
Clemson University
TigerPrints

All Theses Theses

5-2012

Automated Assembly Time Prediction Tool Using
Predefined Mates From CAD Assemblies
Joseph Owensby
Clemson University, jowensb@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Owensby, Joseph, "Automated Assembly Time Prediction Tool Using Predefined Mates From CAD Assemblies" (2012). All Theses.
1382.
https://tigerprints.clemson.edu/all_theses/1382

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1382?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 

 

 

 

 

 

 

AUTOMATED ASSEMBLY TIME PREDICTION TOOL USING PREDEFINED 

MATES FROM CAD ASSEMBLIES 

 

 

A Thesis 

Presented to 

the Graduate School of 

Clemson University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

Mechanical Engineering 

 

 

by 

Joseph Eric Owensby 

May 2012 

 

 

Accepted by: 

Dr. Joshua D. Summers, Committee Chair 

Dr. Gregory M. Mocko 

Dr. Brian Malloy 



 ii 

ABSTRACT 

Current Design for Assembly (DFA) methods and tools require extensive amounts 

and types of user inputs to complete the analysis.  Since the methods require extensive 

amounts and types of inputs, certain issues arise:  the analysis can become tedious, time 

consuming, error prone, and not repeatable.  These issues eventually lead to the DFA 

methods being used as a redesign tool or not being implemented at all. 

The research presented in this thesis addresses the current DFA limitations and 

issues by developing and implementing an automated assembly time prediction tool that: 

extracts explicitly defined connections from SolidWorks assembly models, determines 

the structural complexity vector of the connections, and inputs the complexity vector into 

trained artificial neural networks (ANNs) to predict an assembly time.  The automated 

assembly time prediction tool does not require any user inputs other than a mated 

assembly model.  To complete the analysis with the automated tool, the user has to open 

up the assembly model and click on the developed SW add-in button.  Since no additional 

inputs are required to complete the analysis, the results are completely repeatable when 

given the same SolidWorks assembly model to evaluate. 

The results in this thesis show that the developed tool can predict a product’s 

assembly time with as little as 4% error or with as much as +68% error depending on the 

ANN training set used.  Eight different ANN training sets are tested in this thesis, the 

results show that larger more variable ANN training sets typically predict assembly times 

with less percent error than smaller less variable ANN training sets.  Since the tool 

extracts mates from assembly models, the sensitivity of the method with respect to 
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different mating styles is also investigated.  It is determined that the mating style does 

have an effect on the predicted assembly time, but this effect is typically within the 

normal variation ranges of existing DFA methods. 
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CHAPTER 1.  DESIGN FOR ASSEMBLY:  MOTIVATION AND CHALLENGES TO 

AUTOMATION 

This thesis presents a design tool to automatically predict a product’s assembly 

time by extracting defined connections from assembly models from a commercial solid 

modeling system (SolidWorks).  The tool is defined by three elemental steps:  (1) extract 

the explicitly defined mating connections from SolidWorks assembly models, (2) 

determine the structural complexity vector of the connection graphs, and (3) input the 

complexity vector into a trained artificial neural network to predict the assembly time. 

The initial motivation for this work originated from the author’s personal 

experience applying the original table based Boothroyd Dewhurst Design for Assembly 

(DFA) method to the re-design of a Black and Decker One Touch Chopper.  The results 

of the analysis identified the initial assembly time as 228.5 seconds and a redesign 

assembly time of 201 seconds reducing the assembly time by 12%.  The ability of the 

method to improve the design with respect to assembly was recognized, but completing 

the analysis was tedious, time consuming, and largely subjective.  The author, and others 

in literature, determined that if the benefits do not significantly outweigh these issues 

then designers will be reluctant to implement DFA methods resulting in poorly designed 

products [1,2,3,4].  To mitigate these issues, automated assembly time prediction is 

recommended. 

To ensure clarity of discussion, the difference between tools and methods as used 

in this research must be defined.  A method is a process that ends with defined results and 

a tool is a specific way to achieve the defined results.  Therefore, a DFA method is a 
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process applied to a product to improve it with respect to assembly.  An example of a 

DFA method is assembly time prediction which can be used to determine and reduce a 

products assembly time.  A product’s assembly time can be predicted through a variety of 

approaches, these different approaches can become different DFA tools.  DFA tools are 

specific ways to improve a product with respect to assembly.  Based on their success at 

providing measurable criteria that can be used to analyze and improve designs, assembly 

time prediction tools are a critical part of effective DFA methods [5].  An example of a 

DFA tool used within the assembly time prediction method is the connectivity 

complexity assembly time prediction tool [6].  Assembly time prediction and the 

development of an automated tool are the focus of the research presented in this thesis.  

To understand the limitations and issues of current methods, the rest of this chapter 

presents a variety of DFA methods and tools with a specific focus on attempts at 

automating them. 

An overview of basic DFA methods along with their benefits and issues is 

covered in the remainder of Chapter 1.  .  This review is continued into Chapter 2.  , 

where the focus shifts towards specific research efforts that attempt to automate existing 

DFA methods and how these might be exploited in new automation efforts.  

1.1 Overview of Design for Assembly and Assembly Time Prediction 

Design for Assembly (DFA) methods have been extensively researched since the 

1960’s, progressing from basic rules/guidelines to the development of fully automated 

analysis tools [7,8].  The progression of DFA research is illustrated in Figure 1.1.  

Integration of DFA methods into software focuses on the development of software 
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versions of existing DFA methods that still require user inputs to complete the analysis, 

Figure 1.1.  Automation of DFA methods in Figure 1.1 is defined as systems that extract 

some or all of the inputs required for assembly time analysis, requiring minimal user 

inputs. 

 

Figure 1.1: DFA research timeline 

Design for Assembly (DFA) methods originated in the 1960’s when companies 

first started publishing manuals to aid designers during the design process [7,8].  These 

manuals gave the designers basic guidelines to improve their products with regards to 

manufacturing and assembly [7].  In the 1980’s, these guidelines were integrated into 

systematic qualitative/quantitative DFA analysis tools that would help the designer 

predict the products assembly time [7,9].  These systematic DFA analysis tools used 

extensive time studies to develop tables where users assigned assembly penalties based 

on individual part features to predict a product's assembly time [7,9].  These tools help 

the designer identify the products assembly cost and measure design improvements with 

respect to the assembly times [7].  After the development of these table based methods 

(approximately 1970-1980 in Figure 1.1) researchers began to realize the advantages of 

implementing DFA through computer software to improve the speed and ease of the 

analysis [8,10,2].  This research is shown from the early 1980’s until the 1990’s in Figure 

Present Day20001990198019701960

DFA rules and 

guidelines

Qualitative and Quantitative 

DFA rules

Integration of DFA 

into software

Automation of DFA 

methods
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1.1 where integration of DFA into software focuses on taking existing methods and 

making software versions of them.  These software implementations of DFA methods 

improved the issues of analysis setup time, but they still required the user to go through 

the systematic process and provide the software with the required inputs.  This directed 

the focus of DFA software implementation towards automating DFA methods shown 

from 1990 to the present day in Figure 1.1. 

The development of automatic DFA methods focuses on implementing methods 

through software that gather required inputs from an external source, typically two-

dimensional or three dimensional modeling software, rather than relying on the user’s 

input [3].  Modeling systems store geometric information about the product that can be 

extracted and used to provide some of the inputs to the methods.  This type of DFA 

method would limit the amount of input information required from the user, thereby 

improving the speed and consistency of the analysis [10]. 

Specific DFA methods that represent the different eras shown in Figure 1.1 are 

listed in Table 1.1.  Table 1.1 contains the name of the DFA method, a description of the 

method, the developer of the method, and the date the method was created.  Some of the 

frequently used or researched DFA methods shown in Table 1.1 are the Boothroyd 

Dewhurst method [11], the Methods-time Measurement (MTM) method [12], the 

Assembly Evaluation Method of Hitachi [13], and the Lucas Method [14].  The 

Boothroyd Dewhurst method, highlighted in Table 1.1, is evaluated and used to complete 

the research presented in this thesis. 
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Table 1.1: Existing DFA Methods 

DFA Method Description Developer Date Ref. 

Methods-Time 

Measurement 

(MTM) 

Assign operations with 

pre defined assembly 

times to parts 

Harold Maynard 1948 
[12,1

5] 

Manufacturing 

Producibility 

Handbook  

Reference manual of 

manufacturing and 

assembly guidelines 

Corporation 

(GE) 
1960 [7] 

Boothroyd and 

Dewhurst DFA 

DFA based on minimum 

part criteria and handling 

and insertion difficulties 

Academic & 

Consulting 

(Boothroyd and 

Dewhurst) 

1977 [11,7] 

Assembly 

Evaluation Method 

(AEM) 

DFA based on one 

motion for one part 

Corporation 

(Hitachi) 
1980 

[7,13,

16] 

Design for 

Assembly and Cost 

Effectiveness (DAC) 

Uses 30 key words to 

evaluate design 

Corporation 

(Sony) 
1988 [7,17] 

Assembly Oriented 

Product Design 

Accesses a parts 

functional value 

Warnecke & 

Bassler 
1988 [7] 

Lucas DFA Method 
Set of questions to 

determine assembly time 

Academic & 

Consulting 

(Miles & Swift) 

~1986 [2,7] 

MOSIM 

Focus of implementing 

DFA through CAD 

software 

Corporation 

(Angermuller & 

Moritzen of 

Siemens) 

1990 [7] 

DFA Sandpit 

Proactive DFA software 

based on original Lucas 

method 

Academic (Swift 

& Jared) 
2000 [18,3] 

 

The different DFA methods in Table 1.1  highlight some of the prevalent DFA 

methods developed in both academia and industry.  From the descriptions of the methods 

in Table 1.1 the variety of approaches that researchers have applied to DFA can be seen.  

Some methods like the MTM method conduct the analysis by evaluating the assembly 

motions and others like the Lucas method focus on indentifying a part’s features that 

make it difficult to assemble.  The variety of developers in Table 1.1 show that the push 
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to develop more effective methods is not driven by one group or type of researcher, but 

instead by a wide range of researches including both corporations and academia.  

The Boothroyd Dewhurst DFA method, the Lucas DFA method, and the DFA 

Sandpit shown in Table 1.1 relate to the research presented in this thesis and are 

discussed in Chapter 2.  .  Details on other methods can be found by following the 

respective reference.  Many of these methods have been implemented in industry and 

shown to provide benefits improving the design with respect to assembly but they still 

have issues, for example the subjectivity of the user inputs.  The benefits of DFA are 

explored in Section 1.2 while some issues with DFA methods are considered in Section 

1.3. 

1.2 Identified Benefits of Existing DFA Methods 

Since up to seventy percent of a product’s life cycle cost is determined early in 

the design process, it is important to conduct DFA analyses early to improve the design 

before the majority of its cost has been determined [19,20,18,2,21].  Further, nearly forty 

percent of manufacturing cost can be related directly to assembly costs [22].  

Incorporating DFA methods early into the design process provides advantages such as 

shortened development time, assembly time reduction, and manufacturing cost savings 

[8].  DFA methods have also been industry tested and proven to be advantageous by 

reducing a product’s total part count, manufacturing cost, production lead time, 

inventory, assembly time, and assembly cost [8,20,23].  Table 1.2 summarizes some of 

the recorded DFA benefits, the effect the benefit has, and the references that identified 
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these benefits.  The benefits listed were identified by applying or observing a DFA 

method. 

Table 1.2:  Identified DFA benefits 

Reference Benefit Effect 

[24,25,26,8] Reduced product cost 
Increase profit, reduce 

consumer expense 

[8,20,23,7,16,8,27,28,3,26] Reduced assembly time and cost 
Increase production 

volume 

[24,8,20,23,8,28] 
Reduces manufacturing time and 

cost 

Increase production 

volume 

[8,20,23,25] Reduced part count 

Reduces mass, 

assembly time, and 

cost 

[7,16] Reduced design time 
Improves use of 

resources 

[24] Reduces repair costs Cost savings 

[28,7,16,8,28,25] Improved quality and reliability Happy consumer 

[8] Fewer suppliers 
Improves use of 

resources 

[24,8,20,23,8] Reduced inventory 
Improves use of 

resources 

[27,8,20,23,8,3,25] 
Reduced product development 

time and time to market 

Improves use of 

resources 

[25] Minimize assembly problems 
Efficient assembly 

process 
 

Table 1.2 lists eleven different benefits identified by eleven different researchers 

which can be achieved by applying DFA methods in the design process.  Every benefit 

has a resulting effect which is what the companies ultimately want to achieve by 

implementing DFA methods.  By implementing DFA methods the benefits listed are 

achieved which in turns effectives the company positively by reducing the cost to 

produce the product and increasing the company’s profit.  One case study presents 

Motorola’s application of DFMA methods to a vehicular adaptor [8].  The results of the 
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DFMA study improved the assembly time by 87%, decreased the part count by 78%, and 

eliminated all of the fasteners [8].  This is only one case study out of many that prove that 

companies are interested in applying DFA methods to achieve their benefits and the 

resulting positive effects.  Even with these identified benefits, DFA methods are often not 

implemented in industry because of their associated issues.  These hindering issues and 

their effects are identified and discussed in Section 1.3.   

1.3 Identified Issues with Existing DFA Methods 

Even with the proven benefits achieved by applying DFA methods, they still have 

associated limitations and issues that hinder their full industrial acceptance and 

implementation.  One issue is that the development of DFA methods often focuses on 

generating stand alone tools that are intended to improve designs with respect to 

assembly [10].  Stand alone systems require the user to balance their mental resources as 

they switch back and forth from designing to analysis instead of focusing on one specific 

aspect at a time [10].  The ideal analysis tool would be integrated into the current 

computer aided design and modeling tools thus reducing the burden on the designer [10].  

Another issue is that these current DFA tools require inputs and calculations from 

the user to complete the analysis.  These inputs may range from envelope dimensions of 

parts to specific motions required by an operator to assemble the part.  Calculations 

required by the user may be summing the number of parts in an assembly or calculating 

the products design efficiency.  If the inputs required by the method are subjective and 

require user interpretation, the result will vary within the analysis [10,4,1].  The 

variability of the results will be present between different users conducting the analysis 
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on the same product, and the variability can even be present between the same user 

conducting the analysis on the same product at a different time [29].  For some methods 

even a small user interpretation could result in +/- 50% error depending on how often that 

part is being used [30].  Also, if the user is required to enter extensive inputs to complete 

the analysis the method can become tedious and time consuming [31].  Some identified 

DFA issues and their resulting effect on the analysis are summarized in Table 1.3. 

Table 1.3:  Identified DFA issues 

Reference Issues Effect 

[7,1,10,26] 
Requires subjective or implicit 

user inputs 

Varying results, user 

interpretation 

[31,1] Tedious 
Reluctance to use, accidental 

errors 

[31,1,10,3,25] Time consuming 
Reluctance to use, accidental 

errors 

[31,1,10,26] Extensive user inputs 
Reluctance to use, accidental 

errors, distraction from design 

[27,18] 
Require design details 

(geometry, etc.) 
Used late in design process 

[29,27,3,25,18,26] Reactive or redesign tools 
Used late in design process, 

less cost impact, lost benefits 

[10] Stand alone systems Increases design difficulty 

[17] 
Implicitly identified design 

improvements 

Varying results, user 

interpretation 

[26] 
Lack foundation to relate DFA 

time and cost to part geometry 
Difficult to automate 

 

Several of the issues in Table 1.3 ultimately lead to reluctance in industry to 

implement the DFA methods [10,2] which, in turn, prevents the DFA benefits from being 

achieved.  The issues of requiring design detail or the use of the methods as redesign 

tools force the methods to be used iteratively possibly increasing the cost of design 

changes [27,18].  Examples of the design details required by some methods include: 
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geometric information, securing methods, or assembly motions which are not generally 

known until the detailed design stage of the design process.  Section 1.4 explores where 

existing DFA methods are used in the design process based on the information required 

by the method, where the greatest benefits are achieved by implementing the method, and 

where issues with the methods are encountered. 

1.4 DFA in the Design Process 

DFA methods were originally intended to be applied throughout the design 

process to maximize cost savings [10,7]. These cost savings can be maximized since 60% 

to 80% of a products cost is determined during the early phases of the design process 

[20,2,21].  By applying DFA methods early in the process, the design can be changed 

before it is finalized, which maximizes the resulting DFA benefits [32,2,8].  Figure 1.2 

shows a simplified version of a systematic design process along with where DFA 

methods are currently used and where they would ideally be used [33].   
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Figure 1.2: DFA in the Design Process (Adapted from [33]) 

Due to the issues with DFA methods and the lack of design details early in the 

design process, DFA is typically used as a redesign tool instead of a forward engineering 

tool so the full benefits during the initial product design are seldom achieved [34,25].  

Also, many of the methods developed in the last fifteen years require information that is 

only available during or after the embodiment design stage which is late in the design 

process [27].  If DFA methods are applied late in the design process and design 

improvements are identified, the product will have to be redesigned resulting in an 

iterative redesign phase which increases development cost [35,27].  Designers are more 

likely to welcome design suggestions if they are made concurrently and early throughout 

the process and less likely to welcome suggestions if they are made based on identified 

weaknesses of their final product [3]. 
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The frequent use of DFA methods as redesign tools is demonstrated in the 

following example. The Boothroyd Dewhurst DFMA software is one of the most widely 

published and used methods in industry today [28,27,26].  The Boothroyd Dewhurst 

DFMA website posts eighteen case studies that all boast a variety of benefits that 

different companies achieved by implementing DFA on their products [36].  All eighteen 

of these case studies proved to be beneficial but all of them are with regards to the 

redesign of an existing product, not the design of a completely new product. 

To reduce or eliminate DFA issues and to improve the methods so that they can 

be more effectively used and applied earlier in the design process, research has shifted its 

focus towards integrating methods into computer aided design and solid modeling 

systems.  Chapter 2.   focuses on the DFA methods that are partly automated or 

implemented through Computer Aided Design (CAD) systems.  
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CHAPTER 2.  DESIGN FOR ASSEMBLY METHODS 

For DFA methods to be truly effective the current issues that they posses have to 

be eliminated.  This goal can theoretically be achieved by implementing the methods 

through computer software.  If the issues with DFA can be eliminated, or at least 

mitigated, through computer based implementation, this approach essentially becomes a 

requirement for all DFA methods [25].  Attempts at meeting this requirement have been 

ongoing since the early 1980s [7].  Before discussing the progression of DFA methods, 

these different attempts have to be classified into one of the following categories: 

 Manual Methods:  the user conducting the analysis provides all of the 

information required by the method to complete the analysis 

 Semi-Automated Methods:  a portion of the information required by the 

method can be extracted from an external source other than the user 

 Automated Methods:  this method requires no information from the user, 

all information required by the method is extracted from an external 

source 

The typical development progression of a DFA method is from completely 

manual to computer implementation to automate the method as much as possible.  This 

typically results in a semi-automated DFA method since some of the required information 

cannot be extracted from external sources.  The primary focus of this chapter is on DFA 

methods that are implemented through computer software and whether those methods are 

manual, semi-automated, or fully automated. The rest of this section presents the 
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movement towards automated DFA followed by sections detailing the progression or 

automation of specific methods. 

The early attempts of software based DFA focused on developing stand alone 

programs that were essentially computer based versions of the original methods [14,32].  

The user must answer the same questions required by the original method to complete the 

analysis, but the computer software would accept the answers as inputs, and compute the 

outputs.  These computer based DFA methods improved some of the DFA issues by 

hiding some of the information processing from the user [10].  While these software 

based DFA methods improved the issues, they did not eliminate them.  One study showed 

that both experienced and novice DFA users conducting manual DFA with or without the 

computer software based version would complete the analysis with approximately the 

same number of mistakes [10].  This study shows that by converting manual DFA 

methods to manual input computer software versions of the method, the fundamental 

problems with the methods are still not solved.  To reduce the number of mistakes and 

improve the methods, the methods should be partially or fully automated requiring little 

analysis input from the user [26]. 

The natural progression of implementing a software based DFA method was to 

program the original methods, then shift the focus towards automating the methods. The 

ideal DFA method would be fully automated so that it could give the designer repeatable 

feedback to improve the design with respect to assembly in real time as they go through 

the design process [14].  This would eliminate the tediousness, subjectivity, time 

consuming issues that reduce current DFA implementation.  A semi-automatic or fully 
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automatic DFA method would also allow the designer to focus primarily on the 

functionality of the product instead trying to consider functionality and assemblability at 

the same time [26].  Attempts at automating current DFA methods have been inhibited 

since they often use a variety of subjective information which is difficult to program 

[1,37].  Even though the automation of methods has been inhibited, extensive work has 

been completed to automate parts of these methods (semi-automated) and to reduce the 

effort required to complete them. 

All DFA methods require inputs to complete the analysis and so the first step in 

automation is to determine what sources can provide these inputs if they are not received 

from the designer.  The answer that most researchers have identified is that some of the 

required information to complete the given analysis can be extracted from solid models 

of parts or assemblies [3].  This requires geometric reasoning algorithms to evaluate, 

interpret, and extract the information from the solid models [25].  In most cases, only the 

objective inputs like part symmetry could be extracted from these models.  Subjective 

information like difficulty to handle would be difficult to extract because the information 

about the part would have to be interpreted and analyzed to come up with the subjective 

information.  Another issue with automating these methods is that they require geometric 

information from the models which may not be known until late in the design process 

directing their use as a redesign tool instead of a concurrent design tool [18].  The result 

of this previous research has been methods that are partially automated by extracting 

specific parts of the analysis from solid modeling software.  These partially automated 

methods improve the issues but do not eliminate them [18]. 
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The issues that prevent a fully automated DFA method go back to the original 

development of software based DFA.  Since the progression of software DFA methods 

started with the programming of manual DFA methods, any flaws or requirements that 

the original methods had would also be integrated into software. Some of these flaws are 

the types of information required to complete the analysis.  If the method requires 

subjective information then a fully automated version of that method would be difficult to 

achieve.  Typical computer algorithms solve step by step calculations.  A computer 

algorithm to solve for subjective information would require reasoning and interpretation 

which varies based on the given perspective.  A program to solve for subjective 

information would be difficult to develop without a detailed knowledge base and 

complicated algorithms.  To fully or partially automate DFA, methods that are based on 

objective low level or geometric information about the product have to be developed 

[26].  The next several sections focus on the development and extension of prevalent 

DFA methods specifically with regards to implementing them into software or attempts at 

automating them. 

2.1 Development and Extension of the Boothroyd Dewhurst DFA Method 

The Boothroyd Dewhurst DFA method was one of the first systematic approaches 

applied to DFA allowing designers to quantitatively compare different designs with 

respect to assembly [7].  The method was developed by conducting extensive time studies 

and relating different design features to certain assembly time penalties.  To complete the 

analysis the user has to answer a series of questions relating to: minimum part criteria, 

envelope dimensions, securing method, handling difficulties and insertion difficulties [8] 
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[11].  The minimum part criteria questions are used to identify the theoretical minimum 

number of parts that the product can have [11].  The designer then evaluates the parts that 

are identified and eliminates them or re-designs them if the design can be improved.  The 

questions relating to envelope dimensions, handling difficulties, and insertion difficulties 

are used to predict the products assembly time and cost providing the designer with a 

quantitative way to evaluate the designs [11].  The handling and insertion difficulty 

questions are typically subjective where the answer to the questions can vary based on 

user interpretation [1].  One example of a subjective handling difficulty is “does the part 

severely nest or tangle” and an example of an insertion difficulty is “is the part easy to 

align.” 

The questions required to complete the analysis are presented to the user through 

a set of paper based tables.  The user has to choose the row and column that best describe 

the given part and the time penalty will be at the intersection.  There are four handling 

difficulty tables and three insertion difficulty tables that have to be considered while 

determining the handling and insertion times. [11] 

The original Boothroyd Dewhurst table based method provides a systematic way 

to improve designs with respect to assembly but to complete the analysis the user has to 

manage all of the information required by the analysis [11].  The amount of information 

and time required to complete the analysis grows with the number of components.  The 

subjectivity of many of the required inputs results in variability between analyses.  These 

and other issues are the driving factors that push research focused on the original 

Boothroyd Dewhurst DFA method towards automation of the method.  The rest of this 



 18 

section presents the continual development and extension of the Boothroyd Dewhurst 

DFA method.  Section 2.1.1 discusses the Boothroyd Dewhurst DFMA software (a 

computer based version of the original method), Section 2.1.2 discusses a Product 

Architecture based method that allows the Boothroyd method to be applied earlier in the 

design process, and Section 2.1.3 discusses Fuzzy DFA which attempts to automate parts 

of the Boothroyd Dewhurst method. 

2.1.1 Boothroyd Dewhurst DFMA Software 

The Boothroyd Dewhurst DFMA software is discussed in detail in Chapter 4.   

but a brief overview of its development and usage is presented in this section. 

After the original development of the Boothroyd Dewhurst table based DFA 

method, focus shifted towards implementing this method into a computer version to 

improve the issues of the original method [32,38].  Early versions of the software 

presented the same number and types of questions to the user but improved the analysis 

since the user no longer had to manage the information.  Once the answer to a question 

was specified the software would make the required calculations, display the results to 

the user, and store the information as needed [32].  

The Boothroyd Dewhurst DFA software has been continuously developed and 

improved from a basic computer version of the original methods in the early 1980’s to a 

method that now presents the questions to the user through a user friendly GUI.  The user 

friendly GUI reduces the DFA issues by hiding information from the user and providing 

the user with hints to help reduce the subjectivity of the inputs.  Extensive industry case 

studies conducted throughout the development of the Boothroyd Dewhurst software have 
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continued to show its benefits [20,8] but evaluations of the method continue to show that 

it still has issues [1].  The implementation of the original Boothroyd Dewhurst tables into 

the DFMA software improve the method but until more information can be extracted 

from 3D modeling programs, the DFA analysis will most likely be conducted after the 

parts are designed, minimizing the benefits that the method would provide to the user[7].  

The following sub sections discuss several research efforts outside of the original 

developers which have explored a variety of other ways to use or implement the original 

Boothroyd method in hopes to eliminate the exposed issues. 

2.1.2 Product Architecture Based Conceptual DFA 

The Product Architecture Based Conceptual DFA method was developed so that 

DFA could be applied during the conceptual design phase using function models of the 

given product [27].  The steps to complete the method are as follows: 

1. Generating a function structure of the desired product 

2. Identify product modularity by apply heuristic methods to developed 

function structures 

3. Conceptual design is applied to each module trying to solve the functional 

requirement of each module with as few components as possible (goal is 

one component per module) 

4. Optional:  Apply Boothroyd Dewhurst method to predict and reduce 

product’s assembly time based on handling characteristics 

The product function structures are generated using the functional basis which is a 

standardized vocabulary used to specify the verb-object pairs required by the structures 

[27].  Using function structures as inputs allows this conceptual method to be applied 
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with just the functional requirements of the product, not geometric information which is 

required by other DFA methods and often not known early in the design process.  

One issue with this conceptual DFA method is that it requires function structures 

as inputs which can be difficult to generate and vary between design concepts [39].  This 

method does not appear to be automated in any way so all of the required inputs must be 

generated and provided by the designer.  The only advantage that this method may 

provide is that it would force the design to consider reducing part count during 

conceptual design as opposed to thinking it about it post design. 

2.1.3 Fuzzy DFA 

The Fuzzy DFA method automates part of the Boothroyd Dewhurst DFA method 

using geometric reasoning, artificial intelligence, and fuzzy logic resulting in a semi-

automated DFA method [28].  Fuzzy logic is the attempt to simulate a human being’s 

reasoning and approximation capabilities which allow for imprecision in the final result 

[37].  Fuzzy DFA uses fuzzy logic to computationally interpret the subjective information 

inputs required by DFA methods.  Fuzzy DFA automates part of the Boothroyd Dewhurst 

method by combining the original method with fuzzy logic which can then be used to 

provide inputs to the analysis using feature based codes.  Fuzzy DFA breaks down the 

Boothroyd Dewhurst DFA method into technological inputs (handling/insertion 

difficulties) and geometric inputs (envelope dimensions, orientation, etc.) [28].  By 

applying the Fuzzy DFA method the following geometric aspects of the Boothroyd 

method were automated by extracting geometric information from two-dimensional and 

three-dimensional part models: 
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 Identification of rotational or non rotational parts 

 Identification of minimum part bounding box 

 Identifying alpha symmetry, symmetry about an axis perpendicular to the 

insertion axis 

 Identifying beta symmetry, symmetry about the insertion axis 

 Orientation considerations for automatic bowl feeding 

As shown, the Fuzzy DFA only automates the geometric aspects of the Boothroyd 

Dewhurst DFA analysis, the user is still required to manually provide the technological 

inputs to complete the analysis [28].  This will successfully reduce the analysis effort 

required by the designer but it only provides a semi-automated method, not a fully 

automated DFA method.  Also, applying this semi-automated Fuzzy DFA method early 

in the design process may be difficult since well defined geometric data may not be 

known. 

2.2 Development and Extension of the Lucas DFA Method and the DFA Sandpit 

The implementation of the Lucas DFA method into software systems and solid 

modeling systems has been research extensively [2,10,25,18,40,3]. This research 

eventually leads to the development of a proactive DFA Sandpit which attempts to 

eliminate the issues that the Lucas method has.  The Lucas method, the DFA Sandpit, and 

a brief evaluation of the two are presented in the following subsections. 
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2.2.1 Lucas DFA Method 

The Lucas DFA method requires five different types of inputs to complete the 

analysis: a functional, a manufacturing, a feeding, a fitting, and a gripping analysis [10].  

The early paper based versions of this method received the above inputs as the user 

answered a variety of questions about the product and its parts.  Each input serves a 

different purpose and provides different results that help improve the design with respect 

to assembly.  The five analysis requirements, the goals of the analysis, and the basis of 

the analysis are shown in Table 2.1. 

Table 2.1: Lucas Method analysis requirements and goals 

Analysis Type Goal Evaluation Based On 

Functional 

Eliminate redundant components 

while accomplishing desired 

functionality 

Component functionality 

Manufacturing 
Estimation of part manufacturing 

costs use to improve design 

Material, manufacturing 

process, and geometric 

based complexity 

Feeding 
Selection of feeding tools and 

methods 
Ease of orientation 

Fitting Stability in assembly operations Insertion considerations 

Grip 
Focus on automatic assembly 

operations 

Accessibility a part’s 

locating features 
 

The issues with the original paper based version of this method were the time to 

conduct the analysis, the tediousness of the analysis, and the subjectivity of the analysis 

[2].  The research focused on the Lucas method shifted towards eliminating these issues 

[3]. 

Early on the ability to implement part of or all of this method through computer 

software was realized.  In 1989 Lucas Engineering launched the first commercially 
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available software based version of this method which decreased the analysis time and 

made the method easier to implement improving some of the previous issues [2].  The 

first software version of the Lucas method was a computer based implementation of the 

previous paper based method so it still required the user to answer the same input 

questions.  This new Lucas DFA software was an improvement over the paper based 

method because it reduced the amount of information and computational requirements 

presented to the user but the user still had to answer the same number of questions to 

complete the analysis. 

Continuation of this research identified that the Lucas DFA method could be 

improved by implementing it through solid modeling systems [41,10].  Solid modeling 

systems are used to generate virtual representations of products and parts while storing 

information about size, location, material, and other aspects.  It was determined that this 

stored information could be used to help complete the DFA analysis benefiting DFA by 

requiring less user inputs.  Early attempts focused on extracting this information from 2D 

solid modeling drawings but issues arose as limited amounts of information required by 

the method were stored in these models [10,41].  Most of the information required by the 

Lucas method are based on geometric features which are not present in 2D solid 

modeling drawings, but this information is included in 3D solid modeling systems [41]. 

A detailed study was completed to determine how much of the Lucas method 

could be automated by extracting the inputs required for the analysis from 3D solid 

models [10].  The study breaks down each area of the user requirements to determine 

what aspects can be automated and to what extent.  The study found that 72% of the 
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method could be accomplished by extracting information stored within solid models (in 

1994) and that with moderate amounts of research even more information could be 

extracted [10].  This study showed that by extracting geometric information from solid 

models that a large percent of the Lucas DFA method could be automated or semi-

automated but that the subjective issues like feed ability or handling aspects would be 

difficult to automate [10]. 

Around the time this study was completed (1994), the Lucas Method developed 

by Lucas Engineering & Systems was purchased by Computer Sciences Corporation 

(CSC) and integrated into their TeamSET software.  The TeamSET software incorporates 

a variety of design tools (DFA, DFM, FMEA, QFD, and Design Target Cost (DTC)) into 

one encompassing tool [3].  After this integration, the Lucas Method and the TeamSET 

software are seldom mentioned in DFA literature.  Even though the specific Lucas 

Method is not mentioned in literature, the fundamental aspects and the idea of 

incorporating them into solid modeling software was extensively researched.  This 

research led to the development of the DFA Sandpit. 

2.2.2 DFA Sandpit 

From 1994 to 2004 the researchers who originally developed the Lucas method 

continued to focus on achieving the possible benefits identified in the Lucas DFA 

automation study.  This research was focused on extracting the information required to 

complete the analysis from solid models.  While conducting this research a new proactive 

DFA tool called the Design for Assembly Sandpit was developed [25].  The research 



 25 

progression from the Lucas Method to the DFA Sandpit and the continuing research 

focused around improving the DFA Sandpit is summarized in Table 2.2. 

Table 2.2:  DFA Sandpit research and development timeline 

Research Concept Description Year 

Lucas Computer Based 

Method  

Implementation of paper based Lucas Method 

into a computer software [14] 
1989 

Extraction of DFA 

information from CAD 

Detailed study of what amounts and types of 

information required by the Lucas Method can 

be extracted from CAD Models [10] 

1994 

Prototype Assembly 

Oriented CAD 

Environment 

Development and presentation of a proactive 

DFA Software, explanation of information 

required along with the GUI [25] 

1999 

Introduction of DFA 

Sandpit Software 

Implementation of proactive DFA prototype 

system into useable software (DFA Sandpit) 

that also considers product functionality [18] 

2000 

Implementation of DFA 

Sandpit Software 

Presents the progress of the DFA Sandpit 

software and describes how it can be used with 

a test case [3] 

2000 

Utilization of complexity 

metrics within the DFA 

Sandpit 

A study of where and how complexity metrics 

and aspects can be used with proactive DFA 

[40] 

2004 

 

The basic research progression shown in Table 2.2 is as follows: implementation 

of paper based Lucas method into basic computer software, evaluation study to determine 

what information is required that can be extracted from solid modeling tools, 

development of a proactive DFA tool with a general focus on assembly sequence, 

prototype implementation of proactive DFA tool (assembly planning, CAD, DFA, 

geometric reasoning) [25], first generation of proactive DFA Sandpit which incorporates 

functional analysis [18], and continued advancements of the DFA Sandpit. Based on this 

research, an overview of the DFA Sandpit software is described below. 
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The goal of the DFA Sandpit was to develop a proactive DFA tool that could be 

used throughout the design process, not a standalone tool that is only used in the redesign 

process [3].  The DFA Sandpit incorporates the basic aspects of the Lucas method into 

three separate focus levels: the Product Group, the Product Structure, and the Component 

Design [3].  The Product Group helps to identify reuse of products and existing 

knowledge.  This could include current products, the designs ability to become a platform 

or family based product, and reuse of existing information.  The Product Structure 

identifies aspects about: part count, product structure, and the assembly sequence.  The 

Component Design identifies processes related to: manufacturing, assembly, joining, 

insertion, and fastening.  The method uses a combination of workspaces that contain 

knowledge and data stored in different expert systems.  The method is implemented 

through a computer program that allows the designer to consider all aspects throughout 

the design process.  The program has windows for the assembly sequence, structure 

builder, and a CAD Solid Modeler. [3]  The DFA Sandpit GUI can be seen in Figure 2.1. 
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Figure 2.1: DFA Sandpit GUI [42] 

Overall the DFA Sandpit improves the Lucas method by modifying it so that it 

can be applied early in the design process.  The DFA Sandpit is also effectively 

implemented through a solid modeling system which: accepts the user inputs, manages 

the required inputs, provides guidance as needed, and provides comparison tools to 

evaluate the methods based on DFA.  It guides the designer towards a more effective 

design with respect to assembly by asking the designer questions and providing windows 

with design suggestions as needed.  The DFA Sandpit reduces the amount of information 

inputs required from the user which makes it more user friendly. 

Even with all of the improvements, the DFA Sandpit still has its issues.  The 

original focus was to reduce the amount and types of inputs required by the user by 

implementing the Lucas method through solid modeling systems.  As research continued 

the goal shifted towards developing a proactive DFA method which requires a broader 
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range of user inputs to complete the analysis.  Even if the DFA Sandpit does not require 

more information from the user to complete a more detailed analysis, the analysis covers 

a broader range of design issues which could distract the designer from the true goal of 

designing a working product.  For example, while using the DFA Sandpit on one part or 

assembly, the user may have four windows open on the GUI at once: Product 

Structure/Function, Assembly Sequence, 3D CAD Modeler, and Cost Analysis windows.  

Using the DFA Sandpit may hide some of the volume of information required to 

complete the analysis, but the user will still have to interpret the volume of results 

required to use the analysis. 

2.3 Development and Extension of the VIRAD Method 

To evaluate a product early in the design process with regards to assembly and 

disassembly, a Virtual Assembly and Disassembly (VIRAD) system was developed [43].  

This system can be integrated into CAD/CAM systems to help designers consider 

manufacturing and de-manufacturing issues.  The method is implemented using a 

hierarchical work cell model called the Generic Assembly and Disassembly (GENAD) 

work cell that represent the production system.  The GENAD model represents the 

variety of assembly operations using a Structured Assembly Coding System (SACS).  

The SACS code assigns a cost to each assembly operation so that once completed the 

method can predict the assembly/disassembly cost.  The GENAD model based on the 

SACS code forms the base of the VIRAD model.[43] 

The implementation of this method requires three steps to be completed for a 

given product:  the binary part-merging tree must be extracted from solid-modeling data, 
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the handlers required for mating the parts together must be assigned to each part (based 

on SACS code), and finally the assembly instructions for the different configurations 

must be generated [43].  It is unclear as to how much of this method is automated based 

on the publication but it appears that only the first step (extraction of binary part-merging 

tree) is automated [43].  This means that the user still has to complete at least part of the 

analysis manually by performing the second step (assigning handler based SACS code) 

and third step (generation of assembly instructions). 

2.4 Development and Extension of the Expert System for Automatic DFA 

Expert or knowledge based systems are programs that use databases of stored 

human knowledge in the form of rules to solve problems that traditionally require human 

reasoning [44].  The Expert System for Automatic DFA is an expert based tool that 

requires limited user inputs to complete the analysis in an attempt to address the issues 

with existing DFA methods [31].  Existing DFA methods improve the product 

development time but they are static, which means that modifying them to consider other 

DFA aspects can be difficult.  To solve this issue, the Expert DFA System does not use 

one large expert system but instead uses four separate expert sub systems that use 

expandable knowledge bases.  These expandable knowledge bases can be changed so that 

improvements or modifications to the method can be implemented without developing an 

entire new system [31].  The four expert sub systems and their functionality are listed in 

Table 2.3. 
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Table 2.3: Four expert sub systems that make up the Expert DFA System [31] 

Expert Sub System Functionality 

CAD expert 
Extracts geometric and assembly information from CAD 

drawings 

Automated assembly 

expert 

Determines if automatic assembly is feasible using knowledge 

base system populated based on literature reviews, handbooks, 

and assembly experts 

Manual assembly 

expert 

Simplifies automated assembly expert results and interprets 

them to represent manual assembly operations 

Design analysis 

expert 

Uses knowledge base to determines assembly: cost, time, 

problems, suitable assembly techniques, and makes design 

recommendations 
 

The Expert DFA tool uses a separate GUI for each of the expert sub systems so 

that the user can view one, or up to all four GUIs as needed.  Determining the exact 

number of user inputs required by this method is difficult, but some form of user 

interaction and inputs are required with all four expert systems [31].  Two of the user 

inputs required by this method are:  product specifications (production quantity / volume) 

and the user must specify which handling device should be used on a given part. 

The Expert System for Automatic DFA solves many DFA issues by reducing the 

amount of information required by the user to complete the analysis.  The presentation of 

the method seems to be nearly automated, extracting most of the required information 

from solid modeling drawings.  This method is said to be a concurrent DFA tool which 

can be applied early in the design process and used throughout to improve the designs 

with respect to assembly. 

The presented Expert DFA System uses key technologies (expandable knowledge 

base, artificial intelligence, etc.) to provide a robust method that solves many of the 

current DFA issues [31].  Even though it solves many of the issues, some user inputs are 
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required which means that it is only a semi-automated method.  It is also an expert based 

system that uses some rule based suggestions so its overall effectiveness will be 

determined by the size of the knowledge base.  Upon contacting the corresponding 

author, no commercially available version of the Expert DFA System is available and the 

research on the system ended with the graduation of one of the primary authors. 

2.5 Summary of DFA Automation Attempts 

The methods presented in the previous sections all result in a computer based 

version of an original or modified DFA.  These methods, their level of automation, and 

what prevented their automation are summarized in Table 2.4. 

Table 2.4:  Success of previous DFA automation attempts 

DFA Method Level of Automation Automation Prevented By: 

Boothroyd DFMA 

Software 
Manual Subjective User Inputs 

Product Architecture Based 

Conceptual DFA 
Manual Subjective User Inputs 

Fuzzy DFA Semi-Automated Subjective User Inputs 

Lucas DFA Method Manual Subjective User Inputs 

DFA Sandpit Semi-Automated Subjective User Inputs 

VIRAD Method Semi-Automated Subjective User Inputs 

Expert System for 

Automatic DFA 
Semi-Automated Subjective User Inputs 

 

All of these methods improve DFA analyses by reducing the input information 

required by the user, but all of them still require some inputs from the user.  Since the 

methods still require some user inputs they are at best semi-automated DFA methods so 

they still have room for improvements. 
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The results of this literature review identify the need for a fully automated 

assembly time prediction method which is provided by the developed method covered in 

this thesis.  To develop this new assembly time prediction method, several research 

questions are identified for investigation.  These research questions and their hypotheses 

are explained in Chapter 3.   and specifically addressed in Chapter 4.  , Chapter 5.  , and 

Chapter 6.  . 
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CHAPTER 3.  RESEARCH QUESTIONS 

The goal of this research is to address the major issues of previous DFA methods, 

such as subjectivity, tediousness, and analysis time, by automating an assembly time 

prediction tool.  The tediousness of the methods comes from the amount of time and the 

dullness of the tasks required by the analysis.  As discussed in Chapter 2.  , current DFA 

methods are still conducted manually or are at best semi-automated, requiring the user to 

provide at least some inputs to complete the analysis.  The inputs required by these 

analyses are typically subjective information that requires interpretation by the user.  

Providing this subjective information automatically is difficult since it requires the 

development of complex algorithms which have to make assumptions or interpretations 

to complete the analysis [37].  To address this issue and fully automate an assembly time 

prediction tool, a method must be identified or developed that does not require subjective 

information to complete the analysis. 

By automating an assembly time prediction tool to be used within solid modeling 

systems (SolidWorks is used in this research), the user can receive feedback about their 

design quickly and make changes accordingly.  The feedback will be the predicted 

assembly times so that after making changes or modifications to the model, the user can 

determine if the design was improved based on an increase or decrease in the assembly 

time.  To successfully automate this assembly time prediction method, several research 

questions must be addressed.  The rest of this chapter presents these research questions 

and respective hypotheses. 
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The first step in automating an assembly time prediction method is to identify if 

an existing method can be automated.  This method should require limited amounts and 

types of objective information that can be extracted from three-dimensional solid 

modeling software.  By identifying a method that requires no subjective information the 

complex algorithms required to interpret this information can be eliminated.  The benefits 

of automating DFA provide the motivation for the first research question. 

RQ1:   Which existing assembly time prediction method should be selected 

for automation based on the amounts and types of information it 

requires? 
 

Not all DFA methods can be partially or fully automated so in order for this 

research to be successful, an evaluation of existing methods with respect to their 

automation capabilities has to be conducted.  The automation capabilities are determined 

by how many different types of inputs the method requires and how many of these types 

are subjective.  The amount of information is measured by the number of different user 

inputs required to complete the analysis.  To automate a method, a separate algorithm 

will have to be developed for each type of information.  If the information type is 

subjective the complexity of the algorithm increases dramatically.  The evaluation 

conducted will also investigate the general effectiveness of the DFA method which can 

be used to bench mark or identify weaknesses with existing methods.  The results of this 

evaluation should identify an assembly time prediction method that can be easily 

automated; this forms the hypothesis to the first research question. 

RQ1 

Hypothesis:   

An existing assembly time prediction method that requires limited 

amounts of objective user inputs can be identified for automation. 
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The hypothesis to the first research question is based on the review of existing 

DFA methods presented in the first two chapters.  This review identified that no method 

had been currently automated but that the progression of DFA development has been 

towards automation.  Since current DFA development focuses on automation, the 

amounts and types of information required by existing methods will have to be reduced 

or modified so that it can be interpreted using computer algorithms.  By evaluating new 

DFA methods or updated versions of existing methods it is expected that with the recent 

developments one method will stand out for automation.  If an existing method does not 

present itself as being easily automatable then a new method may have to be developed.  

Based on the results from the first research question, if the hypothesis is correct the next 

step would be to automate the identified method.  If the hypothesis is not correct then a 

new method will have to be developed that only requires objective information before it 

can be automated. 

Once a method that requires only objective information inputs to complete the 

analysis has been identified, the review in Chapter 2.   identifies that to automate a 

method, the information required to complete the analysis must be extracted from an 

external source.  Before the selected method can be automated, an external source that 

can provide the required inputs must be identified.  If an external source cannot be 

identified then another method will have to be selected. 

The most common external source identified for extracting the information 

required to complete an analysis is two-dimensional or three-dimensional solid modeling 

software [3].  If the analysis inputs can be extracted from solid modeling software then an 
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external information source has been identified.  If the information cannot be extracted 

then another source must be identified, the required information has to be modified so 

that it can be extracted from solid modeling software, or another DFA method must be 

selected for automation. 

This research intends to automate the identified method by providing the required 

analysis inputs using information extracted from three-dimensional solid modeling 

software.  If the information cannot be extracted or interpreted to provide the required 

inputs, an alternate method will be selected.  The extraction of information inputs from 

solid modeling software to complete the analysis forms the basis of the second research 

question. 

RQ2:   Can the identified assembly time prediction method be automated so 

that it predicts an assembly time using information extracted from 3D 

solid modeling software? 
 

The results from the first research question identified a method that only requires 

objective information but just because the method requires objective information does not 

mean that it can be automated.  The second research question has to determine if this 

information is or is not contained within solid modeling software.  If the information is 

not contained within solid modeling software, then other types of information that are 

contained within the software could possibly be used to replace the original required 

information. 

The focus of research question two is on identifying the types of information 

required by the method and then determining how that information can be extracted or 

interpreted from information within the 3D solid modeling software.  The difficulty of 
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this research question is based on the amounts and types of information required by the 

method identified by research question one.  As the types of information required by the 

analysis increases, so does the amount and types of information that have to be extracted 

from a solid modeling software. 

RQ2 

Hypothesis:  

The identified assembly time prediction method can be automated so that 

it predicts an assembly time using only information extracted from 3D 

solid modeling software. 

The hypothesis for the second research question is based on the large quantity and 

variety of information that is currently stored within solid modeling software.  If the 

information from the identified method is objective, it should be explicitly or implicitly 

available within solid modeling software.  The challenge comes from identifying what 

information contained within the software should be used, and how to use it. 

If the hypothesis to the second research question is correct then an assembly time 

prediction method would have been successfully automated.  To determine if the 

automated assembly time prediction method solves the current DFA issues then it must 

be evaluated based on each issue which motivates the third research question. 

RQ3:   Does the automated method address the issues that the previous 

methods have:  time consuming, repeatability, ease of use? 
 

The automated assembly time prediction tool will be analyzed with respect to 

each identified DFA issue listed in Table 1.3 to determine if it addresses the issue or not.  

The automated tool will address the issue, partially address the issue, or not address the 

issue and a justification for each answer will be provided.  Along with specifically 
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addressing each DFA issue, the third research question will also be evaluated based on 

the DFA evaluation presented for the first research question. 

RQ3 

Hypothesis:   

The automated method addresses the issues that current DFA methods 

have. 

The hypothesis to the third research question is based on the existing DFA issues 

identified in Table 1.3.  The majority of the issues that existing DFA methods have would 

be addressed if any of the methods were automated.  For example if a method is tedious 

and requires extensive user inputs to complete the analysis.  If the method is automated 

then the user no longer has to provide inputs to the method to complete the analysis 

completely addressing the issue.  If the hypothesis to the third research question is correct 

then an automated assembly time prediction method will successfully address the issues 

of current DFA methods.  These three research questions are specifically addressed in the 

following chapters. 
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CHAPTER 4.  CAN A DFA METHOD BE IDENTIFIED FOR AUTOMATION? 

The literature reviewed in Chapter 1.   and Chapter 2.   cover a variety of different 

DFA methods, many of which are semi-automated.  These research efforts focused on 

developing automated DFA methods, but full automation was prevented since the 

methods require at least some subjective information.  To develop a truly automated 

assembly time prediction method, a method that requires minimal amounts and types of 

subjective information must be identified.  This can be accomplished by answering the 

first research question addressed by this thesis; which existing assembly time prediction 

method should be selected for automation based on the amounts and types of information 

it requires? 

To answer this research question, the rest of this chapter focuses on evaluating 

two DFA methods, Boothroyd and Dewhurst’s Design for Manufacturing and Assembly 

(DFMA) software and the Mathieson-Summers connective-complexity algorithm [1].  A 

brief overview of the Boothroyd DFMA software was presented in Section 2.1.1, but 

before it can be evaluated, both the DFMA software and the connective-complexity 

method are presented in detail within this chapter.  The DFA evaluation discussed below 

completely analyses the methods including aspects that do and do not directly relate to 

DFA automation.  This complete evaluation is presented to understand the strengths and 

weakness of the methods, not just the aspects of the method that relate to DFA 

automation.  Even though it is a complete evaluation, it does focus on the amount of 

information required from the designer to complete the analysis and the subjectivity of 
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this information.  These aspects of the evaluation can then be used to determine which 

method should be selected for automation. 

4.1 Overview of DFA Evaluation 

To effectively benchmark and improve DFA methods they need to be evaluated to 

identify their strengths and weaknesses so that future research and development can focus 

on improving their critical needs.  By conducting a DFA evaluation, the general 

effectiveness of a method and its automatibility can be determined.  Based on the variety 

of methods reviewed in Chapter 1.   and Chapter 2.  , two methods were chosen for this 

evaluation.  The Boothroyd Dewhurst Design for manufacture and assembly (DFMA) 

method was chosen for evaluation based on its extensive use in industry.  The second 

method that was chosen for the evaluation was the Mathieson-Summers connective-

complexity metric DFA method since the original publication discusses its limited 

amounts and types of required user inputs. 

The DFMA software developed by Boothroyd Dewhurst Inc. requires the user to 

provide specific information about the product as an assembly, the sub-assemblies of the 

product, and the individual parts of the product.  The user specifies information used to 

apply part count minimization rules and different information used to determine the 

assembly time of each part.  To determine the assembly time of the part, questions 

regarding the size, assembly orientation, handling difficulties, and insertion difficulties 

are answered [8]. 

The Mathieson-Summers connective-complexity metric method predicts assembly 

time using only the topological connections between parts within assemblies.  To do this 
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each part is evaluated by determining what other parts it is connected to and how they are 

connected.  The specified architecture is then represented in bi-partite graphs and the 

connective complexity of the architecture is calculated.  The complexity information is 

then used to predict the assembly time of the product [6]. 

Both the Boothroyd Dewhurst and the Mathieson-Summers connective-

complexity metric methods require different amounts and different types of information 

to be specified by the user to complete the DFA analysis.  Three different consumer 

products are analyzed with each method and the information requirements and results are 

evaluated.  The results from this evaluation and comparison can be used to benchmark 

the two methods and to identify areas for potential improvement.  The results will also 

determine which method should be automated by comparing the amounts and types of 

user inputs required by each method. 

4.2 Boothroyd and Dewhurst method 

The Boothroyd Dewhurst DFA method has two main sections of the analysis:  

determining the theoretical minimum number of parts and determining assembly times 

and costs.  The theoretical minimum number of parts is used to identify parts that can be 

eliminated from the assembly.  These are often fasteners, fittings, or parts that have 

multiple instances.  The theoretical minimum number of parts is determined first by 

answering three questions: 

1. Does the part move relative to the other parts during the operation of the 

product? 
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2. Does the material of the part have to be different from the other parts within the 

assembly? 

3. Does the part have to be separated so that other parts can be assembled or 

disassembled? 

If the answer to any of these questions is yes, then the part is not a candidate for 

elimination and the minimum number of this part has already been achieved.  If the 

answers to all three questions is “no” then the part could theoretically be eliminated [8].  

This is the section of the analysis that suggests design improvements to the user focusing 

primarily on eliminating or reducing the number of excessive parts.  One of the results 

presented to the user during this section of the analysis is the design efficiency which 

shows the user how efficient the product is with respect to design for assembly.  This 

design efficiency is determined by comparing the number of parts included in the original 

design and the theoretical minimum number of parts.  This gives the designer one way of 

documenting the improvements that a product undergoes from pre to post DFA analysis. 

The second part of the Boothroyd Dewhurst design for assembly analysis focuses 

on estimating an assembly time and assembly cost.  This is achieved by determining:  the 

size, orientation/symmetry, the handling difficulties, and the insertion difficulties of the 

part.  Each area requires the designer to choose from several options to determine the 

correct assembly time of the part.  The estimated assembly time can be used to compare 

the assembly time of a suggested redesign to the current design. 

The original table based design for assembly method is implemented through a 

software package that guides designers through the analysis [8].  The software makes the 
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analysis less demanding by eliminating the need for the user to manually collect and 

perform calculations.  The software has been effectively used to analyze products for 

assembly improvements as well as estimating assembly times [8]. 

4.3 DFA Connectivity Complexity Metrics Method 

The connective-complexity metrics method calculates the complexity of the part 

connections within an assembly, mapping the results to previously predicted assembly 

times based on the Boothroyd Dewhurst DFA tables [6]. Thus, the Mathieson-Summers 

connective-complexity tool is based on the same empirical data on which the Boothroyd 

Dewhurst method is based.  The key difference is not the source of historical trends, but 

the usability of the method from the perspective of the engineer that is running the design 

for assembly analysis.  

Complexity metrics can be used to create surrogate models of engineering design 

representations that capture knowledge not explicitly encoded in the models [6,45,46].  

These graphs are used to track similarities so that relationships or trends between 

properties can be developed [47,48].  The connective-complexity tool is used to map 

structural graph properties of the assembly architectures to established assembly times.  

A historical regression model is then created to predict future assembly times on different 

architectures.  It should be noted that use of the historical regression model will be 

limited by the types of products used for the regression training.  Using this method on 

products whose connective-complexity does not fall within the regression training set 

may yield varying results since a product’s complexity is partially determined by its type.  
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The previously established assembly times that were used for this model are derived from 

DFA analysis on ten products using Boothroyd Dewhurst’s DFA manual tables [6]. 

The system architecture used to identify a trend between it and assembly time is 

developed by identifying connections between system elements and representing them in 

a bi-partite graph.  The bi-partite graph is defined by two independent sets, the elements 

(components or parts) within the system and the relationships (connections or contact) 

between the elements.  This graph is then used to determine three system properties that 

were found to be predictors for assembly time:  path length, entity count, and path length 

density [6,45].  A function of these three measures is used to create the surrogate 

connective-complexity model for assembly time.  The results were within 20% of the 

original assembly times predicted by the Boothroyd Dewhurst tables, which is considered 

acceptable for use in early stages of engineering design if the cost of estimation is 

reduced.  More information on the development of this method can be found in [6]. 

To use the Mathieson-Summers connective-complexity method the first step is to 

build the assembly bi-partite graph.  Every part in the assembly is captured, even if the 

parts are repeated within the assembly.  The type of connection between each part set is 

defined using one of four general types of connections:  surface contact, fasteners, 

snap/press/interference fits, and other connections.  For example, a fastening relationship 

is defined when a part is used to hold/secure other parts (a nut and bolt used to hold two 

plates together).  Details and examples of the other types of contacts or connections can 

be found in [6].  

4.4 Evaluation of Methods 
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To evaluate the two different DFA methods a full design for assembly analysis of 

three consumer products is done.  A Black & Decker One Touch Chopper, a Black and 

Decker cordless drill, and a RIVAL can opener were chosen for the analysis because they 

are all similar in product type.  These three products are commercially available, have 

part counts less than fifty, are low cost, and are mature products, Figure 4.1. 

 
Figure 4.1: (a) One Touch Copper, (b) Black & Decker Cordless Drill, (c) RIVAL 

Can Opener 

 

These products were disassembled and the DFA analysis was conducted during 

the reassembly.  It should be noted that the analysis done in this exercise is for reverse 

engineering instead of forward design.  The conclusions on effectiveness should be 

tempered when considering the use of the DFA methods to assist designers in generative 

forward design problem scenarios.  As the analysis was being conducted the following 

information was recorded to evaluate each method: 

 The approximate time required to complete the analysis 

 The predicted assembly times for each product 

 The amounts and types of information required by the user to complete the 

analysis 

 The method’s repeatability/subjectivity  

a. b. c. 
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 The method’s features for redesign support  

Since the time to complete the analysis is approximate it has a general scale that 

determines a designer’s level of satisfaction with the amount of time required to complete 

the analysis.  A high level of satisfaction would have an analysis time in measured in 

minutes because it would give the user quick results, a medium level of satisfaction in 

hours, and a low level of satisfaction in days.  The comparison between the predicted 

assembly times is a relative one since the connective-complexity DFA times are based on 

a regression analysis using assembly times from the Boothroyd Dewhurst original manual 

tables.  This method has been extensively used in industry, so the assembly times it 

predicts are assumed to be close to the true values and are used as the baseline datum.  

The different amounts and types of information required will focus on identifying the 

total number of possible questions per part and whether these questions are subjective or 

objective.  The repeatability of each method is then determined by the percentage of 

subjective questions to the total questions required. Finally, the features that each method 

provides to support redesigns to improve assembly are identified.  The evaluation 

criterion results for each method are discussed in their individual sections and they are 

summarized again in the comparison section. 

4.4.1 Evaluation of Boothroyd & Dewhurst Software 

Conducting the DFA analysis using Boothroyd Dewhurst DFMA software 

requires the user to develop the product structure of a desired assembly by answering a 

series of questions.  The software uses this information, a mix of objective and subjective 



 47 

inputs, to automatically estimate the assembly time for the specified product structure.  

The typical DFMA graphical user interface (GUI) for a subassembly of the drill is shown 

in Figure 4.2.  The DFA analysis is performed with Boothroyd Dewhurst Inc.’s DFMA 

software version 9.4. 

 

Figure 4.2: DFMA Software Graphical User Interface 

The information input by the user as answers to DFA questions include a broad 

spectrum of data related to symmetry, minimum part criteria, handling difficulties, 

operation characteristics, operations (e.g. apply grease or not, soldering, and adhesive 

operations), labor rate, and envelope size.  To build the product structure in the software 

the user needs to: have a thorough knowledge about the product, operations required 
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during assembly, and have sufficient expertise to use the software.  If the user is new to 

the software, the user manual and built in help file can be used for navigation and 

clarification.  This help file is useful for obtaining clarifications on many of the DFA 

questions but it does leave some ambiguous instances where the user has to make a 

decision.  For example, the four bushings from the Black and Decker chopper assembly 

which are inserted into the product’s base structure are semi flexible parts.  According to 

the DFMA software help file, these parts can be “flexible” because they deform when 

pressed, but the help file does not tell the user how much force should be applied to see if 

it deforms.  Another issue was that the bushing’s flexibility offered no difficulty for 

assembly which was a mild press fit; therefore it may or may not be considered rigid. 

Conducting the DFA analysis using the DFMA software requires many 

information inputs from the user.  To conduct the analysis on one part using the software 

eight different areas are evaluated by the user.  The user determines if these areas are 

applicable to the part, specifically the handling and insertion difficulties.  The eight areas, 

the number of questions per area, the number of subjective questions from each area, and 

the percentage of subjectivity in each area are found in Table 4.1. 
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Table 4.1:  DFMA Software Required User Inputs 

  Inputs required from the user 
Total # of 

Questions 

# Subjective 

Questions 
% Subjective 

1 Product definition 2 0 0.00 

2 Securing method 9 1 11 

3 Minimum part criteria  7 3 43 

4 Envelope dimensions 3 0 0.00 

5 Insertion & Orientation Symmetry 6 0 0.00 

6 Handling difficulties  12 6 50.00 

7 Insertion difficulties  9 6 67 

8 Fetching distance 1 0 0.00 

  Total  49 16 33 
 

During the assembly analysis, the user answers 49 or more questions to complete 

the analysis for one part.  The cognitive workload on answering these questions is 

reduced through the software interface and the use of icons and keywords.  This allows 

the user to quickly skim the questions and determine which ones apply to the part being 

analyzed.  This is the number of possible questions that the user has to evaluate per part, 

not per assembly so the amount of information required by the user grows quickly with 

the complexity of the product. 

Answering these questions can be tedious and time consuming while still yielding 

inconsistent results because sixteen of the forty nine queries are based on subjective 

information or the designer’s opinion.  This means that one third (33%) of the total 

analysis is based on subjective information.  Different designers, when answering the 

subjective questions, may answer in different ways, resulting in different time estimates, 

thereby reducing the repeatability and confidence of the method. 
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4.4.2 DFMA software subjective information 

This section focuses on identifying the subjective information required by the user 

to conduct the DFA analysis using the DFMA software.  As each area of subjective 

information is identified examples of this information are given. 

4.4.2.1 Handling difficulties 

When determining the handling difficulties, the designer is asked to assign 

“penalties”.  This subjectivity is mitigated through the use of example parts for different 

scenarios, as presented through the software.  This is limited to a small set of general, 

non-specific examples.  An example of the subjectivity of the handling difficulties can be 

seen in the drive gear sub assembly shown in Figure 4.3.  The handling difficulties for 

this sub assembly were specified as “flexible” and “two hands.”  This sub assembly has 

several small parts and once they are assembled they have to be held together using two 

hands.  The other handling difficulties of the sub assembly could be “difficult to grasp” 

because the parts in the assembly are small.  Alternatively, the sub assembly could be 

considered “flexible” because the sub assembly is not fully constrained.  The user then 

has to choose which one is more appropriate and “flexible” was eventually chosen. 
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`  

Figure 4.3: Drive gear sub assembly 

An example of the subjective handling difficulties tangling, severe tangling, and 

flexible can be found in the switch pin sub assembly of the Rival Can Opener shown in 

Figure 4.4.  The handling difficulties chosen for this sub assembly were “severe tangle” 

and “flexible”.  One of these parts is a spring which makes handling difficult due to 

tangling.  If the user has to remove one spring from a box of springs then it may require 

them to use two hands to separate the springs giving it the “tangling” penalty.  In some 

cases designers may not consider tangling as a handling difficulty if it is easy for them to 

hold the spring or remove the spring from a box.  The presence of the spring also allows 

the sub assembly parts to move relative to one another making it “flexible.” 

Shaft 

Drive Gear 

Ref. scale 

Ball Bushing 
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Figure 4.4: Switch pin sub assembly 

The assessment of the sub assembly being flexible is subjective because 

flexibility cannot be measured.  It is left up to the user’s judgment to decide if the 

movement of the assembly justifies a penalty of “flexible” or not.  Some users may 

neglect relative motion of the parts since it is a relatively small amount of movement. 

Designers experiencing easy assembly and little assembly time may not consider 

the selection of certain handling difficulties while other designers experiencing 

difficulties may consider multiple handling difficulties.  These types of decisions depend 

on their perception of the handling difficulties that they experienced during assembly of 

the product. 

4.4.2.2 Insertion difficulties 

Another aspect of the DFMA software that can be subjective is determining the 

insertion difficulties of parts and assemblies.  The subjectivity of the insertion difficulties 

Ref. scale Plain washer 

Spring 

Switch pin 
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comes from determining when and to what extent these difficulties apply.  If the answer 

is not clear the user does not decide what insertion difficulty is correct but instead which 

one they think is more appropriate. 

An example of the subjectivity of choosing insertion difficulties is found in the 

drill’s motor and switch sub assembly shown in Figure 4.5.  This sub assembly was given 

insertion difficulties of “align” and “resist.”  The alignment difficulties came from trying 

to locate several parts at once that were flexible connected to each other by wires.  At one 

end, the battery pack has to be located and at the other end the motor has to be located.  

These alignment issues make selecting “align” as an insertion difficulty less subjective 

since they are easily identified.  One issue with these alignment issues is that they can 

cause insertion resistance if every part is not exactly aligned.  This resistance becomes 

subjective because it may only be present one out of five times meaning that one designer 

may include it in the analysis and another may not. 

 

Figure 4.5: Motor and switch sub assembly 
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An example of subjective insertion difficulties “access” and “resistance” can be 

found where the switch pin sub assembly from Figure 4.4 is inserted into the housing 

shown in Figure 4.6.  This “access” difficulty is present because the designer has to hold 

the spring down, and then insert the assembly at an angle so it goes through a hole in the 

housing.  The “resist” difficulty comes from the designer having to push the spring 

against the housing before the pin can be pushed into place.  The subjectivity of these 

difficulties in this example comes from the ease at which the designer can insert the 

assembly.  A designer with small fingers experienced little insertion difficulties where a 

designer with larger fingers experienced significant insertion difficulties.  These two 

different points of views will result in different insertion difficulties being specified in the 

analysis. 

 

Figure 4.6: Switch pin sub assembly inserted into 

housing  

During the assembly of the can opener top assembly shown in Figure 4.7 an 

insertion difficulty of resist was specified.  While tightening the screw, a spring on the 

other side caused insertion resistance.  Designers may or may not specify resistance 

depending on their perception of the difficulty.  The switch pin sub assembly in Figure 

Location of switch 

pin sub assembly 

Front housing 

Ref scale 
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4.7 is flexible, inserting it from the top and tightening the screw through the metal-plastic 

sub assembly.  This is difficult if the bottom part is not aligned with the top sub 

assembly. Since the top sub assembly is flexible it is difficult to keep it in the same 

position because it needs continuous pressing from above.  The small screw size and the 

varying resistance experienced also add to the insertion difficulties experienced by the 

designer.  If one designer is able to tighten the screw easily they will not face any 

alignment or resistance issues whereas, for those who experience difficulties, they will 

consider selecting these as insertion penalties. 

 

Figure 4.7: Can opener top assembly 

4.4.2.3 Wiring Harness Operation 

Another type of subjective information included in the DFMA software comes 

from the wire harness specifications.  The DFMA software includes methods that can be 

used to conduct DFA on wires, wire connectors, and other aspects involved with wire 

harness assemblies.  This information allows the assembly labor time to be accurately 

estimated but it also adds another area of subjective information.  Several different 

features have been included in the software to accommodate assembly issues regarding 
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wiring.  The two main areas are specifying electrical securing methods or specifying an 

assortment of wiring operations that can be chosen.  The securing method determines that 

the part is going to be secured immediately by that method.  It gives the designer options 

of choosing from thirteen specific electrical operation characteristics like a standard 

electrical plug to secure the part.  The wiring operations list lets the designer choose 

operations like wire preparation, wire assembly, wire installation, and more that can be 

applied to parts and assemblies. 

 

Figure 4.8: Quick wire connections from switch to 

battery pack within motor & switch sub assembly 

An example of subjective wire information can be found in the drill’s motor and 

switch sub-assembly and the wire connections within it shown in Figure 4.8.  The issue 

with the wiring assembly information comes from the fact that it is hard to determine if 

the switch’s securing method should be secured later or if it should be documented as 

electrical securing.  If it is secured later then wiring operations could be specified 

separately to connect it to the battery pack and the motor.  If it is secured immediately 

using the electrical securing method, operation characteristics can be selected to account 

for the assembly operations.  Since the switch has five quick wire connections the user 

has to be delicate in how the operations are specified because if the chosen penalty is 
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incorrect the error will compound.  One of the wiring harness operations that can be 

chosen under wire assembly is “wire end/lug insertion.”  This lets the designer choose 

from three connector pin rows, specify the repeat count, specify lug orientation 

requirement, and ease of insertion.  Determining if the connector is easy or difficult to 

insert is subjective information that affects the assembly time and must be determined by 

the designer. 

4.4.2.4 Minimum part criterion 

The minimum part criterion does not directly affect the predicted assembly time 

but it is the primary method used to identify design improvements within the product.  

The information required to identify the minimum part criterion is subjective and requires 

the designer to answer multiple questions to determine it.  The subjectivity of this 

information will not affect the overall initial assembly time but it will affect the re-

design’s predicted assembly time.  A more important issue that occurs since this 

information is subjective is that the designer has to determine the most appropriate 

answer for it to be effective.  This will increases the amount of time the DFA analysis 

takes to conduct. 

 

Figure 4.9: Spacer as a minimum part criterion 

Spacer 
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An example of minimum part criterion subjectivity is shown in the assembly 

analysis on the spacer piece shown in Figure 4.9.  This part is located between the motor 

and the gear on the chuck assembly.  The piece appears to be a spacer to prevent the gear 

on the motor from touching the gear on the chuck so the minimum part criteria could be 

based on “material” where the part must theoretically separate from the others.  Another 

way of looking at this part is that it is just a spacer not serving a special task and that 

“other” could be chosen for its minimum part criterion which would make it a candidate 

for elimination.  If the person conducting the assembly analysis is not the designer they 

will have to find the designer to determine if that part could be eliminated or not and 

why.  This is the case with many of the parts that the minimum part criterion may identify 

as possible candidates for elimination. 

4.4.3 DFMA evaluation criterion summary 

The results from the DFMA evaluation based on the five criteria are summarized 

in Table 4.2.  The DFMA requires extensive amounts and types of user imputed 

information which slows down the analysis time and reduces its repeatability, 

consistency, and accuracy.  Even though the extensive amounts of information required 

inhibit the analysis process as seen by the designer, it also provides critical information 

about the product that would otherwise be overlooked.  This information provides the 

user with validated assembly times and eleven areas to focus redesign efforts both of 

which are critical for a DFA method to be effective. 



 59 

Table 4.2: DFA evaluation criterion summary 

Evaluation 

Criteria 
Evaluation Results Justification 

Satisfaction with 

analysis time 
Medium 

Not minutes (High)  

but not days (Low)  

Predicted 

assembly times 
Baseline Previously validated results 

Amounts/types 

of information 

8 types,  

49 questions, 16 

subjective 

Requires extensive amounts & 

types of user inputs 

Repeatability/ 

subjectivity 
33% Subjective 

Reduces repeatability and 

accuracy 

# of Features for 

redesigns 
11 

Identifies eleven types of 

issues to focus on 
 

4.5 Evaluation of Connectivity Complexity Metric DFA Method 

Two types of information are required from the user to complete the analysis 

using the connective-complexity DFA method.  The user must evaluate each part based 

on which parts it is connected to and the type of connections between those parts.  These 

two types of inputs are listed in Table 4.3 along with the number of questions that have to 

be answered per type and how many of those questions are subjective. 

Table 4.3: Connectivity required user inputs 

  
Inputs required 

from the user 

Total # of 

Questions 

# Subjective 

Questions 
% Subjective 

1 
What parts is it 

connected to 
1 0 

0 

2 
What type of 

connection 
4 0 0 

 
Total  5 0 0 

 

The number of basic questions required by this method is five and none of them 

are subjective, (Table 4.3).  Determining which parts a part is connected to can be 

determined quickly and objectively.  All the user has to ask themselves is “Does the part 
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touch the part next to it within the assembly?”  The answer to this question is “yes” or 

“no” which minimizes user miss-interpretation.  Once a connection between parts has 

been identified the user has to specify the type of connection.  To do this the user 

determines if the connection is: a fastening instance, a snap/interference/press fit 

instance, a shaft instance, a surface instance, or another type of connection instance.  In 

most cases determining the connection instance is obvious since they are separated into 

distinct types of connections.  For example shafts are easy to identify so if a part connects 

to it then it is part of the shaft instance.  If the part is used to fasten or secure another part 

then a fastening instance is chosen as the connection.  In some cases the user may not be 

able to distinguish which type of connection instance is most appropriate but as long as 

the user chooses a similar connection type that will have the same path length the results 

will not be affected. 

This method requires the user to identify that a connection instance between parts 

exists and does not typically distinguish between the types of connection instances.  This 

is because the number of parts connected by that one instance increases the path length in 

the bi-partite graph.  Two parts connected by a snap fit instance and two parts connected 

by a surface instance will have the same path length so there is no distinction between 

these instances within the algorithm.  In the case of a shaft instance or a bolting instance 

where more than two parts are connected through one instance there is distinction 

between these types but only from instances with different path lengths.  An example of a 

shaft instance and its bi-partite graph can be seen in Figure 4.10. 
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(a)Bi-partite graph for a shaft instance within the drill 

 

 (b) shaft and the parts connected within the sub-assembly 

Figure 4.10: Shaft Connectedness 

The shaft instance in Figure 4.10 is from the drive gear sub assembly of the drill.  

This sub assembly connects the gear on the motor to the gear that drives the chuck 

assembly.  Looking at the parts of the sub assembly it is easy for the user to identify that 

a shaft is the common part that all of the other parts are connected to.  This signifies that 

a shaft instance is the main connection unifying all of these parts.  All of the connections 

that exist for the parts of this sub assembly are shown in Table 4.4. 

Bush 2 

s1 
g1 

Bush 1 

Shaft Instance 

Ref. scale 

Drive gear (g1) 

Ball bushing (bush2) 

Shaft (s1) 

Shaft 

Instance 

Ball bushing (bush1) 
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Table 4.4: Drive gear sub assembly connections 

Parts Instance Description 

bush1 g1 s1 bush2 
Shaft 

Instance 

Drive gear assembly shaft 

connections 

bush1 h1 
Surface 

Instance 
Bushing 1 to Bottom Grip 

bush1 h2 
Surface 

Instance 
Bushing 1 to Top Grip 

bush2 h1 
Surface 

Instance 
Bushing 2 to Bottom Grip 

bush2 h2 
Surface 

Instance 
Bushing 2 to Top Grip 

g1 m1 
Surface 

Instance 
Drive gear to motor gear 

g1 cs 
Surface 

Instance 
Drive gear to chuck gear 

s1 h1 
Surface 

Instance 
Shaft to bottom grip 

s1 h2 
Surface 

Instance 
Shaft to top grip 

 

The shaft instance in Figure 4.10 is shown in the first row of Table 4.4.  The other 

rows show the other connections that exist between the parts of this sub assembly.  The 

first four columns, highlighted in red, of this table are the only items that are put into the 

bi-partite excel table that is processed by the Matlab algorithm.  The algorithm does not 

need column five or column six to determine the assembly time.  These extra two 

columns shown in Table 4.4 are included for documentation purposes and user 

readability.  The fifth column shows the instance between the parts and the sixth column 

describes which parts are being connected by that instance. 

The results from the connective-complexity DFA method evaluation based on the 

five criteria are summarized in Table 4.5.  The connective-complexity method requires 

moderate amounts of time to complete the analysis and only requires the user to provide 
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input based on a few different types of objective questions.  This should make the 

analysis repeatable and consistent between users.  The analysis would not be repeatable 

or consistent if the designer overlooked a connection within the product, or specified the 

wrong type of connection which would create a different bi-partite graph resulting in a 

different assembly time.  The predicted assembly times that the method provides have not 

been fully validated so they cannot be accepted as correct.  This method currently does 

not provide the user with features to aid in redesigning the part to improve assembly. 

Table 4.5: Connectivity evaluation criterion summary 

Evaluation 

Criteria 

Evaluation 

Results 
Justification 

Satisfaction with 

analysis time 
Medium 

Not minutes (High Satisfaction)  

but not days (Low satisfaction)  

Predicted assembly 

times 
Not accurate Validation needed 

Amounts/types of 

information 

5 types, 0 

subjective 

Requires few types of objective user 

inputs 

Repeatability/ 

subjectivity 
0% Subjective Repeatable, and consistent 

# of Features for 

redesigns 
0 

Currently provides no redesign 

features 
 

4.6 Comparison of Methods 

The results from the evaluations of each DFA method based on the specified 

criteria are discussed and compared in the following sub sections.  These results from 

these criteria ultimately determine how effective each method is and which one should be 

selected for automation. 
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4.6.1 Comparison of approximate time to use each method 

The approximate time to conduct the DFA analysis using each method was 

evaluated to determine which method could be implemented the fastest.  Note that an 

approximate time was used since the exact time required to conduct each analysis was not 

recorded due to frequent interruptions.  Care should be taken during future studies to 

ensure accurate analysis times are recorded.  Without the exact analysis time, only an 

approximate time to conduct the analysis could be determined and used for comparison.  

After the analyses were conducted on each product using both methods, it was 

determined that the connectivity method could be implemented approximately 25% faster 

than the DFMA software.  This is based off of approximate times since the analyses did 

not always take place in one sitting. Both methods required between 1.5 to 2.5 hours to 

complete the analysis depending on the complexity of the products.  A high level of 

satisfaction would have an analysis time in minutes because it would give the user quick 

results, a medium level in hours, and a low level in days.  Both methods had analysis 

times within hours so a medium level of satisfaction was chosen (Table 4.6).  

Table 4.6: Satisfaction with approximate analysis time  

Evaluation Criteria 
DFMA 

Software 

Connective-

Complexity 

Method 

Satisfaction with 

analysis time 
Medium Medium 

 

Reducing the analysis time for both methods will make them more appealing to 

designers because they will be faster and easier to implement. 
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4.6.2 Comparison of predicted assembly times 

The two DFA methods were compared based on their predicted assembly times to 

determine how close the connective-complexity method’s times were to the DFMA 

times.  This data was gathered from three designers (D1, D2, and D3) who were trained 

on both methods before conducting the assembly analyses on the three products.  This 

comparison includes the designer that conducted the analysis, their respective predicted 

assembly times per product, and the differences between the times (Table 4.7).  The 

DFMA software has been in use since the early 1980’s [32] so its predicted assembly 

times are considered to be accurate and therefore they are the baseline for this 

comparison. 

Table 4.7: DFA comparisons of method effectiveness 

Measures of 

Effectiveness 
Designer 

DFMA 

Software 

Assembly 

Time 

Connectivity  

Assembly 

Time 

Time 

Difference 

% 

Difference 

between 

methods 

B&D Drill 
D1 

D2 

2.42 

2.16 

1.22 

- 
1.20 

50 

44 

B&D Drill with  

chuck assembly  
D1 2.89 1.69 1.21 42 

RIVAL Can  

Opener 
D2 5.49 4.77 0.72 13 

B&D Chopper 

D1 

D2 

D3 

6.40 

5.52 

6.36 

4.18 

4.61 

- 

2.21 

1.34 

2.18 

35 

24 

34 

*All times are in minutes 
 

For all of the DFA analyses on the different products the connective-complexity 

DFA times were substantially lower than the DFMA predicted times.  These times varied 
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considerably where the smallest difference was 13% lower and the largest difference was 

50% lower.  The average of the % differences of the six analyses was 35% lower than the 

DFMA times.  This is substantially higher than the +/- 16% difference originally found in 

the complexity connectivity DFA paper [6].  These significant differences were 

unexpected, so some possible causes are investigated. 

Since the drill has the largest percent difference of 50%, it is the primary area of 

investigation.  The original assembly analysis of the drill assumed the chuck assembly to 

be one pre-assembled part so it was treated as a part during the analysis.  This assumption 

was re-evaluated and both analyses were preformed again separating the chuck assembly 

into individual parts to be assembled as a sub assembly.  This resulted in an even twenty 

eight second predicted assembly time increase with both methods reducing the percent 

difference by 8%.  This shows that the two methods predict similar assembly times for 

certain parts of the drill but there are still significant differences between the two 

methods. 

Another possible source of the discrepancies between the predicted assembly 

times could be because the connective-complexity metric is based off a regression model 

that uses assembly times determined by the original Boothroyd Dewhurst DFA tables.  

The DFMA software has been improved over the years incorporating more features, like 

wiring harness analysis features, to improve the DFA method which were not included in 

the original tables.  Future research could be to identify the cause of the discrepancies 

found in this part of the study. 
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4.6.3 Comparing amounts of required user information 

Both methods require the user to disassemble a product, and then reassemble it to 

conduct the DFA analysis.  Both methods also require the user to go through a set of 

procedures or questions to conduct the DFA analysis but they require different types and 

amounts of information.  The specifics about the types and amounts of information that 

each method requires have been discussed in the previous sections.  The total number of 

questions and the total number of subjective questions from each method are summarized 

in Table 4.8. 

Table 4.8: DFA methods required information summary 

  Method 
Total # of 

Questions 

# Subjective 

Questions 
% Subjective 

1 DFMA Software 49 16 33 

2 Connectivity DFA method 5 0 0.00 
 

The DFMA software requires the user to answer a total of forty nine questions per 

part where sixteen of them are subjective.  The extensive amounts of information 

required by the DFMA software does slow down the analysis time and increase the 

overall subjectivity but they allow for the product to be analyzed in great detail.  The 

connectivity DFA method requires the user to evaluate a total of five questions per part, 

none of which are subjective.  The limited amounts of objective information are 

advantageous with regards to automation and conducting the analysis but it does not 

gather as much detail about the product possibly limiting its overall applications.  Since 

the connective-complexity method requires only objective information it should be 
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repeatable between users.  Also, since the connective-complexity method only requires a 

few types of objective information it should theoretically be completely automatable. 

4.6.4 Comparing repeatability of methods 

The repeatability of each method is measured by comparing the output predicted 

assembly times when the same analysis is conducted by different designers.  The analyses 

of the drill and chopper were conducted by two and three designers respectively using the 

DFMA software.  The designers along with respective assembly times for each product 

can be seen in Table 4.7.  The analysis of the chopper was conducted by two designers 

using the connectivity method, the designers and the respective assembly times can also 

be seen in Table 4.7.  The maximum percent internal differences of the method’s 

assembly time on the respective product are shown in Table 4.9. 

Table 4.9: Repeatability of methods 

Measures of 

Repeatability 

DFMA Internal  

% Difference 

Connectivity Internal % 

Difference 

B&D Drill 11 - 

B&D Chopper 14 9 
 

Based on the comparison of the amounts and types of information required by the 

user to complete each analysis, it was expected that the connectivity would have no 

internal difference.  The connective-complexity method and DFMA software had internal 

differences of 9% and 14% respectively for the chopper analyses.  This shows that the 

connectivity method has a lower percent difference but it doesn’t appear to be significant.  

One possible reason that the connective-complexity method showed repeatability issues 

could be due to the lack of formalized rules. 
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4.6.5 Comparison of methods redesign features 

The two methods were compared based on their redesign features to aid the 

designer in improving their assembly.  This is important because for a DFA method to be 

effective they need to provide the designer with suggestions on how to redesign their 

product to improve its assembly characteristics [21].  The DFMA software has eleven 

redesign features and the connective-complexity DFA method currently provides the user 

with no redesign features, Table 4.10. 

Table 4.10:  Comparison of redesign features 

Evaluation 

Criteria 

DFMA 

Software 

Connective-

Complexity 

Method 

Features for 

redesigns 
11 0 

 

The DFMA software is effective at providing eleven different areas to focus 

designers redesign efforts.  The software identifies the area, the parts that are relative to 

that area, and the amount of assembly time or cost that could be improved by focusing 

their efforts accordingly.  This feature does not always help the designer redesign the part 

but it will identify and prioritize areas for the designer to focus on to improve assembly.  

Currently the connective-complexity DFA method provides no aids to help the designer 

redesign the product to improve assembly. 

4.7 Summary of Evaluation Results 

This chapter evaluated Boothroyd Dewhurst’s DFMA software and a connective-

complexity DFA method based on five criteria.  The results from the evaluations of the 
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two methods are summarized in Table 4.11.  These results can be used to bench mark 

DFA methods and they can be used to identify a method that should be selected for 

automation.  The two criteria that relate specifically to selecting a method for automation 

are the amounts and types of information required to complete the analysis and the 

subjectivity of these inputs.  Since the connective-complexity method satisfies these two 

criteria more effectively it is identified for automation.  The rest of the evaluation 

comparison results are analyzed in the following paragraphs. 

Table 4.11: Comparison summary of two DFA methods 

Evaluation 

Criteria 
DFMA Results 

Connectivity DFA 

results 

Approximate analysis time Medium Medium 

Predicted assembly times Baseline Not accurate 

Amounts/types of information 

8 types, 49 

questions, 16 

subjective 

5 types, 0 subjective 

Repeatability/ subjectivity 33% Subjective 0% Subjective 

# of Features for redesigns 11 0 
 

The DFMA software satisfies all five criteria but does not perform well with the 

required amounts and types of information required by the user and its repeatability.  The 

connective-complexity method does not provide the user with accurate results and does 

not provide the user with features to aid in the redesign to improve assembly. 

The amount and type of information required by the user to conduct the DFA 

analysis using the connectivity method was substantially less in quantity and in 

subjectivity compared to that of the DFMA software.  This suggests that the connective-

complexity method would be more repeatable and consistent than the DFMA software.  

Even if this is the case, until the connective-complexity method can provide the user with 



 71 

accurate results and provide the user with suggestions for redesign it will not be a truly 

effective design for assembly method. 

The results from this evaluation and comparison can be used to identify 

weaknesses in existing DFA methods.  This will allow researchers to focus their efforts 

so that the method in question can reach its full potential.  If this study is going to be 

repeated or used to compare other DFA methods some possible improvements could be 

made.  This research did not implement a full user study to obtain the results which limits 

the effectiveness of the study.  The results from this study indicate that differences 

between these two DFA methods does exist and that a full user study would effectively 

document all benefits and drawbacks of each method including the time to conduct the 

analysis. 

4.8 Identified DFA Method for Automation 

As previously stated, to automate a DFA method one must be identified that does 

not have fundamental flaws like requiring many different types of subjective information 

which makes automation difficult.  To identify this method, research question one was 

addressed: 

RQ1:   Which existing assembly time prediction method should be 

selected for automation based on the amounts and types of 

information it requires? 
 

Based on the evaluation of the Boothroyd Dewhurst DFMA software and the 

Connectivity Complexity method presented in the previous sections, it was determined 

that the hypothesis to the first research question was correct. 
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RQ1 

Hypothesis:   

An existing assembly time prediction method that requires limited 

amounts of objective user inputs can be identified for automation. 
 

The results of the DFA evaluation identify that the connective-connectivity DFA 

method only requires five types of information, all of which are objective.  The objective 

information required to complete the analysis using this method are the physical 

connections between parts.  The identification of the physical connections between parts 

should theoretically be extractable from solid modeling software allowing the method to 

be automated.  The DFA evaluation presented in this chapter successfully answers the 

first research question by comparing two methods and identifying the Connectivity 

Complexity method to be automatable.  To determine if the connective-complexity DFA 

method can be automated the second research question is addressed in the next chapter. 
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CHAPTER 5.  CAN THE IDENTIFIED DFA METHOD BE AUTOMATED? 

Based on the DFA evaluation presented in Chapter 4.  , the connective-complexity 

DFA method was identified for possible automation since it only requires five types of 

information, all of which are objective.  The rest of this chapter is focused on answering 

the second research question; can the identified assembly time prediction method (the 

connective-complexity method) be automated so that it predicts an assembly time using 

information extracted from 3D solid modeling software?  The first step is to determine if 

the information required by the method is stored in solid modeling software explicitly or 

implicitly, Section 5.1 and 5.2.  The second step is to determine how to extract and 

process the explicit or implicit information to complete the analysis, Section 5.3.  The 

third step is to use the extracted information to predict the assembly time, Section 5.4 and 

5.5, and the final step is to evaluate the automation attempt and its effectiveness, Section 

5.6 and 5.7. 

5.1 Automation of Connective-Complexity DFA Method 

Recent work on complexity based assembly time prediction methods has shown 

that assembly times can be predicted using complexity metrics and different types of 

relationship found within products [6,5].  The original work on the connective-

complexity method presented in Chapter 4.   used a regression analysis to relate a 

products physical connection complexity to assembly times.  The advantage of this 

method over existing DFA methods is that the physical connections between parts in an 

assembly can be identified objectively.  The initial results predicted assembly times 
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within +/- 15% of the training times used.  This proved that a products connection 

complexity could be used to determine a products assembly time [6]. 

To improve the accuracy of the Connectivity Complexity method, continuation of 

the original work replaced the linear regression training with Artificial Neural Network 

(ANN) training and applied it to an Automotive OEM assembly instead of consumer 

products [5].  Figure 5.1 shows a flow chart of the continued development of the 

Connectivity Complexity DFA method.  The original work, shown by the top row in 

Figure 5.1, acted as a proof of concept to show that physical connections between parts 

could be used to determine a products assembly time.  The continuation of the work, 

shown in the middle row of Figure 5.1, implemented the ANN training to improve the 

accuracy of the predicted assembly times [5].  The issue with the original regression 

based connectivity method and the neural network based connectivity method is that the 

inputs to complete the analysis, which are the product connection graphs, have to be 

manually generated which is time consuming and not completely repeatable. 

The work presented in this chapter relates to the third version of the connective-

complexity method, which focuses on developing an objective and automated assembly 

time estimation tool. 
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Figure 5.1: Connectivity Complexity DFA development flow chart 

The focus of this chapter is shown in the third step, V3, of Figure 5.1 where the 

ability to automate this method is improved.  During the early development of the 

Connectivity Complexity method it became apparent that part connections within a 

product can be identified early in the design process.  The inter part connections that this 

method requires could be extracted from sketches and 3D solid models, which are 

generated as early as the conceptual design phase giving it the potential to be applied 

throughout the design process [49].  Extracting the connections from 3D assembly 

models would also enable a program to be developed to completely automate this 

method.  The rest of this chapter presents the work towards developing an automated 

Connectivity Complexity assembly time prediction tool. 

5.2 Assembly Model Connection Extraction Tool 

To automate the connectivity complexity method, the creation of the connectivity 

bi-partite tables has to be automated.  The steps to do this are:  identify the types of 

information required by the connectivity method, determine if that information is 
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included in SolidWorks Assembly Models, and extract the information to create the 

tables. 

5.2.1 Information Required for Connectivity Method  

The original Connectivity Complexity DFA method used the complexity of the 

physical connections between parts to determine a given products assembly time.  This 

analysis was completed by identifying what parts a specific part is connected to, creating 

bi-partite tables to represent those connections within the product, applying a custom 

algorithm to determine the complexity of the connections, and then applying the 

complexity metrics to the regression equation to determine the assembly time [6].  This 

means that to automate the original connectivity complexity method, the physical part 

connections would have to be extracted from the assembly models. 

Three-dimensional assembly models contain virtual parts that are arranged in a 

specified way to create a final product.  If assembly models are created correctly they 

should form virtual representations of the actual physical product where the virtual 

connections shown between parts in the CAD software should match those on the 

physical products.  The issue comes from that fact that the virtual connections contained 

within the assembly model may not be explicitly defined and even if they are they may 

not represent the variety of connections required by the connectivity complexity DFA 

method.  The use of both implicit and explicit connections is explored. 
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5.2.2 Use of Implicit Connections for Connectivity Method 

To use the connectivity complexity DFA method, the connections between parts 

in the assembly have to be identified.  The types of part connections are:  surface contact, 

fasteners, snap/press/interference fits, and other connections, such as shaft connections, 

electrical connections, or spring connections [6].  In many cases, these types of 

connections are implicit in an assembly model and could not be determined without 

evaluating the parts on a feature level. 

Take three separate parts for example, Part A, Part B, and Part C, Figure 5.2.  If 

Part A and Part B have through holes and Part C has a circular cross section of the same 

size then they may form a shaft connection as shown in Figure 5.2.  To determine if these 

parts do form a shaft connection the parts location would have to be determined and the 

features compared.  If the hole in Part A aligns with the hole in Part B and the surface 

area of Part C overlaps with the surface area of both holes, then a shaft connection as 

used by the Connectivity Complexity method would be present. 
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Figure 5.2: Part A, Part B, and Part C which could be mated or constrained in a 

variety of ways 

To identify implicit connections, rules on how to identify the connections required 

using feature recognition would have to be developed.  For instance, on a feature level, a 

rule could be developed to use the amount of surface area overlap between two parts to 

identify a surface contact connection.  However, even with an effective set of rules to 

identify the connections it would be computationally expensive to identify the 

connections.  A program would have to iterate through every feature on every part in the 

assembly and compare it to the features on other parts in the assembly. 

Previous work in user defined feature recognition through the use of design 

exemplars can be used to support this activity.  In this work, implicit relationships 

between geometric entities can be extracted, though this could result in redundant 

identification and over constrained entity-relation graphs [50,51].  Ultimately, the design 
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intent may be captured, but other relationships will also be captured, thereby hiding the 

underlying intent. 

5.2.3 Use of Explicit Connections for Mate Based Connectivity Method 

The alternative to using implicit connections is to use the explicit connections 

located in 3D modeling assemblies.  In SolidWorks, mates are used to define the 

relationship between two components within the assembly [52].  These relationships 

determine the parts location and constrain the parts motion (translation and rotation) 

within the assembly.  An effective designer will apply mates to simulate the actual 

constraints that the final product will have.  Since mates define the location of the parts 

within an assembly, they can also be used to identify the connections between parts 

within an assembly. 

Mates use different types of relationships to relate one part to another part based 

on position or orientation.  Some common mates found in SolidWorks assembly models 

can be seen in Table 5.1 [52]. 

Table 5.1: SolidWorks mate types and descriptions 

Mate Type Description 

Coincident Connects two planar faces 

Concentric Aligns the axes of two circular parts 

Distance Specifies a distance between two planar faces 

Parallel Aligns two planar faces to be parallel 

Perpendicular Makes two planar faces perpendicular 

Angle Specifies an angle between two planar faces 

Lock Fixes the parts location 

Advanced 5 advanced mates, ex:  limit mates 

Mechanical 6 mechanical mates, ex:  gear mates 
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Once applied, these mates become explicit connections between the parts within 

an assembly.  Ideally these explicit connections could be directly matched to the 

connections required by the Connectivity Complexity Method so that the method could 

be automated by extracting the mates.  This is not the case since a variety of mating 

configurations could be used to constrain one part.  For example, consider the three parts 

shown in Figure 5.2 described in Section 5.2.2: Part A and Part B which have holes 

extruded through them and Part C which has a shaft like feature.  If Part C is a shaft that 

connects Parts A and B, then a shaft connection would be present.  If Part C is 

constrained to Parts A and B using concentric mates, then the parts’ locations could be 

analyzed to identify a possible shaft connection.  If concentric mates were not used or if 

Part C was constrained to the assembly by other parts, it would required a different 

method to identify the shaft connection. 

Since interpreting the connections required for the Connectivity Complexity 

Method from defined mates would be difficult, an alternative type of connection is 

considered.  The mates themselves form a mate connection between the parts within an 

assembly.  This forms a sub research questions for this chapter; can mate connections, as 

defined in assembly models, be used to predict a products assembly time? 

5.2.4 Mate Based Connections 

The inter part connections required to complete the original connective 

complexity method can be extracted from assembly models on an implicit level (feature 

based) or on an explicit level (mate based).  Both of these methods would require new 

algorithms to relate the implicit or explicit information to the variety of connection types 
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required by the original method.  Since the basic idea of the connectivity method is to 

relate a complexity vector to an assembly time, the inter part connection complexity 

vector could be replaced with another type of complexity vector.  Since mate connections 

are defined within assembly models, this research uses the mate connections to determine 

the complexity vector and then uses artificial neural networks to relate the mate 

complexity to assembly times.  This approach eliminates the need for extra algorithms or 

rules to relate the information within the assembly models to inter part connections, but 

the mating variability between designers may pose a new issue. 

Assembly time estimation using mates may be effected by the designers’ 

approach in creating the assembly model.  The definition of mates may vary between 

designers based on the best practices followed, mates offered by software, expertise, and 

the part geometry itself.  Variation in the use of different mates arises because parts in the 

assembly can be constrained using different combinations of available mates, such as 

using different surfaces for setting up a certain mate.  An example of this variation in 

constraining parts can be seen by referring to Figure 5.2.  Table 5.2 shows two different 

configurations that can be followed to fully constrain the parts in Figure 5.2 and achieve 

the same outcome. 
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Table 5.2:  Mate configurations for Parts A, B, and C 

Parts Configuration 1 Configuration 2 

C and B C shaft concentric with B hole C face right aligned with B face right 

C and B 
C face top coincident with B face 

bottom 

C face top coincident with B face 

bottom 

C and B 
C face right parallel with B face 

right 
C face front aligned with B face front 

B and A B hole concentric with A hole B face right aligned with A face right 

B and A 
B face top coincident with A face 

bottom 

B face top coincident with A face 

bottom 

B and A 
B face right parallel with A face 

right 

B face front aligned with A face 

front 
 

The two mating configurations in Table 5.2 use different approaches to 

accomplish the same goal.  Configuration 1 takes an approach that captures more of the 

designer’s intent by applying mates to similar features on the receiving part.  

Configuration 2 uses only planar and face mates which may not capture some of the 

design intent.  These are only two of the possible mating configurations for a simple 

assembly with only three parts.  As the size of the assembly grows, so will the variability 

of the different mating configurations, which may affect the predicted assembly time. 

Based on the previous success of relating complexity vectors to assembly times, it 

is determined that using the defined mating information within the assembly models is 

the most direct method of predicting assembly times.  This information is already stored 

in the assembly models and no extra interpretation or computation is required to use this 

information.  It is speculated that as the size and variability of the training set grows, the 

mating variability will have less of an effect on the predicted assembly time.  Before 

using mate connections to predict assembly times, the variability of different mating 
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configurations and their effect on the resulting assembly time must be investigated.  

Before these aspects can be considered a tool must be developed to extract the mates 

from solid modeling assemblies, this development is presented in the following section. 

5.3 Mate Extraction SolidWorks Add-in 

This section presents the development of a tool that automatically extracts mates 

from SolidWorks assembly models.  The tool used for extracting mate information from 

assembly models was developed using SolidWorks 2010 API Software Development Kit 

(SDK).  SW is a commercial three dimensional modeling software package which 

provides an intuitive Graphical User Interface (GUI).  The software offers two options to 

develop the SolidWorks API application, macros and add-in programming [52].  Macros 

tend to be an easier way to develop API applications, since they typically depend on the 

users’ actions with the interface.  For example macros can developed to create a slot 

automatically since slots can be created using only GUI controls.  If an API application 

requires information that cannot be extracted from user interface actions, then a separate 

add-in may be required.  This is the case for extracting mate information from 

SolidWorks assembly models.  Both options were considered, but the development of a 

separate add-in is chosen over the use of a basic macro. 

Any programming language that supports Microsoft COM (Component Object 

Model) can be used to build add-ins in SolidWorks [52].  The C++ programming 

language is used in this research based on its easy implementation of COM objects [52], 

the author’s proficiency of coding with this language, and for future extensibility.  The 
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rest of this section briefly describes the algorithm developed to extract the mates from 

assembly models.  The pseudo code for this algorithm is shown in Figure 5.3. 

Get active assembly document  

Get features list from feature manager tree 

If feature = mate list 

Get Mate list from feature list 

For each mate in Mate list 

Get parts connected by mate 

Add parts to graph 

End 

End if 

Figure 5.3: Pseudo-code for Extracting Mate Information  

 

To obtain the mate information from an assembly file, the program traverses 

through the types of features in the feature manager tree.  A screen shot of the 

SolidWorks feature manager design tree for the Black & Decker Drill can be seen in 

Figure 5.4.  This figure labels three main section of the feature manager design tree:  

reference features, parts and sub assemblies, and mates.  Within the main assembly, 

everything in the feature manager design tree can be recognized as an assembly feature.  

Information stored within the sections of the feature manager design tree may include 

annotations, co-ordinate planes, part names, part features, and part constraints. 
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Figure 5.4:  SolidWorks feature manager design tree 

The program traverses through the feature manager tree until it reaches a 

container that has the mate information.  Each mate consists of the name of the mate and 

the names of parts that are constrained by that mate.  For each mate, the names of both 

parents (parts) are retrieved, which indicates the connection between the parts.  The 

names of the connected parts are then stored in a bi-partite table which is currently saved 

as a *.csv file.  This process is iterated until all connections between the parts are 

extracted from the feature manager tree. 
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Once the bi-partite table containing the mate connections found in the assembly 

file is generated, the complexity of the table based graph can be calculated using a 

custom Matlab algorithm.  This complexity vector will be used along with Artificial 

Neural Networks (ANNs) to predict a products assembly time.  Figure 5.5 shows a flow 

diagram of the SW mate extraction add-in, its required inputs, the information processing 

steps, and the assembly time output. 

 

Figure 5.5:  SW mate extraction add-in and information processing 

The mate extraction add-in as shown in this figure generates a mate graph once it 

is given an SW assembly time.  This mate graph that represents the product inter part 
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connections is processed externally from the mate extraction add in.  The external 

processing is preformed using Matlab where custom algorithms are used to generate a 

complexity vector of the mate graph, and use this vector along with previously trained 

ANNs to predict an assembly time.  Before the information processing can be 

accomplished, the ANNs have to be created and trained which is covered in the next 

section. 

5.4 Creation of ANN Training Set 

Before the information extracted from the mate extraction add-in can be used to 

predict an assembly time, the Artificial Neural Networks (ANNs) must be trained.  

Training an ANN requires a large set of inputs and respective target values to effectively 

identify relationships between them.  Once an effective set of inputs and targets has been 

compiled it can be reused in future implementations.  This eliminates the training process 

from the final tool implementation.  Since the goal of this work is to identify the 

relationship between the mate complexity of three-dimensional assembly models and the 

assembly times, these items become the inputs and targets respectively.  This means that 

a collection of three-dimensional assembly models with known assembly times has to be 

compiled.  The following sub sections detail the process of collecting three-dimensional 

assembly models, determining their respective assembly times, and using this information 

to train ANNs. 
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5.4.1 Collecting Product 3D Assembly Models 

To populate an effective ANN training set, a collection of 3D assembly models 

has to be collected.  The original goal was to download 3D assembly models of consumer 

household products from an online 3D model database.  The products would have 

moving components and total part counts ranging from ten to sixty.  The actual consumer 

household product would then be purchased so that an assembly time for training and 

validation could be determined based on the Boothroyd Dewhurst DFA method described 

in Section 5.4.2.  Conducting the Boothroyd Dewhurst DFA method on actual purchased 

products is desired so that all assembly aspects required by the method are accurately 

captured. 

An extensive search of online solid modeling databases was conducted to identify 

one that would contain assembly models that met the desired criteria.  Some of the online 

databases searched were:  GrabCAD, SolidWorks 3D Content, the GICL Website, 

McMaster Carr, and TopFreeModel among others.  A single online database was not 

identified due to a variety of issues including:  compatibility issues with SW assembly 

files, single solid parts created to look like final products, assembly models of final 

products containing only a few parts, assembly model created but without a reference to 

an actual consumer product which could be purchased, or in many cases a combination of 

these issues.   

From this attempt the next method to collect assembly models was to download 

any product assembly models from any online solid modeling database that met the 

specified criteria other than matching a physical product.  Many of the assemblies 
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downloaded still had the same issues mentioned above but some were useable.  To 

increase the number of assembly models to match actual products, several physical 

products were reverse engineered so that respective assembly models could be created.  

The complete list of product assembly models and how they were generated can be seen 

in Table 5.3. 

Table 5.3:  Collection of product assembly models 

# Product Assembly Model Generation 

1 G2 Pen Reverse Engineered 

2 Pencil Compass Reverse Engineered 

3 Solar Yard Light Reverse Engineered 

4 Pony Vise Reverse Engineered 

5 Black and Decker Drill Reverse Engineered 

6 Paper Pro Stapler GICL Website [53] 

7 6" MagLight SW 3D Content [54] 

8 Indoor Electric Grill SW 3D Content [54] 

9 Shift Frame LH  OEM 

10 Wide Flag  OEM 
 

Once ten different assembly models of consumer products were gathered, the 

Mate Extraction tool discussed in Section 5.3 is used to automatically generate the mate 

connection graphs.  The complexity of the mate connection graphs will be determined 

using the complexity algorithm developed for the initial connectivity work and then the 

complexity vector will be used as inputs to train the ANNs to respective assembly times 

which are determined in the following section. 
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Should a company wish to deploy this system in their design group, company 

specific assembly models can be collected and used for training purposes with known 

product assembly times.  These historical models should be ideally collected from 

different projects, have been authored by different designers, and have different levels of 

component count and mating resolution.  Specific strategies for selecting and developing 

ANN training models are reserved for future work. 

5.4.2 Calculating Product Assembly Times 

To conduct the ANN training, an assembly time is needed so that the complexity 

metrics generated for each product can be given a respective assembly time to target [5].  

With the implementation of the ANN training scheme, a total of twenty-nine complexity 

metrics can be used to form a relationship to the predicted assembly times as opposed to 

the original regression method which only used three complexity metrics.  Since access to 

the actual assembly times for the products is unavailable, the Boothroyd Dewhurst 

Manual DFA tables were used to predict an assembly time for each product.  The process 

of completing the Boothroyd Dewhurst DFA method consists of disassembling the 

product and analyzing each individual part while answering the questions from the 

handling and insertion tables [8].  This process is generally applied as a redesign method 

where the actual product can be disassembled so an attempt was made to obtain physical 

products of all of the items listed in Table 5.3.  The physical products for items 1-6 in 

Table 5.3 were obtained but items 7-10 could not be located or did not have a specific 

consumer product to match the SolidWorks model. 
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Without the physical product, applying the Boothroyd DFA method would be 

difficult since the objective and subjective analysis questions typically require a true 

understanding of how the product is assembled.  To solve this problem a combination of 

DFA analyses were conducted, evaluated, and used.  First a “virtual” Boothroyd DFA 

analysis was conducted on the SolidWorks Assembly model.  The challenge with this 

“virtual” method is that without disassembling and holding the actual parts, an 

understanding of the product structure, function, assembly sequence, handling 

difficulties, and insertion difficulties cannot be obtained which is essential when applying 

the Boothroyd DFA.  Therefore, the first step before the “virtual” Boothroyd DFA was 

conducted was to generate an exploded view of the assembly.  An example of an 

exploded view for one of the OEM components can be seen in Figure 5.6. 

 

Figure 5.6: Exploded view of OEM Wide Flag 

Assembly 
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Generation of the exploded view makes the designer think about the assembly 

sequence and function of the given parts reducing some of the difficulty involved with a 

virtual DFA analysis.  Even though generating the exploded view improves parts of the 

virtual DFA, other parts of the analysis like handling and insertion difficulties are still 

hard to identify. 

The challenges of determining the handling and insertion difficulties come from 

the fact that these pieces of information require the designer to answer subjective 

questions about the product.  For example deciding whether a part is difficult to grasp or 

if it has resistance to insertion is hard to do without actually picking up the part and 

inserting it.  To reduce the impact of this issue, the designer was informed to not make 

assumptions about handling or insertion difficulties.  If a difficulty is not obvious within 

the model then it is assumed to have no difficulty.  Even though an attempt was made to 

not make assumptions about the assembly difficulties some of the answers may have 

been influenced by the fact that the product had previously been disassembled for the 

reverse engineered solid assembly models. 

Once the “virtual” Boothroyd DFA was completed, if a physical product was 

present that matched the SolidWorks model it was disassembled and the DFA analysis 

was conducted on it as well.  The “virtual” Boothroyd DFA method was always 

conducted first to reduce the chance that a handling or insertion difficulty experienced 

during the physical analysis would influence the designer during the “virtual” analysis.  

Between the Boothroyd DFA analyses on the physical products and the virtual products a 
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total of sixteen assembly times to match the respective CAD assembly models were 

determined. 

Should a company wish to deploy this system in their engineering group, 

company specific known assembly time values can be used and matched to the assembly 

models selected for ANN training.  These time values can be deterministic or 

probabilistic, depending on the type of analysis desired.  A comparison of different 

training pair types, such as model + range of assembly times, is reserved for future 

investigation. 

5.4.3 Training of Mate Complexity DFA Method 

The research on the connectivity complexity method previously conducted used 

ANNs to increase the accuracy of the original connectivity complexity DFA method [5].  

Artificial neural networks were selected to identify the relationship between the products 

connectivity complexity vector and respective assembly times because they are often 

used to complete nonlinear statistical analyses [55,5]. 

The basic overview of the previous research is that the physical connectivity 

complexity graphs of twenty four OEM assemblies were manually put together and 

related to a respective MTM DFA based assembly time using ANNs.  Each of the 

connectivity graphs was generated by manually evaluating the connections within each 

assembly.  The connectivity graphs were then analyzed using a custom Matlab algorithm 

which generates a complexity vector that contains twenty-nine different complexity 

metrics.  Then, nineteen of the twenty-four product’s complexity vectors along with their 

respective MTM assembly times were used as inputs and targets to train the ANNs.  Five 
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of the twenty-four assemblies were left out of the ANN training to test the effectiveness 

of the trainings. [5] 

The ANN training consisted of 189 neural network architectures which used up to 

three layers and fifteen neurons depending on the specific combination [5].  Once the 

architectures were created, each one was given the training set of complexity vectors as 

inputs and assembly times as targets to generate a unique mapping.  Since each 

architecture may generate a different relationship every time it is given the same set of 

inputs and targets, each architecture was given the same training set 100 times and all 100 

relationships were captured.  Once the training was completed, it was tested using the 

five remaining product’s connectivity complexity vectors. 

The training was tested by inputting the withheld complexity vectors into the 189 

types of trained networks 100 times, which then predicts 100 assembly times for each 

architecture.  To evaluate and select the best architecture, the probability densities of the 

predicted times were used to determine if the times were within a given percent of the 

respective known time.  The total probability that the predicted time would be within the 

given percent was then used to find the architectures that would be most likely to predict 

the correct assembly times.  With the best architectures identified, these could be used to 

predict assembly times without having to train or test all 189 architectures. [5] 

To determine if extracted mate connections from SW assemblies can be used to 

predict assembly times the ANN training method used from the motivation research was 

re-created.  First the Automatic Mate Extraction Add-in discussed in Section 5.3 was 

used to extract the mate connections from the ten SW assembly models listed in Table 
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5.3.  These mate connection graphs were then run through a Matlab Complexity 

Algorithm to generate respective complexity vectors that contained twenty-nine 

complexity metric values.  The complexity vectors and assembly times of the Pencil 

Compass, the 6 Inch MagLight, and the Black and Decker Drill from Table 5.3 were held 

back to be used as test inputs once the ANN training was completed.  These three 

products were chosen to be held back for testing because their part counts and assembly 

times form a good representation of the training set.   

To train the ANNs for this research, 189 architectures were generated which 

consisted of one to three layers with up to fifteen neurons per layer depending on the 

configuration.  Each architecture was given the training set 100 times so that the 

probability densities could be used to better approximate the relationship.  The ANN 

training inputs for this research consisted of eleven complexity vectors for eleven of the 

sixteen assembly times.  If a product had both a virtual and physical Boothroyd DFA 

predicted assembly time then the same complexity vector for that product would be 

trained towards the two different assembly times.  Once the training inputs and targets 

were compiled the different ANN architectures were trained and the best ones were 

selected and evaluated for later use as described above. 

Three separate Artificial Neural Networks training sets using different inputs and 

targets were evaluated to determine if the number of mates has an effect on the predicted 

results.  The first training set called Case 1 was generated using complexity vectors that 

were based on all of the SW models being fully defined.  This means that all parts in the 

assembly are constrained and cannot move.  The second training set called Case 2 was 
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generated using complexity vectors that were based on the SW models being partially 

defined.  Partially defined was achieved by having the designer mate the assembly model 

to the point where parts are constrained based on the design intentions.  The third training 

set called Case 3 was generated using both the complexity vectors generated for the fully 

defined and partially defined SW assembly models.  This means that Case 3 had twice as 

many training inputs and targets than Case 1 and Case 2. 

5.5 Testing 

Once the different training schemes for the given inputs and targets were 

generated they had to be tested.  The complexity vectors from the three products held 

back for testing were given to the trained ANNs as inputs so that it could generate 

predicted assembly times.  All of the 189 architectures for each ANN training case were 

evaluated to determine which ones were most effective.  The effectiveness of the 

architecture was determined by evaluating the probability density that the 100 predicted 

assembly generated for each product would be within +/- 25% of the target assembly 

time. 

Since each test input was given to each architecture 100 times the probability 

density of the predicted times can be generated as shown in Figure 5.7.  These probability 

densities can then be compared to the assembly time predicted by the Boothroyd 

Dewhurst DFA method to see how effective the given architecture was.  The Boothroyd 

Dewhurst DFA time is shown by the vertical red line on the plot and +/- 25% of this 

target time is shown by the vertical yellow lines.  Figure 5.7 shows an example 
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probability density plot generated by one architecture for a given product.  This figure 

shows that the majority of the predicted assembly times fall within the +/- 25% range. 

 

Figure 5.7: Example Probability Density Plot  

Once all of the probability density values for all architectures had been evaluated, 

the overall probability that the architecture would predict a time within the given+/- 25% 

range was determined.  The overall probability was calculated by finding the area under 

the probability density plot that was within the +/- 25% range of the target time for all 

three test products.  The average probability for all 189 architectures was then found and 

compared to see which one would be most effective at predicting an assembly time 

within the specified target range.  The five architectures with the highest average 

probabilities were selected for evaluation.  Table 5.4 shows the top five architectures 

selected for the three training schemes:  Case 1, Case 2, and Case 3. 
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Table 5.4: Selection of top 5 ANN architectures for each testing case 

Case 1 (F. Def.) Case 2 (P. Def.) Case 3 (F&P Def.) 

Arch. Avg. Prob. Arch. Avg. Prob. Arch. Avg. Prob. 

95 0.601 56 0.999 109 0.992 

173 0.541 64 0.963 45 0.736 

79 0.537 174 0.789 154 0.699 

90 0.500 147 0.753 30 0.639 

99 0.500 52 0.737 133 0.625 
 

Case 2, which was trained with the partially defined products, resulted in the 

overall best top five architectures based on the probability density curves.  ANN training 

Case 3 which used fully and partially defined products was the second best, while 

training Case 1 which used only fully defined products was the least effective.  The mates 

added to parts in an assembly define how that part is constrained within that assembly.  If 

a designer is forced to add more mates than required, it is possible that the original 

constraint definition will be lost or negatively affected.  This could be a possible cause 

for the fully defined assembly models predicting less accurate results, a detailed 

investigation into this issue is reserved for future work.  For comparison purposes, the 

times for each of the top five architectures for each training case, were compared across 

the three test products. 

To determine the effectiveness of each ANN training scheme, their predicted 

assembly times had to be compared.  The average predicted assembly time generated for 

each product using the top five architectures for each ANN training scheme was 

computed and compared to the Boothroyd DFA target assembly time. Table 5.5 shows 

the average predicted assembly times from each training scheme and the respective target 

time which was determined using the Boothroyd Dewhurst DFA method.  The cells in the 
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table are shaded to illustrate the level of accuracy for the different tests; green shading 

indicates that the values returned are within the +/- 25% tolerance range and the yellow 

shading indicates that the values are within the +/- 50% tolerance range. 

Table 5.5:  Comparison of predicted assembly times for each training case 

Product 

Test Case 

Level of 

Definition 

(Test) 

Target 

Time 

(s) 

Case 1 (Fully 

Defined 

Training) 

(s) 

(+/- % Error) 

Case 2 

(Partially 

Defined 

Training) (s) 

(+/- % Error) 

Case 3 (Fully 

and Partially 

Defined 

Training) 

(s) 

(+/- % Error) 

Pencil 

Compass 

Fully 

68.3 

121.4 

(+77.5) 
NA 

94.5 

(+38.2) 

Partially NA 
96.6  

(+41.2) 

82.5 

(+20.6) 

MagLight 

Fully 

75.4 

118.3 

(+56.9) 
NA 

70.2 

(-6.9) 

Partially NA 
65.1 

(-13.7) 

75.7 

(+0.5) 

Black & 

Decker 

Drill 

Fully 

189.6 

226.3  

(+19.3) 
NA 

319.3 

(+68.4) 

Partially NA 
186.1  

(-1.9) 

202.3 

(+6.7) 
 

For training Case 1, the test cases as well as the training set were all fully defined 

models.  For training Case 2, the test cases as well as the training set were all partially 

defined models.  Training Case 3 used a combination of fully defined and partially 

defined models for training, and therefore both fully defined and partially defined models 

were used for testing. 

The results of the testing indicate that using training Case 3 which had fully and 

partially defined models resulted in predicted assembly times that were closest to the 

Boothroyd target times.  The percent error of the predicted assembly times for four of the 
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six inputs decreased by using the training Case 3 as opposed to the first two training 

cases.  Out of the two percent errors that increased using the training Case 3, one of them 

was still within seven percent of the target time, which is still deemed acceptable.  To 

determine what effect the level of product definition used in the training cases, fully or 

partially defined, has on the predicted assembly times these results are analyzed in the 

section below. 

5.5.1 Effect of Training Assembly Definition 

The three training cases presented were used to determine if the level of assembly 

definition had an effect on the predicted assembly times.  Requiring a designer to add 

enough mates to fully defined every part would essentially fix the number of mates that a 

given part and product would have, which would theoretically provide a more repeatable 

result.  If the designer is allowed to only partially define the assemblies then they only 

have to add the mates that they see fit which requires no extra work on their part.  To 

compensate for both extremes a combination of fully and partially defined models was 

also included. 

The training case results shown in Table 5.4 identified that training Case 2, which 

used a training set of only partially defined models, had the highest probability of 

predicting a product’s assembly time within +/- 25% of the target time.  When the 

products average predicted assembly times were compared, it was determined that 

training Case 3 generally resulted in a decrease in percent error over training Case 1 and 

Case 2, Table 5.5.  Training Case 3’s decrease in percent errors could be a result of its 

training set size which was twice the size of training Case 1 and Case 2.  Looking in to 
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training Case 3 and comparing the partially and fully defined predicted times shown in 

Table 5.5, the partially defined models always had less percent error than the fully 

defined models.  The results from these three training cases suggest that using partially 

defined assembly models generally provides better training results.  It also suggests that 

an increase in training set size could also provide the accuracy of the predicted assembly 

times. 

5.6 Summary of Initial Automation 

In this preliminary investigation, with limited training sample sizes, it was found 

that an integrated training regime that includes both partially and fully defined assembly 

models performs better than the networks that were trained on only fully or only partially 

defined models.  This suggests that there is, first a need for larger training sets and second 

that there is additional information captured within different assembly mating styles.  The 

type of assembly models that were used for training did not necessarily fully span the 

types of mating options that are available.  Therefore, a wider spanning set of training 

products is recommended. 

One of the major difficulties with using mates to determine the assembly times of 

products is that different designers can and will mate the same assembly in different 

ways.  To determine if different mating schemes have an effect on the results of the ANN 

predicted assembly times, two different mating schemes were tested.  Two designers 

were asked to create an assembly model of the 6 Inch MagLight and mate the 

components as they normally would.  Once they mated the product based on their style, 

complexity vectors were generated for each designer’s partially defined assembly.  The 
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designers were then asked to continue adding mates until their model was fully defined.  

A complexity vector of the fully defined assembly model was then generated.  The fully 

and partially defined complexity vectors were then given to the third training set, Case 3, 

to evaluate and compare the predicted assembly times.  The predicted assembly times and 

the percent error for each designer’s mating schemes are shown in Table 5.6.  A detailed 

study with a larger sample of mating configurations should be further investigated.  The 

cells in the table are shaded to illustrate the level of accuracy for the different tests; green 

shading indicates that the values returned are within the +/- 25% tolerance range and the 

yellow shading indicates that the values are within the +/- 50% tolerance range. 

Table 5.6: Mate configuration comparison 

Product 
Level of 

Definition 

Target Time 

(sec) 

Predicted Time 

(sec) 
% Error (+/-) 

MagLight Mates 

Designer 1. 

FD 

75.4 

70.2 - 7 

PD 75.7 + 1 

MagLight Mates 

Designer 2 

FD 95.8 + 27 

PD 80.4 + 7 
 

While this chapter presents preliminary results, these results suggest that this 

method is feasible in creating a tool that can integrate into a commercial CAD system to 

provide automatic assembly time estimation.  Should companies wish to integrate this 

tool in their product development process, strategies are needed for appropriate selection 

of company specific training sets and associated assembly time.  It is recommended, 

preliminarily, that these training sets should vary in product type, author, complexity, and 

geometric classification.  The development of these strategies is deemed out of scope for 

this paper, but is under current investigation. 



 103 

5.7 Automated DFA Method 

The goal of this chapter was to determine if the identified DFA method could be 

fully automated which addresses the second research question: 

RQ2:   Can the identified assembly time prediction method be automated 

so that it predicts an assembly time using information extracted 

from 3D solid modeling software? 
 

The method that was identified for automation in Chapter 4.   was the 

Connectivity Complexity assembly time prediction tool.  The results of the work 

presented in this chapter display a partially automated version of the Connectivity 

Complexity assembly time prediction tool that extracts mates from SolidWorks assembly 

models and uses them to predict an assembly time.  The tool presented automates the 

most time consuming and subjective part of the original Connectivity Complexity method 

which is the identification of the inter part connections and the assembly of the bi-partite 

interconnection table.  The steps to use the developed tool to predict an assembly time are 

as follows were the users actions are labeled “User”, are green, and are bold while the 

programs actions are labeled “Program”, are in red, and are in italics: 

 User:  Open SolidWorks Assembly 

 User:  Click on SWMate2 Add-in 

 Program:  extracts mates and builds the bi-partite table 

 User:  Open Matlab and call custom complexity algorithm passing the 

generated file name as the input 
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 Program:  Complexity algorithm reads mates from the bi-partite table and 

calculates a respective complexity vector 

 User:  Calls custom Matlab ANN function (accepts generated 

complexity vector as input) 

 Program:  Function uses complexity vector to predict and output the 

assembly time 

The developed tool is a C++ SolidWorks Add-in that appears as a button in the 

SolidWorks GUI.  Once selected, the Add-in program extracts the mates from the 

assembly model and builds the bi-partite table required to identify the complexity of the 

assembly.  With the automatically generated bi-partite table of mate connections, the only 

manual steps that the user has to complete is passing the bi-partite table to two custom 

Matlab functions which use the assembly’s complexity and a trained ANN to predict an 

assembly time.  These manual processes currently require opening programs or calling 

defined functions which can be easily automated to create a totally automated DFA tool.  

This chapter addressed the second research question and found the respective hypothesis 

to be correct: 

RQ2 

Hypothesis:  

The identified assembly time prediction method can be automated 

so that it predicts an assembly time using only information 

extracted from 3D solid modeling software. 

It was determined that the original Connectivity Complexity method could be 

modified to use mate connections instead of physical inter part connections.  These mate 

connections are stored in solid modeling assembly models and can be extracted with 

appropriate tools.  A custom SolidWorks Add-in was developed to automatically extract 
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the mate connections which are then used to predict assembly times using artificial neural 

networks.  The effectiveness of the ANNs used to predict the assembly times are 

determined by the size and variability within the training set.  To increase the 

effectiveness of this tool, larger training sets with more variability should be investigated.  

The goal of this research is to develop an automated DFA tool to reduce or eliminate the 

issues that current DFA methods and tools have.  A semi-automated DFA tool was 

presented in this chapter.  Chapter 6.   will further investigate ANN training cases so that 

an encompassing set of architectures can be selected.  Once a set of architectures are 

selected the method will be fully automated and evaluated to determine if it addresses 

existing DFA issues. 



 106 

CHAPTER 6.  DOES THE DEVELOPED AUTOMATED TOOL ADDRESS 

EXISTING DFA ISSUES 

Chapter 5.   presents a semi-automated DFA tool that only requires the user to 

click on a button to start the analysis and call a few Matlab functions to predict a 

product’s assembly time from information it extracts from a respective SolidWorks 

assembly model.  The tool could be fully automated by opening Matlab and calling the 

required functions using the SolidWorks add-in.  Before a fully automated version of this 

tool is developed and implemented, the current semi-automated version should be 

evaluated to determine its overall effectiveness as a DFA tool.  This will ensure that the 

current version is effective and should be continually developed into a fully automated 

version. 

The evaluation of the current version is accomplished by answering the third and 

final research question; does the new method solve the issues that current DFA methods 

have?  This research question is addressed by (1) exploring ANN training sets with 

regards to how they are affected by the training set size and types of inputs used, (2) 

studying the sensitivity of the predicted assembly time with respect to the types of mates 

used, and (3) comparing the new tool to the Boothroyd Dewhurst DFMA software. 

6.1 Investigation of ANN Trainings 

To understand how the training sets variability and size affects the predicted 

assembly times additional testing is done.  To investigate this affect, the original three 

training sets from Section 5.5 along with five additional training sets are evaluated in the 

following sub sections.  These eight training cases allow the effect of training case size 
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and the effect of uniqueness of training case inputs on the predicted assembly time to be 

evaluated.  The eight training cases evaluated are summarized in Table 6.1 showing the 

name, the number of test inputs and targets, the level of assembly definition, the types of 

assembly time inputs, and whether the training used repeated inputs that were mapped to 

different targets.  A full training case description including the products used for each 

training set can be found in the appendix. 

Table 6.1:  ANN training set descriptions 

Training 

Set Name 

# of Training 

Inputs & 

Targets 

Assembly 

Definition:  Full, 

Partial, or Both 

Assembly 

Times: Virtual, 

Physical, Both 

Repeated 

Training Inputs 

to Different 

Target 

Case 1 11 Full Both Yes 

Case 2 11 Partial Both Yes 

Case 3 22 Both Both Yes 

Case 4 11 Both Both Yes 

Case 5 11 Both Both Yes 

Case 6 12 Partial Virtual No 

Case 7 12 Partial Virtual No 

Case 8 12 Partial Virtual No 
 

The specific details of the first three training cases were previously described in 

Section 5.5 along with their top five architectures and respective average probabilities 

(Table 5.4).  Training cases four through eight were structured the same way as the first 

three cases, but using different test inputs and targets.  By conducting different training 

cases, the effect that the training set size and types of inputs used can be explored.  The 

top five architectures and respective average probabilities for training Case 4 through 

training Case 8 are shown in Table 6.2. 
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Table 6.2:  Top five architectures with respective average probabilities for training 

cases 4 through 8 

Case 4 Case 5 Case 6 Case 7 Case 8 

Arch 
Avg. 

Prob. 
Arch 

Avg. 

Prob. 
Arch 

Avg. 

Prob. 
Arch 

Avg. 

Prob. 
Arch 

Avg. 

Prob. 

143 0.796 1 0.759 89 0.989 110 0.999 43 0.823 

161 0.763 120 0.675 31 0.966 124 0.996 22 0.735 

153 0.627 169 0.531 91 0.782 4 0.982 69 0.732 

49 0.627 188 0.513 9 0.772 113 0.982 24 0.694 

34 0.599 166 0.484 112 0.743 18 0.970 78 0.653 
 

The architectures and their average probabilities presented in Table 5.4 and in 

Table 6.2 can be used to determine a training Cases’ ability to predict an assembly time 

within +/- 25% of the target time.  These results can also be used to identify 

generalizations about which architecture structure tends to produce the highest 

probabilities. 

6.1.1 Effect of Training Case Size 

The initial ANN training investigation in Section 5.5 looked at three training 

cases: 

 Case 1 that used partially defined models,  

 Case 2 that used fully defined models, and  

 Case 3 that used both fully and partially defined models.   

The results identified that using only partially defined assembly models generally 

showed a decrease in percent error of the predicted assembly times.  The results also 

identified that using training Case 3, which had a combination of fully and partially 

defined models and was twice as large as training Case 1 and Case 2, decreased the 

percent error of the predicted assembly times.  Since the training size of Case 3 was 
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larger than those of Case 1 and Case 2, the decrease in percent error could be due to the 

increased training set size or to it using both fully and partially defined models as training 

inputs.  The rest of this sub section evaluates training Case 3, training Case 4, and 

training Case 5 to determine specifically if an increase in training set size decreases the 

percent error in the predicted assembly times. 

As shown in Table 6.1, training Cases 3 through 5 all use a combination of fully 

and partially defined assembly models where training Case 3 uses twenty-two inputs and 

targets where training Cases 4 and 5 only use eleven inputs and targets.  Training Case 4 

and training Case 5 are filtered versions of training Case 3.  These were put together by 

selectively eliminating half of the inputs/targets from Case 3 while still using as much of 

the testing variety as possible.  The predicted assembly times from Case 3, Case 4, and 

Case 5 can be seen in Table 6.3.  The cells in the table are shaded to illustrate the level of 

accuracy for the different tests; green shading indicates that the values returned are within 

the +/- 25% tolerance range and the yellow shading indicates that the values are within 

the +/- 50% tolerance range. 
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Table 6.3: Comparison of predicted assembly times for training Case 3, Case 4, and 

Case 5 

Product 

Test Inputs 

Level of 

Definition 

(Test) 

Target 

Time (s) 

Case 3 

Original 

Set 

(s) 

(+/- % 

Error) 

Case 4 

Filtered 

Set_1 

(s) 

(+/- % 

Error) 

Case 5 

Filtered 

Set_ 2 

(s) 

(+/- % 

Error) 

Pencil 

Compass 

Fully 

68.3 

94.5 

(+38.2) 

137.9 

(+101.6) 

78.6 

(+15.0) 

Partially 
82.5 

(+20.6) 

84.5 

(+23.6) 

38.6 

(-43.6) 

MagLight 

Fully 

75.4 

70.2 

(-6.9) 

56.2 

(-25.5) 

53.8 

(-28.7) 

Partially 
75.7 

(+0.5) 

42.1 

(-44.2) 

52.8 

(-30.0) 

Black & 

Decker Drill 

Fully 

189.6 

319.3 

(+68.4) 

233.3 

(+23.0) 

383.5 

(+102.2) 

Partially 
202.3 

(+6.7) 

197.6 

(+4.2) 

258.3 

(+36.2) 
 

Comparing the percent errors from Case 3 to Case 5 in Table 6.3, Case 3 predicts 

assembly times with less percent error for all inputs except for one, the fully defined 

pencil compass.  Comparing the percent errors from Case 3 to Case 5 in Table 6.3, Case 3 

predicts assembly times with less percent error for four of the six test inputs.  The percent 

error in predicted assembly time for the partially defined Black & Decker drill only 

increase by 2.5% from Case 3 to Case 4 which is not significant.  These results signify 

that by increasing the size of the training case inputs and targets, there will be a general 

increase in accuracy with respect to the target.  The general trends can be summarized as: 

 Case 3 BETTER_THAN Case 4 

 Case 3 BETTER_THAN Case 5 

 Case 4 BETTER_THAN Case 5 



 111 

6.1.2 Effect of Training Case Variability 

The original training study used training sizes of eleven (Case 1), eleven (Case 2), 

and twenty-two (Case 3).  These training sets, however, were not composed of unique 

inputs (the complexity vectors).  Some of the product inputs were included twice in the 

training sets but mapped to different target assembly times, the virtual and physical 

Boothroyd DFA times for that specific product.  Since the Boothroyd Dewhurst DFA 

method has variability in its predicted assembly times when conducted on the same 

product, this variability could be used to increase the effectiveness of a given training 

case.  A training case could take the same complexity vector input (same assembly model 

/ product) and map it to two different predicted assembly times (physical vs. virtual or 

from different designers.  This tells the training case that with the same input, two 

possible outputs could occur, so as it develops a relationship it can compensate for some 

of the variability of the input target times.  These types of training sets are describe as 

having non unique training inputs.  Only seven of the eleven inputs for Case 1 and Case 2 

were unique and only fourteen of the twenty-two inputs for Case 3 were unique.  To 

develop a more effective training case the effect of training input variability is 

investigated in this section. 

To investigate the effect of training input variability three different training cases 

were assembled (Case 6, Case 7, Case 8) by increasing the number of analyzed products.  

Based on the limited success of downloading product assembly models from online 

databases, the number of assembly models was increased by reverse engineering five 

additional consumer products.  The updated list of product assembly models available for 
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training is presented in Table 6.4.  Only certain combinations of the first ten assembly 

models shown were used to train Case 1, Case 2, and Case 3.  The last five products were 

added to the training set to replace the repeated training inputs that were used in the first 

three test cases.  The last three columns of Table 6.4 show Case 6, Case 7, and Case 8 

where the products used to train each case are labeled “Training” and the products used 

as test inputs are labeled “Test”. 

Table 6.4:  Increased product collection and training case products for training and 

testing 

# Product 
Assembly Model 

Generation 
Case 6 Case 7 Case 8 

1 G2 Pen Reverse Engineered Training Training Training 

2 Pencil Compass Reverse Engineered Training Training Test 

3 Solar Yard Light Reverse Engineered Training Test Training 

4 Pony Vise Reverse Engineered Training Training Training 

5 
Black and Decker 

Drill 
Reverse Engineered Training Test Test 

6 Paper Pro Stapler GICL [53] Test Training Training 

7 6" MagLight SW 3D [54] Test Training Test 

8 Indoor Electric Grill SW 3D [54] Training Training Training 

9 Shift Frame LH OEM Training Training Training 

10 Wide Flag OEM Training Training Training 

11 One Touch Chopper Reverse Engineered Training Test Training 

12 Computer Mouse Reverse Engineered Training Training Training 

13 
Boothroyd Piston 

Assembly 
Reverse Engineered Training Training Training 

14 3 Hole Punch Reverse Engineered Training Training Training 

15 
Durabrand Hand 

Mixer 
Reverse Engineered Test Training Training 

 

Since all of the previous products had virtual Boothroyd Dewhurst DFA analyses 

already conducted on them, for consistency, the new ANN trainings, Case 6 through Case 
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8, only use virtual Boothroyd predicted assembly times as their targets which would be 

trained with unique complexity vector inputs for each product.  The results of these ANN 

training cases can be seen in Table 6.5.  Each test that yielded time estimations that were 

within the +/- 25% tolerance range is shaded. 

Table 6.5: Comparison of predicted assembly times for the last three ANN training 

sets 

Product Test 

Case 

Level of 

Definition (Test) 

Target 

Time (s) 

Case 6 

(s) 

(+/-% 

Error) 

Case 7 

(s) 

(+/-% 

Error) 

Case 8 (s) 

(+/-% 

Error) 

Pencil 

Compass 
Partially 68.3 NA NA 

60.2 

(-12.0) 

MagLight Partially 75.4 
69.8 

(-7.5) 
NA 

65.4 

(-13.3) 

Black & 

Decker Drill 
Partially 189.6 NA 

199.4 

(+5.1) 

233.8 

(+23.3) 

Paper Pro 

Stapler 
Partially 123.5 

118.3 

(-4.2) 
NA NA 

Durabrand 

Blender 
Partially 263.2 

271.8 

(+3.3) 
NA NA 

Solar Yard 

Light 
Partially 128.8 NA 

113.1 

(-12.2) 
NA 

One Touch 

Chopper 
Partially 316.6 NA 

318.7 

(+0.7) 
NA 

 

As shown in Table 6.5 the results for training Case 6, Case 7, and Case 8 have 

less than 14% error of the target time except one of the times generated by Case 8 which 

has 24% error.  None of the first five training Cases investigated has percent errors this 

low for all test products.  This signifies that providing a more diverse training set that 

does not reuse test inputs will increase the overall accuracy of the training set.  Case 6 

generally has the lowest overall percent error out of all eight training cases.  The percent 
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errors for Case 6 range from -7.5% to +3.3% but it is closely followed by Case 7 which 

has percent errors ranging from -12.2% to +5.1%. 

Training Case 8 was created such that it uses the same test inputs as the first five 

training cases which are:  the pencil compass, the Mag light, and the Black and Decker 

drill.  This was done so that the second through fifth training cases which did not have 

unique training inputs could be compared to training Case 8 which did have unique 

training inputs.  Since Case 8 used partially defined assemblies it cannot be compared to 

Case 1 which used fully defined assemblies but Case 8 can be compared to Cases 2 

through Case 5 for each product.  A comparison between Case 8 and each of the other 

cases with respect to each product is as follows:   

 For the pencil compass, Case 8 resulted in lower percent error than Case 2 through 5, 

the percent errors are as follows:  Case 8 = -12%, Case 2 = +41%, Case 3 = +21%, 

Case 4 = +24%, and Case 5 = -44% error 

 For the Mag Light, Case 8 showed a lower percent error for Case 2 trough Case 4 but 

an increase in % error with respect to Case 5, the percent errors are as follows:  Case 

8 = -13%, Case 2 = -14%, Case 3 = + 1%, Case 4 = -44%, and Case 5 = -30% error 

 Out of the three products Case 8 preformed the worst on the Black & Decker drill,  

the percent errors are as follows:  Case 8 = +23%, Case 2 = -2%, Case 3 = +7%, Case 

4 = +4, and Case 5 = +36% error 
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6.1.3 ANN Training Recommendations 

Based on the results from the investigation on ANN training case type, some 

recommendations to improve future training cases are provided in this section.  Section 

5.5.1 investigated how the level of assembly definition affected the results.  It was 

determined that training cases that used partially defined models were more effective than 

those that only used fully defined models.  Based on these results it is recommended that:  

future training cases use only partially defined models. 

Section 6.1.1 investigated the effect of training case size on the predicted 

assembly times.  Training cases that used eleven training inputs versus twenty two 

training inputs, both with fully defined and partially defined assembly models were 

evaluated and compared.  The larger training case with more training inputs and targets 

resulted with better results where its average %error was at least 10% better than the 

closest training case of a smaller size.  The training cases that used only eleven inputs 

resulted in average percent errors that ranged from 19% to 51% error depending on the 

case.  Since the 51% error is at the limit of the +/- 50% tolerance range which means that 

the minimum training case size should be one that uses eleven inputs and targets.  Based 

on these findings it is recommended that:  future training cases should use a minimum 

training case size of eleven inputs and targets, results will improved with larger training 

sets. 

Section 6.1.2 investigated the effect of training case variability on the predicted 

assembly times.  Five of the eight training cases used non unique training inputs but 

mapped them to different targets.  The other three of the eight training cases used unique 
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inputs mapped to unique targets.  The results from this comparison determined that 

training cases that had more variability and unique training inputs were more effective 

than training cases that re-used training inputs.  Based on these findings it is 

recommended that:  future training cases should use a set of unique training inputs. 

Based on the individual investigations and the recommendations listed above, the 

final recommendation is:  future training cases should use a set of at least eleven unique 

training inputs and targets that are made up of partially defined assembly models. 

The investigations into ANN training case types presented in this thesis are only 

initial studies used to make some initial recommendations.  These studies should be 

continued using larger sample sizes to make more effective or specific recommendations 

but this is reserved for future work. 

6.2 Overall Top ANN Architecture Selection 

In order for the developed tool of Section 5.2 to be effective, ideally the user 

should be able to use the tool as is and not have to retrain the ANN’s or go through an 

architecture selection process to use it.  The architecture selection process has been used 

to evaluate the different training cases.  This selection process involves running a 

complete training case on all 189 architectures and repeating each training 100 times.  

The probability that the architectures would predict the given test product target within a 

given target (+/- 25% of a manually estimated assembly time) is then evaluated.  The 

average probability for the given architecture can then be determined and the top five 

architectures based on average probability are selected.  Conducting this selection process 

will help improve the accuracy of the results but it is time consuming and requires 
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withholding inputs from the training case to evaluate the effectiveness of the 

architectures. 

To eliminate the architecture selection process, this section presents five selected 

ANN architectures for the initial tool.  The use of the suggested architectures may not 

provide the highest accuracy for one specific training case.  Instead, architectures are 

sought that that perform well across multiple training cases.  In this manner, the challenge 

of creating the “best” training case in terms of which cases to use for training, the size of 

the training set, and the diversity of the products can be avoided.  Moreover, these 

suggested architectures allow for immediate tool use.  If desired, the user can conduct 

new ANN trainings to customize the architecture selection for their specific product 

ranges as necessary.  It is noted that the selection process used to suggest the five 

architectures presented is only an initial guideline.  To identify an ideal set of 

architectures suitable for all possible training cases, extensive statistical analysis is 

needed, and as such is deemed to be out of scope for this research. 

However, for a satisfying solution of selecting five “good enough” architectures, 

the average probabilities for the 189 architectures for all eight training cases were 

compiled and compared.  Before comparing the values, the probabilities with values 

greater than one were set to one.  The average probability for the given architecture was 

determined by identifying the area under the probability density plots discussed in 

Section 5.5.  The area under the probability density plots within the given percent range 

was determined using the Matlab trapz function.  This function often has rounding errors 

which could possibly result in an area and probability greater than one, which is not 
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possible.  For the presented probabilities for each architecture, if the value is greater than 

one it is reduced to one.  Then, the average of the probability for each architecture across 

all eight training cases was determined to represent the overall effectiveness of each 

architecture.  The new average probability for each architecture was then sorted so that 

the architectures with the highest overall probabilities could be identified.  The top thirty 

architectures based on the average probability of all eight training cases are shown in 

Table 6.6.   

Instead of choosing the top five architectures based on overall average probability 

for all training cases, the selected architecture set should have emphases on the best 

training cases.  Emphases are placed on the best training cases since these types of 

training cases are recommended for future use.  Since the average probabilities for the top 

five architectures of training Case 6, Case 7, and Case 8 were higher than the other 

training cases, their top thirty highest probabilities are compared to the top thirty highest 

average probabilities of all training cases.  The architectures that were present within the 

top thirty overall list and that were also present in the top thirty list of these three training 

cases were marked and counted to determine which ones showed up the most.  The top 

five architectures that showed up the most were then selected and are highlighted in green 

in Table 6.6. 
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Table 6.6:  Top thirty architectures based on average probability of all eight 

training cases 

Rank Architecture 

Number 

Architecture 

Structure 

Average Probability of 

all eight training cases 

1 120 [3,2,1] 0.4317 

2 68 [1,1,4] 0.3964 

3 112 [2,5,3] 0.3668 

4 9 9 0.3603 

5 31 [3,2] 0.3438 

6 45 [5,2] 0.3398 

7 88 [1,5,4] 0.3352 

8 49 [5,6] 0.3304 

9 172 [5,2,3] 0.3243 

10 95 [2,2,1] 0.3161 

11 67 [1,1,3] 0.3149 

12 32 [3,3] 0.3130 

13 38 [4,2] 0.3110 

14 100 [2,3,1] 0.3093 

15 109 [2,4,5] 0.3065 

16 37 [4,1] 0.3064 

17 89 [1,5,5] 0.3044 

18 159 [4,4,5] 0.2950 

19 178 [5,3,4] 0.2948 

20 113 [2,5,4] 0.2930 

21 56 [6,6] 0.2891 

22 143 [4,1,4] 0.2866 

23 166 [5,1,2] 0.2833 

24 90 [2,1,1] 0.2823 

25 77 [1,3,3] 0.2813 

26 141 [4,1,2] 0.2791 

27 75 [1,3,1] 0.2785 

28 64 [7,7] 0.2763 

29 2 2 0.2763 

30 11 11 0.2761 
 

These top five architectures make up the suggested architecture set that best 

represents all eight training cases with an emphasis on the preferred training case type, 

Case 6, Case 7, and Case 8.  Looking at the selected architecture structures shown in 

Table 6.6, it can be seen that they essentially span the entire range of possible structures.  
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The five selected architectures encompass structures consisting of one, two, and three 

layers with a wide variety of the number of neurons in each layer.  This suggests that the 

structure of the architecture does not have a significant result on the generated outputs but 

instead results will be more affected by the use of appropriate training sets. 

This section presented the selection of a representative architecture set that can be 

used when a custom training case and architecture selection process is not desired.  Using 

a representative architecture set also eliminates many of the intermediate steps that were 

previously required to go from the SW Mate Extraction Add-in to a predicted assembly 

times.  With a specified set of five architectures, only the desired architectures have to be 

trained instead of all 189 architectures.  Training five selected architectures takes 

approximately 5 minutes where as training all 189 architectures takes approximately 120 

minutes for the training set sizes used in this research.  With a smaller set of trained 

architectures, they can be saved for later use, which, in turn, reduces the frequency of the 

time consuming training.  A trained set of neural networks can then be loaded as needed 

and only the new test inputs have to be provided to generate a predicted assembly time.  

The benefits of selecting a smaller sample of architectures from the original 189 allow the 

tool to be more effectively automated.  

6.3 Implementation of Selected Architectures 

Based on the initial investigation into the effect of training case size (Section 

6.1.1) and variability (Section 6.1.2) on the predicted assembly times, a set of five 

architectures were selected to be used when the implementation of a new training case or 

when conducting a specialized architecture selection process is not desired.  The five 
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architectures selected become the default values for this assembly time prediction tool 

and they allow it to be fully automated.  The fully automated version of this assembly 

time prediction tool and its effectiveness to predict an assembly time for a final test case 

are covered in sub section 6.3.1.  The sensitivity of the tool to different mating 

configurations resulting from different engineers creating the assemblies is then 

investigated in sub section 6.3.2. 

6.3.1 Automated Assembly Time Prediction Tool 

Chapter 5.   presented a semi-automated assembly time prediction tool that 

automated the tedious time consuming aspect of the original Connectivity Complexity 

method.  However, it still required the user to complete part of the steps to conduct the 

analysis.  Before these steps were automated the effectiveness of the tool and its ANN 

training sets were evaluated and it was suggested that larger training sets that use a larger 

variety of inputs and targets should be used.  A general set of effective architectures were 

identified so that only five ANN architectures need to be trained and used to predict 

assembly times when needed.  This small number of trained neural networks can be 

easily loaded, passed a given input, and be used to predict a products assembly time.   

To predict an assembly time using the developed assembly time prediction tool 

the following steps must be completed (again, user actions are in bold green letters and 

program executions are in italics colored red): 

 User:  Opens SolidWorks assembly model 

 User:  Click on SWMate2 Add-in 
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 Program:  Extracts mates and builds the bi-partite table 

 Program:  Opens Matlab and calls custom complexity algorithm passing 

the generated file name as the input 

 Program:  Complexity algorithm reads mates from the bi-partite table and 

calculates a respective complexity vector 

 Program:  Calls custom Matlab ANN function (accepts generated 

complexity vector as input) 

 Program:  Loads previously determined ANN training case that uses top 

five selected architectures 

 Program:  Mate connection complexity vector is given to custom ANN 

assembly time prediction function as test input and the function outputs 

replicated results 

 Program:  Results are interpreted and a predicted assembly time is 

displayed 

To test the developed assembly time prediction tool, a product that has not been 

previously used for training or the interpretation of results is identified and used for 

testing.  A Durabrand Electric Knife was selected for final testing because it is similar in 

size, part count, and product family to the products and assembly models used for 

training.  The SolidWorks assembly model generated for the Electric Knife forms a rough 

representation of the actual product but it is not an exact replica.  Once the Electric Knife 

assembly model was generated, a virtual Boothroyd Dewhurst DFA analysis was 

conducted, taking approximately thirty three minutes to complete, that predicted an 
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assembly time of 212.34 seconds.  The new assembly time prediction tool is evaluated by 

opening the assembly model for the Electric Knife and clicking on the assembly time 

prediction SolidWorks Add-in. 

The Electric Knife assembly model was tested using the top five selected 

architectures from Table 6.6.  This testing was repeated for all eight training cases listed 

in Table 6.1.   The predicted assembly times from the new tool are tabulated in Table 6.7.  

The cells in the table are shaded to illustrate the level of accuracy for the different tests; 

green shading indicates that the values returned are within the +/- 25% tolerance range 

and the yellow shading indicates that the values are within the +/- 50% tolerance range. 

Table 6.7:  Predicted assembly times for an electric knife using fully automated 

assembly time predication tool 

Training Set 

Name 

Electric Knife 

Target Time  

(s) 

Predicted Time from 

Loaded Training Set  

(s) 

% Error 

(+/-) 

Analysis Time  

(s) 

Case 1 

212.34 

457.83 +54 68 

Case 2 665.87 +68 67 

Case 3 315.23 +33 67 

Case 4 434.02 +51 70 

Case 5 407.4 +48 68 

Case 6 251.7 +16 67 

Case 7 204.59 -4 68 

Case 8 225.34 +6 68 
 

Table 6.7 shows that the percent error in the predicted time for the eight loaded 

training sets ranges from -4% to +68% error.  If the cases are broken down into general 

categories, the same conclusions that were inferred in the previous training case 

investigation in Section 6.1 are made again in Table 6.7.  Training Case 1, Case 2, Case 

4, and Case 5 all had a training size of eleven inputs and targets but reused training inputs 
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which resulted with the highest percent errors ranging from 47% to 68% error.  Training 

Case 3 which had twice the training size, twenty-two, but also reuses training inputs 

resulted in a percent error of 33%.  Training Case 6, Case 7, and Case 8 had training sizes 

of twelve inputs and targets each of which are unique.  .  This resulted in the lowest 

percent error ranging from -4% to +16% error.  These percent errors are well within the 

+/- 50% errors that are possible with the Boothroyd Dewhurst method [30]. 

Running the analysis on this test product while loading trained neural networks 

took less than 111 seconds once Matlab was opened.  The total time to run the analysis 

including opening and initializing Matlab which takes approximately another 120 

seconds making the total approximate analysis time 330 seconds.  By fully integrating a 

trained ANN in C++ within the add-in the user of Matlab could be eliminated improving 

the run time efficiency. 

6.3.2 Mate Sensitivity Analysis 

During the initial automation of the method presented in Chapter 5.  , the effect of 

different mating configurations was briefly explored.  The Mag Light assembly model 

that was un-mated was given to two designers and they were each asked to add mates to 

the assembly as they saw fit creating a partially defined model.  Once this was completed 

they were asked to add more mates until every part in the assembly was fully constrained 

resulting in a fully defined model.  The predicted assembly times of all four assemblies 

were then analyzed to determine if two different mating styles would result in 

significantly different assembly times.  The initial automation used the top five 

architectures for the specific training set in question and the results showed that there was 
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a change in the predicted assembly time depending on the mating configuration used, 

Table 5.6.  This initial investigation only looked at two designer’s mate configurations 

for one product which was enough to identify that the configuration does affect the 

assembly time but not to quantify by how much or what about the mate configuration 

caused the variations.  A continuation of the initial mate sensitivity presented in Chapter 

5.   is presented in the rest of this sub section to quantify some of these aspects. 

With a fully automated version of the assembly time prediction tool a more 

detailed mate sensitivity analysis can be conducted.  Three separate products were chosen 

for this study:  the Solar Yard Light, the Black & Decker Drill, and the One Touch 

Chopper.  These three products and their respective part count, Boothroyd Dewhurst 

predicted assembly times, and their product structures are listed in Table 6.8. 

Table 6.8:  Selected products for mate sensitivity study 

Product 
Part 

Count 

Boothroyd Predicted 

Assembly Time (s) 
Product Structure 

Solar Yard Light 15 128.79 Circular 

Black & Decker Drill 26 186.65 Clam Shell 

One Touch Chopper 43 316.67 
Combo:  Clam Shell & 

Stackable 
 

Table 6.8 shows that these products represent the variety of products used in the 

different training sets.  This variety includes assembly time, part count, and general 

product structure, all of which are different for all three products listed.  Circular product 

structures are composed of products that generally have circular cross sections, have parts 

that can be located with two constraints, and where the majority of components are 
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inserted along the same axis.  Clam shell product structures are products that sandwich 

the majority of parts between two halves.  Stackable product structures generally have 

some type of base or foundation where other parts are stacked on top of one another to 

create the assembly.  Products can also have structures that are based on any combination 

of these. 

The assembly models for each product were prepared by creating an assembly file 

that contained all individual components for that product without any mates and by 

creating a separate reference assembly file that illustrated how the product is assembled.  

The reference assembly file allows the students to see how the product is put together.  

To prevent the students from being influenced by the reference assembly and the mates 

used to define it, the parts were fixed in place and all mates were deleted.  An exploded 

view of the reference assembly was also created to aid them in determining the assembly 

sequence.  The reference model for the Black & Decker drill is shown in Figure 6.1. 
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Figure 6.1:  Exploded view of Solar Yard Light Reference Assembly 

The exploded view of the reference assemblies could be collapsed so that the 

parts exact location within the assembly could be seen.  The product assembly file 

provided to the students included all of the product parts in the general location with 

respect to the parts they will be mated to.  The students will have to position the parts in 

the correct location and then add mates to the assembly as they see fit.  Figure 6.2 shows 

the Solar Yard Light assembly model provided to the students so that they can add mates 

as they see fit.   
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Figure 6.2:  Solar Yard Light assembly model provided to students with no mates 

The assembly models and reference assembly models for all three products were 

distributed to senior and graduate mechanical engineering students enrolled in a Design 

for Manufacturing course.  The students were allowed to add mates to the unmated 

collection of parts as they felt appropriate.  These final mated assemblies were then used 

for assembly estimation time analysis with the developed tool. 

Upon completion of the mating activity, the students completed an on-line form 

asking: graduate or undergraduate student, SolidWorks Assembly experience, frequency 

of SolidWorks assembly creation, and approximate time to add mates to the assembly.  

The level of SolidWorks assembly experience is displayed in terms of low, medium, and 

high levels where low experience relates to mating less than ten assemblies, medium 

experience relates to mating between ten and fifty assemblies, and high experience is 
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mating more than fifty assemblies.  The frequency of SolidWorks assembly usage is also 

displayed as low, medium, or high where high frequency relates to working with 

assembly models at least once a week, medium frequency relates to working with 

assembly models once a month, and low frequency relates to working with assembly 

models less than a year.  It should be noted that some students choose not to add mates to 

all of the assemblies.  The form results are summarized in Table 6.9. 

Table 6.9:  Form results from mate sensitivity study of assembly time prediction tool 

S
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SW 

Assembly 

Experience 

SW 

Assembly 

Usage 

Frequency 

Mate Time 

Light 

(min) 

Mate Time 

Drill (min) 

Mate Time 

Chopper 

(min) 

S1 UG Low Low 30 < t < 45 45 < t < 60 NA 

S2 UG Low Low 60 < t < 90 NA NA 

S3 UG Low Med. 15 < t < 30 NA NA 

S4 Grad Low Med. 15 < t < 30 45 < t < 60 NA 

S5 Grad Med. Med. 30 < t < 45 t < 15 60 < t < 90 

S6 Grad Med. High NA 30 < t < 45 30 < t < 45 

S7 UG Med. Med. 15 < t < 30 45 < t < 60 30 < t < 45 

S8 Grad Low Med. 45 < t < 60 t < 90 45 < t < 60 

S9 Grad Med. Med. 30 < t < 45 45 < t < 60 45 < t < 60 

S10 Grad Low High 45 < t < 60 t < 15 NA 

S11 UG Med. Low 15 < t < 30 NA NA 
 

The results of Table 6.9 show that about half of the students had low assembly 

experience and the other half had medium assembly experience.  These results also show 

that three students had low assembly usage frequency, six students had medium usage 

frequency, and two had high usage frequency.  This shows that the majority of the 

students worked with assembly models with at least once a month on average. 
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Once all of the mated assemblies were compiled, the automated assembly time 

prediction tool developed was used to predict a respective assembly time.  The number of 

mates the students added, the target time, the predicted assembly times for each student’s 

assembly, the percent error in the predicted time, and the Matlab analysis time for the 

Solar Yard Light are shown in Table 6.10.  The analysis time shown in Table 6.10 does 

not include the time to open up and initialize Matlab.  The cells in the table are shaded to 

illustrate the level of accuracy for the different tests; green shading indicates that the 

values returned are within the +/- 25% tolerance range and the yellow shading indicates 

that the values are within the +/- 50% tolerance range. 

Table 6.10:  Mate sensitivity analysis for Solar Yard Light 

Student 

Solar Yard 

Light Target 

Time 

# of Mates 

Predicted 

Time from 

Loaded 

Training Set 

% Error  

(+/-) 

Analysis 

Time (s) 

Student 1 

128.79 

33 129.56 +1 67 

Student 2 32 110.99 -16 71 

Student 3 25 88.71 -45 68 

Student 4 36 121.08 -6 69 

Student 5 38 115.95 -11 70 

Student 7 36 145.95 +12 64 

Student 8 35 131.32 +2 65 

Student 9 41 107.08 -20 63 

Student 10 36 125.39 -3 64 

Student 11 36 111.3 -16 64 
 

One of the students did not submit an assembled Solar Yard light resulting in only 

ten assembly models evaluated in Table 6.10.  Of the ten different mated assembly 

configurations analyzed, the percent error in the predicted assembly time ranged from -

45% to +12% error with the average of the absolute values being 13% error.  Looking at 
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Table 6.10, the number of mates each student added does not appear to directly relate to 

the predicted assembly time and the percent error.  Student one used thirty three mates 

and student two used thirty two mates but between but the predicted assembly times had 

+1% and -16% error respectively.  Likewise, Students four, seven, ten, and eleven all 

used thirty six mates but the percent errors were -6%, +12%, -3%, and -16% respectively.  

Student three used the least number of mates, twenty five, but had the largest percent 

error, -45%.  Since the number of mates does not appear to directly relate to the predicted 

assembly time, the significantly higher percent error for Student 3 could possibly be 

caused by different assembly definition, emphasis on one type of mate usage, or usage of 

reference geometry to mate parts.  To fully understand the cause of this localized increase 

in percent error, a detailed study investigating the types of mates used and the respective 

complexity vectors created has to be conducted; this is reserved for future work. 

It is important to note that all of these student mated assemblies were within +/- 

50% of the target time and nine of the ten were within +/- 25% of the target.  Excluding 

the predicted time from Student 3’s model the percent error range changes from -20% to 

+12% error.  The analysis time to predict these assembly times was less than seventy-two 

seconds for each model per model; this time to complete the analysis does not include the 

time it takes Matlab to open and initialize which is approximately 120 seconds.  The 

original target assembly time for the Solar Yard Light was predicted using a Virtual 

Boothroyd Dewhurst DFA analysis, taking 3,300 seconds (55 minutes) to complete the 

analysis manually. 
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Eight of the eleven students added mates to the Black & Decker drill assembly.  

The number of mates they added to drill, their predicted assembly times and the percent 

error with respect to the target time are shown in Table 6.11.  The cells in the table are 

shaded to illustrate the level of accuracy for the different tests; green shading indicates 

that the values returned are within the +/- 25% tolerance range and the yellow shading 

would indicate that the values are within the +/- 50% tolerance range. 

Table 6.11:  Mate sensitivity analysis for Black & Decker Drill 

Student 

Black & 

Decker Drill 

Target Time 

(s) 

# of Mates 

Predicted 

Time from 

Loaded 

Training Set 

% Error  

(+/-) 

Analysis 

Time (s) 

Student 1 

189.65 

52 205.73 +8 68 

Student 4 46 188.4 -1 67 

Student 5 59 220.69 +14 68 

Student 6 53 240.25 +21 64 

Student 7 59 232.04 +18 65 

Student 8 62 190.21 +0.3 64 

Student 9 50 224.9 +16 63 

Student 10 48 213.6 +11 65 
 

Out of the eight different mating configurations analyzed for the Black & Decker 

drill, the percent errors ranged from -1% to 21% error with the average of the absolute 

values being 11% error.  The analysis time required to complete the analysis for each 

assembly was less than sixty-eight seconds excluding the time it takes Matlab to open and 

initialize.  The target assembly time for the Black & Decker drill was predicted using a 

Virtual Boothroyd Dewhurst DFA analysis which took 2,520 seconds (42 minutes) to 

complete. 
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Five of the eleven students added mates to the One Touch Chopper assembly, the 

predicted assembly times and the percent error with respect to the target time are shown 

in Table 6.12.  The cells in the table are shaded to illustrate the level of accuracy for the 

different tests; green shading indicates that the values returned are within the +/- 25% 

tolerance range and the yellow shading would indicate that the values are within the +/- 

50% tolerance range. 

 Table 6.12:  Mate sensitivity analysis for One Touch Chopper 

Student 

One Touch 

Chopper 

Target Time 

(s) 

# of 

Mates 

Predicted 

Time from 

Loaded 

Training Set 

% Error  

(+/-) 

Analysis 

Time (s) 

Student 2 

316.62 

89 336.91 +6 65 

Student 6 90 357.1 +11 67 

Student 7 91 322.17 +2 68 

Student 8 104 325.07 +3 65 

Student 9 86 352.57 +10 64 
 

The percent errors of the five mating configurations for the One Touch Chopper 

ranged from +2% to +11% with the average of the absolute values being 6% error.  The 

analysis time to predict the assembly times was less than sixty eight seconds excluding 

the time required to open up and initialize Matlab.  The target assembly time for the One 

Touch Chopper was predicted using a Virtual Boothroyd Dewhurst DFA analysis which 

took 8,160 seconds (136 minutes) to complete. 

A total summary of the products each student mated and the respective percent 

errors of the predicted assembly times are shown in Table 6.13. 
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Table 6.13:  Summary of % errors for each student for each product 

Student 
Solar Yard Light  

% Error (+/-) 

Black & Decker Drill  

% Error (+/-) 

One Touch Chopper  

% Error (+/-) 

Student 1 +1 +8 NA 

Student 2 -16 NA +6 

Student 3 -45 NA NA 

Student 4 -6 -1 NA 

Student 5 -11 +14 NA 

Student 6 NA +21 +11 

Student 7 +12 +18 +2 

Student 8 +2 +0.3 +3 

Student 9 -20 +16 +10 

Student 10 -3 +11 NA 

Student 11 -16 NA NA 
 

All of the percent errors shown in Table 6.13 are within +/- 45% error of the 

target assembly times for the given product putting them within the +/-50% Boothroyd 

tolerance range.  If you remove the predicted assembly time for Student 3’s Solar Yard 

Light the range of percent errors drops to +/- 21% error.  It should also be noted that the 

highest percent errors for the Black & Decker Drill and the One Touch Chopper were 

from both from Student 6 who had a medium level of SW assembly experience and a 

high SW assembly usage frequency.  Since the percent errors shown in Table 6.13 do not 

significantly vary across the three products, this suggests that the automated tool 

performs well for the variety of test products used in this study which were summarized 

in Table 6.8.  This preliminary study is, admittedly, not statistically significant, but it 

does illustrate the potential insensitivity of the tool to designer choice for mating 

approaches. 

To effectively draw conclusions about a specific student’s percent errors, all of 

the students should have added mates to all of the products.  Every assembly model 
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would then have to be individually opened to investigate which types of mates were used.  

This information along with the mate connection complexity vector could be used to 

investigate what types of mates have the most significant effect on the predicted 

assembly time. 

The results from this mate sensitivity study indicate that different mating 

configurations and the number of mates used to constrain a product do not significantly 

affect the predicted assembly times.  With a small sample size of only eleven students 

across three products, all of the predicted assembly times were predicted with as little as 

1% error but they were also predicted with as much as 45% error.  Even though the 

mating configuration provided a range of results they were within the +/- 50% tolerance 

range.  The results show that the predicted assembly time will vary between mating 

configurations but in all cases but one, the percent errors were within +/-21% which is an 

acceptable range.  The range of percent errors within this mate sensitivity study is 

generally less than those found in the training case investigation, indicating that the 

training case will more generally govern the accuracy of the predicted assembly time 

over a variation in mating schemes.  To understand what mating configurations increase 

or decrease the accuracy of the predicted assembly time a more detailed mate sensitivity 

study should be conducted; this is reserved for future work. 

6.4 Evaluation and Comparison of Automated Assembly Time Prediction Tool 

The purpose of this research is to develop an automatic assembly time prediction 

tool to address the issues with existing DFA methods summarized in Section 1.3.  To 

determine if the automatic assembly time prediction tool addresses these issues it must be 
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evaluated.  Chapter 4.   discusses a DFA evaluation and comparison to identify the 

overall effectiveness and ability to automate two DFA methods, the original Connectivity 

Complexity method and the Boothroyd Dewhurst DFMA software [1].  This evaluation 

and comparison is used in this section to examine the effectiveness of the automated 

assembly time prediction tool. 

The DFA evaluation presented in Chapter 4.   consists of analyzing five aspects of 

the method in question: 

 The approximate time required to complete the analysis 

 The predicted assembly times for each product 

 The amounts and types of information required by the user to complete the 

analysis 

 The method’s repeatability/subjectivity  

 The method’s features for redesign support 

The automated assembly time prediction tool was evaluated based on each of 

these criteria to determine its overall effectiveness, to compare it to existing DFA 

methods, and to determine if it addresses the issues with existing DFA methods. 

The results from the evaluation of the automated assembly time prediction tool 

are summarized in Table 6.14. 
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Table 6.14: Automated assembly time prediction tool evaluation criterion summary 

Evaluation 

Criteria 

Evaluation 

Results 
Justification 

Satisfaction with 

approximate analysis 

time 

High Satisfaction Analysis takes less than 5 minutes 

Predicted assembly 

times 

Varying accuracy 

(but generally 

within the B&D 

admitted range) 

Depends on ANN training set: 

Best case 4% error 

Worst case 68% error 

Amounts/types of 

information 
0 

Requires no additional inputs from 

user 

Repeatability/ 

subjectivity 
0% Subjective Repeatable, and consistent 

# of Features for 

redesigns 
0 

Currently provides no redesign 

features 
 

Each evaluation criteria is addressed specifically in the following sub sections. 

6.4.1 Approximate Analysis Time 

Since the tool being evaluated is fully automated the time to complete the analysis 

is purely based on computation time.  If a new ANN training scheme is developed based 

on the method presented in Section 5.4, the amount of training time could take several 

hours.  If only a small set of selected ANN architectures are being trained, the training 

time can be significantly reduced.  The fully automated assembly time prediction tool 

loads previously trained ANNs that only use the five architectures chosen in Section 6.2, 

greatly reducing the computation time. 

By using these techniques the automated assembly time prediction tool can 

predict the assembly time of a SolidWorks assembly model within a few minutes.  The 

majority of the time required to predict the assembly time is attributed to opening and 

initializing Matlab, which takes around two minutes.  Once Matlab has been opened the 
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assembly time for all of the models tested in the previous sections took less than 72 

seconds.  The total analysis time is less than a few minutes, which equates to a high level 

analysis time satisfaction based on the original evaluation, Section 4.6.2.  Analysis times 

measured in hours equate to medium levels of satisfaction and times measured in days 

equate to low levels of analysis time satisfaction. 

6.4.2 Accuracy of Predicted Assembly Times 

The accuracy of the assembly times predicted with the automated tool are defined 

with respect to the target times used to train the ANNs.  Since the actual assembly times 

of the products used for training and testing were not known, the manual Boothroyd 

Dewhurst DFA tables were used to predict the assembly times of the physical products or 

the virtual products.  The accuracy of the automated assembly time prediction tool is 

measured by its effectiveness to predict a time that would equal the Boothroyd Dewhurst 

predicted time.  

The overall accuracy of the automated tool is undetermined since it ultimately 

depends on the training case used (Section 6.3.1) and the variability due to different 

mating schemes (Section 6.3.2).  The variability due to training case usage was explored 

in the Electric Knife test (Section 6.3.1).  The automated assembly time prediction tool 

was used to predict an assembly time for the Electric Knife assembly model using all 

eight training cases, Table 6.7.  The percent error of the predicted assembly time varied 

from 68% to 4% depending on the training case.  Based on this investigation it was 

determined that using larger sets with all unique training inputs, like training Case 7, 

would generally yield the best results. 
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6.4.3 Amounts and Types of User Inputs 

The automated assembly time prediction tool only requires the user to open a SW 

assembly model that already contains specified mates and click the assembly time 

prediction tool add-in button.  The tool then extracts the mates from the assembly and 

uses them to predict the assembly time of the SW assembly.  Therefore, the tool does not 

require any inputs from the user that are not available directly from the assembly models. 

6.4.4 Repeatability / Subjectivity and Features for Redesign 

Section 4.6.4 evaluates the repeatability of a method by comparing the output 

predicted assembly times when the same analysis is conducted by different designers.  

The repeatability of the tool is defined by its ability to generate the same output when 

given the same input.  Since the only information input required by the user to complete 

the analysis is an assembly model, the automated assembly time prediction tool is 

repeatable.  If multiple designers open up the same assembly model and run the add-in 

then the same assembly time will be predicted.  To illustrate the repeatability, the 

automated add-in tool was repeated five times on the Durabrand Hand Mixer and resulted 

with the exact same predicted assembly times but with different analysis times, Table 

6.15. 
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Table 6.15:  Repeatability of automated assembly time prediction tool 

Durabrand Hand 

Mixer Target 

Time (s) 

Training Case 6:  

Predicted Time (s) 
% Error (+/-) Analysis Time (s) 

263.21 

389.8946 32 85.5 

389.8946 32 73.4 

389.8946 32 73.9 

389.8946 32 76.0 

389.8946 32 76.3 
 

This table shows that the analysis is different every time but that the results are 

not.  For other DFA methods, since the analysis requires the user to answer subjective 

questions to complete the analysis, the results will vary between users. 

Currently the automated assembly time prediction tool does not provide any 

features to aid the designer in redesigning to improve the product with regards to 

assembly. 

6.4.5 Comparison of automated assembly time prediction tool 

Table 6.16 summarizes the evaluation results for the automated assembly time 

prediction tool along with the original Connectivity Complexity and the Boothroyd 

Dewhurst DFMA software evaluation results from Section 4.7. 
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Table 6.16: Comparison summary of DFA methods 

Evaluation 

Criteria 
DFMA Results 

Connectivity 

DFA results 

Automated 

Assembly Time 

Prediction Tool 

Approximate analysis 

time 
Medium Medium High 

Predicted assembly 

times 
Baseline Not accurate 

Varying 

accuracy 

Amounts/types of 

information 

8 types, 49 

questions, 16 

subjective 

5 types, 0 

subjective 
0 

Repeatability/ 

subjectivity 
33% Subjective 0% Subjective 0% Subjective 

# of Features for 

redesigns 
11 0 0 

 

Based on the comparison in Table 6.16 the automated assembly time prediction 

tool has benefits over the Boothroyd Dewhurst DFMA software and the original 

Connectivity Complexity method.  The automated tool takes less than five minutes to 

predict an assembly time where the other two methods require analyses times measured 

in hours.  The accuracy of the predicted assembly time using the automated tool varies 

depending on the training case used with the program.  For certain training schemes the 

predicted assembly time had as little as 4% error which is considered accurate, but for 

other training schemes the predicted time had as much as 68% error which is not 

accurate.  In almost all cases tested, the predicted assembly time was within +/- 50% of 

the target value which is within the +/- 50% specified tolerance that could exist using the 

Boothroyd Dewhurst method [30].  The automated tool does show an improvement over 

the original Connectivity method which was identified as not being accurate in Section 

4.7. 
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One of the major improvements that the automated tool has over the DFMA 

software and the original Connectivity method is that it requires no extra user inputs to 

complete the analysis.  A SolidWorks assembly that has already been mated can be 

opened and the assembly time can be predicted by clicking on the developed assembly 

time prediction add-in.  The Boothroyd DFMA software requires the user to answer 

extensive amounts and types of information to complete the analysis.  This is where the 

Boothroyd method becomes tedious and time consuming which is not desired.  Since the 

new tool is automated it requires no extra from the designer to complete the analysis.  

Since the automated method requires no extra user inputs it is completely repeatable 

between designers.  The current version of the automated assembly time prediction tool 

does not offer any suggestions for redesign; this is reserved for future work.  Overall 

Effectiveness of Developed DFA Tool 

6.5 Overall Effectiveness of Developed DFA Tool 

The literature review in Chapter 1.   identifies a set of limitations that existing 

DFA methods have and it suggests that to eliminate these issues, automated methods or 

tools must be developed.  This thesis has focused on developing an automated assembly 

time prediction tool to address these issues.  Chapter 6.   presents the developed fully 

automated assembly time prediction tool that extracts the required information from 

SolidWorks assembly models to complete the analysis, but does this tool address the third 

research question of this thesis: 

RQ3:   Does the automated method solve the issues that the previous 

methods have:  time consuming, repeatability, ease of use, etc? 
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The existing DFA issues identified in Chapter 1.   are summarized again in Table 

6.17 along with whether the automated assembly time prediction tool addresses the issue 

which is highlighted in green, does not address the issue which is highlighted in red, or 

partially addresses the issue which is highlighted in yellow. 

Table 6.17:  Does the automated tool address existing DFA issues 

Issues 
Issue 

Addressed? 
Justification 

Requires subjective 

or implicit user inputs 
Yes 

Requires no user inputs to complete the 

analysis 

Tedious Yes 
Requires no extra effort from the user to 

complete the analysis 

Time consuming Yes 
Predicts an assembly time within a few 

minutes 

Extensive user inputs Yes 
Requires no user inputs to complete the 

analysis 

Requires design 

details (geometry, 

etc.) 

Yes 

& 

No 

Addressed:  finalized part features are not 

required to mate two parts 

Not Addressed:  some sort of part 

representation must be created 

Reactive or redesign 

tools 

Yes 

& 

No 

Addressed:  if design process uses solid 

modeling assemblies concurrently 

Not Addressed:  if design is finalized and then 

modeled 

Stand alone systems Yes 
Automated tool is integrated into existing solid 

modeling software 

Implicitly identified 

design improvements 
No 

Automated tool does not identify suggestions 

for redesign 

Lack foundation to 

relate DFA time and 

cost to part geometry 

Yes  

&  

No 

Addressed:  tool provides foundation to relate 

assembly mate connections to assembly time 

Not Addressed:  Doesn’t relate directly time 

specifically to geometry 
 

The automated assembly time prediction tool specifically addressed five of the 

nine issues, partially addressed three of the nine issues, and did not answer one of the 

nine issues listed in Table 6.17.  The first four issues in Table 6.17 are partially addressed 
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in Section 6.4.5 where the results from the DFA comparison identifies that the automated 

assembly time prediction tool only requires a few minutes to predict an assembly time 

and does not require additional inputs from the user which addresses the subjectivity and 

the tediousness of the analysis. 

The three issues that the automated assembly time prediction tool partially 

addresses depend on how the analysis is approached.  The automated tool does not 

require geometric details to complete the analysis but it does require mate connections to 

be specified to complete the analysis.  These mate connections could be as simple as 

black box representations of how the model would be constrained and do not require 

exact geometric information to be specified.   

The automated tool can be used as a concurrent or a redesign tool depending on 

the specific application.  The presentation of the tool in this thesis only tested used the 

tool on fully assembled models, as a redesign tool, and did not investigate its use as a 

concurrent tool.  Since the automated tool only requires mates to predict an assembly 

time, the tool could be used as designers start designing assemblies within solid modeling 

software.  They can start evaluating the predicted assembly time as they go through the 

process.  Future versions of this tool could display the predicted assembly time in real 

time, so as the designer adds parts and mates the assembly time would be updated on the 

screen.  If a specific sub assembly is added that increases the assembly time significantly 

then it could be investigated for design improvements.  Even though the tool can be used 

concurrently, its effectiveness will eventually depend on its ability to identify suggestions 

for redesign which is the DFA issue that this tool does not address.  The automated tool 
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currently does not offer any suggestion for redesign but this will be investigated in future 

work. 

The research hypothesis for the third research question was: 

RQ3 

Hypothesis:   

The automated method addresses the issues that current DFA methods 

have. 

Based on the DFA issues presented in Table 6.17, the automated assembly time 

prediction tool addresses all of the existing issues except for providing suggestions for 

redesign.  By addressing these issues, the negative effects that each issue has on the 

implementation of DFA is reduced.  With the automated assembly time prediction tool, 

designers will be more likely to implement the tool throughout the design process 

improving the design with respect to assembly. 
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CHAPTER 7.  CONCLUSIONS AND FUTURE WORK 

The development and implementation of an automated assembly time prediction 

tool that extracts mates from SolidWorks assemblies and uses them to predict a product 

assembly time was presented in this thesis.  Chapter 1.   surveyed current DFA methods 

and tools to identify the current limitations and issues that reduce their effectiveness.  

From this review, it was determined that a fully automated DFA method is required.  

Chapter 2.   investigated previous research attempts that focused on automating existing 

methods.  It was determined that most methods could never be fully automated because 

they require some type of subjective user inputs.  Based on this information it was 

determined that a truly automated DFA method or tool should be developed so that it can 

be effectively implemented throughout the design process.  To develop this tool three 

research questions were identified in Chapter 3.   and successfully addressed in Chapter 

4.  , Chapter 5.  , and in Chapter 6.  , resulting in the automated assembly time prediction 

tool.  These specific research questions and the respective research contributions are 

summarized in Section 7.1.  The limitations and future work with the presented research 

are covered in Section 7.2. 

7.1 Research Contributions 

The first research question evaluated two assembly time prediction methods, the 

Boothroyd Dewhurst DFMA software and the Connectivity Complexity method, to 

determine which one should be automated based on the amounts and types of information 

required by the user to complete the analysis.  The Connectivity Complexity method was 
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identified for automation since it only required five types of information inputs, none of 

which were subjective.  The major research contribution from Chapter 4.   was the DFA 

evaluation used to compare DFA methods.  The evaluation identifies the important DFA 

aspects like number and types of user inputs or time to conduct the analysis.  This 

evaluation allows DFA methods to be compared for bench marking purposes and it 

identifies their issues so that they can be improved.  This evaluation can be applied to any 

method to determine its overall effectiveness and its ability to be automated. 

The second research question which is addressed in Chapter 5.   identifies that the 

Connectivity Complexity method can be automated by extracting the required user inputs 

from solid modeling software.  The major research contribution from Chapter 5.   was 

proving that the Connectivity Complexity method could be automated.  The original 

Connectivity Complexity method used the physical inter part connections to predict an 

assembly time using a trained regression analysis. 

The research in Chapter 5.   modified the original method so that instead of using 

inter part connections it uses the mate connections from three dimensional assembly 

models.  These mate connections are automatically extracted with the developed Mate 

Extraction Tool.  This tool extracts the mates from SolidWorks assembly models and 

automatically assembles the bi-partite connection tables required to complete the 

analysis.  The complexity of these mate connection graphs is identified using a custom 

Matlab algorithm.  Trained artificial neural networks are then used to predict an assembly 

time based on the complexity vector.  The tool developed and used in Chapter 5.   was 

only partially automated, but it identified that defined mates in three-dimensional 
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assembly models could be automatically extracted and used to predict a products 

assembly time. 

Chapter 6.   addresses the third research question, which was to determine if the 

identified tool addresses the issues that the existing DFA methods have.  Before this 

research question was specifically addressed, the tool from Chapter 5.   was fully 

automated which required investigation and selection of ANN training schemes.  The 

first research contribution of Chapter 6.   was the ANN training case investigation, which 

determined which types of training cases are most effective.  It was determined that 

larger training cases that used all unique training inputs were more effective than smaller 

training cases that reused training inputs but matched them to different targets.  The 

results from the training case investigation were then used to select five ANN 

architectures out of the 189 to be used in the automated assembly time prediction tool. 

The second research contribution presented in Chapter 6.   was the development 

and evaluation of a fully automated assembly time prediction tool.  The automated 

assembly time prediction tool was tested and evaluated to determine its effectiveness.  

The results of the evaluation determine that the automated tool addresses all of the DFA 

issues previously identified except for one, identify suggestions for redesign.  Even 

though the current version of the automated assembly time prediction tool does not offer 

suggestions for redesign, it offers major improvements over existing DFA methods.  The 

automated assembly time prediction tool requires no additional inputs from the user to 

complete the analysis.  Since it does not require additional inputs it is completely 

repeatable.  The total analysis time required to predict an assembly time of a SolidWorks 
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assembly takes less than five minutes.  Traditional methods would require a designer to 

manually conduct the analysis which could take up to several hours depending on the 

product. 

The automated assembly time prediction tool does address the majority of the 

issues with existing DFA methods but it still has limitations and requires future work, 

both of which are summarized in Section 7.2. 

7.2 Limitations and Future Work 

Even though the automated assembly time prediction tool does address all of the 

identified DFA issues except for one, it still has limitations that must be addressed with 

future work.  The limitations with this research can be broken down into three categories 

related to:  the ANN training cases used, the mating scheme sensitivity, and the 

robustness of the mate extraction add-in.  Each of these limitations is addressed in the 

following sub sections. 

7.2.1 Limitation with Regards to ANN Training Cases 

The research presented in Chapter 6.   identified that the training case used to train 

the ANNs can significantly affect the results of the predicted assembly times.  For 

example the predicted times for the Electric Knife test case ranged from -4% to +68% 

depending on the training case used, Table 6.7.  It was recommended that future training 

cases should use a set of at least eleven unique training inputs and targets that are made 

up of partially defined assembly models to improve the accuracy of the predicted 

assembly times.  The investigations into ANN training case types used to make this 
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recommendation are only initial studies.  These studies should be continued using larger 

sample sizes to make more effective or specific recommendations but this is reserved for 

future work.  Future studies should also investigate whether the test inputs are internal or 

external to the training sets used.  Internal test inputs would be products that have part 

counts, component counts, and complexities within the range of the training case and 

external inputs would have values outside of the range of the training case. 

During the development of this tool eight different training cases were evaluated 

to determine their effect on the predicted assembly times and to select five ANN 

architectures to use with the automated tool.  The selection process for choosing the five 

ANN architectures is a repeatable method, but it may not select the overall best 

architectures.  A formalized architecture selection process that chooses the five most 

effective architecture structures should be investigated in future work. 

7.2.2 Limitation with Regards to Mating Sensitivity 

With the initial development of the automated assembly time prediction tool 

presented in Chapter 5.   the tools sensitivity to different mating styles was identified 

early on.  The variability in predicted assembly times was first identified in Section 5.6 

which showed that between two designers that add mates to the same assembly model the 

predicted assembly times could vary from -7% to + 27% error.  This motivated a mate 

sensitivity investigation (Section 6.3.2).  The second study used the fully automated 

version of the assembly time prediction tool along with:  a more effective ANN training 

case, three different test products, and up to eleven different test subjects.  The results 

showed that for a given product the % errors are within +/- 20% error for all cases except 
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for one outlier that had a -45% error.  The mate sensitivity study presented in this thesis 

only evaluated the variability between different test subjects’ assembly times.  This 

research did not explore the specific effect that different mating styles have on the 

predicted assembly times.  Further investigation into mating variability and its effect on 

the predicted assembly time using this tool is reserved for future work. 

7.2.3 Limitation with Regards to Program Robustness 

The automated assembly time prediction tool is a SolidWorks custom add-in that 

extracts the defined mates from an assembly model and uses the complexity of the mate 

connection graphs to predict an assembly time based using trained ANNs.  The 

automated tool has successfully predicted assembly times within 1% of the target values 

in less than five minutes.  Even though this tool has proven to be effective it still has 

limitations that will need to be addressed in future versions of the tool.  These limitations 

are summarized in the following list: 

 Does not extract mates from subassemblies 

 Does not handle part patterns within assemblies 

 Extracts suppressed mates 

 Requires Matlab to perform computations 

The first three limitations listed can be addressed fairly easily in future versions of 

this tool.  By calling a few more SolidWorks API functions and adding some if 

statements, these programming aspects can be addressed.  The fourth limitation listed, 

requires Matlab for computations, can also be addressed in future versions but would 
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require more work.  The current version of the automated tool predicts an assembly time 

within five minutes; half of this time is attributed to opening up and initializing Matlab.  

If a new version of the tool can be developed that does not use Matlab it will complete 

the analysis faster and it could be used on any computer instead of requiring a license of 

Matlab to use the too. 

The current program uses Matlab for the computational aspects because it is 

designed for computational prototyping through its built-in toolboxes, including several 

ANN algorithms.  Ideally the automated tool would not require a separate program to 

complete the analysis, it would have the computational aspects currently performed by 

Matlab integrated into it so that it becomes a standalone automated tool.  Eliminating the 

use of Matlab from the automated assembly time prediction tool is reserved for Future 

work.  

7.2.4 Extendibility of Current Tool 

The automated assembly time prediction tool presented in this thesis uses mate 

based connections within SolidWorks to predict an assembly time using trained ANNs.  

The trained ANN’s were given complexity vectors of mate connection graphs and 

mapped to Boothroyd Dewhurst predicted assembly times.  The ANN’s determine a 

relationship that relates the complexity of the mate graph to the predicted assembly time, 

essentially eliminating any specific information captured and used by the Boothroyd 

Dewhurst analysis to predict the time.  This may not always be advantageous, there may 

be information stored in the Boothroyd Dewhurst assembly times that could be captured 

and used to improve the automated too. 
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The Boothroyd Dewhurst predicted assembly times use two times to specify the 

total assembly time for a part or product, the handling time and the insertion time.  The 

mate connections stored in SolidWorks do not contain information that can be related to 

Boothroyd Handling times but it is possible that the part constraints defined by the mate 

do relate to insertion times.  Part constraints as defined in SW are determined by their 

insertion axis and connections to other parts which can be related to insertion times as 

defined by Boothroyd Dewhurst.  Using the complexity of an assemblies mate connection 

graph and training it to just Boothroyd Dewhurst predicted insertion times instead of the 

total predicted assembly time may provide better results.  A detailed study into this 

question is reserved for future work. 
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Appendix A.  ANN Training Test Cases 

The specific test case used to train and test ANN training Case 1 is presented 

below.  The first table shows the products withheld from training to test the trained ANN.  

The second table shows the ANN training inputs and respective targets.  The inputs listed 

in both tables are the names of the products but the actual inputs used to train and test the 

ANNs are the complexity vector that matches that product.  The complexity vector that 

matches the given input can be found by matching the product name and the product 

definition with the respective one listed in Appendix B. 

  



 159 

ANN Training Test Case 1:  Fully Defined Assembly Models 

ANN Case 1 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Pencil Compass 68.38 Physical Fully Defined 

MagLight 75.4 Virtual Fully Defined 

Black & Decker Drill 189.65 Virtual Fully Defined 
 

 

ANN Training Case 1 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 36.4 Physical DFA Fully Defined 

G2 Pen 34.4 Virtual DFA Fully Defined 

Solar Yard Light 131.23 Physical DFA Fully Defined 

Solar Yard Light 128.79 Virtual DFA Fully Defined 

Paper Pro 135.06 Physical DFA Fully Defined 

Paper Pro 123.51 Virtual DFA Fully Defined 

InDoor Electric Grill 121.08 Virtual DFA Fully Defined 

Pony Vise 153.3 Physical DFA Fully Defined 

Pony Vise 143.69 Virtual DFA Fully Defined 

OEM 825 Shift Frame 313.7 Virtual DFA Fully Defined 

OEM 825 Wide Flag 58.33 Virtual DFA Fully Defined 
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ANN Training Test Case 2:  Partially Defined Assembly Models 

ANN Case 2 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Pencil Compass 68.38 Physical Partially Defined 

MagLight 75.4 Virtual Partially Defined 

Black & Decker Drill 189.65 Virtual Partially Defined 
 

 

ANN Training Case 2 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 36.4 Physical DFA Partially Defined 

G2 Pen 34.4 Virtual DFA Partially Defined 

Solar Yard Light 131.23 Physical DFA Partially Defined 

Solar Yard Light 128.79 Virtual DFA Partially Defined 

Paper Pro 135.06 Physical DFA Partially Defined 

Paper Pro 123.51 Virtual DFA Partially Defined 

InDoor Electric Grill 121.08 Virtual DFA Partially Defined 

Pony Vise 153.3 Physical DFA Partially Defined 

Pony Vise 143.69 Virtual DFA Partially Defined 

OEM 825 Shift Frame 313.7 Virtual DFA Partially Defined 

OEM 825 Wide Flag 58.33 Virtual DFA Partially Defined 
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ANN Training Case 3:  Combination of Fully and Partially Defined Assembly Models 

ANN Case 3 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Pencil Compass 68.38 Physical Fully Defined 

MagLight 75.4 Virtual Fully Defined 

Black & Decker Drill 189.65 Virtual Fully Defined 

Pencil Compass 68.38 Physical Partially Defined 

MagLight 75.4 Virtual Partially Defined 

Black & Decker Drill 189.65 Virtual Partially Defined 
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ANN Training Case 3 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 36.4 Physical DFA Fully Defined 

G2 Pen 34.4 Virtual DFA Fully Defined 

Solar Yard Light 131.23 Physical DFA Fully Defined 

Solar Yard Light 128.79 Virtual DFA Fully Defined 

Paper Pro 135.06 Physical DFA Fully Defined 

Paper Pro 123.51 Virtual DFA Fully Defined 

InDoor Electric Grill 121.08 Virtual DFA Fully Defined 

Pony Vise 153.3 Physical DFA Fully Defined 

Pony Vise 143.69 Virtual DFA Fully Defined 

OEM 825 Shift Frame 313.7 Virtual DFA Fully Defined 

OEM 825 Wide Flag 58.33 Virtual DFA Fully Defined 

G2 Pen 36.4 Physical DFA Partially Defined 

G2 Pen 34.4 Virtual DFA Partially Defined 

Solar Yard Light 131.23 Physical DFA Partially Defined 

Solar Yard Light 128.79 Virtual DFA Partially Defined 

Paper Pro 135.06 Physical DFA Partially Defined 

Paper Pro 123.51 Virtual DFA Partially Defined 

InDoor Electric Grill 121.08 Virtual DFA Partially Defined 

Pony Vise 153.3 Physical DFA Partially Defined 

Pony Vise 143.69 Virtual DFA Partially Defined 

OEM 825 Shift Frame 313.7 Virtual DFA Partially Defined 

OEM 825 Wide Flag 58.33 Virtual DFA Partially Defined 
 



 163 

 

ANN Training Case 4:  Fully and Partially Defined Assembly Models Filtered Set 

Training Case 4 is designed to be compared with the first three training cases.  It 

can be compared with Case 1 and Case 2 to determine if a combination of fully and 

partially defined models performs better than just one definition type.  It can be compared 

to training Case 3 to determine if the size of a training case affects its results. 

ANN Case 4 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Pencil Compass 68.38 Physical Fully Defined 

MagLight 75.4 Virtual Fully Defined 

Black & Decker Drill 189.65 Virtual Fully Defined 

Pencil Compass 68.38 Physical Partially Defined 

MagLight 75.4 Virtual Partially Defined 

Black & Decker Drill 189.65 Virtual Partially Defined 
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ANN Training Case 4 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 36.4 Actual Fully Defined 

Solar Yard Light 128.79 Virtual Fully Defined 

Paper Pro 123.51 Virtual Fully Defined 

Pony Vise 153.3 Actual Fully Defined 

OEM 825 Shift Frame 313.7 Virtual Fully Defined 

G2 Pen 34.4 Virtual Partially Defined 

Solar Yard Light 131.23 Actual Partially Defined 

Paper Pro 135.06 Actual Partially Defined 

InDoor Electric Grill 121.08 Virtual Partially Defined 

Pony Vise 143.69 Virtual Partially Defined 

OEM 825 Wide Flag 58.33 Virtual Partially Defined 
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ANN Training Case 5:  Fully and Partially Defined Assembly Models Filtered Set Two 

Training Case 5 is designed to be compared with the first three training cases.  It 

can be compared with Case 1 and Case 2 to determine if a combination of fully and 

partially defined models performs better than just one definition type.  It can be compared 

to training Case 3 to determine if the size of a training case affects its results. 

 

ANN Case 5 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Pencil Compass 68.38 Physical Fully Defined 

MagLight 75.4 Virtual Fully Defined 

Black & Decker Drill 189.65 Virtual Fully Defined 

Pencil Compass 68.38 Physical Partially Defined 

MagLight 75.4 Virtual Partially Defined 

Black & Decker Drill 189.65 Virtual Partially Defined 
 

 



 166 

ANN Training Case 5 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 34.4 Virtual Fully 

Solar Yard Light 131.23 Actual Fully 

Paper Pro 135.06 Actual Fully 

InDoor Electric Grill 121.08 Virtual Fully 

Pony Vise 143.69 Virtual Fully 

OEM 825 Wide Flag 58.33 Virtual Fully 

G2 Pen 36.4 Actual Partially 

Solar Yard Light 131.23 Actual Partially 

Paper Pro 123.51 Virtual Partially 

Pony Vise 153.3 Actual Partially 

OEM 825 Shift Frame 313.7 Virtual Partially 
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ANN Training Case 6:  Partially Defined Assembly Models 

Training Case 6 is designed to determine the effect of product variability within 

the training set on the results.  Since a larger product sample size was available for this 

training case, none of the training inputs will be the same but the training case size will 

be approximately the same. 

ANN Case 6 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Paper Pro Stapler 123.51 Virtual Partially Defined 

6" MagLight 75.4 Virtual Partially Defined 

Durabrand Blender 263.21 Virtual Partially Defined 
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ANN Training Case 6 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 34.4 Virtual Partially Defined 

Pencil Compass 69.33 Virtual Partially Defined 

Indoor Electric Grill Model 121.08 Virtual Partially Defined 

Solar Yard Light 128.79 Virtual Partially Defined 

Pony Vise 143.69 Virtual Partially Defined 

Black and Decker Drill 189.65 Virtual Partially Defined 

OEM 825 Shift Frame LH 313.7 Virtual Partially Defined 

OEM 825 Wide Flag  58.33 Virtual Partially Defined 

One Touch Chopper 316.62 Virtual Partially Defined 

Mouse Model 81.25 Virtual Partially Defined 

Boothroyd Piston 

Assembly 
48.01 Virtual Partially Defined 

Hole Punch 145.38 Virtual Partially Defined 
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ANN Training Case 7:  Partially Defined Assembly Models 

Training Case 7 is designed to determine the effect of product variability within 

the training set on the results.  Since a larger product sample size was available for this 

training case, none of the training inputs will be the same but the training case size will 

be approximately the same. 

ANN Case 7 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Solar Yard Light 128.79 Virtual Partially Defined 

Black and Decker Drill 189.65 Virtual Partially Defined 

One Touch Chopper 316.62 Virtual Partially Defined 
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ANN Training Case 7 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 34.4 Virtual Partially Defined 

Pencil Compass 69.33 Virtual Partially Defined 

Indoor Electric Grill Model  121.08 Virtual Partially Defined 

Paper Pro Stapler 123.51 Virtual Partially Defined 

Pony Vise 143.69 Virtual Partially Defined 

6" MagLight 75.4 Virtual Partially Defined 

OEM 825 Shift Frame LH 313.7 Virtual Partially Defined 

OEM 825 Wide Flag  58.33 Virtual Partially Defined 

Durabrand Blender 263.21 Virtual Partially Defined 

Mouse Model 81.25 Virtual Partially Defined 

Boothroyd Piston 

Assembly 
48.01 Virtual Partially Defined 

Hole Punch 145.38 Virtual Partially Defined 
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ANN Training Case 8:  Partially Defined Assembly Models 

Training Case 8 is designed to determine the effect of product variability within 

the training set on the results.  Since a larger product sample size was available for this 

training case, none of the training inputs will be the same but the training case size will 

be approximately the same. 

ANN Case 8 Test Inputs 

Test Input Target Time (s) 
DFA Used for 

Target Time 
Product Definition 

Pencil Compass 68.38 Virtual Partially Defined 

MagLight Virtual 75.4 Virtual Partially Defined 

Black & Decker Drill 

Virtual 
189.65 Virtual Partially Defined 
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ANN Training Case 8 Inputs and Respective Targets 

Complexity Vector 

Training Input for: 

Training 

Target Time 

(s) 

DFA Used for 

Target Time 
Product Definition 

G2 Pen 34.4 Virtual Partially Defined 

Solar Yard Light 128.79 Virtual Partially Defined 

Indoor Electric Grill Model 

(Grab CAD) 
121.08 Virtual Partially Defined 

Paper Pro Stapler 123.51 Virtual Partially Defined 

Pony Vise 143.69 Virtual Partially Defined 

One Touch Chopper 316.62 Virtual Partially Defined 

OEM 825 Shift Frame LH  313.7 Virtual Partially Defined 

OEM 825 Wide Flag 58.33 Virtual Partially Defined 

Durabrand Blender 263.21 Virtual Partially Defined 

Mouse Model 81.25 Virtual Partially Defined 

Boothroyd Piston 

Assembly 
48.01 Virtual Partially Defined 

Hole Punch 145.38 Virtual Partially Defined 
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Appendix B.  ANN Training Test Cases Products 

This appendix includes all of the products used to train and test the artificial 

neural networks required to automate the assembly time prediction tool.  The product 

details, a picture of the product, and the complexity vector of the product are listed in this 

appendix.  This information can be matched to the different training cases above as 

needed. 
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G2 Pen 

The G2 Pen details for the partially defined assembly model are below. 

G2 Pen Product and DFA Specifications 

Product Name G2 Pen 

Constraint Definition Partially Defined 

# of Parts 7 

# of Mates 12 

Constraint Definition Fully Defined 

# of Parts 7 

# of Mates 18 

SW Assembly File Origin 
Reverse Engineered by:   

Eric Owensby 

Product Structure Circular 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
36.4 

Physical DFA Analysis Time (min.) 13 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
34.4 

Virtual DFA Analysis Time (min.) 25 
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G2 Pen:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 7 

Relationships 12 

Connective 
Degrees of Freedom 12 

Connectivity 24 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 72 

Maximum 3 

Average 1.714286 

Density 0.1429 

Flow Rate 

Total 124 

Maximum 6 

Average 2.5306 

Density 0.2109 

C
en

tr
al

it
y

 Betweenness 

Total 30 

Maximum 11 

Average 4.285714 

Density 0.3571 

Clustering Coefficient 

Total 2.333333 

Maximum 1 

Average 0.3333 

Density 0.0278 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 28 

C
o
re

 N
u
m

b
er

s 

In 

Total 14 

Maximum 2 

Average 2 

Density 0.1667 

Out 

Total 14 

Maximum 2 

Average 2 

Density 0.1667 
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G2 Pen:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 8 

Relationships 18 

Connective 
Degrees of Freedom 18 

Connectivity 36 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 82 

Maximum 2 

Average 1.464286 

Density 0.0813 

Flow Rate 

Total 254 

Maximum 6 

Average 3.9688 

Density 0.2205 

C
en

tr
al

it
y

 Betweenness 

Total 26 

Maximum 12.66667 

Average 3.25 

Density 0.1806 

Clustering Coefficient 

Total 4.166667 

Maximum 0.666667 

Average 0.5208 

Density 0.0289 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 45 

C
o
re

 N
u
m

b
er

s 

In 

Total 24 

Maximum 3 

Average 3 

Density 0.1667 

Out 

Total 24 

Maximum 3 

Average 3 

Density 0.1667 
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G2 Pen Assembly Model 

 

 

Exploded View of G2 Pen 
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Pencil Compass 

The Pencil Compass details for the partially defined assembly model are below. 

Pencil Compass Product and DFA Specifications 

Product Name Pencil Compass 

Constraint Definition Partially Defined 

# of Parts 12 

# of Mates 27 

Constraint Definition Fully Defined 

# of Parts 12 

# of Mates 34 

SW Assembly File Origin 
Reverse Engineered by:   

Eric Owensby 

Product Structure Stackable 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
68.38 

Physical DFA Analysis Time (min.) 36 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
69.33 

Virtual DFA Analysis Time (min.) 50 
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Pencil Compass:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 13 

Relationships 27 

Connective 
Degrees of Freedom 27 

Connectivity 54 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 390 

Maximum 5 

Average 2.5 

Density 0.0926 

Flow Rate 

Total 394 

Maximum 9 

Average 2.3314 

Density 0.0863 

C
en

tr
al

it
y

 Betweenness 

Total 234 

Maximum 60 

Average 18 

Density 0.6667 

Clustering Coefficient 

Total 2.133333333 

Maximum 0.666666667 

Average 0.1641 

Density 0.0061 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 116 

C
o
re

 N
u
m

b
er

s 

In 

Total 19 

Maximum 2 

Average 1.461538462 

Density 0.0541 

Out 

Total 19 

Maximum 2 

Average 1.461538462 

Density 0.0541 
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Pencil Compass:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 15 

Relationships 34 

Connective 
Degrees of Freedom 34 

Connectivity 68 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 486 

Maximum 4 

Average 2.314285714 

Density 0.0681 

Flow Rate 

Total 688 

Maximum 10 

Average 3.0578 

Density 0.0899 

C
en

tr
al

it
y

 Betweenness 

Total 276 

Maximum 63.83333333 

Average 18.4 

Density 0.5412 

Clustering Coefficient 

Total 1.966666667 

Maximum 0.5 

Average 0.1311 

Density 0.0039 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 134 

C
o
re

 N
u
m

b
er

s 

In 

Total 26 

Maximum 2 

Average 1.733333333 

Density 0.0510 

Out 

Total 26 

Maximum 2 

Average 1.733333333 

Density 0.0510 
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Pencil Compass Assembly Model 

 

 

Exploded View of Pencil Compass 
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Indoor Electric Grill 

The Indoor Electric Grill details for the partially defined assembly model are 

below. 

Indoor Electric Grill Product and DFA Specifications 

Product Name Indoor Electric Grill 

Constraint Definition Partially Defined 

# of Parts 17 

# of Mates 29 

Constraint Definition Fully Defined 

# of Parts 17 

# of Mates 47 

SW Assembly File Origin Grab CAD 

Product Structure Combination 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
121.08 

Virtual DFA Analysis Time (min.) 85 
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Indoor Electric Grill:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 11 

Relationships 29 

Connective 
Degrees of Freedom 29 

Connectivity 58 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 196 

Maximum 2 

Average 1.781818182 

Density 0.0614 

Flow Rate 

Total 324 

Maximum 27 

Average 2.6777 

Density 0.0923 

C
en

tr
al

it
y

 Betweenness 

Total 86 

Maximum 86 

Average 7.818181818 

Density 0.2696 

Clustering Coefficient 

Total 4.044444444 

Maximum 1 

Average 0.3677 

Density 0.0127 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 123 

C
o
re

 N
u
m

b
er

s 

In 

Total 16 

Maximum 2 

Average 1.454545455 

Density 0.0502 

Out 

Total 16 

Maximum 2 

Average 1.454545455 

Density 0.0502 
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Indoor Electric Grill:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 15 

Relationships 47 

Connective 
Degrees of Freedom 47 

Connectivity 94 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 416 

Maximum 3 

Average 1.980952381 

Density 0.0421 

Flow Rate 

Total 856 

Maximum 35 

Average 3.8044 

Density 0.0809 

C
en

tr
al

it
y

 Betweenness 

Total 206 

Maximum 131.3666667 

Average 13.73333333 

Density 0.2922 

Clustering Coefficient 

Total 2.703030303 

Maximum 1 

Average 0.1802 

Density 0.0038 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 154 

C
o
re

 N
u
m

b
er

s 

In 

Total 27 

Maximum 2 

Average 1.8 

Density 0.0383 

Out 

Total 27 

Maximum 2 

Average 1.8 

Density 0.0383 
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Indoor Electric Grill Assembly Model 

 

 

Exploded View of Indoor Electric Grill 
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Paper Pro Stapler 

The Paper Pro Stapler details for the partially defined assembly model are below. 

Paper Pro Stapler Product and DFA Specifications 

Product Name Paper Pro Stapler 

Constraint Definition Partially Defined 

# of Parts 16 

# of Mates 36 

Constraint Definition Fully Defined 

# of Parts 16 

# of Mates 45 

SW Assembly File Origin GICL Website 

Product Structure Clam Shell 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
135.06 

Physical DFA Analysis Time (min.) 68 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
123.51 

Virtual DFA Analysis Time (min.) 80 
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Paper Pro Stapler:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 18 

Relationships 36 

Connective 
Degrees of Freedom 36 

Connectivity 72 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 382 

Maximum 4 

Average 1.248366013 

Density 0.0347 

Flow Rate 

Total 564 

Maximum 16 

Average 1.7407 

Density 0.0484 

C
en

tr
al

it
y

 Betweenness 

Total 188 

Maximum 111.5 

Average 10.44444444 

Density 0.2901 

Clustering Coefficient 

Total 6.755555556 

Maximum 1 

Average 0.3753 

Density 0.0104 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 90 

C
o
re

 N
u
m

b
er

s 

In 

Total 33 

Maximum 2 

Average 1.833333333 

Density 0.0509 

Out 

Total 33 

Maximum 2 

Average 1.833333333 

Density 0.0509 
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Paper Pro Stapler:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 20 

Relationships 45 

Connective 
Degrees of Freedom 45 

Connectivity 90 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 1026 

Maximum 6 

Average 2.7 

Density 0.0600 

Flow Rate 

Total 858 

Maximum 20 

Average 2.1450 

Density 0.0477 

C
en

tr
al

it
y

 Betweenness 

Total 646 

Maximum 267.6 

Average 32.3 

Density 0.7178 

Clustering Coefficient 

Total 8.257575758 

Maximum 1 

Average 0.4129 

Density 0.0092 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 215 

C
o
re

 N
u
m

b
er

s 

In 

Total 37 

Maximum 2 

Average 1.85 

Density 0.0411 

Out 

Total 37 

Maximum 2 

Average 1.85 

Density 0.0411 
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Paper Pro Stapler Assembly Model 

 

 

Exploded View of Paper Pro Stapler 
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Solar Yard Light 

The Solar Yard Light details for the partially defined assembly model are below. 

Solar Yard Light Product and DFA Specifications 

Product Name Solar Yard Light 

Constraint Definition Partially Defined 

# of Parts 17 

# of Mates 35 

Constraint Definition Fully Defined 

# of Parts 17 

# of Mates 42 

SW Assembly File Origin 
Reverse Engineered by:   

Eric Owensby 

Product Structure Circular 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
131.23 

Physical DFA Analysis Time (min.) 48 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
128.79 

Virtual DFA Analysis Time (min.) 55 
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Solar Yard Light:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 19 

Relationships 35 

Connective 
Degrees of Freedom 35 

Connectivity 70 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 368 

Maximum 5 

Average 1.076023 

Density 0.0307 

Flow Rate 

Total 354 

Maximum 17 

Average 0.9806 

Density 0.0280 

C
en

tr
al

it
y

 Betweenness 

Total 214 

Maximum 94 

Average 11.26316 

Density 0.3218 

Clustering Coefficient 

Total 4.380952 

Maximum 1 

Average 0.2306 

Density 0.0066 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 143 

C
o
re

 N
u
m

b
er

s 

In 

Total 25 

Maximum 2 

Average 1.315789 

Density 0.0376 

Out 

Total 25 

Maximum 2 

Average 1.315789 

Density 0.0376 
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Solar Yard Light:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 19 

Relationships 42 

Connective 
Degrees of Freedom 42 

Connectivity 84 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 734 

Maximum 5 

Average 2.146199 

Density 0.0511 

Flow Rate 

Total 792 

Maximum 17 

Average 2.1939 

Density 0.0522 

C
en

tr
al

it
y

 Betweenness 

Total 460 

Maximum 117 

Average 24.21053 

Density 0.5764 

Clustering Coefficient 

Total 5.147619 

Maximum 1 

Average 0.2709 

Density 0.0065 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 133 

C
o
re

 N
u
m

b
er

s 

In 

Total 35 

Maximum 2 

Average 1.842105 

Density 0.0439 

Out 

Total 35 

Maximum 2 

Average 1.842105 

Density 0.0439 
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Solar Yard Light Assembly Model 

 

 

Exploded View of Solar Yard Light 
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Mag Light 

The Mag Light details for the partially defined assembly model are below. 

Mag Light Product and DFA Specifications 

Product Name Mag Light 

Constraint Definition Partially Defined 

# of Parts 14 

# of Mates 27 

Constraint Definition Fully Defined 

# of Parts 14 

# of Mates 29 

SW Assembly File Origin SolidWorks 3D Content 

Product Structure Circular 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
75.4 

Virtual DFA Analysis Time (min.) 32 
 

 



 195 

Mag Light:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 14 

Relationships 27 

Connective 
Degrees of Freedom 27 

Connectivity 54 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 520 

Maximum 6 

Average 2.8571429 

Density 0.1058 

Flow Rate 

Total 380 

Maximum 10 

Average 1.9388 

Density 0.0718 

C
en

tr
al

it
y

 Betweenness 

Total 338 

Maximum 82 

Average 24.142857 

Density 0.8942 

Clustering Coefficient 

Total 1.8666667 

Maximum 1 

Average 0.1333 

Density 0.0049 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 89 

C
o
re

 N
u
m

b
er

s 

In 

Total 18 

Maximum 2 

Average 1.2857143 

Density 0.0476 

Out 

Total 18 

Maximum 2 

Average 1.2857143 

Density 0.0476 
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Mag Light:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 14 

Relationships 29 

Connective 
Degrees of Freedom 29 

Connectivity 58 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 486 

Maximum 5 

Average 2.6703297 

Density 0.0921 

Flow Rate 

Total 342 

Maximum 10 

Average 1.7449 

Density 0.0602 

C
en

tr
al

it
y

 Betweenness 

Total 304 

Maximum 94 

Average 21.714286 

Density 0.7488 

Clustering Coefficient 

Total 3.3666667 

Maximum 1 

Average 0.2405 

Density 0.0083 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 95 

C
o
re

 N
u
m

b
er

s 

In 

Total 20 

Maximum 2 

Average 1.4285714 

Density 0.0493 

Out 

Total 20 

Maximum 2 

Average 1.4285714 

Density 0.0493 
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Mag Light Assembly Model 

 

 

Exploded View of Mag Light 
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Pony Vise 

The Pony Vise details for the partially defined assembly model are below. 

Pony Vise Product and DFA Specifications 

Product Name Pony Vise 

Constraint Definition Partially Defined 

# of Parts 20 

# of Mates 45 

Constraint Definition Fully Defined 

# of Parts 20 

# of Mates 59 

SW Assembly File Origin EG 208 Undergraduate Class 

Product Structure Combination 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
153.3 

Physical DFA Analysis Time (min.) 33 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
143.69 

Virtual DFA Analysis Time (min.) 48 
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Pony Vise:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 20 

Relationships 45 

Connective 
Degrees of Freedom 45 

Connectivity 90 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 1146 

Maximum 5 

Average 3.01578947 

Density 0.06701754 

Flow Rate 

Total 944 

Maximum 12 

Average 2.36 

Density 0.05244444 

C
en

tr
al

it
y

 Betweenness 

Total 766 

Maximum 168 

Average 38.3 

Density 0.85111111 

Clustering Coefficient 

Total 0.8 

Maximum 0.33333333 

Average 0.04 

Density 0.00088889 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 161 

C
o
re

 N
u
m

b
er

s 

In 

Total 30 

Maximum 2 

Average 1.5 

Density 0.03333333 

Out 

Total 30 

Maximum 2 

Average 1.5 

Density 0.03333333 
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Pony Vise:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 22 

Relationships 59 

Connective 
Degrees of Freedom 59 

Connectivity 118 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 1374 

Maximum 5 

Average 2.97402597 

Density 0.05040722 

Flow Rate 

Total 1550 

Maximum 12 

Average 3.20247934 

Density 0.05427931 

C
en

tr
al

it
y

 Betweenness 

Total 912 

Maximum 213.766667 

Average 41.4545455 

Density 0.70261941 

Clustering Coefficient 

Total 3.66666667 

Maximum 1 

Average 0.16666667 

Density 0.00282486 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 243 

C
o
re

 N
u
m

b
er

s 

In 

Total 36 

Maximum 2 

Average 1.63636364 

Density 0.02773498 

Out 

Total 36 

Maximum 2 

Average 1.63636364 

Density 0.02773498 
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Pony Vise Assembly Model 

 

 

Exploded View of Pony Vise 
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Black and Decker Drill 

The Black and Decker Drill details for the partially defined assembly model are 

below. 

Black and Decker Drill Product and DFA Specifications 

Product Name Black and Decker Drill 

Constraint Definition Partially Defined 

# of Parts 31 

# of Mates 64 

Constraint Definition Fully Defined 

# of Parts 31 

# of Mates 87 

SW Assembly File Origin Reverse Engineered:  Eric Owensby 

Product Structure Clam Shell 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
180.2 

Physical DFA Analysis Time (min.) 48 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
189.7 

Virtual DFA Analysis Time (min.) 42 
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Black and Decker Drill:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 34 

Relationships 64 

Connective 
Degrees of Freedom 64 

Connectivity 128 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 1574 

Maximum 6 

Average 1.40285205 

Density 0.0219 

Flow Rate 

Total 1200 

Maximum 25 

Average 1.0381 

Density 0.0162 

C
en

tr
al

it
y

 Betweenness 

Total 980 

Maximum 403 

Average 28.8235294 

Density 0.4504 

Clustering Coefficient 

Total 6.22727273 

Maximum 1 

Average 0.1832 

Density 0.0029 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 246 

C
o
re

 N
u
m

b
er

s 

In 

Total 44 

Maximum 2 

Average 1.29411765 

Density 0.0202 

Out 

Total 44 

Maximum 2 

Average 1.29411765 

Density 0.0202 
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Black and Decker Drill:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 34 

Relationships 87 

Connective 
Degrees of Freedom 87 

Connectivity 174 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 3032 

Maximum 5 

Average 2.70231729 

Density 0.0311 

Flow Rate 

Total 2746 

Maximum 31 

Average 2.3754 

Density 0.0273 

C
en

tr
al

it
y

 Betweenness 

Total 1910 

Maximum 732.583333 

Average 56.1764706 

Density 0.6457 

Clustering Coefficient 

Total 15.2947786 

Maximum 1 

Average 0.4498 

Density 0.0052 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 211 

C
o
re

 N
u
m

b
er

s 

In 

Total 63 

Maximum 2 

Average 1.85294118 

Density 0.0213 

Out 

Total 63 

Maximum 2 

Average 1.85294118 

Density 0.0213 
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Black and Decker Drill Assembly Model 

 

 

Exploded View of Black and Decker Drill 
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825 Shift Frame LH 

The 825 Shift Frame LH details for the partially defined assembly model are 

below. 

825 Shift Frame LH Product and DFA Specifications 

Product Name 825 Shift Frame LH 

Constraint Definition Partially Defined 

# of Parts 28 

# of Mates 62 

Constraint Definition Fully Defined 

# of Parts 28 

# of Mates 84 

SW Assembly File Origin OEM 

Product Structure Stackable 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
313.7 

Virtual DFA Analysis Time (min.) 49 
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825 Shift Frame LH:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 31 

Relationships 62 

Connective 
Degrees of Freedom 62 

Connectivity 124 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 2454 

Maximum 4 

Average 2.638709677 

Density 0.0426 

Flow Rate 

Total 1936 

Maximum 26 

Average 2.0146 

Density 0.0325 

C
en

tr
al

it
y

 Betweenness 

Total 1524 

Maximum 556.3333333 

Average 49.16129032 

Density 0.7929 

Clustering Coefficient 

Total 5.61031746 

Maximum 1 

Average 0.1810 

Density 0.0029 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 159 

C
o
re

 N
u
m

b
er

s 

In 

Total 46 

Maximum 2 

Average 1.483870968 

Density 0.0239 

Out 

Total 46 

Maximum 2 

Average 1.483870968 

Density 0.0239 
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825 Shift Frame LH:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 31 

Relationships 84 

Connective 
Degrees of Freedom 84 

Connectivity 168 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 2408 

Maximum 4 

Average 2.589247312 

Density 0.0308 

Flow Rate 

Total 2828 

Maximum 32 

Average 2.9428 

Density 0.0350 

C
en

tr
al

it
y

 Betweenness 

Total 1478 

Maximum 503 

Average 47.67741935 

Density 0.5676 

Clustering Coefficient 

Total 7.946581197 

Maximum 1 

Average 0.2563 

Density 0.0031 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 211 

C
o
re

 N
u
m

b
er

s 

In 

Total 49 

Maximum 2 

Average 1.580645161 

Density 0.0188 

Out 

Total 49 

Maximum 2 

Average 1.580645161 

Density 0.0188 
 

 



 209 

 

825 Shift Frame LH Assembly Model 

 

 

Exploded View of 825 Shift Frame LH 
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OEM 825 Wide Flag 

The OEM 825 Wide Flag details for the partially and fully defined assembly 

model are below. 

OEM 825 Wide Flag Product and DFA Specifications 

Product Name OEM 825 Wide Flag 

Constraint Definition Partially Defined 

# of Parts 10 

# of Mates 21 

Constraint Definition Fully Defined 

# of Parts 10 

# of Mates 27 

SW Assembly File Origin OEM 

Product Structure Stackable 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
58.3 

Virtual DFA Analysis Time (min.) 21 
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OEM 825 Wide Flag:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 10 

Relationships 21 

Connective 
Degrees of Freedom 21 

Connectivity 42 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 166 

Maximum 3 

Average 1.844444444 

Density 0.0878 

Flow Rate 

Total 252 

Maximum 13 

Average 2.5200 

Density 0.1200 

C
en

tr
al

it
y

 Betweenness 

Total 76 

Maximum 57 

Average 7.6 

Density 0.3619 

Clustering Coefficient 

Total 4.976190476 

Maximum 1 

Average 0.4976 

Density 0.0237 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 54 

C
o
re

 N
u
m

b
er

s 

In 

Total 17 

Maximum 2 

Average 1.7 

Density 0.0810 

Out 

Total 17 

Maximum 2 

Average 1.7 

Density 0.0810 
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OEM 825 Wide Flag:  Complexity Vector for Fully Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 10 

Relationships 27 

Connective 
Degrees of Freedom 27 

Connectivity 54 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 148 

Maximum 2 

Average 1.644444444 

Density 0.0609 

Flow Rate 

Total 368 

Maximum 16 

Average 3.6800 

Density 0.1363 

C
en

tr
al

it
y

 Betweenness 

Total 58 

Maximum 53 

Average 5.8 

Density 0.2148 

Clustering Coefficient 

Total 7.361111111 

Maximum 1 

Average 0.7361 

Density 0.0273 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 73 

C
o
re

 N
u
m

b
er

s 

In 

Total 23 

Maximum 3 

Average 2.3 

Density 0.0852 

Out 

Total 23 

Maximum 3 

Average 2.3 

Density 0.0852 
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OEM 825 Wide Flag Assembly Model 

 

 

Exploded View of OEM 825 Wide Flag 



 214 

One Touch Chopper 

The One Touch Chopper details for the partially defined assembly model are 

below. 

One Touch Chopper Product and DFA Specifications 

Product Name One Touch Chopper 

Constraint Definition Partially Defined 

# of Parts 43 

# of Mates 123 

Constraint Definition NA 

# of Parts NA 

# of Mates NA 

SW Assembly File Origin 
Reverse Engineered:  Aravind 

Shanthakumar 

Product Structure Combination 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
316.62 

Virtual DFA Analysis Time (min.) 136 
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One Touch Chopper:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 46 

Relationships 123 

Connective 
Degrees of Freedom 123 

Connectivity 246 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 3246 

Maximum 6 

Average 1.568115942 

Density 0.0127 

Flow Rate 

Total 3066 

Maximum 37 

Average 1.4490 

Density 0.0118 

C
en

tr
al

it
y

 Betweenness 

Total 2106 

Maximum 507 

Average 45.7826087 

Density 0.3722 

Clustering Coefficient 

Total 10.90649351 

Maximum 1 

Average 0.2371 

Density 0.0019 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 634 

C
o
re

 N
u
m

b
er

s 

In 

Total 68 

Maximum 2 

Average 1.47826087 

Density 0.0120 

Out 

Total 68 

Maximum 2 

Average 1.47826087 

Density 0.0120 
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One Touch Chopper Assembly Model 

 

 

Exploded View of One Touch Chopper 
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Mouse Model 

The Mouse Model details for the partially defined assembly model are below. 

Mouse Model Product and DFA Specifications 

Product Name Mouse Model 

Constraint Definition Partially Defined 

# of Parts 14 

# of Mates 30 

Constraint Definition NA 

# of Parts NA 

# of Mates NA 

SW Assembly File Origin Reverse Engineered:  Matt Peterson 

Product Structure Combination 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
81.3 

Virtual DFA Analysis Time (min.) 51 
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Mouse Model:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 14 

Relationships 30 

Connective 
Degrees of Freedom 30 

Connectivity 60 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 294 

Maximum 4 

Average 1.615384615 

Density 0.0538 

Flow Rate 

Total 344 

Maximum 16 

Average 1.7551 

Density 0.0585 

C
en

tr
al

it
y

 Betweenness 

Total 160 

Maximum 99 

Average 11.42857143 

Density 0.3810 

Clustering Coefficient 

Total 2.738095238 

Maximum 1 

Average 0.1956 

Density 0.0065 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 133 

C
o
re

 N
u
m

b
er

s 

In 

Total 18 

Maximum 2 

Average 1.285714286 

Density 0.0429 

Out 

Total 18 

Maximum 2 

Average 1.285714286 

Density 0.0429 
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Mouse Model Assembly Model 

 

 

Exploded View of Mouse Model 
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Durabrand Blender 

The Durabrand Blender details for the partially defined assembly model are 

below. 

Durabrand Blender Product and DFA Specifications 

Product Name Durabrand Blender 

Constraint Definition Partially Defined 

# of Parts 45 

# of Mates 105 

Constraint Definition NA 

# of Parts NA 

# of Mates NA 

SW Assembly File Origin Reverse Engineered:  David Griese 

Product Structure Combination 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
263.2 

Virtual DFA Analysis Time (min.) 139 
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Durabrand Blender:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 48 

Relationships 105 

Connective 
Degrees of Freedom 105 

Connectivity 210 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 2296 

Maximum 7 

Average 1.017730496 

Density 0.009692671 

Flow Rate 

Total 2242 

Maximum 28 

Average 0.973090278 

Density 0.009267526 

C
en

tr
al

it
y

 Betweenness 

Total 1442 

Maximum 282 

Average 30.04166667 

Density 0.286111111 

Clustering Coefficient 

Total 11.15604396 

Maximum 1 

Average 0.232417582 

Density 0.002213501 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 395 

C
o
re

 N
u
m

b
er

s 

In 

Total 76 

Maximum 2 

Average 1.583333333 

Density 0.015079365 

Out 

Total 76 

Maximum 2 

Average 1.583333333 

Density 0.015079365 
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Durabrand Blender Assembly Model 

 

 

Exploded View of Durabrand Blender 
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Boothroyd Piston Assembly 

The Boothroyd Piston Assembly details for the partially defined assembly model 

are below.  This piston was modeled using the rough schematic shown of the piston in the 

Boothroyd Design for Assembly Handbook. 

Boothroyd Piston Assembly Product and DFA Specifications 

Product Name Boothroyd Piston Assembly 

Constraint Definition Partially Defined 

# of Parts 7 

# of Mates 12 

Constraint Definition NA 

# of Parts NA 

# of Mates NA 

SW Assembly File Origin Reverse Engineered:  Matt Peterson 

Product Structure Stackable 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
48.0 

Virtual DFA Analysis Time (min.) 12 
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Boothroyd Piston Assembly:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 7 

Relationships 12 

Connective 
Degrees of Freedom 12 

Connectivity 24 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 64 

Maximum 2 

Average 1.523809524 

Density 0.126984127 

Flow Rate 

Total 118 

Maximum 8 

Average 2.408163265 

Density 0.200680272 

C
en

tr
al

it
y

 Betweenness 

Total 22 

Maximum 19 

Average 3.142857143 

Density 0.261904762 

Clustering Coefficient 

Total 5.766666667 

Maximum 1 

Average 0.823809524 

Density 0.068650794 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 25 

C
o
re

 N
u
m

b
er

s 

In 

Total 14 

Maximum 2 

Average 2 

Density 0.166666667 

Out 

Total 14 

Maximum 2 

Average 2 

Density 0.166666667 
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Boothroyd Piston Assembly Assembly Model 

 

Exploded View of Boothroyd Piston Assembly 
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Hole Punch 

The Hole Punch details for the partially defined assembly model are below. 

Hole Punch Product and DFA Specifications 

Product Name Hole Punch 

Constraint Definition Partially Defined 

# of Parts 24 

# of Mates 52 

Constraint Definition NA 

# of Parts NA 

# of Mates NA 

SW Assembly File Origin EG 208 Undergraduate Class 

Product Structure Combination 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
145.4 

Virtual DFA Analysis Time (min.) 35 
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Hole Punch:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 25 

Relationships 52 

Connective 
Degrees of Freedom 52 

Connectivity 104 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 1680 

Maximum 5 

Average 2.8 

Density 0.05384615 

Flow Rate 

Total 1468 

Maximum 16 

Average 2.3488 

Density 0.04516923 

C
en

tr
al

it
y

 Betweenness 

Total 1080 

Maximum 353 

Average 43.2 

Density 0.83076923 

Clustering Coefficient 

Total 6.16666667 

Maximum 1 

Average 0.24666667 

Density 0.00474359 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 188 

C
o
re

 N
u
m

b
er

s 

In 

Total 43 

Maximum 2 

Average 1.72 

Density 0.03307692 

Out 

Total 43 

Maximum 2 

Average 1.72 

Density 0.03307692 
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Hole Punch Assembly Model 

 

 

Exploded View of Hole Punch 
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Electric Knife 

The Electric Knife details for the partially defined assembly model are below.  

This model was used to test the final automated assembly time prediction tool.  The 

model is not an exact replica of the physical product but it forms a good representation of 

what the model looks like and it contains enough information to mate the parts and to 

conduct a virtual Boothroyd DFA analysis. 

Electric Knife Product and DFA Specifications 

Product Name Electric Knife 

Constraint Definition Partially Defined 

# of Parts 33 

# of Mates 80 

Constraint Definition NA 

# of Parts NA 

# of Mates NA 

SW Assembly File Origin Reverse Engineered:  Rahul 

Product Structure Clam Shell 

DFA Conducted By: Eric Owensby 

Boothroyd Dewhurst DFA on  

Physical Product (s) 
NA 

Physical DFA Analysis Time (min.) NA 

Boothroyd Dewhurst DFA on  

Virtual Product (s) 
212.3 

Virtual DFA Analysis Time (min.) 33 
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Electric Knife:  Complexity Vector for Partially Defined Model 

Class Type Dir Metric Complexity 

Size 

Dimensional 
Elements 25 

Relationships 80 

Connective 
Degrees of Freedom 80 

Connectivity 160 

In
te

rc
o
n
n

ec
ti

o
n

 

Shortest Path 

Total 1746 

Maximum 6 

Average 2.91 

Density 0.0364 

Flow Rate 

Total 1928 

Maximum 27 

Average 3.0848 

Density 0.0386 

C
en

tr
al

it
y

 Betweenness 

Total 1146 

Maximum 352.6667 

Average 45.84 

Density 0.5730 

Clustering Coefficient 

Total 4.977778 

Maximum 1 

Average 0.1991 

Density 0.0025 

D
ec

o
m

p
o
si

ti
o
n

 

Ameri-Summers 577 

C
o
re

 N
u
m

b
er

s 

In 

Total 43 

Maximum 3 

Average 1.72 

Density 0.0215 

Out 

Total 43 

Maximum 3 

Average 1.72 

Density 0.0215 
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Electric Knife Assembly Model 

 

 

Exploded View of Electric Knife 
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