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ABSTRACT

The problem of tracking an object in an image sequence involves challenges

like translation, in-plane and out-of-plane rotations, scaling, variations in ambi-

ent light and occlusions. A model of an object to be tracked isbuilt off-line by

making a training set with images of the object with different poses. A dimension-

ality reduction technique is used to capture the variationsin the training images of

the object. This gives a low-dimensional representation ofhigh-dimensional data.

Isometric feature mapping, also known as Isomap, is the unsupervised nonlinear

dimensionality reduction technique used to capture the true degrees of freedom in

high-dimensional data. Once the training data is reduced tolow-dimensions it forms

a part of the state-vector of the object to be tracked. Tracking is done in a stochastic

recursive Bayesian framework. Particle filters, which are based on the recursive

Bayesian framework, track the state of the object in presence of nonlinearity and

non-Gaussianity. The focus of this thesis is the problem of tracking a person’s head

and also estimating its pose in each frame using Isomap for dimensionality reduc-

tion and particle filter for tracking. ‘Isomap tracking withparticle filter’ algorithm

is capable of handling rapid translation and out-of-plane rotation of a person’s head

with a relatively small amount of training data. The performance of the tracker is

demonstrated on an image sequence with a person’s head undergoing translation

and out-of-plane rotation.
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Chapter 1

INTRODUCTION

In computer vision, locating an object in every frame of an image sequence is a

challenge. Two techniques exist to locate an object in everyimage frame: detecting

the object afresh in every frame without using past information, or detecting the

object in the first frame and then tracking it in subsequent frames. Tracking uses

the information obtained about an object in previous framesto predict the state of

the object in future frames whereas detection just locates the object in every frame

independent of the information about the object obtained inprevious frames. Under

the assumption that the state of an object does not change drastically from one frame

to the other tracking is more efficient and less prone to distraction.

Tracking and estimating a person’s head pose in a 2D image sequence involves

tracking an object with seven degrees of freedom (three rotational degrees of free-

dom, two translational degrees of freedom in the image, scaling and variation in

the lighting conditions). The problem becomes harder when occlusion is involved.

Tracking can be done in a deterministic or a stochastic framework. In a determinis-

tic framework the tracking equations do not contain any random element. Tracking

in a stochastic framework is necessary because of noise due to unpredictable move-

ment.



Detecting and tracking a person’s head can be done by taking cues from the

shape of the head, color of the skin, texture of the face, features (e.g., eyes, nose,

ears, mouth) or by simply matching face templates. In this work the face is detected

and tracked using a combination of template matching and edge information of a

person’s head in a stochastic framework. A training set of images of a person’s head

to be tracked is built off-line. The training templates are high-dimensional images.

In order to use these templates in a stochastic framework thedimensionality of these

training templates needs to be reduced. Isometric feature mapping or Isomap is the

technique used to discover the variation or the true degreesof freedom in the train-

ing set. Isomap computes the geodesic distances between high-dimensional points

and gives a low-dimensional structure such that the geodesic distances between the

high-dimensional points are preserved in the low-dimensional structure. Isomap

of the training data is a low-dimensional representation ofthe images. Once an

Isomap is built from the training data a state-vectorxt can be defined for the object

(head) using these low-dimensions as its parameters. Tracking the head in an image

sequence is then done with a particle filter. A particle filteris based on the recursive

Bayesian framework. It is basically a cloud ofn particlesxn
t with weightswn

t asso-

ciated with them. These weighted particles provide an estimate of the probability

distribution of the state of the object (head) at each frame.The generic particle

filter consists of two stages: 1) time-update and 2) measurement-update. The time-

update stage predicts the state of the system for timet using the probability density

function of the state obtained att − 1 and a system model which gives the evolu-

tion of state of the particles in time. The measurement-update stage corrects the

prediction of the state obtained from time-update stage based on the measurement

received at timet using a measurement model which relates the measurement to the

state of the object. The system model has a deterministic component (which pre-

dicts the state transition for a particle) and a stochastic component (which accounts

2



for the process noise). The measurement model has a stochastic component which

accounts for the noisy measurements. The weights for all particles are updated af-

ter every measurement at timet and these weights then give the probability density

function for the state of the system at timet.

The rest of the text is organized as follows. Chapter2 describes related work

in tracking and dimensionality reduction. In Chapter3, PCA, MDS, ISOMAP and

LLE algorithms for dimensionality reduction are discussedin detail and their per-

formance is compared on a data set of training images. In Chapter 4 Kalman filter,

extended Kalman filter and particle filter (SIS algorithm) are explained. Chapter5

describes the ‘Isomap Tracking with Particle filter’ algorithm. Experimental results

are demonstrated in Chapter6, and conclusions are presented in Chapter7.

3
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Chapter 2

RELATED WORK

As described in the previous section, tracking can be done deterministically or

stochastically. For head-tracking, cues can be taken from shape, color, texture

and features (like eyes, nose, mouth). Birchfield [4] uses magnitude gradients and

color histograms to track a person’s head using an elliptical head-tracker. Cascia

et al. [16] use a texture mapped surface model to approximate the 3D pose of the

head. They formulate tracking as an image registration problem in the model’s

texture map. Pardas et al. [19] propose a technique to track a person’s face us-

ing active contours or snakes. All the techniques describedabove are deterministic

approaches. The stochastic approach to tracking is based onBayesian recursive

estimation. In 1960, R.E. Kalman introduced Kalman filtering in his classic paper

[14] which has since been a subject of extensive research. The Kalman filtering

technique is a Bayesian technique which assumes the posterior density function to

be Gaussian and the process and measurement models to be linear. Kiruluta et al.

[15] investigate the feasibility of using a Kalman filtering model to predict motion

of the head (both abrupt and smooth). The linearity problem of Kalman filter is

solved in the extended Kalman filter and the unscented Kalmanfilter [27], both of

which allow nonlinear dynamics. Particle filtering techniques which are also based



on Bayesian estimation do not assume linearity or Gaussianity in a process. Aru-

lampalam et al. [1] give an overview of the basic particle filtering technique and its

variations. Isard and Blake use the Condensation algorithm[10] to track curves in

a cluttered environment using the principle of resampling.They also came up with

the ICondensation algorithm [11] in which they augment Condensation to incorpo-

rate the principle of importance sampling, in which an importance function is used

to sample from the posterior density function of the state. Nummiaro et al. [18]

demonstrate the use of Condensation algorithm in face tracking based on color.

Dimensionality reduction techniques can be classified as linear and nonlinear.

Jollife [13] describes the use of Principal Components Analysis, whichis a linear

dimensionality technique, for dimensionality reduction.PCA tries to capture max-

imum variance in data along the principal components which are the eigenvectors

of the covariance matrix computed from the data. Torgerson came up with Clas-

sical Multidimensional Scaling (MDS) [26] which is another linear technique for

dimensionality reduction. In this technique the inter-point Euclidean distances be-

tween all the high-dimensional points are preserved in the low-dimensional struc-

ture. The Isomap algorithm given by Tenenbaum et al. [25] is an improvement

over Classical MDS. Instead of using Euclidean distances ituses geodesic dis-

tances for better performance on nonlinear structures. Roweis et al. [21] propose

nonlinear dimensionality reduction using locally linear embedding. LLE computes

low-dimensional neighborhood preserving embeddings of high-dimensional points

without any knowledge of the global structure. Souvenir et al. [22] propose im-

age distance functions for improving the results of these dimensionality reduction

techniques.
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Chapter 3

DIMENSIONALITY REDUCTION

The purpose of dimensionality reduction is to express high-dimensional data (such

as images, audio, etc.) in lower dimensions in such a way as tohighlight the sim-

ilarities and dissimilarities in the data. Raw high-dimensional observations may

actually have fewer degrees of freedom than their dimensionality suggests. Con-

sider images of a person’s head undergoing 3D rotation. Although the dimen-

sionality of these images is very high, all of images lie in a 3D manifold. Each

high-dimensional image can therefore be represented by its3D pose with just three

parameters{θ0, θ1, θ2} which makes the data very convenient to work with. Thus,

it is possible to represent a set of images in significantly fewer dimensions if the

variation in the data is correctly captured. The dimensionality of the data can be re-

duced using techniques like PCA [13], MDS [26], LLE [20] and Isomap [25]. This

chapter describes each of these techniques. The performance of these techniques

is compared using a data set of synthetic images of a persons’s head undergoing

out-of-plane rotation and lighting changes. This data set is available at [12]. Let

us call this data set as face-data. Every image in face-data is 64 × 64 pixels thus

having a dimensionality of 4096. Figure3.1shows 12 images from face-data.
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Figure 3.1: Sample images from face-data used for comparingthe performance of
PCA, MDS, LLE, Isomap.

3.1 Principal Components Analysis (PCA)

Principal Components Analysis [13] is a linear dimensionality reduction technique.

PCA transforms the data into a new coordinate system in whichthe largest variance

in the data lies on the first coordinate, second largest on thesecond coordinate and

so on. The PCA algorithm is given below.

3.1.1 PCA algorithm

• Step 1: Compute the mean value for all dimensions of the data set

xi =
∑N

k=1 xi
k wherexi

k is thekth point of thei th dimension andN is the total

number points of thei th dimension.

• Step 2: Subtract the mean value of the data from every data-point

xi∗
j = xi

j − xi . This is done to avoid non-uniqueness due to location.

8



• Step 3: Compute the covariance matrix C

Covariance between any two variablesx, y is given by

C (x, y) =
∑

i

(xi − x) (yi − y) / (N − 1)

wherei goes from1 to N (total number of points) andx andy are the means.

Note that the divisor isN − 1 instead ofN because the data set has finite

number of samples. Every entryCi,j of the covariance matrixC is given by

Ci,j = Cov(xi , xj) wherei, j are thei th andj th dimensions respectively. Notex

andy are zero because the mean was already subtracted in step 2.

• Step 4: Find the eigenvectors and eigenvalues of the covariance matrix

Next step is to compute the eigenvectors and eigenvalues of the covariance

matrix C. Eigenvector of a square matrix is defined as the vectorx which

satisfies the equationCx = λ x and the constantλ is the corresponding eigen-

value.

• Step 5: Choose the principal components and form the featurevector

Arrange the eigenvalues in descending order. Choose the first K significant

eigenvalues whereK depends on how much detail is needed in the low-

dimensional data. Construct a matrixE with the eigenvectors corresponding

to these firstK significant eigenvalues.

E = [eigenvector1, eigenvector2, . . . eigenvectorK]

Note that the eigenvectors are orthogonal to each other.

• Step 6: Generate a low-dimensional point from a high-dimensional point

The final step is to compute a low-dimensional pointxK from a high di-

mensional pointxD whereK is the new dimensionality of the data andD

9
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Figure 3.2: The four largest principal components recovered by PCA.

is the old dimensionality of the data. The low-dimensional vector is given by

xK = ETxD whereET is the transpose of matrixE computed in step 5 of the

algorithm.

3.1.2 Performance of PCA on face-data

Performance of PCA was evaluated on face-data. Figure3.2shows first 4 principal

components recovered by PCA. Figure3.3 shows the first 6 eigenvalues given by

step 4 of the algorithm. It can be seen that the curve elbows atthe dimensional-

ity of 5 which suggests that the 4096-dimensional face-datacan be expressed in 5

dimensions. It is a significant reduction in the dimensionality but the true degrees

of freedom is 3. Figure3.4 shows the original image fed to PCA and the image

recovered by PCA from the reduced dimensions. One can go backfrom lower di-

mensions to higher dimensions using the equationxD = ExK whereE, K, D are

defined in step 5 and 6 of the PCA algorithm.

10
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Figure 3.3: Plot of top six eigenvalues of the covariance matrix vs. dimensionality
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Figure 3.4: (a) Original image. (b) Image recovered by PCA using the equation
xD = ExK with 5 eigenvectors.
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3.2 Multi-dimensional Scaling (MDS)

Multi-dimensional scaling is a linear dimensionality reduction technique. The basic

idea of MDS is to preserve the inter-point distances betweenthe high-dimensional

points in the low-dimensional structure. There are many variations of MDS. In this

thesis only Classical MDS [26] is studied.

3.2.1 MDS algorithm

The Classical MDS algorithm [24] is given below. Let the original dimensional-

ity of the data beD, the reduced dimensionality beK and total number of high-

dimensional points beN.

• Step 1: Compute the Similarity Matrix S

The similarity matrixS can be computed by taking the Euclidean distance

between high-dimensional points. Each entryδi,j of matrix S is given by
√∑

l (xi,l − xj,l)
2 wherexi and xj are points in high dimensions andl goes

from 1 toD.

• Step 2: Compute the inner product matrix B

Compute the inner product matrixB = −1
2
JSJwhereJ = IN − 1

N11T. J is

called the centering matrix.IN is the identity matrix of sizeN and1 is a vector

of ones of lengthN.

• Step 3: Decompose B to obtain its eigenvalues and eigenvectors

DecomposeB asB = VΛV whereΛ = diag(λ1, λ2, . . . λN) is the diagonal

matrix of eigenvalues ofB. V = [v1, v2, . . . vN] is a matrix of corresponding

unit eigenvectors.

12



• Step 4: Extract the first K eigenvalues and eigenvectors

Extract the firstK eigenvaluesΛK = diag(λ1, λ2, . . . λK) and corresponding

eigenvectorsVK = [v1, v2 . . . vK].

• Step 5: Form the new low-dimensional coordinates of the points

The new coordinates of the points are in the matrixXN×K = [x1, x2 . . . xN]T =

VKΛ
1/2
K . Using the top d-eigenvectors as the low-dimensional coordinates

globally minimizes the difference in the distances betweenhigh-dimensional

and low-dimensional points.

3.2.2 Finding dimensionality recovered by MDS

Hidden lower dimensionality in the data can be estimated using a quantity known

as residual varianceR. Residual variance basically means variance in the data due

to unknown reasons.R is calculated at various low dimensions to find the dimen-

sionality at which it stops decreasing significantly. The residual variance is calcu-

lated using the correlation coefficientci between the vectorized distance matrixY

for dimensionalityi and the vectorized distance matrixS, defined in step 1 of the

algorithm. Residual variance is then given byRi = 1 − ci.

3.2.3 Performance of MDS on face-data

Figure3.5shows that the residual variance stopped decreasing significantly only at

dimensionality = 4. So the lower-dimensionality recoveredby MDS for the 4096-

dimensional face-data, although better than PCA, still does not reflect the true de-

grees of freedom in face-data. Figure3.6 shows the plots of the low-dimensional

points taking two significant dimensions at a time and keeping the third dimension

constant, with the corresponding images from the face-datasuperimposed. In Fig-

ure3.6it can be seen that although MDS does a decent job at grouping similar head
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Figure 3.5: Plot of residual variance vs. dimensionality recovered by MDS

poses together but none of the low-dimensions have any meaning. The images su-

perimposed on their respective 2D points show that no particular head-pose remains

constant when a dimension for the points is kept constant. Itcan be concluded that

MDS did a poor job at reducing the dimensionality of face-data.

3.3 Isometric Feature Mapping (Isomap)

The Isomap technique, described in [25], is an improvement of the Classical MDS

algorithm. The idea is to use Euclidean pairwise distances between high-dimensional

points to compute the geodesic distances between those points. These are then fed

to the Classical MDS algorithm, described in section3.2.1, to find the true low-

dimensionality of the data.

3.3.1 Isomap algorithm

The Isomap algorithm takes as input the distancesdx (i, j) between all pairsi, j from

N data points in the high-dimensional input spaceX, measured in some domain-

specific metric e.g. Euclidean distance. The algorithm outputs coordinatesyi in a

14
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(c) Points withy− coordinate≈ 0.

Figure 3.6: 2D plots of low-dimensional points given by MDS with the correspond-
ing high-dimensional images superimposed.
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d-dimensional Euclidean spaceY which best represents the intrinsic geometry of

the data. The 3 steps of the algorithm are as follows:

• Step 1: Construct neighborhood graph

This first step determines which points are neighbors on manifold M, based

on the distancesdx (i, j) in the input space. Two ways to do that are to con-

nect each point to all points within a distanceε (ε − Isomap) of that point,

or to all of itsK nearest neighbors(κ − Isomap). ε or κ is the only free pa-

rameter in the algorithm. The neighborhood relations are represented as a

weighted graphG over the data points, with edges of weightdx (i, j) between

neighboring points.

• Step 2: Compute shortest paths

Compute the geodesic distancesdM (i, j) between all pairs of points on the

manifold M by computing their shortest path distances given bydG (i, j) in

graph G. Computation: InitializedG (i, j) = dx (i, j) if i,j are linked by an

edge;dG (i, j) = ∞ otherwise. For each value ofk = 1, 2, . . . , N in turn

replace all entriesdG (i, j) by

min{dG (i, j) , dG (i, k) + dG (k, j)}

The final matrixDG = dG (i, j) will contain the shortest path distances between

all pairs of points inG.

• Step 3: Construct d-dimensional embedding

The last step applies classical MDS, described in section3.2.1, to the matrix

of graph distancesDG = {dG (i, j)}, constructing an embedding of the data in

a d-dimensional Euclidean space that best preserves the manifold’s intrinsic

geometry.
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3.3.2 Finding Isomap dimensionality

The idea of using residual variance to find the true low-dimensionality of the data

was described in section3.2.2. Since Isomap is an extension of MDS, the same

procedure can be used for Isomap.

3.3.3 Performance of Isomap on face-data

Figure3.7 shows that the residual variance curve for face-data elbowsat dimen-

sionality = 3. So Isomap reflects the true dimensionality of the data, i.e., it finds 3

degrees of freedom in face-data. Figure3.8shows the plots of the low-dimensional

points taking 2 significant dimensions at a time and keeping the third dimension

constant, with the corresponding images from the face-datasuperimposed. In Fig-

ure3.8it can be seen that Isomap does a good job at grouping similar poses together

and the low-dimensions correspond to the true degrees of freedom. When the first

(x) coordinate is kept constant there is no variation in the left-right pose. When the

second (y) coordinate is kept constant there is no variation in the left-right pose.

When the third (z) coordinate is kept constant there is no variation in the lighting

conditions. It can be concluded that Isomap correctly recovered the dimensionality

of face-data.

3.4 Locally Linear Embedding (LLE)

Locally Linear Embedding [21] is a nonlinear dimensionality reduction technique

which computes low-dimensional embedding with the property that nearby points

in high-dimensional space are similarly co-located with respect to one another in

low-dimensional space. This technique optimizes the embedding to preserve local

configurations in high-dimensional data. LLE recovers the global nonlinear struc-

ture of the data from locally linear fits.
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Figure 3.7: Plot of residual variance vs. dimensionality recovered by Isomap.

3.4.1 LLE algorithm

Suppose the data consists ofN real-valued high-dimensional vectors
→

Xi (inputs)

each of dimensionalityD. This algorithm maps those inputs toN low-dimensional

vectors
→

Yi with dimensionalityd such that the local geometry is preserved every-

where. The LLE algorithm is as follows:

• Step 1: Compute the neighbors of each data point
→

Xi

For every point
→

Xi identify K nearest neighbors based on the Euclidean dis-

tance between the points.K is chosen such that the data is well sampled. The

rough estimate ofK is K ≥ 2d whered is defined above.

• Step 2: Compute the weights Wij that best reconstruct each data point from

its neighbors

The weightsWij are chosen to minimize the cost functionE given by the equa-

tion E (W) =
∑

i

∣∣∣
→

Xi −
∑

j Wij
→

Xj

∣∣∣
2
. The weightWij summarizes the contribu-

tion of j th data point toi th reconstruction. The cost function is minimized sub-

ject to two constraints: a sparseness constraint and an invariance constraint.

The sparseness constraint is that each data point
→

Xi is reconstructed only from

its neighbors, i.e.,Wij = 0 if the points are not neighbors. The invariance

18
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(b) Points withx− coordinate≈ 0.
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(c) Points withy− coordinate≈ 0.

Figure 3.8: 2D plots of low-dimensional points given by Isomap with the corre-
sponding high-dimensional images superimposed.
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constraint is that the rows of the weight matrix sum to one:
∑

j Wij = 1. The

constrained weights are invariant to rotations, rescalings and translations (by

invariance constraint) of that data point and its neighbors. For a particular

data point
→

x with K nearest neighbors
→

η j and reconstruction weightswj that

sum to one, the reconstruction error isε =
∑

ij wjwkGjk where G is the local

Gram matrix given byGjk =
(
→

x −
→

η j

) (
→

x −
→

η k

)
. The optimal reconstruc-

tion weights can be computed aswj =
∑

k
G−1

jk∑
lm

G−1

lm
.

• Step 3: Compute the vectors
→

Yi best reconstructed by the weights Wij

Since the whole idea behind the algorithm is to preserve local geometry of

the high-dimensional data, the same weightsWij that reconstruct the input
→

Xi

in D dimensions should also reconstruct its embedded manifold coordinates

in d dimensions. This is done by choosing the d-dimensional coordinates of

each output
→

Yi to minimize the embedding cost functionΦ (Y) =
∑

i |
→

Yi

−
∑

j Wij
→

Yj|
2 whereWij , computed in step 2, are fixed. To optimize the cost

functionΦ it can be re-written in the quadratic formΦ (Y) =
∑

ij Mij

(
→

Yi .
→

Yj

)

whereM is NxN square matrix given by:Mij = δij − Wij − Wji +
∑

k WkiWkj.

δij = 1 if i = j and0 otherwise. The output
→

Yi is subjected to 2 constraints:

1)
∑

i

→

Yi=
→

0 removes the translational degree of freedom by requiring the

outputs to be centered at the origin and 2)1
N

∑
i

→

Yi
→

Y
T

i = I , whereI is ad × d

identity matrix, removes the rotational and scaling degreeof freedom of the

output. The cost functionΦ can be minimized by finding the bottomd + 1

(corresponding to smallest eigenvalues) eigenvectors of cost matrixM. The

bottom eigenvector is discarded as it represents the free translation mode of

eigenvalue zero.
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3.4.2 Finding LLE dimensionality

Saul and Roweis [21] give techniques to estimate the dimensionalityd of the data.

Let us consider two points lying within the distanceε to be neighbors. Then, for

small value ofε, K should scale according to equationKε ∝ εd. K is the number of

neighbors within distanceε andd is the intrinsic dimensionality. Another way is to

use the technique similar to the one used in PCA, described in3.1.2, i.e., to estimate

d by the number of eigenvalues comparable in magnitude to the smallest non-zero

eigenvalue of the cost matrixM. The dimensionality, if previously known, can also

be enforced to bias the embedding. This can be done by modifying the second step

of the LLE algorithm. The idea is to project its neighbors into ad-dimensional sub-

space of maximal variance before performing the least squares reconstruction. The

subspace is computed fromd-dominant eigenvectors of Gram matrixG, defined in

step 2, effectively limiting the rank ofG before solving for reconstruction weights.

3.4.3 Performance of LLE on face-data

Section3.4.2describes the techniques given in [21] by Saul and Roweis to either

find or force the dimensionality on the manifold. Figure3.9shows the plots ofεd/K

for four random high-dimensional points of face-data. It can be seen thatεd/K is

not a constant for dimensionality one to six. It can be concluded that LLE could

not reduce the dimensionality to less than or equal to six dimensions and therefore

could not discover the true degrees of freedom in face-data.Figure3.10shows the

plot of eigenvalues of the cost matrixM vs. the dimensionality of face-data. Again,

this technique, as described in section3.4.2, was unable to find the true dimension-

ality of face-data. This may be due to the nonlinear nature ofthe manifold. Saul

and Roweis [21] mention that this technique works well only for linear manifolds.

Figure3.11shows the plots of the low-dimensional points recovered by LLE tak-

ing 2 significant dimensions at a time and keeping the third dimension constant,
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Figure 3.9: Plots ofed/K whered is the dimensionality andK is the number of
neighbors for four random points. It can be seen thatK does not scale withεd for
any of the points and therefore it is difficult to determine the dimensionality using
the propertyKε ∝ εd.

with the corresponding images from the face-data superimposed. In Figure3.11it

can be seen that LLE shows some grouping of similar poses but none of the low-

dimensions have any meaning. The images superimposed on their respective 2D

points show that no particular head-pose remains constant when a dimension for

the points is kept constant. It can be concluded that LLE could not find the true

degrees of freedom in face-data.
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Figure 3.10: Plot of eigenvalues of the cost matrixM vs. dimensionality. The plot
does not show a sharp enough elbow to determine the dimensionality of data using
the eigenvalue method.

3.5 Comparing PCA, MDS, Isomap and LLE

In the above sections the performance of PCA, MDS, Isomap andLLE was demon-

strated on face-data shown in Figure3.1. PCA and MDS performed poorly in cap-

turing the true dimensionality of face-data. This result isnot unexpected since PCA

and MDS are essentially linear dimensionality reduction techniques and could not

recover the nonlinear structure of face-data. Between Isomap and LLE, which are

nonlinear dimensionality reduction techniques, Isomap gave better results on face-

data. The reason for the poor performance of LLE could be poorsampling due to

the nature of the training data as LLE assumes that each data-point and its neighbors

lie on locally linear patches. Isomap on the other hand has nosuch assumption. The

only approximation in Isomap algorithm is the estimation ofthe geodesic distance

between the data points using pairwise Euclidean distances, which is still good if

the data is dense enough. Going from low-dimensions to high-dimensions in PCA

for any point (including points not present in the training set), was discussed in

section3.1.2. For MDS, Isomap and LLE, a high-dimensional point corresponding

to a low-dimensional point, not present in the training set,can be constructed by
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(a) Points withz− coordinate≈ 0.
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(b) Points withx− coordinate≈ 0.
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(c) Points withy− coordinate≈ 0.

Figure 3.11: 2D plots of low-dimensional points given by LLEwith the correspond-
ing high-dimensional images superimposed.
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weighted combination of its nearest neighbors (in low dimensions). Out of the 4

techniques studied for dimensionality reduction, it can beconcluded that Isomap

gave the best results.
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Chapter 4

TRACKING IN A RECURSIVE

BAYESIAN FRAMEWORK

Approaches to tracking the state of a system can be broadly classified as deter-

ministic and stochastic. The basic difference between the two classes is the use of

random variables. Deterministic tracking does not use any random variable and the

system is described by fixed values while stochastic tracking makes use of random

variables and the system is described by a probability distribution. In this thesis the

focus is on stochastic tracking in a Bayesian framework.

In the Bayesian framework, a two stage approach is used to track the state of

the system in the presence of noisy measurements. A posterior probability density

function (pdf) which gives an estimate of the state of a system, given the noisy

measurements, is constructed at every step in time. The firststage is prediction,

which creates a pdf of the state of the system at timet based on the system model

and the posterior pdf from timet−1. The second stage is update which updates the

pdf created in the prediction stage using the newly obtainedmeasurement and the

measurement model.



4.1 Bayesian Framework

A tracking problem can be defined as the evolution of the stateof the system

{xk, k ∈ N} wherexk is the state vector containing all the information about the

system at timek. Equation4.1 is the system modelfk for the evolution of state

of the system wherefk : Rnx × Rnv → Rnx can be a linear or a nonlinear function

andvk is the process noise sequence. Equation4.2 is the measurement modelhk

which relates the state of the system to the measurementszk obtained at timek. In

equation4.2, hk : Rnx × Rnn → Rnz can be linear or a nonlinear function andnk is

the measurement noise sequence. For tracking any systemfk, hk, vk andnk should

be known. The process noisevk and the measurement noisenk can be constant

or variable over time. Equation4.3 is the Chapman-Kolmogorov equation which

describes the prediction stage. The quantityp (xk | z1:k−1) is the pdf of the state

given the system modelp (xk | xk−1) and the posteriorp (xk−1 | z1:k−1) from time

k− 1. When the measurementzk becomes available at timek the pdfp (xk | z1:k−1)

is updated using the Bayes’ rule given by equation4.4. In equation4.4, the pos-

terior p (xk | z1:k) is constructed by updating the pdfp (xk | z1:k−1) (also called the

prior in Bayes’ equation) using the likelihood functionp (zk | xk). The quantity

p (zk | z1:k−1) is the normalizing constant. The next sections of this chapter give an

overview of Bayesian algorithms: Kalman filtering, extended Kalman filtering and

particle filtering. Since the focus of this thesis is particle filtering, it is explained in

detail.

xk = fk (xk−1, vk−1) (4.1)

zk = hk (xk, nk) (4.2)

p (xk | xk−1, z1:k−1) =
∫

p (xk | xk−1) p (xk−1 | z1:k−1) dxk−1 (4.3)

p (xk | z1:k) =
p (zk | xk) p (xk | z1:k−1)

p (zk | z1:k−1)
(4.4)
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4.2 Kalman filter

The Kalman filtering algorithm [14] is based on recursive Bayesian framework ex-

plained in section4.1. Let us examine the quantities in equations4.1, 4.2 for a

Kalman filter.

• system modelfk and measurement modelhk are linear

• process noisevk and measurement noisenk are assumed to be additive Gaus-

sian noises

• posterior densityp(xk | zk) is estimated to be Gaussian

4.2.1 Discrete Kalman filter algorithm

The Kalman filter is a two stage predictor-corrector algorithm. The first stage is the

‘Time update’ (Predict) and second stage is the ‘Measurement update’ (Correct).

P. Maybeck [17] explains the probabilistic origins of the algorithm. Let the error

between the estimated statex̂k and the true statexk beek at timek. The algorithm

tries to minimize the error covariancePk = E [ekeT
k ] at every time-step. LetQ be

the process noise covariance,R be the measurement noise covariance,A be the

state transition matrix,H be the matrix which relates the measurements to the state

vector, andK be the Kalman gain. The super-script minus (x−k ) indicates the a

priori state estimate at stepk, given the knowledge of the system dynamicsf . The

algorithm is given below. Figure4.1 shows the performance of a Kalman tracker

tracking an object moving in a trajectoryx = 3t with random accelerations of

standard deviation = 0.5, wherex is the position andt is the time. The measurement

noise had a standard deviation of 10.

• Time update
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– Step 1: Project the state ahead

x̂k
− = Ax̂k−1

– Step 2: Project the error covariance ahead

P−

k = APk−1AT + Q, with P0 set toQ.

• Measurement update

– Step 1: Compute Kalman gain

Kk = P−

k HT
(
HP−

k HT + R
)
−1

– Step 2: Update estimate with measurement

x̂k = x̂k
−1 + Kk

(
zk − Hx̂k

−1
)

– Step 3: Update the error covariance Pk = (I − KkH) P−

k

A Kalman filter is restricted in its use because it requires the system and the mea-

surement model to be linear and it also estimates the posterior density of the state

to be Gaussian at every time-step. The first problem is taken care of in the extended

Kalman filter which can handle nonlinear system dynamics. For a process, whose

posterior density of the system-state is non-Gaussian, theGaussian estimates of

Kalman filtering give large tracking errors.

4.3 Extended Kalman filter

As the name suggests the extended Kalman filter is just an extension of the Kalman

filter to handle nonlinear processes. The nonlinearity can be linearized for every

current estimate using the first term of the Taylor expansionof nonlinear function

by taking the partial derivatives of the system and measurement models. This is

what an extended Kalman filter does. It linearizes a nonlinear stochastic difference

equation at every time step. Let us examine the quantities inequations4.1, 4.2 for

the extended Kalman filter.
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Figure 4.1: Performance of a Kalman tracker tracking an object moving in a trajec-
tory x = 3t with random accelerations of standard deviation = 0.5, where x is the
position andt is the time. The measurement noise had a standard deviation of 10.

• system modelfk and measurement modelhk can be nonlinear

• process noisevk and measurement noisenk no longer remain Gaussian due to

nonlinearity

• posterior densityp(xk | zk) is estimated to be Gaussian at all times

4.3.1 Extended Kalman filter algorithm

For an extended Kalman filter, letA be the Jacobian matrix of partial derivatives of

process modelf with respect to statex, V be the Jacobian matrix of partial deriva-

tives off with respect to process noisev, H be the Jacobian matrix of partial deriva-

tives of measurement modelh with respect tox, N be the Jacobian matrix of partial

derivatives ofh with respect to measurement noisen. All the other notations remain

the same as described in section4.2.1. The algorithm is given below.

• Time update

– Step 1: Project the state ahead

x̂k
− = f (x̂k−1, 0)
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– Step 2: Project the error covariance ahead

P−

k = APk−1AT + WkQWT
k

• Measurement update

– Step 1: Compute Kalman gain

Kk = P−

k HT
k

(
HkP

−

k HT
k + VkRVT

k

)
−1

– Step 2: Update estimate with measurement

x̂k = x̂k
− + Kk

(
zk − h(x̂k

−, 0)
)

– Step 3: Update the error covariance

Pk = (I − KkHk) P−

k

Although the extended Kalman filter handles nonlinearity bylinear approximations,

the tracking errors increase as the nonlinearity increases. Like the Kalman filter, it

still estimates the posterior density of the system-state to be Gaussian and therefore

does not track a system with non-Gaussian posterior well. This problem is solved

by particle filtering techniques, described in section4.5.

4.4 Markov Chain Monte Carlo simulations

4.4.1 Markov Chain

Markov property of a process is the conditional independence of the future states

of the process on the past states. According to the property,the future state of

the system can be estimated given the current state and the current measurement.

Mathematically, a stochastic processXn is a Markov chain in discrete time if for

everyn ∈ N the probability of going from statei to statej is given by the equation

P [Xn+1 = j | X0 = i0, X1 = i1, . . . , Xn = in] = P [Xn+1 = j | Xn = in]. For a Markov

chain it is assumed that the initial distributionX0 is known. Assume a finite set
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S= {1, . . . , m} to be the values that a system can take and letti,j be the probability

of going from statei to j. A transition matrixT can be defined such thatti,j >

0 ∀ (i, j) ∈ S2 and
∑

j∈Spij = 1 ∀ i ∈ S. This transition matrix gives the system

model for a Markov process.

4.4.2 Monte Carlo simulation

Monte Carlo simulation is a technique to approximate an expected value of a func-

tion using simulated random variables. LetX be a random variable on a set of values

Y with a pdfF (x) and letg (x) be a function of X. The expected valueE(g(X)) =

∑
x∈Y g(x)F(x) can be approximated as a MC simulatioñgn(x) = 1

N

∑N
i=1 g(xi)

wherexi is chosen randomly using any distributionG(x). By the strong law of

large numbers asN approaches∞, the difference between the expected value and

the value approximated by Monte Carlo simulation approaches zero.

4.4.3 Importance Sampling for Monte Carlo simulations

The Monte Carlo estimator̃gn(x) of E(g(x)) can be thought of as a random variable.

The variance of the Monte Carlo estimator needs to be minimized for decreasing

the estimation error. This can be done by choosing a suitabledistribution to sample

the random variableX (defined in section4.4.2) from. The idea behind importance

sampling [23] is that certain values have bigger impact on Monte Carlo estimate

and by choosing these values frequently, variance of the estimate can be reduced.

This results in a biased simulation but results are weightedto correct for the biased

distribution. The weightWi is the ratio ofg(Xi) (true distribution) andg
′

(Xi) ( im-

portance distribution) atXi. One good choice for reducing variance on the estimate

is choosingg
′

(x) such thatg
′

(x) > 0 andg
′

(x) ∝| g(x) |.
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4.5 Particle filtering

The Kalman filtering algorithms estimate the posterior density of the state to be

Gaussian. A Kalman filter also assumes the measurement and the process noise to

be Gaussian. It is clear that these are highly restrictive conditions for a process.

For processes with non-Gaussian pdfs the Gaussian estimates may prove unfit for

tracking. In such scenarios tracking can be done with particle filtering methods [1]

which do not assume any of the above conditions. There are many variations of the

particle filtering algorithms. This section describes the sequential importance sam-

pling (SIS) algorithm based on Monte Carlo simulations (explained in section4.4.2)

with some of the problems associated with it and ways to solvethose problems.

4.5.1 Sequential Importance Sampling (SIS)

The SIS algorithm [1] is a Monte Carlo Method (explained in section4.4.2) based

on Bayesian estimation. The idea here is to represent a posterior density func-

tion p(x0:k | z1:k) with a set of random samples (particles) with associated weights

{xi
0:k, wi

k}
Ns

i=1 where{xi
0:k, i = 0, . . .Ns} is the set ofNs random samples with weights

{wi
k, i = 0, . . .Ns}. The pdf p(x0:k | z1:k) is approximated asp(x0:k | z1:k) ≈

∑Ns
i=1 wi

kδ(x0:k − xi
0:k). For many processesp(xn | y1:n) cannot be expressed in an

analytical form. For such cases it is difficult to draw samples fromp(xn | y1:n). This

problem can be solved with the principle of importance sampling [7] (explained in

section4.4.3). Supposeq(xn | y1:n) is a pdf from which samples can be easily drawn

andq(xn | y1:n) ∝ p(xn | y1:n). The weights are then defined to be

wi
k ∝

p(xn | y1:n)

q(xn | y1:n)
(4.5)
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For a sequential case, let the importance density be chosen to factorize as

q(x0:k | z1:k) = q(x0:k | x0:k−1, z1:k)q(x0:k−1 | z1:k−1) (4.6)

Using Bayes’ rule given in equation4.4, for a sequential case, we have

p(x0:k | z1:k) ∝ p(zk | xk)p(xk | xk−1)p(x0:k−1 | z1:k−1) (4.7)

Using equations4.5, 4.7, 4.7we get

wk
i ∝

p(zk | xi
k)p(xi

k | xi
k−1)p(xi

0:k−1 | z1:k−1)

q(xi
0:k | xi

0:k−1, z1:k)q(xi
0:k−1 | z1:k−1)

This can be written as a recursive weight update equation forevery samplexi
k

wi
k = wi

k−1

p(zk | xi
k)p(xi

k | xi
k−1)

q(xi
0:k | xi

0:k−1, z1:k)

Assuming the process to be a first order Markov process (explained in section4.4.1)

the equation simplifies to equation4.8 wherewi
k is the normalized weight of each

sample.

wi
k = wi

k−1

p(zk | xi
k)p(xi

k | xi
k−1)

q(xi
k | xi

k−1, zk)
(4.8)

For a process with Markov property, equation4.9 gives an approximation for the

posteriorp(xk | z1:k). For a Monte Carlo simulation asNs → ∞ the approximation

approaches the true posterior.

p(xk | z1:k) ≈
Ns∑

i=1

wi
kδ(xk − xi

k) (4.9)

The SIS algorithm is given below

• Fork = 1 : t
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– For i = 1 : Ns

∗ Draw samplexi
k from the importance densityq(xi

k | xi
k−1, zk)

∗ Calculate weightwi
k for every sample using equation4.8

– End For

• Estimate the posterior densityp(xk | z1:k) using equation4.9

• Estimate the moment of the tracked position at every time-stepk

• End For

4.5.2 Degeneracy problem of SIS algorithm

A. Doucet [6] shows that with limited number of particles the variance ofthe im-

portance weights can only increase over time. After a few iterations over time of

the SIS algorithm many particles (or samples) drop to negligible weight. This is

known as the degeneracy phenomenon. Significant amount of computation is de-

voted to sampling and updating these particles whose contribution to the posterior

p(xk | z1:k) is negligible. An approximate measure of degeneracy isNeff = 1∑Ns
i=1

(wi
k)

2

wherewi
k is the normalized weight calculated in equation4.8. M. Arulampalam [1]

describes two techniques to circumvent the degeneracy problem: 1) choosing a

good importance densityq(.) and 2) resampling.

1. Choosing a good importance density

The optimal importance density which reduces the variance on the weights

is q(xk | xi
k−1, zk) = p(xk | xi

k−1, zk). But this solution works only in cases

where it is possible to sample fromp(xk | xi
k−1, zk). It is possible however to

have sub-optimal approximation to the optimal importance density. One such

approximation isq(xk | xi
k−1, zk) = p(xk | xk−1). Substituting this equation
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in equation4.8 we getwi
k ∝ wi

k−1p(zk | xi
k). The use ofp(xk | xk−1) as the

importance density function is convenient because it simplifies the weight

update equation. This approach is used in bootstrap filtering [8].

2. Resampling

Another approach to avoid the degeneracy problem is to resample the parti-

cles when the degeneracy approximatorNeff drops below a certain thresh-

old NT. The idea is to propagate particles with high weights to the next

iteration in time by eliminating the particles with low weights. A new set

xi∗
k is created from the original setxk by resampling (with replacement)Ns

times. This is done by constructing a cumulative distribution function (cdf)

of the weights of particles. A particle is then selected using uniformly dis-

tributed random numberu drawn fromU(0, 1). With this procedure, particles

with high weights get selected with higher probability thanparticles with low

weights. Sinceu is uniformly distributed the new particles are weighted as

1
Ns

. The details of the algorithm are given below. Although resampling helps

correct the degeneracy problem, it introduces another problem which is sam-

ple impoverishment. It duplicates particles with high weights but this process

reduces the diversity of the sample-set. In fact, when the process noise is

small the effects of resampling are severe as the particles tend to collapse to a

single point within a few iterations. Since the diversity ofpaths of particles is

reduced it is also difficult to get any smooth estimates of thepaths over time.

Resampling is used in Condensation algorithm [10].

Resampling algorithm:
[{

xj∗
k , wj

k

}Ns

j=1

]
= RESAMPLE(

[
{xi

k, wi
k}

Ns

i=1

]
)

• Initialize the CDF:c1 = 0

• For i = 2 : Ns
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– Construct CDF:ci = ci−1 + wi
k

• End For

• For j = 1 : Ns

– Generate a random numberuj from U(0, 1)

– Find smallestl for whichcl ≥ uj

– Setxj∗
k = xl

k

– Setwj∗
k = 1/Ns

• End For
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Chapter 5

ISOMAP TRACKING WITH

PARTICLE FILTER

Tracking an object has several challenges. Some of these aretranslation of the ob-

ject, changing view of the object at each frame, scaling, occlusions, background

clutter and changing ambient light. The focus of this thesisis tracking a person

in an image sequence. A good tracker should be able to handle the translational

motion, in-plane and out-of-plane rotations of a person’s face and the other chal-

lenges mentioned above. In this thesis, an algorithm is presented which can track

a person’s face in the presence of some of these challenges and also estimate the

head-pose at each frame of the image sequence. The algorithmrequires a training

set of a person’s face at various poses. Once the training-set is acquired the dimen-

sionality of the training-set is reduced using a dimensionality reduction technique.

The reduced dimensionality allows a more compact and meaningful representation

of training data. This low-dimensional information can then be used by a stochastic

tracking algorithm to track a person in an image sequence.

Isomap algorithm is selected over PCA, MDS and LLE to reduce the dimension-

ality of the training data because of its superior performance (described in section



3.5) in reducing the dimensionality of face-data. In chapter4, Gaussian (Kalman

filtering) and non-Gaussian (particle filtering) Bayesian recursive techniques were

discussed. In an image sequence, the motion of a person’s head and its pose can

be very unpredictable. With background clutter, occlusions and lighting variations

it is a kind of process which is hard to model. Under such conditions, assuming

the posterior probability density of the state (face-pose)to be Gaussian could very

well lead to large tracking errors. Particle filtering is chosen as the tracking algo-

rithm because it does not assume the posterior density distribution of the state to be

Gaussian. In fact, it gives an approximation to the true posterior density of the state.

The tracker is based on the Condensation algorithm [10] which uses resampling to

avoid the degeneracy problem explained in section4.5.2. It also uses the prior as

the importance density which makes the weight update equation much simpler. M.

Isard and A. Blake [10] demonstrate the ability of the Condensation algorithm to

track curves in dense visual clutter. ‘Isomap tracking withparticle filter’ algorithm

can be outlined in three steps:

1. Create a noise-free training set of the person’s face (done off-line)

2. Use Isomap to reduce the dimensionality of the training set (done off-line)

3. Run the particle filter to track the person in a test image sequence using the

training data and the low-dimensional structure (coordinates) recovered by

Isomap (done on-line)

5.1 Training data

The training data should include the images of the person’s head at various poses.

Data should be dense enough to have a smooth variation in posefor best results by

Isomap. There is no reason to include training images with in-plane rotation of the
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Figure 5.1: Sample images from the training set of a person’shead used to train the
tracker.

person’s face or varying ambient light. In-plane rotation can be approximated by

rotating the face-templates. The variation in ambient light can also be handled by

the tracker by choosing a good weighting function. This helps in reducing the size

and complexity of the training set. When building a trainingset (since this is done

off-line), images can be made noise-free, i.e., all the non-face pixels in the image

can be made zero. Obviously, Isomap gives better results when the noise is reduced.

The training data used for testing the algorithm has 145 grayscale images of size

151 × 151 pixels. Few samples are shown in Figure5.1. These images include a

person’s head varying in up-down pose and left-right pose (out-of-plane rotations).

5.2 Isomap of the training data

Isomap [25] of the training data is computed off-line as described in section 3.3.1.

In this experiment, Euclidean distance (SSD) is used as the distance metric to com-
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pute distance between any two pair of images. It was seen thatneighborhood value

k ≈ 2d (whered is the observed low-dimensionality of the training data) gives

good results for Isomap. Sum of squared distances (SSD) is used to compute the

distance between the training images. Figure5.2.a shows that the residual variance

vs. dimensionality plot for the training data elbows at dimensionality of 3 which

means that the high-dimensional face-data can be well represented in 3 dimensions.

Figure5.2.b shows the arrangement of the points in 3 dimensions given by Isomap.

With the training data varying in up-down pose and the left-right pose, one would

expect Isomap to recover only 2 degrees of freedom but it recovers a dimensionality

of 3. The reason for this might be the symmetry of a face. A facehas a vertical axis

of symmetry but no horizontal axis of symmetry and with many of the intermedi-

ate face images missing and the data being sparse, it recovers a dimensionality of

three. When the images with head moving up were removed from the training data

Isomap correctly recovered the dimensionality of two. Thisis illustrated in Figure

5.4. In Figure5.2.b it can be seen that the 3D structure given by Isomap resembles

a tetrahedron. Isomap placed faces moving in each directionon separate arms with

the face looking straight ahead placed at the center. What isalso interesting to note

in Figure5.2.b and Figure5.3 is that the arms of the structure are almost linear.

Since all human faces have similar structure it can be assumed that Isomap would

give a similar result for similar training data of a different person.

5.3 Particle filter algorithm

5.3.1 Condensation algorithm

The particle filtering algorithm used for this experiment isbased on the Conden-

sation algorithm [10]. In the Condensation algorithm, the output of every itera-

tion (with measurement taken at timet) is a weighted set of particles denoted as
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Figure 5.2: (a) Plot of the residual variance vs. dimensionality for the training
data. It can be seen that the curve elbows at dimensionalityd = 3. (b) The low-
dimensional structure recovered by Isomap from the high-dimensional data. It re-
sembles a tetrahedron.
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Figure 5.3: (a) and (b) show two different two-dimensional views of the low-
dimensional structure with training templates, corresponding to some points, super-
imposed to help visualize how the high-dimensional151×151 points are embedded
in 3D.
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Figure 5.4: Plot of the residual variance vs. dimensionality for the training data
with head moving from left to right and down. The images with head moving up
were removed from the training data.

{
s(n)

t , n = 1, ...., N
}

with weightsπ(n)
t , representing the probability densityp (xt | Zt)

wherext is the state of the system,zt is the measurement at timet andZt is z1:t. An

iterative process explained below is used to estimate the state of the system at each

time step.

Iterate:

From old sample set
{
s(n)

t−1, π
(n)
t−1, c(n)

t−1, n = 1, .., N
}

at time stept − 1, construct a

new sample-set
{
s(n)

t , π
(n)
t , c(n)

t , n = 1, .., N
}

for time t. Construct thenth of the N

new samples as follows:

1. Resample: Select a samples
′(n)
t as follows:

(a) generate a random numberr ∈ [0, 1] uniformly distributed

(b) find, by binary subdivision, the smallestj for whichcj
t−1 ≥ r

(c) sets
′(n)
t = sj

t−1

2. Predict by sampling fromp(xt | st−1 = s
′(n)
t ). This is governed by the system

model which includes the deterministic drift and the stochastic diffuse of the

samples(n)
t .
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3. Measure and weight the new position in terms of the measured featureszt

asπ
(n)
t = p

(
zt | xt = s(n)

t

)
. Then normalize so that

∑
nπ

(n)
t = 1 and store

together with cumulative probability as
{
s(n)

t , π
(n)
t , c(n)

t

}
wherec0

t = 0 ; cn
t =

cn−1
t + πn

t ; (n = 1, ...., N). Once theN samples have been constructed:esti-

matemoments of the tracked position at time-step t as

E [f (xt)] =
∑

N
n=1π

n
t f (sn

t )

5.3.2 Design of the particle filter

1. State vector xt

The state vector for this experiment is seven dimensional. Two dimensions of

x-y translation in the image, three dimensions given by the Isomap for out-

of-plane rotation, and one dimension each for in-plane rotation and scaling of

the tracker, make up the state vector.

2. Initialization prior p(X0)

An initialization prior should be known for the Condensation algorithm. There

are various was to do it. A tracker can be manually initialized in the first frame

with particles, with equal weights, randomly distributed near the person face.

Or a background subtraction method can initialize the x-y position of the

tracker in the first frame. Initialization of rotation parameters becomes easier

under the assumption that the person is facing the camera in the first frame.

The particles can be initialized randomly to have a range of scale values. In

this experiment, manual initialization is used for the firstframe.

3. System model p(xt | xt−1)

The system model has a deterministic component and a stochastic compo-

nent. The transition matrix gives the deterministic component while the pro-
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cess noise vector gives the stochastic component. For this experiment the

system model is a linear stochastic difference equation based on a constant

velocity assumption similar to the one used by Birchfield [3]. The process

noise is modeled as a Gaussian with constant mean and variance throughout

the sequence. Now the interesting question is how to handle any sort of head-

pose which is absent from the training data, in a test sequence? The answer

is, any such pose can be roughly approximated as an in-plane rotation of a

training template. This makes up for the missing poses in thetraining data.

4. Likelihood p(zn | xn) measure

Every particle has a patch in the test image and a training template associ-

ated with it. The image patch is extracted, based on the translation, in-plane

rotation and scaling parameter values of the particle. The training template

is assigned based on the Isomap (out-of-plane rotation) coordinates of the

particle. Training template is taken to be the template closest to the particle

in the 3D Isomap coordinate system. Figure5.5 gives an illustration of the

patch and the template associated with a particle. The likelihood function

(weighting function) has 2 components : a) SSD and b) chamferdistance.

(a) SSD:

The mask (background pixels = 0) of the training template is applied to

the image patch for computing the SSD between the two. This isdone

to minimize the measurement noise of the background pixels.The SSD

weight of a particle is calculated as the negative exponential of the SSD

between the training template and the image patch, corresponding to the

particle. This is illustrated in Figure5.5.d.

(b) chamfer distance:

If only SSD is used to compute the distance between the training tem-
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plate and the image patch the weights become very sensitive to noise

(due to background pixels in the patch which could not be masked by

the training template). Also, the SSD distance is unsuitable to handle

any kind of ambient light variations. Changing lighting conditions can

be handled using a distance measure which would just measurethe dis-

tance between the binary thresholded edges of the training template and

the image patch. Two possible candidates to this distance measure are

Hausdorff distance [9] and chamfer distance [2]. For this experiment,

chamfer matching is used. Edge detection in the training template and

the training patch is done using Canny edge detector [5]. Figure 5.6

shows the results of Canny edge detection and chamfer transform on a

training template and a test image. The chamfer-weight of a particle is

calculated as the negative exponential of the sum of the product of the

edge-detected training template and the chamfer transformof the image

patch corresponding to a particle.

Weight of a particle is calculated as

W = (normalized SSD weight+ normalized chamfer weight)/2

5. State estimation E{g(xt)}

The true statext of the person’s face can be estimated as the weighted mean

of all the particles. The weighted mean of all the parametersgives position,

pose and scale of the person’s face.

Figure5.7 shows the block diagram of ‘Isomap tracking with particle filter’ algo-

rithm for a single particle. It gives an overview of the stepsin the algorithm. The

details of the processes within the blocks are explained in section5.3.2. The results

of this algorithm on an image sequence are demonstrated in chapter6.
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Figure 5.5: (a) Image from the test sequence. (b) The image patch associated with
a particle. (c) The template closest to the particle. (d) Image patch with the mask
of the training template (background pixels = 0) applied to it.

(a) (b)

(c) (d)

Figure 5.6: (a) Training template after Canny edge detection. (b) Test image after
Canny edge detection. (c) The chamfer transform of (b). (d) Image patch from
(c) corresponding to a particle. The chamfer weight is computed by finding the
distance between (a) and (d).
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Figure 5.7: Block diagram of ‘Isomap tracking with particlefilter’ algorithm for a
single particle.
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Chapter 6

EXPERIMENTAL RESULTS

6.1 Effects of resampling

The resampling technique, discussed in section4.5.2, is used to reduce the variance

on weights and to eliminate the weights that carry little information about the true

state of the object being tracked. Figures6.1and6.2demonstrate the effectiveness

of resampling. When resampling is not used, majority of the particles drift to re-

gions which carry very little or no information about the person’s head, within a few

iterations. These particles have low weights and contribute very little in estimating

the true posterior probability density of the person’s face-pose, giving poor tracking

performance. In Figure6.1it can be seen that many low-weight particles drift away

from the face gradually. When resampling is used, most of thelow-weighted parti-

cles get eliminated at every iteration. Thus, most of the remaining particles provide

significant contribution to estimating the posterior density of the system-state. In

Figure6.2 it can be seen that resampling retains particles with high weights and

thus helps in reducing the variance of weights. It can be concluded that when a

good importance density cannot be computed for a process, resampling is a good

technique to reduce the effects of degeneracy of particles.



frame 0 frame 3

frame 5 frame 7

frame 11 frame 17

Figure 6.1: In the images, the blue dots show the particles. These images show the
behavior of the particles in absence of resampling.
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frame 0 frame 10

frame 23 frame 35

frame 50 frame 60

Figure 6.2: In the images, the blue dots show the particles. These images show the
behavior of the particles when resampling is used.
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6.2 Tracking results

A particle filter with 1000 particles was used for tracking. The tracker was tested

on an image sequence with the person’s head undergoing translation and out-of-

plane rotation. Tracking results are shown in Figure6.3and6.4. The vector inside

the circle, in the left-hand corner of the test images, indicates the head-pose. The

length of the vector is proportional to the amount of rotation of the head and the

angle indicates the pose. The tracker successfully trackedthe head of the person

with a reasonably accurate estimation of the 3D pose. The tracker handled the out

of plane rotation and the rapid translation of the person’s head.
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Figure 6.3: The blue square is the tracker. The vector insidethe circle at the top-left
corner gives the 2D out-of-plane rotation. In the circle, the vertical axis represents
the up-down pose and horizontal axis represents right-leftpose. The length of the
vector is proportional to the amount of rotation and the angle gives the pose. The
top-right corner of the images show the closest training template. The tracking
results are continued in the next Figure.
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Figure 6.4: Tracking results continued from the previous Figure.

56



Chapter 7

CONCLUSION

This study of dimensionality reduction techniques showed that Isomap gives very

good results for nonlinear dimensionality reduction. Isomap is an unsupervised

learning technique with the only input to the algorithm being the neighborhoodk.

One drawback for Isomap is if new training data is to be added to the original train-

ing data the whole of Isomap has to be computed again. If this problem is solved,

with the technique being unsupervised, training data can bebuild on-line with min-

imal starting knowledge of the data. This would be extremelyuseful because with

a few images a tracker can start tracking and building a new training-set at the same

time with no user intervention. The study of particle filtering showed that it is

expected to perform better than Kalman filtering when the posterior density of the

state cannot be estimated by a Gaussian. Another advantage of using a particle filter

is that if the particles run independent of each other the system can be parallelized,

thus offering high computational speeds. The ‘Isomap tracking with particle filter’

algorithm combines these two techniques and thus gives a robust tracking frame-

work. The algorithm not only tracks a person’s face in an image sequence but also

gives a good estimate of the pose of the person at each frame. This technique can

be extended to track any kind of a rigid object if its trainingdata is available.
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