to believe that the group did not work together as instructed, but rather divided up
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the specifications and then combined the log data into one log. This log was not included in the

inter-arrival and correctness over time analysis.

4.3 Second Classroom Experiment

Overview. Finally, we focused on validating our findings from the first experiment by repeating

the three-quiz evaluation.

Experimental Design. TCRA was used as an exercise during both sections of the CPSC 215

closed lab. The experiment was conducted in the second half of the course after the basics of

specifications and JUnit [14] had been introduced. The exercise used in the experiment consisted

of a set of three quizzes similar to those used in the first classroom experiment. All the quizzes

presented five “Mystery()” method contracts so that students could not infer behavior from the

method name2. The specification difficulty increased over the course of the five questions. First, a

paper-based pre-quiz (Quiz 1) was given to every student to gauge non-tool performance. Next, the

students were split into two groups. One group took the second quiz (Quiz 2) on paper, while the

other used TCRA to enter test cases. The third quiz (Quiz 3) was completed by all students using

TCRA.

Results. The average score across both lab sections for the first quiz was 37%. The average score

on the second quiz for those who took the paper quiz was 66% while those who used TCRA averaged

98%. The average for the third quiz was 98%. The individual student scores for Quiz 1, Quiz 2 and

Quiz 3 are shown in Figures 4.10, 4.11, and 4.12, respectively.

The same two metrics analyzed in the first experiment, test case inter-arrival rate and

percent correct over time, were also analyzed in this experiment. Figures 4.13 and 4.14 summarize

the “percent test cases correct over time” data collected from student logs. This data was collected

and analyzed in the same manner as described in Section 4.1. As the figures show, a similar pattern

of long downward slopes followed by short upward slopes is present. This shows that, just like the

students in the first experiment, each specification required several incorrect attempts before an

correct test case was achieved. Also, as the difficulty increased, the number of incorrect test cases
2The specifications included in the three quizzes can be found in Listings 6.3, 6.4, and 6.5, in the appendix of this

document.

42



Figure 4.10: Quiz 1 Scores (Pre-Tool)

entered before a correct one also increased.

Average inter-arrival rates of test cases were also analyzed. These too follow the trend set

by the first experimental group. The rates begin high and fall quickly as students progress through

the quizzes, as shown in Figures 4.15 and 4.16.

Other Observations. It is worth noting that a few logs included rapid entry of the same, incorrect

test case several times. During the lab, students could be seen repeatedly clicking the “OK” button,

vocally insisting that their test case was correct. These occurrences were rare; we believe that they

did not alter our results.

4.4 Threats to Validity

Course Structure. The two experimental groups had several variations that could threaten the

validity of this study. The two courses (CPSC 372 and CPSC 215) were taught by different instruc-
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Figure 4.11: Quiz 2 Scores (Half Using TCRA)
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Figure 4.12: Quiz 3 Scores (All Using TCRA)
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Figure 4.13: Correctness of Test Cases Over Time for Quiz 2.
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Figure 4.14: Correctness of Test Cases Over Time for Quiz 3.
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Figure 4.15: Number of Test Cases Submitted Over Time for Quiz 2.
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Figure 4.16: Number of Test Cases Submitted Over Time for Quiz 3.
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tors, who’s teaching styles could effect how well the students understood specifications before using

the TCRA tool. Also, these two courses have students of differing skill levels. CPSC 215 is mostly

first semester sophomores, just coming from the basic programming classes in the curriculum while

the students of CPSC 372 are mostly juniors and seniors who may have taken theory courses in prior

semesters, possibly giving them advanced knowledge of specifications. Also, many of the students

in CPSC 372 may have already taken the discrete math course required for graduation, while most

sophomores have not.

Sample Size. The Computer Science 372 class during the spring semester had only 22 students

enrolled. This class size is not large enough to make statistically significant claims regarding the

data collected. To worsen this, not all students attended class every time one of our quizzes was

taken and some students did not submit their logs, though the reason is unknown.

The Computer Science 215 lab used in the second experiment had only 30 students across

two lab sections. One log received from this group seemed to not have attempted any of the tool-

based questions and another did not attempt quiz 3 at all.

Log Data Editing. One log file submitted by a group showed evidence that the file was con-

structed from several individual logs. This was identified by the instructor tool as a malformed log

and was ignored during analysis.
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Chapter 5

Conclusions and Discussion

This chapter summarizes the problem addressed by this thesis and the corresponding con-

tributions. Key elements of future work are also discussed.

5.1 Summary

Prior to the work in this thesis, there were inadequate tools to enable students to practice

their formal verification skills and receive immediate feedback, and enable instructors to monitor

student performance during practice. Instead students traditionally rely on pen-and-paper methods

of practice and instructor feedback when it becomes available. Likewise, typically instructors have

only tests, homework, and student exercises to monitor student performance. This thesis addresses

the following questions:

• How can courseware help students study and practice software specifications more effectively?

• How can courseware help instructors better gauge student understanding of specifications?

TCRA addresses the first problem through the student interface. It enables students to

enter test cases that are checked against instructor-provided specifications. TCRA then provides

immediate feedback to students based on the correctness of those test case. These test cases are

based on instantiations of mathematical models, such as <1,2,3,4>, an instantiation of the String

of Object model. The specification implementations separate their checking logic from their display

logic, enabling instructors to use whatever specification notation they wish with no dependency on
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how the test case input is checked.

The second problem is addressed through the instructor interface of TCRA. The instructor

tool uses student logs recorded by the student interface to create graphs that summarize student per-

formance. These logs contain information that is not obtainable through paper exercises. Instructors

can use this extra information to better understand student performance and understanding.

The evaluation data suggests that the reasoning module, and the TCRA tool in particular,

had a positive impact on student performance in the current pilots. This appears to be evidenced

both by quantitative student quiz data and qualitative analysis of TCRA logs. The benefits seem

to be enhanced when students work collaboratively. We emphasize that while the evaluation results

are promising, they are only suggestive.

5.2 Future Work

While TCRA is an operational tool, there are areas open to improvement. The API needs

to be extended to support more advanced mathematical models and data types. The instructor

interface needs more graph types included to extend its log analysis capabilities.

An API extension will allow instructors to create new exercises without having to develop

their own mathematical models. This will reduce the development time for new exercises and

encourage adoption in other courses. The new data types in this extension will allow for a richer

set of test cases to be entered. Students will be able to use not only integers, but characters, text

strings, and others.

Extending the graphing capabilities of the instructor interface will greatly enhance the

functionality of the tool. More complicated analyses, such as the ones used in this thesis, will

allow instructors to summarize time-based data, such as the inter-arrival rate of test cases. These

extensions would also include new gnuplot scripts to perform the actual data plotting.

Operational Reasoning Assistant A second tool in development is the Operational Reasoning

Assistant (ORA), which targets introductory programming courses and extends interactive course-

ware further through the curriculum. This tool displays a section of code in a programming language

of the instructor’s choice. As the code is executed, students are asked to provide the value of all

the variables in scope as well as to identify which line will be executed next. If the values provided
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by the student are correct, execution continues to the next line. If not, student must identify their

error and correct it. When execution continues, the previous values of variables are displayed in their

own pane. This removes the need for students to track variable values on paper. This courseware

allows students to practice code tracing while receiving the same feedback found in TCRA. TCRA’s

logging system will also be included to track student performance.

The work presented in this thesis is based on results previously reported in [19, 36].
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Chapter 6

Appendix
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Listing 6.1: Specifications for Experiment 1 Quiz

1 Operation Mystery1(updates S: Stack);
2 ensures S /= empty_string;
3
4 Operation Mystery3(replaces E: Entry; updates S: Stack);
5 requires |S| > 0;
6 ensures <E> o S = #S;
7
8 Operation Mystery5(updates E: Entry; updates S: Stack);
9 requires $|S| >$ 0;

10 ensures There exists F: Entry, Rst: Str(Entry) such that
11 $<F> o Rst = $\#S and $<E> o Rst = S$;
12
13 Operation Mystery6(updates S, T: Stack);
14 requires |S| > 0 and |T| > 0;
15 ensures There exists E: Entry such that <E> o S = #S and
16 <E> o T = #T;
17
18 Operation Mystery7(updates S, T: Stack);
19 requires |S| > 0 and |T| > 0;
20 ensures There exists E: Entry such that
21 Rev(S) o T = Rev(#S) o #T and <E> o S = #S;
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Listing 6.2: Specification of One Way List

1 Concept One_Way_List_Template(type Integer, eval Inital_Capacity: Integer);
2 uses Std_Integer_Fac, String_Theory;
3 Family List_Position is modeled by Cart_Prod Prec, Rem: Str(Entry);
4 end;
5 exemplar P;
6 initialization ensures P.Prec = empty string and P.Rem = empty string;
7
8 Operation Advance(updates P: List_Position);
9 requires: P.Rem /= empty_string;

10 ensures: P.Prec o P.Rem = #P.Prec o #P.Rem and |P.Prec| = |#P.Prec| + 1;
11
12 Operation Reset(reassigns P: List_Position);
13 ensures: P.Prec = empty_string and P.Rem = #P.Pre o #P.Rem;
14
15 Operation Length_Of_Rem(restores P: List_Position): Integer;
16 ensures: Length_Of_Rem = |P.Rem|;
17
18 Operation Insert(clears New_Entry: Integer, reassigns P: List_Position);
19 ensures: P.Prec = #P.Prec and P.Rem = <#New_Entry> o #P.Rem;
20
21 Operation Remove(replaces Entry_Removed: Integer, updates P: List_Position);
22 requires: P.Rem /= empty_string;
23 ensures: P.Prec = #P.Prec and #P.Rem = <Entry_Removed> o P.Rem;
24
25 Operation Advance_To_End(updates P: List_Position);
26 ensures: P.Rem = empty_string;
27
28 Operation Swap_Remainders(updates P, Q: List_Position);
29 ensures: P.Prec = #P.Prec and Q.Prec = #Q.Prec and
30 P.Rem = #Q.Rem and Q.Rem = #P.Rem;
31
32 Operation Swap_Previous_Entry_w(updates E: Entry; updates P: List_Position);
33 ensures: P.Rem = #P.Rem and (there exists A: Str(Entry), #P.Prec = A o <E> and
34 P.Prec = A o <#E>);
35
36 Operation Length_Of_Prec(restores P: List_Position): Integer;
37 ensures: Length_Of_Prec = |P.Prec|;
38
39 Operation Clear List(clears P: List Position);
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Listing 6.3: Specifications for Experiment 2 - Quiz 1

1 void mystery1() {
2 Pre: |#self| > 0
3 Post: there exists A: String of Object; B, C: Object such that
4 #self = <B> * A * <C> and
5 self = A
6 }
7
8 void Mystery2(int index) {
9 Pre: index > 0 and index < |#self|

10 Post: there exists A, B: String of Object; C: Object such that
11 #self = A * <C> * B and
12 |A| = index and
13 self = A * B
14 }
15
16 void mystery3(int begin, int end) {
17 Pre: being > 0 and begin < |#self| and end > begin and end <= |#self|
18 Post: there exists A, B, C: String of Object such that
19 #self = A * B * C and
20 |A| = begin and
21 |B| = end - begin and
22 self = A * C
23 }
24
25 Object mystery4(int index, Object sub) {
26 Pre: index > 0, index < |#self|
27 Post: there exists A, B: String of Object; C: Object such that
28 #self = A * <C> * B and
29 |A| = index and
30 self = A * <sub> * B and
31 mystery4 = C
32 }
33
34 String mystery5(int begin, int end) {
35 Pre: begin > 0 and begin < |#self| and end > begin and end <= |#self|
36 Post: there exists A, B, C: String of Object such that
37 #self = A * B * C and
38 |A| = begin and
39 |B| = end - begin and
40 self = A * sub * C and
41 mystery5 = B
42 }
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Listing 6.4: Specifications for Experiment 2 - Quiz 2

1 void mystery1() {
2 Pre: |#self| > 0
3 Post: there exists A, B: String of Object such that
4 #self = A * B and
5 |A| = |#self| / 2 and
6 self = B * A
7 }
8
9 void mystery2() {

10 Pre: true
11 Post: there exists int N = |#self|; A1, A2, ..., AN: Object such that
12 #self = <A1> * <A2> * ... * <AN> and
13 self = <AN> * <AN-1> * <AN-2> * ... * <A2> * <A1>
14 }
15
16 void mystery3(int index, int count) {
17 Pre: index >= 0 and index < |#self| and index - count >= 0
18 Post: there exists A, B, C: String of Object such that
19 #self = A * B * C and
20 |A| = begin and
21 |B| = end - begin and
22 self = A * C
23 }
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Listing 6.5: Specifications for Experiment 2 - Quiz 3

1 void mystery1(String b) {
2 Pre: true
3 Post: self = #self * b
4 }
5
6 void mystery2(int index, String b) {
7 Pre: index >= 0 and index < |#self|
8 Post: there exists A, B: String of Object such that
9 #self = A * B and

10 |A| = index and
11 self = A * b * B and
12 }
13
14 void mystery3(int index, String b) {
15 Pre: index >= 0 and index < |#self| and index < |#b|
16 Post: there exists A, B, X, Y: String of Object such that
17 #self = A * B and
18 #b = X * Y and
19 |A| = index and
20 |X| = index and
21 self = A * Y and
22 b = X * B
23 }
24
25 void mystery4(String b) {
26 Pre: |#self| == |#b|
27 Post: there exists int N = |#self|;
28 A1, A2, ..., AN, B1, B2, ..., BN: Object such that
29 #self = <A1> * <A2> * ... * <AN> and
30 #b = <B1> * <B2> * ... * <BN> and
31 self = <A1> * <B1> * <A2> * <B2> * ... * <AN> * <BN>
32 }
33
34 void mystery5(int a1, int a2, int b1, int b2, String b) {
35 Pre: a1 >= 0 and a1 < |#self| and a2 > a1 and a2 <= |#self| and
36 b1 >= 0 and b1 < |#b| and b2 > b1 and b2 <= |#b|
37 Post: there exists A, B, C, X, Y, Z: String of Object such that
38 #self = A * B * C and
39 #b = X * Y * Z and
40 |A| = a1 and
41 |B| = a2 - a1 and
42 |X| = b1 and
43 |Y| = b2 - b1 and
44 self = A * Y * C and
45 b = X * B * Z
46 }
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Listing 6.6: BASH Script Used to Generate Graphs

1 #!/bin/bash
2 gnuplot << EOF
3 set terminal png transparent nocrop \
4 font "/usr/share/fonts/freefont/FreeSans.ttf" 10 size 800, 600
5 set output "$1.png"
6 set boxwidth 0.9 absolute
7 set style fill solid 1.00 border -1
8 set style histogram rows gap 1 title offset character 0, 0, 0
9 set datafile missing -

10 set style data histograms
11 set xtics border in scale 1,0.5 nomirror rotate by -45 offset character 0, 0, 0
12 set title "$2"
13 set yrange [ 0 : 50 ] noreverse nowriteback
14 set ylabel "# of test cases"
15 plot "$1" using 2:xtic(1) ti col, u 3 ti col
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