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ABSTRACT 

Structural systems are subject to inherent uncertainties due to the variability in 

many hard-to-control ‘noise factors’ that include but are not limited to external loads, 

material properties, and construction workmanship. Two design methodologies have been 

widely accepted in the practicing engineering realm to manage the variability associated 

with operational structures: Allowable Stress Design (ASD) and Load and Resistance 

Factor Design (LRFD). These traditional approaches explicitly recognize the presence of 

uncertainty; however, they do not take robustness against this uncertainty into 

consideration. Overlooking this robustness against uncertainty in the structural design 

process has two drawbacks. First, the design may not satisfy the safety requirements if 

the actual uncertainties in the noise factors are underestimated. Thus, the safety 

requirements can easily be violated because of the high variation of the system response 

due to noise factors. Second, to guarantee safety in the presence of this high variability of 

the system response, the structural designer may be forced to choose an overly 

conservative, inefficient and thus costly design. When the robustness against uncertainty 

is not treated as one of the design objectives, this trade-off between the over-design for 

safety and the under-design for cost-savings is exacerbated. The second chapter of this 

thesis demonstrates that safe and cost-effective designs can be achieved by implementing 

Robust Design concepts originally developed in manufacturing engineering to consider 

the robustness against uncertainty. Robust Design concepts can be used to formulate 

structural designs, which are insensitive to inherent variability in the design process, thus 

saving cost, and exceeding the main objectives of safety and serviceability.  The second 
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chapter of this thesis presents two methodologies for the application of Robust Design 

principles to structural design utilizing two optimization schemes:  one-at-a-time 

optimization method and Particle Swarm Optimization (PSO) method.  

Next, this multi-disciplinary research project introduces a methodology to build a 

new framework, Structural Life-Cycle Assessment (S-LCA), for quantifying the 

structural sustainability and resiliency of built systems. This project brings together 

techniques and concepts from two distinct disciplines: Structural Health Monitoring 

(SHM) of Civil Engineering and Life Cycle Assessment (LCA) of Environmental 

Engineering to construct the aforementioned S-LCA charts.  The intellectual innovations 

of this project lie in the advancement in infrastructure management techniques through 

the development of S-LCA charts, which can be useful as an infrastructure monitoring 

and decision-making tool, for quantifying the structural sustainability and resiliency of 

built systems.  Such a tool would be of great use in aiding infrastructure managers when 

prescribing maintenance and repair schemes, and emergency managers and first 

responders in allocating disaster relief effort resources.  Moreover, a quantitative, real-

time evaluation of structural damage after a disaster will support emergency managers in 

resource allocation.  The project integrates science based modeling and simulation 

techniques with advanced monitoring and sensing tools, resulting in scientifically 

defendable, objective and quantitative metrics of sustainability and resiliency to be used 

in infrastructure management.  
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CHAPTER ONE 
 

INTRODUCTION 
 
 

The infrastructure in the United States is approaching, or has already passed, its 

design lifespan.  The nation is at a turning point, where much of the infrastructure is in 

such disrepair it must be extensively retrofitted or reconstructed.  This presents an 

interesting opportunity for infrastructure managers and designers to achieve sustainable 

and resilient designs. With planned retrofits, infrastructure managers have the chance to 

implement online monitoring techniques and develop new proactive maintenance 

schemes with updated technologies that promote life-long structural sustainability.  

While, with new construction, designers can embrace design methods, which promote 

resiliency to unforeseen factors, such as extreme forces.  This thesis will explore both of 

these opportunities. 

In Chapter Two, a structural design framework utilizing robust design principles 

will be formed.  This framework aims to provide a design methodology that improves 

upon currently implemented strategies, such as ASD and LRFD, to directly include 

inherent uncertainties into the design process.  In incorporating uncertainty, a resilient 

structure can be formulated, one that is designed to safely and efficiently resist a range of 

factors. 

In Chapter Three, a novel, sustainable and proactive maintenance scheme and 

health index is discussed and developed, calling on principles from Structural Health 
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Monitoring and Life Cycle Analysis.  The goal of this framework is to monitor the health 

and sustainability of an infrastructure system over its entire lifespan by periodically 

quantifying the system’s health index and sustainability metric. This framework provides 

a quantitative value of the system’s condition to infrastructure managers. 

Chapter Four presents the main findings of this Master’s thesis, while discussing 

lessons learned, and future work useful in improving upon the concepts and results 

developed and presented herein.  
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CHAPTER TWO 
 

ROBUST DESIGN OPTIMIZATION TO ACCOUNT FOR UNCERTAINTY IN THE 
STRUCTURAL DESIGN PROCESS 

 
 

1. Introduction 

The root of the structural engineer’s job is to systematically make decisions regarding 

design parameters.  There are infinite possible design configurations to choose from with 

the goal of achieving a constructible, serviceable, safe, and cost-effective design.  These 

goals are in and of themselves, competing objectives, in that the safest design is most 

likely not the most cost efficient.  These conflicting objectives force designers to make 

trade-offs to meet as many design goals as possible.  To further complicate the process, 

these decisions are all made under uncertainty.   

The life-cycle of a structural system is plagued by uncertainty, from design through 

operation.  Uncertainty manifests itself in many forms some of which entail (i) trying to 

predict the future or assume confidence in the past; (ii) statistical limits, in which 

designers use discrete samples to predict the behavior of a whole system; (iii) model 

limits, in which the structural model developed in design and analysis simplifies reality 

obviating higher level physics in the system; (iv) randomness, in which structural 

properties are not a single value as assumed, but rather the properties vary spatially; and 

(v) human error, encompassing mistakes made during the design, fabrication, and 

construction processes that alter the true design or analysis) [1].  The inherent variability 

in these factors must be accounted for during the design process to ensure the proposed 

design objectives are met under all circumstances of interest.   
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Two prominent design approaches have evolved in the structural engineering field to 

account for the variability in design parameters.  The first, allowable stress design (ASD), 

which originated in the 1920’s, is based upon a deterministic design approach.  Through 

the ASD approach, designers do not try to quantify the different sources of uncertainty, 

but, rather, apply a single subjective ‘factor of safety’ to capture all the variability in 

loads and resistance.  The result is usually a conservative and safe design, but one, that is 

likely to be inefficient and over-designed [2].  The second approach, load and resistance 

factor design (LRFD), developed in the 1980’s, is a form of reliability-based design.  

Here, uncertainties in the design process are quantified into two categories; nominal 

capacities and load and resistance factors.  This separation allows for predictability of 

material properties and construction tolerances through nominal capacities, and 

predictability of variable loads through load and resistance factors.  While this method 

accounts for variability and incorporates risk assessment, the success of the LRFD 

approach hinges on the availability and accuracy of statistical data [3].  In reliability-

based designs, uncertainty is modeled as random variables or processes.  If there is an 

abundant amount of accurate statistical data, and the distributions of each random 

variable is well established, then uncertainties can be accurately accounted for in the 

design.  However, if there is a lack of statistical data and the distributions of parameters 

are not fully understood, resulting in poor estimation, then the random variables 

themselves induce uncertainties into the design process [3]. Therefore, the safety 

requirements might be violated due to the potentially underestimated variability in the 

structural behavior.   
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An alternative approach, Robust Design processes, originated in Manufacturing 

Engineering and employed in this chapter, target the robustness of the product output 

against “hard-to-control” input parameters (called “noise factors”), by adjusting “easy-to-

control” input parameters (called “design parameters”) [4-5]. In the design of a concrete 

frame building (used as an example throughout this chapter), the column dimensions and 

the stiffness of the bracing elements may be treated as design parameters; the uncertain 

material properties or the forcing functions may be treated as noise factors; and the 

structural response such as, stresses, strains and displacements, may be treated as the 

product of the design process. Since these noise factors represent hard-to-control 

parameters, one cannot reduce or eliminate them in any feasible way.  The aim should 

then be to reduce the effects of these noise factors on the structural response. This is 

precisely the purpose of Robust Design principles. By exploiting the non-linear 

interactions between the design parameters and the noise factors, Robust Design aims to 

find design parameters that yield a structural design which is robust to the hard-to-control 

noise factors, thereby reducing the variability of the structural response and yielding not 

only safe but also cost-effective designs.  

Focusing on a concrete-frame model, this chapter demonstrates the feasibility and 

applicability of robust design principles in structural engineering. Herein, the principles 

of robust design are implemented through two distinct optimization methodologies:  

Coordinate Descent optimization method and Particle Swarm Optimization (PSO) 

method.  Section Two of this chapter overviews the genesis of Robust Design principles 

as well as work completed to improve upon it.  Section Three follows with the 
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methodologies used in this chapter to apply the Robust Design principles to our problem 

and finally, in Sections Four and Five, results and discussion for each of the optimization 

cases, respectively, will be presented.  

 

2. Background 

To reiterate, the goal of robust design is to manipulate easy-to-control parameters 

(design parameters), those parameters that the designer has the ability to manipulate, such 

as material type or geometric dimensions, to minimize the effects of hard-to-control 

control parameters (noise factors), such as construction imperfections or material 

variability, making the process more robust against noise and improving quality, and 

reliability at low costs [6, 4].  This process utilizes interactions between design 

parameters and noise factors to identify the design parameter settings, which reduce the 

effects of noise on the desired outcome the most by reducing variability and adjusting the 

mean to a target value [7-8].  This goal can be reached in several ways through utilizing 

the traditional two-step methodology as outlined by Taguchi [7], Bayesian Inference 

techniques [9], the multi-objective optimization techniques [10,11], or through a single-

objective robust optimization scheme [10,11]. 

Taguchi [7] developed a two-step process for Robust Design (Figure 1.1). The first 

step focuses on minimizing the variation.  This step seeks the optimum settings of the 

design variables by maximizing what Taguchi coins the signal-to-noise (S/N) ratio, 

defined as the ratio of response to the variation in response caused by noise factors.  

Three different classes of S/N ratios are defined.  The first is nominal-the-best, where a 
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certain target value is desired.  Second is smaller-the-better, where the most robust option 

is a zero value response, and likewise, the third class of S/N ratios, called larger-the-

better, which ideally aims to achieve a target value of infinity.  Equations 1.1-1.3 

summarize the different classifications of S/N ratios, respectively, where µ is the mean of 

the system response, σ is the standard deviation of the response due to noise, and yi are 

observed responses [12]. 

                                                       � � 10 log�	 
��

��                                             (1.1) 

                                                     � � �10 log�	 ��
� ∑ ������� �                                       (1.2) 

                                          � � �10 log�	 ��
� ∑ �

���
���� �                                (1.3) 

 

The second step of Taguchi’s method focuses on moving the mean to the desired 

target (Figure 1.1).  This can be accomplished through the careful selection of a design 

parameter(s), which affects only the mean of the distribution and illustrates no influence 

Figure 1.1: Two-step robust design methodology; (1a) minimize variability by altering design 
parameters (1b) move mean of distribution on target through the application of a scale factor 

(a) (b) 
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on the variation of the distribution, while preserving the maximized signal-to-noise ratio 

achieved in step one.  This design parameter(s) is considered a scale factor used to scale 

the mean to a desired value and can be calculated according to Equation 1.4 where s is 

the scale factor, m is the target value, and µ is the mean of the current distribution.   

                                                           � �  �
�                                                               (1.4) 

Taguchi first developed this methodology for process design, i.e. design of 

experiments, and not for product design.  Due to its simplicity and proven advantages, the 

Taguchi method has been applied to various aspects of engineering [14-20].  In the 

adaptation of the principles of Taguchi’s method for other engineering applications, 

several problems were encountered, which led to subsequent research and updated 

methods [11].  Some of these problems include the inability to locate a scale factor [21-

23], high computational effort needed to gain insight into all factor interactions [24-26], 

and the inability of the method to include design constraints [12, 27-29].  Of these, the 

most widely studied is the lack of a scale factor. 

There are practical design situations where all parameters significantly affect both the 

mean and standard deviation, proving the isolation of a single parameter which affects 

only the mean impossible.  In such situations, Taguchi’s two-step method is no longer 

applicable because the maximized signal-to-noise ratio is not upheld thereby causing an 

unintentional coincident shifting of the standard deviation in step two [7, 13].  In these 

instances, optimization methods [10-11, 36] or Bayesian inference [37-39] techniques can 

be employed to obtain design parameters while simultaneously considering the mean and 

standard deviation of the response.   
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3. Robust Structural Design Methodology 

This thesis presents a simulation based proof-of-concept case-study, which seeks to 

find a structural design that is robust against noise factors given certain performance and 

cost constraints.   

 

3.1 Prototype Structure and Robust Methodology 

For this proof-of-concept study, a one-story, one-bay, reinforced concrete frame structure 

with steel cross-bracing was chosen as the prototype.  The geometry of the structure can 

be seen in Figure 1.2.  A preliminary structural design for the frame was completed in 

accordance to ACI 318-08: Building Code Requirements for Structural Concrete and 

Commentary Standard, 2008 version using the recommended design loads.   

In the first step of Robust Design methodology, design constraints, design 

parameters, noise factors must be defined and the ranges in which these parameters 

may vary must be determined.   

x y 

  

  

    

  

A 

B

 2   1   

L

W

Fy 
Fx 

Figure 1.2: Basic prototype geometry and boundary conditions – left elevation, right plan view 

15
’-0
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The system response of interest is the drift of the structure under lateral load. The 

design constraint is set to be a threshold value for maximum drift in any horizontal 

direction at column B2.  

In the structural design context, easy-to-control design parameters include 

geometric and member dimensions and material strengths.  Herein, eight design 

parameters are employed for both optimization cases: (1) width of columns, X, (2) depth 

of columns, Y, (3) dimensions of the floor plan, L and W, (4) cross-sectional area of the 

bracing in the x-plane, Ax, (5) cross-sectional area of the bracing in the y-plane, Ay, (6) 

height of the beams, hb, (7) strength of concrete, fc’ , and (8) column reinforcement ratio, 

ρ.  To observe design trade-offs between safety and cost-efficiency, as a practicing 

structural engineer would, a realistic structure with sufficient numbers of design 

parameters to manipulate is necessary.  The lateral forces are applied in both x and y 

directions, making a larger number of design parameters influential on the maximum drift 

of the structure. The applied force in the x-direction is assumed to be twice that in the y-

direction; however the procedure can easily be modified to implement other load 

scenarios.  Since the geometric floor plan of the structure (L and W) is a design 

parameter, applied load is scaled to ensure the concentrated point load of the distributed 

pressure was constant for all design configurations.   

Though a single noise factor, variability in distributed force at the roof level, is 

considered, the procedure can easily be extended to consider multiple noise factors as 

outlined in the introduction.    The range of force values explored in this chapter represent 

a worst case scenario in the magnitude of force applied, i.e. natural hazard or blast 
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loadings.  The force that causes the preliminary structure to enter its nonlinear realm is 

found and set as the upper bound.  Thus the static force range explored herein ranges 

from 10,800 psf to 17,333 psf.  These bounds are defined based on engineering judgment; 

whereas in real life, probabilistic analysis of the forces would be necessary to define such 

plausible bounds.   

 Table 1.1: Design parameters and their constraints 

 

 

 

 

 

Much consideration is put into ensuring the resulting optimal designs are both 

feasible to construct and allowable by ACI building codes.  Thus, design constraints, seen 

in Table 1.1, are imposed on the candidate designs.  The design objective for this study is 

to achieve robustness for the drift of column B2 when exposed to uncertainty in the 

loading at roof level along members A1-A2 (in the y-direction) and A1-B1 (in the x-

direction) (See Figure 1.2).  To achieve the stated objective function, a defined threshold 

for drift values was also specified to be no more than 0.048 feet (0.575 inches) on a 15 

foot tall structure.  It should be noted that this threshold is not the value at failure, rather 

has a factor of safety applied to ensure the safety of the structure’s users. 

As robustness, in the most theoretical sense, also promotes efficiency, a secondary 

goal is to optimize for cost. For the purposes of this research, cost is defined as in 

Equation 1.5 where Vc is the total volume of concrete, Vs is the total volume of steel 

Parameter Range of Acceptable Values 
Width of Columns (X) 6 in – 24 in 
Depth of Columns (Y) 6 in – 24 in 
Floor Plan Dimensions (L and W) Square Footage ~400ft2 (L*W=400) 
Area of Bracing in x plane (Ax) 0 in2 – 8 in2 
Area of Bracing in y plane (Ay) 0 in2 – 8 in2 
Height of Beams (hb) 12 in – 36 in 
Strength of Concrete (fc’) 2500 psi – 5500 psi 
Column Reinforcement Ratio (ρ)  0.01 – 0.08 
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bracing, and ϕ is the unit price of each material.  The unit price for steel is assumed to be 

five times that of concrete [41].  Steel rebar and structural steel connections are included 

in their respective unit prices. 

                                              ���� �  ∑  ! " #! $ ∑  % " #%                                         (1.5) 

To achieve cost-efficiency, a secondary threshold representing cost is specified to be 500 

unit price.  Such constraint reduces the member dimensions of selected, plausible designs 

to only cost effective designs.   

 

3.2 Development of Robust Objective Function 

In the case study structure studied herein, Taguchi’s two-step design process 

proved inapplicable due to the absence of a scaling factor [17]. This was due to the 

design parameters influencing both the mean and the variability of the response 

simultaneously. For instance, Figure 1.3 shows the effect of changing the width of 

columns (parameter X) on the drift value while keeping all other design parameters 

constant.  For each design case presented in Figure 1.3, a maximum force level of 13,200 

psf and minimum force level of 12,000 psf are imposed on the system and maximum drift 

at Column B2 is calculated for each of the two levels.  The mean drift value for each 

design case is plotted in Figure 1.3 along with the variability in the calculated drift 

values. As visually observed, this design parameter significantly influences both the 

mean and variability.   
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Solely by changing the width of the columns, the mean of the distribution is 

dropped from 0.0246 ft. for Design Case 1 to 0.0105 ft. for Design Case 3.  This is a 57% 

decrease in the mean value.  Concurrently, the range, which is representative of the 

sensitivity of this particular noise factor (i.e. force level), is dropped from 0.00787 ft. to 

0.00295 ft., a 63% change.  From these values it is clear that by altering the column 

width, both the mean and standard deviation of the drift value distribution are 

significantly affected.  This observation holds true for all design parameters in this study 

proving Taguchi’s two-step robust design is not a plausible option for this problem.   In 

this case, the use of signal to noise ratios (Equations 1.1-1.3) is inappropriate because a 

change in S/N can be attributed to robustness to the noise factor or the interaction of the 

design parameters on both the mean and standard deviation.  The alternative approach is 

then to seek a design in a single step where both the mean and standard deviation must be 

evaluated simultaneously.    

Figure 1.3: Effect of altering the width of columns on the objective 

X = 6 in X = 12 in X = 24 in 

Mean value 

Variability 
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If we can conceptualize a graph sorted with noise levels (force values) on the x-

axis, and system response (maximum drift) on the y-axis, as seen in Figure 1.4, designs 

exposed to uncertainty can be represented by a single line connecting the drift values at 

each noise level, henceforth referred to as system response curve.  The ideal robust design 

is then defined as a line with a slope of zero (i.e., infinite robustness), meaning there is no 

change in the system response over all noise levels, located precisely at a desired 

threshold level.   

In the pursuit of such a response, this research calls upon the two-step robust 

design methodology to define a single objective robust optimization problem.  After the 

establishment of a system response threshold, the first step is to minimize the variability 

in response by seeking a design with a slope, which approaches zero, implying a robust 

design.  This can be accomplished in the framework of this research by minimizing the 

distance between dmin and dmax, δv in Figure 1.4a.  The next goal is to avoid overdesign by 

Figure 1.4: Robust optimization methodology - (a) reduce variability (b) reduce distance from threshold 
  

dmin 
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selecting one with a system response curve as close to the target threshold as possible 

without exceeding it. This can be accomplished by minimizing the distance between dt 

and  dmin (δt,min) and dt and  dmax (δt,max) in Figure 1.4b, ensuring the curve approaches the 

threshold.  Thus, a robust optimization, which aims to instantaneously minimize δv, δt,min, 

and δt,max can be accomplished by altering design parameters within their allowable 

domain to minimize the area between the defined threshold and the system response 

curve (AR).  In doing so, any need for a two-step process is obviated.  

 The calculated area (AR) will be both problem and unit specific making it 

difficult to meaningfully compare parameter to parameter, or application to application.  

Thus, to put the calculated area into an understandable and comparable value, a 

Sensitivity Index (SI) is developed.  Here, AR is compared to the entire area under the 

threshold to develop an index where a zero value represents an infinitely robust and 

insensitive system at the desired threshold, and a value of one represents an infinitely 

robust system with essentially no response, i.e. a very costly design.  With this reasoning, 

a small Sensitivity Index is desired, the goal of which is to find a design that is insensitive 

to noise factors and is structurally efficient (having a system response closest to the 

threshold).  This can be expressed mathematically through Equation 1.6 for a system with 

two noise levels. If a system response at multiple levels of noise factors is available, then 

the calculation of the SI can be expanded to n levels by segmenting the system response 

curve to yield Equation 1.7.  Herein, since multiple noise factor levels are evaluated, 

Equation 1.7 will be employed to quantify the robustness of designs, as defined in this 

research. 
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3.2 Prototype Structure Finite Element (FE) Formulation 

A numerical model of the prototype structure, described in Section 3.1 of this 

chapter, was developed using the commercial FE modeling package, ANSYS version 

13.0.  To simulate the complex nonlinear behavior of concrete, Solid65, a dedicated solid 

isoparametric element, is utilized.  Solid65 is a three-dimensional brick element with 

eight nodes, each allowing three translational degrees of freedom in the global x, y, and z 

directions [42].  As seen in Figure 1.5, a multilinear constitutive material model based on 

the triaxial behavior of concrete developed by William and Warnke is used to simulate 

failure [43].  The concrete is capable of cracking in three orthogonal directions, plastic 

deformation, and creep; however, in order to achieve convergence, crushing capabilities 

are turned off.  This element is particularly suitable for our application due to its ability 

of incorporating reinforcement bars directly into the element through a smeared cross-

section, thereby increasing the computational efficiency of the simulation.  The rebar 

modeled in Solid65 is capable of tension, compression, plastic deformation, and creep. 
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3.3 Simulation Campaign 

Five hundred designs, each with four noise levels, are simulated for use in both 

optimization methods which are discussed in the next two sections.  Latin-hypercube 

design, a sampling method developed at Los Alamos National Laboratory, is used to 

sample the design domain in order to create these 500 hundred designs.  This sampling 

method is advantageous in that it ensures an adequate coverage and exploration of the 8-

dimensional design domain defined by eight design parameters (See Table 1.1).   

4. Robust Structural Design Case Study – Coordinate Descent Method 

 

4.1 Coordinate Descent Optimization Method  

The Coordinate Descent Method, also known as the one-at-a-time optimization 

algorithm [44,45], minimizes the objective function by solving a series of scalar 

Figure 1.5: Concrete material model 
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minimization sub-problems.  Each sub-problem minimizes along a certain coordinate, 

while all other coordinates remain constant [46].  The objective function can be defined 

as ω, defined in Equation 1.8 as:  

                                      9 � :;<;=;>?@A�, A�, AB, C , A�D                                          (1.8) 

The minimization of ω is achieved by the sequential variation of one variable at a 

time while all others are fixed at their nominal values.  At the first iteration of the 

algorithm, all variables are held constant with the exception of the first parameter (x1).  A 

new value is found for this variable which reduces the objective function.  Upon the 

completion of this step, the first variable becomes fixed and the algorithm moves onto the 

second variable (x2).  This parameter is then varied until a new value that reduces the 

objective function is found.   This process is followed for n iterations, where afterwards, 

the process returns to the first variable and the cycle is repeated until the solution 

converges to an optimal value [45].   

In the context of this research, the objective function used herein is expressed by 

Equation 1.9. 

                                         9 � :;<;=;>?@δv + δt,min + δt,max)                                       (1.9)                 

 Because all three parameters in the objective function are dependent upon the 

eight design parameters and the selected noise factor, the objective function is also 

dependent upon the design parameters outlined in Table 1.1 (X, Y, L and W, Ax, Ay, hb, 

fc`, ρ)and the noise factor. 
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The basic framework of this 

optimization algorithm, as applied to 

this research, is shown in Figure 1.6 

where x are design values (x0 are the 

preliminary values), Δx is the step 

size for the adjustment in each design 

parameter’s value (for example 

column dimensions are designed on 

an integer basis, such as even inch 

dimensions, for constructability 

purposes), ω(x) is the objective 

function, k is a counter for the 

number of iterations operated on a 

singular parameter before the 

algorithm takes its current optimized 

value and moves onto the next parameter,  and i is a counter for the number of design 

parameters to be optimized.  To initiate the algorithm, a preliminary design, step size, and 

objective function are selected, and the counter variables are set to one.   The drift, using 

the FE model, and objective function, using the algorithm, are calculated.  The first 

parameter is then altered through a single step along the design parameter’s coordinate, 

while all others remain fixed; the objective function is then calculated with the adjusted 

value.  If this value is less than the preliminary design’s objective function, the optimized 
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Figure 1.6: Coordinate Descent Method algorithm 
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value for design parameter one is taken, and fixed.  The algorithm then moves onto the 

second parameter, repeating the process.  If the optimized value for the first design 

parameter is not less than the preliminary objective function, another step is taken along 

the coordinate of the first design parameter and a subsequent objective function 

calculation is performed.  This value for the objective function is again compared to the 

preliminary value and if improved, the optimized value is taken and fixed, and the 

algorithm moves onto the next design parameter.  If there is improvement, another step is 

taken.  This process is completed for all eight design parameters yielding a more optimal 

design.  Upon completion, a new iteration can begin, the preliminary design parameter 

values of which become the optimized values from the previous iteration and the 

procedure outlined above is repeated.  For this research, one iteration was completed with 

a k value equal to 10.  

4.2 Coordinate Descent Optimization Results and Discussion 

To compare the performance of the proposed Robust Structural Design, a nominal 

design is defined.  The nominal case is specified to be the mean value of each of the eight 

design parameters’ domains and is one of the many possible designs that satisfy the code 

requirements. The values for each of the eight nominal design parameters are outlined in 

Table 1.2.   

The initial design parameter settings for the optimization algorithm are taken to be 

the design parameter settings from the 500 preliminary FE simulations which minimize 

the Sensitivity Index the most.  For this case study, one Coordinate Descent Method 

iteration with four noise levels is completed on each of the eight design parameters to 
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find two robust designs (See Table 1.2), one which only minimizes the Sensitivity Index 

(option A) and a second which concurrently minimizes the Sensitivity Index and cost 

(option B).   

The Sensitivity Index, which is 0.450 in the nominal design case, is reduced 

significantly by both approaches. The SI decreased to 0.234 (48 percent decrease) in 

option A, and to 0.297 (40.67 percent decrease) in the option B, as it can be seen 

graphically in Figures 1.7 and 1.8.   

Furthermore, to compare the efficiency of these alternative designs, the unit price 

of each design is computed.  As expected, the design obtained in option A, which does 

not consider cost in the objective function, is found to increase robustness, but with the 

trade-off of increased cost. This design is found to be the most robust, but with a 

concurrent cost of 596 units, which are 139 units more expensive than the nominal 

design.  Conversely, option B, which accounts for not only the Sensitivity Index but also 

the cost in objective function, yields an improvement in both the robustness and the 

efficiency of the design. This design is priced 11 units less than the nominal design, with 

446 units. This observation illustrates that increased robustness can be achieved at 

reasonable cost (and even reduced cost), thus proving the practical applicability of the 

Robust Design methodology to structural engineering.   
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Table 1.2: Comparison of nominal and robust design parameters 

  Nominal 
Design Values 

Robust Design Values 
(Cost Not Considered) 

Robust Design Values 
(Cost Considered) 

Width of Columns (X) 15 inches 12 inches 15 inches  
Depth of Columns (Y) 15 inches 18 inches  18 inches 
Floor Plan Dimensions  
(L and W) 

20 ft by 20 ft 22 ft by 18 ft 24 ft by 17 

Area of Bracing in x plane (Ax) 4 in2  1.25 in2  2.60 in2 

Area of Bracing in y  plane (Ay) 4 in2 7.75 in2  7.75 in2 

Height of Beams (hb) 24 inches 45 inches  18 inches 
Strength of Concrete (fc`) 4000 3750 4250 
Column reinforcement ratio (ρ) 0.045 0.08 0.025 
Sensitivity Index 0.450 0.234 0.267 
Cost of design 457 units 596 units 446 units 

 

 

 

 

 

Figure 1.7: Graphical depiction of objective function for nominal and robust design cases, cost not considered 
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5. Robust Structural Design utilizing Particle Swarm Optimization 

 

5.1 Particle Swarm Optimization Method  

To achieve the desired objective of maximizing robustness while maintaining 

safety and minimizing cost, a more detailed study is conducted utilizing the Particle 

Swarm Optimization (PSO) method.  This method is a probability-based search algorithm 

initially developed by Eberhart and Kennedy [48], which falls under the swarm 

intelligence category of optimization algorithms [49].  The observed behavior of the 

instinctive movement of an animal to find food sources motivated the development of 

this method [50].  Using biological nomenclature as inspiration, the population is defined 

as a swarm and each individual within the swarm is called a particle.  In order to control 

the distance a particle will travel in a single iteration of the process, PSO uses three 

      Figure 1.8: Graphical depiction of objective function for nominal and robust design cases, cost considered 



 

 
24 

parameters, swarm size, social acceleration coefficient, and cognitive acceleration 

coefficient to reach a local minima [48].  The utilization of PSO is advantageous in this 

research due to its well-suited nature for the nonlinear and discontinuous domain ([51]) 

observed in the research problem presented in this manuscript. 

Similar to the case-study presented in the previous section, interval analysis was used 

to keep computational costs due to simulations at a tractable level.  The input-output 

relationship between the response of the structure and the input parameters is represented 

by a fast running ‘response surface function’, also known as an emulator or surrogate 

model. A matrix function is used to train the response surface to the FE simulated data 

and is used in place of the computationally expensive FE model.  This response surface 

can, within reason, accurately predict the outcomes of all possible design configurations 

(within the defined ranges for the design parameters), at a computationally efficient 

manner.  The response surface is a function of the eight design parameters: column width, 

column depth, floor plan dimensions, cross-sectional area of bracing in the x plane, cross-

sectional area of bracing in the y plane, height of beams, strength of concrete, and 

reinforcement ratio.  Through the use of a fast running emulator, a more continuous 

design domain is established at a computationally tractable manner, allowing the most 

robust design to be established within the definitions presented in this chapter.   

Using this response surface, the objective is then to minimize the Sensitivity 

Index, i.e. the area between the specified drift threshold (that is constant for all noise 

levels presenting infinite robustness, in the most ideal case) and the performance of 

alternative designs for varying noise levels, as depicted in Figure 8. Therefore, the PSO 
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algorithm operates on minimizing this Sensitivity Index which is symbolically expressed 

in Equation 1.10.  

                                        9 � :;<;=;>?@δv + δt,min + δt,max)                                       (1.10)                 

 

5.2 Optimization Results and Discussion 

In this section, the search for robust and cost-efficient design is undertaken 

through the PSO algorithm. A swarm size of 25, social acceleration coefficient of 1.3, 

and a cognitive acceleration coefficient of 2.8 are used in the PSO algorithm.  These 

values are recommended values which keep run times to an efficient level and have been 

proven to avoid the possibility of the algorithm getting stuck at a local optima [52].  As 

discussed in Section 4.2, to achieve the stated robust design definition, cost must be an 

integral component of the objective function. Therefore, in this section, only option B 

where cost is considered is evaluated. The resulting robust design is outlined in Table 1.3.   

Similar to the previous case study, the obtained robust design is compared to the 

nominal design defined by the mean values of each of the eight design parameters.  

Through the obtained robust design minimizes the Sensitivity Index by 65.8 percent, 

there was a slight cost increase of nine percent.  For some building owners, this small 

increase in price may be acceptable in that the return-on-investment for the small increase 

in cost is offset by the substantial increase in robustness.  The reduction in the Sensitivity 

Index is illustrated in Figure 1.9.  Not only is the Sensitivity Index minimized for the 

robust design case, pictured as the dashed line with circular markers, but it is also very 

robust at high noise levels, exploiting the highly nonlinear design parameter and noise 
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relationship.    As seen, the resulting design maximizes its insensitivity to noise factors, 

while simultaneously ensuring that the design cost stays within an efficient region.   

 

Table 1.3: Comparison of robust and nominal designs using PSO 

 Nominal 
Design Values 

Robust Design Values 
Cost Considered 

Width of Columns (X) 15 inches 19 inches  
Depth of Columns (Y) 15 inches 24 inches 
Floor Plan Dimensions (L and W) 20 ft by 20 ft 30 ft by 13ft 
Area of Bracing in x plane (Ax) 4 in2  2.60 in2 

Area of Bracing in y  plane (Ay) 4 in2 1.30 in2 

Height of Beams (hb) 24 inches 12 inches 
Strength of Concrete (fc`) 4000 5500 
Column reinforcement ratio (ρ) 0.045 0.08 
Sensitivity Index 0.450 0.154 
Cost of design 457 units 500 units 

 

 
Figure 1.9: Graphical depiction of objective function utilizing particle swarm optimization 

Threshold 
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6. Conclusion 

This chapter presented two methodologies, which successfully demonstrate the 

application of robust design principles as both a design and a decision making tool for 

engineers.  With the robust optimization methodologies presented here, a single structural 

design is found which is more insensitive to noise factors than the nominal design, while 

maintaining, or reducing, the cost for design, thus,  proving the misconception that robust 

designs lead to more expensive, overly designed systems incorrect. 

In developing these methodologies, it was discovered that Taguchi’s two-step process 

was not a valid option to use due to the inability to locate a scale factor.  Therefore, the 

decision to develop two single objective optimization methods was necessitated to treat 

both steps simultaneously; one utilizing the Coordinate Descent Method, and the second 

utilizing the Particle Swarm Optimization algorithm.  Although, these methods were 

chosen in this study, many more optimization algorithms are available and can be utilized 

in this work as well.  

The Coordinate Descent Method was used to perform a case study to prove the 

capacity of the proposed methodology in minimizing the objective function and 

determining a design that satisfies the presented definition of robustness.  To provide an 

illustrative example, a completed iteration of the Coordinate Descent method yielded a 

design that minimized the Sensitivity Index and decreased cost in comparison to the 

nominal case. 

A more detailed study utilizing the Particle Swarm Optimization method was next 

completed.  Through the use of PSO methods, a more continuous design domain is 
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established at a computationally tractable manner, allowing the most robust design to be 

established within the definitions presented in this chapter.  The resulting design 

maximizes its insensitivity to noise factors, while simultaneously ensuring the design’s 

cost stays within an efficient region.   

Future work to improve the methods presented in this chapter include work devoted 

to improving the Sensitivity Index, so that insensitivity and cost are weighed more 

heavily than proximity to the target threshold.  One method for doing so is though a 

multi-objective optimization study.  Also, a probabilistic analysis to formulate real world 

forces exerted on the structure in a worst case scenario can be explored, concurrent with 

the introduction of multiple noise sources to the system.  This includes examining the 

importance of applying non-uniformly distributive force distributions.  For example, in 

this study, because a uniform distribution is assumed for the noise factor, the maximum 

force in the specified range is just as likely to occur as any other force in the range. 

However, the results can be improved by accepting a more realistic distribution.  

This nascent methodology has the potential for practical application in structural 

design in that the presented robust design methodology is amenable to seek for 

robustness to extreme events (e.g. earthquakes, hurricanes, blast loading, etc.) and 

therefore, is a step towards designing for resiliency.  Future work should be undertaken to 

minimize the computational demands for placement in a framework practicing engineers 

can easily follow. 
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.CHAPTER THREE 

 
STRUCTURAL HEALTH MONITORING FOR SUSTAINABLE AND RESILIENT 

INFRASTRUCTURE MANAGEMENT 
 

 

1.0  Introduction   

Civil infrastructure ages and deteriorates due to degradation of materials, 

environmental and location specific issues, overloading and operational factors, and 

inadequate maintenance and inspection schemes.  Deteriorating infrastructure is a 

worldwide problem, particularly in the United States where a significant portion of the 

civil infrastructure is approaching, or has passed, its original design lifespan [1]. The 

American Society of Civil Engineers (ASCE) conducts an infrastructure assessment 

every two to four years and creates a report card for the nation’s infrastructure systems.  

Since 1998, ASCE has categorized the condition of the nation’s civil infrastructure as 

critical with a grade of D [2,3]. In 2009, ASCE estimated that $2.2 trillion is needed over 

a five-year period to bring the nation's infrastructure to a good condition [3]. The need to 

upgrade the nation’s aging and deteriorating civil infrastructure with constrained budgets 

poses a great challenge to infrastructure managers. Thus, it is not only essential to retrofit 

and reconstruct the existing deteriorating infrastructure systems, but to do so through the 

use of sustainable infrastructure practices, the purpose of which is to seek maintenance 

and inspection alternatives that minimize the economic and social costs while 

maximizing the operational life span of such systems.  In order to bring the infrastructure 

to this condition, major measures must be taken and society’s views on how to manage 
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and maintain infrastructure will need to change. A paradigm shift towards proactive and 

sustainable infrastructure management schemes is needed. One approach is to equip 

infrastructure managers with science-based techniques, rather than current qualitative 

guidelines, for monitoring and assessing the nation’s infrastructure. 

Current inspection practices rely heavily on expert judgment through visual 

metrics [4].  Infrastructure systems such as bridges and buildings are assessed based on 

qualitative guidelines measured against the healthy state of the system [5,6,7].  There is 

no efficient way of comparing current structural states of the system to the healthy 

structural state, however.  Often because multiple inspectors conduct assessments over 

the whole lifespan of a structure, a consistent condition baseline is not established over 

the structure’s whole lifespan.  The subjective nature of these guidelines can yield vastly 

different outcomes when completed by different engineers. Moreover, there is an 

apparent lack of correlation between visual appearance and structural reliability for 

safety. Thus, metrics and rubrics have been developed by various government and private 

sector organizations in an attempt to normalize outcomes by providing key elements and 

condition ratings inspectors should utilize when performing inspections.  Tables 2.1 and 

2.2 show two different inspection metrics for buildings and bridges, respectively [7,8].  It 

is essential to equip infrastructure managers with effective quantitative, science-based 

techniques, rather than qualitative guidelines for monitoring and assessing the true 

condition of the nation’s infrastructure.    

  



 

 
38 

Table 2.1: National Bridge Inspection Standards condition ratings (courtesy of US-DOT, printed 
with permission). 
 

Code  Description 
N Not Applicable - 
9 Excellent Condition - 
8 Very Good Condition No problems noted 
7 Good Condition Some minor problems 
6 Satisfactory Condition Structural elements show some minor deterioration 
5 Fair Condition All primary structural elements are sound but may have some minor section 

loss from corrosion, cracking, spalling, or scour 
4 Poor Condition Advanced section loss, deterioration, spalling, or scour 
3 Serious Condition Loss of section, deterioration, spalling, or scour have seriously affected 

primary structural components.  Local failures are possible.  Fatigue cracks 
in steel or shear cracks in concrete may be present. 

2 Critical Condition Advanced deterioration of primary structural elements. Fatigue cracks in 
steel or shear cracks in concrete may be present or scour may have removed 
substructure support. Unless closely monitored it may be necessary to close 
the bridge until corrective action is taken. 

1 “Imminent” Failure 
Condition 

Major deterioration or section loss present in critical structural components 
or obvious vertical or horizontal movement affecting structure stability. 
Bridge is closed to traffic but corrective action may put back in light service. 

0 Failed Condition Out of service - beyond corrective action. 

 
 
Table 2.2: Post-disaster building inspection metric.  (Courtesy of ATC -20, printed with permission). 

 Minor/None Moderate Severe Comments 
Overall Hazards:     
Collapse or partial collapse    ________________ 
Building or story leaning    ________________ 
Other _______________    ________________ 
     

Structural Hazards:  

   

 

Foundations    ________________ 
Roofs, floors (vertical loads)    ________________ 
Columns, pilasters, corbels    ________________ 
Diaphragms, horizontal bracing    ________________ 
Precast connections    ________________ 
Other _______________    ________________ 
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Structural Health Monitoring (SHM) is one type of monitoring system useful in 

diagnosis of structural damage [9]. These monitoring tools, if integrated into a structural 

system during construction, can gather real-time in situ measurements of an 

infrastructure’s performance over its entire life and reduce maintenance costs by locating 

structural damage before it becomes debilitating [10].  SHM also brings a quantitative 

metric that, when used properly, can compare current and healthy states to determine the 

extent of degradation and damage and, moreover, can be applied to predict the lifespan of 

structural systems.  This tool can be used to measure the steady decline in structural 

functionality, or condition, due to the degrading effects of age and environmental 

conditions, as well as the severity of damage induced after a disastrous event such as an 

earthquake, blast, or hurricane.  With the ability to quantitatively compare health states, 

infrastructure managers can easily assess when maintenance is needed, and in the event 

of a disaster, relay information to emergency managers on severely affected geographical 

locations needing immediate attention and help. 

This research serves as a proof-of concept study for the application of long-term 

monitoring of infrastructure systems to not only gather information on the structural 

functionality of the system over time, but also how sustainable or resilient the structural 

system is as it ages, degrades, and/or becomes damaged.  This research focuses on the 

structural sustainability; however, this approach can be easily applied similarly to the 

resiliency problem.  This can be completed through the development of a novel decision 

making tool called Structural Life Cycle Analysis (S-LCA) charts.  In Section Two of this 

chapter, background concepts, which apply to the conceptual proof of this research will 
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be explained, followed by a description of the methodology of S-LCA charts and the 

models employed in conducting this research in Section Three.  Section Four presents the 

results gained from the completion of the study.  Finally, Section Five of this chapter will 

overview the main findings of this study and discuss lessons learned and plans for future 

work. 

 

2.0 Background 

The following section establishes a theoretical framework for the research 

presented in this chapter.  It is categorized into the two distinct topics this research is 

rooted in: (1) Structural Health Monitoring and (2) Life Cycle Analysis. 

 

2.1 Structural Health Monitoring    

Structural Health Monitoring (SHM) is the process of observing a structural 

system over time using periodically spaced measurements in an effort to compare 

measured data to a priori data of a system in order to gather information on the condition 

of a system and detect damage [11].  In this context, damage is defined as changes 

introduced into a system, which adversely affect the functionality of said system, either 

currently or in the future.  General damage types include changes in geometry, material 

properties, or support conditions, such as alterations in boundary conditions or a 

reduction in elastic modulus due to cracking or corrosion [9,12,13].  The ability to detect 

damage and to prescribe appropriate rehabilitation schemes motivates system managers 

to utilize SHM.  Maintenance and repair costs decrease by employing this long-term 
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monitoring technique, while life-safety impacts are increased.  Detecting damage early on 

reduces the necessity for redundancies, reduces system down-time due to debilitating 

damage, and alerts officials when systems are unsafe for operation. 

The basic concept employed in SHM principles is the dependency of system 

responses, or features, of a structure to its inherent physical properties and characteristics 

such as mass, stiffness, and damping.  As damage occurs and accumulates, these 

characteristics are altered as is evident through changes in measured responses of the 

system.  Damage detection, as applied in this research, is possible through the 

comparison of two system states using supervised learning, where data is available for 

both a damaged and an undamaged system to measure accumulated damage from a base 

line healthy state [9,12].  For long-term SHM, features are periodically extracted and 

updated to quantify the ability of a structural system to continue to perform its intended 

function despite unavoidable aging and damage accumulation resulting from operations 

and environmental exposure. 

SHM methods to quantify damage are especially useful in Civil Engineering 

applications where damage can occur in places that are not accessible in typical 

maintenance and inspection routines.  Concrete in particular, can exhibit fatal internal 

cracks and rebar corrosion that can go unseen in current visible inspection schemes.  

SHM has the capability to detect internal flaws and even predict how much useful life 

remains in a structural system.  This is advantageous for infrastructure managers by 

allowing them to retrofit damaged structural systems before there is external evidence of 

damage, an indispensable feature for the development of proactive and sustainable 
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maintenance and inspection schemes.  Several monitoring campaigns utilizing physics-

based features, such as strain, displacement, or acceleration have been successfully 

completed [14-19]; however, none have extended monitoring techniques into an 

infrastructure management framework to develop science-based metrics to both quantify 

the health and the sustainability and resiliency of a system over its entire life-span. 

 

2.2 Life Cycle Analysis of Environmental Engineering 

The Life Cycle Analysis (LCA), as understood in Environmental Engineering, is a 

cradle–to-grave investigation and evaluation of the environmental, social, and economic 

impacts of a given product during the production, use, and disposal phases of its life [20].  

LCA follows a product from the collection and extraction of raw materials from the earth 

to the point where all parts are disposed and returned to the earth [21,22].  The purpose of 

LCA is to serve as a decision making tool by showing the environmental and social 

tradeoffs between alternative designs or alterations in a product or system in an effort to 

improve sustainability.  Thus, decision makers may choose the least environmentally, 

economically, and socially burdensome of available options [23].   

LCA tools are quite effective in investigating the impacts caused by a product’s 

existence on a materials, energy, and emissions scale utilizing current LCA frameworks, 

such as that provided by the US Environmental Protection Agency (LCA 101) [20] or the 

International Organization for Standardization (ISO 14040) [24].  Although the LCA 

framework was originally developed to study the rapid depletion of fossil fuels and the 

concurrent changes in global climate, much research has been conducted on the life cycle 
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of building products, especially in the resource extraction, manufacturing, and 

construction phases.  Several organizations and agencies have created computer software 

for this comparative analysis tool which include the National Institute of Standards and 

Technology’s Building for Environmental and Economic Sustainability (BEES), capable 

of completing life-cycle assessments of over 230 building products [25], the Athena 

Institute’s LCA Model, capable of completing a LCA of whole buildings as well as 

assemblies for new buildings and renovations [26], and Carnegie Mellon University’s 

Economic Input-Output LCA (EIO-LCA), able to estimate the materials and energy 

resources required, as well as emissions produced for daily activities in an economy [27].  

There is currently no tool available, however, that can scientifically measure the 

structural sustainability of a system over its entire operational life, in regards to its 

measured versus designed performance, rather than on an energy scale.  Design life of 

structures must be incorporated into current LCA practices for a full analysis of a built 

system.  

 

3.0 Methodologies and Model 

 
3.1 Structural Life Cycle Assessment Concept 

Utilizing principles and theories discussed above, it is hypothesized that science-

based monitoring and assessment techniques can be developed to provide objective and 

quantitative information about not only the sustainability, but also the resiliency of our 

built systems. Such tools can aid in the development of the most cost-effective, long-term 
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infrastructure management plans and reduce the footprint impact of infrastructure 

maintenance on energy and materials. This research proposes the construction of 

Structural Life-Cycle Analysis (S-LCA) charts.  The research methodologies and results 

presented herein aim to provide a framework for the development of such a metric by 

modifying the existing concepts of LCA to provide a holistic, novel, and quantitative 

approach for structural assessment based on Structural Health Monitoring techniques.  

 

Figure 2.1 shows a conceptual view of the proposed S-LCA. A built system may 

be considered 100% structurally functional on the day construction is finished. The 

degrading effects of aging over the lifespan of a structure will result in a gradual decrease 

in structural functionality. The rate at which this reduction occurs depends upon the 

structural sustainability of the built system (1/α in Figure 2.1).  During disastrous events, 

the built system experiences structural damage, the effects of which are evident in the 

life-cycle chart as an immediate drop of the structural functionality curve. The level at 

which this reduction occurs depends upon the structural resiliency of the built system 
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(1/∆ in Figure 2.1).  It should be noted that in the context of this research, structural 

sustainability is a measure of the degradation rate, whereas structural resiliency is a 

measure of the resistance to damage.  For given environmental and operational 

conditions, a sustainable and resilient infrastructure would maximize the area under the 

curve in Figure 2.1.  

In SHM, structural degradation and damage are defined as changes that adversely 

affect the future performance of a built system [13]. Therefore, implicit in the definitions 

of structural degradation and damage are comparisons against a “reference” system, 

which often represents the built system in its initial, undamaged condition. We can 

consider the day the construction is completed as 100% structurally functional, which is 

the reference point for new construction.  For an existing structure, however, a reference 

point for structural functionality must be determined according to the current structural 

condition.  In our formulation, SHM will monitor the deviations of the structure’s 

response from these reference points. The structural degradation and damage 

accumulation will result in changes in the material and/or geometric properties of the 

structure. Throughout the lifetime of a built system, the stiffness, mass, or energy 

dissipation of the structure will be altered, which in turn will result in a measurable 

change in its system responses.  This method can alert infrastructure managers when the 

functionality drops below a certain level, or if the degradation rate becomes too high. 

Using health indices a numerical value for a chosen feature, or features, can be 

transformed into a structural functionality percentage. To do so, mathematically 

convenient features are desirable, which are not hidden under large measurement or post-
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processing errors.  For example, a feature that requires double integration is not preferred 

because significant numerical errors can propagate into the double integration 

calculations and possibly produce false positives, a damaged system identification on a 

truly healthy system, or false negatives, a more serious error in that a truly damaged 

system is identified to be healthy.  The feature should remain valid over the entire 

serviceable life of the system (i.e. features that become void if nonlinearities develop due 

to cracking is then useless for the long-term health monitoring of a concrete structure).  

Lastly, the feature must provide a rational transformation to global condition or health 

[28].  A successful implementation of SHM can be established through the utilization of 

the feature qualities discussed above.   

 

3.2 Prototype Structure 

For this simulation based proof-of-concept study, a two-story, two-bay, reinforced 

concrete frame structure was chosen as the prototype.  The geometry of the structure is 

illustrated in Figure 2.2.  A structural design for the frame was completed in accordance 

to ACI 318-08: Building Code Requirements for Structural Concrete and Commentary 

Standard, 2008 version [29].  The columns are assumed to be fixed to the ground and an 

idealized operational static wind load was applied to the structure as seen in Figure 2.3, 

where P is defined as 16 psf.  
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3.3 Finite Element Formulation 

Toward the goals outlined in this study, a numerical model of the prototype 

structure, described in Section 3.2 of this chapter, was developed using the commercial 

FE modeling package, ANSYS version 13.0.  To simulate the complex nonlinear 

behavior of concrete, Solid65, a solid isoparametric element, is utilized.  This particular 

element is a three-dimensional brick element with eight nodes, each allowing three 

(a) (b) 

15’ – 0” 

15’ – 0” 

Figure 2.2:  Prototype geometry – (a) elevation view (b) plan view 

Figure 2.3: Prototype loading 
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translational degrees of freedom in the global x, y, and z directions [30].  As seen in 

Figure 2.2.4, a multilinear constitutive material model based on the triaxial behavior of 

concrete developed by William and Warnke was used to define the nonlinear material 

model in the simulation of failure [31].  With the use of Solid65, the concrete is capable 

of cracking in three orthogonal directions, plastic deformation, and creep; however, in 

order to achieve convergence, crushing capabilities were turned off.  This element was of 

particular interest due to the ability to incorporate reinforcement bars directly into the 

element through by assuming a smeared cross-section, thereby increasing the 

computational efficiency of the simulation.  Although smeared, the rebar modeled in 

Solid65 is still capable of tension, compression, plastic deformation, and creep. 

 

 

 

Figure 2.4: Concrete material model 
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3.4 Degradation Mechanisms 

Concrete degradation models are developed to simulate the decrease in structural 

integrity over a 50 year operational structural lifespan.  Herein, the concrete frame is 

assumed to be located in a marine environment with an average humidity of 70%.  With 

this assumption, it can, with good confidence, also be assumed that corrosion in the 

concrete frame is inevitable.  Therefore, this research will simulate the degrading effects 

of corrosion while simultaneously modeling the loss of strength due to cracking and 

general aging. 

Steel corrosion is one of 

the predominant mechanisms of 

degradation in reinforced concrete 

structures, the driving forces of 

which are both complex and 

widely studied [32,33,34].  The 

most commonly accepted 

corrosion model was developed by 

Tuutti [35] and depicted in Figure 2.5.  Known as a bi-linear damage model, the 

corrosion process is idealized into two-steps [36,37].  The first is an initiation stage, 

where harmful chlorides penetrate through the solid concrete, eventually reaching the 

rebar with enough force to initiate corrosion.  Here, negligible steel is lost, however, once 

initiation is reached, the propagation step starts, where significant levels of damage are 

attained [38].  It has been proven experimentally that the initiation period for offshore 

Figure 2.5: Corrosion degradation trends over time ([35]) 





structures can last ten years, at which point the propagation phase begins and corrosion 

accumulates [39].  One method of modeling the propagation of corrosion is through the 

loss of cross-sectional area in the rebar from pitting and rust development.   In a single 

study monitoring the corrosion process of a concrete beam over a 17 year period, 

researchers found an average loss of two percent of the beam’s rebar per year from 

corrosion after exposure to a chloride rich environment [40].  Thus, this study assumes an 

initiation period of 10 years and a subsequent two percent reduction in total cross-

sectional area per year of operation. 

When concrete degrades, it not only corrodes, but also simultaneously loses 

strength from cracking caused by tensile pressures induced by corrosion, fatigue loading, 

shrinkage and expansion due to large changes in temperature, and dissolution in material 

properties due to aging [32-34].  This deterioration in the solid concrete can be captured 

through an equivalent elastic modulus (Ē) which is found by scaling the healthy design 

elastic modulus (E) by a damage variable (d) as seen in Figure 6a and expressed in 

Equation 2.1 [41]. 

                                                                    Ē  1  E                                                     (2.1)       

The damage variable is a function bounded by 0 > d > 1, where a zero value of d

represents a healthy structure and a value of one is an unreachable value without 

complete failure.  This research assumes d is an exponential decay function with a mean 

lifetime of 0.5 resulting in the exponential decay function found in Equation 2.2.  A 

graphical schematic of the degradation mechanism is provided in Figure 2.6a. 

                                                    d =   |  0 < t < 1                                                       (2) 

E
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  Developed in the stress-strain realm, this relationship must be defined over time.  

Since there is no available model for concrete which specifies the precise amount of 

degradation per time unit, an exponential relationship between the degradation variable 

and time is assumed.  An example of this relationship is seen below in Figure 2.6b.   

 

In this research, the two aforementioned degradation schemes are applied 

concurrently to the prototype structure discussed in Section 3.2.  In that degradation is 

non-uniform over the entire structure the intent was to study the effect of degradation 

extent on the Structural Sustainability of a built system and the influence of localization 

of degradation.  The frame is divided into 52 segments as shown in Figure 2.7.  Thirty-

five segments are then randomly selected for consecutive degradation by corrosive and 

general degradation forces over a representative 50 years.  It should also be noted that 

exposure to environmental effects is considered when prescribing corrosion levels.  If we 

assume the cross-sectional area of rebar in corner columns degrade at a level of two 

(a) (b) 

Figure 2.6: Schematics of solid concrete degradation mechanisms – (a) Degradation trend of elastic 
modulus (b) Relationship of damage variable d used in the degradation of the elastic modulus over time. 
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percent annually from surface 

vulnerabilities due to chemical 

penetration, then beams, columns, and 

girders with a single exterior face 

degrade at a rate of 0.75 times over this 

maximum two percent rate.  Similarly, 

interior beams are specified to degrade 

at a rate of 0.5 times that of the corner 

column’s two percent.  The means used 

to detect the simulated degradation is 

discussed in the next section. 

 

3.5 Structural Health Monitoring Campaign 

Maximum lateral displacement is a proven method for developing health metrics 

[28].  In that displacement is inversely related to stiffness, which is affected when 

cracking or corrosion occurs, the displacements should theoretically increase with a 

decrease in stiffness properties. This feature, which follows the guidelines for feature 

selection outlined in Section 3.1, will be used to develop health indices in this study.   

The vector sum of displacement will be measured at the roof and first floor levels 

of each column (Figure 2.2b).  Due to the asymmetry of the structure, and subsequent 

twisting that can occur in deformed shapes caused by damage and degradation, the 

maximum displacement may change location as the ‘effected region’ is spatially varied. 

Figure 2.7: Schematic of different degradation 
locations 
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Therefore, the maximum lateral displacement on the frame is calculated for each of the 

35 degradation scenarios and used in the formulation of S-LCA charts.  The SHM 

process outlined in Figure 2.8 guides the development of health indices.  In this process, a 

negative discrepancy between the damaged structure’s response (ω) and the healthy 

reference point (ωR) indicates the structure has been degraded or damaged, while a 

positive discrepancy indicates an improvement in the structural functionality due to repair 

or recovery campaigns (Figure 2.8).  This calculation can then be used to provide the data 

to alert infrastructure managers of the health of a system. 

 

4.0 Results and Discussion 

 
4.1 Feasibility of SHM Methodology  

In the context of this research, a health index is developed ranging from 100% 

functionality (healthy) to an unattainable value of 0% functionality (failure) by 

normalizing all data to the displacement value of the healthy structure.  Theoretically, the 

displacement value of the healthy structure should be the smallest measured value unless 

there is retrofitting which brings the structure’s condition to a level which exceeds the 

SHM Phase 1:  
DATA 

COLLECTION  

SHM Phase 2:  
FEATURE 

EXTRACTION  

SHM Phase 3:  
STATISTICAL 

DISCRIMINATION 

ωωωω - ωωωωR  < 0 

IMPROVED 
FUNCTIONALITY 

ωωωω - ωωωωR  = 0 

SUSTAINED 
FUNCTIONALITY 

ωωωω - ωωωωR  > 0 

REDUCED 
FUNCTIONALITY 

Figure 2.8: SHM campaign methodology for health monitoring 
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initial healthy value.  Since the relationship between displacement and health is inversely 

proportional, i.e. displacement increases with a decrease in health, the normalized values 

must be inverted to obtain a scale in which the healthy displacement value is a maximum 

at 100% functionality and the condition is lost as the system degrades or is damaged.  

When this health index is plotted over the entire lifespan of the structural system, the S-

LCA charts proposed in this research materialize. 

Figures 2.9 and 2.10 show the ensemble of S-LCA curves achieved after the 

degradation routine discussed in Section 3.4 is carried out for displacement at the first 

floor and roof levels, respectively.  Each line on the chart represents one degradation 

segment (i.e. there are 35 lines plotted on each figure).  This was completed due to the 

lack of experimental data in this study.  The effect of localized damage was unknown on 

the global health, thus multiple scenarios were studied.  The mean and standard 

deviations for the distributions are also plotted in ten year increments through the use of 

error bars, where the square is the mean value and the extending bar represents the even 

standard deviation.  From these figures, it is evident that the metric developed in this 

research is a plausible visual health metric that can be employed by infrastructure 

mangers.  The health decreases from a 100% functional structure and is detectable in the 

small localized, segmental degradation scheme utilized in this structure.  It should be 

noted that if there was widespread degradation, such as uniform degradation, the metric 

proposed here would be able to detect a more drastic decrease in structural integrity. 
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Figure 2.10: Ensemble of degradation S-LCA curves at roof level 

Figure 2.9: Ensemble of degradation S-LCA curves at first floor level 
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The localization of the degradation is imperative when developing maintenance 

metrics.  Certain spatially located degradations are more detectable than others through 

this approach when exposed to identical degradation rates.  Certain locations yield a 

change in global response as high as 10% (Figure 2.9), while degradation occurring in 

certain other locations is not as easily detectable, yielding only a 1% change in global 

system response. Note that when the structure is aging, the degradation will not be fully 

localized.  Therefore, these results should be considered as a worst case scenario.  In the 

next section, the effect of multiple locations degrading simultaneously will be explored.  

 

4.2 Final S-LCA Construction and Sustainability Quantification 

The previous section demonstrated a health index that is applicable over a 

structural system’s entire lifespan for localized damage.  This section will illustrate and 

discuss the development of an S-LCA chart and the structural sustainability metric for a 

more realistic degradation scenario with simultaneous degradation.   

As pictured in Figure 2.1 and discussed in Section 3.1, in this chapter, structural 

sustainability is a measure of the degradation rate and inversely relates to the slope of the 

S-LCA curve.  Thus, the structural sustainability will be calculated in ten year increments 

as defined in Equation 2.3, where SS is structural sustainability, Ii is the inspection 

interval (number of years between health measurements, 10 in this case), n is the number 

of health measurements taken (including the healthy measurement), hi-1 is the health 

index value of the previous measurement point, and hi is the health index value at the 

current measurement point.  
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                                                            (2.3) 

Thusly, infrastructure managers can compare current and past structural 

sustainability performance.  If desired, an average structural sustainability value can be 

periodically updated as more measurements are taken, and the S-LCA chart develops 

over time. 

To prove the feasibility of this concept for more extensive degradation, the 

degradation scheme outlined in Table 2.3 is adopted.  Segments are sequentially added to 

the degradation process and the cumulative effect on the structure increases with time.  

Similar to the single segment degradation case, multiple degradation scenarios were 

simulated in the absence of experimental data. Figure 2.11 shows an ensemble plot of 20 

random degradation scenarios, much like the plot illustrated in Figures 2.10 and 2.11.  

This figure shows the increase in global degradation with multiple segments 

simultaneously degraded.   

 

 

Table 2.3: Degradation scheme for multiple segments degrading simultaneously 

Year 10 2 segments @10 yr rate 
Year 20 5 segments @ 10 yr rate, 2 segments @ 20 yr rate 
Year 30 7 segments @ 10 yr rate, 5 segments @20 yr rate, 2 segments @30 yr rate 
Year 40 9 segments @ 10 yr rate, 7 segments @ 20 yr rate, 5 segments @ 30 yr rate,  

2 segments @ 40 yr rate 
Year 50 12 segments @ 10 yr rate, 9 segments @ 20 yr rate, 7 segments @ 30 yr rate, 5 

segments @ 20 yr rate, 2 segments @ 50 yr rate 
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The mean value from data obtained in Figure 2.11 is used to create the final form 

of the S-LCA chart seen in Figure 2.12.  Since this is a simulation and not an experiment 

with one data set, any of the curves could be taken to construct the final S-LCA chart, the 

mean was taken for illustrative purposes.  It should also be noted that Figure 2.1 idealizes 

what form S-LCA charts will take.  Figure 2.12 shows that the degradation rate is non-

constant over the structure’s entire life.  There will be some years that experience more 

degradation than others, thus creating segmented S-LCA charts.  For this case, since 

multiple inspection data is available, the Structural Sustainability can be calculated 

(Equation 2.3) in each interval.  These values are shown in Table 2.4.  The average 

Structural Sustainability was calculated to be 196.51, a measure of how well the 

structure’s response can resist degradation.  Table 2.4 also shows the evolution of this 

metric as the structure ages and degradation is accumulated.  With this metric, the greater 

Figure 2.11: Ensemble figure for 20 random degradation scenarios with multiple segments 
simultaneously degraded 
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the Structural Sustainability, the more apt you are to maximizing the area under the S-

LCA curve, after all with a slope of zero, this metric yields a Structural Sustainability 

value of infinity.  With this in mind, you can see the years where degradation was most 

severe, mainly the inspection period between years 0 and 10 and between years 40 and 

50.  This hypothesis is affirmed when compared to the S-LCA chart. 

Table 2.4: Structural Sustainability values over time 

 Year 0-10 Year 10-20 Year 20-30 Year 30-40 Year 40-50 Average 
Structural 
Sustainability 

166.39 384.62 193.80 137.93 99.80 196.51 

 

 

 This chart is advantageous when measuring past performance, but also for 

prognostic purposes.  Through the establishment of degradation trends, infrastructure 

managers are able to schedule inspections and predict when maintenance will be 

necessary.  

Figure 2.12: S-LCA chart for multiple segments simultaneously degraded over the structure’s whole 
life 
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5.0 Conclusions 

With the numerous failing and deficient infrastructure systems in the United 

States, it has become ever more important to develop indices and metrics to serve as 

proactive infrastructure management schemes.  Both neglect and setbacks due to financial 

constraints have resulted in such failing infrastructures.  To mitigate similar 

circumstances from occurring again, it is necessary to develop metrics to quantitatively 

measure the degradation of infrastructures.  This will allow rehabilitation to be completed 

when damage and detectable deterioration occur, not when they become debilitating.  

Such proactive measures, which can save vast capital are proven a sustainable 

maintenance scheme.  By allowing managers to view and quantify a decrease in 

degradation, they can maximize the area under the S-LCA curve.  Thusly, the novel 

aspect of this research is validated in that it casts sustainability and resiliency in a 

quantifiable framework where designs can be compared and implemented accordingly. 

This research clearly confirms that Structural Life Cycle Assessment (S-LCA) 

charts are one possible method for quantifying the health and sustainability of an 

infrastructure system through its entire life cycle via implementation of Structural Health 

Monitoring practices and Life Cycle Assessment principles.  Through this research, the 

applicability of this method for both minor and more extensive degradation over the 

entire lifespan of a structural system is proven.  Degradation was simulated in the 

concrete structure through corrosive forces, represented by a loss in cross-sectional area 

in the steel rebar, and loss of strength, represented through the application of an effective 

elastic modulus.  The effects of damage localization on the chosen feature were 
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discovered when degradation was applied spatially, one segment at a time.  The 

subsequent spread of health indices fell between a 1% loss in global structural condition 

to an almost 10% loss in global structural condition.  To apply a more realistic 

degradation scheme and to illustrate the development of the sustainability metric, the 

sequential addition of degraded members was simulated.  Through this method, the time 

dependent accumulation of degradation was captured with a visual decrease in both the 

health index and the Structural Sustainability metric over time.   

Because, this simulation based study encompassed only factors intentionally 

introduced to affect the system, false diagnostics from ambient factors are possible in 

operational settings.  Future research must improve and expand upon the concepts 

presented here, and  explore the robustness of features used in the construction of S-LCA 

charts regarding the influences factors that can cause noise and false diagnostics.  

Accounting for wind fluctuations and changes in temperature and humidity is also 

necessary before this method can be fully embraced by infrastructure managers.  Also, a 

study in resiliency to extreme factors should be conducted. 
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CHAPTER FOUR 
 

CONCLUSIONS 
 
 

 Presented in this thesis are the results from two studies that develop novel design 

and maintenance routines to promote sustainability and resiliency in infrastructure 

systems.  In doing so, this research aims to provide tools that can be used to prolong the 

lifespan of infrastructure systems, both in the design phase and operational phase. 

 First, the feasibility of the application of robust design principles to the structural 

engineering process was examined through the use of two optimization methods – the 

Coordinate Descent Optimization method and the Particle Swarm Optimization method.  

Using these methods and the robust design methodologies presented in Chapter 2 of this 

thesis, a single structural design can be found which is more insensitive to noise factors 

and maintains, or minimizes the cost compared to some nominal design.  Future work to 

improve the methods and concepts presented in the work chronicled in Chapter 2 of this 

thesis include the improvement of the Sensitivity Index and completing a probabilistic 

analysis to impose more realistic noise forces.   

Next, the research presented in Chapter 3 of this thesis has shown that Structural 

Life Cycle Assessment (S-LCA) charts are a plausible and effective way of assessing the 

health and sustainability of infrastructure systems in order to prolong the life of an 

infrastructure system.  This was proven effective by using Structural Health Monitoring 

and Life Cycle Assessment principles.  This research demonstrates the feasibility of the 

S-LCA approach for both minor and more extensive damage over the entire lifespan of a 

structural system.  However, since this study was solely simulation based, an operational 
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application is necessary to fully validate the concept presented here.  Further research on 

the robustness of features to fluctuating environmental factors should be carried out to 

minimize false diagnostics.   

Both concepts presented in this thesis promote sustainability and resiliency in the 

civil infrastructure realm.  Currently, these two concepts were examined separately; 

however, future work to incorporate these two concepts can produce an interesting and 

compelling study.  Robust designs developed in Chapter Two can be compared to 

nominal cases to examine the design configuration’s robustness to degradation by 

following the procedure outlined in Chapter Three.  The completion of this work has the 

potential to provide more feasibility in the adaptation of robust design principles to the 

world of practicing design engineers.  
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APPENDIX: FE CODE SAMPLE 
 

 This appendix provides a sample from the developed FE code utilized in Chapter 
Two of this thesis.  This code is used to automate the process of constructing a concrete 
frame FE model.  With the user supplied values for each of the eight design parameters 
and noise forces, this code constructs the geometry of the model, specifies material 
properties and real constants, meshes the geometry and assigns material properties, sets 
solution controls to assure convergence, applies boundary conditions and loads, and 
finally solves for displacement at the desired location. 

 
RESUME, 'ModelWithBracing','db','.' 
/PREP7 
 
xx1 = \\${X} 
xx2 = xx1+\\${A} 
xx3 = xx1+xx2 
xx4 = xx1/2 
xx5 = xx1+0.5 
xx6 = xx2-0.5 
xx7 = xx2+xx4 
 
yy1 = \\${Y} 
yy2 = yy1+\\${B} 
yy3 = yy1+yy2 
yy4 = yy1/2 
yy5 = yy1+0.5 
yy6 = yy2-0.5 
yy7 = yy2+yy4 
 
zz1 = 0.5 
zz2 = 1 
zz3 = 14.5-\\${Hb} 
zz4 = 15-\\${Hb} 
zz5 = 15 
zz6 = 15.375 
 
Fc = \\${STRGTHCONC} 
CRACK = 7.5*SQRT\(Fc\)*144 
Epsi = 57000*SQRT\(Fc\) 
STRAIN0 = \(2*Fc\)/\(Epsi\) 
STRAIN1 = \(0.30*Fc\)/\(Epsi\) 
STRESS1 = 0.3*Fc*144 
E = Epsi*144 
STRESS2 = 
\(\(Epsi*0.00078\)/\(1+\(\(0.00078/STRAIN0\)*\(0.00078/STRAIN0\)\
)\)\)*144 
STRESS3 = 
\(\(Epsi*0.00123\)/\(1+\(\(0.00123/STRAIN0\)*\(0.00123/STRAIN0\)\
)\)\)*144 
STRESS4 = 
\(\(Epsi*0.00168\)/\(1+\(\(0.00168/STRAIN0\)*\(0.00168/STRAIN0\)\
)\)\)*144 
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STRESS5 = 
\(\(Epsi*0.0022\)/\(1+\(\(0.0022/STRAIN0\)*\(0.0022/STRAIN0\)\)\)
\)*144 
 
!COLUMN A1 
K , 1 , 0 , 0 , 0 
K , 2 , xx1 , 0 , 0 
K , 3 , xx1 , yy1 , 0 
K , 4 , 0 , yy1 , 0 
K , 5 , xx1 , yy4 , 0 
K , 6 , xx4 , yy1 , 0 
K , 101 , 0 , 0 , zz1 
K , 102 , xx1 , 0 , zz1 
K , 103 , xx1 , yy1 , zz1 
K , 104 , 0 , yy1 , zz1 
K , 105 , xx1 , yy4 , zz1 
K , 106 , xx4 , yy1 , zz1 
K , 201 , 0 , 0 , zz2 
K , 202 , xx1 , 0 , zz2 
K , 203 , xx1 , yy1 , zz2 
K , 204 , 0 , yy1 , zz2 
K , 205 , xx1 , yy4 , zz2 
K , 206 , xx4 , yy1 , zz2 
K , 301 , 0 , 0 , zz3 
K , 302 , xx1 , 0 , zz3 
K , 303 , xx1 , yy1 , zz3 
K , 304 , 0 , yy1 , zz3 
K , 305 , xx1 , yy4 , zz3 
K , 306 , xx4 , yy1 , zz3 
K , 401 , 0 , 0 , zz4 
K , 402 , xx1 , 0 , zz4 
K , 403 , xx1 , yy1 , zz4 
K , 404 , 0 , yy1 , zz4 
K , 405 , xx1 , yy4 , zz4 
K , 406 , xx4 , yy1 , zz4 
K , 501 , 0 , 0 , zz5 
K , 502 , xx1 , 0 , zz5 
K , 503 , xx1 , yy1 , zz5 
K , 504 , 0 , yy1 , zz5 
K , 601 , 0 , 0 , zz6 
K , 602 , xx1 , 0 , zz6 
K , 603 , xx1 , yy1 , zz6 
K  604 , 0 , yy1 , zz6 
 
    
....    
.     CONTINUE SPECIFYING KEYPOINTS FOR WHOLE STRUCTURE.     CONTINUE SPECIFYING KEYPOINTS FOR WHOLE STRUCTURE.     CONTINUE SPECIFYING KEYPOINTS FOR WHOLE STRUCTURE.     CONTINUE SPECIFYING KEYPOINTS FOR WHOLE STRUCTURE    
....    
 
 
!CREATE AREAS COLUMN A1 ,       
             
A, 1, 2, 5, 3, 6, 4     
A, 2, 5, 105, 205, 305, 405, 402, 302, 202, 102 
A, 5, 3, 103, 203, 303, 403, 405, 305, 205, 105 



 

 
71 

A, 3, 6, 106, 206, 306, 406, 403, 303, 203, 103 
A, 6, 4, 104, 204, 304, 404, 406, 306, 206, 106 
A, 4, 1, 101, 201, 301, 401, 404, 304, 204, 104 
A, 1, 2, 102, 202, 302, 402, 401, 301, 201, 101 
A, 402, 405, 403, 503, 502      
A, 403, 406, 404, 504, 503      
A, 404, 401, 501, 504       
A, 401, 402, 502, 501       
A, 502, 503, 603, 602       
A, 503, 504, 604, 603       
A, 504, 501, 601, 604       
A, 501, 502, 602, 601       
A, 601, 602, 603, 604       
           
!CREATE VOLUMES COLUMN A1 \(vOLUME 1\)      
ASEL,S,AREA,,1,16,1         
VA,ALL            
 
 
....    
.     CONTINUE CREATING AREAS AND VOLUMES FOR WHOLE STRUCTURE.     CONTINUE CREATING AREAS AND VOLUMES FOR WHOLE STRUCTURE.     CONTINUE CREATING AREAS AND VOLUMES FOR WHOLE STRUCTURE.     CONTINUE CREATING AREAS AND VOLUMES FOR WHOLE STRUCTURE    
....    
 
 
 
!CREATE CROSSBRACING 
!GIRDER A1-A2 \(LINES 261-278\) 
L,302,7 
L,402,107 
L,425,207 
L,305,12 
L,405,112 
L,427,212 
L,303,10 
L,403,110 
L,429,210 
L,307,2 
L,407,102 
L,426,202 
L,312,5 
L,412,105 
L,428,205 
L,310,3 
L,410,103 
L,430,203 
!BEAM A1-B1 \(LINES 279-296\) 
L,313,4 
L,413,104 
L,434,204 
L,317,6 
L,417,106 
L,435,206 
L,314,3 
L,414,103 
L,436,203 
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L,304,13 
L,404,113 
L,431,213 
L,306,17 
L,406,117 
L,432,217 
L,303,14 
L,403,114 
L,433,214 
 
 
....    
.     CONTINUE CREATING CROSS BRACING FOR WHOLE STRUCTURE.     CONTINUE CREATING CROSS BRACING FOR WHOLE STRUCTURE.     CONTINUE CREATING CROSS BRACING FOR WHOLE STRUCTURE.     CONTINUE CREATING CROSS BRACING FOR WHOLE STRUCTURE    
....    
 
        
!SPECIFY MATERIAL MODELS 
!SOLID CONCRETE 
!MAT1 
!ELASTIC MODEL 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,DENS,1,,4.6584 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,E  
MPDATA,PRXY,1,,0.2   
!CONCRETE MODEL 
TB,CONC,1,,,  
TBDATA,,0.2,1.0,CRACK,-1,0,0 
TBDATA,,0,0,0,,,  
!MULTILINEAR ELASTIC 
TB,MELA,1,1,6, 
TBPT,,0,0 
TBPT,,STRAIN1,STRESS1 
TBPT,,0.00078,STRESS2 
TBPT,,0.00123,STRESS3 
TBPT,,0.00168,STRESS4 
TBPT,,0.0022,STRESS5 
  
!STEEL REBAR 
!MAT2  
MPDATA,EX,2,,4176000000 
MPDATA,PRXY,2,,0.3  
MPDATA,DENS,2,,15.2174  
 
!STEEL CROSSBRACING 
!MAT3 
MPDATA,EX,3,,4200000000 
MPDATA,PRXY,3,,0.3  
MPDATA,DENS,3,,15.22  
 
!SPECIFY REAL CONSTANTS 
!COLUMNS REAL1 
R,1,2,\\${RCOL},0,90, , ,  
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RMORE, , , , , , ,   
RMORE, , 
 
 
....    
.     CONTINUE SPECIFYING MATERIAL MODEL AND REAL CONSTANTS.     CONTINUE SPECIFYING MATERIAL MODEL AND REAL CONSTANTS.     CONTINUE SPECIFYING MATERIAL MODEL AND REAL CONSTANTS.     CONTINUE SPECIFYING MATERIAL MODEL AND REAL CONSTANTS    
....    
 
 
 
!MESH MODEL 
!MESH CROSSBRACING Y dir 
TYPE,2    
MAT,3 
REAL,6    
ESYS,0    
SECNUM,  
LSEL,S,,,279,314,1 
LESIZE,ALL, , ,1, , , , ,1  
LMESH,ALL 
ALLSEL,ALL 
!MESH CROSSBRACING X dir 
TYPE,2    
MAT,3 
REAL,5    
ESYS,0    
SECNUM,  
LSEL,S,,,261,278,1 
LSEL,A,,,315,332,1 
LESIZE,ALL, , ,1, , , , ,1  
LMESH,ALL 
ALLSEL,ALL 
 
!MESH COLUMN A1 
TYPE,1    
MAT,1 
REAL,1    
ESYS,0    
SECNUM, 
LSEL,S,LINE,,13 
LSEL,A,LINE,,9 
LSEL,A,LINE,,18 
LSEL,A,LINE,,23 
LSEL,A,LINE,,28 
LSEL,A,LINE,,33 
LSEL,A,LINE,,39 
LSEL,A,LINE,,37 
LSEL,A,LINE,,40 
LSEL,A,LINE,,42 
LSEL,A,LINE,,1,6,1 
LSEL,A,LINE,,36 
LSEL,A,LINE,,11 
LSEL,A,LINE,,20 
LSEL,A,LINE,,25 
LSEL,A,LINE,,30 
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LSEL,A,LINE,,35 
LESIZE,ALL,0.25,,,,,,,1 
ALLSEL,ALL 
VSWEEP,1 
 
 
....    
.     CONTINUE MESHING WHOLE GEOMETRY.     CONTINUE MESHING WHOLE GEOMETRY.     CONTINUE MESHING WHOLE GEOMETRY.     CONTINUE MESHING WHOLE GEOMETRY    
....    
 
 
/SOLU 
 
NLGEOM,ON 
NSUBST,1,1000,1 
OUTRES,ALL,ALL 
AUTOTS,ON 
CNVTOL,,-1,23    
CNVTOL,,-1,24    
CNVTOL,U, ,0.25,2, , 
LNSRCH,0 
NCNV,2,20,0,0,0  
NEQIT,10000 
 
!SPECIFY ANALYSIS TYPE 
ANTYPE,0 
 
!FIX COLUMNS AT BASE 
DA,1,ALL, 
DA,17,ALL, 
DA,33,ALL, 
DA,49,ALL, 
 
!APPLY GRAVITY LOAD 
ACEL,0,0,32.2,   
 
!APPLY PRESSURE FORCE ON SLABS ABOVE GIRDER A1-B1 AND BEAM A1-A2 
SFA,85,1,PRES,\\${FORCEX} 
SFA,88,1,PRES,\\${FORCEY} 
 
*GET,NUMNODE,KP,621,ATTR,NODE  
 
SOLVE  
 
FINISH   
 
/POST26 
NUMVAR,200 
LINES,200000 
SOLU,199,NCMIT 
FILLDATA,199,,,,1,1 
REALVAR,199,199 
STORE,MERGE 
FORCE,TOTAL 
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NSOL,2,NUMNODE,U,Y,UY_2 
LINES,200000 
STORE,MERGE 
FORCE,TOTAL 
 
NSOL,3,NUMNODE,U,X,UX_3 
LINES,200000 
STORE,MERGE 
FORCE,TOTAL 
PRVAR,2,3 
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