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ABSTRACT 
 
 

An unexplored area in research is addressing how retorted food ingredients 

interact with retort packaging’s oxygen barrier.  Ten common food ingredients (whey 

protein isolate, soy protein isolate, bovine gelatin, fish gelatin, high molecular weight fish 

gelatin, water, air, oil, potato starch, and hydroxypropyl methylcellulose) were assessed 

to find their effect on the barrier properties of CPP, PET, and high barrier commercial 

retort pouches. OxySense Gen III 300 and Mocon OxTran 2/21 were used to evaluate the 

samples. CPP pouches were first assessed with the OxTran 2/21 and indicated that 

treatments affected the OTR’s of the film materials. However, results from the OxySense 

show that there is not a difference in oxygen ingress over time. Oil increased film 

permeability on all pouch materials tested and allowed for a higher OTR and faster 

oxygen ingress.  
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CHAPTER I 
 

INTRODUCTION 
 
 

The basic functions of food packaging are containment, protection, convenience, 

communication, and preservation (Osborn & Jenkins, 1992).  Manufacturers use metal, 

plastic, paper, and glass to package food.  Packaging must act as an oxygen barrier when 

used to package many oxygen sensitive foods.  Generally, less oxidation leads to longer 

shelf life of packaged food products (Sacharow & Griffin, 1980). 

Low Acid Canned Foods (LACF) create an ideal habitat for microbial growth.  

The Food and Drug Administration (FDA) mandates sterilization of low acid foods 

before consumption (21 CRF PART 113, 2012).  High pressure and temperature 

treatments like retort processing ensure sterilization.  Sterilization, historically performed 

in metal cans, has migrated towards flexible plastic packaging materials.  This process is 

very harsh on packaging materials, especially flexible packaging, and can cause oxygen 

barriers to diminish (Blackistone & Harper, 1995).  

There are many benefits to using plastic packaging materials, however, it has its 

limitations.  To be competitive against glass and steel cans, they must maintain their 

barrier properties, be temperature stable, be heat sealable, be compatible with food, and 

be mechanically stable (Subramanian, Srivatsa, Nirmala, & Sharma, 1986). Flexible 

packaging materials are typically comprised of multiple layers to achieve all of these 

qualities 

An unexplored area in research is addressing how retorted food ingredients 

interact with retort packaging materials and affect the oxygen barrier of packaging 
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materials.  In recent research performed by Dharman (2011), additional layers were 

observed on the inner lining of flexible packaging film after the retort process.  This 

phenomenon occurred during the retort process and effected the measurements on oxygen 

permeation devices.  No research has been focused on investigating the effect of food 

ingredients on the oxygen permeability of retortable materials via the creation of an 

additional biofilm layer.  
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CHAPTER II 
 

LITERATURE REVIEW 
 
 

Shelf Stable Foods 
 

Food packaging can be generalized into three categories—frozen, refrigerated, 

and shelf stable.  Typically, frozen and refrigerated foods are minimally processed.  

Foods in these categories can be submerged in hot water or blanched with hot gasses or 

steam.  This minimalizes the amount of entrapped gasses within the food and prevents 

further enzymatic activity that can reduce the quality of the food (Gavin & Weddid, 

1995).  

The Food and Drug Administration (FDA) regulates shelf stable foods according 

to their water activity (Aw) and acidity (pH).  Aw is related to the amount of moisture 

available in a food.  Examples of foods that have an Aw less than 0.85 include raisins and 

potato chips.  Heat is applied to prepare the food and the water activity is reduced to a 

point were microorganism cannot grow, thus they do not need additional thermal 

processing (Gavin & Weddig, 1995).  

Shelf stable foods having Aw greater than 0.85 are regulated by the FDA’s CFR 

part 113 (2012).  Figure 1 depicts the relationship between the different classifications in 

shelf stable foods and their respective processing.  High water activity is optimal for 

microorganism of public health importance to grow (Blackstone & Harper, 1995).  These 

foods must be additionally treated and/or processed to prevent their microbial growth.  

Shelf stable foods with high Aw greater that 0.85 are broken down according to their pH 
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levels into three subcategories low acid, acidified, and naturally acidic (Gavin & Weddig, 

1995).  

 

 
Figure 1.  Relationship between Aw, pH, and processing. 
 

Naturally acidic foods have pH values naturally below 4.6.  This food category 

includes berries, cherries, pineapples, plums, or any food that has a pH below the 4.6 pH 

threshold.  Acidified foods are moderately acid foods that have had extra acid added to 

lower the pH below 4.6.  Foods that need additional acid include anything pickled or 

marinated like tomatoes, sweet potatoes, carrots, or any food whose pH value is adjusted 

to around the 4.6 threshold (Gavin & Weddig, 1995).  

During processing these foods must maintain a pH level below 4.6 for up to 24 

hours after processing (FDA, CFR part 113, 2012).  Both acidified and naturally acidic 

foods can use minimal thermal processes like hotfilling or pasteurizing to limit the 

growth of spores and microbes (FDA, CFR part 114, 2012).  These spore and microbes 

are typically yeasts and molds that spoil food and shorten shelf life.  
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Low Acid Canned Foods (LACF) are determined by the FDA (CFR part 114, 

2012) to be anything but non-alcoholic beverages that have an equilibrium (24 hours after 

processing) pH value higher then 4.6 and a water activity above 0.85.  This food category 

is now called Low Acid Foods (LAF), as the industry is migrating towards flexible 

packaging materials (Blackstone & Harper, 1995).  Shelf stable foods in this category are 

optimal for microbial growth, therefore these foods must be thermally processed so they 

become commercially sterile.  Thermal processing is considered to reach commercial 

sterility when the packaged food products are free from microorganisms of public health 

significance and any other microorganisms capable of reproducing in the food in non-

refrigerated conditions.  This is achieved when food is sealed in an airtight container and 

receives a sterilizing heat treatment to destroy harmful microbes and spores. Sterilization 

is done via a retort sterilization process.  

The FDA mandates that this additional processing for LAF is necessary because 

of Clostridium botulinum (Botulism).  Clostridium botulinum is considered of public 

health importance because it produces deadly toxins and can withstand a variety of 

climates world-wide due to its ability to form spores.  It has been determined to be the 

direct cause of several foodborne deaths due to improperly processed foods 

(www.fda.gov, 2009).  These deadly spores can grow in an Aw at or above 0.85 and pH 

above 4.6 and can survive in temperatures up to 100°C (212°F).  Clostridium botulinum 

is also an anaerobic bacteria that can thrive in retort pouch conditions (low oxygen). 

Proper heat treatment above 100°C (212°F) is needed to effectively detroy these 

microorganisms (Gavin & Weddig, 1995). 
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Retort Process 

 
Safety is a primary concern for consumers and manufacturers because of 

microorganisms, macroorganisms, and the migration of vapor, exposure to radiation, and 

chemical interactions within the package (Katan, 1996) can all spoil food and harm the 

consumer.  Thermal processing, chemical treatments, or radiation can be used to ensure 

safety but typically, thermal processing is used.  

In order for thermal processing to be successful, food must be enclosed in a 

container and exposed to high temperatures.  The microorganisms that are harmful to 

humans are killed by high temperature processing and hermetically sealed in a package 

prevents the reentry of additional bacteria (Blackstone & Harper, 1995).  The time and 

temperature needed for this process depends mostly on the specific food product 

characteristics and the package.  Factors that must be considered include the product 

preparation methods, density, viscosity, weight, acidity, headspace, and water activity 

(Gavin & Weddig, 1995) in addition to the container and the type of retort used.  

Retorts are the primary vessels used in thermal processing for LACF.  The retort 

is a large pressure cooker whose temperature and pressure are precisely controlled 

throughout the sterilization process.  The two main types of retorts are continuous and 

batch.  In continuous retort processing, packages are filled, sealed, processed, cooled, and 

unloaded without stopping.  Continuous retorts are only used with round rigid packages 

because there is a constant rolling of the containers.  However, many types of batch 

retorts are used.  Batch retorts must be loaded and unloaded before and after every 

process (Gavin & Weddig, 1995).   
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Still retorts are batch-type vessels that do not rotate or oscillate the packages 

inside the process vessel.  Packages can either be stacked or loosely placed into various 

secondary containers and then placed into the system.  The two types of still retorts are 

distinguished by their overpressure or pure steam pressure processes. In both systems, 

steam is initially used to purge the machine of entrapped air, allowing for even heating 

and faster process times (Gavin & Weddig, 1995).  Steam is also the primary heat source 

as it condenses onto the packaging material and releases latent heat into the package 

(Richardson, 2001). 

In pure steam still retorts, only saturated steam is used to increase the pressure 

and temperature within the retort. In overpressure retort system, extra pressure (steam and 

air) is added throughout the cycle.  The overpressure prevents the deformation and 

rupturing of flexible containers and packaging due to heat expansion primarily during the 

cooling phase of the retort process (Gavin & Weddig, 1995). 

Retort vessels can also agitate with discontinuous container handling, meaning the 

product is moving in the vessel during the retort cycle but still must be loaded before and 

unloaded after every retort process when the retort is not running.  In this type of retort 

system, the packages can oscillate back-and-forth, rotate end-over-end, or rotate side-

over-side allowing for continuous movement of the package.  The agitation of the product 

allows for faster heating time (Gavin & Weddig, 1995).  

 
Properties of Retort Packaging Materials 

 
Historically, cans were the primary retort container of choice for retortable foods.  

They are rigid and strong, so internal expansion during the heating process will not 
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permanently distort them.  They also maintain their hermetic seal throughout the retort 

process and the duration of their shelf life.  Because they are metal, they are also 

excellent barriers to moisture and gasses (Sacharow & Griffin, 1980).  However, 

manufacturers are moving away from metal cans because of the cost associated with their 

transporting and storage. 

Flexible retort materials became an area of interest to the US military in 1975.  

The Department of Defense combat unit was looking to change US soldier rations.  

Meals Ready to Eat (MRE) were considered the first foods to be sterilized in flexible 

packaging.  They utilized the barrier properties of aluminum foil and incorporated it via 

laminations into the packaging material.  By 1986, they became standard issue to all 

soldiers in the US military (Blackstone & Harper, 1995). 

There are many benefits to using plastic packaging materials.  Plastic packages 

maintain their integrity throughout the handling process and form rigid, flexible, and 

moldable packages.  They are economically more efficient then cans and glass jars 

because shipping costs (Williams, Steffe, & Black, 1982) and cook times (Fetherstone, 

2011) are lower due to the lighter material and thinner profile.  Food packaged in flexible 

plastic pouches can also retain more of its organoleptic qualities and nutritional value due 

to the shorter cook times needed to reach sterilization temperatures.  

However, in order for retorted films to be successful against glass jars and steel 

cans, they must maintain their barrier properties to gas and moisture, maintain a hermetic 

seal at high temperatures, be stable up to 150°C, be heat sealable, be compatible with 

food, be printable and be mechanically stable (Subramanian, Srivatsa, Nirmala, & 
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Sharma, 1986).  Generally speaking, no single layered plastic material is capable of 

producing all of the necessary requirements for all products.  Multilayered (3 or 4) 

flexible pouches are used to achieve the needed properties (barrier and others) and 

provide the required shelf life.  

Multilayered pouches are often created via lamination.  Lamination is the process 

of bringing two different materials together using heat, adhesives, and pressure.  In 

multilayered flexible retort packaging, layers are divided into a food contact layer, a 

barrier layer, and a printable outer layer. Additional layers might also exist within a layer 

for various application requirements.  

 
 

Food Contact Layers 
 

The food contact layer in a retort pouch is typically cast polypropylene (CPP).  

This contact layer is heat stable at retort temperatures without breaking down and losing 

its hermetic seal.  CPP is typically used in most retort pouch applications due to its heat 

sealable and does not migrate into food product, a requirement of the FDA (US Food and 

Drug Administration, 2007).  However, CPP is a very poor oxygen barrier and is 

therefore laminated to other high barrier materials.  

 
Barrier Layers 
 

There are two general categories of retort barrier pouches; foil and non-foil.  In 

foil retort pouches, an aluminum foil layer of 0.00035inches (Whiteside, 2005) is utilized 

as the primary oxygen barrier.  Retort pouches containing aluminum foil barrier layers 
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are not microwavable and therefore retort pouch manufacturers are developing new non-

foil barrier materials.  

Currently, some non-foil barrier layers used in retort applications are 

polyvinylidene chloride, nylon, ethylene vinyl alcohol (EVOH), and barrier coated PET.  

These films are good oxygen barriers, however their inherently high cost makes their use 

in packaging very limited (Hong & Krochta, 2006). 

 
Polyvinylidene chloride/Saran 

 
 PVDC is a great barrier to gasses, fats, and liquids and is compatible with CPP, 

PET, and Nylon (Brody, 2005).  It has twice the moisture barrier of EVOH, both during 

and after the retort process (Schirmer, 1988).  However, it has a high chloride content 

which corrodes machinery, thus increases cost.  It also has a narrow processing window 

because it is heat sensitive.  In addition, films turn brown during processing, puncture 

easily, and are difficult to seal (Brody, 2011).   

 
Nylon 

 
Biaxially oriented nylon (BON) is typically used as an abrasion or impact layer 

for retortable pouches.  It the absence of moisture, nylon has excellent mechanical and 

barrier properties over a range of temperatures as well as good resistance to chemical 

corrosion.  Strong intermolecular forces and crystallinity create tough materials with high 

melting temperatures.  However, nylon is hydrophilic and can gain up to 8% of its weight 

when in contact with water (Hernandez, Selke, & Culter, 2000), thus reducing its 

mechanical and resistance properties.  Nylon is generally used for its flexibility and 

puncture resistance and is laminated between moisture barrier materials.  
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EVOH 

 
EVOH films possess great oxygen barrier properties and good resistance to most 

oils, acids, and solvent while maintaining its barrier properties (Hernandez, Selke, Culter, 

2000).  It is easy to manufacture and can be processed with many different polymers.  

However, when exposed to water, the oxygen barrier greatly decreases (Mokwena, Tang, 

& Laborie, 2011).  This is especially important in retort processing, as water (steam, 

water spray, or immersion) is used at the primary processing medium to sterilize 

packages.  To prevent water uptake, barrier materials like CPP (Halim et al., 2009) and 

desiccants incorporated into adhesives are sometimes used to surround EVOH (Tsai & 

Wachtel, 1990).  

Coatings 
 

Surface coatings of aluminum oxide (AlOx), silicon oxide (SiOx), and modified 

Poly Acrylic Acid (Besela®) have been shown to significantly improve the barrier 

properties of PET films.  However, their widespread usage is limited due to major 

limitations.  These materials are relatively expensive due to the coating process being 

technically difficult (Hong & Krochta, 2006).  Retort pouches containing AlOx and SiOx 

coatings have been shown to develop cracks and pinhole during the retort process and 

pouch handling procedures (Galotto, Ulloa, Guarda, Gavara, & Miltz, 2009; Dharman, 

2011).  

Besela© film, a coated polyethylene terephthalate (PET), is an emerging 

technology similar to AlOx and SiOx. Besela© has oxygen barrier properties similar to 

SiOx. However, it is more heat resistant and has better mechanical properties that its 
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counterparts.  In addition, it maintains a better barrier after retorting and prevents 

pinholes even after considerable flexing.  

Outer Layer  

 The outer layer of retort pouch films must be able to withstand the moisture and 

pressure during the retort process, be printable, and have impact resistance. Polyethylene 

terephthalate (PET or polyester) is a clear film that is stiff yet strong, and absorbs very 

little water, thus making it ideal for the outer layer of retort flexible films (Mitsubishi 

Polyester Film, 2011). Its clarity and hydrophobicity makes it ideal for printing. Its 

stiffness makes its ideal for surface modifications which improve its barrier properties. 

PET is only sealable at its high melt temperature (250°C) so it is typically laminated to a 

layer with a much lower seal temperature. PET can also be used as a barrier layer that is 

placed between two additional layers (Lange & Wyser, 2003).  

 
Natural Film Formers 

 
Biopolymers are typically sourced from marine, animal, and plant microbial 

sources (Vasile & Zaikov, 2009).  Research is focused on finding biopolymers that can be 

used as alternatives to petroleum based plastics.  Due to biopolymers being natural film 

formers and possessing excellent oxygen barrier properties, they are typically used as 

coatings or in laminations.  However, their hydrophilic nature greatly affects their oxygen 

barrier and mechanical properties, and often making them unsuccessful competitors to 

traditional petroleum based plastic.  Research is needed to determine if biopolymers, 

when used as food additives, can create an additional barrier layer and improve the 

oxygen permeability of retorted pouches. 
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Protein Films 
 

Proteins are complex polymers made up of 21 different amino acids bonded 

together via amide bonds.  Altering the amino acid sequence, the amount of amino acids, 

and the length of the polypeptides allows the production of numerous proteins, all with 

unique properties (Damodaran et al., 2008).  This molecular diversity provides almost 

limitless combinations of film-forming materials.  Proteins are typically used to make 

films because they are edible, they supply nutrition, they have good mechanical, barrier, 

and visual properties (Janjarasskul & Krochta, 2010).  Gelatin, soy, and milk proteins are 

all common sources of these films.   

Gelatin is a hydrocolloid that is widely used in the food, pharmaceutical, and 

biomedical industries.  Gelatin is primarily obtained from animal sources, with a small 

percentage sourced from marine animals.  Fish Gelatin (FG) originates from fish skins, 

bones, and fins.  FG has lower proline and hydroxyproline amino acid levels compared to 

pigs and cows.  Karim and Bhat (2008) suggest that this caused the lower gel modulus, 

gelling, and melting temperatures.  

Gelatin based films are good barriers against oxygen and aromas at low and 

intermediate relative humidity’s.  They are also brittle, so plasticizers are often added to 

increase the film toughness and flexibility (Cao, Yang, & Fu, 2009).  FG films typically 

have poor barrier properties due to their hydrophilic nature (Arnesen & Gildberg, 2007) 

which can be improved by cross-linking, blending, and mixing with fibers or clay 

(Martucci & Ruseckaite, 2010). 
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Soy proteins are available in three different concentrations, flour (SPF), 

concentrate (SPC), and isolate (SPI).  They are made up of albumins and globulins.  

Globulins are responsible for the hydrogen and hydrophobic bonding.  The disulfide 

bonds in Albumins are responsible for the binding of the polypeptide subunits (Guerrero 

& de, 2010). 

When SPI is heated, the albumin and globular proteins unfold, denature, and form 

new disulfide, hydrophobic, and hydrogen bonds upon cooling.  This creates films with 

good barrier properties to O2 and lipids.  SPI films are poor moisture barriers 

(Janjarasskul & Krochta, 2010).  They are typically applied as coatings on fruits, cheeses, 

and meats to prevent oxidation.  Recent research has focused on modifying SPI in order 

to improve its properties (Wan, Kim, & Lee, 2005).   

 Milk is made up of lipids, proteins, carbohydrates, vitamins, and other minerals. 

Protein makes up approximately 30-36 g/L of milk.  Milk proteins fall into two categories 

caseins and whey proteins.  These two fractions are easily separated and historically 

whey protein was considered a waste.  Today, whey protein can be concentrated into 

whey protein concentrate (WPC) and whey protein isolate (WPI) both of which have 

good nutritional properties (Damodaran et al., 2008).  

Whey proteins have gained interest because they are a byproduct of cheese 

production and are typically wasted.  WPI are typically used in food and film forming 

applications because they denature above 90°C (Damodaran et al., 2008).  As coatings, 

they have excellent barrier properties to O2, aroma, and oil.  As stand-alone films, they 
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produce opaque films that are too brittle for most flexible applications (Sothornvit & 

Krochta, 2000).  

Hong & Krochta (2004) studied the effects of WPI coatings on LDPE. A 10% 

(w/w) WPI solution plasticized with glycerol was prepared and cast onto a LDPE film.  

They found that the oxygen barrier properties of WPI depended on temperature and 

relative humidity (RH).  At RH less than 25%, films achieved the desired barrier 

properties and could potentially be used as a barrier layer sandwiched between 2 moisture 

barriers.  

In 2006, the same authors assessed the oxygen barrier properties of WPI and 

WPC coated PP films.  They resulting WPI/glycerol and WPC/glycerol coated PP films 

improved the oxygen and moisture barrier properties.  Similar to their previous research, 

the barrier properties of these films were also dependent on temperature and RH.  These 

effects were due to the thermal expansion and increased molecular motion (Callister, 

2007), and swelling effect on hydrophobic polymers (Hernandez-Izquierdo & Krochta, 

2008), respectively.   

 
Carbohydrate Films 
 

Carbohydrates make up more than 90% of plant matter and are readily available 

and inexpensive.  Furthermore, their diverse size, shape, and molecular makeup allow for 

variations in physical, organoleptic, and mechanical properties.  The class carbohydrates 

present themselves in nature as monosaccharides, oligosaccharides, or polysaccharides 

(Damodaran et al., 2008).  
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Polysaccharides possess longer chains polymerized from monosaccharides or 

disaccharides that are joined together by glycosidic bonds.  They typically have between 

100–3,000 repeating units (Damodaran et al., 2008).  The hydroxyl and other hydrophilic 

groups in the repeating units allow for bonding.  Heating disrupts these long chains and 

reforms them during the casting, evaporating, and cooling process.  Because of this 

hydrogen and hydrophilic bonding, polysaccharide films, in general, are very sensitive to 

water and lose their mechanical and barrier properties.  

However, they are often studied as potential film formers because they are 

abundant, inexpensive, and edible. They are easily modified by the addition of salts, pH 

changes, solvents, heat, crosslinking agents, and nanotechnology (Janjarasskul & 

Krochta, 2010). Their films generally make good barriers to gasses like O2 (Baldwin, 

Nisperos-Carriedo, & Baker, 1995).  

A cellulose derivative like hydroxypropyl methylcellulose (HPMC) has also been 

used as a film former (Janjarasskul & Krochta, 2010).  When applied to foods it provides 

barriers properties against O2, water vapor, and oil.  HPMC is a very versatile cellulose 

derivative.  It is typically used because it is an excellent film former.  The FDA (21 CFR 

172.874, 2012) has approved the use of HPMC as a food additive and the JECFA has 

verified its safety (George A., 2007).  HPMC has some limitations, like most 

polysaccharide films, it has a low moisture resistance. 

 Starches are very common food additives and make up approximately 70-80% of 

the calories humans eat each day.  Starches are made up of two polymers amylose and 

amylopectin (Damodaran et al., 2008).  When cast, these films are self-supporting 
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(Janjarasskul & Krochta, 2010).  As films, they possess excellent barriers to gasses.  

Starch films are used as a coating to preserve fresh fruits (García, Martino, & Zaritzky, 

1998) vegetables, and nuts.  Potato amylopectin is unique in that it has small amounts of 

phosphate ester groups (Damodaran et al., 2008).  In addition, potato starch is considered 

easy to work with because it readily dissolves in water, allowing for homogeneous 

solutions (Osés, Fernández-Pan, Mendoza, & Maté, 2009).  

 
Food Additives 
 

The natural film-formers above are also frequently used as food additives.  Their 

primary purpose is to deter oxidative rancidity and spoilage.  Another common household 

food additive is lemon juice because the ascorbic acid in the juice can prevent rapid 

oxidation of cut fruit.  Butylated Hydroxyanisole is an industrial preservative that 

prevents rancidity in foods with high fat and oil content and prevents foods from 

changing flavors, colors, and smells (Branen, 1975).  

 
Oxidation 

 
Food oxidation is an irreversible process causing food to spoil and become rancid.  

The two types of rancidity are hydrolytic and oxidative.  Hydrolytic rancidity occurs with 

high moisture and heat.  Oxidative rancidity occurs when oxygen interacts with 

unsaturated fatty acids. This is also known as lipid oxidation (Damodaran, Parkin, & 

Fennema, 2008).  

Lipids enhance the organoleptic properties of food including taste, color, smell, 

and feel (German, 1999).  In the presence of oxygen, the fatty acid chains undergo a 



 29 

process where hydrogen molecules are replaced with oxygen molecules.  This process 

converts fatty acids into smaller functional groups like aldehydes, alkanes, esters, and 

alcohols that are more easily decomposed (Stauffer, 1999).  These small, decomposed 

molecules create molecular fragments that interfere with flavor, decrease nutritional 

value, and produce the aromas associated with rancidity (Damodaran et al., 2008). This 

ultimately decreases shelf life (Waterman & Macy, 2009) of products. 

 
Measuring Oxygen Transmission Rate 
 

The Oxygen transmission rate (OTR) of packaging materials is often tested with 

MOCON Ox-Tran 2/21 (Mocon, Minneapolis, MN, USA) oxygen permeation 

instruments.  It precisely controls the temperature and relative humidity and can measure 

and detect oxygen, carbon dioxide, and nitrogen in minute amounts (parts-per-billion 

sensitivity).  Film samples are removed from packaging material and are securely 

clamped into a diffusion cell.  This is a destructive test and the package cannot be reused.  

All residual oxygen is then removed from the chamber.  When zero percent oxygen is 

established, pure oxygen is introduced into one side of the chamber opposite to the 

sensor.  The sensor then records the diffusion of oxygen through the material.  This 

process cannot be repeated for the same sample and can take up to 48 hours per sample.  

 
Measuring Oxygen Ingress 
 

Real time oxygen ingress that is non-invasive and passive can be measured with 

an OxySense Gen III 300 system (OxySense, Inc., Dallas, TX).  A picture of the 

equipment is shown in Figure 2.  This system consists of two parts, an oxygen sensor, 
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and a master box that evaluates and interprets the findings.  The oxygen within an 

enclosed system is measured without destroying or altering the internal environment 

(Saini, 2008).  This is an added benefit as the same samples can be repeated  

Oxygen concentration measurements are possible based on fluorescence 

quenching.  The OxyDot® (Dot) is comprised of an oxygen sensing dye that is 

immobilized in polymer that can withstand high temperature and pressure processes yet is 

permeable to gas.  The Dot absorbers blue light emitting diode (LED) light and fluoresces 

light in the red region.  Figure 3 represents the fluorescence decay over time.  When 

oxygen is absent the Dot will emit an intense red light for 5µs whereas when oxygen is 

available the light intensity and emission is decreased to ~1µs.  The decrease in intensity 

and emission can be calculated to accurately provide the amount of oxygen available  

 

 
Figure 2.  OxySense GenIII 300 Equipment. 
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Figure 3.  Graphical representation of Fluorescence decay with and without oxygen. 
 
within 5% accuracy of the reading.  The Dot does not consume oxygen in the process and 

the test can be repeated quickly (5 seconds) and indefinitely (Saini, 2008). 

However, Figure 3 does not include the effect of oxygen partial pressure on the 

results.  Figure 4 depicts the relative fluorescence in ambient at and 20°C at different 

pressures (Siani, 2008).  Pressure of oxygen at sea level is equivalent to 212 mBar.  This 

is derived from the fact that 1 atmosphere (atm) at sea level is equivalent to 

1013.25mBar.  The oxygen concentration at sea level is 20.9% and is multiplied by the 

mBar at sea level to obtain O2 partial pressure, ~212mBar (Analox Sensor Technology 

Ltd., 2009).  Because there is a correlation between pressure and fluorescence, pressure 

measurements are included in the percent oxygen calculations.  
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Figure 4.  OxySense fluorescence decay curves for different oxygen concentrations after 
a 1µs LED pulse.  Oxygen concentration was performed in air at 20oC.  
 

Purpose 
 

Over the past few decades, there has been increased use of laminated flexible 

retort packaging materials for low acid shelf stable foods.  These laminations films must 

be sealable, stiff, flexible, heat resistant and provide a barrier to moisture and oxygen.  

No single film layer provides all of these necessary functions, so multilayered films are 

used to provide adequate protection.  

The barrier to oxygen is of significant importance in food packaging.  Oxygen 

causes rancidity and can decrease the nutritional value and quality of food thereby 

reducing food product shelf life.  The amount of oxygen in a package directly relates to 

the shelf life of many foods.  In previous research, it was found that food ingredients 

affected retort materials, specifically their oxygen permeability.  This research was 
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focused on assessing how food ingredients affected the oxygen barrier of retortable 

flexible packaging materials.  
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CHAPTER III 
 

MATERIALS AND METHODS 
 
 

Materials 
 

 Hydroxypropyl methylcellulose (HPMC) grade AN15 was donated by Samsung 

Fine Chemical, LTD (Incheon, Korea).  Dry OU Kosher Certified fish gelatin (FG), lot# 

4125KD, and OU Kosher Certified high molecular weight fish gelatin (HMWFG), lot# 

4092 HMWD, were purchased from Norland Products Incorporated (Cranbury, NJ).  

Bovine skin gelatin (BG), Type B, and potato starch (starch) were purchased from Sigma 

Chemical Company (St. Louis, MO).  Soy protein isolated (SPI) was purchased from MP 

Biomedicals, LLC (Solon, OH).  Whey protein (WPI) with a protein content of at least 

11%, was purchased from Spectrum Chemicals (Gardena, CA). Corn oil (ACH Food 

Companies, Inc.) peanut oil, and corn oil was purchased from a local grocery store.   

 Extrel® 487 Impact Copolymer Polypropylene 3.0 gauge film was purchased from 

Tredagar Film Products (Richmond, VA).  7000 series uncoated PET 92 gauge film was 

donated by Mitsubishi Plastics, Inc (Toyoko, Japan).  Trial films consisting of 0.5µm 

AlOx/12µm PET/0.5µm AlOx // 15µm BON // 70µm CPP) was donated by Ampac® 

(Cincinnati, OH).  OxyDots® and General Electric RTV 118 adhesive were purchased 

from OxySense (Las Vegas, NV). 
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Methods 
 

Solution Preparation 
 
 Aqueous solutions were prepared by dissolving 3g of food ingredients per 100mL 

of degassed, deionized, and distilled water with magnetic stirring at 90°C for 30 minutes. 

In solutions with both a food ingredient and oil, 3mL of oil was added after 25 minutes of 

magnetic stirring at 90°C. These solutions were heated and stirred for an additional 5 

minutes. All solutions were removed from the hot plate after 30 minutes and allowed to 

cool to room temperature with magnetic stirring continued for at least 8 hours. 

 
Sample Preparation 
 
 Pouches were created from rolled stock film.  Films were cut into 4in x 8in 

rectangles.  OxyDots® were applied to the flat film using General Electric RTV 118 

adhesive.  The adhesive was allowed to cure for a minimum of 90 minutes (OxySense, 

2011).  Films were fabricated into three-sided seal pouches using a Fuji impulse sealer 

(Toyo Jidoki CO., Dalian, China).  CPP films were sealed at 120°C for 1.5 seconds and 

cooled for 2 seconds before jaw released.  AmPac trial films and PET films were sealed 

at 160°C for two seconds and cooled for five seconds.   

150mL of the prepared treatment solutions were added to each pouch.  Pouches 

were manually sealed with minimal headspace.  Six replicates were made for each 

sample.  Pouches were processed in a two-basket Surdry Retort Model A0-142 (Surdry, 

Spain) for 30 minutes at 38psi/250°C in static water spray mode.  Pouches were allowed 

to cool for at least 8 hours over night in ambient temperature (25°C, 50%RH).  
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 Difficulties arose during the removal of oxygen from the pouches.  All 

preliminary tests were performed on CPP pouches.  The use of dry ice to flush the 

pouches of oxygen created sizeable headspace.  A septum was then applied and nitrogen 

was flushed into pouches.  Headspace was then removed through a needle-vacuumed 

system.  The process was repeated twice.  It was found that oxygen migrated into the 

pouches via the septum.  Silicon sealant was used to plug the septum. It was then found 

that pouches with aqueous solution had a rapid influx of oxygen (<24hours). The best 

methods for oxygen measurement were to drain each pouch after overnight cooling.  

Empty pouches were resealed with the Fuji impulse sealer.  A septum was applied and 

pouches were flushed with a nitrogen gas tank with a gas pressure regulator set at 

~116.03psi (800 kPa) for 20 sec/pouch, see Figure 5.  

Test OxySense measurements were taken (not recorded) at this time.  If the 

reading was greater >3.00%, pouches were vacuum suctioned until maximum headspace 

was removed.  This was repeated until the headspace was below 3% oxygen.  An 

additional seal below the septum puncture was added to prevent leakage through the 

septum.  In Figure 6, the left represents a pouch (treated with air) that was removed from 

the retort.  In the same picture, the pouch on the right has had it contents removed, has 

had a septum applied, has been flushed, and has been sealed below the septum. 

The samples were labeled as follows; film material, ingredient, sample number 

(CPP BG-001).  Some samples did not survive the post retort resealing process.  To 

ensure a sufficient number of tests samples were available for analysis, additional 
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samples were made and processed.  These additional samples were coded with the word 

‘redo’; film material, ingredient, redo-sample number (CPP BG redo-001). 

 
 

Figure 5.  Picture of a nitrogen tank pressure gauge. 
 
 

 
 
Figure 6.  Post retort sealing process. 
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Oxygen Permeability 
 
 The oxygen transmission rate (OTR) of the CPP films were tested using a 

MOCON Ox-Tran 2/21 (Mocon, Minneapolis, MN, USA) oxygen permeation instrument 

in accordance to the ASTM D3985.  Oxygen permeability’s of CPP films were assessed 

at 23°C and 0% relative humidity.  Samples were manually wiped with a clean paper 

towel and dried overnight for a minimum of 8 hours in ambient conditions (25°C, 50% 

RH).  Two 1.5” by 1.5” inch samples were taken from opposing sides of the pouch.  

 
Data fits of OxySense® Date 
 

The objective of this research was to assess the effect of food ingredients on 

packaging materials’ oxygen barrier properties.  Due to the preparation procedure 

previously described, samples had varying oxygen concentrations at the start of data 

collection.  For this reason, slope comparisons were made using Statistical Analysis 

Software (SAS).  

During the evaluation of the data, some samples were found to have very rapid 

ingress of oxygen consistent with leaking pouches.  These samples were eliminated for 

further analysis due to leaks.  Other samples were eliminated from further analysis due to 

dot failures.  Some of the oils used were found to have a damaging effect on the Oxydots 

themselves.  See appendices A-C for details.  

Measurements for time and percent oxygen for all OxySense samples and 

treatments were evaluated in SAS.  Each sample was fit with either a second or a third 

order polynomial best fit trendline.  A trendline is a tool used to evaluate the relationship 

between dependent and independent variables, in this case percent oxygen and time, 
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respectively. This type of analysis can project the development of data.  PET samples 

revealed a second order polynomial fit and CPP samples portrayed a third order 

polynomial fit after analysis. Second (y=a+bX+cX2) and third order (y=a+bX+cX2+dX3) 

polynomial coefficients (b, c, d) represent the slope of that specific segment. Where "b” 

is the linear slope, “c” is the quadratic slope, and “d” is the cubic slope.  The coefficients 

were analyzed via ANOVA (“d” only in CPP data). The confidence interval was set at 

95% (P<0.05). Data was assessed based on these parameters.  

However, neither polynomial line portrayed the natural behavior of permeation.  

The nature of oxygen permeation into a pouch is to ultimately reach equilibrium with the 

atmosphere outside of the pouch (ambient air at roughly 21% oxygen).  Second degree 

polynomials should not show a local maximum and then a reduction in oxygen headspace 

in the pouch.  A third degree polynomial trendline should not show a local maximum and 

then an increase in oxygen headspace.  However, these trendlines can be used to make 

significant (p<0.05) comparisons based on their linear, quadratic, and cubic slopes.  

 
Statistical Analysis 
 

Statistics on a completely randomized design were performed with the analysis of 

variance (ANOVA) using SAS (version 9.1, SAS Institute Inc., Cary, NC, USA) and 

differences among mean values were processed by Least Significant Differences (LSD). 

Significance was defined at a level of P < 0.05. 
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CHAPTER IV 
 

RESULTS & DISCUSSION 
 
 

The focus of food packaging is to minimize the amount of food loss, and to 

provide safe quality foods (Lee, Son, & Hong, 2007).  Maintaining a barrier during 

storage is necessary because the diffusion of gas and food ingredients greatly food quality 

(Janjarasskul & Krochta, 2010).  Oxygen and other gasses permeate through packaging 

materials via micro-cracks and channels, nano-scale defects, pinholes, diffusion, and 

solubility (Barker, et. al, 1995).  Barrier coatings and laminated layers reduce this 

problem.  The objective of this research was to assess how different food ingredients 

affect the barrier properties retort packing material.  

 
Oxygen Transmission Rate 

 
Abbreviations for food ingredients that were used to treat the CPP films can be 

found in Table 1.  Figure  shows the Oxygen Transmission Rate (OTR) in cc/[m2-day] at 

23°C and 0%RH for CPP treated with different food ingredients.  Note that two samples, 

EVOO and BG, did not produce duplicate OTR values because cleaning with detergent 

was not performed.  In previous research performed by Dharman (2011), a layer was 

formed during the retort process that interfered with the Ox-Tran 2/21 process and 

readings could not be made.  When the layer was removed by cleaning with detergent and 

water, measurements could be taken.  In this research, cleaning, beyond the minimal 

wiping off excess dripping liquids, was withheld to prevent the removal of any potential 

layers.  
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Table 1.  Food ingredient list used as treatments on CPP retort films analyzed with a 
Mocon OxTran 2/21. 
 

 
 
 

 
 
Figure 7.  The OTR of CPP treated with different food ingredients and retort sterilization 
compared to a control (non retorted). 
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Potato Starch Starch 
Water H2O 
Whey Protein Isolate WPI 
Peanut Oil P. Oil 
Corn Oil Co. Oil 
Extra Virgin Olive Oil EVOO 
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Standard deviation was high for some measurements.  Samples were taken from 

both the top and bottom side of the post retorted pouch.  The side of the pouch in contact 

with the retort tray created a puckering pattern on the film during processing that would 

no longer lay flat.  This increased the area of the film and thinned the material in places.  

Standard practice mandates that test specimens be free of wrinkles, defects, creases, 

pinholes (ASTM D3985, 2011), and be flat and tight to acquire good measurements 

(Mocon, Inc, 2012).  It is possible that puckering pattern of the retorted film prevented a 

tight and flat fit.  In addition, the residue on the film may have may have inhibited a good 

seal on the tests described allowing for the leaking of oxygen around the edge of the 

sample into the Mocon Ox-Tran’s measurement chamber.  

The barrier properties of CPP improved after retorting (see Table ). Tredagar 487 

CPP has a crystallization temperature around 113°C/ 235.4°F.  The retort cooking 

process typically sterilizes food at 121.1°C/250°F and then slowly cools over 

approximately 60 minutes down to 25°C.  This slow cooling process allows CPP to more 

fully crystallize and become a slightly better barrier (Callister, 2007).  

HMWFG, SPI, and WPI have no significant effect (p<0.05) on the CPP films. 

Different oils were chosen to evaluate using Mocon Ox-Tran 2/21 analyses.  Fatty acid 

saturation affects the sorption of oil into packaging films.  As unsaturation increases, 

sorption declines because the increase in double bonds decreases chain flexibility in the 

oil and makes it more difficult for oils to sorb into a polymers free space (Caner, 2011).  

Error! Reference source not found. represents the fatty acid contents in the oils chosen.  

However, it can been seen in Table   
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Table 2.  OTR results (cc/[m2-day]) for CPP pouches at 23±2°C and 0±2%RH.  Retorted 
pouches with different food ingredients were compared to non-retorted CPP.  
 

Treatment OTR (cc/[m2- day]) Significant Difference 

None 1564 ± 1.864 C 
H2O 1252 ± 8.606 C 
FG 1204 ± 2.355 C 
BG *1395 C 

BG + Ca. Oil 1026 ± 0.697 C 
HPMC 1025 ± 69.276 C 

HPMC + P. Oil 4973 ± 173.128 A 
HPMC + Co. oil 4947 ± 239.181 A 

PS + Ca. Oil 3275 ± 1188.456 B 
WPI 1327 ± 277.186 C 

Starch 1140 ± 12.728 C 
HMW FG 1148 ± 166.170 C 

EVOO *5637 A 
SPI 1541 ± 272.943 C 

 
Mean ± standard deviation. *n=1, all others n=2.  Treatments with different letters are 
significantly different (p<0.05). 
 
 
 
Table 3.  Fatty acid polyunsaturated, monounsaturated, total unsaturated, and saturated 
fatty acid content. 
 

Types of 
Vegetable 

Oil  
(%) 

 
Polyunsaturated 

Fatty Acids  
(%)* 

 
Monounsaturated 

Fatty Acids  
(%)* 

Total 
Unsaturated 

Fatty Acids (%)*, 
** 

 
Saturated 

Fatty Acids 
(%)* 

EVOO 25 55 80 20 
Co. Oil 59 24 83 13 
Ca. Oil 33 55 88 7 
P. Oil 32 46 78 17 

 
All values approximated* Values are given as a percent of total fat; ** total unsaturated 
fatty acids = polyunsaturated fatty acids + monounsaturated fatty acids (Fats, cooking 
oils and fatty acids, 2010).   
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that the degree of saturation did not effect the OTR of CPP film, thus OxySense 

evaluation was performed only on Corn oil.  

OTR significantly (p<0.05) decreased in EVOO, HPMC/P. Oil, and HPMC/Co. 

Oil samples.  Oil had a negative effect on polypropylene due to sorption and 

plasticization.  Sorption occurred when molecules from inside the pouch migrated into 

the CPP packaging material.  Sorption caused plasticization, the modification of 

polymeric materials.  Plasticization is typically used to improve the mechanical and 

barrier properties of films (Hernandez-Munoz, Catala, & Gavara, 1999).  However, 

unwanted plasticization can adversely affect the shelf life of foods.  CPP readily sorbs oil 

into its matrix, due to the chemical similarities between CPP and oil.  CPP, like oil, is 

hydrophobic and has an affinity fo certain oils (Caner, 2011).   

Figure  represents a spherulite, a small crystal grouped around a central point.  

The lamella (polymer chains) are organized and tightly packaged naturally inhibiting 

permeation and migration.  Amorphous regions are open areas of free volume that 

encourage permeation and migration.  When oil is sorbed into CPP, the oil enters the 

amorphous regions (Wang & Storm, 2006) and the area is expanded.  The oil relaxes the 

polymer, promoting polymer swelling by creating an increased free volume, and 

decreasing crystallinity.  When there is less crystallinity, there is more free volume. 

Ultimately, this increased space allows for the permeation of oxygen through CPP.  
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Figure 8.  Spherulite (Wikipedia, 2012) 
 
 
HPMC was investigated as a food ingredient because it is often used to stabilize 

oils in food formulations.  An emulsion is the distribution of one liquid in another when 

the two are not miscible or soluble.  Emulsions are thermodynamically unstable, and try 

to separate in order to minimize the area in contact with each other (Camino & Pilosof, 

2011).  Stabilizers are often added to aid in this process. According to Camino & Pilosof 

(2011), emulsions need to have a droplet size less than 1um to maintain proper 

distribution.  Weiss et al. (2006), suggested that this can only be achieved by high-

pressure homogenizers, high shear stirring, or by ultrasound generators.  Figure  shows 

that HPMC was not an effective stabilizer for P. Oil and Co.  After the retort process 

there was separation in the HPMC mixtures.  An inappropriate amount of HPMC and/or 

solution preparation process would cause the emulsification to break during the harsh 

retort process.  It is likely that this separation caused the oil to contact a greater area of 

the CPP pouches, causing plasticization and higher OTR values.  
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Aqueous BG and aqueous BG & Ca. oil were tested.  BG aqueous solutions 

increased the OTR of CPP retorted films (Figure ).  However, aqueous BG+ Ca. oil 

slightly improved the OTR of retorted films. BG has a high capability to emulsify oil 

(Karim & Bhat, 2008).  At the tested concentrations, no separation of oil and BG was 

noted after retort.  BG successfully encapsulated to oil, despite only using heat and 

magnetic stirring, and therefore did not have the opportunity to migrate into the CPP film.  

If oil plasticized the film, free space could have increased allowing BG to migrate 

into the film.  Once the cooling cycle began, BG could have recrystallized in the polymer 

matrix.  It is more probable that there was a creation of a barrier layer. BG is a known 

film former with good barrier properties in the absence of water (Sobral, Menegalli, 

Hubinger, Roques, 2001).  Because samples were dried without being cleaned, a BG 

layer could have been responsible for the slight improvement in OTR. 

Starch did not significantly improve the OTR of CPP film. However, when used 

as an emulsifier for Ca. oil the OTR was significantly different (p<0.05) from all other 

samples.  

 
Oxygen Ingres 

 
As stated in the previous section, O2TR measurements were conducted on 

unwashed samples at 23°C and 0% relative humidity.  These conditions do not represent 

how a package would behave in a more commercial environment.  Therefore, OxySense 

testing was started without using soap or wiping the samples.  The study was completed 

in ambient relative humidity (RH) and temperature, 50% and 25°C, respectively. CPP, 

PET, and an Ampac high barrier trial multilayer film were treated with ten common food 
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ingredients.  Table 2 lists the food ingredients used to treat PET, CPP, and Ampac films.  

Oxygen ingress was recorded with the OxySense for all treatments.  

The resulting oxygen ingress data for PET and CPP pouches were compared using 

SAS to calculate the curve fits that best described the data points.  CPP and PET pouches 

were found to have second order and third order polynomial fittings, respectively.  A 

second order polynomial line has two slopes, a coefficient linear (straight) and quadratic 

(downward curved).  Third order polynomial lines have an additional cubic slope that has 

an upward curve section after the quadratic portion.  Comparisons of PET treatments 

were made at the linear and quadratic slopes whereas CPP samples were compared at the 

linear, quadratic, and cubic slopes.  

However, it is important to understand that neither 2nd nor 3rd order polynomial 

fitting truly represents oxygen ingress.  Fick’s first law states that the rate of diffusion 

will occur faster when a concentration gradient is farther apart.  Molecules will travel 

from high concentration to low concentration at a rate that is proportional to the 

concentration gradient (Callister, 2007).  In the CPP and PET samples, there was no true 

linear portion of the line because the slope starts very steeply and then gradually reaches 

equilibrium.  However, the data can still be compared by using the linear slope as the data 

correlation is still statistically significant.  For the duration of this discussion, linear slope 

refers to the initial “steep” ingress of oxygen.   
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Table 2.  OxySense testing; PET, CPP, and Ampac films Treatments & Abbreviations. 
 

 
 

After the linear slope comes the quadratic slope.  The more drastic curving of the 

line, or the slowing of oxygen ingress, reflects this.  However, it is understood that the 

curve downward is not the typical ingress of oxygen.  This is also true for the cubic 

portion of the slope, oxygen ingress is unlikely to increase after reaching equilibrium as 

the cubic polynomials suggest.  The analysis of oxygen ingress should fall between the 

two polynomial lines; so standard polynomial fittings are needed to explain the data.  

 
CPP Pouches 
 

Linear, quadratic, and cubic curve components were compared for all CPP 

pouches.  Statistical analysis of these curves can be found in Table 3.  None of the cubic 

sections of the pouches were significantly different.  In addition, only one treatment was 

significantly different (p<0.05) in both its linear and quadratic slopes. 

 

 

Treatment Abbreviation 
Air Air 
Bovine Gelatin  BG 
Fish Gelatin FG 
High Molecular Weight Fish Gelatin HMWFG 
Hydroxypropyl Methyl Cellulose HPMC 
Corn Oil Oil 
Soy Protein Isolate SPI 
Potato Starch Starch 
Water H2O 
Whey Protein Isolate WPI 
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Table 3.  Statistical analysis of the linear, quadratic, and cubic slopes of CPP pouches. 
 
Treatment Linear Slope Sig. Quadratic Slope Sig. Cubic Slope Sig. 

Air 1.940 ± 0.094 B -0.075 ± 0.005 B 0.001 ± 0.000 A 
BG 1.944 ± 0.062 B -0.073 ± 0.002 B 0.001 ± 0.000 A 
FG 1.810 ± 0.352 B -0.070 ± 0.016 B 0.001 ± 0.000 A 
H2O 1.929 ± 0.207 B -0.077 ± 0.015 B 0.001 ± 0.000 A 

HMWFG 1.803 ± 0.032 B -0.068 ± 0.002 B 0.001 ± 0.000 A 
HPMC 1.848 ± 0.134 B -0.067 ± 0.008 B 0.001 ± 0.000 A 

Oil 5.286 ± 1.481 A -0.627 ± 0.711 A 0.021 ± 0.075 A 
SPI 1.838 ± 0.194 B -0.070 ± 0.010 B 0.001 ± 0.000 A 

Starch 1.887 ± 0.119 B -0.075 ± 0.011 B 0.001 ± 0.000 A 
WPI 2.003 ± 0.168 B -0.086 ± 0.008 B 0.001 ± 0.000 A 

 
Significant difference (Sig.) at 0.05 level are indicated by different letters; Mean ± 
standard deviation.  
 
 

In Figure 7, it can be seen that CPP pouches treated with oil reached ambient 

oxygen (~21%) in approximately 7 days compared to ~25 days for all other treatments.  

Linear and quadratic sections of oil samples showed a significant (p<0.05) influx of 

oxygen.  As stated above, oil is sorbed into CPP causing the plasticization that allowed 

for the massive increase in oxygen permeation.  By the time these pouches reached ~21% 

oxygen oil had migrated through CPP and could be wiped off the outer surface of the 

enclosed pouch.  

None of the other treatments significantly affected the oxygen ingress of CPP 

pouches.  However, it should be noted that, after retort processing, HPMC and Starch 

samples were difficult to seal.  These two solutions created a layer on the CPP pouches 

that required at least two heat seal attempts on the Fuji impulse sealer.  
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Figure 7.  The average oxygen ingress over time (slope) for CPP pouches treated with 10 
common food ingredients. 
 
 
PET Pouches 
 

PET pouches were evaluated with nine different food ingredients.  Ingress showed 

a second order polynomial trendline and therefore significance was evaluated for linear 

and quadratic slopes.  Figure 8 displays all of the treatments’ average ingress of oxygen 

over time for PET pouches.  

 
Linear Slope 

 
Linear slopes were divided into four significantly different (p<0.05) groups, with 

some treatments falling into multiple divisions.  This list can be found in Table 4 and is  
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Figure 8.  Oxygen concentration over time for retorted PET pouches treatments with 9 
food ingredients.  *WPI treatment was not evaluated  
 
 
 
Table 4: SAS output for linear slopes organized from largest to smallest slope.  
 

Treatment Mean t grouping 
*SPI 0.18493  A  
Oil 0.18411  A  
H2O 0.17352 B A  

HMWFG 0.16097 B A C 
HPMC 0.14069 B D C 
Starch 0.13591 B D C 

Air 0.13271  D C 
BG 0.12842  D C 
FG 00.12137  D  

 
Significance (p<0.05) represented by different letters.  Significant difference at 0.05 level 
is indicated by different letters; *n=1, all others n>2.  
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arranged according to mean of slope.  Graphical representations of the groupings can be 

found in Figure 9, Figure 11, Figure 12, and Figure 13.  

Figure 9 represents the slopes in grouping A including Oil, SPI, H2O, and 

HMWFG.  This group has the steepest slope values.  During the initial ingress of oxygen 

into PET pouches, these samples allowed for the greatest ingress of oxygen over time.  In 

Figure 10, FG is added to grouping A to better visualize the difference in oxygen ingress.  

By adding FG as a comparison, it can be seen that group A have steeper slopes than FG.  

Group B is represented in Figure 11.  This group includes H2O, HMWFG, 

HPMC, and Starch.  This group is significantly different (p<0.05) than groups A, C, and 

D.  Figure 12 shows slope group C including HMWFG, HPMC, Starch, Air, and BG.  

Figure 15 represents significantly different (p<0.05) slopes D including HPMC, 

Starch, Air, BG, and FG.  This group had the least amount of initial oxygen ingress.  

Error! Reference source not found.6 displays significant group D against water and 

HMWFG in Groups B and C.  However, to best visualize the difference in the linear 

oxygen ingress, SPI (group A) was added to linear group D (Figure 17).   

 
Quadratic Slopes 

 
Quadratic slopes are also divided into four different groupings that are 

significantly different (p<0.05) from each other.  These groupings can be found in Table 

5 from greatest to smallest mean.  It is interesting to note that means for the quadratic 

slopes are negative.  The more gradual slopes are in group A, whereas the steepest slopes 

are in Quadratic D, opposite to the linear slopes SAS output.  
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Figure 9.  Linear slopes for PET treatments separated according to significant group A. 
 
 
 

 
 
Figure 10.  Graphical representation of PET statistical group A compared to FG.  
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Figure 11.  Linear slopes for PET treatments separated according to significant group B. 
 
 

 
 
Figure 12.  Linear slopes for PET treatments separated according to significant grouping 
C. 
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Figure 13.  Linear slopes group D for PET treatments separated according to significance. 
 
 

 
 
Figure 14.  Linear PET grouping A compared to water and HMWFG. 
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Figure 15.  Linear slopes for PET treatment D with all being significantly different 
(p<0.05) from the linear portion of the FG curve.   
 
 
 
Table 5.  Quadratic slopes for PET treatments according to SAS output.  
 

Treatment Mean t grouping 
Oil -0.009625  D  

*SPI -0.0007122  D C 
H2O -0.0006616 B D C 

HMWFG -0.0005395 B D C 
HPMC -0.0004275 B A C 

Air -0.0003932 B A  
BG -0.0003671 B A  
FG -0.0003602 B A  

Starch -0.0001464 B A  
 
Data was inverted from SAS output so table would read largest to smallest slope.  
Significant difference at 0.05 level is indicated by different letters; *n=1, all others n>2  
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Quadratic group A, Figure 16, includes Starch, FG, H2O, Air, and HPMC. These 

treatments have the smallest incline in slope.  Quadratic group B, Figure 17, includes Air, 

BG, FG, H2O, HMWFG, & HPMC.  Group C in  

Figure 18 includes H2O, HMWFG, HPMC, and SPI.  Group D represents 

treatments, H2O, Oil, and SPI (see Figure 19).  

 
Comparing PET Linear & Quadratic Slopes 

 
Linear and quadratic slopes are grouped similarly, with some differences (see 

 

 

Figure 22.  Graphical representation of Oil, Air and water treated PET pouches. 
 

H2O treated PET is also amongst the poorest oxygen barriers. 

0	  

2	  

4	  

6	  

8	  

10	  

12	  

0	   10	   20	   30	   40	   50	   60	   70	   80	  

%
	  O
xy
ge
n	  

Time	  (day)	  

PET	  Air,	  H2O,	  &	  Oil	  Ingress	  	  

Air	  

H2O	  

Oil	  



 62 

H2O treated PET is also amongst the poorest oxygen barriers. This research 

suggests that water affects PET because the ingress of oxygen in H2O treated pouches 

was significantly higher (p<0.05) than Air treated pouches (Figure 203).  Because the 

external retort treatments were identical, it can be assumed that the difference is related to 

the high internal water activity on the inside of the water treated PET pouch.  

Below average barriers were grouped into linear B (Figure 11) and quadratic 

slope C ( 

Figure 18).  H2O, HMWFG, and HPMC are common to both of these linear and 

quadratic slopes.  SPI is also included in the quadratic grouping, but excluded from the 

linear grouping.  

Above average barriers were grouped into linear C (Figure 12) and quadratic B 

(Figure 17).  HMWFG, HPMC, Air, and BG were common in both the linear and 

quadratic slopes. Starch was included in the linear section, but not the quadratic section 

suggesting its barrier properties increase over time.  While, H2O and FG were included in 

the quadratic slope section but not the linear.  Water also improves its barrier properties 

over time.  FG initially provides a good barrier, but weakens over time.  

The pouches that had the best barrier are linear group D (Figure 13) and quadratic 

group A. (Figure 16).  Treatments of Air, BG, HPMC, Starch, and FG fall into both 

groupings and did not have any significant difference at either part in their slopes.  They 

have the slowest ingress of oxygen compared to all other statistical groupings.  While 

slopes within these groups are not significantly different, changes in slope order did 

occur.  The linear portion of the starch treatment provided the 5th best barrier, however it  
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).  Air was used as a control, as only a paper towel was sealed into the pouch to 

increase headspace.  Starting with the poorest barriers, treatments SPI, Oil, and H2O are 

represented in linear group A (Figure 9) and quadratic group D (Figure 19).  

Oil significantly decreased the barrier properties of Air treated pouches.  This is 

important because oil is typically packaged in PET bottles.  PET bottles are thicker than 

Pet films and have not been subjected to a high temperature and pressure process.  

However, Ameri Khaneghah, & Shoeibi (2012) found that the type of oil stored in PET 

bottles was as important as storage temperatures.  Storage of all oils below 25°C was best 

to prevent rancidity.  Many LAF’s also use oil for its organoleptic qualities.  Once LAF’s 

are shelf stable, storage temperature and oil type will still affect the shelf life of the 

package.  Packages may still need refrigeration of promote shelf life.  A graphical 

comparison between oil, H2O, and air can be seen in Figure .  
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Figure 16.  Quadratic slope group A for PET treatments. 
 
 

 
 
Figure 17.  Quadratic slope group B for PET treatments. 
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Figure 18.  Quadratic slope C group for PET treatments. 
 
 

 
 
Figure 19.  Quadratic slope D for PET treatments.  

Table 6.  Statistical analysis of the linear and quadratic slopes of PET pouches. 
 

Treatment Linear slope Sig. Quadratic slope Sig. 
Air 0.133 ± 0.009 D,C -0.0004 ± 0.00005 A,B 
BG 0.128 ± 0.013 D,C -0.0004 ± 0.00005 A,B 
FG 0.121 ± 0.008 D,C -0.0004 ± 0.0006 A,B 
H2O 0.174 ± 0.046 A,B -0.0007 ± 0.00025 B,D,C 

HMWFG 0.161 ± 0.032 A,B,C -0.0005 ± 0.00017 B,C 
HPMC 0.141 ± 0.00002 B,C -0.0004 ± 0.00002 A,B,C 

Oil 0.185 ± 0.006 A -0.0004 ± 0.00002 D 
SPI *0.184 A -0.0007 D,C 

Starch 0.136 ± 0.014 B,D,C -0.0001 ± 0.00035 A 
 
Significant difference (Sig.) at 0.05 level is indicated by different letters; Mean ± 
standard deviation.  *n=1, all others n>2. 
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Figure 22.  Graphical representation of Oil, Air and water treated PET pouches. 
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Figure 18).  H2O, HMWFG, and HPMC are common to both of these linear and 

quadratic slopes.  SPI is also included in the quadratic grouping, but excluded from the 

linear grouping.  

Above average barriers were grouped into linear C (Figure 12) and quadratic B 

(Figure 17).  HMWFG, HPMC, Air, and BG were common in both the linear and 

quadratic slopes. Starch was included in the linear section, but not the quadratic section 

suggesting its barrier properties increase over time.  While, H2O and FG were included in 

the quadratic slope section but not the linear.  Water also improves its barrier properties 

over time.  FG initially provides a good barrier, but weakens over time.  

The pouches that had the best barrier are linear group D (Figure 13) and quadratic 

group A. (Figure 16).  Treatments of Air, BG, HPMC, Starch, and FG fall into both 

groupings and did not have any significant difference at either part in their slopes.  They 

have the slowest ingress of oxygen compared to all other statistical groupings.  While 

slopes within these groups are not significantly different, changes in slope order did 

occur.  The linear portion of the starch treatment provided the 5th best barrier, however it  



 68 

 
 
Figure 20.  Graph comparing PET water vs. Air.  
 
 
provided the best barrier in the quadratic portion, meaning it provides a better barrier 

over time. 

 
AmPac Pouches 
 
 All treated AmPac pouches, excluding oil, did not show an oxygen ingress trend.  

Oil treatments showed an increase from ~0.5% oxygen to ~2% after 65 days.  At the end 

of testing, Oil could be easily felt around the seal area of the pouches and the bulk of the 

pouch was slightly tackier than pouches not containing oil.  This suggests that Oil is 

easily able to migrate through the seal area, but also able to migrate through the pouch 

itself.  
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 Some of the water treated samples (See Appendix C, PET H2O) showed an influx 

of oxygen from ~0.75 to ~1.75 during the first 5 days.  Then the oxygen level plateaued 

with no additional oxygen ingress.  This leveling off confirms the effectiveness of the 

barrier. 

Ampac pouches were filled between ~0% and 2% percent oxygen. After 60 days, 

the oxygen had not permeated into the pouch. This suggests that when using high barrier 

films starting with as little oxygen as possible in the pouch is just as important as oxygen 

ingress over time.  This is especially true for pouches treated with oil, as they were they 

only samples that showed any ingress.  

 
Comparing Pouch Materials 

 
Oil had a negative effect on all three materials studied. Some of the oxygen 

permeated through the films itself and some occurred through the seal area. When oil was 

used as a food ingredient, oxygen ingress increased at a faster rate in all the materials 

studied.  In CPP pouches this is evident as headspace oxygen increased to ambient 

conditions in ~7 days whereas all other CPP treatments increased over ~25 days.  This 

diffusion occurred mostly through the plasticized CPP.  In PET pouches, the linear and 

quadratic slopes of oil treatments were significantly (p<0.05) steeper than PET pouches 

treated with Air.  PET needed to be melted together to create a seal, it is possible that the 

heat seal area allowed more oxygen ingress compared to the pouch material itself (Kraas 

& Darby, 2010) despite the pouches being slightly tacky with Oil at the end of sampling.  

The Ampac film contained both PET and CPP layers and was the only Ampac 

pouch to increase in oxygen throughout the duration of the study.  Oil will plasticize CPP 



 70 

and decrease the oxygen barrier properties of PET.  Since these materials are often used 

to package LAF attention should focus on food formulations high in oil.  Since oil will 

negatively affect the shelf life of these flexible retort packaging materials on all levels of 

the packaging. 
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CHAPTER V 
 

CONCLUSION 
 
 

Foods are classified according to their water activity and acidity.  When food has 

a water activity above 0.85 and above a pH above 4.6, it is considered a Low Acid 

Canned Food (LACF).  These foods have the optimum environment for the growth of 

bacteria due to their available water and low acidity.  However, when packaged in high 

barrier packaging materials, the minimal amounts of oxygen allow for the growth and 

proliferation of anaerobic bacteria like Clostridium botulinum.  This bacterium produces 

a neurotoxin that can be deadly to humans.  

 LACF’s are required to be thermally processed to ensure sterility and protection 

against the growth of C. botulinum.  This can be achieved during a high (> 212°F) 

temperature retort process.  Historically, low acid, shelf stable foods have been packaged 

in metal cans, however packaging of these foods is migrating towards flexible retort 

pouches.  Flexible retort pouches are more cost effective because of low shipping and 

storage costs.  

However, the retort process is very stressful on packaging materials and multiple 

(3 or 4) laminated layers are needed to achieve the mechanical and barrier properties 

needed. Typical retort layers include a food contact layer, one or more barrier layers, and 

an outer layer.  Traditionally, layers are sourced from crude oil or metal.  Due to the 

environmental concern associated with crude oil and metal not being microwavable, 

recent research has focused on the use of natural materials as a possible film layer.  
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Many naturally occurring substances, like carbohydrates and proteins, are film 

formers and have excellent barrier properties in low humidity environments.  However, 

when in contact with water, they lose their mechanical and barrier properties.  

Carbohydrates, proteins, and lipids are also common food ingredients in LACF’s.  The 

aim of this research was to assess how food ingredients affect the oxygen barrier 

properties of CPP, PET, and an Ampac trial film.  

It was found that Mocon Ox-Tran data from the treated CPP films showed 

differences in the oxygen barrier properties.  However, when compared to OxySense 

analysis, there was no real difference in oxygen ingress over time.  Mocon analysis gives 

a baseline for film choice when films are clean, dry, and unprocessed.  OxySense data 

shows how a pouch will react after processing throughout the duration of a shelf life 

study. 

Oil negatively affected all pouch materials tested.  In CPP pouches, this was due 

to sorption of oil and then plasticization of the film.  In PET films, oil was amongst the 

poorest of barriers.  In the Ampac trial pouches, oil treatments were the only pouches that 

allowed oxygen to permeate into the pouch.  However, when oil was emulsified, the CPP 

was not plasticized.  These are important conclusions as food formulation and retort 

pouch materials should be considered when packaging and processing shelf stable, low 

acid foods.  
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Appendix A 
 

CPP Sample Data 
 
 

Graphs in Figure 21 through Figure 28 represent all samples collected for the CPP 

pouches treated with 10 different food ingredients.  Trendline analysis was based on these 

individual curves.  A list of trendline equations used for analysis and corresponding R2 

can be found in Table 9. 

Due to the filling and sealing methods, a few samples were removed from 

analysis.  Samples were removed base on drastic oxygen influx or dot errors.  In Figure 

21, the sample CPP Air-004 was removed due to rapid influx of oxygen.  Inspection of 

this pouch on day 2 revealed an audible leak at the seal.  In Figure 22, sample CPP BG-

006 showed a drastic influx of Oxygen.  An audible leak caused the pouch to quickly 

reach 21% O2.  No samples were removed from CPP FG, Figure 26, or from CPP water, 

Figure 27. 

CPP HMWFG samples 005 & 006 did not survive the initial filling and sealing 

process.  Redo-001 and redo-002 replaced these pouches.  Figure 25 displays data for 

CPP HMWFG samples.  CPP HMWFG redo-002 pouch was removed due to dot failure.  

On day 34, OxySense measurement stated the percentage of oxygen was 18.38%.  When 
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measured with a Mocon headspace analyzer, oxygen percent was 21%.  Inspection of the 

dot revealed discoloration and therefore sample was removed.   

 Figure 26 shows data for CPP HPMC pouches.  HPMC presented many problems 

during filling and sealing.  A layer of HPMC solution interfered with the resealing.  In all 

samples, 2-3 sealing attempts were needed to properly seal the pouch.  Leaked pouches 

resulted in eliminating samples 002, 003, 004, and 005.  

 
Table 7.  Trendline Equations for CPP Treatment. 
 

 
Leaking pouches removed included Air 004, BG-006, HPMC-002-5, SPI-004, & Starch-
006.  Dot failure included WPI-002 & HMWFG Redo-002. H2O-002 had no data.  
 

Sample Sample Line Equation 

Air 
Y = 1.495027577+1.940038418*(x) - 0.075136692*(x^2) + 
0.001064138*(x^3) 

BG 
Y = 1.533249296 +1.943561234*(x) - 0.072559438*(x^2) + 
0.000981844*(x^3) 

FG 
Y = 2.669545779 + 1.809934075*(x) - 0.070208331*(x^2) + 
0.001058151*(x^3) 

H2O 
Y = 2.062216676 + 1.929412959*(x) - 0.077076258*(x^2) + 
0.001145781*(x^3) 

HMWFG 
Y = 2.483804183 + 1.802575715*(x) - 0.067852746*(x^2) + 
0.000945334*(x^3) 

HPMC 
Y = 1.893089525 + 1.847552538*(x) - 0.067300828*(x^2) + 
0.000894198*(x^3) 

Oil 
Y = 3.776243766 + 5.285936987*(x) - 0.627093342*(x^2) + 
0.020638673(x^3) 

SPI 
Y = 2.110603997 + 1.83806667*(x) - 0.070010823*(x^2) + 
0.000967339*(x^3) 

Starch 
Y = 1.619001198 + 1.886638057*(x) - 0.075129131*(x^2) + 
0.001187542*(x^3) 

WPI 
Y = 2.035723531 + 2.003479887*(x) - 0.086383438*(x^2) + 
0.001430826*(x^3) 
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Figure 21.  Oxygen Concentration over Time for CPP pouches treated with Air. 
 
 

 
 
Figure 22.  Oxygen Concentration over Time for CPP pouches treated with BG. 
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Figure 23.  Oxygen Concentration over Time for CPP pouches treated with FG. 
 
 

 
 
Figure 24.  Oxygen Concentration over Time for CPP pouches treated with water. 
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Figure 25.  Oxygen Concentration over Time for CPP pouches treated with High 
Molecular Weight FG. 
 
 

 
 

Figure 26.  Oxygen Concentration over Time for CPP pouches treated with HPMC. 
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 Two CPP Oil samples (001 &005) did not survive the initial filling and sealing 

process.  CPP Oil Redo 001 and 002 were used to keep sample numbers equivalent.  No 

samples were removed for analysis.  See Figure 27 for CPP Oil samples oxygen 

concentration over time.  InError! Reference source not found.1, CPP WPI oxygen 

concentrations are graphed.  Due to rapid influx of oxygen, CPP WPI 002 was removed 

from further analysis. 

 Figure 29 displays the oxygen concentration over time for CPP treated with SPI.  

Sample 004 was removed due to drastic influx of oxygen.  Figure 30 displays the oxygen 

concentration over time for CPP treated with Starch.  Dot failure resulted in the removal 

of the starch sample 006.  OxySense data on 5/2/12 for sample 006 shows a percent 

oxygen value of 17.38%.  The Mocon headspace analyzer measured 21% oxygen.  Upon 

closer inspection of the dot, discoloration was noted. 
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Figure 27.  Oxygen Concentration over Time for CPP pouches treated with Oil. 

 
 
Figure 28.  Oxygen Concentration over Time for CPP pouches treated with WPI. 
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Figure 29.  Oxygen Concentration over Time for CPP pouches treated with SPI. 

 
 
Figure 30.  Oxygen Concentration over Time for CPP pouches treated with Starch. 
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Appendix B 
 

PET Sample Data 
 
 

 Graphs in Figures 1-10 represent all samples collected for the PET pouches 

treated with different food ingredients.  Trendline analysis was based on these individual 

curves.  A list of these trendline equations and corresponding R2 values are listed in Table 

8.  

 It is a known fact that PET is a heat resistant material and it typically utilized in 

retort packaging for this characteristic.  In this research, in order to achieve a hermetic 

seal, PET was melted together at 160°C.  This greatly weakens the material around the 

seal area and created pinholes.  In addition, pouches are very delicate due to the material 
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qualities.  Some samples were popped or broken during testing due being handled with 

too much pressure.  No samples were removed due to dot failures.  

 Sample number 001 was removed from PET treated with Air (Figure 31).  Upon 

inspection of the data the pouch displayed an influx of oxygen more than double the rate 

of the other pouched in the series.  An audible leak was not present, but a tiny pin hole or 

thinning of the material around the sealing area would cause this faster rate of ingress. 

Figure 32 represents the data for PET pouches retorted with BG solutions.  

Samples 2 and 4 were removed due to leaks within in the seal area.  The graph shows the 

ingress of Oxygen was 21% by day 15 for both samples.  Other samples in the set were 

<10% at this same day time. 

 

 

Table 8.  Average trendline equations for PET treatments. 
 

Sample Line Equation 
Air Y = 1.96100244 + 0.132710763x - 0.000393195x^2 
BG Y = 1.068566928 + 0.128417043x - 0.000367055x^2 
FG Y = 0.945363565 + 0.121365409x - 0.000360186x^2 

H2O Y = 0.968668367 + 0.173523477x - 0.000661618x^2 
HMWFG Y = 0.842082199 + 0.160974246x - 0.000539477x^2 
HPMC Y = 1.111284622 + 0.14068601x - 0.000427509x^2 

Oil Y = 0.478791205 + 0.184931535x - 0.000962507x^2 
SPI Y = 0.656913836 + 0.135914615x - 0.000146426x^2 

Starch Y = 1.96100244 + 0.132710763x - 0.000393195x^2 
 
PET pouches removed for leaking: Air-001; BG-002, 4; FG-002, 5-6; H2O-001, 4-6; 
HMWFG-002, 5; HPMC 001, 2, 4-5; Oil-001, 5; SPI-001-3, 5-6; Starch-002-3, 6; WPI-
001-6.  Pouches removed for no data PET Oil-003, 5.  
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Figure 31.  Oxygen concentration over time for PET pouches treated with Air. 
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Figure 32.  Oxygen Concentration over time for PET pouches treated with BG. 
 
 

Samples 2, 5, and 6 were removed from the analysis for PET pouches treated with 

FG.  In Figure 33, these graphs showed rapid leaking.  Sample 6 showed rapid leaked that 

occurred soon after the resealing process.  However, the data shows that both samples 2 

and 5 began leaking a few days after sealing.  The graphs follow a typical ingress similar 

to other pouches and then oxygen drastically moved into the pouches.  

Samples 4 and 6 for PET treated with water sample 5 for PET treated with 

HMWFG were removed due to rapid ingress of oxygen, see Figure 34 and Figure 35 

respectively.  HMWFG sample 2 failed before the end of testing and therefore was 

removed from testing.  

 

 
 
Figure 33.  Oxygen concentration over time for PET pouches treated with FG. 
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Figure 34.  Oxygen Concentration over time for PET pouches treated with water. 
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Figure 35.  Oxygen concentration over time for PET ouches treated with High Molecular 
Weight FG. 
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Figure 36.  Oxygen concentration over time for PET pouches treated with HPMC. 
 
 

 
 
Figure 37.  Oxygen concentration over time for PET pouches treated with oil. 
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Figure 41.  Oxygen concentration over time for PET pouches treated with Potato Starch. 
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Pet pouches treated with SPI and WPI, Figure  and Figure 38, respectively, 

presented many similar problems.  In SPI pouches, all but sample 004 was removed and 

in WPI pouches, all samples were removed due to either gross or pinhole leaks.  WPI 

sample 3 was the only sample in that sample set that made it until the end of testing. 

However, upon reviewing the data, the pouch was removed due to leaking. 

 

 

 
 
Figure 42.  Oxygen Concentration for PET pouches treated with SPI. 
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Figure 38.  Oxygen Concentration over time for PET pouches treated with WPI. 

Appendix C 
 

AmPac Sample Data 
 

Figures 44 through 53 display the sample data for AmPac films treated with ten 

different food ingredients.  Trendline analysis was based on the individual sample data.  
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A list of trendline equations and corresponding R2 values are represented in 

 

 

.  All treatments, excluding oil, had R2 values <0.67.  Due to the low R2 

correlation values, trendline equations could not be used for further analysis as horizontal 

lines have no trend.  

AmPac pouches treated with oil had trendlines with R2 values between 0.88-0.97.  

No samples were removed from analysis. 
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Figure 39.  Oxygen concentration over time for Ampac films treated with Air. 

 
 
Figure 40.  Oxygen concentration over time for Ampac films treated with BG. 
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Figure 41.  Oxygen concentration over time for Ampac films treated with FG. 

 
 
Figure 42.  Oxygen concentration over time for Ampac films treated with water. 
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Figure 43.  Oxygen concentration over time for Ampac films treated with High Molecular 
Weight FG. 

 
 
Figure 44.  Oxygen concentration over time for Ampac films treated with HPMC. 
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Figure 45.  Oxygen concentration over time for Ampac films treated with Oil. 

 
 
Figure 46.  Oxygen concentration over time for Ampac films treated with SPI. 
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Figure 47.  Oxygen concentration over time for Ampac films treated with Potato Starch. 

 
 
Figure 48.  Oxygen concentration over time for Ampac films treated with WPI. 

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

0	   10	   20	   30	   40	   50	   60	   70	  

%
	  O
xy
ge
n	  

Time	  (days)	  

AmPac	  Starch	  Oxygen	  Concentration	  
over	  Time	  

AmPac	  Starch-‐001	  

AmPac	  Starch-‐002	  

AmPac	  Starch-‐003	  

AmPac	  Starch-‐004	  

AmPac	  Starch-‐005	  

AmPac	  Starch-‐006	  

0	  

1	  

2	  

3	  

4	  

5	  

6	  

0	   10	   20	   30	   40	   50	   60	   70	  

%
	  O
xy
ge
n	  

Time	  (days)	  

AmPac	  WPI	  Oxygen	  Concentration	  
over	  Time	  

AmPac	  WPI-‐001	  

AmPac	  WPI-‐002	  

AmPac	  WPI-‐003	  

AmPac	  WPI-‐004	  

AmPac	  WPI-‐005	  

AmPac	  WPI-‐006	  



 98 

 
 
Table 9.  Line Equations and R2 values for Ampac pouches used for analysis. 
 

Treatment Line equation R2 
AmPac Air-001 y = 0.0019x + 0.8202 R² = 0.35325 
AmPac Air-002 y = 0.0013x + 0.4851 R² = 0.22607 
AmPac Air-003 y = 0.003x + 0.4052 R² = 0.60741 
AmPac Air-004 y = 0.0012x + 0.4158 R² = 0.2661 
AmPac Air-005 y = 0.001x + 0.4196 R² = 0.19008 
AmPac Air-006 y = 0.0026x + 0.7585 R² = 0.54236 
AmPac BG-001 y = 6E-05x + 1.3105 R² = 0.00051 
AmPac BG-002 y = 0.001x + 0.5841 R² = 0.1986 
AmPac BG-003 y = 0.0009x + 0.877 R² = 0.18174 
AmPac BG-004 y = 0.0008x + 0.5534 R² = 0.10392 
AmPac BG-005 y = -0.002x + 0.6326 R² = 0.40298 
AmPac BG-006 y = 0.0006x + 1.599 R² = 0.04049 
AmPac FG-001 y = 0.0012x + 0.4585 R² = 0.20345 
AmPac FG-002 y = 0.0006x + 0.9829 R² = 0.05259 
AmPac FG-003 y = 0.0011x + 0.6034 R² = 0.19432 
AmPac FG-004 y = 0.0012x + 0.8764 R² = 0.188 
AmPac FG-005 y = 0.0009x + 0.4232 R² = 0.11946 

Table 10.  Line Equations and R2 values for Ampac pouches used for analysis. 
(continued) 
 

Treatment Line equation R2 
AmPac FG-006 y = 0.0011x + 0.564 R² = 0.05036 

AmPac H2O-001 y = 0.0024x + 0.4639 R² = 0.52937 
AmPac H2O-002 y = 0.005x + 0.4028 R² = 0.67784 
AmPac H2O-003 y = 0.0088x + 1.4547 R² = 0.33274 
AmPac H2O-004 y = 0.0021x + 0.405 R² = 0.5113 
AmPac H2O-005 y = 0.0036x + 2.0563 R² = 0.12586 
AmPac H2O-006 y = 0.0016x + 0.4763 R² = 0.38898 

AmPac HMWFG-001 y = 0.0011x + 0.8948 R² = 0.1352 
AmPac HMWFG-002 y = 0.0018x + 0.5494 R² = 0.40338 
AmPac HMWFG-003 y = -0.0006x + 1.0591 R² = 0.03583 
AmPac HMWFG-004 y = -0.0018x + 0.3617 R² = 0.21087 
AmPac HMWFG-005 y = -0.0018x + 0.8584 R² = 0.24103 
AmPac HMWFG-006 y = -0.0033x + 0.5145 R² = 0.45443 
AmPac HPMC-001 y = 0.0013x + 0.7888 R² = 0.25226 
AmPac HPMC-002 y = 0.0011x + 0.6547 R² = 0.17965 
AmPac HPMC-003 y = 0.0013x + 0.5068 R² = 0.25003 
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AmPac HPMC-004 y = 0.0013x + 1.3888 R² = 0.15408 
AmPac HPMC-005 y = 0.0012x + 0.4199 R² = 0.04967 
AmPac HPMC-006 y = 0.0014x + 0.4535 R² = 0.19985 

AmPac Oil-001 y = 0.0003x2 + 0.0108x + 0.4702 R² = 0.97231 
AmPac Oil-002 y = 0.0005x2 - 0.0018x + 0.5216 R² = 0.88899 
AmPac Oil-003 y = 0.0001x2 + 0.0095x + 0.5324 R² = 0.90501 
AmPac Oil-004 y = 5E-05x2 + 0.0093x + 0.4863 R² = 0.93419 
AmPac Oil-005 y = 5E-06x3 - 0.0005x2 + 0.0249x + 0.5098 R² = 0.94004 
AmPac Oil-006 y = 8E-06x3 - 0.0008x2 + 0.0309x + 0.5199 R² = 0.92935 
AmPac SPI-001 y = -0.0023x + 0.8887 R² = 0.29831 
AmPac SPI-002 y = 0.0012x + 1.3151 R² = 0.20561 
AmPac SPI-003 y = 0.0006x + 1.2147 R² = 0.04022 
AmPac SPI-004 y = 0.0689x + 3.8814 R² = 0.94499 
AmPac SPI-005 y = 0.0013x + 0.7814 R² = 0.13009 
AmPac SPI-006 y = -0.0022x + 0.412 R² = 0.19439 

AmPac Starch-001 y = 0.0011x + 1.2027 R² = 0.14108 
AmPac Starch-002 y = 9E-05x + 0.3562 R² = 0.0013 
AmPac Starch-003 y = 0.0015x + 1.7502 R² = 0.17454 
AmPac Starch-004 y = 0.0006x + 0.4938 R² = 0.0882 
AmPac Starch-005 y = 0.0006x + 1.6451 R² = 0.02657 
AmPac Starch-006 y = -0.0007x + 0.8846 R² = 0.07241 
AmPac WPI-001 y = 0.02x + 3.585 R² = 0.82815 

Table 11.  Line Equations and R2 values for Ampac pouches used for analysis. 
(continued) 
 

Treatment Line equation R2 
AmPac WPI-002 y = 0.0022x + 0.9531 R² = 0.48842 
AmPac WPI-003 y = 0.001x + 0.4695 R² = 0.23905 
AmPac WPI-004 y = 0.0014x + 0.4264 R² = 0.33468 
AmPac WPI-005 y = -0.0011x + 0.3799 R² = 0.12253 
AmPac WPI-006 y = 0.0025x + 2.2248 R² = 0.29342 
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