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ABSTRACT 

 

Currently, bioprosthetic heart valves are crosslinked with glutaraldehyde to 

prevent tissue degradation and to reduce tissue antigenicity. Glutaraldehyde forms stable 

crosslinks with collagen via a Schiff base reaction of the aldehyde with an amine group 

of the hydroxylysine/lysine in collagen. However, within a decade of implantation, 20-

30% of these bioprostheses will become dysfunctional and over 50% will fail due to 

degeneration within 12-15 years post-operatively [1, 2].  

Gylcosaminoglycans, a major constituent of valvular tissue, play an important 

role in maintaining a hydrated environment necessary for absorbing compressive loads, 

modulating shear stresses, and resisting tissue buckling. One of the disadvantages of 

glutaraldehyde crosslinking is its incomplete stabilization of GAGs [3, 4], which lack the 

amine functionalities necessary for fixation by aldehyde addition.  Previous studies have 

reported a greater depth of buckling in glutaraldehyde crosslinked aortic valves, one of 

the major causes of failure in these bioprostheses [5, 6]. Buckling occurs at sites of sharp 

bending, producing large stresses that can eventually lead to mechanical fatigue and 

consequent valvular degeneration.  Local structural collapse occurs at these areas of 

tissue buckling to minimize compressive stresses, which subsequently causes a reduction 

in tissue length.  

Previous studies have reported the loss of GAGs in glutaraldehyde crosslinked 

porcine cusps during fixation, storage, in vitro fatigue experimentation, and in vivo 

subdermal implantation due to enzyme-mediated GAG degradation [3, 4, 7, 8]. 
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Additionally, GAG loss has been observed in failed porcine bioprosthetic heart valves 

following clinical use [9]. 

Therefore, to evaluate the potential role of GAGs in reduction of buckling in 

bioprosthetic heart valves, we used two 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC) based crosslinking chemistries that link GAG carboxyl groups to the amine groups 

of proteins. Neomycin trisulfate, a hyaluronidase inhibitor, was employed to effectively 

stabilize the GAGs and subsequently prevent its enzymatic degradation. Previously, 

stabilization of valvular GAGs using neomycin trisulfate, a GAG-enzyme inhibitor, 

coupled with carbodiimide fixation chemistry was found to resist in vitro and in vivo 

enzymatic degradation of GAGs [10].   Thus, using the above-mentioned GAG-targeted 

fixation strategies, we demonstrate that the retention of valvular GAGs reduces the extent 

of buckling in bioprosthetic heart valves, which may subsequently improve the durability 

of these bioprostheses.  
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1 Morphology of Heart Valves 

1.1.1 Function  

The heart, a hollow muscular organ located between the lungs and above the 

diaphragm, furnishes the power to maintain blood flow throughout both the pulmonary 

and systemic circulatory systems via its pulsatile pumping action [11]. Blood flow 

through the four chambers of the heart is controlled by the presence of heart valves; two 

atrioventricular valves (AV) situated between the atrial and ventricular chambers and two 

semilunar valves located between the ventricles and the aorta and pulmonary artery 

(Figure 1).   

 

 

Figure 1: Cross-section of the (A) heart [12] and (B) valves [11]. 

A B

 



 

The AV valves (the tricuspid and mitral valves) prevent backflow of blood from 

the ventricles to the atria during systole, ensuring the one-way flow of blood. During 

systole, ventricular contraction raises intraventricular pressure, causing the AV valves to 

passively close due to the pressure gradient.  In parallel, the aortic and pulmonary valves, 

classified as semilunar valves, open to facilitate the onset of systemic circulation. These 

semilunar valves prevent backflow from the arterial vessels into the ventricles during 

diastole, allowing rapid filling of the ventricular chambers. As the ventricular pressure 

rapidly increases, the blood is ejected into the arterial vessels. Subsequently, the high 

pressures in the arteries at the end of the systolic phase of the cardiac cycle forces these 

valves to snap to the closed position. Thus, due to the rapid closure of the semilunar 

valves and forceful ejection of blood, the edges of these valves are continuously 

subjected to mechanical abrasion. Unlike the presence of a series of cord-like tendons 

attached to the vanes of the AV valves, the semilunar valves lack such structural support 

systems. These chordae tendineae prevent AV valves from bulging too far backward 

towards the atria during ventricular contraction. Thus, based on the anatomy of these 

valves, it is evident that semilunar valves must withstand extra physical stresses. The 

thin, filmy AV valves require minimal backflow to elicit valvular closure, whereas the 

heavier, robust semilunar valves demand rapid backflow for a few milliseconds [13]. 

Pulmonary valvular cusps are structurally analogous to aortic cusps, but are lighter, 

thinner, and attached to a muscular rather than a fibrous annulus. In particular, the aortic 

valves are exposed to large stresses due to the higher blood pressure in the left side of the 

heart to mediate systemic circulation.  
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Owing to these hydrodynamic and mechanical factors coupled with heart 

diseases, aortic valves frequently require repair and/or replacement.  

 

1.1.2 Structure 

 Heart valves consist of two to three cusps based on the location of the valve. 

These valvular cusps are complex, highly heterogeneous structures primarily comprised 

of fibrillar and non-fibrillar extracellular matrix, namely collagen, elastin, and GAGs, 

which are maintained by interstitial cells. These constituents are systematically arranged 

and distributed in an anisotropic pattern, forming three distinct cuspal layers: fibrosa, 

spongiosa, and ventricularis (Figure 2). This tri-layered cuspal architecture is adapted to 

ensuring efficient mechanical and biological durability [2, 14-19].  

 

 

Figure 2: Schematic representation of aortic valve cuspal architecture [20].   
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The fibrosa, located below the aortic outflow surface of the cusps, is largely 

responsible for bearing diastolic stresses. This layer is primarily composed of collagen 

fiber bundles aligned parallel to the free edge of the cusps, providing strength and 

stiffness to maintain coaptation during diastole. The loading experience by the collagen 

network is transmitted to the aortic wall by means of the bundles merging at the cuspal 

commissures [21]. Type I collagen fiber bundles predominate this layer, with significant 

amounts of Type III collagen, which together account for approximately 43-55% of the 

total cuspal dry weight [15]. During systole, these circumferentially arranged fibers give 

rise to corrugations, producing an undulated surface appearance.  These microscopic 

undulations, also known as crimps, create superficial waviness necessary for maintaining 

coaptation during valve closure as the corrugations disappear to ensure radial compliance 

(Figure 3). Thus, flattening of the corrugations permits elongation of the cuspal tissue 

with minimal radial mechanical stresses [2, 19]  

The ventricularis, a relatively thin layer facing the ventricles, is composed of 

elastic fibers. These radially directed fibers constitute nearly 11-13% of the total cuspal 

dry weight [22]. The radial arrangement of the fibers assures tissue extensibility.  The 

elastin sheets impose tensile forces on collagen fibers during valve unloading. Thus, the 

collagen and elastic fibers are preloaded by virtue of their attachment to each other; the 

fibrosa under compression and the ventricularis under tension [18]. During diastole, as 

the collagen fibers realign and extend, the elastic fibers passively extend to accommodate 

cuspal tissue expansion. The systolic valvular configuration following this cuspal stretch 

is restored by elastin contraction (Figure 3). Thus, elastin sheets in the ventricularis 
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provide a return-spring mechanism, whereby collagen fibers are restored to their resting 

geometry via a ‘lock-pull’ motion to provide maximum coaptation area [17, 20].  The 

smooth surface maintained by elastin in the ventricularis layer promotes laminar flow 

during systole [15].  

 

A BAA BB
 

Figure 3: Configuration of collagen and elastin fibers during (A) systolic and (B) 
diastolic valvular motion [15, 23].  
 

Between the fibrosa and ventricularis lies the spongiosa, which is predominantly 

composed of non-fibril connective tissue ground substance, specifically 

glycosaminoglycans (GAGs), and loosely arranged collagen fibers oriented radially. This 

loose and extremely hydrated amorphous extracellular matrix serves as a ‘gel-like’ 

central cuspal layer [2, 4], and thus, conferring plasticity and flexibility to the cuspal 

tissue [15]. This centrally located layer absorbs compressive loads and cushions shock 

experienced during valve closing, dissipates shear stresses resulting from oppositional 
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movement of the two exterior layers during cyclical valve motion, and resists tissue 

buckling [2, 4, 24, 25].   

The fibrosa and ventricularis are surrounded by a single layer of endothelial cells 

that maintain a non-reactive and thromboresistant blood-contacting surface. These 

superficially located cells prevent and control plasma and fluid insudation [2, 15, 26]. 

Another set of functionally important cells include the valvular interstitial cells. These 

cells play a pivotal role in native valvular tissue by remodeling, replenishing, and 

synthesizing the local extracellular matrix. Characteristically similar to fibroblast and 

smooth muscle cells, valvular interstitial cells allow cell-cell communication and confer 

the valve its ability to contract in response to various chemical factors [15, 26]. Thus, 

these cellular components regulate and maintain the structural and functional integrity of 

the valvular tissue. 

Therefore, the specialized morphology of the cusps accommodates the dynamic 

geometric changes during the cardiac cycle by bending, shearing, and buckling to 

accommodate the functional needs of the heart valve. During repetitive cyclical changes, 

the non-fibril and fibril structural components of the cuspal tissue reorient and regenerate 

to respond to the biological and mechanical needs of the valves for proper functioning.  
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1.2 Glycosaminoglycans 

1.2.1 Structure  

GAGs are linear acidic polysaccharides containing repeating disaccharide units of 

uronic acid, either glucuronate or iduronate acid, linked to a modified hexosamine sugar 

molecular, either N-acetylglucosamine or N-acetylgalactosamine (Figure 4).  

 

 

C H O H
 2

R 

Figure 4: Disaccharide unit of glycosaminoglycan containing (A) uronic acid and (B) 
hexosamine.  
 

Based on their chemical and structural differences, five species of GAGs exist, 

namely heparan sulfate/ heparin, chondroitin sulfate, dermatan sulfate, keratan sulfate, 

and hyaluronic acid. It must be noted that keratan sulfate consists of a galactose in place 

of the uronic acid.  Similarly, the disaccharide composition and geometry of glycosidic 

linkages varies across the subclasses of GAGs (Figure 5).  Heparan sulfate consists of 
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repeating units of D-glucuronic acid and N-acetylglucosamine with 6-N-sulfate group. 

Chondroitin sulfate and dermatan sulfate comprise of repeating units of N-

acetylgalactosamine and D-glucuronic acid with variation in sulfation. Chondroitin 

sulfate is composed of 4- or 6-O-sulfate group on N-acetylgalactosamine linked to D-

glucuronic acid, while dermatan sulfate contains N-acetylgalactosamine with 4-O-sulfate 

group bond to either D-glucuronic acid or L-iduronic acid. As mentioned previously, 

keratan sulfate consists of repeating units of galactose (instead of uronic acid) and N-

acetylglucosamine with 6-O-sulfate group. Hyaluronic acid, which lacks modification by 

sulfation, is primarily composed of D-glucuronic acid and N-acetylglucosamine repeat 

units [27].  

 

 
Figure 5: Chemical structures of GAG subclasses: (A) hyaluronic acid, (B) dermatan 
sulfate, (C) chondroitin sulfate, (D) heparan sulfate, and (E) keratan sulfate.  
 

The carboxylate and sulfated ether of the disaccharide units form a linear array of 

anionic groups. With the exception of hyaluronic acid, all GAG molecules are attached to 

a core protein via a glycosidic bond with serine residues. Specifically, a trisaccharide 

linker segment composed of two galactose residues and a xylose residue is coupled to the 
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core protein by an O-glycosidic bond to a serine residue in the protein. Some forms of 

keratan sulfates are linked to the protein core through an N-asparaginyl bond. The 

presence of multiple serine residues in the core protein allows multiple GAG 

attachments. The extensions of the chains descending from the core protein produce a 

bottle-brush appearance of this mucopolysaccharide (Figure 6).   

 

 
A B 

Figure 6: Physical structure of glycosaminoglycan. (A) Four distinct GAG monomers 
attached to core proteins which are bond to a central strand of hyaluronic acid via link 
proteins. (B) The extensions of the chains descending from the core protein produce a 
bottle-brush architecture as seen in this electron micrograph [28]. 
 

These GAG chains extend from their polysaccharide backbones due to the 

presence of negatively charged groups and the relatively higher stiffness of the backbone 

[29]. Thus, this negatively charged proteoglycan structure forms long, unbranched chains 

that occupy large hydrodynamic volumes relative to their molecular weights.  The 

negative charges on GAGs give these molecules their water-binding affinity which 
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allows these macromolecules to assume large domains, and thus, formation of a porous 

gel matrix. During compression, the intermolecular interactions between adjacent GAGs 

are decreased as the surrounding solvent displaces. This increases intramolecular 

interactions between the relatively stiff and polyanionic GAG chains, which subsequently 

increases the charge density within the maximally compressed domain, causing the 

macromolecule to propel to its original configuration (Figure 7). 

 

 

Figure 7: Reversibly compressible property of glycosaminoglycans [29].  
 

1.2.2 Function 

GAGs play an important biophysical and biochemical role in maintaining the 

structural and functional integrity of tissues. These acidic polysaccharides are found in all 

mammalian tissue and are especially prominent in connective tissue [29].  
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Biophysically, GAGs posses the ability to reorient and reorganize by binding to 

water molecules and repelling the negatively charged molecules present on its backbone. 

Hence, the high viscous behavior and low compressibility typically characteristic of 

GAG-rich tissues is attributed to the macromolecule’s ability to maintain a reversibly 

compressible hydrated environment [29]. In cartilage, the large quantities of chondroitin 

sulfate and keratan sulfate found on aggrecan, play an important role in hydration of the 

tissue [30]. In contrast, the heparan sulfate-rich proteoglycans abundant in kidney 

glomerular basement membrane aid in filtration of metabolic waste by impeding the 

passage of anionic serum proteins into the urine [31, 32].  

Historically, GAGs were considered inert molecules with the capability to hydrate 

cells and aid in structural support of the tissue.  Recent advances in characterization of 

the morphology of these extracellular matrix components have led to a greater 

understanding of the broader biochemical functions of GAGs. In the cellular 

environment, these macromolecules bind to a variety of proteins and signaling molecules 

to modulate their activity and consequently influence numerous physiological and 

pathological processes [33]. In general GAG binding proteins can be categorized in three 

classes as follows: (a) secreted proteases and anti-proteases, (b) polypeptide growth 

factors, (c) extracellular matrix proteins and cell-cell adhesion molecules.  

Heparin, a modified form of heparan sulfate, has been used as an anticoagulant 

for several decades. The coagulation cascade is controlled by several serine proteases. A 

heparin-AT-III ternary complex composed of thrombin and antithrombin III inhibits 

coagulation proteases (except factor VIIa), thereby preventing coagulation [33]. In the 
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absence of heparin/heparan sulfate, inactivation of the coagulation cascade by AT-III 

occurs at a much slower rate.  

In addition, heparin sulfate binding with basic fibroblast growth factor (FGF-2) 

entraps these polypeptide growth factors in the extracellular matrix; thus, enabling GAGs 

to control the molecular kinematics of the growth factor. Such binding initiates the 

signaling cascade to facilitate the onset of angiogenesis [33-35].  Similarly, dermatan 

sulfate binding to FGF-2 and FGF-7 promotes cell growth and wound healing repair. 

Thus, GAG-binding aids during inflammatory response to injury [27]. Chondroitin 

sulfate-neural cytokine interactions facilitate neural adhesion, migration, growth patterns 

as well as inhibiting glial scar tissue formation [36]. Hepatocyte regeneration is 

modulated by activation of hepatocyte growth factors by dermatan sulfate [37].  

GAG binding to extracellular matrix proteins play an important in matrix 

assembly and organization. Additionally, multi-domain extracellular matrix protein 

interactions with GAGs mediate cell adhesion to these proteins. GAG macromolecules 

anchor extracellular matrix components such as collagen fibers to cell-surface receptors. 

During cellular differentiation and development, GAGs bind to cell-surface receptors to 

decrease cell-cell adhesion and interactions. By blocking cell-surface receptors, GAGs 

prevent cell junction formation.  Hyaluronic acid binding to CD44 cell surface receptors 

on cancer cells during metastasis allows diffuse movement of cells and prevents cell-cell 

adhesion [38, 39]. Similarly, hyaluronic acid-CD44 interactions during myoblast 

differentiation promote cellular movement [33].  
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Therefore, it is evident that GAGs influence a myriad of cellular behaviors via its 

unique morphological attributes.  

 

1.3 Role of Glycosaminoglycans in Heart Valves 

The dynamic nature of heart valves during the cardiac cycle continuously subjects 

the valvular tissue to tensile, compressive, and shear stresses. For this reason, GAGs, a 

major constituent of the central spongiosa layer of cuspal tissue, play a crucial role in 

responding to the mechanical and physiological needs of the valve [2, 4, 40]. Combined 

with their hydrophilic nature, these polyanionic domains maintain a hydrated and viscous 

environment necessary to sustain the biological and mechanical properties of the tissue. 

Of the four heart valves, aortic valvular tissue contains the highest amount of 

GAGs, comprising approximately 3.5% dry weight of the cuspal tissue [41-43]. As 

mentioned in the preceding chapters, the aortic valve experiences the highest degree of 

fatigue due to the high blood pressures resident in the left ventricle to maintain proper 

systemic circulation. The primary types of GAGs found in aortic cusps include 

hyaluronic acid, non-sulfated and sulfate chondroitin and dermatan molecules [42]. In 

human heart valves, hyaluronic acid constitutes the majority of GAGs (60%) found in the 

tissue; however, an equal ratio of the three GAG subclasses are found in porcine-derived 

aortic heart valves frequently used for heart valve replacement surgeries [42-45].  

In valvular tissue, these mucopolysaccharides exhibit accelerated turnover rates. 

Interstitial cells present in cuspal tissues synthesize, maintain, and repopulate GAGs in 

aortic valves. Previous studies show that approximately one-third of the total composition 
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of hyaluronic acid in the body is replaced daily with the half life of these GAGs ranging 

from less than one day to several days depending on the tissue [46, 47].  

Under physiological conditions, the concentration of GAGs in human aortic heart 

valve decreases with aging [48]. In heart valves retrieved from patients over the age of 

60, a 50% marked reduction in GAG content has been observed [43]. Furthermore, cuspal 

water content decreases in conjunction with GAG content. Additionally, the onset of 

calcification is triggered with a decline in GAG content. GAG macromolecules chelate 

calcium ions, thereby preventing binding with extracellular phosphates in the nucleation 

of hydroxyapatite crystals [2, 4]. Thus, the presences of GAGs may partly suppress the 

onset of calcification in heart valves.  

By maintaining a hydrated environment necessary for absorbing compressive 

loads, dissipating shear stresses, and resisting tissue buckling, GAGs preserve the 

durability of heart valves (Figure 8).  
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Figure 8: Buffering action of glycosaminoglycans to withstand compressive, tensile, and 
shear stresses during cyclic loading [49].  
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These hydrophilic molecules allow the spongiosa to behave like a gel-like layer 

capable of reversible compression and deformation when subjected to shear forces by the 

appositional movement of the fibrosa and ventricularis [2, 4, 24, 25]. This buffering 

action mediated by the presence of water-absorbing GAG molecules, prevents tissue 

buckling to occur during valvular flexion.  

In summation, the valvular cusp’s ability to flexibly deform during successive 

valve cycles, absorb compressive loads during diastolic closing, and dissipate shear 

stresses experienced during valvular motion are largely possible due to the presence of 

GAGs in the medial spongiosa layer.  

 

1.4 Heart Valve Diseases and Failure 

Valvular heart diseases (VHDs) refer to any condition affecting one or more of 

the four heart valves that causes subsequent valvular dysfunction. VHD is responsible for 

nearly 20,000 deaths annually in the United States. The majority of these cases involve 

disorders of the aortic valve (63%), which bears a heavy burden of regulating systemic 

circulation, and the mitral valve (14%).   Deaths due to pulmonary and tricuspid valve 

disorders are rarer and account for approximately 0.06% and 0.01% of the cases, 

respectively [50]. 

VHD affects normal valvular functioning via (a) stenosis, a reduction of the 

valvular orifice, which disrupts normal flow of blood through the cusps, and (b) valvular 

regurgitation or insufficiency that is characterized by backward leak of blood due to 

inefficient closing of the valves. The primary causes of valvular damage include 
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improper development of the cusps before birth (congenital) or acquired damage later 

after birth. Following birth, damage to the valvular cusps can occur by calcific deposition 

with aging or valvular infection plagued by endocarditis and rheumatic fever [2, 23, 50, 

51].   

Thus, to remedy this debilitating condition associated with morbidity and 

mortality, surgical repair or replacement of the damaged and diseased valve must occur 

since damaged valvular tissue cannot spontaneously regenerate. Valves that cannot be 

repaired must be replaced by a substitutive heart valve to restore normal blood 

circulation.   

 

1.5 Characteristics of an Ideal Prosthetic Heart Valve 

In order to design a suitable heart valve substitute, the characteristics of such an 

ideal prosthesis must be defined. In the last 40 years, many valvular replacement options 

have strived to produce a device capable of accommodating the extensive and elaborate 

functioning of native valves to ensure adequate, efficient, and effective circulation of the 

blood.  

As initially described by Harken, et al., and modified by several, a quantum leap 

in the successful design of these prostheses cannot be achieved without addressing the 

following vital requirements: valvular substitutes must be biocompatible (resistant to 

infection, nonthrombogenic, and chemically inert); offer little resistance to physiologic 

flow; capable of prompt and complete closure during appropriate phases of the cardiac 

cycle; durable; resistant to wear; nonhemolytic and noncalcific; relatively easy to implant 
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with minimal healing response; noise-free to the patient to prevent discomfort; and must 

be able to sustain its structural and functional integrity throughout the prosthesis’s 

lifespan, crucial for permanent implantation [2, 52, 53]. However, as discussed in the 

proceeding sections, many of these goals have yet to be met. Nevertheless, significant 

strides have been made to achieve fairly safe and efficient models capable of sustaining 

valvular functional for a short-period of time. Thus, by mastering the above-mentioned 

characteristics, the durability of these valvular substitutes can be enhanced.  

 

1.6 Current Heart Valve Replacement Options 

 The rise in valvular failure has led to an increase in the demand for suitable heart 

valve substitutes. This need for a viable and durable heart valve replacement option has 

triggered an influx of available prototypes. Development of successful prosthetic heart 

valves requires biocompatible materials and hemologically tolerant designs. In the past 

40 years, numerous models have been designed and investigated for their potential use as 

ideal heart valve substitutes. Currently, two broad classes of valvular replacement options 

exist: mechanical heart valves (MHVs) constructed from nonbiological, synthetic 

materials; and biological heart valves derived from animal tissues [54, 55].  

 

1.6.1 Mechanical Heart Valves 

Investigation of the first mechanically fashioned heart valve substitute began 

nearly 5 decades ago with the successful design and development of the caged-ball 
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prosthetic Hufnagel heart valve [56]. However, due its limited usage by the population 

(200 recipients), its validity as a commercially available prosthesis remains disputed.  

Presently, approximately 55% of implanted valves worldwide are those designed 

from non-biological materials [57]. Three primary types of MHVs include caged-ball 

valves, disc valves, and bileaflet valves (Figure 9).  

 

 A C B 

Figure 9:  Three primary types of Mechanical Heart Valves: (A) caged-ball; (B) tilting 
disc; and (C) bileaflet valve [58].  
 

1.6.1.1 Caged-Ball and Non-tilting Disc Valves 

Owing to the initial creation of the Hufnagel valve, a methacrylate ball and tube 

secured with nylon rings, several modified relatively thromboresistant ball valve and non-

tilting disc valve designs have been produced as briefly described in Figure 10. The non-

tilting disc valves included a caged disc configuration with short struts to prevent cocking 

of the discs. The 1960 design of Starr-Edwards ball valve continues to be used (with 

modifications) in clinical settings. The modern design includes heat-cured silicon 

occluder and a cage covered with Teflon fabric [57].  
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A B C D 

Figure 10: Evolution of ball and non-tilting valves. (A) The original Hufnagel ball valve 
was developed in 1951; (B) Bahnson fabric aortic cusp valve, a flexible leaflet valve 
composed of either fabric or silicone-covered fabric; (C) the outer cage of the double 
caged Harken-Soroff ball valve separated the valves struts from the aortic wall; (D) the 
1960 design of Starr-Edwards ball valve continues to be used in clinical settings; (E) The 
Magovern-Cromie ball valve consisting of curved pins mobilized from the cloth ring of 
the valve to attach the prosthesis to the native valve annulus; (F) The Lillehei-Cruz-
Kaster prosthesis introduced the tilting disc concept to prosthetic valves; (G) The carbon-
coated Gott-Daggett prosthesis of 1963 incorporated a silicone-impregnated fabric disc 
fixed at its diameter to a polycarbonate ring. (H) University of Cape Town-Barnard 
Aortic valve design included a plunger [56, 57].  
 

1.6.1.2 Tilting Disc Valves 

Due to the production of wear particles and potential thromboemboli formation by 

the ball and non-tilting disc valves, hemodynamically favorable tilting disc valves were 

introduced. As described in Figure 11, the tilting valves evolved over the years, from the 

Lillehei-Cruz-Kaster (Figure 10) tilting disc valve consisting of freely floating disc 

tilting on the edge of an orifice ring to the production of the Medtronic Hall valve 

fashioned using a properly oriented carbon coated disc (pyrolytic carbon) retained by 

titanium struts; currently the most common type of tilting valve in clinical use [56, 57].  

 

F E G H 
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Figure 11: Development of tilting disc valves. Following the birth of the Lillehei-Cruz-
Kaster tilting disc valve (pictured in Figure 10), (A) the Wada-Cutter valve was created; 
(B) the Bjork-Shiley was the first extensively used tilting disc valve; (C) the Lillehei-
Kaster valve was constructed using titanium seating and pyrolyte disc; (D) the Hall-
Kaster valve was developed by Medtronic; (E) the modified Bjork-Shiley monostrut 
valve proved better than the originally designed bileaflet valve; (F) this commercially 
available Omniscience and Omnicarbon valve consists of pyrolyte discs and housing 
structures [56, 57]. 
 

1.6.1.3 Bileaflet Valves 

In an effort to improve the thromboresistivity of these valves while retaining the 

biocompatible nature of the materials, the Gott-Daggett bileaflet valve made its debut in 

the early 1960’s. With improved resistance to clotting, future St. Jude bileaflet prosthesis 

were introduced in the mid-seventies. These bileaflet valves, which implement the 

concept of floating hinges located at the central axis of the housing ring, are currently 

commercially available and widely used for aortic heart valve replacement procedures 

[56, 57, 59]. Other bileaflet valves currently introduced in the market include 

Carbomedics valves comprised of a carbon-coated pyrolytic leaflets with a titanium ring, 

Sorin Bicarbon valves with similar leaflet structures surrounded by a sewing ring, and a 
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recently released Medtronic Advantage valve model consisting of cylindrical pyrolytic 

carbon housing with two pyrolytic carbon leaflets housed by a polyester sewing ring [54].  

 

1.6.2 Current State of Mechanical Heart Valves 

 At present, fabrication of MHVs using biocompatible synthetic materials (Table 

1) with limited wear resistance, reduced thrombogenic susceptibility, and improved 

hemodynamic properties has led to the development of successful FDA approved 

mechanical prostheses (Table 2).  

 

Table 1: Biomaterials utilized for Mechanical Heart Valve production [60].  

 

 

Recently FDA approved mechanical valves include the ATS Open Pivot Bileaflet 

Heart Valve composed of two carbon semilunar leaflets surrounded by a polyester ring, 

and the On-X Prosthetic Heart Valve designed using carbon-coated graphite-tungsten 

composite leaflets within a housing surrounded by poly-tetra-fluor-ethylene covered ring 

[61].  

 21



 

Table 2:  FDA approved mechanical prostheses.  

 

  

The United States MHV market has reached a value of over $360 million, an 

increase of approximately 3.6% since 2002. This tremendous growth rate is reflective of 

the technological developments established by the biotechnology industry and the 

enhancing surgical procedures adopted by the medical community. MHVs hold the 

largest sector of the United States heart valve market, representing 47.6% of the market; 

with St. Jude, Edwards Lifesciences, and Medtronic manufactured prosthetic heart valves 

accounting for up to 90% total of the overall United States heart valve market [62]. St. 

Jude Medical, the most successful US heart valve company, is the leader in the design 

and production of MHVs [62].   

 The steadfast increase in research and development of MHVs has aimed at 

improving the hemodynamic properties, anticoagulative nature, and the overall durability 

of these prostheses.  
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1.6.3 Modes of Failure in Mechanical Heart Valves 

The performance of these devices is dependent on the structural design and 

mechanics of the valve. Numerous retrospective studies have concluded the overall safety 

of these modern, new generation MHVs. These valves are extremely durable but warrant 

continual anticoagulant therapy for the duration of the implant, potentially leading to fatal 

conditions triggered by hemorrhage or stroke. Consequently, such devices are restricted 

for use by elderly patients with compromised hemodynamic systems and patients 

suffering from hemolytic conditions.  

Despite their high structural integrity, these prostheses are prone to systemic 

thromboembolism and subsequent, thrombotic occlusion due to flow stagnation occurring 

at the bileaflet and hinge interface [2, 60]. Biomaterial pitting and degradation, and 

mechanical erosion of the synthetic materials present potential sites for thrombus 

formation by exposing corroding and worn areas to thrombotic factors which may 

eventually cause catastrophic embolism. Likewise, surface erosions can result in 

occlusion and compromised hemodynamic flow in the valvular construct.  Turbulent flow 

patterns associated with occlusion as well as high flow rates often lead to hemolysis and 

platelet activation.  

The dynamic motion of these MHVs produces a differential pressure gradient that 

initiates an implosion of vapor filled cavitation bubbles. The formation and collapse of 

cavitation bubbles compounded with a high pressure jet-stream damages surrounding 

mechanical structures and native tissue and imposes shear loads on blood particles [60, 

63].  
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Therefore, the primary modes of failure in these prostheses include degradation of 

the valve components, structural failure, and clinical complications associated with the 

implanted valve [60].  

 

1.6.4 Biological Heart Valves 

Despite recent improvements in the durability and functional efficiency of MHVs, 

thromboembolic complications due to non-biological surfaces and abnormal flow 

regimes continue to plaque these structurally stable prostheses. Thus, these 

aforementioned limitations have led to the development of biological heart valves 

capable of mimicking many of the physiological properties of native valvular tissue. 

Biological heart valves include human-derived heart valves; and animal-based 

bioprosthetic heart valves (BHVs) constructed from either porcine or bovine tissue.  

 

1.6.4.1 Human Tissue Valves 

Human tissue valves include cryopreserved cadaveric homografts, autologous 

valves, and autograft valves which are briefly described in the following sections.  

 

1.6.4.1.1 Cryopreserved Cadaveric Homografts 

Aortic and pulmonary heart valves retrieved from human cadavers have been used 

since the early 1950’s [64, 65]. These homografts obtained from healthy cadaveric heart 

valves retain the natural morphological, physiological, and biomechanical properties 

necessary for the functional demands of valvular tissue [66].  These grafts contain viable, 
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living cells that enhance the biocompatibility of valvular leaflets. Despite the relatively 

low occurrence of thrombotic events, other critical problems continue to restrict the use 

of these native tissue grafts. The risk of rejection triggered by an immunogenic response 

can lead to a potentially fatal outcome [67]. Mechanical stresses and injury to the tissue 

may trigger endothelial activation, which  will elicit smooth muscle cell proliferation and 

cellular apoptosis [68, 69]. Calcification appears to originate in these apoptotic nonviable 

cells. Additionally, the limited availability of these cryopreserved cadaveric homografts 

has led to the exploration of suitable substitutes derived from animal cardiac tissues.  

Inspired by the above-mentioned valvular replacement option, dura mater cardiac 

valves, constructed from cadaveric dura mater, made their debut in the 1970s. With 

glycerol pretreatment, these valves showed low rates of thromboembolism and 

satisfactory mechanical durability. These valvular constructs, now discouraged because 

of their susceptibility to transmit communicable diseases, presented another method of 

using human-tissue to replace dysfunctional valves [70-77].  

 

1.6.4.1.2 Autologous Valves 

 During a brief period in the 1970s, biological based valves were designed using 

autologously-derived fascia lata, connective tissue surrounding the patient’s mid-thigh 

musculature, or pericardium harvested from the patients pericardial sac [55]. A tri-leaflet 

valve was designed to meet immunogenic requirements necessary for a successful 

valvular implant. Theoretically, these valves pose no immunogenic threat due to their 

autologous origin. Despite surpassing the host-donor immunological complications, these 
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autologous valves are technically demanding and do not increase the durability of these 

bioprostheses [55]. When subjected to physiologically relevant hemodynamic regimes, 

these valves succumbed to valvular deterioration. The pericardial tissue contracted and 

formed scar tissue due to the complex bending cycles, turbulent flow, and compressive 

stresses presented to its interstitial cells [78].  

In the face of these failures, other refined designs are currently being pursued. 

Recently, this approach has been applied to Carpentier-Edwards Perimount pericardial 

prosthesis that utilizes the patient’s pericardium to design the prostheses on a synthetic 

mounting frame. 

 

1.6.4.1.3 Pulmonary Autografts  

 In an effort to improve the design of biologically derived valves, the Ross 

procedure was introduced in the late 1960’s. Using pulmonary autografts, the aortic valve 

is replaced, and a cryopreserved cadaveric homograft is implanted in the pulmonary 

valvular site [54, 55]. The similarities shared by both semilunar valves and the 

autologous derivation of the substitute valve permits this clinical procedure to partially 

overshadow the risk associated with a double valve replacement surgery. In part due to 

the tedious and complicated surgical procedure, this valvular replacement option is not 

recommended for older patients.  However, with its improved hemodynamics, and the 

potential for the replacement tissue to become a fully functional dynamic tissue with the 

ability to remodel, make it an especially attractive valve substitute for younger patients 

who exhibit low rates of degeneration, thromboembolic events, and endocarditis. Despite 
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these advantages, one major concern associated with this innovative procedure is the 

subsequent malfunctioning and failure of these pulmonary homografts which are not 

natively accustomed to the hydrodynamic and hemodynamic functional demands of the 

aortic valve [54, 55].  

 

1.6.4.2 Bioprosthetic Heart Valves 

The next generation of tissue-based heart valves was introduced to the market to 

respond to the limited supply of heart valve donors. These xenografts are constructed, 

partly, from either bovine or porcine tissue (described in greater detail in the subsequent 

sections).  

Furthermore, BHVs may be differentiated by their stented or stentless 

architectural support (Figure 12). Using polymeric stents, stented valves are constructed 

using xenogenic tissue anchored by three struts and a Dacron ring to secure the cuspal 

leaflets. The rigid stents utilized for these first generation stented valves caused abrasive 

cuspal tears and creeping of the struts, resulting in an increased rate of structural 

deterioration. Advances in material science and engineering have led to the design of 

improved valves with flexible stents whereby some models utilize biocompatible stent 

padding to resist tissue abrasion [54, 55, 78, 79].  
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Figure 12: Stented and stentless Bioprosthetic Heart Valves: (A) stented bovine 
pericardial valve, (B) stented porcine aortic valve, and (C) stentless porcine aortic valve 
[80].  

 

More recently stentless valves are increasingly being used for valvular 

replacement surgeries. These contemporary valves are fashioned using porcine aortic 

valves dissected with a portion of their subtending aortic wall intact. The absence of a 

synthetic support structure increases the geometric orifice area necessary for maintaining 

proper flow. Consequently, the stentless design is credited with retaining as much of the 

natural hydrodynamic flow pattern characteristic of physiological flow regimes. Whilst 

the enhanced durability and more physiologic hemodynamic behavior produced by these 

stentless bioprostheses, the aortic wall is prone to calcification and other structurally-

compromising failures. Further research to combat these drawbacks is necessary for 

identifying ideal bioprosthetic valve architecture [54, 55, 78, 81, 82].  

 

1.6.4.2.1 Bovine Pericardial Heart Valves 

These tissue-based valves are fashioned from chemically treated bovine 

pericardium. Tailored to mimic tri-leaflet or bi-leaflet valves, the design identity of these 

valvular replacements remains flexible. These valves are chemically treated with 

glutaraldehyde, a reactive dialdehyde that was shown to preserve the tissue and reduce 
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tissue antigenicity [83]. The Ionescu-Shiley bovine pericardial valves, introduced in the 

1970s, were the first attempt in producing chemically preserved heterografts [79]. 

However, due to its poor design, these valves deteriorated at a fast pace when implanted. 

With an improved design, these valves were later modified and manufactured by 

Edwards Lifesciences. Instead of stitching the tissue to a mounting orifice, the 

Carpentier-Edwards pericardial valves incorporated a flexible synthetic stent to anchor 

the pericardial tissue with a modified mounting technique to reduce shear stresses and 

subsequent tears. Notwithstanding their improved hemodynamic and hydrodynamic 

properties, as well as hypothetically endless source of supply, the long-term durability of 

these xenografts remains to be achieved [55, 79]. The variable orientation of collagen 

fibers in pericardial tissues is not equipped to withstand cyclic loading experienced by 

native valvular leaflets. Unlike native cusps, pericardial bioprosthesis are incapable of 

distributing cyclic loads, resulting in high stress concentrations at the commissures of the 

valves [2].    

 

1.6.4.2.2 Porcine Aortic Heart Valves 

 The first porcine-derived bioprosthetic aortic heart valve was available in the 

1970s; these first generation Carpentier-Edwards and Hancock Medtronic devices were 

developed using porcine aortic valves secured to a flexible stent to secure the tissue. Like 

pericardial bioprostheses, these heterografts underwent chemical pretreatment using 

glutaraldehyde. Owing to their structural and functional similarities to native human 

aortic valves, porcine aortic bioprosthetic valves maintain nonturbulent, 
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hemodynamically and hydrodynamically favorable flow regimes necessary to 

accommodate valvular functional needs. Chemical pretreatment of these bioprosthetic 

devices at high pressure differentials (80 mmHg) produced visually sound cusps capable 

of valvular cyclic motion. Nonetheless, these diastolic pressures compromised the 

extensible nature of the cuspal tissues; thus, making them mechanically vulnerable to 

buckling at high local curvatures and kinks during bending [2, 79, 84, 85]. Apart from 

their mediocre biomechanical performance, these valves were prone to calcification.  

To combat the propensity of these valves to structural failure, second generation 

stented and nonstented valves employed glutaraldehyde pretreatment at low to zero 

pressures. Such nominal pressure differentials prevent distortion of valvular matrix fibers, 

specifically collagen fibrils.  On the contrary, this minimal pressure fixation technique 

produces smaller diameter valve orifices, necessitating the need for an alternate 

preparation method.   Using a fixation pressure of 40 mmHg at the inlet and outlet of the 

bioprosthetic assembly, a zero pressure gradient across the cusps is maintained to 

preserve an appropriate orifice area and cuspal geometry [78]. Current research strategies 

have focused on coupling conventional chemical tissue fixation methods with 

antimineralization agents to minimize valvular deterioration and degeneration. These 

third generation bioprostheses prevent the formation of hydroxyapatite crystals to 

increase the device’s overall durability.   
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1.6.5 Current State of Tissue-Based Heart Valves 

Nearly 300,000 valve replacement surgeries are performed worldwide each year 

[86]; of which, approximately 45% of these patients receive tissue-based prosthetic heart 

valves. Bioprosthetic heart valves derived from either bovine or porcine tissue remain the 

most preferred choice for heart valve replacement surgeries, whereby stented porcine-

derived bioprosthetic heart valves, constructed from porcine aortic valves mounted on 

cloth-covered stents, are the most widely used of these bioprostheses.   

Currently, the US BHV industry comprises of a $340 million market with a 

growth rate of 4.0% [50]. By the turn of this decade, the BHV world market will reach $1 

billion [78]. Presently, the BHV market is dominated by valves designed by Baxter-

Edwards, Medtronic, and St. Jude [50, 62, 78].  

Apart from the FDA approved BHVs (Table 3); two commercially available 

models that continue to dominate the market include Hancock and Carpentier-Edwards 

bioprosthetic valves. Manufactured by Medtronic, the Hancock valve is constructed using 

porcine aortic valves pretreated with glutaraldehyde (0.2%) and mounted on Delrin 

(polyacetal) stents. The Carpentier-Edwards stented BHV is produced by Baxter 

Cardiovascular. Similar to the previous valve, the Carpentier-Edwards is designed using 

glutaraldehyde pretreated porcine aortic valves with a metal alloy stent [2].  
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Table 3:  FDA approved bioprostheses.  

 

 

Despite the evolution of BHVs over the past several decades, improving long-

term durability must remain the main the objective in order to achieve sizable 

accomplishments. The durability of these bioprosthesis depends on their ability to resist 

calcification and mechanical damage. Both processes, either independently and/or 

synergistically eventuate the ultimate degeneration and deterioration of the valve, 

prompting re-operation.  

Current research aimed at designing BHVs using extracellular matrix stabilizing 

fixatives coupled with anticalcification treatments is defining a new direction with the 

potential of achieving the “ideal” replacement valve model. Such strategies will ensure an 

appropriate longevity of these bioprostheses suitable for long-term implantation without 

necessitating the need for re-operation.   
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1.6.6 Modes of failure in Tissue-Based Heart Valves 

Unlike their counterparts (MHVs), tissue-derived valves do not require long-term 

anticoagulation therapy.  Due to their inherent biological similarities, these tissue 

constructs have the ability to support natural and physiologically relevant hemodynamic 

and hydrodynamic flow regimes.  One major drawback of these prostheses is the 

incidence of structural failure eventuating in valvular stenosis and regurgitation. 

Triggered by calcific and non-calcific damage, tissue deterioration compromises valvular 

function. Other complications, addressed in the following sections, include endocarditis 

and nonstructural dysfunction. Since, porcine-derived bioprostheses are predominantly 

used for valvular replacement surgeries, the remainder of this chapter will focus on the 

use of porcine BHVs.  

    

1.7 Porcine Bioprosthetic Heart Valves

1.7.1 Glutaraldehyde Pretreatment of Bioprosthetic Heart Valves 

The primary aim of chemical pretreatment of biological tissues is to preserve its 

structural and functional integrity by inhibiting material degradation, reducing tissue 

antigenicity, extending shelf-life limit, and maintaining sterility [2]. 

Currently, glutaraldehyde (1,5-pentanedialdehyde) is the only fixative used to 

stabilize bioprosthetic heart valves. This commercially available fixative, a reactive 

dialdehyde, forms stable crosslinks with collagen via a Schiff base reaction of the 

aldehyde with an amine group of the hydroxylysine/lysine in collagen and by a 

condensation reaction of two adjacent aldehydes [83, 87]. By stabilizing components of 
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the valvular extracellular matrix, glutaraldehyde crosslinking partially precludes 

enzymatic and chemical degradation of the valvular prosthesis.  Furthermore, this 

chemical pretreatment reduces tissue antigenicity and renders it thromboresistive, while 

imparting antimicrobial sterility [2, 14].  

Several shortcomings associated with this aliphatic dialdehyde treatment have 

triggered the scientific community to seek alternative fixation techniques. Glutaraldehyde 

crosslinking of bioprosthetic heart valves degrades the endothelial lining surrounding the 

cusps, which serves to suppress tissue reactivity. Devitalization of interstitial cells 

prevents the necessary cell-mediated renewal and replacement of extracellular matrix 

components required to maintain the structural and functional integrity of the tissue. 

These non-viable cellular regions attract calcium binding and trigger the onset of 

calcification [2, 88].  

Additionally, crosslinking of collagen fibers alters the mechanical property and 

flexural behavior of the cusps by locking the fibers in a static geometry [89]. During 

cyclic loading, these crosslinked bioprostheses are incapable of rearranging their fibrous 

architecture to accommodate tensile, compressive, and shear stresses [18]. This locked 

state increases tissue stiffness eventuating into abnormal flexural behavior during 

dynamic valvular motion [90]. Consequently, these glutaraldehyde pretreated 

bioprosthetic implants are increasingly prone to mechanical fatigue and subsequent 

valvular failure [4, 18, 19, 24, 25, 84, 85, 90].  

Another disadvantage of glutaraldehyde crosslinking is its incomplete 

stabilization of GAGs, which lack the amine functionalities necessary for aldehyde 
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fixation. Such inadequacies associated with this chemical pretreatment, diminishes the 

tissues ability to resist degradation by proteolytic enzymes [3, 4, 8, 9, 40, 42].  GAGs 

play an important role of maintaining a hydrated environment necessary for absorbing 

compressive loads, and dissipating shear stresses [4, 24, 25]. Clinical explants indicate a 

decrease in GAG content, which furthers the implication of GAG loss in valve failure [2, 

4, 9]. Furthermore, glutaraldehyde treated cusps buckle to a greater extent during bending 

than native cuspal tissue [5, 6, 18, 24, 91, 92]. During cyclical bending, GAGs present in 

the medial spongiosa layer buffer the appositional sliding of the exterior fibrosa and 

ventricularis layer. Accordingly, depletion of GAGs leads to delamination of the central 

layer, resulting in structural collapse of the tissue and subsequent valvular degeneration.  

Thus, glutaraldehyde pretreatment of BHVs imparts chemical, mechanical, and 

structural changes that ultimately lead to the demise of the prosthesis. Thus, to increase 

the durability of these bioprostheses, other fixation chemistries are warranted.  

 

1.7.2 Mechanisms of Failure in Porcine Bioprosthetic Heart Valves 

 Within a decade of implantation, 20-30% of porcine bioprostheses become 

dysfunctional and over 50% fail due to degeneration within 12-15 years post-operatively 

[1, 2, 93]. Despite advances in the design and pretreatment of the valvular prostheses, the 

durability of these valves is limited.  Implant failure can be caused primarily by calcific 

and/or noncalcific degradation of these bioprostheses.  
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1.7.2.1 Calcific Degradation 

The major cause of implant failure is pathological calcification whereby tissue 

mineralization occurs. Calcium deposition on the valves causes stenosis, regurgitation, 

and eventuates cuspal tearing [2, 88, 94-97]. This accumulation of calcium phosphate 

results in tissue hardening, which ultimately leads to valvular degeneration and failure. 

This progressive process is perpetuated by host factors, implant-related factors, and 

mechanical stress related factors [88].  

While host factors such as the recipient’s age plays an important role in valvular 

calcification, metabolic rates of calcium, osteocalcin, and vitamin D also mediate its 

onset [98]. Although, valvular calcification is commonly observed in 10% of the 

population over 65 years of age, mineral deposition is pronounced in individuals with 

abnormal levels of the above-mentioned species [2, 69]. Pregnant women also experience 

a greater degree of calcification due to hormonal changes [2, 69].  

Despite the advantageous effects of chemical pretreatment of valvular tissue, 

glutaraldehyde is one of the most prominent implant factors contributing to dystrophic 

calcification of the BHVs [2, 88, 98, 99]. While glutaraldehyde pretreatment stabilizes 

collagen fibers present in valvular tissue, devitalization of interstitial cells occur. These 

non-viable cells and cellular debris serve as primary nucleation sites to initiate the 

process of calcification [100, 101]. Due to the cells inability to operate calcium pumps 

present on its membrane, an influx of freely moving calcium ions into the cellular 

cytoplasm occurs. These calcium ions bind to the nucleus, lipid-rich membrane, and 

phosphate-rich intracellular and nuclear components to promote hydroxyapatite 
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formation. Another synergistic process that contributes to valvular mineralization is the 

crosslinking of collagen fibers [2, 102]. Glutaraldehyde binds to the amino groups of 

collagen’s lysine/hydroxylysine molecules, resulting in a net accumulation of negatively 

charged carboxyl groups on the collagen. These exposed carboxyl groups facilitate 

binding with positively charged calcium ions.  Propogation of valvular mineralization 

further disrupts collagen fibrils which subsequently serve as additional sites for calcium 

ion deposition. Additionally, loosely bound, unreacted, free aldehydes have shown to 

further promote calcification by damaging red blood cells at the valvular interface, 

resulting in cellular necrosis. These cellular fragments promote the onset of calcification 

[103]. Conversely, implant storage in glutaraldehyde solutions for prolonged durations 

reduces the tissue’s susceptibility to calcification due to decrease in the presence of free 

aldehydes within the tissue [40, 42].  

Intercellularly, GAGs play a role in calcification. Previous studies indicate that 

the spatial voids within the spongiosa due to loss of GAGs exposes collagen fibers to 

calcium ion deposition [88, 102]. Thus, by occupying these spaces within the staggered 

arrangement of collagen fibers, these mucopolysaccharides protect collagen fibers against 

enzymatic attack and block possible nucleation sites. Additionally, by chelating and 

sequestering calcium ions to prevent binding with extracellular phosphates, GAGs, 

particularly hyaluronic acid, inhibit the onset of ectopic calcification [4, 88, 102]. 

However, other studies dispute the anti-calcific effects of GAGs by elucidating their role 

as calcification protagonists in cartilaginous tissue [104, 105]. The role of elastin in 

calcification is poorly characterized. Due to the limited amine functionalities present in 
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elastin fibers, glutaraldehyde treatment is ineffective in its ability to stabilize and protect 

these proteins from enzymatic degradation. Deterioration of the protective coating of 

elastin in BHVs exposes calcium binding sites which subsequently lead to initiation and 

proliferation of calcium deposition [40, 106].  

Mechanical stress incurred by implanted BHVs imposes another venue for 

calcification [2, 4, 98, 102]. Prior research indicates that calcification is most likely 

observed in stress concentration regions. These areas exposed to high mechanical stresses 

and flexural bending during valvular motion results in extracellular matrix disruption, 

which may potentiate hydroxyapatite formation. The molecular structure of collagen is 

altered due to fatigue during the cyclical action of the valves [2, 107, 108]. However, it is 

not clear whether calcium deposition occurs due to disruption of the collagen fibrils or 

loss of GAGs [4]. It must also be noted that mechanical stress is not a precondition for 

calcification since calcific deposits are observed in subdermally implanted glutaraldehyde 

treated valvular tissue [2].  Nonetheless, when compounded with fatigue damage such as 

abrasion, tearing, and perforations, dysfunction and probable demise of these BHVs is 

inevitable.   

Thus, these host, implant, and mechanical determinants of BHV mineralization 

contribute to the ultimate failure of BHVs.  
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1.7.2.2 Noncalcific Degradation 

 Degradation of valvular structural matrix independent of calcification is another 

major cause leading to the demise of BHVs. Modes of nonstructural dysfunction includes 

paravalvular leakage, infective endocarditis, pannus overgrowth, and hemolysis.  

 The most common cause of nonstructural dysfunction is paravalvular leakage due 

to poor prosthetic fabrication and/or surgical implantation of the device [109]. Mimicking 

valvular insufficiency conditions such as regurgitation, paravalvular leakage may be 

triggered by enzymatic degradation of the annulus supporting the cusps. This condition 

causes subsequent hemolytic anemia due to irregular flow and penetration of blood cells 

through the void spaces [110].  

 The enzymatic degradation of the annulus is often triggered by infective valvular 

endocarditis. This inflammatory condition is characterized by infection of the 

endocardium, lining that covers valvular tissue [110]. Often referred to as bacterial 

endocarditis, infection is instigated by streptococci and staphylococci colonies. These 

microorganisms can distort the structural integrity of the valves by piercing through its 

walls and consequently, disrupting normal valvular functioning. Clusters of infection can 

stimulate formation of emboli. Thus, bacterial infection can lead to valvular morbidity 

and consequently, mortality of the patient [94, 109, 111-113].  

Valvular failure by pannus overgrowth is caused by the interference of normal 

valve operation by an excessive healing response at the interface of the sewing ring and 

the host tissue.  Triggered by an immunogenic reaction, macrophages and giant cells are 

recruited to the site [114]. With its ability to stimulate fibroblast growth, macrophages 
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elicit fibrous tissue formation. This overgrowth reduces the available orifice area, leading 

to stenosis of the valve which impedes normal blood flow. Tears may also occur at the 

site of healing. Thus, such foreign body reaction may lead to the dysfunction of the valve 

[115].  

Valvular degeneration associated with damaged, calcified, and torn cusps produce 

turbulent flow around the valve opening. Such violent and unstable flow patterns around 

the dynamic valvular tissues causes severe hemolysis due to shearing of the blood cells. 

More prevalent in MHVs, hemolysis in BHVs occurs at sub-clinical levels [116]. If 

undetected and untreated, such blood damage can eventually lead to fatal anemic 

conditions and thromboemboli formation at the distorted tissue region [94].  

Another catalyst for valvular degeneration, mechanical stress, damages the 

structural matrix of BHVs; thus, compromising the functional anatomy of valves [5, 6, 

18, 19, 24, 25, 90, 91, 94, 107]. Noncalcific structural damage of the valves can accrue at 

stress concentration regions during cycling motion of the valves. As a result stress 

accumulation can lead to cuspal fatigue and tearing [2].   

Glutaraldehyde pretreatment inhibits the dynamic structural rearrangements to 

accommodate natural valve functioning [89]. This alteration in the valves ability to 

remodel its extracellular matrix components results in increased flexural stress due to 

abnormal flexion [90, 117, 118]. During the cardiac cycle, these valves are continuously 

subjected to tensile, compressive, and shear stresses. Cyclic fatigue of these BHVs 

imposes many structurally deteriorating problems such as decrease in flexural stiffness 

and tensile strength of the valves; thus, making the cusps vulnerable to material failure 
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[19, 25]. Loss of cell-mediated remodeling and replenishment of the extracellular matrix 

predisposes theses valves to extensive valvular damage. Thus, these BHVs clinically fail 

due to degeneration during cyclical loading and unloading of valvular tissue. 

Another mechanism of valvular deterioration is the interlayer shearing and 

compressive tissue buckling of the valve [5, 6, 24, 25, 92, 94]. Loss of GAGs along with 

tissue stiffness imparted by glutaraldehyde fixation contributes to abnormal flexural 

patterns during valvular motion. The central layer, spongiosa, rich in GAGs mediates the 

differential movement of the two external layers by absorbing compressive and tensile 

loads. During valvular bending, cusps fixed with glutaraldehyde buckled to a greater 

extent than native valvular cusps [5, 6]. Tissue buckling can be attributed to the loss of 

GAGs and to the cuspal tissues diminished ability to hydrate its central layer to dissipate 

shear stresses [24, 25, 119]. Hence, inability of the cusps to accommodate the dynamic 

motion of the tissue during diastole and systole can result in delamination, fracture, and 

loss of collagen fibers.  Therefore, mechanically mediated valvular deterioration can lead 

to the subsequent failure of BHVs.  

 

1.7.3 Valvular Tissue Buckling 

Tissue buckling is defined as tissue deformation whereby the length and 

compressive stresses are reduced in exchange for local structural collapse.  Buckling 

occurs at areas of sharp bending where large stresses accumulate [5].  
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Previous studies have concluded the effect of collagen fiber disruption on 

compressive tissue buckling characteristics of BHVs. Systemic disruption in collagen 

fiber morphology induces compressive buckling at that site when subjected to high 

bending curvatures. Furthermore, it has been shown that glutaraldehyde crosslinked 

cuspal tissue buckled to a greater extent than untreated cusps when subjected to such 

sharp bending configurations. This difference in buckling patterns is largely attributed to 

the potential change in shear properties of the valvular tissues. Unable to distribute and 

reduce the internal stresses subjected during such bending, these cusps experience 

compressive buckling characterized by crinkling of the tissue [5, 6].  

During diastolic valvular motion, the cusps are subjected to compressive loads. 

The spongiosa, which is rich in GAGs, is responsible for the absorption of compressive 

loads.  One of the major disadvantages of glutaraldehyde pretreatment is its inability to 

stabilize GAGs [3, 4, 7, 10]. These hydrophilic molecules permit cushioning of the 

compressive, tensile, and shear stresses experience by valves during the repetitive cardiac 

cycles [2, 4, 24, 25]. Thus, unable to absorb the compressive loads presented during 

bending due to alterations of the natural-strain reducing configuration assumed by normal 

functional valves, these bioprostheses produce kinks and sharp bends during flexion, 

resulting in tissue buckling [6]. Tissue buckling sites serve as focal points of tissue stress 

[18, 19, 120]. Cyclic valvular motion accompanied by tissue buckling can lead to 

eventual fatigue and tearing of the valves.  Thus, stabilization of GAGs using GAG-target 

fixation chemistries may preclude the extent of tissue buckling in BHV, and 

subsequently, improve the durability of these bioprostheses.  
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CHAPTER 2  

CURRENT RESEARCH RATIONALE  

 

2.1 Overview 

In spite of the advent of numerous available porcine-derived BHV models, the 

ideal bioprosthetic implant remains to be achieved. Current bioprosthetic prototypes are 

plagued with structural and non-structural dysfunctions. To extent the durability of these 

bioprostheses, the structural and functional attributes of these tissue-based valves must be 

maintained.  

Currently, BHVs are pretreated with glutaraldehyde, a commercially available 

fixative.  Glutaraldehyde is credited with crosslinking the collagenous component of 

these bioprostheses. However, such pretreatment does not stabilize valvular GAGs. These 

extracellular matrix components, predominantly present in the medial spongiosa layer of 

cusps, play an important role in regulating physico-mechanical behavior of the cuspal 

tissue during dynamic motion.  Another deficiency of glutaraldehyde fixation is the 

altered flexural behavior of the cusps, ensuing in buckling of the cuspal tissue. 

Propagation of such tissue deformations subsequently leads to the ultimate failure of 

these bioprostheses. Thus, to sustain the dynamic nature of these valves, it is important to 

stabilize cuspal GAGs. Accordingly, the primary objective of this study is to reduce 

valvular tissue buckling in BHVs by stabilizing cuspal GAGs using GAG-targeted 

fixation chemistries.  
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2.2 Specific Research Aims 

Aim I: To Examine the Role of Glycosaminoglycans in Valvular Tissue Buckling? 

Hypothesis: Glutaraldehyde crosslinked cuspal tissue may buckle to a greater extent than 

fresh, untreated cusps. Following enzymatic digestion of GAGs, these tissues may 

experience a marked increase in buckling pattern, suggesting that the loss of GAGs may 

play a role in valvular tissue buckling.  

Experimental Plan: Buckling behavior will be assessed by quantifying the extent of 

buckling in the two aforementioned cuspal groups prior to and following exposure to 

GAG-degrading enzymes. Additionally, surface buckling outlines of the cusps will be 

characterized by determining the change in the number of buckles with increasing 

curvatures. Also, bending configurations will be qualitatively examined via histology. 

These results will be supplemented with quantitative GAG content and cuspal hydration 

analyses.  

 

Aim II: To Determine if Stabilization of Glycosaminoglycans  
Reduces Tissue Buckling in Bioprosthetic Heart Valves? 

Hypothesis: The retention of valvular GAGs may reduce the extent of buckling. Valvular 

tissue treated with GAG-targeted fixation chemistries may experience a lesser degree of 

buckling than glutaraldehyde pretreated cusps. Moreover, neomycin trisulfate bound 

cuspal tissues may exhibit the least amount of buckling following enzymatic degradation 

of GAGs compared to other chemically fixed tissues, mimicking fresh tissue buckling 

pattern.  
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Experimental Plan: To assess the efficacy of GAG-stabilizing fixation, the buckling 

behavior of each cuspal treatment will be evaluated. As mentioned above, the buckling 

depth will be evaluated before and after GAG-digestive treatment. Furthermore, surface 

buckling outline of the bent cusps will be characterized using the previously stated 

qualitative and quantitative analyses as well as using scanning electron microscopy. In 

addition, quantitative GAG content and cuspal hydration analyses will be conducted.   

 

Aim III: To Investigate if Stabilization of Valvular Glycosaminoglycans Using 
Neomycin Trisulfate - Enhanced Glycosaminoglycan - Targeted Fixation Chemistry 

Precludes Tissue Buckling in Fatigued Bioprosthetic Heart Valves? 
 

Hypothesis: Ongoing studies indicate that cusps with bound neomycin trisulfate resist 

GAG depletion during in vitro cyclical fatigue than those cuspal tissues pretreated with 

glutaraldehyde. Stabilization of GAGs using neomycin trisulfate will improve valvular 

durability by resisting tissue buckling after fatigue cycling. Thus, the buckling pattern in 

the abovementioned cuspal fixation groups may remain the same as previously seen, but 

the extent of buckling may be pronounced due to cyclical fatigue.  

Experimental Plan: To ascertain the effect of cyclical fatigue and valvular GAG retention 

on cuspal tissue deformation, valvular tissue buckling behavior following in vitro cyclical 

fatigue will be assessed using the previously mentioned qualitative and quantitative 

methods. Buckling patterns of statically stored cusps will be evaluated as controls.  
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Materials 

Porcine aortic heart valves were obtained from a local USDA approved abattoir, 

Snow Creek Meat Processing, Seneca, SC. The following materials were purchased from 

the noted vendors and used in the present studies: ammonium acetate, neomycin trisulfate 

salt hydrate, glutaraldehyde (50% stock), hyaluronidase (from bovine testes, type IV-s, 

3,000–15,000 U/mg), chondroitinase ABC (from Proteus vulgaris, lyophilized powder, 

50–250 Umg), D(+)-glucosamine-HCL, collagenase Type VII from Clostridium 

histolyticum, 1-9- dimethylmethylene blue (DMMB) were all purchased from Sigma-

Aldrich Corporation (St. Louis, MO); 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC), n-hydroxysuccinimide (NHS) from Pierce Biotech (Rockford, IL); p-dimethyl 

aminobenzaldehyde, acetyl acetone, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) were purchased from Fisher Scientific (Fair Lawn, NJ); and 4-

morpholinoethanesulfonic acid hydrate (MES) hydrate was obtained from Acros 

Organics, NJ 
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3.2 Methods 

3.2.1 Tissue Harvesting and Fixation 

Fresh porcine aortic heart valves were obtained from a local abattoir and 

thoroughly rinsed in ice-cold saline.  Within 3-hours of harvesting, intact aortic valves 

were stuffed with cotton to maintain diastolic morphology and chemically crosslinked in 

three fixation groups as follows:  

Group I: 0.6% Glutaraldehyde in 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) buffered saline solution at pH 7.4 at ambient temperature for 24 hours 

followed by 0.2% Glutaraldehyde in 50 mM HEPES buffered saline solution at pH 7.4 

for 6 days at ambient temperature.   

Group II: 30 mM EDC / 6 mM NHS solution buffered with 50 mM 4-

morpholinoethanesulfonic acid hydrate (MES) at a pH of 5.5 for 24 hours at ambient 

temperature.  Following the carbodiimide fixation, valves were thoroughly rinsed in a 50 

mM HEPES buffered (pH 7.4) saline solution and subsequently crosslinked with 0.6% 

glutaraldehyde for 24 hours followed by storage in 0.2% glutaraldehyde for the 

remaining 5 days.  

Group III: 1 hour incubation in 1 mM neomycin trisulfate solution comprised of MES 

buffer solution at a pH of 7.4. Next, valves were thoroughly rinsed with deionized water 

and subsequently fixed with carbodiimide fixation chemistry as outlined above, followed 

by storage in 0.2% glutaraldehyde.  

Group IV: Fresh porcine aortic valves that were not chemically fixed were used as 

controls to observe buckling in native valve tissue. 
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3.2.2 Enzymatic Degradation of Glycosaminoglycans 

Following the above-mentioned respective tissue fixation and storage procedures, 

cusps were excised from their subtending aortic walls and thoroughly rinsed in 100 mM 

ammonium acetate buffer (pH 7.4). Whole cusps were incubated in 1.2 ml of 10 U/ml 

high purity hyaluronidase and 0.2 U/ml high purity chondroitinase ABC buffered in the 

aforementioned ammonium acetate buffer for 24 hours at 37oC under vigorous shaking at 

650 RPM.  Fresh cuspal tissue exposed to these enzymatic conditions have shown to 

completely deplete the valvular tissues of GAGs [3].  Following incubation in enzyme-

buffered solutions, samples were thoroughly rinsed in deionized water.  

 

3.2.3 In Vitro Cyclic Fatigue  

Following the above-mentioned respective tissue fixation and storage procedures 

(3.2.1 Tissue Harvesting and Fixation), valves were mounted on Delrin stents for 

accelerated wear testing. Using a Dynatek M6 machine (Figure 13), 3 stented valves 

from Group I and Group III were tested at 700 cycles/minute and subjected to 10 million 

cycles in the accelerated fatigue tester, equivalent to 3-4 months of normal adult cardiac 

cycle. Daily tests included stroboscopic observations and pressure checks. After fatigue 

testing, the retrieved valves were photographed and analyzed for macroscopic signs of 

wear, abrasions, and tears. Cusps were dissected from their insertion in the aortic wall 

and the extent of buckling depth was evaluated (procedure described in the proceeding 

sections).  
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Figure 13: In vitro cyclic fatigue testing. (A) Stented porcine heart valves; (B) stented 
porcine heart valves placed in fatigue tester chamber; (C) a set of 6 stented porcine heart 
valves undergoing accelerated fatigue testing; (D) Dynatek M6 machine.  
 

3.2.4 Specimen Bending Preparation 

Following the above-mentioned preparations, cusps were excised from the aortic 

root and circumferential strips were obtained from the belly region of the cuspal tissue. 

These 5 mm wide strips were bent to desired curvatures by bending them against natural 

curvature to mimic physiological bending in the belly region of cusps (Figure 14).  

During valvular motion, irregular folding of bioprosthetic cusps occurs. Due to 

inextensible nature of bioprosthetic heart valves, reverse bending curvatures, 

characterized by the fibrosa on the outside of the bend, are observed in the belly region of 

cuspal tissue in diastole [5, 121].   

A B 

C D 
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To maintain a bent configuration of the cusps, stainless steel pins were pierced 

through either ends of the strips; the ends were separated to a desired radius of curvature; 

and held in place by using cork stoppers at either ends of the pin for 24 hours in 0.2 % 

Glut solution.  

 

 

Figure 14: Circumferential cuspal strips bent against natural curvature. To maintain a 
bent configuration, stainless steel pins were pierced through either ends of the strips; the 
ends were separated to a desired radius of curvature; and held in place by using cork 
stoppers at either ends of the pin. 
 

The radius of curvature was varied by changing the length of the tissue to satisfy 

the following relationship: 

radiansrs θ•=  

whereby s denotes the arc length of the curvature, r represents the desired radius of 

curvature, and radiansθ  is the radian angle of the arc. In this case, a radian angle of π  was 

used to represent a semi-circular arc produced by the bent cuspal strips.  

 

 

 

 50



 

3.2.5 Histological Preparation 

Routine histological preparations of the paraffin-embedded samples were 

performed to quantify the extent of buckling. To visualize and identify GAGs, Alcian 

blue staining with Brazilliant!® nuclear fast red (Anatech Ltd., Battle Creek, MI) 

counterstain was used.  Briefly, 5 µm thick paraffin sections were deparaffinized and 

hydrated with distilled water, mordant in 3% aqueous acetic acid for 3 minutes, followed 

by staining with 1% Alcian Blue in 3% acetic acid at pH 2.5 for 30 minutes. After 

thorough rinsing, sections were counterstained with the above-mentioned nuclear fast red 

stain (0.1%) for 5 minutes, thoroughly rinsed, and dehydrated for subsequent mounting 

and coverslipping.  

 

3.2.6 Tissue Buckling Quantification 

Following histological evaluation of the samples, the extent of buckling was 

quantified using a Zeiss Axioskop 2 plus (Carl Zeiss MicroImaging, Inc., Thornwood, 

NY) in conjunction with SPOT Advanced software.  Using measuring and drafting 

functions such as circular and linear dimension line features of the SPOT Advanced 

software, the actual curvature of the bending, tissue thickness, and depth of buckling 

were measured. To determine the radius of curvature, a circle was fitted visually to the 

semi-circular arc of the tissue. The tissue thickness was measured by averaging the local 

thickness of the tissue away from the sites of tissue buckling. Depth of tissue buckling 

was quantified by measuring the distance between the deepest point of buckling and the 
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inner boundary of the tissue thickness (Figure 15).   The fractional depth of buckling 

represents the ratio of buckling depth to the local tissue thickness.  

To normalize the variation in tissue thickness between samples, the curvature was 

multiplied by the local thickness of tissue. Thus, both variables, curvatures and tissue 

thickness, affect the degree of buckling depth. 

Per histological observations, it was evident that as the radius of curvature 

decreased or as the curvature of bending increased, the extent of buckling increased. To 

demonstrate this relationship, fractional depth of buckling versus the product of tissue 

thickness and curvature of bending were plotted as described previously by Vesely, I. et 

al [5, 6]).  

 

 

Figure 15: Tissue buckling quantification. Depth of tissue buckling was quantified by 
measuring the distance between the deepest point of buckling and the inner boundary of 
the tissue thickness. Arc length was determined by fitting a circular function around the 
bending arc of the tissue.  
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 Additionally, to assess the affect of chemical fixation on the surface buckling 

outline produced by valvular tissue bending, the number of buckles present in the semi-

circular arc of bent cuspal strips was calculated. This data was plotted against the product 

of thickness and curvature to observe the change in the surface buckling outline of cusps 

when subjected to various bending configurations.   

 

3.2.7 Qualitative Assessment of Tissue Buckling  
using Scanning Electron Microscopy 

 Following the above-mentioned respective tissue fixation and storage procedures, 

and specimen bending preparations, lyophilized samples were mounted on aluminum 

alloy stubs. An ultra-thin coating of gold-palladium was applied using Denton Vacuum 

Desk II sputter coater. A low vacuum, high resolution environmental scanning electron 

microscope (JSM 5300 LV ESEM; Joel Ltd, Tokyo, Japan) was used at 5.0 kV to capture 

images at various magnifications ranging from 35 to 100 X.  

 

3.2.8 Glycosaminoglycan Quantification by Hexosamine Analysis 

Previously published methods were employed to quantify total hexosamine 

content in the respective tissue groups [3].  Briefly, lyophilized cusps were acid 

hydrolyzed using 2M hydrochloric acid for 20 hours at 95°C in a vacuum desiccator. 

After thorough drying under nitrogen gas flow in a boiling water bath, tissue hydrolysates 

were dissolved in 2 ml of 1M sodium chloride solution and reacted with 2 ml of 3% 

acetyl acetone in 1.25M sodium carbonate. Next, theses samples were incubated for 1 

hour at 96°C.  Following thermal equilibrium at room temperature, samples were treated 
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with 4 ml of absolute ethanol with subsequent addition of 2 ml of Ehrlich’s reagent (0.18 

M p-dimethylaminobenzaldehyde in 50% ethanol containing 3 N HCl).  An incubation 

period of 45 minutes at room temperature allowed formation of a color product reflective 

of the hexosamine quantities present in the cuspal tissue.  Using the optical absorbance 

readings of the tissue hydrolysate and D(+)-glucosamine (0 – 200 µg) standards at 540 

nm, the hexosamine quantities were determined.     

 

3.2.9 Glycosaminoglycan Quantification by Dimethylmethylene Blue Assay 

 Following fixation and enzymatic digestion of GAGs using above-mentioned 

procedures, GAGs released into the enzyme solutions (10 U/ml high purity hyaluronidase 

and 0.2 U/ml high purity chondroitinase ABC buffered in 100 mM ammonium acetate 

buffer at pH 7.4) were quantified by 1-9- dimethylmethylene blue (DMMB) assay using 

previously described methods [10, 122-124] with minor modification as described below. 

In a 96 well-plate, 20 µl of the aforementioned enzyme solution, 30 µl of PBE buffer 

solution (100 mM Na2HPO4, 5 mM EDTA, pH 7.5) and 200 µl of DMMB reagent 

solution (40 mM NaCl, 40 mM Glycine, 46 µM DMMB, pH 3.0) were added to each 

well. Next, optical absorbance readings were read at 525 nm. Serving as controls, optical 

absorbance readings of GAG release in buffer solution (100 mM ammonium acetate 

buffer at pH 7.4) using the aforesaid buffer with PBE buffer solution and DMMB reagent 

solution were obtained. To observe GAG loss in GAG-digestive enzyme solution, 

chondroitin sulfate (0 – 1.25 µg) standards treated with 20 µl of the above-mentioned 

enzyme solution were used. Likewise, chondroitin sulfate (0 – 1.25 µg) standards without 
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any exposure to GAG-degrading enzymes were employed to determine GAG release in 

buffer solution.  

 

3.2.10 Initial Water Content and Rehydration Capacity of Fixed Cuspal Tissue 

Whole cusps were either incubated in 100 mM ammonium acetate buffer at pH 

7.4 or incubated in 1.2 ml of 10 U/ml high purity hyaluronidase and 0.2 U/ml high purity 

chondroitinase ABC buffered in the aforementioned ammonium acetate buffer for 24 

hours at 37oC under vigorous shaking at 650 RPM. Following incubation with GAG-

degrading enzymes or buffered solution, cusps were thoroughly rinsed with deionized 

water. Using three stacked tissue papers folded in half (Kimwipes EX-L Delicate Task 

Wipers, Kimberly Clark Inc., Roswell, GA), excess water on the periphery of the cusps 

was carefully removed without applying pressure; instead gently dabbing the valvular 

tissue. The wet weight of each cusp was recorded prior to lyophilization.  Following a 

lyophilization period of 24 hours, the cuspal dry weights were recorded.  Initial Water 

content was then calculated as follows: 

 

WeightTissueWet
WeightTissueDryWeightTissueWetContentWater −

=  

 

The rehydration capacity of fixed cuspal tissue was determined by rehydrating the 

tissue samples in 1.5ml of deionized water for 24 hours at 4oC.  The wet weight was 

determined and the rehydration capacity was calculated as follows:  
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WeightTissueDry
WeightTissueDryWeightTissuehydratedCapacityhydration −

=
ReRe  

 

3.2.11 Statistical Analyses 

Results obtained by hexosamine analysis and water content and rehydration 

studies are expressed as a mean ± the standard error of the mean (SEM). Statistical 

analyses for these results were performed using single-factor analysis of variance 

(ANOVA) whereby significance was defined as p < 0.05.  

Graphical analysis of valvular tissue buckling behavior was conducted by fitting a 

linear regression to the data set. Statistical comparisons of the trendlines were performed 

using two-sample t-test of the predicted values obtained from the regression. Two near-

boundary curvatures representing high and low bending radii were selected to evaluate 

cuspal buckling patterns.  Significant differences were defined as p < 0.05.  
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CHAPTER 4 

RESULTS 

 

4.1 The Role of Gycosaminoglycans in Valvular Tissue Buckling 

 To examine the potential role of GAGs in valvular tissue buckling, glutaraldehyde 

crosslinked and fresh, untreated cusps were subjected to varying radii of curvatures. 

Additionally, to observe buckling in GAG-depleted valvular tissue, these cusps were 

exposed to GAG-digestive enzymes prior to evaluation of tissue buckling pattern when 

subjected to different bending curvatures.  

 Histologically, it was evident that the extent of buckling increased with 

decreasing radii of bending or with an increase in curvature (Figures 16 and 17). Of 

note, a greater depth of buckling in general was observed in cusps pretreated with 

glutaraldehyde compared to fresh, untreated cusps. With exposure to GAG-degrading 

enzymes, glutaraldehyde pretreated cusps experienced an additional increase in buckling 

depth. 

 Furthermore, histological staining for the presence of GAGs indicated a depletion 

of GAGs in GAG-digested tissues (Figures 16 and 17: D, E, F). A dramatic decrease in 

GAG staining was observed in GAG specific staining of glutaraldehyde crosslinked 

cusps treated with GAG-digestive enzymes, indicating a loss of GAGs (Figure 17).  
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Figure 16: Buckling behavior in fresh cusps: Fresh, unfixed cusps (A-C) without further 
treatment, and (D-F) with GAG-digestive treatment bent to various curvatures. Curvature 
of bend increases A to C and D to F. Blue staining using Alcian Blue indicates presence 
of GAGs.  
 

These results were further confirmed with Hexosamine and DMMB analysis 

(please refer to proceeding sections) to quantify the retention of GAGs by these cusps 

whereby glutaraldehyde crosslinked cuspal tissues experienced a decrease in GAG 

content following treatment with GAG-digestive enzymes (p<0.05). Additionally, fresh, 

untreated cusps exhibited the highest amount of GAGs.  
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Figure 17: Buckling behavior in cusps pretreated with glutaraldehyde: Glutaraldehyde 
crosslinked valvular cusps (A-C) without further treatment, and (D-F) with GAG-
digestive treatment bent to various curvatures. Curvature of bend increases A to C and D 
to F. Blue staining using Alcian Blue indicates presence of GAGs.  
 

 Hence, to demonstrate these differences graphically, the fractional depth of 

buckling was plotted against the product of bending curvature and tissue thickness. Due 

to variability in tissue thickness between each cusp, the bending curvature and tissue 

thickness were expressed as a product. Also, it must be noted that expressing these two 

independent variables as a product increased the correlation coefficients of the obtained 

graphical plots.  

In accord with the above-mentioned qualitative observations, similar results were 

obtained with graphical analyses of the buckling patterns in the aforementioned groups 

(Figure 18).  
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Figure 18: Graphical comparison of buckling pattern in fresh, unfixed and 
glutaraldehyde pretreated cusps.   

 

In addition, these graphical analyses of buckling behavior suggests that fresh 

valvular cusps not exposed to any chemical pretreatment experienced relatively mild 

compressive buckling, with an absence of such tissue deformations at low curvatures. 

However, glutaraldehyde pretreated cusps experienced a greater depth of buckling at all 

curvatures, including mild bending curvatures (p<0.05). Moreover, when exposed to 

GAG-digestive enzymes, these glutaraldehyde crosslinked cusps buckled almost through 

their entire thickness when tightly bent to high curvatures.  Conversely, no dramatic 

increase in buckling pattern was observed in untreated, fresh cusps after treatment with 

GAG-degrading enzymes. Thus, at all bending radii, the fractional depth of buckling in 

fresh, untreated cusps significantly differs from cusps pretreated with glutaraldehyde with 

or without GAG-digestion (p<0.05).  
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To further characterize the surface buckling pattern of the aforementioned 

treatment groups, the number of surface buckles developed during various cuspal bending 

radii was quantified.  As mentioned previously, both tissue thickness and bending 

curvature influence the surface buckling pattern of bent cusps. Graphical correlations 

derived using histological analyses of the buckling outline of bent cuspal tissues verify 

the aphysiological buckling patterns induced by glutaraldehyde pretreatment and 

exposure to GAG-digestive enzymes (Figure 19).  

 

 

Figure 19: Number of surface buckles produced by fresh, unfixed and glutaraldehyde 
pretreated cusps at different bending curvatures.   

 

Of particular note, fresh, untreated cusps experienced no buckling at low 

curvatures; increasing to minimal number of surface buckles at higher bending 

curvatures. However, cusps pretreated with glutaraldehyde fixation produced numerous 
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buckles at low curvatures which declined when sharply bent at higher curvatures. 

Likewise, fresh and glutaraldehyde fixed cusps treated with GAG-degrading enzymes, 

experienced similar surface buckling outlines. When subjected to sharp bending 

curvatures, all cuspal groups developed minimal number of surface buckles.  

In summary, the following trends were observed: (a) buckling depth increased 

with increase in curvature; (b) the extent of buckling in glutaraldehyde pretreated cusps 

was always greater than fresh, unfixed cusps with and without GAG-degrading enzymatic 

treatment; (c) the loss of GAGs, as observed in these cusps treated with GAG-digestive 

enzymes, further heightens the extent of buckling; (d) when exposed to glutaraldehyde 

pretreatment and/or GAG-digestion, the number of buckles developed during low 

bending curvatures increased compared to fresh, untreated cusps which experienced 

minimal to no surface buckles at similar high bending radii, (e) however, at higher 

bending curvatures all cuspal groups produced similar amount of surface buckles.  

 

4.2 The Effect of Glycosaminoglycan-Targeted Fixation  
Chemistry on Valvular Tissue Buckling  

 To ascertain the effect of GAG-targeted fixation chemistry on valvular tissue 

buckling, cusps with bound neomycin trisulfate and those pretreated with EDC/NHS 

were subjected to different bending curvatures. In addition, both cuspal groups were 

treated with GAG-digestive enzymes to evaluate the efficacy of the respective GAG-

targeted fixation chemistries to retain cuspal GAGs, and thereby reduce the extent of 

tissue buckling.  
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  Similar to the previous study groups, an increase in buckling depth with an 

increase in the curvature of the bend was observed (Figures 20 and 21). However, unlike 

glutaraldehyde crosslinked cuspal tissue, cusps pretreated with GAG-targeted fixation 

chemistries exhibited moderate tissue buckling (Figures 20 and 21: A, B, C).  

 

 

Figure 20: Buckling behavior in cusps exposed to carbodiimide pretreatment: EDC/NHS 
pretreated cusps (A-C) without, and (D-F) with GAG-digestion bent to various radii. 
Curvature of bend increases A to C and D to F. Blue staining using Alcian Blue indicates 
presence of GAGs. 
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Figure 21: Buckling behavior in cusps with bound neomycin trisulfate: Neomycin 
trisulfate bound cusps (A-C) prior to, and (D-F) following GAG-digestive treatment bent 
to various radii. Bending curvature increases A to C and D to F. Blue staining using 
Alcian Blue indicates presence of GAGs. 

 

Following incubation with GAG-digestive enzymes, cusps exposed to 

carbodiimide pretreatment alone buckled to a greater extent than prior to such GAG-

degrading treatment. Conversely, cusps with bound neomycin trisulfate experienced no 

significant change in buckling with or without GAG-digestive treatment (Figure 21). 

Alcian blue staining of GAGs indicated almost no change in intensity following 

enzymatic digestion of GAGs in neomycin trisulfate bound cuspal tissues (Figure 21).  
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A 

B 

Figure 22: Graphical analyses of valvular tissue buckling in cusps pretreated with 
glycosaminoglycan-targeted fixation chemistry: (A) prior to, and (B) following 
incubation with GAG-degrading enzymes. 
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A quantitative Hexosamine and DMMB assay was conducted (results described in 

proceeding sections) to verify the efficacy of the GAG-targeted fixation chemistries in 

the stabilization of valvular GAGs. Neomycin trisulfate pretreated cusps contained the 

highest amount of GAGs compared to cuspal tissues exposed to other chemical 

pretreatments. Additionally, following enzymatic digestion, these neomycin trisulfate 

bound cusps experienced no significant change in GAG content (p<0.05).  

Furthermore, graphical analyses of the buckling pattern in the aforesaid groups 

(GAG-targeted fixation chemistries) confirmed the qualitative histological analyses 

(Figure 22). Cuspal tissue bound to neomycin trisulfate experienced the least degree of 

buckling at all bending curvatures than their glutaraldehyde pretreated counterparts 

(p<0.05) bent to similar configurations (Figure 22: A). As indicated in Figure 22: B, 

following GAG-digestive treatment, glutaraldehyde pretreated cusps experienced a 

greater depth of buckling than neomycin trisulfate treated tissues which exhibited no 

significant difference in buckling pattern (p<0.05). At high curvatures, cusps treated with 

carbodiimide fixation chemistry alone buckled to a greater extent than those bound with 

neomycin trisulfate (p<0.05).  

Upon quantification of the number of buckles produced during various bending 

radii, it was evident that neomycin bound leaflets experienced minimal to no buckling at 

low curvatures compared to other chemically pretreated cuspal groups at similar bending 

curvatures (Figure 23: A). However, when subjected to sharp bending radii, all cuspal 

groups developed analogous amounts of surface buckles.  
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Figure 23: Number of surface buckles produced following bending of cuspal tissue 
treated with GAG-targeted fixation chemistries: (A) before, and (B) after exposure to 
GAG-degrading enzymes.  
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After exposure to GAG-degrading enzymes, all treatment groups produced similar 

number of buckles when subjected to like bending curvatures (Figure 23: B). Particularly 

noteworthy, cuspal leaflets with bound neomycin trisulfate exhibited similar surface 

buckling outlines with equivalent number of buckles at all curvatures with or without 

treatment with GAG-digestive enzymes.  

In summation, the following observations are made: (a) tissue buckling depth 

increased when subjected to high bending curvatures; (b) valvular tissue treated with 

GAG-targeted fixation chemistries buckled to a lesser extent than cusps crosslinked with 

glutaraldehyde when subjected to analogous bending configurations; (c) following GAG 

digestion, cuspal tissue treated with GAG-targeted fixation chemistries showed lesser 

degree of change in buckling than glutaraldehyde fixed cusps exposed to similar GAG-

degrading enzymes; (d) enzymatic digestion of GAGs did not affect the bucking pattern 

of neomycin trisulfate treated cuspal tissue; (e) neomycin trisulfate bound cusps exhibited 

the least amount of buckling compared to other chemically fixed tissues, mimicking 

fresh, untreated cuspal tissue buckling pattern (Figure 24 A); (f ) furthermore, the 

number of buckles developed during low bending curvatures in neomycin trisulfate 

bound cusps with or without exposure to GAG-digestive treatment was minimal 

compared to the other chemically fixed groups bent to similar radii, mimicking fresh, 

untreated tissue surface buckling outline (Figure 24 B).  
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Figure 24: Graphical evaluation of tissue buckling behavior after various chemical 
pretreatment methods: (A) fractional depth of buckling, and (B) number of buckles.  
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4.3 Surface Characterization of Valvular Tissue Buckling  

 The moderate buckling behavior observed in neomycin bound cusps was 

qualitatively verified by assessing the surface characteristics of the bent cuspal tissue 

using SEM. Additionally; surface characterization of glutaraldehyde pretreated bent 

cusps was also conducted to compare such surface differences.  

  

 
C D 

B A 

Figure 25: Surface characterization of valvular tissue buckling: (A) glutaraldehyde 
pretreated cusp and (B) neomycin-trisulfate bound cusp bent to similar curvatures.  
Images (C) and (D) correspond to magnifications of the highlighted insets of 
glutaraldehyde pretreated and neomycin-trisulfate bound cusp bent to similar curvatures, 
respectively. Arrows indicate areas of valvular tissue buckling.  
 

As evident in the SEM images above, surface crimps and kinks were minimal in 

bent cusps with bound neomycin trisulfate (Figure 25: A), while glutaraldehyde 

 70



 

crosslin

 not produce pronounced surface creases 

as witn

ffect of In Vitro Cyclic Fatigue on Valvular Tissue Buckling Behavior 

ked cusps exhibited a significant amount of deep creases at similar bending radii, 

indicating tissue buckling sites (Figure 25: B).  

Thus, based on the gross appearance of the bent cusps, it can be inferred that 

cuspal tissue treated with neomycin trisulfate do

essed in glutaraldehyde crosslinked cusps when subjected to similar bending 

curvatures.  

 

4.4 The E
Following Treatment with Glycosaminoglycan-Targeted Fixation Chemistry 

 
The efficacy of neomycin trisulfate to resist tissue buckling by stabilizing valvular 

GA

fatigue

pretrea

Gs was evaluated following in vitro cyclic fatigue. To determine the effect of cyclic 

 on valvular tissue buckling behavior, glutaraldehyde pretreated and neomycin 

trisulfate bound cusps were subjected to various radii of curvatures after undergoing 

approximately 10 million accelerated fatigue cycles. Alternatively, another set 

glutaraldehyde crosslinked and neomycin trisulfate bound valves were stored under static 

conditions, to discern the change in tissue buckling pattern, if any, due to cyclical fatigue.  

Upon histological observations, it was apparent that these cuspal tissues exhibited 

similar buckling patterns as seen previously (Figures 26 and 27). Glutaraldehyde 

ted cuspal tissues experienced a greater depth of buckling at all radii compared to 

neomycin trisulfate treated cusps. Moreover, glutaraldehyde crosslinked cusps subjected 

to cyclic fatigue testing buckled to a greater extent than those stored under static 

conditions when subjected to similar bending configurations. However, no substantial 
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difference in buckling behavior was observed between neomycin trisulfate bound 

valvular tissue subjected to fatigue cycling or maintained in a static environment.  

 

 

fatigue: Glutaraldehyde crosslinked cuspal tissue bent to various radii (A-C) following 10 
Figure 26: Buckling pattern in glutaraldehyde pretreated cusps following in vitro cyclic 

million accelerated fatigue cycles and (D-F) following storage under static conditions. 
Bending curvature increases A to C and D to F. Blue staining using Alcian Blue indicates 
presence of GAGs. 
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Figure 27: Buckling pattern in neomycin trisulfate bound cusps following in vitro cyclic 
fatigue: Cuspal tissue with bound neomycin trisulfate bent to various radii (A-C) 
following 10 million accelerated fatigue cycles and (D-F) following storage under static 
conditions. Bending curvature increases A to C and D to F. Blue staining using Alcian 
Blue indicates presence of GAGs. 
 

To quantitatively corroborate the abovementioned observations, graphical 

analyses of the cuspal groups was performed. In concurrence with the qualitative results, 

analogous tissue buckling behavior was obtained (Figure 28), whereby fatigued 

neomycin trisulfate bound cusps experienced significantly lower fractional buckling 

depths than glutaraldehyde pretreated cusps with or without cyclical fatigue (p<0.05).  
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Figure 28: Graphical assessment of buckling behavior of in vitro cyclic fatigued cusps.  

 

 To further characterize the buckling pattern of these cyclical fatigued tissues, the 

number of buckles produced by these cusps when subjected to different bending radii was 

evaluated (Figure 29). An absence of buckles was observed at low curvatures in cusps 

bound with neomycin trisulfate subjected to cyclical fatigue, mimicking statically stored 

cusps. However, glutaraldehyde pretreated cusps experienced increased amount of 

buckles at such bending radii. When subjected to sharp bending curvatures, all cuspal 

groups exhibited equivalent number of surface buckles.   
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Figure 29: Graphical assessment of surface buckling outline of in vitro cyclic fatigued 
cusps at various bending radii.  
 

Thus, based on these results, the following observations can be summarized: (a) 

as seen previously, buckling depth increased with an increase in bending curvatures;  (b) 

glutaraldehyde pretreated cusps subjected to cyclical fatigue testing buckled to a greater 

degree than valvular tissue bound with neomycin trisulfate and exposed to likewise 

accelerated fatigue conditions; (c) fatigue cycling of neomycin trisulfate bound cuspal 

tissue experienced no deviations in buckling pattern than those cusps not exposed to such 

treatment and instead maintained in a static environment; and (d) tissue buckling 

behavior of these neomycin bound cusps parallels fresh, untreated valvular tissue 

buckling pattern.  
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4.5 Efficacy of Glycosaminoglycan-Targeted Fixation Chemistry to Resist  
Enzymatic Degradation of Glycosaminoglycans 

The efficacy of GAG-targeted fixation chemistries to prevent enzymatic 

degradation of GAGs was quantified by treating crosslinked cuspal tissue with GAG-

degrading enzymes (namely, hyaluronidase and chondroitinase) and comparing their 

GAG content to crosslinked cusps not exposed to any GAG-digestive treatments. 

Following the above-mentioned treatments, Hexosamine analysis indicated the highest 

loss of GAGs (p<0.05) in glutaraldehyde crosslinked cusps after enzymatic digestion 

(Figure 30), similar to fresh, untreated cusps (p>0.05). Cusps exposed to GAG-targeted 

fixation chemistry exhibited the highest resistance to enzymatic removal of GAGs 

(p<0.05). Also, cuspal groups pretreated with glutaraldehyde and EDC/NHS showed no 

statistical difference between their GAG content values (p<0.05). Of all the three cuspal 

fixation groups, neomycin trisulfate bound cusps retained the highest amount of GAGs 

prior to and following digestion (p<0.05), mimicking fresh, untreated cusps (p>0.05). 

These results indicate the effectiveness of bound neomycin trisulfate using GAG-targeted 

fixation chemistry to prevent the enzymatic removal of GAGs.  Additionally, GAG 

content in glutaraldehyde and EDC/NHS crosslinked cusps was significantly (p<0.05) 

lower before enzymatic digestion than compared to neomycin trisulfate bound cusps prior 

to or following GAG-digestion, indicating the instability of GAGs in the aforementioned 

cuspal treatment groups.  
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Figure 30: Valvular glycosaminoglycan retention prior to and following pretreatment 
with glutaraldehyde and glycosaminoglycan-targeted fixation chemistries.   
 

To further quantify the loss of GAGs in the crosslinked cuspal tissue prior to and 

following GAG-digestive treatments, the respective buffer and enzyme solutions of each 

group were analyzed for released GAGs by DMMB assay (Figure 31). Significantly 

higher GAG content (p<0.05) was detected in the enzyme solutions of GAG-digested 

glutaraldehyde and EDC/NHS pretreated cusps; while an insignificant amount (p<0.05) 

of GAGs were released into the buffer and enzyme solutions of cuspal tissue with bound 

neomycin trisulfate.  
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Figure 31: Loss of glycosaminoglycans following pretreatment with glutaraldehyde and 
glycosaminoglycan-targeted fixation chemistries.  
 

These results indicate that almost complete resistance to GAG-degrading enzymes 

by cuspal GAGs is achieved by binding neomycin trisulfate to these cusps. Such binding 

inhibits the effectiveness of GAG-digestive enzymes (namely, hyaluronidase and 

chondroitinase) to degrade cuspal GAGs.  

 

4.6 Effect of Glycosaminoglycan-Targeted Fixation Chemistry 
on Cuspal Water Content and Rehydration Capacity 

To evaluate the effect of the GAG-targeted fixation methods on cuspal hydration, 

the water content of each cuspal treatment group was measured. Following the 

appropriate fixation methods, glutaraldehyde crosslinked cuspal tissue exhibited 
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significantly higher water content (p<0.05) than compared to those cusps treated with 

GAG-targeted fixation chemistries.  

Furthermore, the water content of each cuspal fixation group was quantified 

following treatment with GAG-degrading enzymes to correlate cuspal hydration with 

GAG stabilization. As evident in Figure 32, glutaraldehyde pretreated cusps exhibited 

the greatest reduction in hydration capacity following enzymatic removal of GAGs 

(p<0.05). Despite their reduced hydration capacity prior to GAG-digestive treatment, 

cusps exposed to GAG-targeted fixation chemistries did not demonstrate a significant 

loss of water content after such enzymatic treatment. As previously mentioned, 

EDC/NHS treated and neomycin trisulfate bound cusps maintained significantly higher 

GAG content following GAG digestion than compared to glutaraldehyde pretreated 

valvular tissues (p<0.05). Thus, GAG stabilization using GAG-targeted fixation 

chemistries maintained hydration capacities of cuspal tissues regardless of exposure to 

GAG-digestive enzymes.  

Additionally, the rehydration capacity of crosslinked cusps was assessed prior to 

and following treatment with GAG-digestive enzymes. Glutaraldehyde pretreated cusps 

were unable to fully rehydrate while cusps treated with GAG-targeted fixation 

chemistries exhibited a higher capacity to rehydrate. Moreover, neomycin trisulfate 

bound cusps rehydrated to their full capacity without any significant change in water 

content (p<0.05) before and after GAG-digestive treatment. Conversely, cusps exposed to 

glutaraldehyde pretreatment significantly lost additional rehydration capacity following 

treatment with GAG degrading enzymes (p<0.05).  
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Figure 32: Water content and rehydration capacity of valvular tissue following 
pretreatment with glutaraldehyde and glycosaminoglycan-targeted fixation chemistries.  

 

Thus, these results indicate that stabilization of GAGs using neomycin trisulfate 

enables cuspal tissues to maintain their hydration status regardless of exposure to GAG-

digestive enzymes. Furthermore, cuspal tissue treated with neomycin trisulfate does not 

demonstrate a change in water content following rehydration. Likewise, treatment with 

GAG-degrading enzymes does not alter the aforementioned rehydration capacity of 

neomycin trisulfate bound cusps.  
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CHAPTER 5 

DISCUSSION 

 

 Valvular tissue buckling, one of the causes of failure in bioprosthetic heart valves, 

has been implicated in the evolution of fatigue failure in these bioprostheses. 

Characterized by surface deformations, buckling occurs at areas of large stresses during 

valvular motion. During diastole, valvular xenografts are subjected to uniaxial 

compression due to sharp bending in the belly and commissural regions of the cusps [5, 

6, 121]. Such valvular behavior produces surface kinks and crimps, resulting in local 

structural collapse to reduce the bending stresses. Upon initiation of buckling, such tissue 

bending deformations continue to occur in the same area during each successive valvular 

cycle. Consequentially, the bending site fatigues, leading to subsequent tearing of the 

cusps.  

 

5.1 Role of Glycosaminoglycans in Valvular Tissue Buckling 

 During diastolic motion, valvular cusps are subjected to compressive, tensile, and 

shear stresses. By dissipating shear stresses, the medial spongiosa layer, rich in GAGs, 

buffers the appositional movement of the outer layers which are subjected to tensile and 

compressive loads. These hydrophilic GAGs form a gel-like layer, capable of absorbing 

such stresses during valvular bending.  

Conventional glutaraldehyde crosslinking of porcine aortic valves does not 

provide complete stabilization of valvular extracellular matrix. Plagued by its inability to 
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stabilize valvular GAGs, conventional glutaraldehyde crosslinking of porcine aortic heart 

valves does not maintain native shear properties of the valve, partially due to the leaching 

of GAGs [24, 25, 91, 119].  

 The pronounced depth and amount of buckling observed in glutaraldehyde 

pretreated valvular cusps is attributed to the loss of GAGs and stiffness imparted by such 

collagenous crosslinking. Unable to hydrate the valvular tissue, coupled with the relative 

loss of flexibility, these glutaraldehyde pretreated cusps buckle. However, untreated 

cusps do not exhibit such abnormal bending behavior. Their intact tri-layered structure 

endows these cusps their pliable character to resist compressive buckling during 

successive bending cycles.  

 Due to the absence of amine functionalities in GAGs, glutaraldehyde treatment is 

unable to stabilize valvular GAGs. Thus, the ineffectiveness of the glutaraldehyde to 

crosslink GAGs, permits exogenous GAG-degrading enzymes access to cleavage sites. 

Previous studies propose that carboxylic sites present on uronic acids of GAGs activate 

the degradation of glycosidic bonds in GAGs by hyaluronidase and chondroitinase. 

Additionally, non-reducing terminal GAG residues are susceptible to biodegradation by 

glucoronidase. Similarly, degradation of the protein core of GAGs is facilitated by the 

action of matrix metalloproteinase (MMP). These enzymes are also implicated in 

collagen fiber disruption which leads to further loss of valvular structural integrity. Thus, 

following GAG-digestive treatment, glutaraldehyde crosslinked cuspal tissue, depleted of 

valvular GAGs, experienced a greater degree of valvular tissue buckling.  
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 Therefore, by maintaining a hydrated environment necessary for absorbing 

compressive loads, dissipating shear stresses, and resisting tissue buckling, GAGs 

preserve the durability of heart valves.   

 

5.2 Stabilization of Glycosaminoglycans to Reduce Valvular Tissue Buckling 

Chemical stabilization of valvular GAGs does not prevent enzymatic degradation of these 

extracellular matrix components. A recent study reported the use of neomycin trisulfate, a 

hyaluronidase inhibitor, coupled with carbodiimide based crosslinking chemistry to 

effectively stabilize valvular GAGs [10]. Such GAG-targeted fixation chemistry utilizes 

the presence of amine functionalities present in neomycin trisulfate to chemically bind to 

carboxylic groups of GAG uronic acids by carbodiimide crosslinking [10].  Under acidic 

conditions, activation of carboxyl groups of the uronic acids present in GAG disaccharide 

molecules by EDC promotes N-hydroxysuccinimide (NHS) to react with GAGs, forming 

unstable intermediates. These intermediates form “zero-length” crosslinks with the free 

amine groups of collagen via amide bonds [125].  Neomycin trisulfate, a sulfated 

oligosaccharide containing primary amine groups, has a combination of hydrophilic 

moieties with affinity-conferring lipophilic residues that bind to hyaluronidase to prevent 

enzymatic degradation of GAGs [126]. Thus, when coupled with carbodiimide fixation 

chemistry, the amine functionalities of neomycin trisulfate form amide bonds with the 

carboxylic groups of GAGs [10]. 

Valvular cusps with bound neomycin trisulfate inhibited enzyme-mediated GAG 

degradation. Additionally, these GAG-stabilized cusps exhibited the least amount and 
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extent of buckling, mimicking fresh untreated tissue buckling behavior. The hydrophilic 

moieties with an affinity-conferring lipophilic residues present in sulfated neomycin 

molecules (Figure 33) bind to hyaluronidase; and thus, block enzymatic activity [126].   

 

 

Figure 33: Chemical structure of neomycin trisulfate. This hyaluronidase inhibitor 
contains 6 primary amine groups that chemically attach to cusp proteins with 
carbodiimide chemistry.  
 

Such binding renders the enzyme inactive. Stabilization of GAGs is achieved by 

coupling neomycin trisulfate with carbodiimide fixation. Activation of carboxylic groups 

of GAGs and collagen by EDC enables formation of a stable intermediate with NHS, and 

subsequent amide bonding with free amine groups of collagen [125]. Thus, such GAG-

targeted fixation chemistry facilitates the maintenance of valvular shear properties by the 

stabilization of GAGs; thereby reducing the extent of buckling.  

As mentioned previously, the carboxylic functionalities of GAGs are active sites 

for enzymatic degradation. Carbodiimide fixation is partially effective in stabilization of 

GAGs due to its inability to crosslink all valvular carboxylic groups [47, 127]. Thus, due 
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to the partial loss of GAGs, these cusps experience a moderate depth of buckling than 

those cusps pretreated with glutaraldehyde.  

However, cuspal tissues with bound neomycin trisulfate exhibited the least 

amount of buckling. Such enzyme inhibition and GAG crosslinking by carbodiimide 

fixation prevents additional GAG loss. Thus, neomycin trisulfate not only blocks active 

sites on GAGs, but confers GAG-digestive enzymes inactive by binding to GAG-

degrading enzymes. Steric hindrance of the active site and conformational change of the 

enzyme precludes loss and digestion of GAGs, which reduces the extent of buckling.   

Furthermore, neomycin trisulfate bound cusps exhibited almost complete 

resistance to GAG-degrading enzymes, while carbodiimide fixation alone was shown to 

partially inhibit GAG-digestion. Likewise, cuspal tissue exposed to this enzyme inhibitor 

experienced no change in buckling behavior after exposure to GAG-digestive enzymes. 

However, glutaraldehyde treated cusps which are ineffective at stabilizing valvular 

GAGs, demonstrated the greatest depth of buckling at all curvatures and significant 

number of buckles at low curvatures following incubation with GAG-degrading enzymes.  

Thus, stabilization of GAGs by neomycin trisulfate coupled with carbodiimide 

fixation chemistry precludes valvular tissue buckling. The presence of valvular GAGs 

appropriates the cusp its structural and functional integrity necessary to resist 

compressive buckling during bending.  
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5.3 Resistance of Neomycin Trisulfate-Enhanced  
Glycosaminoglycan-Targeted Crosslinking to Tissue Buckling in Fatigued Valves 

Stabilization of cuspal GAGs during cyclical motion of the valve will permit 

enhanced durability of the valves. During the cardiac cycle, valvular cusps are 

continuously subjected to tensile, compressive, and shear stresses. The interlayer shearing 

between the fibrosa and ventricularis is mediated by the medial spongiosa layer. 

Particularly, GAGs, hydrophilic in nature, form a gel-like layer in the spongiosa capable 

of distributing and dissipating these valvular stresses.  

 Ongoing studies indicate that the stabilization of valvular tissue by neomycin 

trisulfate binding to resist depletion of GAGs during in vitro cyclic fatigue testing. On the 

contrary, glutaraldehyde pretreatment does not stabilize valvular GAGs, necessary for 

maintaining cuspal mechanical durability during such cyclical testing [4]. Current studies 

demonstrate no difference in buckling behavior in neomycin trisulfate bound cuspal 

tissue after accelerated fatigue testing than compared to buckling patterns of statically 

stored valves. Additionally, these GAG-stabilized cusps exhibited minimal fractional 

depth of buckling compared to glutaraldehyde pretreated valves which are prone to GAG 

loss during similar fatigue testing. Moreover, glutaraldehyde crosslinked valves exhibited 

a greater depth of buckling post-in vitro cyclic fatigue than compared to those pretreated 

cusps stored under static conditions. Interestingly, fatigued neomycin trisulfate treated 

tissues maintained minimal amounts of surface buckles as observed in cusps stored under 

static conditions, mimicking fresh, untreated cuspal buckling behavior.  

 Thus, valvular cusp’s ability to flexibly deform during successive valve cycles, 

absorb compressive loads during diastolic closing, and dissipate shear stresses 
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experienced during valvular motion are largely possible due to the presence of GAGs in 

the medial spongiosa layer. Moreover, neomycin trisulfate-enhanced carbodiimide 

mediated crosslinking precludes valvular tissue buckling when subjected to short-term 

cyclic fatigue testing compared to commercially available glutaraldehyde fixation. 

Therefore, stabilization of valvular GAGs using neomycin trisulfate coupled with 

carbodiimide fixation chemistry improves the buckling behavior of these cusps following 

cyclical fatigue.  

 

5.4 Efficacy of Glycosaminoglycan-Targeted Fixation  
Chemistry to Maintain Valvular Hydration Properties  

 Cuspal hydration plays an important role in physico-mechanical properties of 

valves. Specifically, water-absorbing GAGs predominantly present in the spongiosa, 

maintain the internal shear properties of the valvular tissues. These hydrophilic molecules 

facilitate proper appositional sliding of the two outer layers by formation of a gel-like 

environment necessary to resist tensile and compressive stresses. Thus, maintenance of 

valvular GAGs improves bending pattern of cuspal tissues, and subsequently precludes 

abnormal buckling behavior.  

 Present studies indicate a decline in water content following crosslinking with 

GAG-targeted fixation methods compared to conventional glutaraldehyde pretreatment. 

One plausible explanation of this decay in hydration status of the cusps is due to the 

reduction of available hydrophilic GAG moieties which are crosslinked with GAG-

stabilizing fixatives. Unable to access these GAG carboxylic binding groups, the bound 

water content of the valvular cusps diminishes. Additionally, the heavy crosslinking 

 87



 

induced by chemical fixation decreases the amount of cuspal bulk water, which may 

predominantly account for the observed regression in overall water content of cuspal 

tissues. However, future studies must be conducted to verify this difference in hydration 

status of the aforementioned valvular cusps. Of particular note, biomechanical behavior is 

primarily influenced by bound water. 

 Loss of cuspal GAGs following enzymatic digestion resulted in a decrease in 

water content. However, neomycin trisulfate bound cusps protected against such GAG-

degrading activity displayed no significant difference in water content. Additionally, 

these cusps rehydrated to their full capacities while the other fixation methods 

experienced a loss in rehydration capacity.  

 Future studies must be conducted to quantify the amount of cuspal bound water to 

accurately infer its implications on biomechanical properties of valvular tissues.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 Despite numerous advances in the design of BHVs, the durability of these 

bioprostheses is limited due to dysfunction, and subsequent degeneration. Partly owing to 

the structural demands imposed by the cardiac system, stabilization of the morphological 

properties of valvular cusps may ultimately enhance the long-term performance and 

efficiency of these implants.   

Current fixation strategies fail to stabilize extracellular matrix components of the 

valves, particularly GAGs, essential for maintaining a hydrated environment necessary 

for absorbing compressive loads, dissipating shear stresses, and resisting tissue buckling.  

Present studies demonstrate the efficacy of neomycin trisulfate, a GAG-digestive enzyme 

inhibitor, coupled with carbodiimide fixation to stabilize valvular GAGs and 

subsequently resist tissue buckling. Alternatively, glutaraldehyde pretreated and 

carbodiimide crosslinked cusps, which are susceptible to enzymatic degradation of 

GAGs, exhibit an increased fractional depth of buckling at all curvatures and are not 

immune to elevated buckling patterns following cyclic fatigue due to the loss of valvular 

GAGs. Additionally, cuspal tissue pretreated with commercially available glutaraldehyde 

bucked to the greatest extent than compared to the other groups.  

 Therefore, in summation the following conclusions can be inferred from the 

present results: (a) valvular GAGs play a role in resisting tissue buckling; (b) stabilization 
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of valvular GAGs using neomycin trisulfate-enhanced  carbodiimide mediated 

crosslinking precludes tissue buckling; (c) exposure to GAG-degrading enzymes does not 

alter the buckling behavior of neomycin trisulfate bound cuspal tissues; (d) likewise no 

change in buckling pattern is observed following short-term in vitro cyclic fatigue testing 

of neomycin trisulfate bound cusps; and furthermore, (e) valvular tissue buckling pattern 

observed in these GAG-stabilized cusps mimic fresh cuspal buckling behavior.  

Thus, stabilization and retention of valvular GAGs using GAG-targeted fixation 

chemistries may in fact reduce the extent of buckling in BHVs and subsequently improve 

the durability of these bioprostheses.  

To ensure the durability of BHVs, the structural and functional attributes of 

valvular tissue must be maintained. Due to their inherent biological similarities with 

native valvular cusps, porcine-derived BHVs constructs have the ability to support 

natural and physiologically relevant hemodynamic and hydrodynamic flow regimes.  

Furthermore, by optimizing their morphological properties, these bioprostheses may 

qualify as a suitable replacement modality with extended biological and mechanical 

durability.  

 

6.2 Recommendations  

 Future studies are warranted to continue to examine the efficacy of GAG-targeted 

fixation chemistries to resist valvular tissue buckling in long-term accelerated fatigue 

tested cusps. Additionally, it is necessary to understand the changes in the mechanical 

properties of these GAG-stabilized valvular tissues in order to design durable substitutes. 
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As such, internal shear properties of the cusps must be examined to correlate the tissue 

buckling behavior with GAG content, hydration status, and flexural testing. Furthermore, 

to ascertain the relationship between compressive buckling and internal shearing, other 

useful parameters such as viscoelastic behavior, rigidity, and effective stiffness during 

dynamic flexure must be explored.   

 As mentioned previously, besides non-calcific structural damage, calcification of 

the valves in vivo imposes another potential threat to the durability of these bioprostheses. 

Thus, future studies should focus on coupling neomycin trisulfate-enhanced GAG-

targeted fixation chemistry with anti-calcification treatments capable of sustaining the 

physico-mechanical character of valvular tissues. Additionally, by examining buckling 

patterns in such valvular cusps, degenerative culprits responsible for undermining the 

long-term mechanical durability of these valves can be identified.  

 Thus, by understanding the role of GAGs in cuspal tissue buckling, the 

mechanical properties of the valvular constructs can be improved. Furthermore, 

investigation of potential correlates of cuspal deformations can enhance our abilities to 

halt the evolution of fatigue and subsequent tearing of the cusps, and thus, extend the 

functional life of porcine-derived BHVs. These strides in research will contribute to the 

overall development of biomechanically stable valvular substitutes capable of 

withstanding long-term implantation.  
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