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ABSTRACT

The problem of tracking an object in an image sequence iegobhallenges
like translation, in-plane and out-of-plane rotationsalsg, variations in ambi-
ent light and occlusions. A model of an object to be trackeduidt off-line by
making a training set with images of the object with diffdrpases. A dimension-
ality reduction technique is used to capture the variatioriee training images of
the object. This gives a low-dimensional representationigii-dimensional data.
Isometric feature mapping, also known as Isomap, is thepersised nonlinear
dimensionality reduction technique used to capture the degrees of freedom in
high-dimensional data. Once the training data is reducknhtalimensions it forms
a part of the state-vector of the object to be tracked. Trarid done in a stochastic
recursive Bayesian framework. Particle filters, which aasdual on the recursive
Bayesian framework, track the state of the object in preseficonlinearity and
non-Gaussianity. The focus of this thesis is the problemaaking a person’s head
and also estimating its pose in each frame using Isomap fleemsionality reduc-
tion and patrticle filter for tracking. ‘Isomap tracking wigkarticle filter’ algorithm
is capable of handling rapid translation and out-of-plastatron of a person’s head
with a relatively small amount of training data. The perfame of the tracker is
demonstrated on an image sequence with a person’s headyoirdgtranslation

and out-of-plane rotation.
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Chapter 1

INTRODUCTION

In computer vision, locating an object in every frame of araga sequence is a
challenge. Two technigues exist to locate an object in ewveage frame: detecting
the object afresh in every frame without using past inforamator detecting the

object in the first frame and then tracking it in subsequearns. Tracking uses
the information obtained about an object in previous fratbgzredict the state of
the object in future frames whereas detection just loc&esbject in every frame
independent of the information about the object obtainguévious frames. Under
the assumption that the state of an object does not changggcdily from one frame

to the other tracking is more efficient and less prone toalision.

Tracking and estimating a person’s head pose in a 2D imagegseq involves
tracking an object with seven degrees of freedom (threeioota degrees of free-
dom, two translational degrees of freedom in the imagejrsgand variation in
the lighting conditions). The problem becomes harder wrestusion is involved.
Tracking can be done in a deterministic or a stochastic freorie In a determinis-
tic framework the tracking equations do not contain any can@lement. Tracking
in a stochastic framework is necessary because of nois@dumptedictable move-

ment.



Detecting and tracking a person’s head can be done by takieg tom the
shape of the head, color of the skin, texture of the faceufeat(e.g., eyes, nose,
ears, mouth) or by simply matching face templates. In thiklee face is detected
and tracked using a combination of template matching ane edgrmation of a
person’s head in a stochastic framework. A training set aiges of a person’s head
to be tracked is built off-line. The training templates aighhdimensional images.
In order to use these templates in a stochastic framewodithensionality of these
training templates needs to be reduced. Isometric featappimg or Isomap is the
technique used to discover the variation or the true degreieeedom in the train-
ing set. Isomap computes the geodesic distances betweeminngnsional points
and gives a low-dimensional structure such that the geodiéstances between the
high-dimensional points are preserved in the low-dimamaistructure. Isomap
of the training data is a low-dimensional representatiothefimages. Once an
Isomap is built from the training data a state-vec¢aran be defined for the object
(head) using these low-dimensions as its parameters. ifigatike head in an image
sequence is then done with a particle filter. A particle fisdrased on the recursive
Bayesian framework. It is basically a cloudmparticlesx with weightsw{' asso-
ciated with them. These weighted particles provide an edérof the probability
distribution of the state of the object (head) at each fraffilee generic particle
filter consists of two stages: 1) time-update and 2) measeméenpdate. The time-
update stage predicts the state of the system fortinseng the probability density
function of the state obtained at- 1 and a system model which gives the evolu-
tion of state of the particles in time. The measurement-tgpdtage corrects the
prediction of the state obtained from time-update stagedas the measurement
received at time using a measurement model which relates the measureméet to t
state of the object. The system model has a deterministipoaent (which pre-

dicts the state transition for a particle) and a stochastmemonent (which accounts



for the process noise). The measurement model has a stoat@siponent which
accounts for the noisy measurements. The weights for dicpes are updated af-
ter every measurement at tirhand these weights then give the probability density
function for the state of the system at time

The rest of the text is organized as follows. Chajptelescribes related work
in tracking and dimensionality reduction. In ChapsePCA, MDS, ISOMAP and
LLE algorithms for dimensionality reduction are discussedetail and their per-
formance is compared on a data set of training images. Int€hajalman filter,
extended Kalman filter and patrticle filter (SIS algorithmg axplained. Chaptéy
describes the ‘Isomap Tracking with Particle filter’ algbnm. Experimental results

are demonstrated in Chapt&rand conclusions are presented in Chapter






Chapter 2

RELATED WORK

As described in the previous section, tracking can be domermeistically or
stochastically. For head-tracking, cues can be taken frioapes color, texture
and features (like eyes, nose, mouth). Birchfigldyses magnitude gradients and
color histograms to track a person’s head using an elliptiead-tracker. Cascia
et al. [L6] use a texture mapped surface model to approximate the 3® qfabe
head. They formulate tracking as an image registrationlpnobn the model’s
texture map. Pardas et allg propose a technique to track a person’s face us-
ing active contours or snakes. All the techniques descrélbede are deterministic
approaches. The stochastic approach to tracking is bas@&hyesian recursive
estimation. In 1960, R.E. Kalman introduced Kalman filtgrin his classic paper
[14] which has since been a subject of extensive research. Theagdfiltering
technique is a Bayesian technique which assumes the moadensity function to
be Gaussian and the process and measurement models todre Kireluta et al.
[15] investigate the feasibility of using a Kalman filtering nebdo predict motion
of the head (both abrupt and smooth). The linearity probléidaman filter is
solved in the extended Kalman filter and the unscented Kalfittan[27], both of

which allow nonlinear dynamics. Particle filtering techuneg which are also based



on Bayesian estimation do not assume linearity or Gausgiana process. Aru-
lampalam et al.1] give an overview of the basic particle filtering techniqunel ats
variations. Isard and Blake use the Condensation algofifftirto track curves in
a cluttered environment using the principle of resampliffgey also came up with
the ICondensation algorithmi ] in which they augment Condensation to incorpo-
rate the principle of importance sampling, in which an intpoce function is used
to sample from the posterior density function of the stateimihiaro et al. 18]
demonstrate the use of Condensation algorithm in faceitrgddased on color.
Dimensionality reduction techniques can be classifiedresali and nonlinear.
Jollife [13] describes the use of Principal Components Analysis, whichlinear
dimensionality technique, for dimensionality reducti®CA tries to capture max-
imum variance in data along the principal components whrehtlae eigenvectors
of the covariance matrix computed from the data. Torgersonecup with Clas-
sical Multidimensional Scaling (MDSYF] which is another linear technique for
dimensionality reduction. In this technique the intersidtuclidean distances be-
tween all the high-dimensional points are preserved indiaedimensional struc-
ture. The Isomap algorithm given by Tenenbaum et 28] [s an improvement
over Classical MDS. Instead of using Euclidean distancesés geodesic dis-
tances for better performance on nonlinear structures. eikoet al. P1] propose
nonlinear dimensionality reduction using locally lineanteedding. LLE computes
low-dimensional neighborhood preserving embeddingsgtitimensional points
without any knowledge of the global structure. Souvenirlef2?] propose im-
age distance functions for improving the results of theseedisionality reduction

techniques.



Chapter 3

DIMENSIONALITY REDUCTION

The purpose of dimensionality reduction is to express highensional data (such
as images, audio, etc.) in lower dimensions in such a way hgytdight the sim-
ilarities and dissimilarities in the data. Raw high-dimiensl observations may
actually have fewer degrees of freedom than their dimemsityrsuggests. Con-
sider images of a person’s head undergoing 3D rotation. ofith the dimen-
sionality of these images is very high, all of images lie inka@anifold. Each
high-dimensional image can therefore be represented Bifsose with just three
parameterg 6y, 0, 6>} which makes the data very convenient to work with. Thus,
it is possible to represent a set of images in significantlyefedimensions if the
variation in the data is correctly captured. The dimendignaef the data can be re-
duced using techniques like PCAJ, MDS [26], LLE [20] and Isomap25]. This
chapter describes each of these techniques. The perfoenvdrthese techniques
is compared using a data set of synthetic images of a pesshaad undergoing
out-of-plane rotation and lighting changes. This data setvailable at12]. Let
us call this data set as face-data. Every image in face-d&tax 64 pixels thus

having a dimensionality of 4096. FiguBel shows 12 images from face-data.



Figure 3.1: Sample images from face-data used for compénsmgerformance of
PCA, MDS, LLE, Isomap.

3.1 Principal Components Analysis (PCA)

Principal Components Analysi$J] is a linear dimensionality reduction technique.
PCA transforms the data into a new coordinate system in wthiekargest variance
in the data lies on the first coordinate, second largest osdbend coordinate and

so on. The PCA algorithm is given below.

3.1.1 PCA algorithm

e Step 1: Compute the mean value for all dimensions of the dsta s
X = SN X wherex, is thek" point of thei®" dimension andN is the total

number points of thé" dimension.

e Step 2: Subtract the mean value of the data from every dat#-po

x}* = x]' — Xi. This is done to avoid non-uniqueness due to location.

8



e Step 3: Compute the covariance matrix C

Covariance between any two variabley is given by

Cxy)=> (x—=X(i—-y)/(N-1)

wherei goes froml to N (total number of points) andandy are the means.
Note that the divisor i\ — 1 instead ofN because the data set has finite
number of samples. Every entfy; of the covariance matri€ is given by
Ci; = Cov(x, %) wherei, j are thei™ andj™ dimensions respectively. Noxe

andy are zero because the mean was already subtracted in step 2.

e Step 4: Find the eigenvectors and eigenvalues of the cavegiaatrix
Next step is to compute the eigenvectors and eigenvaludseafdvariance
matrix C. Eigenvector of a square matrix is defined as the vectwwhich
satisfies the equatiddx = A x and the constant is the corresponding eigen-

value.

e Step 5: Choose the principal components and form the featatr
Arrange the eigenvalues in descending order. Choose th&fggnificant
eigenvalues wher& depends on how much detail is needed in the low-
dimensional data. Construct a matBxwith the eigenvectors corresponding

to these firsK significant eigenvalues.

E = [eigenvector, eigenvectoy, . . . eigenvectog|

Note that the eigenvectors are orthogonal to each other.

e Step 6: Generate a low-dimensional point from a high-direred point
The final step is to compute a low-dimensional poiptfrom a high di-

mensional pointky whereK is the new dimensionality of the data abd

9



principal component 1

principal component 3

) 0 50 w0 m‘zn- 20 w 50
(©) (d)
Figure 3.2: The four largest principal components recavesePCA.

is the old dimensionality of the data. The low-dimensioredter is given by
Xk = E"Xp whereET is the transpose of matr& computed in step 5 of the

algorithm.

3.1.2 Performance of PCA on face-data

Performance of PCA was evaluated on face-data. Figurshows first 4 principal
components recovered by PCA. Figut& shows the first 6 eigenvalues given by
step 4 of the algorithm. It can be seen that the curve elbowiseatimensional-
ity of 5 which suggests that the 4096-dimensional face-datebe expressed in 5
dimensions. It is a significant reduction in the dimensidpddut the true degrees
of freedom is 3. Figure.4 shows the original image fed to PCA and the image
recovered by PCA from the reduced dimensions. One can gofb@oklower di-
mensions to higher dimensions using the equatipn= Ex¢< whereE, K, D are

defined in step 5 and 6 of the PCA algorithm.

10



PCA

eigenvalues

1 15 2 25 3 35 4 4.5 5 5.5 6
dimensions

Figure 3.3: Plot of top six eigenvalues of the covarianceixas. dimensionality
recovered by PCA.

orginalimage ~ recoveres d image

30

(@)

Figure 3.4: (a) Original image. (b) Image recovered by PChgishe equation
Xp = Ex¢ with 5 eigenvectors.
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3.2 Multi-dimensional Scaling (MDS)

Multi-dimensional scaling is a linear dimensionality retian technique. The basic
idea of MDS is to preserve the inter-point distances betwierigh-dimensional
points in the low-dimensional structure. There are maniatians of MDS. In this

thesis only Classical MDf] is studied.

3.2.1 MDS algorithm

The Classical MDS algorithn2fl] is given below. Let the original dimensional-
ity of the data beD, the reduced dimensionality b€ and total number of high-

dimensional points bHl.

e Step 1. Compute the Similarity Matrix S
The similarity matrixS can be computed by taking the Euclidean distance
between high-dimensional points. Each enfry of matrix S is given by
> (X% — x“)2 wherex andx are points in high dimensions amhdjoes

from 1 toD.

e Step 2: Compute the inner product matrix B
Compute the inner product matrix = —3JSJwhered = Iy — 117, Jis
called the centering matrixy is the identity matrix of siz& and1 is a vector

of ones of lengtiN.

e Step 3: Decompose B to obtain its eigenvalues and eigemgecto
Decomposd asB = VAV whereA = diag(\,, \,, ... \y) is the diagonal
matrix of eigenvalues oB. V = [vi, Vs, ... V] is @ matrix of corresponding

unit eigenvectors.

12



e Step 4: Extract the first K eigenvalues and eigenvectors
Extract the firsK eigenvalues\x = diag(\,, A, ... ) and corresponding

eigenvector®/x = [V, Vo ... V].

e Step 5: Form the new low-dimensional coordinates of thetpoin
The new coordinates of the points are in the maxiixx = [X;, %o . . .xN]T =
VKA}1</2. Using the top d-eigenvectors as the low-dimensional doates
globally minimizes the difference in the distances betweaigh-dimensional

and low-dimensional points.

3.2.2 Finding dimensionality recovered by MDS

Hidden lower dimensionality in the data can be estimatedguaiquantity known

as residual variancR. Residual variance basically means variance in the data due
to unknown reasonsR is calculated at various low dimensions to find the dimen-
sionality at which it stops decreasing significantly. Theideal variance is calcu-
lated using the correlation coefficiegtbetween the vectorized distance matyix

for dimensionalityi and the vectorized distance mat@xdefined in step 1 of the

algorithm. Residual variance is then givenRy= 1 — ¢;.

3.2.3 Performance of MDS on face-data

Figure3.5shows that the residual variance stopped decreasing sieymify only at
dimensionality = 4. So the lower-dimensionality recovelgdviDS for the 4096-
dimensional face-data, although better than PCA, stilsdua reflect the true de-
grees of freedom in face-data. Figuié shows the plots of the low-dimensional
points taking two significant dimensions at a time and kegphe third dimension
constant, with the corresponding images from the face-slgtarimposed. In Fig-

ure3.6it can be seen that although MDS does a decent job at groupmigshead

13
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Figure 3.5: Plot of residual variance vs. dimensionaligoreered by MDS

poses together but none of the low-dimensions have any mgamhhe images su-
perimposed on their respective 2D points show that no paatitiead-pose remains
constant when a dimension for the points is kept constanaritbe concluded that

MDS did a poor job at reducing the dimensionality of faceadat

3.3 Isometric Feature Mapping (Isomap)

The Isomap technique, described #%], is an improvement of the Classical MDS
algorithm. The idea is to use Euclidean pairwise distaneesden high-dimensional
points to compute the geodesic distances between thosks pdhrese are then fed
to the Classical MDS algorithm, described in sect.], to find the true low-

dimensionality of the data.

3.3.1 Isomap algorithm

The Isomap algorithm takes as input the distark€s j) between all pairs j from
N data points in the high-dimensional input spacemeasured in some domain-

specific metric e.g. Euclidean distance. The algorithm wistpoordinatey; in a

14
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Figure 3.6: 2D plots of low-dimensional points given by MD#hithe correspond-
ing high-dimensional images superimposed.
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d-dimensional Euclidean spadewhich best represents the intrinsic geometry of

the data. The 3 steps of the algorithm are as follows:

e Step 1: Construct neighborhood graph
This first step determines which points are neighbors on folanii, based
on the distanced, (i,]) in the input space. Two ways to do that are to con-
nect each point to all points within a distancg& — Isomap of that point,
or to all of itsK nearest neighbors: — Isomap. ¢ or « is the only free pa-
rameter in the algorithm. The neighborhood relations apeesented as a
weighted graplt over the data points, with edges of weighti, ) between

neighboring points.

e Step 2: Compute shortest paths
Compute the geodesic distana®s(i,j) between all pairs of points on the
manifold M by computing their shortest path distances giverdgyi,j) in
graph G. Computation: Initializdg (i,j) = dx(i,]) if i,j are linked by an
edge;ds (i,j) = oo otherwise. For each value &f = 1,2,... N in turn

replace all entriedg (i, ]) by

min{dg (i,j), dg (i, k) + dg (k,})}

The final matrixDg = dg (i, j) will contain the shortest path distances between

all pairs of points irG.

e Step 3: Construct d-dimensional embedding
The last step applies classical MDS, described in se@idr, to the matrix
of graph distanceBs = {dg (i, )}, constructing an embedding of the data in
ad-dimensional Euclidean space that best preserves the ofdisiintrinsic

geometry.
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3.3.2 Finding Isomap dimensionality

The idea of using residual variance to find the true low-disn@mality of the data
was described in sectioh2.2 Since Isomap is an extension of MDS, the same

procedure can be used for Isomap.

3.3.3 Performance of Isomap on face-data

Figure 3.7 shows that the residual variance curve for face-data eltavasmen-
sionality = 3. So Isomap reflects the true dimensionalityhef data, i.e., it finds 3
degrees of freedom in face-data. FigGr&shows the plots of the low-dimensional
points taking 2 significant dimensions at a time and keepnegthird dimension
constant, with the corresponding images from the face-slgtarimposed. In Fig-
ure3.8it can be seen that Isomap does a good job at grouping sinoisggtogether
and the low-dimensions correspond to the true degreeseddra. When the first
(x) coordinate is kept constant there is no variation in theright pose. When the
second Y) coordinate is kept constant there is no variation in theright pose.
When the third £) coordinate is kept constant there is no variation in thiting
conditions. It can be concluded that Isomap correctly reced the dimensionality

of face-data.

3.4 Locally Linear Embedding (LLE)

Locally Linear Embeddingd1] is a nonlinear dimensionality reduction technique
which computes low-dimensional embedding with the prop#rat nearby points
in high-dimensional space are similarly co-located witbpext to one another in
low-dimensional space. This technique optimizes the ewlibgdo preserve local
configurations in high-dimensional data. LLE recovers tlodal nonlinear struc-

ture of the data from locally linear fits.
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Figure 3.7: Plot of residual variance vs. dimensionalityoreered by Isomap.

3.4.1 LLE algorithm

Suppose the data consists freal-valued high-dimensional vecto)% (inputs)
each of dimensionalit{p. This algorithm maps those inputsiblow-dimensional
vectors?i with dimensionalityd such that the local geometry is preserved every-

where. The LLE algorithm is as follows:

e Step 1: Compute the neighbors of each data pﬁint
For every poinb?i identify K nearest neighbors based on the Euclidean dis-
tance between the points.is chosen such that the data is well sampled. The

rough estimate ok is K > 2d whered is defined above.

e Step 2: Compute the weights;\What best reconstruct each data point from
its neighbors
The weightd\j; are chosen to minimize the cost functiégiven by the equa-
tion E(W) = Y R. -2 W i,- 2. The weightW; summarizes the contribu-
tion of j" data point ta" reconstruction. The cost function is minimized sub-
ject to two constraints: a sparseness constraint and ananea constraint.
The sparseness constraint is that each data Eoiaireconstructed only from

its neighbors, i.e.W; = 0 if the points are not neighbors. The invariance
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Figure 3.8: 2D plots of low-dimensional points given by Isprwith the corre-
sponding high-dimensional images superimposed.
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constraint is that the rows of the weight matrix sum to opgW; = 1. The
constrained weights are invariant to rotations, rescalanyl translations (by
invariance constraint) of that data point and its neighbdtsr a particular
data pointx with K nearest neighborgj and reconstruction weightg that
sum to one, the reconstruction errokis- >-; W\wiGy where G is the local

Gram matrix given byGy = (7( - ﬁj) (7( — ﬁk). The optimal reconstruc-

> G
Zlm GI;1

tion weights can be computed as=

Step 3: Compute the vecto‘?$ best reconstructed by the weightg W

Since the whole idea behind the algorithm is to preserve lgeametry of
the high-dimensional data, the same weighsthat reconstruct the inpu_ii

in D dimensions should also reconstruct its embedded manitmdimates

in d dimensions. This is done by choosing the d-dimensionaldinates of
each output?i to minimize the embedding cost functidn(Y) = \Vi
-2 W \7,-\2 whereW;, computed in step 2, are fixed. To optimize the cost
function® it can be re-written in the quadratic forin(Y) = > M; (Vi : \7,-)
whereM is NxN square matrix given byM; = 6 — Wy — Wi + >, WigW.

0j = 11if i =] and0 otherwise. The outpu?i is subjected to 2 constraints:
1) > \?’izﬁ removes the translational degree of freedom by requirieg th
outputs to be centered at the origin anq@):i \7i V,T: I, wherel isad x d
identity matrix, removes the rotational and scaling degrieeeedom of the
output. The cost functio® can be minimized by finding the bottod+ 1
(corresponding to smallest eigenvalues) eigenvectorgstfroatrixM. The
bottom eigenvector is discarded as it represents the famslation mode of

eigenvalue zero.
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3.4.2 Finding LLE dimensionality

Saul and RoweisZ]1] give techniques to estimate the dimensionalityf the data.
Let us consider two points lying within the distancéo be neighbors. Then, for
small value of, K should scale according to equatikpo 9. K is the number of
neighbors within distanceandd is the intrinsic dimensionality. Another way is to
use the technique similar to the one used in PCA, describgd.if i.e., to estimate
d by the number of eigenvalues comparable in magnitude tortfadlesst non-zero
eigenvalue of the cost matrM. The dimensionality, if previously known, can also
be enforced to bias the embedding. This can be done by modifiie second step
of the LLE algorithm. The idea is to project its neighbor®iatl-dimensional sub-
space of maximal variance before performing the least sguaconstruction. The
subspace is computed frotrdominant eigenvectors of Gram matfd defined in

step 2, effectively limiting the rank @& before solving for reconstruction weights.

3.4.3 Performance of LLE on face-data

Section3.4.2describes the techniques given 1] by Saul and Roweis to either
find or force the dimensionality on the manifold. Fig@é shows the plots of! /K
for four random high-dimensional points of face-data. i t& seen that® /K is
not a constant for dimensionality one to six. It can be cametuthat LLE could
not reduce the dimensionality to less than or equal to siedsions and therefore
could not discover the true degrees of freedom in face-dataure3.10shows the
plot of eigenvalues of the cost matiik vs. the dimensionality of face-data. Again,
this technique, as described in sectha.2 was unable to find the true dimension-
ality of face-data. This may be due to the nonlinear naturthefmanifold. Saul
and Roweis 21] mention that this technique works well only for linear nfafds.
Figure3.11shows the plots of the low-dimensional points recovered bl tak-

ing 2 significant dimensions at a time and keeping the thirdedision constant,
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Figure 3.9: Plots o&?/K whered is the dimensionality an& is the number of
neighbors for four random points. It can be seen taloes not scale with® for

any of the points and therefore it is difficult to determine thmensionality using
the propertyK, oc .

with the corresponding images from the face-data supesegholn Figure3.11it

can be seen that LLE shows some grouping of similar posesdné af the low-

dimensions have any meaning. The images superimposed iondsgective 2D

points show that no particular head-pose remains constaeh\a dimension for

the points is kept constant. It can be concluded that LLEaowit find the true

degrees of freedom in face-data.
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Figure 3.10: Plot of eigenvalues of the cost maiiws. dimensionality. The plot
does not show a sharp enough elbow to determine the dimexisyoof data using
the eigenvalue method.

3.5 Comparing PCA, MDS, Isomap and LLE

In the above sections the performance of PCA, MDS, Isomap.hEdvas demon-
strated on face-data shown in Figurd. PCA and MDS performed poorly in cap-
turing the true dimensionality of face-data. This resuttas unexpected since PCA
and MDS are essentially linear dimensionality reductiahteques and could not
recover the nonlinear structure of face-data. Between d&goamd LLE, which are
nonlinear dimensionality reduction techniques, Isomagedeetter results on face-
data. The reason for the poor performance of LLE could be paomling due to
the nature of the training data as LLE assumes that eachpdataand its neighbors
lie on locally linear patches. Isomap on the other hand hasinob assumption. The
only approximation in Isomap algorithm is the estimatiorited geodesic distance
between the data points using pairwise Euclidean distamdash is still good if
the data is dense enough. Going from low-dimensions to Higtensions in PCA
for any point (including points not present in the trainirgg)swas discussed in
section3.1.2 For MDS, Isomap and LLE, a high-dimensional point corresjiog

to a low-dimensional point, not present in the training san be constructed by
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Figure 3.11: 2D plots of low-dimensional points given by Lwih the correspond-
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weighted combination of its nearest neighbors (in low digiens). Out of the 4
techniques studied for dimensionality reduction, it carcbecluded that Isomap

gave the best results.
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Chapter 4

TRACKING IN A RECURSIVE
BAYESIAN FRAMEWORK

Approaches to tracking the state of a system can be broad$gifed as deter-
ministic and stochastic. The basic difference betweenwvioectasses is the use of
random variables. Deterministic tracking does not use anglam variable and the
system is described by fixed values while stochastic trgckiakes use of random
variables and the system is described by a probabilityidigton. In this thesis the

focus is on stochastic tracking in a Bayesian framework.

In the Bayesian framework, a two stage approach is useddak the state of
the system in the presence of noisy measurements. A pagbeoioability density
function (pdf) which gives an estimate of the state of a systgiven the noisy
measurements, is constructed at every step in time. Thesfage is prediction,
which creates a pdf of the state of the system at tiln@sed on the system model
and the posterior pdf from timte- 1. The second stage is update which updates the
pdf created in the prediction stage using the newly obtamedsurement and the

measurement model.



4.1 Bayesian Framework

A tracking problem can be defined as the evolution of the statihe system
{x%. k € N} wherex, is the state vector containing all the information about the
system at timek. Equation4.1 is the system modd} for the evolution of state
of the system wherg : R* x R — R™ can be a linear or a nonlinear function
andy is the process noise sequence. Equatichis the measurement mode)
which relates the state of the system to the measuremealgained at timé. In
equationd.2, hy : R* x R — R™ can be linear or a nonlinear function angdis
the measurement noise sequence. For tracking any systbmvi andny should
be known. The process noisg and the measurement noisg can be constant
or variable over time. Equatiof.3 is the Chapman-Kolmogorov equation which
describes the prediction stage. The quantity | z.x_1) is the pdf of the state
given the system modg (X | X«_1) and the posteriop (xc_1 | z1.k_1) from time

k — 1. When the measurementbecomes available at timkethe pdfp (X | z1x_1)

is updated using the Bayes’ rule given by equatiofh In equatior4.4, the pos-
terior p (¢ | zx) is constructed by updating the pplfx | z,x_1) (also called the
prior in Bayes’ equation) using the likelihood functipr{z | x;). The quantity

P (z | z1x—1) is the normalizing constant. The next sections of this aragitze an
overview of Bayesian algorithms: Kalman filtering, extedd@lman filtering and

particle filtering. Since the focus of this thesis is padifiltering, it is explained in

detail.
X = fic (-1, Viee1) (4.1)
Z = hy (X, Nk) (4.2)
P (X | Xk—1,Z1k-1) = /D(Xk | Xi—1) P (X1 | Zik—1) %1 (4.3)

P(Z | %) P (X | Zik-1)
P (| Zik—1)

P (% | 212) = (4.4)
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4.2 Kalman filter

The Kalman filtering algorithm1[4] is based on recursive Bayesian framework ex-
plained in sectiont.1. Let us examine the quantities in equatieh§, 4.2 for a

Kalman filter.
e system modef, and measurement modglare linear

e process noisg, and measurement noiggare assumed to be additive Gaus-

sian noises

e posterior density(X | z) is estimated to be Gaussian

4.2.1 Discrete Kalman filter algorithm

The Kalman filter is a two stage predictor-corrector aldont The first stage is the
‘Time update’ (Predict) and second stage is the ‘Measurémedate’ (Correct).

P. Maybeck 17] explains the probabilistic origins of the algorithm. Lé&eterror
between the estimated stateand the true state be g at timek. The algorithm
tries to minimize the error covarian€® = E [ece]] at every time-step. LeD be
the process noise covariande,be the measurement noise covariangehe the
state transition matri;l be the matrix which relates the measurements to the state
vector, andK be the Kalman gain. The super-script minug)(indicates the a
priori state estimate at stég given the knowledge of the system dynanfic§he
algorithm is given below. Figuré.1 shows the performance of a Kalman tracker
tracking an object moving in a trajectowy = 3t with random accelerations of
standard deviation = 0.5, whexés the position andlis the time. The measurement

noise had a standard deviation of 10.

e Time update
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— Step 1: Project the state ahead
X = AXy
— Step 2: Project the error covariance ahead

P, = AP ;AT + Q, with P, set toQ.
e Measurement update

— Step 1: Compute Kalman gain
Ki = PcHT (HPCHT +R)

— Step 2: Update estimate with measurement
X =%+ K (20— HX )

— Step 3: Update the error covariancg B (I — KyH) P,

A Kalman filter is restricted in its use because it requiressystem and the mea-
surement model to be linear and it also estimates the postinsity of the state
to be Gaussian at every time-step. The first problem is tatenaf in the extended
Kalman filter which can handle nonlinear system dynamics.aHarocess, whose
posterior density of the system-state is non-GaussianGtigssian estimates of

Kalman filtering give large tracking errors.

4.3 Extended Kalman filter

As the name suggests the extended Kalman filter is just anggteof the Kalman
filter to handle nonlinear processes. The nonlinearity cafiriearized for every
current estimate using the first term of the Taylor expansfamonlinear function
by taking the partial derivatives of the system and measentmmodels. This is
what an extended Kalman filter does. It linearizes a nontiseechastic difference
eguation at every time step. Let us examine the quantitiegurationst.1, 4.2 for

the extended Kalman filter.
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Figure 4.1: Performance of a Kalman tracker tracking anatloj@ving in a trajec-
tory x = 3t with random accelerations of standard deviation = 0.5, e/kes the
position and is the time. The measurement noise had a standard devidtidgh o

e system modef, and measurement mod®glcan be nonlinear

e process noisg and measurement noisgno longer remain Gaussian due to

nonlinearity

e posterior density(X | z) is estimated to be Gaussian at all times

4.3.1 Extended Kalman filter algorithm

For an extended Kalman filter, I&tbe the Jacobian matrix of partial derivatives of
process moddil with respect to state, V be the Jacobian matrix of partial deriva-
tives off with respect to process noisegH be the Jacobian matrix of partial deriva-
tives of measurement modelvith respect tox, N be the Jacobian matrix of partial
derivatives oh with respect to measurement noiseAll the other notations remain

the same as described in sectif.1 The algorithm is given below.
e Time update

— Step 1: Project the state ahead
)/(\k_ = f(x/kjla 0)
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— Step 2: Project the error covariance ahead

Pk_ = APk_lAT + WKQM
e Measurement update

— Step 1: Compute Kalman gain

Ki = PeHT (HPCHT + ViRV

— Step 2: Update estimate with measurement
% =%+ Kic (z— h(%,0))

— Step 3: Update the error covariance

Py = (| — Kka) Pk_

Although the extended Kalman filter handles nonlinearityitsgar approximations,
the tracking errors increase as the nonlinearity incredsks the Kalman filter, it
still estimates the posterior density of the system-statetGaussian and therefore
does not track a system with non-Gaussian posterior welk pitoblem is solved

by particle filtering techniques, described in sectioh

4.4 Markov Chain Monte Carlo simulations

4.4.1 Markov Chain

Markov property of a process is the conditional independesfahe future states
of the process on the past states. According to the propbeyfuture state of
the system can be estimated given the current state and ttetmeasurement.
Mathematically, a stochastic processis a Markov chain in discrete time if for
everyn € N the probability of going from stateto statg is given by the equation
P X1 =] | Xo=lp, X1 =11,..., Xy =1 = P[Xo1 =] | Xy = in]. For a Markov

chain it is assumed that the initial distributid@ is known. Assume a finite set
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S={1,...,m} to be the values that a system can take antl;lee the probability
of going from state to j. A transition matrixT can be defined such thgt >
0V(i,j) € S andXjcspj = 1Vi € S This transition matrix gives the system

model for a Markov process.

4.4.2 Monte Carlo simulation

Monte Carlo simulation is a technique to approximate an etguevalue of a func-
tion using simulated random variables. &be a random variable on a set of values
Y with a pdfF (x) and letg (x) be a function of X. The expected val&gg(X)) =
>xey 9(X)F(x) can be approximated as a MC simulatigﬁ() = N2 9(x)
wherex; is chosen randomly using any distributi@ix). By the strong law of
large numbers al approachesco, the difference between the expected value and

the value approximated by Monte Carlo simulation approsceeo.

4.4.3 Importance Sampling for Monte Carlo simulations

The Monte Carlo estimatay,(x) of E(g(x)) can be thought of as a random variable.
The variance of the Monte Carlo estimator needs to be mirichfer decreasing
the estimation error. This can be done by choosing a suithétiebution to sample
the random variablX (defined in sectiod.4.2 from. The idea behind importance
sampling R3] is that certain values have bigger impact on Monte Carlorege
and by choosing these values frequently, variance of theat can be reduced.
This results in a biased simulation but results are weigtdedrrect for the biased
distribution. The weighWV; is the ratio ofg(X;) (true distribution) andy (X;) (im-
portance distribution) a;. One good choice for reducing variance on the estimate

is choosingy' (x) such thay' (x) > 0 andg (x) o| g(x) |.
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4.5 Particle filtering

The Kalman filtering algorithms estimate the posterior dgnsf the state to be
Gaussian. A Kalman filter also assumes the measurement amidbess noise to
be Gaussian. It is clear that these are highly restrictiveditmns for a process.
For processes with non-Gaussian pdfs the Gaussian essimaig prove unfit for
tracking. In such scenarios tracking can be done with garfiitering methods]]
which do not assume any of the above conditions. There arg waarations of the
particle filtering algorithms. This section describes thguential importance sam-
pling (SIS) algorithm based on Monte Carlo simulations (@x@d in sectior.4.2

with some of the problems associated with it and ways to shlese problems.

4.5.1 Sequential Importance Sampling (SIS)

The SIS algorithm1] is a Monte Carlo Method (explained in sectidnt.? based
on Bayesian estimation. The idea here is to represent armystiensity func-
tion p(Xox | z.x) with a set of random samples (particles) with associatedhtgi
(X W=, where{X,,.,i = 0, ... Ns} is the set ol random samples with weights
{Wh,i =0,...Ns}. The pdfp(xox | zik) is approximated ap(Xox | Zix) ~
SR W (X — X, ). For many processexx, | yi.n) cannot be expressed in an
analytical form. For such cases it is difficult to draw samsgtemp(x, | yi.n). This
problem can be solved with the principle of importance samgl7] (explained in
sectiord.4.3. Suppose|(X, | Yi.n) is a pdf from which samples can be easily drawn

andq(Xn | Yi.n) o< p(Xn | Yi.n)- The weights are then defined to be

Wk x p(Xn | yl:n)

0% | Vi) (#:5)
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For a sequential case, let the importance density be chodaatbrize as

Ad(Xo:k | Z1k) = A(Xoik | Xok—15 Z16)A(Xok—1 | Zisk-1) (4.6)
Using Bayes' rule given in equatiagh4, for a sequential case, we have

P(Xox | Z1:k) o< P(Zc | X)P(Xe | Xi—1)P(Xosk—1 | Zrk—1) (4.7)

Using equationg.5, 4.7, 4.7 we get

Pl PO | X POy | Zuic)
q(xb:k ‘ XIO:k—lJ Zlik)q(xl():k—l | Zlik—l)

This can be written as a recursive weight update equatioeviery sample,

w, = w_, P2 XJPO | X )
(X0 | X1+ Z1:)

Assuming the process to be a first order Markov process (evgalan sectiont.4.1)
the equation simplifies to equatign8 wherew, is the normalized weight of each

sample.

@ Rpe %)
e CAE Y (4.8)

For a process with Markov property, equatib® gives an approximation for the
posteriorp(x | z;x). For a Monte Carlo simulation d&¢; — oo the approximation

approaches the true posterior.

NS . .
PO | Zik) = D Wid (X — %) (4.9)

i=1

The SIS algorithm is given below

e Fork=1:t
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— Fori=1:Ns

+ Draw sampleq, from the importance density(x} | X, ;, %)

* Calculate weighw for every sample using equatidng

— End For
e Estimate the posterior densiyx | z «) using equatiod.9
e Estimate the moment of the tracked position at every tirapist

e End For

4.5.2 Degeneracy problem of SIS algorithm

A. Doucet ] shows that with limited number of particles the varianceha im-

portance weights can only increase over time. After a fevaiiens over time of
the SIS algorithm many particles (or samples) drop to négégveight. This is
known as the degeneracy phenomenon. Significant amounihgbwiation is de-
voted to sampling and updating these particles whose toitsh to the posterior
P(X | z1.x) is negligible. An approximate measure of degenerablds— m
wherew}, is the normalized weight calculated in equatibB M. Arulampalam []

describes two techniques to circumvent the degeneracylggnobl) choosing a

good importance density(.) and 2) resampling.

1. Choosing a good importance density
The optimal importance density which reduces the variamcthe weights
isq(X | X_,,z) = p(X | X_,%). But this solution works only in cases
where it is possible to sample fropix. | X ,,z). It is possible however to
have sub-optimal approximation to the optimal importaneesity. One such

approximation isq(X | X._;,z) = p(% | X_1). Substituting this equation
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in equation4.8we getwl, oc W,_,p(z | X). The use ofb(x | x_1) as the
importance density function is convenient because it sfireplthe weight

update equation. This approach is used in bootstrap fitj¢@n

. Resampling

Another approach to avoid the degeneracy problem is to nelsatine parti-
cles when the degeneracy approximadt drops below a certain thresh-
old Nr. The idea is to propagate particles with high weights to tagt n
iteration in time by eliminating the particles with low weéitg. A new set
X is created from the original sef by resampling (with replacemeni
times. This is done by constructing a cumulative distritmutiunction (cdf)
of the weights of particles. A patrticle is then selected gsiniformly dis-
tributed random numberdrawn fromU (0, 1). With this procedure, particles
with high weights get selected with higher probability themticles with low
weights. Sincau is uniformly distributed the new particles are weighted as
Nis. The details of the algorithm are given below. Although negbng helps
correct the degeneracy problem, it introduces anothed@molvhich is sam-
ple impoverishment. It duplicates particles with high weggbut this process
reduces the diversity of the sample-set. In fact, when tloegss noise is
small the effects of resampling are severe as the partehektd collapse to a
single point within a few iterations. Since the diversitypatths of particles is
reduced it is also difficult to get any smooth estimates ofoiths over time.

Resampling is used in Condensation algoritii]

Resampling algorithm[{x{(*,vﬂ(}tj = RESAMPLE{{XL,WL}:\I:SJ)

e Initialize the CDF:c; =0
e Fori =2 : N
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— Construct CDFL; = ¢ + W,
e End For
e Forj=1:Ng
— Generate a random numbgrfrom U (0, 1)
— Find smallest for which¢ > u;
— Setx =X,
— Setw} = 1/Ns

e End For
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Chapter 5

ISOMAP TRACKING WITH
PARTICLE FILTER

Tracking an object has several challenges. Some of theseasation of the ob-
ject, changing view of the object at each frame, scalinglustans, background
clutter and changing ambient light. The focus of this thésigacking a person
in an image sequence. A good tracker should be able to hamelganslational
motion, in-plane and out-of-plane rotations of a persoatefand the other chal-
lenges mentioned above. In this thesis, an algorithm iseptesl which can track
a person’s face in the presence of some of these challengeslsmestimate the
head-pose at each frame of the image sequence. The algoetiuines a training
set of a person’s face at various poses. Once the trainirig-aequired the dimen-
sionality of the training-set is reduced using a dimendigneeduction technique.
The reduced dimensionality allows a more compact and mghanirepresentation
of training data. This low-dimensional information canritiee used by a stochastic

tracking algorithm to track a person in an image sequence.

Isomap algorithm is selected over PCA, MDS and LLE to redbealimension-

ality of the training data because of its superior perforoeaftescribed in section



3.5 in reducing the dimensionality of face-data. In chapteGaussian (Kalman
filtering) and non-Gaussian (particle filtering) Bayesiaoursive techniques were
discussed. In an image sequence, the motion of a persordsamehits pose can
be very unpredictable. With background clutter, occlusiand lighting variations
it is a kind of process which is hard to model. Under such dima, assuming
the posterior probability density of the state (face-pasd)e Gaussian could very
well lead to large tracking errors. Patrticle filtering is sba as the tracking algo-
rithm because it does not assume the posterior densitybdistm of the state to be
Gaussian. In fact, it gives an approximation to the truegrastdensity of the state.
The tracker is based on the Condensation algoriththWhich uses resampling to
avoid the degeneracy problem explained in sectién2 It also uses the prior as
the importance density which makes the weight update emuatuch simpler. M.
Isard and A. Blake 0] demonstrate the ability of the Condensation algorithm to
track curves in dense visual clutter. ‘l[somap tracking vainticle filter’ algorithm

can be outlined in three steps:

1. Create a noise-free training set of the person’s faceg dffrine)
2. Use Isomap to reduce the dimensionality of the traininddsme off-line)

3. Run the patrticle filter to track the person in a test imaggisece using the
training data and the low-dimensional structure (coorgigarecovered by

Isomap (done on-line)

5.1 Training data

The training data should include the images of the persaesifat various poses.
Data should be dense enough to have a smooth variation irfguoisest results by

Isomap. There is no reason to include training images wiplame rotation of the
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Figure 5.1: Sample images from the training set of a perdweesl used to train the
tracker.

person’s face or varying ambient light. In-plane rotatiam de approximated by
rotating the face-templates. The variation in ambienttligdn also be handled by
the tracker by choosing a good weighting function. This &étpreducing the size
and complexity of the training set. When building a trainggg (since this is done
off-line), images can be made noise-free, i.e., all the fame-pixels in the image
can be made zero. Obviously, Isomap gives better results thleenoise is reduced.
The training data used for testing the algorithm has 145gpalg images of size
151 x 151 pixels. Few samples are shown in Figiré. These images include a

person’s head varying in up-down pose and left-right posé¢b-plane rotations).

5.2 Isomap of the training data

Isomap P5] of the training data is computed off-line as described ictisa 3.3.1

In this experiment, Euclidean distance (SSD) is used asisti@tte metric to com-
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pute distance between any two pair of images. It was seemé¢gtiborhood value

k ~ 2d (whered is the observed low-dimensionality of the training datajegi
good results for Isomap. Sum of squared distances (SSDe tascompute the
distance between the training images. Fidgutea shows that the residual variance
vs. dimensionality plot for the training data elbows at dirsienality of 3 which
means that the high-dimensional face-data can be wellsepted in 3 dimensions.
Figure5.2.b shows the arrangement of the points in 3 dimensions giyésdmap.
With the training data varying in up-down pose and the legftirpose, one would
expect Isomap to recover only 2 degrees of freedom but ivers@ dimensionality
of 3. The reason for this might be the symmetry of a face. A feea vertical axis
of symmetry but no horizontal axis of symmetry and with mahyhe intermedi-
ate face images missing and the data being sparse, it racavBmensionality of
three. When the images with head moving up were removed fnentraining data
Isomap correctly recovered the dimensionality of two. Tikiglustrated in Figure
5.4. In Figure5.2.b it can be seen that the 3D structure given by Isomap ressmbl
a tetrahedron. Isomap placed faces moving in each directi@eparate arms with
the face looking straight ahead placed at the center. Wiaddasinteresting to note
in Figure5.2.b and Figures.3is that the arms of the structure are almost linear.
Since all human faces have similar structure it can be asstina¢ Isomap would

give a similar result for similar training data of a diffetgrerson.

5.3 Particle filter algorithm

5.3.1 Condensation algorithm

The particle filtering algorithm used for this experimenbased on the Conden-
sation algorithm 10]. In the Condensation algorithm, the output of every itera-

tion (with measurement taken at tinleis a weighted set of particles denoted as
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Figure 5.2: (a) Plot of the residual variance vs. dimendignéor the training
data. It can be seen that the curve elbows at dimensiorthkty3. (b) The low-
dimensional structure recovered by Isomap from the highedisional data. It re-
sembles a tetrahedron.
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imposed to help visualize how the high-dimensioridl x 151 points are embedded
in 3D.
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Figure 5.4: Plot of the residual variance vs. dimensiopdtit the training data
with head moving from left to right and down. The images widatd moving up
were removed from the training data.

{st(”), n=1,.., N} with weightsr.”, representing the probability denstyx, | Z)
wherex; is the state of the system,is the measurement at timandz; is z;;. An
iterative process explained below is used to estimate #ie of the system at each
time step.

Iterate:

From old sample se{sfﬂ)l,m(f)l, " on=1,., N} at time stept — 1, construct a
new sample-se«{sﬁ”), W n=1,., N} for time t. Construct the'™ of the N

new samples as follows:
1. Resample Select a samplé(”) as follows:

(a) generate a random numbeg [0, 1] uniformly distributed
(b) find, by binary subdivision, the smallggbr which c"t_1 >r
(c) sets™ =5,
2. Predict by sampling fromp(x | s—1 = s;(”)). This is governed by the system

model which includes the deterministic drift and the staticadiffuse of the

samples”.
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3. Measure and weight the new position in terms of the measured featxres
asm" = p (zt | X = sE”)). Then normalize so that ;=" = 1 and store
together with cumulative probability z{sﬁ”), T ct(”)} whered? =0; o' =
¢!+ (n=1,...,N). Once theN samples have been constructesiti-

mate moments of the tracked position at time-step t as

5.3.2 Design of the patrticle filter

1. State vectorx
The state vector for this experiment is seven dimensiomed. dimensions of
X-y translation in the image, three dimensions given by gwnlap for out-
of-plane rotation, and one dimension each for in-plandimotand scaling of

the tracker, make up the state vector.

2. Initialization prior p(X)

An initialization prior should be known for the Condensatalgorithm. There
are various was to do it. A tracker can be manually initiaizethe first frame
with particles, with equal weights, randomly distributezhnthe person face.
Or a background subtraction method can initialize the x-gitpan of the
tracker in the first frame. Initialization of rotation paratars becomes easier
under the assumption that the person is facing the camehe ifirst frame.
The particles can be initialized randomly to have a rangecalesvalues. In

this experiment, manual initialization is used for the firame.

3. System model(g | X_1)
The system model has a deterministic component and a stacbampo-

nent. The transition matrix gives the deterministic congarwhile the pro-
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cess noise vector gives the stochastic component. Fortperienent the
system model is a linear stochastic difference equatioedas a constant
velocity assumption similar to the one used by Birchfiglfl [The process
noise is modeled as a Gaussian with constant mean and \attaocighout
the sequence. Now the interesting question is how to hamglea@t of head-
pose which is absent from the training data, in a test se@feibte answer
is, any such pose can be roughly approximated as an in-ptdagon of a

training template. This makes up for the missing poses iitrtheing data.

. Likelihood [z, | X,) measure

Every particle has a patch in the test image and a trainingletm associ-
ated with it. The image patch is extracted, based on thelatms, in-plane
rotation and scaling parameter values of the particle. Taieibhg template
is assigned based on the Isomap (out-of-plane rotationdotates of the
particle. Training template is taken to be the templateedb$o the particle
in the 3D Isomap coordinate system. Figiré gives an illustration of the
patch and the template associated with a particle. TheHiedl function

(weighting function) has 2 components : a) SSD and b) chadiétance.

(a) SSD:
The mask (background pixels = 0) of the training templatediad to
the image patch for computing the SSD between the two. Thiene
to minimize the measurement noise of the background piXéls.SSD
weight of a particle is calculated as the negative expoakaotithe SSD
between the training template and the image patch, connekspgto the
particle. This is illustrated in Figure.5.d.

(b) chamfer distance:

If only SSD is used to compute the distance between the tigiteim-
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plate and the image patch the weights become very sengitineise
(due to background pixels in the patch which could not be meddky

the training template). Also, the SSD distance is unsugtablhandle
any kind of ambient light variations. Changing lighting ditions can
be handled using a distance measure which would just metsids-

tance between the binary thresholded edges of the traiemglate and
the image patch. Two possible candidates to this distanesune are
Hausdorff distanced] and chamfer distance?]. For this experiment,
chamfer matching is used. Edge detection in the traininglata and
the training patch is done using Canny edge deteépr Figure 5.6

shows the results of Canny edge detection and chamfer tramsn a
training template and a test image. The chamfer-weight @fragbe is

calculated as the negative exponential of the sum of theyotaaf the
edge-detected training template and the chamfer transfbthe image

patch corresponding to a particle.

Weight of a particle is calculated as

W = (normalized SSD weight normalized chamfer weight2

5. State estimation Eg(x)}
The true state; of the person’s face can be estimated as the weighted mean
of all the particles. The weighted mean of all the parameajesss position,

pose and scale of the person’s face.

Figure5.7 shows the block diagram of ‘lsomap tracking with particléefil algo-
rithm for a single patrticle. It gives an overview of the sté@pshe algorithm. The
details of the processes within the blocks are explainedétian5.3.2 The results

of this algorithm on an image sequence are demonstratedjtets.
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Figure 5.5: (a) Image from the test sequence. (b) The imaph pasociated with
a particle. (c) The template closest to the particle. (d)denpatch with the mask
of the training template (background pixels = 0) applied.to i

(©) (d)

Figure 5.6: (a) Training template after Canny edge detectfb) Test image after
Canny edge detection. (c) The chamfer transform of (b). rftBde patch from
(c) corresponding to a particle. The chamfer weight is camegbioy finding the
distance between (a) and (d).
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Figure 5.7: Block diagram of ‘Isomap tracking with partidiker’ algorithm for a
single particle.
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Chapter 6

EXPERIMENTAL RESULTS

6.1 Effects of resampling

The resampling technique, discussed in sectié? is used to reduce the variance
on weights and to eliminate the weights that carry littl@mfation about the true
state of the object being tracked. Figufe$ and6.2 demonstrate the effectiveness
of resampling. When resampling is not used, majority of thdiples drift to re-
gions which carry very little or no information about the g@n’s head, within a few
iterations. These particles have low weights and congibaty little in estimating
the true posterior probability density of the person’s fpose, giving poor tracking
performance. In Figuré.1it can be seen that many low-weight particles drift away
from the face gradually. When resampling is used, most ofdiveweighted parti-
cles get eliminated at every iteration. Thus, most of theaieing particles provide
significant contribution to estimating the posterior dgnsi the system-state. In
Figure 6.2 it can be seen that resampling retains particles with higighte and
thus helps in reducing the variance of weights. It can be looled that when a
good importance density cannot be computed for a procesaming is a good

technique to reduce the effects of degeneracy of particles.



frame O frame 3

frame 11 frame 17

Figure 6.1: In the images, the blue dots show the particless& images show the
behavior of the particles in absence of resampling.
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frame O frame 10

frame 23 frame 35

frame 50 frame 60

Figure 6.2: In the images, the blue dots show the particlees& images show the
behavior of the particles when resampling is used.
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6.2 Tracking results

A patrticle filter with 1000 particles was used for trackingheltracker was tested
on an image sequence with the person’s head undergoindatiansand out-of-
plane rotation. Tracking results are shown in Figbi@and6.4. The vector inside
the circle, in the left-hand corner of the test images, iattis the head-pose. The
length of the vector is proportional to the amount of rotatad the head and the
angle indicates the pose. The tracker successfully tratietiead of the person
with a reasonably accurate estimation of the 3D pose. Tlh&drahandled the out

of plane rotation and the rapid translation of the persoeadth

54
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frame 3 frame 13

100 200 300 400 500 600 100 200 300 400 500 600

frame 23 frame 34

300 400 500 600

100 200 300 400 500 600 100 200

frame 45 frame 67

Figure 6.3: The blue square is the tracker. The vector irthieleircle at the top-left

corner gives the 2D out-of-plane rotation. In the circles tertical axis represents
the up-down pose and horizontal axis represents righptefe. The length of the
vector is proportional to the amount of rotation and the amgVes the pose. The
top-right corner of the images show the closest trainingplate. The tracking

results are continued in the next Figure.
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Figure 6.4: Tracking results continued from the previougiFe.
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Chapter 7

CONCLUSION

This study of dimensionality reduction techniques showed tsomap gives very
good results for nonlinear dimensionality reduction. Isgms an unsupervised
learning technique with the only input to the algorithm lgethe neighborhoo#.
One drawback for Isomap is if new training data is to be addelde original train-
ing data the whole of Isomap has to be computed again. If tiolslem is solved,
with the technique being unsupervised, training data cdmubd on-line with min-
imal starting knowledge of the data. This would be extrenuslgful because with
a few images a tracker can start tracking and building a newitig-set at the same
time with no user intervention. The study of particle filteyishowed that it is
expected to perform better than Kalman filtering when theégyas density of the
state cannot be estimated by a Gaussian. Another advaritagie@ a particle filter
is that if the particles run independent of each other theegysan be parallelized,
thus offering high computational speeds. The ‘Isomap traciith particle filter’
algorithm combines these two techniques and thus givesustatacking frame-
work. The algorithm not only tracks a person’s face in an iemsgquence but also
gives a good estimate of the pose of the person at each framgtethnique can

be extended to track any kind of a rigid object if its trainohgja is available.
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