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ABSTRACT 
 

 Over 500,000 bone graft procedures are performed each year in the United States.  

Bone grafting involves a surgical procedure to replace missing bone.  Problems can arise 

with donor and defect sites during and after surgery, sometimes resulting in poor clinical 

results.  The development and optimization of bone graft substitutes via a tissue 

engineering approach could markedly improve bone graft surgical outcome.  

Demineralized bone matrix (DBM), a bone graft material, is currently used in a clinical 

setting but has variable success rates. 

 The primary objective of the research presented in this thesis was to assess the 

cellular activity of D1 mouse stromal cells seeded on either partially demineralized bone 

matrix (PDBM) substrates or completely demineralized bone matrix substrates (CDBM).  

Before performing a cell-based experiment involving the varying levels of DBM, a study 

was performed to determine the optimal media conditions for osteoblast formation.  

Additives β-glycerophosphate and L-ascorbic acid were added to α-MEM media and 

cultured with D1 cells on DBM to assess the effects of these additives on the rate of 

cellular differentiation.  Significant differences in osteoblast activity were not noted 

between the two medium conditions. 

 The final study evaluated cellular activity at four specific time points over a 36 

day period after seeding D1 cells on DBM of varying demineralization levels.  Based on 

the assays performed at the four time points, it appears that the D1 cells on the PDBM 

fragments differentiated toward the osteoblast phenotype and the cellular fragments 

began to mineralize between 24 and 36 days after initiation of culture, while the cellular 
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CDBM showed minimal potential for mineralization over the course of the study.  

Additional studies with more frequent time points are necessary to gain a better 

understanding of the cellular activity of the D1 cells on the DBM. 
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PREFACE 
 

Hundreds of thousands of surgeries are performed each year to treat orthopedic 

defects in spinal surgeries and in the repair of maxillofacial defects, cranial defects, non-

union fractures, tumor removal sites, and in trauma restoration.  Autografts are the 

traditional bone graft but the related surgeries are associated with problems such as donor 

site morbidity, pain, and infection.  As a result, this research is geared toward designing a 

suitable bone graft substitute that eliminates problems associated with autografts but is as 

effective as an autograft in inducing bone formation to fill voids in bone tissue. 

This thesis provides insight into a tissue engineering approach to developing a 

novel scaffold for bone grafting.  A specific form of allograft is studied during this 

research - demineralized bone matrix (DBM).  Although DBM products are used 

clinically, variable success rates have been reported.  It is believed that some of this 

variability may stem from inconsistent processing factors of the scaffold.  The research 

presented here focuses on determining a medium cocktail which enhances osteoblast 

formation and determining the effects of seeding cells on DBM of varying 

demineralization levels. 

To meet the objectives of this research, two primary studies were performed.  The 

first study evaluated the cellular activity of D1 mouse stromal cells seeded on partially 

DBM scaffolds over a 24 day time period.  The activity of cells cultured in two separate 

medium conditions were compared to each other to determine which allowed the 

differentiation of the cells towards osteoblasts.  The first medium cocktail contained α-

MEM with two osteogenic supplements, β-glycerophosphate and L-ascorbic acid.  The 
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second medium contained α-MEM but no osteogenic supplements.  Once the most 

applicable cocktail was discovered in the first study, the cellular activity of D1 cells 

seeded on partially demineralized and completely demineralized bone scaffolds was 

observed.  The cellular activity of cells was observed over time and histological analyses 

provided insight into initial mineralization and mineralization that occurred during the 

course of the study.  The work presented represents preliminary research toward the 

consistent development of demineralized bone matrix as a bone graft substitute for 

autografts.  The results of this research can be used to design and implement future 

studies. 
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AN IN VITRO EVALUATION OF DBM AS A TISSUE ENGINEERED 
SCAFFOLD 

 

LITERATURE REVIEW 

Introduction 
 

Approximately 500,000-605,000 bone graft surgeries are performed each year in 

the United States and approximately 1,000,000 are performed worldwide [1-4].  Bone 

grafts are used to repair bone defects in orthopedics, dentistry, and neurosurgery.  More 

specifically, bone grafts are used in spinal surgeries and in the repair of maxillofacial 

defects, cranial defects, non-union fractures, tumor removal sites, and in trauma 

restoration.  In humans, bone is one of the most frequently transplanted tissues [5].  In 

2001, the global bone graft market was valued at over one billion dollars and bone graft 

product sales neared $15 billion [4].     

 

Normal Bone Physiology 
 

Bone is an important tissue in that it provides protection and structural support to 

the body.  Bone is also involved in the metabolism of minerals and is the primary site for 

the synthesis of blood cells.  Bone maintains its shape and strength via a remodeling 

process [4].  Normal bone is an organized mineralized structure composed of a matrix 

and a mineral phase.  Amorphous calcium phosphate is the main component of the 

mineral phase [6] while the matrix portion is composed of type I collagen and osteoid [6].  

Osteoid is an organic protein substance, largely composed of type I collagen, that when 



 2 

deposited is considered to be unmineralized bone matrix [7].  When the osteoid is 

converted from the organic phase to the inorganic phase, mineralization is thought to 

occur.  Mineralization of bone increases the density but not the volume of the bone [8].  

The exact mechanism of mineralization is still unclear. 

Bone is modeled during the developmental and growth phases of development.  

Modeling is achieved by the removal of bone from one site followed by the deposition of 

new bone at another site while remodeling occurs when mature bone is replaced with new 

bone.  Over a 10 year span, the entire human skeleton is thought to remodel [8].  

Osteoclasts and osteoblasts work together as a unit to remodel bone [8].  Bone is removed 

by osteoclasts via acidification and proteolytic digestion during the process of resorption 

[8].  Osteoblasts then move into the area where bone was removed and secrete osteoid.   

Osteoblasts produce type I collagen as well as many proteins such as osteocalcin, 

osteonection, osteopontin, bone sialoprotein, and fibronection [8].  Osteoblasts regulate 

calcium and phosphate concentrations so that hydroxyapatite is formed.  The process of 

mineralization of bone is thought to occur once hydroxyapatite is deposited.  Osteoblasts 

also produce large amounts of alkaline phosphatase (ALP), which appears to also play a 

large role in bone mineralization [8, 9].   

 

Current Bone Grafts 

Autologous bone grafts constitute tissue that is removed from the patient and then 

implanted back into the same patient.  Autografts are considered the current gold 

standard, because the tissue is a perfect match to the patient, there is minimal chance for 
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an immunogenic reaction [10], and they have the highest success rate of clinically 

available bone grafts [11].  Autografts contain three essential bone properties that support 

and induce bone formation:  osteoconductivity, osteoinductivity, and osteogenecity [2, 

12].  The osteoconductive property of a bone graft refers to the graft’s ability to provide 

structural support and allow the in-growth of blood vessels and bone cells [13].  The 

ability of a bone graft to induce bone formation via recruitment of precursor osteoblastic 

cells is termed osteoinduction.  When bone grafts are osteoinductive, it is thought that 

mesenchymal cells are recruited to the scaffold.  After reaching the scaffold, the 

mesenchymal cells have the ability to differentiate into osteoblasts [13].  Osteogenecity is 

the ability of the bone graft to induce bone formation, due to the presence of precursor 

stem cells that can differentiate and produce bone directly [14, 15].   

Although autologous grafts are the gold standard in bone grafting, there are many 

drawbacks to this type of graft and affiliated procedure.  A limited amount of harvestable 

bone is available for autograft procedures; the primary donor site is the iliac crest with 

less frequently tapped donor sites being the distal femur or the proximal tibia [1, 16].  

Although the iliac crest is usually a good source of quality cancellous bone, the harvested 

bone can be difficult to shape since the retrieved bone has variable shape and thickness 

[2, 17].  Patients who have already had a bone graft surgery may not be good candidates 

for future autograft procedures.  Two surgery sites are required when an autologous bone 

graft is used, one at the donor site and one at the implantation site.  The donor site can be 

painful, undergo morbidity, as well as become infected, suffer from increased blood loss, 

have a slow return to normal function [4, 15, 18, 19], and have increased susceptibility to 
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infection.  These disadvantages can lead to higher healthcare costs and longer recovery 

times for patients [12].   

When an alternative to autografts is warranted, allografts can be used instead.  

Allografts involve the transplantation of tissue from one member of a species to another 

member of the same species.  Currently, cadaver allografts are the most common 

alternatives used in place of autografts [19].  Unlike the autograft, there is an abundant 

supply of bone that can be harvested for an allograft procedure [20].  Allografts allow the 

patient to undergo only one surgery site which can lower the costs involved in the 

procedure, shorten the hospital stay, and eliminate the problems associated with a second 

surgical site that evolve from the retrieval of bone for an autograft.   

Allografts also have limitations; they are osteoconductive, but not osteoinductive 

[21, 22].  Allograft bone cannot always initiate osteogenesis; therefore, autograft tissue 

may be used in conjunction with the allograft tissue [20].  This method re-introduces the 

problem of a second surgery site that clinicians try to avoid by using allografts instead of 

autografts.  Since the donor bone is explanted from a cadaver, there is a chance of disease 

transmission from the donor to the patient [19, 23].  Immunological reactions can cause 

decreased bone formation and can result in immunorejection of the graft [24].  An 

allograft can also be hard to shape to conform to a bone defect [23].  Each bone graft site 

is different, therefore is it necessary that a bone graft product be able to readily conform 

to the damaged area.   
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Tissue Engineering 

Tissue engineering was defined by Langer and Vacanti as an “interdisciplinary 

field that applies the principles of engineering and life sciences toward the development 

of biological substitutes that restore, maintain, or improve tissue function or a whole 

organ” [25].  There are three general strategies for designing tissue engineered devices 

[25].  The first strategy involves isolating cells from the patient or designing and 

constructing cell substitutes and then manipulating them to perform a specific function 

before being placed back into the patient [25].  An advantage to this type of procedure is 

that surgical procedures are eliminated and that only cells that supply a specific function 

are replaced.  One drawback to cell isolation is immunological rejection and failure of the 

cells to perform their specific function once placed into a patient [25].  The final two 

strategies for tissue engineering, as described by Langer (1993), are the utilization of 

tissue-inducing substances and the placement of cells on or in matrices.  Common 

matrices include natural materials and synthetic polymers.  The success of tissue 

engineering necessitates understanding tissue behaviors such as function and 

regeneration.   

The aim of bone tissue engineering is to design and produce a bone substitute that 

is comparable or superior to an autograft.  As the number of bone graft procedures 

increase, approximately 7-10% each year since 2001, the bone graft market expands as 

does the need for alternative products that do not have the drawbacks associated with 

traditional autografts and allografts [16].  The goal of using bone grafts is to allow a bony 

defect to be filled with bone similar to that of natural tissue by promoting bone formation.   



 6 

 

 

 
Figure 1 An example of tissue engineered bone generation. 

A biopsy is removed bone from the patient (or donor in case of an allograft).  Cells are 
isolated from the harvested tissue and constructed into a 3-D matrix.  Growth factors and 

the isolated cells are added to the 3-D matrix and cultured to form a suitable implant.  
The scaffold is then placed into the patient [13, 26]. 

Patient

“””””””]=[

Scaffold + cells
+ growth factors

Construct 3-D
matrix

Isolate and
expand cells

Biopsy/cell
source

Culture
Scaffold

Implant scaffold
using a non-
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method
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Several criteria have been defined by researchers and clinicians as ideal properties 

of tissue engineered bone grafts.  Tissue engineered bone grafts should be free of 

problems that are associated with autografts and they should shorten recovery times for 

the patient [16].  Bone grafts should be osteoinductive, osteoconductive, and osteogenic 

[27].  The scaffold (used interchangeably with matrix in this thesis), should be easily 

sterilized without the reduction of mechanical or physical characteristics [28].  Ideally, 

bone graft scaffolds should be biocompatible, absorbable or degradable, highly porous, 

similar in structure to natural bone, cost-effective, easily manufactured as a commercial 

product, and easy to handle [2, 16, 28-30].  It is not clear whether or not the scaffold need 

have mechanical properties similar to natural tissue.  Some researchers postulate that this 

point is not necessary because the primary function of the scaffold is to support bone in-

growth, while others believe it is to provide a mechanically stable environment [28].   

 

Demineralized Bone Matrix 
 

Allograft demineralized bone matrix (DBM) may be harvested from a cadaver 

and, after processing, transplanted into another patient.  DBM is prepared by decalcifying 

bone particles to produce an organic matrix which contains collagen and proteins [15, 

19].  The mineral phase is removed by chemicals that chelate or solubilize the 

mineralized phase [31].  Ethylenediaminetetraacetic acid (EDTA) is an example of a 

chelating agent that researchers use for demineralization.  The drawback to the use of 

EDTA is that it leaves the matrix devoid of osteoinductive factors [31].  In general, it is 
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thought that acid solubilization may weaken the overall matrix [31].  HCl, another 

demineralization agent used by researchers, leaves an osteoinductive matrix [31].   

Once implanted into a bony defect in a living body, a successful DBM graft will 

stimulate bone formation, likely because the organic matrix is preserved during 

demineralization and the low molecular weight proteins remain in the matrix [19, 32].  

These proteins become more accessible as the mineral phase is removed from the bone 

[2].  Bone morphogenetic proteins (BMPs) and other noncollagenous proteins are 

believed to recruit and stimulate mesenchymal cell progenitors to differentiae into 

osteoblasts [32, 33].  It is believed also that DBM contains transforming growth factor-

beta, osteogenin, insulin-like growth factor, and fibroblast growth factor; all of which are 

thought to be involved, either directly or indirectly, in the bone healing cascade [34].   

Demineralized bone matrix was reportedly first used in 1889 when Nicholas Senn 

reconstructed bony defects with decalcified oxen tibia [14, 35].  Following this initial 

discovery, DBM did not gain the interest of many researchers and clinicians [14, 19, 35] 

until Urist implanted acid demineralized bone into extraskeletal sites, resulting in the 

development of bone ossicles (1965).  Two years later, Dubuc and Urist showed that even 

when bone fragments are surface decalcified, bone induction occurs [36].  The bone 

induction principle is the manner by which new bone is formed by the attraction of 

mesenchymal stem cells (MSCs) but not by recalcification of the implanted bone graft.  

In the same in vivo study, it was demonstrated that prolonged exposure of bone fragments 

to HCl, saline and 70% ethanol causes the bone induction principle to be void.  It was 

also seen that the surfaced demineralized bone fragments, which were demineralized in 
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0.5 N HCl for 1-2 hours, had a larger amount of new bone formation than the completely 

demineralized bone fragments which were in 0.5 N HCl  for 1 week [37].  It has been 

suggested that this outcome might be caused by a high number of macrophages and giant 

cells destroying the completely demineralized bone graft.  Dubuc and Urist also suggest 

that completely demineralized bone fragments might allow bone formation via the bone 

induction principle more rapidly than what is desired [37].  The theory proposed by 

Duboc and Urist about completely demineralized bone fragments was later corroborated 

by Shih in 2005 when he suggested that the mineral in partially demineralized bone may 

dissolve slowly, allowing a slow and steady release of BMP’s, while CDBM released the 

BMPs at a faster rate [38].  It was noted in the 1960’s that when demineralization factors 

such as the exposure time, the ambient temperature, and the concentration of HCl were 

controlled there was consistent osteoinduction by the decalcified bone [39].  In 1970, 

Urist and Strates reported, in a study involving implantation of DBM in rabbits, that the 

amount of demineralization was directly proportional to the amount of bone formation.  

In separate studies in the 1960’s and 1970’s, it was demonstrated that diaphyseal bone 

from the humerus, femur, tibia, and the fibula showed high levels of osteoinduction while 

other soft tissues such as the pelvis, scapula, and all cartilage (except costal rabbit 

cartilage) showed little to no osteoinductive properties [39].  In 1979, Urist discovered 

BMPs, which are considered the DBM’s main bone induction agent [39].  Zhang reported 

in 1997 that bone decalcified to a 2% residual calcium level had a higher amount of 

osteoinductivity than fragments with either higher or lower amounts of residual calcium.  

Bone fragments were demineralized in 0.5 N HCl for 180 minutes to reach this level (2%) 
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of residual calcium.  It was also noted that as the residual calcium level decreased from 

32.7% to 2%, the osteoinductivity increased in the in vivo model studied.  As the residual 

calcium level decreased below 2%, the level of osteoinductivity was lower than that 

observed of the DBM fragments with 2% residual calcium.  DBM has also shown 

promising results clinically.  In 1999, Russell and Block evaluated results from 21 

clinical cases in which DBM was used as a bone graft and reported that 80% of these 

cases had successful outcomes [21].   

DBM can be loaded with other products in order to maximize bone formation.  In 

2001, Gitelis and coworkers showed that 42 out of 44 bone repair patients had greater 

than 80% bone repair when a graft composed of DBM and calcium sulfate was used [14].  

Four years later, Mauney seeded bone marrow stromal cells (BMCs) on DBM of various 

demineralization levels.  The results showed that fragments with partially demineralized 

bone (PDBM) had the highest frequency of bone formation when implanted into athymic 

female mice, while fully demineralized and fully mineralized bone fragments showed the 

same frequency of bone formation, but lower than that of the PDBM [33].  Mauney also 

suggested that when bone is over demineralized the osteogenic factors are removed and 

the hydroxyapatite nucleation sites, which are essential for new bone formation, may be 

depleted [33].  In 2005, Thomas reported that while using an in vitro model comparing 

surface demineralized, partially demineralized, and completely demineralized bone 

fragments, no difference in the cellular activity between the fragment types was observed, 

although osteoblast formation was noted on all substrates [13].  This observation may be 
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attributed to the procedures that were followed or because the in vitro study that was used 

was not accurate enough to obtain results similar to those received in in vivo studies.    

DBM is successful because it contains osteoinductive and osteoconductive 

properties.  DBM is biocompatible, biodegradable, cost effective, and readily available 

[18, 40, 41].  DBM stimulates revascularization quickly, allowing bone formation in a 

timely manner [42].  Urist reported that when bone fragments were decalcified in 0.5 N 

HCl and implanted into an extraskeletal site, bone formation consistently occurred 25 

days after the operation [43].  The demineralization process destroys antigenic substances 

that are present in the bone [40, 41].  Pathogens are likely also destroyed during the 

processing of the DBM [24]; one manufacturer reported that in 1.5 million procedures 

involving one type of DBM, there were not any reported cases of infectious diseases 

transmission [42].  A large tissue bank with over 20,000 donors also reported no disease 

transmission [42].  These statistics suggest that DBM may provide a superior bone graft 

substitute as compared with traditional allografts because DBM is less likely to invoke an 

immune response. 

 

Mechanism of Action 
 

It is believed that DBM does not recalcify when implanted into muscle; rather, the 

DBM produces new bone via induction [36, 44].  Bone induction leads to the 

development of lamellar bone as well as the recruitment of new marrow cells [36].  The 

bone induction process that occurs in response to implantation of DBM can be broken 

down into four events [39].  Although the exact timing of these events varies between 
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studies, the general timing and order of the mechanism is similar.  After the inflammatory 

phase is initiated on Day 1 following implantation of DBM, MSCs migrate into the 

matrix within 2 days of implantation during this initial event.  Event 2 occurs between the 

2nd and 18th days, when the MSCs differentiate into giant cells and chondrocytes [39, 45].  

The third event involves the development of cartilage in poorly vascularized areas 

between Days 8 and 20 and the formation of woven bone in vascularized areas of the 

matrix between the tenth and twentieth days [39].  Calcification of the cartilage matrix 

begins by Day 11 or 12 and is subsequently followed by chondrolysis (dissolution of 

cartilage) [45].  The cartilage tissue is eventually replaced by osseous tissue [45].  The 

final event includes the production of bone marrow between Days 20 and 30 [39, 46].   

 

Limitations of DBM 
 

It has been reported that clinical results describing DBM application have been 

highly variable.  One possible reason for failure is that the graft material causes an 

inflammatory response which accelerates graft degradation and subsequently leads to 

premature degradation and failure of the graft [47].  It is also believed that the non-

uniformity in the processing of the DBM by bone banks and commercial suppliers leads 

to variable clinical results [2, 12, 46, 48].  DBM is denatured at temperatures above 45°C 

so any processing technique which causes an increase in temperature above 45°C can 

have detrimental impacts on the overall ability of DBM to induce bone formation [41].  

The osteoinductive and osteogenic levels of DBM may be affected by the donor gender, 

donor age, medical status of the donor at death, length of time before the bone is 
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harvested from the donor, implantation site, size of the bone fragments, geometry of the 

bone fragments, amount of demineralization, and the storage conditions [42, 48-51].  It is 

also possible that the osteoinductivity levels of DBM vary between species which would 

explain why the success levels in humans and animals differ [50].  

Sterilization procedures can also affect the osteoinductive properties of DBM.  

The most common methods researched include ethylene oxide (EtO), autoclave, and 

gamma radiation.  EtO can react with water and chloride ions to form a toxic compound, 

ethylene chlorohydrin (ECl) [47].  This reaction can occur if the graft material still 

contains residual ethylene oxide components after sterilization; however, exposure to 

vacuum minimizes this risk [24].  DBM should not be autoclaved before implantation 

because the osteoinductive potential will be destroyed [39].  Gamma radiation has shown 

that even when it is used to sterilize DBM, the DBM is still viable although some believe 

that new bone formation is dependant on the dose of gamma radiation [24, 39].  Ethanol 

is a disinfectant, not a sterilant, because it does not kill spores and certain viruses [39].  

Therefore, EtO and gamma radiation are considered to be the most effective DBM 

sterilants.   

The non-uniformity of processing bone grafts, the donor status at the time of 

harvest, the size and shape of the bone graft, the amount of demineralization and the 

sterilization procedures all have the ability of affecting the clinical outcomes of the bone 

graft [22].  Schwartz studied demineralized freeze-dried bone allografts (DFDBA), with 

fragment sizes of 200-500 microns, from six bone banks to determine their ability to 

induce bone formation [50].  Fragments from select bone banks demonstrated 
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osteoinductive properties while DBM from other bone banks did not.  Testing of two 

different batches from the same bone bank showed high variability, where one set of 

DBM showed osteoinductive tendencies while the other did not [50].  This study showed 

that the different processing procedures employed by bone banks affects the 

osteoinductive properties of DBM, and that DBM from the same bone bank also differs 

in its ability to induce bone formation [50].  It has also been suggested that the bone 

fragment processing variables produce far greater widespread distribution in the clinical 

outcomes of DBM than can be attributed to the bone source [22]. 

As bone particles undergo demineralization, they lose some of their structural 

strength as the mineral phase of the bone is removed [2].  Depending on the form of 

DBM used, the DBM can be hard to handle and place into a bone defect site [19].  When 

used as a powder, DBM has a tendency to migrate from the graft site due to bleeding 

[19].  To minimize these problems, DBM is often supplied as a gel, a putty, flexible 

strips, a moldable paste with bone chips, or an injectable bone paste [2].  The 

osteoinductive properties of DBM is enhanced in clinical and research settings by 

creating a gel from bone chips with the addition of either glycerol, hyaluronic acid, or 

poloxamer 407 [19].  Bone marrow cells seeded on DBM appear to accelerate bone 

healing in rats. 

Current research methods are expensive and use many in vivo studies.  Until 

recent years, bone tissue engineering has focused on in vivo models and, to a lesser 

extent, in vitro models [52].  In vitro models can be used to screen implants before 

insertion into an animal and to optimize conditions for bone tissue engineering 
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applications [52].  In vitro models are also used to evaluate the effects of various implant 

properties, such as scaffold composition and architecture, cell-seeding density, and length 

of culture on cell growth and development [52].  In vivo testing explores the overall 

biocompatibility of the implant material.  There is a need to design and implement in 

vitro models for bone tissue engineered implants that accurately resemble the in vivo 

environment.  Such models would help optimize constructs before testing in animals, 

which would reduce the cost and number of animals needed for in vivo studies.  

Currently, there is not an accurate in vitro model that can be used in studies involving 

DBM to predict in vivo behavior.   

 

Research Aims 
 

Currently, DBM is a solution to problems associated with autografts and 

allografts in a clinical setting [24].  DBM has been used successfully in clinical surgeries 

such as revision arthroplasty, spinal fusion, non-union fractures, dental augmentation, 

craniofacial defects, joint surgery, and as a graft substitute [19, 22].  Although DBM is 

used increasingly each year, it is not an optimal autograft bone substitute due to 

variability in the clinical success rate of the DBM related procedures.   

As the need for alternatives to autografts and allografts continue to increase, the 

need to optimize tissue engineered grafts also continues to increase.  Since processing 

factors contribute highly to the variability in the success rate of demineralized bone 

matrix products, it is vital that research is completed to determine the effects these factors 

have on the ability of DBM to stimulate bone formation.   
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The goal of this research was to perform an in vitro analysis to determine the 

effects of cellular activity when cells are seeded on demineralized bone matrices of 

varying mineralization levels.  A protocol previously used by Thomas [13] was employed 

to defat bone fragments in a mixture of chloroform and methanol, demineralize the 

fragments in 0.5 N HCl, lyopholize the fragments, and sterilize them in ethylene oxide.  

The bone was seeded with cells and the cellular activity was observed.  A preliminary 

study was completed to determine if additives that were added to the media for in vitro 

studies involving DBM, specifically L-ascorbic acid and β-glycerophosphate, improve 

the ability of the cells to differentiate towards osteoblasts.  This study was completed by 

comparing partially demineralized bone seeded with cells with two types of media: media 

containing the differentiation additives and media without these additives.  The overall 

objective of the research was thus to determine the effects of a specific processing factor, 

the level of demineralization of the bone fragments.  The cellular activity of cells seeded 

on partially demineralized bone fragments were compared to the cellular activity of bone 

fragments that were completely demineralized.  All other processing factors remained the 

same during this study.  
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MATERIALS AND METHODS 
 

Two studies were performed in order to meet the specified objectives of this 

research.  The first study entailed seeding cells onto partially demineralized bone 

fragments and studying two medium conditions.  A second study was performed to 

evaluate the effects of the demineralization level on cellular activity over time, after 

development and optimization of the methods for demineralization of the bone fragments 

and analysis of the cell culture between the two medium conditions,.  In both studies, 

microscopic images were captured to assess cellular attachment, real-time quantitative 

testing was carried out to gain an overall understanding of the metabolic activity of the 

cells in culture, and post-study testing was conducted to monitor differentiation of the 

cells and the mineralization of the bone.  The expression of osteoblastic genes in the cell 

culture was monitored in the final study.   

 

Evaluation of Media Cocktails 

 
 The purpose of the first phase of this research was to examine the effects of 

osteogenic supplements added to medium to culture cells seeded on DBM.  DBM is 

synonymous with scaffold for the rest of this publication.  Substrate preparation was 

modified from a previous protocol [13].  The cell culture was evaluated to determine if 

osteogenic supplements affect the activities of cells seeded on DBM.   
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Bone Matrix Preparation 
 

A modified version of Urist’s protocol [13] was used to defat and demineralize 

bovine bone.  Diaphyseal cortical sections of bovine femurs were obtained from two 

freshly slaughtered cows from the Clemson University Meat Lab (Clemson, SC).  Cow 

carcasses were stored at approximately 2.2ºC for 14-21 days before the femurs were 

removed.  Once the femurs were obtained, tissue was removed from the diaphyseal 

section and then frozen at -80ºC.  A total of two femurs were obtained from two cows on 

separate processing dates.  The bone was sectioned with a band saw and cut into pieces 

approximately 1 cm x 1 cm x 2 cm (Delta Machinery, Jackson, TN) and then frozen at -

80ºC.  Sectioned bone from two cows was added to an A 11 basic Analytical mill (IKA® 

Works, Wilmington, NC) to grind the bone.  Fragments in the range of 0.86 - 1.91 mm 

were collected using a Cellector® Tissue Sieve System (PGD Scientifics, Frederick, MD) 

with mesh screens of size 20 and 10, respectfully.  A total of 26 mL of ground cortical 

bone was collected. 

Bone fragments were added to a glass bottle containing a defatting solution which 

consisted of a 3:1 volume of a chloroform/methanol solution (58.5 mL of chloroform 

(Acros, NJ) and 19.5 mL of methanol (Fisher Scientific, Fairlawn, NJ)).  The glass bottle 

was sealed with a top and the contents were stirred at 4ºC for two hours.  The spent liquid 

was removed and 58.5 mL fresh defatting solution was added to the glass bottle and the 

process was performed a second time.  After the second removal of the defatting solution, 

the bone fragments were washed in one volume (26 mL) of 100% ethanol for 30 minutes 
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at 4ºC; the ethanol was then removed and the fragments were placed in a clean glass 

bottle and stored at 4ºC for approximately 11 hours.   

The bone fragments were demineralized in ten volumes of 0.5 N HCl (260 mL) 

(Fisher Scientific) at room temperature.  The solution was stirred continuously at 40 

minute intervals.  Stereomicroscopy was performed to determine the level of 

demineralization after each 40 minute cycle using an EMZ stereomicroscope (Meiji 

Techno, San Jose, California).  Digital images of bone fragments were captured using a 

SPOT INSIGHT digital color camera and software (Diagnostic Instruments, Sterling 

Heights, MI) and analyzed with Image-Pro Plus 4.5 Software (Media Cybernetics, 

Bethesda, MD).  The remaining fragments were washed with large volumes of distilled 

water to neutralize the remaining acid and to remove any mineral residue.  Partially 

demineralized bone fragments (PDBM) were obtained following two 40 minute acid 

cycles.   

A negative control (NDBM) was prepared by adding approximately 5.5 mL of 

PDBM to 40 mL of guanidine hydrochloride (GnHCl) in 50 mM Tris buffer (pH 7.4) 

(both from Sigma, St. Louis, MO) to inactivate the osteoinductive proteins.  The solution 

was stirred at 4ºC for 16.5 hours and then rinsed in distilled water at room temperature.   

The activity of the osteoinductive proteins in the bone fragments was preserved 

by lyophilizing the fragments [36, 53] with a BenchTop “K” Series freeze dryer (VirTis, 

Cardiner, NY).  The bone fragments were sterilized at room temperature in a 12-hour 

ethylene oxide (EtO) infiltration cycle in an AN74i sterilization chamber (Andersen 

Products, Haw River, NC) followed by two hours of degassing in the same chamber.  The 
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samples were placed in a dessicator for 57 hours under vacuum (500 mm Hg) until 

conditioning.  

 

Cell Seeding 
 

One day prior to cell seeding, the sterilized bone fragments were conditioned in 

sterile 50 mL centrifuge tubes to ensure all residual HCl was removed.  The fragments 

were washed twice in 10 minute intervals in sterile phosphate buffered saline (PBS) 

(Sigma).  The wash was immediately followed by five 30-minutes rinses and one 12-hour 

rinse in Minimum Essential Medium (α-MEM) (Invitrogen, Carlsbad, CA) supplemented 

with 10% fetal bovine serum (FBS) (Mediatech, Herdon, VA) and 1.0% Antibiotic-

Antimycotic (Invitrogen).  This supplemented medium will be denoted as α-MEM-C.  

The medium contains phenol red which changes color with change in local acidity.  The 

medium will appear orange to yellow as the pH decreases 

While the conditioning process was conducted, twelve tissue culture grade 24-

well plates (Costar, Corning, NY) were coated with Sigmacote® (Sigma) to form a 

hydrophobic surface on the bottom of each well.  The plates were left to dry in a sterile 

hood for two hours.  Days 4, 13, and 24 were selected as time points at which to monitor 

changes in cell differentiation.  Four 24-well plates were set up per time point; therefore, 

a total of 12 plates were used for the media study.   

After the conditioning cycle was completed, fresh medium was added to each set 

of bone fragments.  The tips of glass pipets were modified with a band saw to allow a 

wider tip for bone fragment transfer.  The modified EtO sterilized pipets were used to 
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transfer 0.1 mL aliquots of bone fragments to corresponding wells, as portrayed in Figure 

2.  One mL of fresh α-MEM-C was then added to each well.  The well plates were placed 

in a sterile hood overnight.  

Osteogenic supplements consisting of 10 mM β-glycerophosphate and 50 µg/mL 

ascorbic acid (both from Sigma) were added to α-MEM-C to form α-MEM-M.  The spent 

media was aspirated from the well plates on the day of cell seeding, and replaced with 1 

mL of either α-MEM-C or α-MEM-M, as displayed in Figure 2.  Multipotent mouse 

marrow stromal cells (D1’s) (#CRL-12424, ATCC, Manassas, VA) were seeded into 

each well at a density of 3 x 105 cells/well at passage 33.  The negative control group 

received bone fragments and medium, but no cells.  All well plates were placed in an 

incubator under standard conditions of 37ºC and 5% CO2 on an orbital plate (IKA® 

Works), shaking at a speed of approximately 50 rpm.  The day of cell seeding was 

denoted as Day 0 of the study.  The media was changed on Days 2, 4, 6, 8, 10, 12, 13, 15, 

17, 19, 21, and 23 during the 24-day study.   
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PDBM
α-MEM-M 

PDBM
α-MEM-C 

NDBM
α-MEM-C 

PDBM
α-MEM-M 

PDBM
α-MEM-C 

NDBM
α-MEM-C 

D1 acellular

1 plate/time point use for BCA, ALP, then calcium assays

1 plate/time point for cell viability

D1 acellular

Total of 6 plates prepared with this layout

1 plate/time point for histology
Total of 6 plates prepared with this layout

1 plate/time point for gene expression

1 Day 24 plate used for lactic acid/glucose and Alamar Blue™ for all time 
points

α-MEM-M and bone fragments

α-MEM-C and bone fragments  
 
 

Figure 2 Plate and media set-up for the media study 
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Qualitative Microscopy 

Cell Viability 
 
 A LIVE/DEAD® Viability/Cytotoxicity kit (Molecular Probes, Eugene, OR) was 

employed according to the manufacturer’s protocol to analyze the cells on the bone 

fragments and to determine if the media conditions affected the viability of the cells on 

Days 4, 13, and 24.  Working solutions were formed by adding 20 µL 2 mM Ethidium-

homodimer-1 (EthD-1) and 5 µL of 4mM calcein AM to 10 mL of sterile PBS in a sterile 

15 mL centrifuge tube.  All bone fragments specified for this assay were moved to fresh 

sterile 24-well plates and then rinsed in sterile PBS to remove any residual medium.  The 

PBS was aspirated and one mL of the working solution was added to each well.  The 

plates were incubated for 45 minutes at room temperature in a place void of light.  

Images were captured using an Axiovert 135 microscope (Zeiss, Thornwood, NY), a 

ProgRes™ C10Plus digital color camera and ProgRes Capture Basic 1.2 software (both 

from Jenoptik, Jena, Germany).  The images were analyzed with Image-Pro Plus 5.1 

Software (Media Cybernetics).  The cells were fluorescently labeled using the calcein 

AM and ethidium homodimer dyes in the kit and following the manufacturer’s protocol.  

Live cells retain a dye that produces bright green fluorescence (excitation and emission of 

495 nm and 515 nm, respectively), while dead cells fluoresce a bright red (excitation of 

495 nm and emission of 635 nm).   
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Histology 
 
 Samples from Days 4, 13, and 24 were analyzed using histological techniques.  At 

each specified time point, the fragments were rinsed twice in sterile PBS (Sigma) and 

then fixed overnight in 10% neutral buffered formalin at 4°C.  Samples were placed in a 

Tissue Tek™ VIP automatic tissue processor (Miles Scientific, Mishawaka, IN) and 

processed with a 24-hour dehydration cycle in ethanol, as shown in Table 1.  Samples 

were infiltrated under vacuum (500 mm Hg) in ascending concentrations of Immuno-Bed 

modified glycol methacrylate (I-GMA) (Polysciences, Warrington, PA) as detailed in 

Table 2.  After two cycles in 100% IGMA, the samples were blotted dry and transferred 

to embedding trays.  The samples were embedded with fresh IGMA according to the 

manufacturer’s protocol and then stored in a dessicator under vacuum (500 mm HG) at 

4°C.  Samples were placed in a 35°C oven to complete the hardening process and stored 

in a dessicator at room temperature until sectioning.  Eight micrometer sections were 

obtained using a RM2155 rotary microtome (Leica, Bannockburn, IL).  Sections were 

stained with hemotoxylin and eosin (H&E) and von Kossa to study the cellular 

attachment on the bone fragments as well as the mineralization of the bone, respectively.  

Protocols can be found in Appendices A and B.  Images were captured using an Axiovert 

135 microscope (Zeiss), a ProgRes™ C10Plus digital color camera and ProgRes Capture 

Basic 1.2 software (both from Jenoptik).  The images were analyzed with Image-Pro Plus 

5.1 Software (Media Cybernetics).   
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Table 1 Ethanol dehydration series for histology samples 
 
 

Percent 
EtOH 

Time 
(hours) 

70 2 
80 2 
95 3 
95 5 

100 5 
100 7 

 

 

Table 2 IGMA infiltration series for histology samples 
 

Percent         
I-GMA 

Time 
(hours) 

10 ≥24 
20 ≥24 
30 ≥24 
40 ≥24 
50 ≥24 
60 ≥24 
70 ≥24 
80 ≥24 
90 ≥24 

100 ≥24 
100 ≥24 
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Real-Time Quantitative Testing 
 

Metabolic Activity 

Lactic Acid and Glucose  
 

The lactic acid and glucose levels were analyzed before every medium change 

and on the last day of the study, which occurred on Days 2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 

21, 23, and 24.  Before the medium was aspirated, 200 µL of spent media was removed 

from each well and analyzed using a YSI 2700 SELECT™ biochemistry analyzer (YSI, 

Yellow Springs, OH).  The analyzer determines the glucose and lactic acid concentrations 

simultaneously via an immobilized enzyme membrane technology.  Specifically, a sipper 

withdraws 25 µL of each medium aliquot and deposits it in a chamber where it is stirred 

and diluted with buffer.  The buffer/aliquot mixture diffuses through a polycarbonate 

membrane and contacts a thin layer of an oxidase enzyme (L-lactate oxidase for lactic 

acid and glucose oxidase for glucose).  Upon contact, a hydrogen peroxide (H2O2) 

product is formed.  H2O2 then diffuses toward a platinum anode which causes a current to 

be produced at an electrochemical probe.  The current value is compared to calibration 

values and the concentration of both substrates is given.   

 

Alamar Blue™ 

 
 The metabolic activity of the cells seeded on the demineralized bone fragments 

was assessed on Days 4, 13, and 24 using an Alamar Blue™ dye (BioSource International, 

Carmarillo, CA).  The spent media was aspirated at these time points, and replaced with 
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either fresh α-MEM-C or α-MEM-M after aliquots were removed for lactic acid and 

glucose level determination.  The well-plates were placed in an incubator at 37°C and 5% 

CO2 for four hours.  Alamar Blue™ dye was added in 100 µL quantities to each well 

before the particular well plate was placed back in the incubator for an additional three 

hours to allow uptake of the dye into the metabolically active cells.  Medium aliquots 

were transferred in triplicate to a black 96-well plate (Corning).  The fluorescence values 

were read on a SpectraMax® Gemini EM Dual scanning spectrofluorometer (Molecular 

Devices, Sunnyvale, CA).  The excitation and emission filters were 544 nm and 590 nm, 

respectfully.  As the nonfluorescent blue dye undergoes reduction in metabolically active 

cultures, the dye become pink and fluorescent which allows visual observation of change 

in the level of metabolic activity of the cells.  This assay is not endpoint assay, therefore 

the remaining medium in the 24-well plates was aspirated and replaced with 1 mL of 

fresh medium.  Results from this assay and the lactic acid and glucose assays were used 

to assess cellular metabolic activity.   

 

Post-Study Quantitative Testing 
 
 The 24-well plate specified for post-study quantitative testing at each time point 

was rinsed twice in sterile PBS (Sigma).  Following the rinse, 1 mL of 0.5% Triton-X 

(Fisher Scientific) in PBS (Sigma) was immediately dispensed in the plates.  The plates 

were frozen at -80°C until the plates for all time points were collected.  The plates 

underwent three freeze/thaw cycles to lyse and release the proteins from the scaffolds in 
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preparation for alkaline phosphatase and intracellular protein assays.  The remaining cell 

lysate and bone fragments were reserved for the extracellular calcium assay.   

 

Intracellular Protein 
 
 The intracellular protein content was determined using a BCA Protein Assay 

Reagent Kit (Pierce Biotechnology, Rockford, IL) and following the manufacturer’s 

protocol.  BSA standards were prepared in a 24-well plate using deoionized water as a 

dilutant as shown in Table 3.  A working reagent (WR) was prepared by mixing Reagent 

A with Reagent B (50A:1B) to form a clear-green WR solution.  A 96-well plate 

(Corning) was prepared for sample analysis by transferring 25 µL of each standard and 

sample into separate wells in triplicate before adding 200 µL of the working reagent to 

each well.  The plate was gently shaken on a shaker plate (IKA® Works) for 30 seconds 

before being placed in an incubator at 37°C for 30 minutes.  At the end of incubation, the 

plate was cooled for 10 minutes at room temperature.  The absorbance values were 

measured at a wavelength of 562 nm on an MRX® Revelation absorbance microplate 

reader (DYNEX Technologies, Chantilly, VA).  A standard curve was constructed by 

plotting the average blank readings for each BSA standard against its concentration in 

µg/mL.  Linear regression was performed on the standard curve and was used to 

determine the protein concentration for each sample.  This data was used to normalize 

results from the alkaline phosphatase and extracellular calcium assays. 
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Table 3 BSA dilutants for the standard curve 
 

Plate Well Diluent Volume BSA volume &  source Final conc. 
A 0 300 µL stock 2000 µg/mL 
B 125 375 µL stock 1500 µg/mL 
C 325 325 µL stock 1000 µg/mL 
D 175 175 µL from B 750 µg/mL 
E 325 325 µL from C 500 µg/mL 
F 325 325 µL from E 250 µg/mL 
G 325 325 µL from F 125 µg/mL 
H 400 100 µL from G 25 µg/mL 
I 400 0 0 (Blank) 

 

 

Alkaline Phosphatase 
 
 The alkaline phosphatase content of each sample was determined according to 

manufacturer protocol from Kit #104 (Sigma).  A diluted p-nitrophenol (Sigma) standard 

solution was formed by diluting p-nitrophenol in 0.02 N NaOH (Fisher Scientific).  A 

standard curve was generated using the dilution scheme displayed in Table 4.  The 

diluted p-nitrophenol samples were pipetted in triplicate in 200 µL quantities into a 96-

well plate (Corning) in order to generate a standard curve.  The absorbance was read at 

410 nm and the standard curve was determined by plotting absorbance versus ALP 

activity.  Linear regression was performed and the equation used to determine the ALP 

activity in the samples.  A working reagent was prepared by adding phosphatase substrate 

solution and alkaline buffer solution 1:1 (both from Sigma).  The working reagent was 

added to 18 wells in a 24-well plate (Corning) in 500 µL quantities and allowed to 

incubate at 37°C for 15 minutes.  Cell lysates from the post-study testing plates were 
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added in 100 µL quantities to separate wells containing the working reagent.  A volume 

in the amount of 100 µL of deionized water was added to the control well.  The plates 

were mixed on an orbital IKA® shaker (IKA® Works) for 30 seconds before being placed 

in an incubator for 30 minutes at 37°C.  The reaction was stopped by adding 1.5 mL of 

0.25 N NaOH (Fisher Scientific) and mixing for 30 seconds on an orbital IKA® shaker.  

The contents were transferred in triplicate in 200 µL quantities to a 96-well plate 

(Corning).  The absorbance was measured at 410 nm using a MRX® Revelation 

absorbance microplate reader.  The concentration of each sample was determined by 

using the quadratic equation from the standard curve.  The ALP activity was normalized 

with the total intracellular protein content.  The basis of this assay is that a yellow colored 

p-nitrophenol product is generated as ALP hydrolizes the p-nitrophenol phosphate in an 

alkaline cell lysate.   

 
 
 

Table 4 Dilution scheme for alkaline phosphatase standard curve 
 

Tube # Diluted p-nitrophenol solution  
 (mL) 

0.02N NaOH 
(mL) 

1 1 10 
2 2 9 
3 4 7 
4 6 5 
5 8 3 
6 10 1 
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Extracellular Calcium 
 

The remaining bone fragments and cell lysates were reserved to determine the 

extracellular calcium content.  A 6 N HCl sample solution was composed by transferring 

the remaining contents of each sample well to individual glass test tubes (VWR 

International, West Chester, PA) and adding 1 mL of ULTREX® II Ultrapure 12 N HCl 

(J.T. Baker, Phillipsburg, NJ).  The tubes were placed in I-CHEM™ glass bottles (Chase 

Scientific Glass, Rockwood, TN) that contained 20 mL of 6 N HCl. The glass bottles 

were sealed with Teflon®-lined lids and placed in a water bath.  After bringing the water 

to a boil, samples were heated for an additional 6 hours in order dissolve the bone 

fragments.  After all the samples were dissolved, each test tube was placed under nitrogen 

gas flow in order to evaporate the supernatant.  A precipitate remained in the bottom of 

each test tube.  One mL of Ultrapure 0.01 N HCl was added to each test tube to bring the 

dried precipitate into solution.  Each sample was vortexed and transferred to 1.5 

microcentrifuge tubes (VWR International, West Chester, PA) and frozen at -20°C.  After 

thawing the samples, 1.98 mL of an atomic absorption matrix solution was added to 0.02 

mL of sample to eliminate chemical interference from phosphorus.  The matrix solution 

consisted of 0.3 N Ultrapure HCl and 0.5% (w/v) lanthanum oxide (Alfa Aesar, Ward 

Hill, MA).  Standards of 5, 15, and 30 µg/mL of Ca2+ were prepared from a calcium 

reference solution (Fisher Scientific) and used to calibrate the Perkin Elmer 3030 atomic 

absorption flame spectrophotometer (Perkin Elmer Instruments, Wellesley, MA).  The 

samples were run in triplicate on the same piece of equipment.  The total extracellular 

calcium was normalized with the intracellular protein content.  The basis of this assay is 
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that the calcium ions are atomized when heated by a flame.  The ions are reduced to 

unexcited, ground state atoms which absorb light at a wavelength of 422.7 nm (specific 

for calcium).   

 

Statistical Analysis 
 

All quantitative assays were executed in triplicate.  Statistical analysis was 

performed using SAS® System 9.1 statistical software (SAS Institute Inc., Cary, NC, 

USA).  The Least Squares Mean (LSMEANS) method was used for all quantitative 

assays to determine the effects of the medium on the cellular activity of D1 cells seeded 

on DBM.  Values are represented by a standard error of mean (SEM) of n = 3.  A 

significance level of p = 0.05 was employed for all comparisons.   
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In Vitro Evaluation of DBM 

 The final phase of this research was to examine the effects of partially 

demineralized bone fragments and completely demineralized fragments on cellular 

activity over 36 days.  An evaluation of the cellular bone fragments was conducted to 

determine the differences of cellular activity over time for each type of bone fragment. 

 

Bone Matrix Preparation 
 

A modified version of Urist’s protocol [13] was used to defat and demineralize 

bovine bone.  Diaphyseal cortical sections of bovine femurs were obtained from freshly 

slaughtered cows from the Snow Creek Meat Processing Facility (Seneca, SC) for the 

final study.  The cow carcasses were stored at approximately 2.2ºC for 21-28 days before 

the femurs were removed.  Three femurs were obtained from Snow Creek to ensure that 

bone was obtained from at least two cows.  The bone was transferred on ice and 

immediately placed in a -80ºC freezer.  After freezing, tissue was removed from the 

diaphyseal section of the femurs and then frozen at -80ºC.  The bone was sectioned with a 

band saw (Delta) and cut into pieces approximately 2 cm x 2 cm x 2 cm and then refrozen 

at -80ºC.  The bone was sectioned into pieces 1 x 1 x 1 cm with a dremel (Dremel, 

Racine, WI).  The bone was then placed in a rotor-speed mill (Fritsch, Idar-Oberstein, 

Germany) with a sieve insert of 2 mm.  Approximately 35 mL of ground cortical bone 

was collected from the three femurs for defatting and demineralization.   
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Bone fragments were placed in a glass bottle along with a defatting solution 

which consisted of a 3:1 volume of chloroform/methanol solution (90 mL of chloroform 

(Acros, NJ) and 30 mL of methanol (Fisher Scientific)).  The glass bottle was sealed with 

a top and the contents were stirred at 4ºC for two hours.  The spent liquid was removed 

and an additional 120 mL of fresh defatting solution was added to the glass bottle and the 

process was performed a second time.  After the second removal of the defatting solution, 

the bone fragments were washed in one volume (40 mL) of 100% ethanol for 30 minutes 

at 4ºC, the ethanol was removed, and the fragments were placed in a clean glass bottle 

and stored at 4ºC for approximately 9 hours.   

The bone fragments were demineralized in ten volumes of 0.5 N HCl (350 mL for 

80 minutes and 250 mL for the remaining 120 minutes) (Fisher Scientific) at room 

temperature.  The solution was stirred continuously in 40 minute intervals.  Following 

each 40 minute time period, a calcium oxalate test was performed and a visual analysis 

by stereomicroscopy was conducted to determine the end point of demineralization.  

After each acid cycle, 5 mL of spent HCl was combined with 5 mL of 5% (v/v) 

ammonium hydroxide and 5 mL of 5% (v/v) ammonium oxalate (both from Fisher 

Scientific) to chemically determine when bone fragments were completely demineralized.  

Stereomicroscopy of the samples was performed at the end of each acid cycle as 

described previously.  Partially demineralized bone fragments were obtained following 

two 40 minute cycles, and completely demineralized bone fragments were obtained after 

200 minutes in the demineralization solution. 
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A negative control (NDBM) was prepared by adding approximately 6 mL of 

CDBM to 40 mL of guanidine hydrochloride (GnHCl) in 50 mM Tris buffer (pH 7.4) 

(both from Sigma) to inactivate the osteoinductive proteins.  The solution was stirred at 

4ºC for 16 hours followed by two rinses in distilled water at room temperature.   

The activity of the osteoinductive proteins in the PDBM and CDBM fragments 

was preserved by lypholizing the fragments in a Labanco Lyph-Lock 6 freeze dryer 

(Labanco Corporation, Kansas City, Missouri).  Before lypholization, fragments were 

stored at -20ºC for 30 minutes.  The bone fragments were then sterilized at room 

temperature during a 12-hour ethylene oxide (EtO) infiltration cycle in an AN74i 

sterilization chamber (Andersen Products), and degassed for two hours in the same 

chamber.  The samples were placed in a dessicator for 152 hours under vacuum (500 mm 

Hg).   

 

Cell Seeding 
 

One day prior to cell seeding, the sterilized bone fragments underwent a 

conditioning process in sterile 50 mL centrifuge tubes to ensure that all residual HCl was 

removed.  The fragments were washed twice in 10 minute intervals in sterile PBS 

(Sigma), then immediately rinsed five times (30 minutes per rinse), and then rinsed for 

12-hours in α-MEM-C, as described previously. 

Fresh α-MEM-C was added to each set of bone fragments after the conditioning 

cycle was completed.  The bone fragments were transferred in 0.1 mL quantities to well 

plates with modified EtO sterilized pipets, as portrayed in Figure 3.  One mL of fresh α-
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MEM-C was then added to each well.  The well plates were placed in a sterile hood 

overnight.  Four time points were selected and four plates for each time point were 

prepared, resulting in a total of 16 ultra-low attachment plates (Corning).  

The spent media was aspirated from the well plates and replaced with 1 mL of α-

MEM-M on the day of cell seeding, as shown in Figure 3.  Multipotent mouse marrow 

stromal cells (D1’s) (#CRL-12424, ATCC) of passage 32 were seeded into each well at a 

density of 3 x 105 cells/well.  The negative acellular control group received bone 

fragments and medium, but no cells.  All wells were placed in an incubator under 

standard conditions of 37ºC and 5% CO2 on an orbital shaker (IKA® Works) set in 

motion at approximately 50 rpm.  The day of cell seeding was denoted as Day 0 of the 

study.  The medium was changed on Days 2, 4, 6, 8, 10, 12, 13, 15, 16, 18, 20, 22, 24, 26, 

28, 30, 32, 34, and 36 during the 36-day study.   
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PDBM
α-MEM-M 

PDBM
α-MEM-C 

NDBM
α-MEM-C 

PDBM
α-MEM-M 

PDBM
α-MEM-C 

NDBM
α-MEM-C 

D1

α-MEM-M and bone fragments

1 plate/time point for histology
Total of 8 plates prepared with this layout

D1 acellular

1 plate/time point for cell viability

acellular

1 plate/time point use for BCA, ALP, then calcium assays
1 plate/time point for gene expression

1 Day 24 plate used for lactic acid/glucose and Alamar Blue™ for all time 
points

Total of 8 plates prepared with this layout

 
 

Figure 3 Plate set-ups for the level of demineralization study 
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Qualitative Microscopy 

Cell Viability 
 
 A LIVE/DEAD® Viability/Cytotoxicity kit (Molecular Probes, Eugene, OR) was 

used, as described earlier, to analyze the cells on the bone fragments and to determine if 

the medium conditions affected the viability of the cells on Days 4, 13, 24 and 36. 

 

Histology 
 

Samples for histological analysis were processed on Days 4, 13, 24, and 36.  At 

the desired time point, each well in the specified plate was rinsed twice with sterile PBS 

(Sigma), and 1 mL of 10% neutral buffered formalin was added to each well.  The plate 

was stored at 4°C for 24 hours.  A Technovit 7100 GMA embedding kit (EBSciences, 

East Granby, Connecticut) was used to prepare and embed the bone samples.  Samples 

were pre-infiltrated with increasing concentrations of GMA as listed in Table 5.  Samples 

were then infiltrated for 24 hours with mild agitation at 22°C with Solution A, which 

consisted of a ratio of 100 mL of GMA monomer for every gram of Hardener I.  

Following infiltration, fragments were dried and placed into separate molds in a molding 

tray.  An embedding solution consisting of 15 parts of Solution A and 1 part of Hardener 

II was mixed for one minute and immediately used to embed the bone fragments.  

Samples were stored in a dessicator at room temperature until sectioning.  Eight 

micrometer sections were obtained using a RM2155 rotary microtome (Leica).  Sections 

were stained with hemotoxylin and eosin (H&E), to study the cellular attachment on the 
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bone, and von Kossa, to analyze the mineralization of the bone.  Protocols can be found 

in Appendices A and B.  Images were captured using an Axiovert 135 microscope 

(Zeiss), a ProgRes™ C10Plus digital color camera and ProgRes Capture Basic 1.2 software 

(both from Jenoptik).  The images were analyzed with Image-Pro Plus 5.1 Software 

(Media Cybernetics).   

 
 

Table 5 Pre-infiltration series 
 

Step % of GMA 
monomer 

Time Temperature 

1 5% 1 hour Room 
2 10% 1 hour Room 
3 20% 1 hour Room 
4 30% 1 hour Room 
5 40% 1 hour Room 
6 50% 1 hour Room 
7 60% 1 hour Room 
8 70% 1 hour Room 
9 80% 1 hour Room 

10 90% 1 hour Room 
11 100% 1 hour Room 
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Real-Time Quantitative Testing 
 

Metabolic Activity 

 

Lactic Acid and Glucose Levels 
 

The lactic acid and glucose levels were analyzed at every medium change, which 

occurred on Days 2, 4, 6, 8, 10, 12, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, and 36.  

Before the medium was aspirated, 400 µL of spent medium was removed from each well 

and analyzed using a YSI 2700 SELECT™ biochemistry analyzer (YSI, Yellow Springs, 

OH).  The YSI analyzer was used, as described previously, to analyze lactic acid and 

glucose levels in the medium. 

 

Alamar Blue™  
 
 The metabolic activity of the cells seeded on the demineralized bone fragments 

was assessed on Days 4, 13, 24 and 36 using an Alamar Blue™ dye (BioSource 

International), as described previously.  Briefly, after aliquots were removed for lactic 

acid and glucose monitoring, spent media was removed and replaced with 1 mL of α-

MEM-M and incubated for 4 hours.  The dye was added at this time and allowed to 

incubate for an additional 3 hours.  Medium aliquots were transferred in triplicate to a 

clear 96-well plate (Corning).  The fluorescence values were read on a SpectraMax® 

Gemini EM Dual scanning spectrofluorometer (Molecular Devices).  The remaining 

medium in the 24-well plates was aspirated and replaced with 1 mL of fresh medium.   
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Post-Study Quantitative Testing 
 
 The 24-well plate specified for post-study quantitative testing at each time point 

was rinsed twice in sterile PBS (Sigma).  Following the rinse, 1 mL of 0.5% Triton-X 

(Fisher Scientific) in PBS (Sigma) was added to lyse the cells.  The plates were frozen at 

-80°C until the plates for all time points were collected.  The plates underwent three 

freeze/thaw cycles to lyse and release the proteins.  At this time, samples were removed 

for alkaline phosphatase and intracellular protein assays.  The remaining cell lysate and 

bone fragments were used for the extracellular calcium assay.   

 

Intracellular Protein 
 
 The intracellular protein content was determined using a BCA Protein Assay 

Reagent Kit (Pierce Biotechnology) and following manufacturer protocol.  The assay was 

performed as previously described.  This data was used to normalize results from alkaline 

phosphatase and extracellular calcium assays. 

 

Alkaline Phosphatase 
 
 The alkaline phosphatase content of each sample was determined following 

manufacturer protocol from Kit #104 (Sigma).  The ALP activity values were normalized 

using the total intracellular protein content.   
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Extracellular Calcium 
 

The remaining bone fragments and cell lysates were used to determine the 

extracellular calcium content.  Samples were prepared for analysis as previously 

described.  After thawing the samples, PDBM samples were diluted 1:10 with the atomic 

absorption matrix solution and CDBM and NDBM samples were diluted 1:100 with the 

same solution.  The matrix solution consisted of 0.3 N Ultrapure HCl and 0.5% (w/v) 

lanthanum oxide (Alfa Aesar, Ward Hill, MA).  Samples were analyzed with a Perkin 

Elmer 3030 atomic absorption flame spectrophotometer (Perkin Elmer) as described 

previously.  The total extracellular calcium was normalized with the intracellular protein 

content.   

 

Gene Expression 
 

The expression of osteoblast-specific genes was monitored by performing real-

time reverse transcription-polymerase chain reaction (RT-PCR) on Days 4, 24, and 36.  

Ribonucleic acid (RNA) was isolated from the tissue culture and the quantity and quality 

of each sample was analyzed.  Primers and reaction parameters were optimized before 

real-time RT-PCR testing was completed on all samples.  

 

RNA Isolation 
 
 RNA was isolated from the culture on Days 4, 13, 24 and 36 by following 

manufacturer protocol and using an RNeasy® Mini Kit (Qiagen, Valencia, CA).  The 
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fragments in the specified 24-well plate were rinsed twice in sterile PBS (Sigma).  The 

cell membranes were lysed by the addition of 600 µL of β-Mercapthoethanol (β- ME) 

(Sigma) and Buffer RLT solution.  The lysis solution was composed of 10 µL of β- ME 

per 1 mL of Buffer RLT.  After remaining at room temperature for ten minutes, the 

samples were homogenized by placing the lysate from each sample onto a QIAshredder 

column placed in a 2 mL collection tube.  The tubes were centrifuged for 2 minutes at 

13,000 rpm.  One volume (600 µL) of 70% ethanol was added to the homogenized 

lysates in each tube.  A volume of 700 µL of the sample was deposited on an RNeasy 

mini column placed in a 2 mL collection tube and centrifuged for 15 seconds at 13,000 

rpm.  The flow-through was discarded before the remaining lysate (500 µL) was placed 

into the same column and the centrifugation step was repeated.  After discarding the 

flow-through, 350 µL of Buffer RW1 was added to the RNeasy column, followed by 

centrifugation at 13,000 rpm for 15 seconds.  DNase treatment was performed on the 

column using an RNase-free DNase Set (Qiagen), after discarding the flow-through from 

the first wash step with Buffer RW1.  Eighty microliters of the DNase treatment (70 µL 

of RDD buffer and 10 µL of DNase I stock solution) was placed on the columns and 

remained on the bench top for 15 minutes.  Another 350 µL of Buffer RW1 was added to 

the RNeasy column, followed by centrifugation at 13,000 rpm for 15 seconds.  RNA 

isolation continued as the flow-through and collection tubes were discarded.  The RNeasy 

column was transferred to a new 2 mL collection tube and 500 µL of Buffer RPE was 

added to the column.  The tubes were centrifuged for 15 seconds at 13,000 rpm to wash 

the columns and the flow-through was discarded.  An additional 500 µL of Buffer RPE 
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was added to the column and each sample was centrifuged for 2 minutes at 13,000 rpm to 

dry the silica-gel membrane in the column.  The columns were transferred to new 1.5 mL 

collection tubes in order to collect the RNA from the column.  The first elution step was 

performed by adding 50 µL of RNase free water to the column and centrifuging the 

column for one minute at 13,000 rpm.  The elution step was repeated so that 100 µL of 

RNA sample was collected for each replicate and fragment type from the cell culture.  All 

samples were stored at -80°C immediately after the elution phase.   

 

RNA Analysis 
 
 The purity and concentration of each RNA sample was determined using an RNA 

6000 Nano Assay Kit (Agilent Technologies, Palo Alto, CA) and following the 

manufacturer protocol.  Twelve RNA samples were tested at a time.  The RNA samples 

and the RNA 6000 ladder (Agilent Technologies) were thawed on ice, while the 

remainder of the reagents were thawed at room temperature for 30 minutes.  A gel mix 

was prepared by placing 550 µL of RNA 6000 Nano gel matrix onto a spin filter and 

centrifuging it for 10 minutes at 4000 rpm.  The gel was then aliquoted into tubes in 65 

µL quantities.  A gel-dye mix was made by adding 1 µL of RNA 6000 Nano dye 

concentrate to 65 µL of gel.  The tube was centrifuged for 10 minutes at 14,000 rpm.  A 

RNA Nano chip was placed onto the Chip Priming Station and 9 µL of the gel dye matrix 

was pipetted into a specific well on the chip.  The gel-dye mix was distributed throughout 

the LabChip® by pressurizing it for 30 seconds using a Chip Priming Station.  Nine µL of 

the gel-dye mix was then added to two specific wells on the chip.  The RNA 6000 Nano 
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Marker was added by pipetting 5 µL of the reagent into each of the 12 sample wells and a 

ladder well.  A volume of 2 µL of the ladder was heat denatured for 2 minutes at 70°C 

before 1 µL of the ladder was added to the well marked ladder.  RNA samples were 

added to each well in 1 µL quantities.  The LabChip® was then vortexed for 1 minute at 

2400 rpm and immediately placed in an Agilent 2100 Bioanalyzer (Agilent 

Technologies).  Using Agilent 2100 Expert Software (Agilent Technologies), the 

Eukaryote Total RNA Nano program was used to calculate the RNA concentration and 

purity of each sample.  This analysis was repeated for all RNA samples.  All samples 

were placed back at -80°C until real-time RT-PCR was performed.   

 

Primer Design 
 

Three genes were selected to monitor the differentiation of the mouse stromal 

cells to the osteoblast lineage: runt-related transcription factor 2 (Runx2), bone 

sialoprotein (BSP), and osteocalcin (OCN).  The gene β-actin was used as the 

housekeeping gene.  Runx2 regulates extracellular bone matrix gene expression including 

osteocalcin, bone sialoprotein, osteopontin, and type I collagen [54, 55]. Therefore, 

Runx2 is expressed in pre-osteoblasts [13].  BSP is restricted to cells that have secreted 

and are actively mineralizing type I collagen; therefore, it is only expressed in newly 

formed mineralizing osteoblasts [13].  OCN is synthesized by osteoblasts and is 

considered a late marker for differentiation of cells into osteoblasts.   

Target primers were designed using the method presented in Appendix C.  The 

selected primers (Table 6) were ordered from Integrated DNA Technologies (IDT, 
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Coralville, IA), and were received in a lypholized powder form.  The primers were 

resuspended in RNase-free water at a concentration of 100 µM, aliquoted into 1.5 mL 

nuclease-free tubes and stored at -20°C. 
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Real-Time RT-PCR 
 
 A QuantiTect® SYBR® Green RT-PCR Kit (QIAGEN) was used to determine the 

relative gene expression levels in the RNA samples.  The manufacturer’s protocol was 

followed for performing the real-time RT-PCR reactions on a Rotor-Gene™ RG-3000 

centrifugal thermal cycler (Corbett Research, Australia) using a 36 well rotor.  The 

QuantiTect® RT-PCR Master Mix, RNase-free water, primers, and RNA samples were 

thawed on ice and then combined with the QuantiTect® RT Mix (Figure 6).  Stock primer 

solutions were diluted to concentrations of 20 µM by the addition of RNase-free water 

and added to the PCR solutions so that the final concentration of primer in each reaction 

was 0.4 µM.  The reaction components were pipetted in specific volumes into 0.2 mL 

RT-PCR reaction tubes (Fisher Scientific) on ice (Figure 7).  Non-template control 

solutions were prepared without RNA samples and –RT control solutions were made 

without the QuantiTect® RT Mix.  RNA samples were diluted either 1:2 or 1:4 with 

RNase-free water to provide a 20 ng sample of RNA so that a volume of RNA greater 

than 0.8 µL was added for each reaction.  RNase-free water was added all PCR reaction 

tubes to bring the final reaction volume to 50 µL.  The cycler was set up as indicated in 

the QuantiTect® SYBR® Green RT-PCR Kit manufacturer handbook and included a 

reverse transcription step, an activation step, and either 35 or 40 four-step cycles (35 was 

suitable for most reactions but one set of data needed a 40 step cycle) that included 

denaturation, annealing, and extension (Table 8).   
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Table 7 Real-time RT-PCR reaction components 
 

Reagent Volume per 
reaction (µL) 

Final 
concentration 

QuantiTect® RT-
PCR Master Mix 25 1x 

QuantiTect® RT-
Mix 0.5 0.5 µL/reaction 

Forward primer  1 0.4 µM 
Reverse primer  1 0.4 µM 
Template RNA Variable 20 ng/reaction 

RNase-free water Variable -- 
 

 
 

Table 8 Real-time RT-PCR cycler conditions 
 

Step Time Temperature 
Reverse 

Transcription 30 minutes 50°C 
PCR Initial 
Activation 15 minutes 95°C 

4-Step Cycle (x 35)    
Denaturation 15 seconds 94°C 

Annealing 30 seconds 50°C 
Extension #1 30 seconds 72°C 
Extension #2 15 seconds 75°C 

 

 

 The cycle number in the exponential phase of amplification at a specific 

threshold,  CT, was recorded for each sample reaction.   
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Amplification Efficiency Determination 
 
 The comparative CT analysis method is only valid if the difference between the 

amplification efficiency of the sample amplification and the efficiency amplification of β-

actin is less than 5%.  To determine if this method was viable for the data set, real-time 

RT-PCR reactions were performed in triplicate for each target gene using the following 

serial dilution series:  20 ng, 2.0 ng, and 0.2 ng.  The reactions were prepared and carried 

out as described previously.  RNA from a Day 36 CDBM sample was used for this 

analysis.  Average CT values for each target gene were plotted versus LOG10 of the RNA 

quantity.  Linear regression was performed on each target gene graph separately and the 

amplification efficiency was determined by: 

                                                     E=10(-1/slope) – 1                                              (7.1) 
 

 

Statistical Analysis 
 
 All quantitative assays were executed in triplicate.  Statistical analysis was 

performed using SAS® System 9.1 statistical software (SAS Institute Inc.).  The Least 

Squares Mean (LSMEANS) method was used to determine the effects of the level of 

demineralization on the cellular activity over time of cells seeded on DBM in all 

quantitative assays.  Values are represented by a standard error of mean (SEM) for a 

sample number, n, of 3.  A significance level of p = 0.05 was employed for all 

comparisons.   
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RESULTS 
 

Evaluation of Media Cocktails 

 

Bone Matrix Preparation 
 

 Stereomicroscope digital images of bone fragments were acquired after each forty 

minute HCl demineralization cycle (Figure 4).   

 
 
 

 
 

Figure 4 Stereomicroscope images  
Images obtained of bone fragments that were demineralized for 80 minutes. 

 
 
 
 

The bone fragments had bright areas of mineralization even after 80 minutes of 

demineralization.  Demineralized regions surrounding the mineralized areas appeared 

glassy.  As a result, PDBM fragments were acquired after 80 minutes of demineralization 

in the 0.5 N HCL. 

A B
1000 µm1000 µm

A B
1000 µm1000 µm1000 µm1000 µm



 

 

   

52

Cell Seeding 
 

During the conditioning process, the medium immediately turned orange 

following the first bone fragment wash and gradually changed to yellow as the thirty 

minutes progressed.  By the end of the last step of the conditioning sequence, the medium 

remained pink, indicating that no residual acid remained on the bone fragments. 

 
 

Qualitative Microscopy 
 

Cell Viability 
 

Representative fluorescence micrographs display the viability of D1 cells on the 

demineralized bone fragments (Figure 5).  The fragments in each image have irregular 

shapes and vary in size.  The cells attached to the DBM fragments in all culture 

conditions by Day 4 of the study (Figure 5).  A larger number of live cells were visible on 

the DBM fragments in the medium containing osteogenic supplements (OSTEO) on Day 

13 than on the DBM fragments in the other conditions.  It appeared that the number of 

cells on the DBM in the medium without osteogenic supplements (NOSTEO) and on the 

negative control fragments decreased between Day 13 and Day 4.  The number of viable 

cells appeared to decrease in all media by Day 24 of the study.  As time increased, it 

seemed that the number of dead cells remaining on the bone fragments increased.  The 

ratio of live cells to dead cells was large at all time points for all three conditions.   
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Figure 5 Cell viability  
Fluorescence micrographs demonstrating cellular attachment and coverage of D1 cells for 

three media and DBM conditions. 
(A) OSTEO Day 4 (B) NOSTEO Day 4 (C) CONTROL Day 4 
(D) OSTEO Day 13 (E) NOSTEO Day 13 (F) CONTROL Day 13 
(G) OSTEO Day 24 (H) NOSTEO Day 24 (I)  CONTROL Day 24 
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Histology 
 

H&E staining was performed to illustrate cell distribution on the DBM fragments 

and von Kossa staining was performed to assess mineralized areas of the bone fragments.  

Light micrographs portray the staining results (Figure 6-7).  Light micrographs of the 

samples stained with H&E showed cellular attachment on the surface of bone fragments 

from all three conditions.  The images displayed in Figure 6 are representative of images 

obtained for each specific condition at the specified time point.  On Day 4, multiple 

layers of cells were attached to the outer surface of the NOSTEO fragments and a single 

layer of cells attached to fragments cultured in osteogenic supplemented media and the 

control fragments.  The number of cell layers was uniform for the control and the 

fragments cultured in osteogenic supplements on Day 4, while the number of layers on 

the surface of NOSTEO fragments varied greatly between samples.  Cellular infiltration 

was evident on Day 4 for both sample DBM fragments.  Results from the H&E staining 

did not suggest that the configuration and quantity of cells on OSTEO fragments was 

significantly different from the configuration and quantity on NOSTEO fragments 

between Days 4 and 13.  Cellular infiltration was evident on the control fragments on 

Day 13.  The thickest layers of cells attached to the bone surface and the greatest degree 

of cellular infiltration into the bone for all cultures was observed on Day 24.   

 Light microscopy of PDBM fragments revealed mineralized portions of the tissue 

(Figure 7).  Day 4 fragments cultured with osteogenic supplements consistently contained 

centrally located mineralized areas.  Day 4 NOSTEO and control fragments contained 

variable amounts of mineralization.  Most of the control fragments, and the fragments 



 

 

   

55

cultured in non-osteogenic supplemented media, contained only small areas of 

mineralization, dispersed throughout the sample, although a small number of fragments 

did contain larger, centrally located mineralized areas.  Experimental samples from Day 

13 contained regions of mineralization dispersed through the tissue sample, but these 

areas were smaller than the mineralized areas observed on Day 4 in the OSTEO 

fragments.  Select Day 13 OSTEO fragments contained larger areas of mineralized tissue 

in the center of the bone, while many of the fragments still contained only smaller areas 

of mineralization.  The number of cells on the surface of the PDBM fragments cultured in 

osteogenic supplemented media (OSTEO) containing large mineralized regions was 

greater than on the OSTEO fragments containing only small mineralized areas on Day 

13.  Fragments cultured in media without osteogenic supplements (NOSTEO) showed 

good cellular infiltration but minimal mineralized areas on Day 24.  PDBM control 

fragments contained areas of mineralization on the edges, with only small areas within 

the fragment on Day 24.  Day 24 OSTEO fragments were similar to Day 4 fragments, 

except the Day 24 samples also contained select, small mineralized areas. 
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Figure 6 H&E light micrographs 

Light micrographs showing attachment and distribution of D1 cells.  Images obtained 
after H&E staining. 

Pink:  DBM   Dark purple:  nuclei   Light purple:  cytoplasm, extracellular matrix. 
(A) OSTEO Day 4 (B) NOSTEO Day 4 (C) CONTROL Day 4 
(D) OSTEO Day 13 (E) NOSTEO Day 13 (F) CONTROL Day 13 
(G) OSTEO Day 24 (H) NOSTEO Day 24 (I)  CONTROL Day 24 
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Figure 7 von Kossa light micrographs 

Light micrographs obtained after von Kossa staining with eosin counterstain. 
Light pink:  DBM Dark pink:  cells Black:  mineralized matrix 

(A) OSTEO Day 4 (B) NOSTEO Day 4 (C) CONTROL Day 4 
(D) OSTEO Day 13 (E) NOSTEO Day 13 (F) CONTROL Day 13 
(G) OSTEO Day 24 (H) NOSTEO Day 24 (I)  CONTROL Day 24 
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Real-Time Quantitative Testing 

Metabolic Activity 

Lactic Acid and Glucose Levels 
 
 The cumulative lactic acid production for each media condition increased over 

time (Figure 8).  The level of lactic acid production of OSTEO fragments (cultured in 

osteogenic supplemented media) on Days 4 and 24 was significantly higher (p < 0.05) 

than that of the negative control cultures and significantly higher (p < 0.05) than that in 

NOSTEO fragments (cultured in media lacking osteogenic supplements) cultures on 

Days 13 and 24.   

 The total glucose consumption increased over time for each medium and fragment 

condition (Figure 9).  The PDBM with osteogenic supplemented medium (OSTEO) had 

significantly lower (p < 0.05) levels of total glucose than the negative control on Days 4, 

13, and 24.  A significant difference in total glucose consumption was not observed 

between OSTEO and NOSTEO cellular cultures or NOSTEO and control cellular 

cultures at any time point.   
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Figure 8 Cumulative lactic acid production  
Total lactic acid production as a function of culture day.  Each data point represents the 

mean of three values, and error bars denote SEM. 
Asterisks denote statistical differences (p<0.05) in lactic acid levels with respect to time. 
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Figure 9 Cumulative glucose consumption 
Cumulative glucose consumption as a function of culture day.  Each data point represents 

the mean of three values, and error bars denote SEM.  
Asterisks denote statistical differences (p<0.05) in glucose level with respect to time. 

 
 
 
 

Alamar Blue™ 
 

The Alamar Blue™ assay results indicated that the metabolic activity was not 

significantly different between the two experimental PDBM mediums on Days 4 and 13 

(Figure 10).  On Day 24, the medium containing no osteogenic supplements (NOSTEO) 

had a significantly higher (p < 0.05) metabolic activity level than the medium containing 

the osteogenic supplements (OSTEO).  The metabolic activity of the control samples on 

Day 13 was significantly larger (p < 0.05) than the medium without osteogenic 

supplements.  No significant differences existed on Day 4 between any of the cultures.   
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Figure 10 Metabolic activity via Alamar Blue™ 
Metabolic activity as a function of culture day for each fragment type.  Each data point 

represents the mean of three values, and error bars denote SEM.   
Asterisks denotes statistical differences (p<0.05) in metabolic activity with respect to 

time. 
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Day 24.  The protein levels measured in the NOSTEO (no osteogenic supplements) 

systems increased over the observed time period.   

 
 

 
 

Figure 11 Intracellular Protein 
Intracellular protein level as a function of time for each fragment type.  Each data point 

represents the mean of three values, and error bars denote SEM.   
Asterisks denote a statistical difference (p<0.05) in intracellular protein level with respect 

to time. 
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both the negative control and the samples cultured in the medium without osteogenic 

supplements (NOSTEO).  OSTEO cultures had the highest level of ALP activity on Day 

4, but then had the lowest levels on Days 13 and 24.  Control fragments had the highest 

ALP activity levels on Days 13 and 24.   

 
 
 

 
 

Figure 12 Alkaline phosphatase activity 
ALP levels as a function of time for each fragment type.  Each data point represents the 

mean of three values, and error bars denote SEM.   
*Asterisks denote a statistical difference (p<0.05) in ALP level with respect to time. 
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medium containing osteogenic supplements (OSTEO) (Figure 13).  The extracellular 

calcium content of the OSTEO cultures increased over the course of the study.  The 

highest level of observed extracellular content in both the NOSTEO and control cultures 

occurred on Day 4 of the study.  Both these conditions decreased on Day 13 and then 

increased on Day 24.  The observed extracellular calcium levels from the control and the 

samples cultured without osteogenic supplements were lower on Day 24 than the initial 

levels observed on Day 4.   

 
 
 

 
 

Figure 13 Extracellular calcium 
Extracellular calcium levels as a function of time for each fragment type.  Each data point 

represents the mean of three values, and error bars denote SEM.   
Asterisks denote statistical differences (p<0.05) in extracellular calcium level with 

respect to time. 
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In Vitro Evaluation of DBM 

Bone Matrix Preparation 
 

 Stereomicroscopic digital images were acquired of bone fragments Figure 14) 

after each forty minute HCl cycle in order to determine the demineralization endpoint for 

each sample group.  The cumulative time of demineralization is displayed with each 

image.   

 

 

 

Figure 14 Stereomicroscope images of bone fragments 
A) shows PDBM fragments after 80 minutes of demineralization.  (B) CDBM fragments 

after 200 minutes of demineralization. 
 

 
 
 

 Bright areas within the bone fragments in the stereomicroscope images signify 

mineralized areas of the bone.  Examination of bone fragments after 80 minutes, revealed 

mineralized cores with outer, mineralized regions.  These fragments were considered to 

be partially demineralized and thus fragments were removed at this time and denoted 
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PDBM.  Mineralization was not evident after 200 minutes of demineralization.  Thus, 

CDBM fragments were collected at this time.  The fragments displayed in Figure 14 are 

representative of fragments obtained for each time point. 

 

Cell Seeding 
 

 The media color was monitored during the conditioning process to ensure 

any residual acid was removed from the bone before cell seeding.  After the addition of 

the medium to the bone fragments for the first wash, the medium changed from red to 

orange to yellow over the course of the thirty minutes.  By the end of the last step of the 

conditioning sequence, the medium remained pink, indicating that no residual acid 

remained on the bone fragments. 

 

Qualitative Microscopy 
 

Cell Viability 
 
 Fluorescence micrographs obtained after cytotoxicity testing demonstrate the 

viability of D1 cells on the demineralized bone fragments (Figure 15).  The micrographs 

display select bone fragment size and shape irregularity; however, overall the fragments 

were similar in size and shape.  The fragments displayed in Figure 15 are representative 

of fragments photographed in the micrographs obtained from other fragments within each 

sample as well as each replicate for each fragment type.   
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 Cells readily attached to the PDBM and CDBM fragments by Day 4 of the study, 

and did not attach to the bottom of the wells, as noted by the green fluorescence seen in 

Figure 15.  Cells attached to the NDBM at this time point but did not appear confluent 

until Day 13.  Dead cells were visible on Day 13 for all fragment conditions, as noted by 

the red fluorescence on the bone fragments.  The number of visible dead cells increased 

over time for each fragment condition.  Few cells remained on the NDBM by Day 36.  

The surfaces of the bone fragments appeared to be fully covered on Day 4, Day 13, Day 

24, and Day 36. 
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Figure 15 Cell viability 
Fluorescence micrographs demonstrating cellular attachment and coverage of three media 

and DBM conditions.   
Images obtained following LIVE/DEAD® Viability assay.   

(A) PDBM Day 4 (B) CDBM Day 4 (C) NDBM Day 4 
(D) PDBM Day 13 (E) CDBM Day 13 (F) NDBM Day 13 
(G) PDBM Day 24 (H) CDBM Day 24 (I) NDBM Day 24 
(J) PDBM Day 36 (K) CDBM Day 36 (L) NDBM Day 36 
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Histology 
 

H&E staining was performed to illustrate cell distribution on the DBM fragments 

and von Kossa staining was performed to demonstrate mineralization of the DBM 

fragments at each time point.  Light micrographs portray the staining results for each type 

of stain on the bone fragments (Figure 16-17).  Images displayed are representative of the 

fragments observed for each time point and fragment type. 

H&E staining of Day 4 PDBM fragments portray a thin layer of cells attached to 

the surface of the bone fragments.  As time increased, the number of cells attached to the 

outside of the PDBM increased.  The level of cellular infiltration also increased over 

time.  The cells were most abundant on the outside and within the PDBM fragments on 

Day 36.  CDBM fragments had varying layers of cells on the outside of the bone 

fragments on Day 4 and 13 with more consistent layers of cells present on Days 24 and 

36.  Cellular infiltration was observed on CDBM fragments on Days 24 and 36.  The least 

amount of cells was observed on and within the CDBM fragments on Days 4 and 13 

while the most abundant number of cells was observed on Days 24 and 36.  The layer of 

cells on the outside of NDBM fragments was similar to the layers found on Day 4 PDBM 

fragments and Day 13 CDBM fragments.  Cellular infiltration of the NDBM fragments 

was observed on Day 13 and an increase of cellular infiltration was observed on each 

subsequent time point.  Cellular infiltration was not as abundant within NDBM fragments 

as it was with PDBM and CDBM fragments over the course of the study.  The cellular 

infiltration within PDBM fragments on Day 24 was similar to the cellular infiltration of 

CDBM fragments on Day 36.   
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On Days 4, 13, and 24, a thicker layer of cells existed on the surface of CDBM 

fragments than PDBM and NDBM fragments.  Day 4 PDBM fragments had cellular 

infiltration while CDBM and NDBM fragments did not.  Overall, the thickest layer of 

cells and the greatest amount of infiltration existed on the outside of PDBM fragments on 

Day 36.  NDBM fragments and Day 4 PDBM fragments had the thinnest layers of cells 

during the study.  NDBM fragments contained the least amount of infiltration at all time 

points observed in this study. 

Von Kossa staining of Day 4 samples revealed that almost all PDBM fragments 

had similar, large mineralized centers.  The mineralized areas appeared as circular 

regions with smooth edges.  The fragments without a solid center had numerous 

mineralized areas.  Day 13 images of PDBM were similar to those on Day 4.  Small, 

black specks were visible surrounding the mineralized core on Day 24, indicating the 

presence of small mineralized areas outside the large mineralized center.  The 

mineralized cores appeared to have irregular edges by Day 36.  Small areas of black 

within the tissue were also visible.  Most of the CDBM fragments on Day 4, observed 

after von Kossa staining, lacked mineralized areas of bone.  A few of the CDBM 

fragments had spots of mineralization indicating that not all of the fragments were 

completely demineralized before cell culture was started.  Day 13 CDBM fragments were 

unchanged in appearance from Day 4.  By Day 24, slightly larger areas of mineralized 

bone were visible than at previous time points.  CDBM images obtained on Day 36 were 

similar to images obtained on Day 24.  Day 4 NDBM fragments were mainly void of 

mineralized centers, where only a few fragments had small areas of mineralized tissue.  
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Day 13 NDBM von Kossa images were largely similar to those taken at Day 4; however, 

Day 24 and Day 36 images had a small number of tissue areas with mineralized spots. 
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Figure 16 H&E light micrographs 
Light micrographs obtained after H&E staining.   

Pink:  DBM   Dark purple:  nuclei   Light purple:  cytoplasm, extracellular matrix. 
(A) PDBM Day 4 (B) CDBM Day 4 (C) NDBM Day 4 
(D) PDBM Day 13 (E) CDBM Day 13 (F) NDBM Day 13 
(G) PDBM Day 24 (H) CDBM Day 24 (I) NDBM Day 24 
(J) PDBM Day 36 (K) CDBM Day 36 (L) NDBM Day 36 
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Figure 17 Von Kossa light micrographs 
Light micrographs obtained after von Kossa staining with eosin counterstain.   

Light pink:  DBM Dark pink:  cells Black:  mineralized matrix 
(A) PDBM Day 4 (B) CDBM Day 4 (C) NDBM Day 4 
(D) PDBM Day 13 (E) CDBM Day 13 (F) NDBM Day 13 
(G) PDBM Day 24 (H) CDBM Day 24 (I) NDBM Day 24 
(J) PDBM Day 36 (K) CDBM Day 36 (L) NDBM Day 36 
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Real-Time Quantitative Testing 
 

Metabolic Activity 
 

Lactic Acid and Glucose Levels 
 

The cumulative lactic acid production increased over time with respect to each 

fragment type.  The level of total lactic acid accumulation for each fragment type 

increased significantly (p < 0.05) with time.  The accumulation of lactic acid for each 

fragment type at each time point is displayed in Figure 18.    

 
 
 

 
 

 
Figure 18 Lactic acid accumulation 

Cumulative lactic acid production as a function of culture day.  Each data point 
represents the mean of three values, and error bars denote the standard error of the mean 

(SEM).   
Asterisks denote statistical differences (p<0.05) in lactic acid levels with respect to time. 
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 The cumulative consumption of glucose increased over time with respect to each 

fragment type .  The total consumption of glucose increased significantly (p < 0.05) with 

time for each fragment type.  The accumulation for each fragment type at each time point 

is displayed in Figure 19.    

 

 

 
 

Figure 19 Cumulative glucose consumption 
Cumulative glucose consumption as a function of culture day.  Each data point represents 

the mean of three values, and error bars denote SEM. 
Asterisks denote statistical differences (p<0.05) in lactic acid levels with respect to time. 
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increased significantly (p < 0.05) at varying times (Figure 20).  Cells on all three 

fragment types, PDBM, CDBM, and NDBM, demonstrated a decrease in metabolic 

activity between Days 4 and 13, subsequently followed by an increase between Days 13 

and 24.  The measured metabolic activity of the cells loaded on the CDBM and NDBM 

fragments continued to increase between Days 24 and 36 while the cells seeded on 

PDBM fragments demonstrated a decrease in metabolic activity between these two time 

points.  The metabolic activity of the cells on the PDBM fragments changed significantly 

(p < 0.05) between Day 4 and Day 13, Day 13 and Day 24, and in between Day 24 and 

Day 36.  Metabolic activity of cells on the CDBM fragments changed significantly (p < 

0.05) between Day 4 and Day 36 as well as between Day 13 and Day 24.   
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Figure 20 Metabolic activity via Alamar Blue™ 
Metabolic activity as a function of culture day for each fragment type.  Each data point 

represents the mean of three values, and error bars denote SEM.   
Asterisks denote statistical differences (p<0.05) in lactic acid levels with respect to time. 

 
 
 
 

Post-Study Quantitative Testing 
 

Intracellular Protein 
 
 The intracellular protein level of D1 cells increased over time when seeded on 

PDBM, CDBM, and NDBM fragments (Figure 21).  PDBM and CDBM cultures 

exhibited significant increases (p < 0.05) in protein level between Day 4 and Day 13 and 

again between Day 24 and Day 36.  Although the protein levels in the PDBM and CDBM 

conditions decrease between Days 13 and 24, it was not a significant decrease (p > 0.05).  
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The NDBM condition showed a significant increase in protein level between Day 4 and 

Day 36 and between Day 13 and Day 36.   

 
 
 

 
 

Figure 21 Intracellular protein 
Intracellular protein level as a function each fragment type over time.  Each data point 

represents the mean of three values, and error bars denote SEM.   
Asterisks denote statistical differences (p<0.05) in lactic acid levels with respect to time. 

 
 
 
 

Alkaline Phosphatase 
 
 The ALP activity level of PDBM increased over the course of the study (Figure 

22).  A significant increase (p < 0.05) occurred in ALP activity of cells seeded on PDBM 

fragments between Day 13 and Day 36.  No significant ALP activity level differences (p 

> 0.05) were noted for the cellular CDBM and NDBM cultures (Figure 22).   
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Figure 22 Alkaline phosphatase activity 
ALP levels as a function of each fragment type over time.  Each data point represents the 

mean of three values, and error bars denote SEM.   
Asterisks denote statistical differences (p<0.05) in lactic acid levels with respect to time. 

 
 
 
 

Extracellular Calcium 
 
 A significant decrease (p < 0.05) was found when comparing the level of 

extracellular calcium from PDBM samples from Day 13 and those from Day 24; a 

significant increase (p < 0.05) was noted when comparing samples from Day 24 and Day 

36 (Figure 23).  Larger levels of extracellular calcium were measured in PDBM than in 

cultures CDBM and NDBM cultures.   
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Figure 23 Extracellular calcium 
Extracellular calcium levels as a function of each fragment type over time.  Each data 

point represents the mean of three values, and error bars denote SEM.   
Asterisks denote statistical differences (p<0.05) in lactic acid levels with respect to time. 

 
 
 
 

Gene Expression 
 

Real-Time RT-PCR 
 

RNA concentrations, rRNA ratios, and integrity values obtained from the 

bioanalzyer are displayed in Table 9.  Data displayed in Table 10 shows the number of 

reactions that occurred with respect to time for each gene studied.  A maximum of three 

reactions were possible since three replicates were run for each fragment/time point 

combination.  All Day 4 PDBM fragments demonstrated reactions at approximately the 

same cycle number.  This is also true for Day 36 PDBM samples.  Runx2 was not 
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expressed in Day 24 samples but BSP and OCN was expressed in all replicates for Day 

24 PDBM samples.  The number of CDBM replicates expressing Runx2, BSP, and OCN 

increased with time from Day 4 to Day 24.  CDBM Day 36 cellular cultures 

demonstrated a decline in the number of replicates expressing BSP and OCN reactions, 

while three continued to express Runx2.  Two Day 4 NDBM culture replicates expressed 

Runx2 and OCN, while replicate cultures from the remaining conditions and time points 

all had reactions indicative of Runx2 and OCN presence. 
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Table 9 Bioanalyzer results 
Bioanalyzer results showing the RNA concentration and integrity of RNA samples 

Note:  N/A (not applicable) values result from undetectable values 
 

Fragment 
Type Time point RNA concentration 

(ng/µL) 
rRNA ratio 
(28s/18s) 

RNA 
Integrity 

PDBM 4 45 2.0 10.0 
PDBM 4 22 2.2 10.0 
PDBM 4 34 2.4 N/A 
CDBM 4 43 2.0 10.0 
CDBM 4 2 9 2.0 10.0 
CDBM 4 27 2.1 N/A 
NDBM 4 23 0.0 2.5 
NDBM 4 34 2.6 10.0 
NDBM 4 59 2.6 N/A 
PDBM 13 81 2.3 10.0 
PDBM 13 47 2.4 10.0 
PDBM 13 50 2.5 9.9 
CDBM 13 88 2.2 N/A 
CDBM 13 84 2.2 N/A 
CDBM 13 26 0.0 N/A 
NDBM 13 57 2.5 N/A 
NDBM 13 60 2.4 N/A 
NDBM 13 58 2.4 N/A 
PDBM 24 42 2.4 N/A 
PDBM 24 48 2.4 N/A 
PDBM 24 18 2.3 9.6 
CDBM 24 37 2.3 N/A 
CDBM 24 27 2.2 9.8 
CDBM 24 26 2.4 10.0 
NDBM 24 23 0.0 2.6 
NDBM 24 35 2.3 10.0 
NDBM 24 23 0.0 2.6 
PDBM 36 41 2.0 10.0 
PDBM 36 31 2.0 10.0 
PDBM 36 15 1.9 9.5 
CDBM 36 22 2.2 9.5 
CDBM 36 27 1.9 9.8 
CDBM 36 14 0.0 9.7 
NDBM 36 26 2.4 N/A 
NDBM 36 23 2.3 9.7 
NDBM 36 21 1.6 N/A 
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Table 10 Real-time RT-PCR 
Number of real-time RT-PCR reactions that occurred for each gene for each fragment 

type.  The maximum number of reactions is three, since three replicates were run for each 
fragment condition at each time point. 

 
Fragment Type Day RUNX BSP OCN 

PDBM 4 3 3 3 
PDBM 24 0 3 3 
PDBM 36 3 3 3 
CDBM 4 1 2 2 
CDBM 24 3 3 3 
CDBM 36 3 2 2 
NDBM 4 2 3 2 
NDBM 24 3 3 3 
NDBM 36 3 3 3 
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DISCUSSION 

Evaluation of Media Cocktails 
 
 The first stage of this research was to determine if osteogenic media supplements, 

specifically β-glycerophosphate and L-ascorbic acid, affect the cellular activity of D1 

cells seeded on partially demineralized bone matrix when they are added to the media 

cocktail.  The results of this study guided the media designation for the studies involving 

D1 cells and DBM. 

 Stereomicroscope images of DBM fragments prepared for the media study 

demonstrate that the particles have varying size, shape, and thickness, even though all the 

fragments were prepared in the same manner (Figure 4).  The stereoscope images also 

show that the bone fragments demineralized at varying rates.  After 80 minutes of 

demineralization, many fragments were partially demineralized; some were slightly 

demineralized; while others were either completely or almost completely demineralized.  

Images obtained after von Kossa staining on Day 4 (Figure 7) also demonstrate the 

variability in the mineralization levels of the bone fragments.  It is likely that the 

variability in the demineralization rates occurred because of the initial variability in the 

size, shape, and thickness of the bone fragments. 

 Microscopic analysis of the substrates during the media cocktail study show that 

the cells adhered to the bottom of the well plate, while images obtained from cytotoxicity 

assays show that the cells also adhered to the surfaces of the bone.  The wells of the 24-

well plates were coated with Sigmacote™ prior to cell seeding.  Sigmacote™ was designed 

to create a hydrophobic film with a neutral pH, that prevents proteins from adhering to 
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glass surfaces [56].  Although Sigmacote™ has been shown to efficiently coat select 

plastic surfaces, this product is not guaranteed to efficiently coat all film on plastic 

surfaces [56].  The cellular attachment on the well bottoms suggests that the coating 

process was not completely effective.  As a result, the number of cells that initially 

attached to the bone surface likely differed between wells and also within each well.  This 

situation could cause skewed results if, for example, a large difference was noted in the 

attachment levels on the substrates.  

 A significant difference in the total lactic acid production on Day 24 between the 

two media conditions indicates that PDBM substrates cultured in media containing 

osteogenic supplements were in a more acidic environment than those contained in the 

media without osteogenic supplements.  Medium acidity can affect the cellular activity of 

cells in the medium.  Below an extracellular pH of 7.1, osteoblast differentiation can be 

hindered [13].  The medium was slightly orange on later days of the study, indicating that 

the medium was not at an ideal pH.  The medium should remain at a pH of 7.0-7.4 due to 

sodium bicarbonate in the initial medium solution.  A color change indicates that the 

medium was either below a pH of 7.0 or nearing the outer bounds of the pH range 

indicated for α-MEM [13]. 

 Histological and cell viability images indicate that D1 cells attached to the PDBM 

and CDBM substrates by Day 4.  While some areas of the bone fragments appeared to 

increase in cellular number throughout the first study on both fragment types, other areas 

appeared to decrease.  This decrease in cell number could be correlated to an increase in 

cell numbers that were rapidly proliferating on the surface of the wells.  Between Days 13 
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and 24, the cells that were attached to the OSTEO AND NOSTEO system (PDBM 

fragments cultured with and without osteogenic supplements) well bottoms began to 

detach from the surface.  The lower pH may have caused the detachment of cells from the 

substrates and wells, resulting in the lower number of cells visible on the surface OSTEO 

and NOSSTEO substrates on Day 24.   

Relative comparisons of metabolic activity on 3D substrates can vary with cell 

cycle and cell number.  For instance, a population of cells in the synthesis phase of cell 

growth spend their energy duplicating into daughter cells via DNA replication.  

Conversely, cells in the G0 (resting) stage of interphase are not dividing and may be 

characterized by a different metabolic activity level than cells in the synthesis phase.  

Cells that are reacting negatively to a substrate may exhibit a spike in metabolic activity.  

Thus, the drop in metabolic activity level between Days 4 and 13 on the OSTEO (PDBM 

cultured with osteogenic supplemented media) and NOSTEO (PDBM cultured without 

osteogenic supplements) cultures could indicate that more cells were in the resting phase 

on Day 13 than on Day 4.  The increase in metabolic activity level from Day 13 to Day 

24 for OSTEO and NOSTEO cultures could mean that fewer cells were in the resting 

stage on Day 24 than at the previous time point.  The metabolic activity assay, however, 

only yields a very general idea of the activity of the cells over 24 days.  A more accurate 

picture might be obtained if the metabolic activity level was observed more often, 

perhaps at each medium change.   

Figure 12 shows that, as time increased, the level of ALP also increased for all 

conditions.  ALP, an active enzyme expressed in the plasma membrane of osteoblasts, is 
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an indirect indicator of the osteoinductivity of the DBM [13, 14].  It has been suggested 

that a direct correlation exists between the amount of ALP activity and the amount of 

new bone generation as induced by the scaffold [57].  ALP is required by the 

extracellular matrix for mineralization to occur within the scaffold [13, 57].  The increase 

in extracellular calcium in the samples cultured in medium containing osteogenic 

supplements suggests that mineralization of the samples is occurring. 

Higher levels of protein were detected on the cellular control samples than on any 

of the other samples on Day 4 and Day 13.  The control samples also had higher ALP 

levels on Day 13 and Day 24 than either experimental PDBM sample set.  GnHCl 

treatment has been shown previously to be effective in removing osteoinductive proteins 

from substrates [58].  GnHCl extracts the BMPs from the substrate, resulting in inability 

of the substrate to induce bone formation [5].  The control substrates are osteoconductive, 

as evidenced by the cell attachment viewed through histological and live/dead images.  

These results suggest that the medium has a greater influence than the substrate on the 

proliferation and differentiation of the D1 cells. 

No significant differences (p > 0.05) were detected between the two medium 

conditions on any particular time point with regard to the intracellular protein content, 

ALP activity, and extracellular calcium levels.  The results of the assays performed on 

lactic acid and glucose levels, metabolic activity, and intracellular protein levels suggest 

that D1 cells proliferated on OSTEO (PDBM fragments cultured with ostegenic 

supplements) and NOSTEO (PDBM fragments cultured without ostegenic supplements) 

substrates [13].  Although significant differences existed between the metabolic activities 
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of the two experimental groups, no significant differences due to medium specification 

were evident with regard to proliferation and differentiation of D1 cells seeded on PDBM 

scaffolds. 

Past research has shown that bone marrow stromal cells extracted from mice, and 

cultured in medium containing β–glycerophosphate and ascorbic acid, formed cells with 

polygonal morphology [59].  The polygonal cells from Falla’s study stained positively 

following von Kossa staining, indicating that mineralization occurred [59].  In the same 

study, when one of these two media supplements was not added to the medium cocktail, 

mineralization did not occur [59].  Dexamethasone (Dex), a glucocorticoid, is often 

added to media as an osteogenic supplement since research has shown that the addition of 

this glucocorticoid leads to an increase in osteoblast marker expression in cell cultures 

with primary rat calvaria and primary rat marrow cells [13, 60, 61].  Although still used 

in medium cocktails when bone formation is a desired outcome, dexamethasone has been 

shown to inhibit bone formation in primary mouse marrow stromal cells [59].   

 

In Vitro Evaluation of DBM 

 
 The second stage of this research was to evaluate the effects of the 

demineralization level on cellular activity over time.  The cellular activity of cells seeded 

on completely demineralized bone fragments was compared to the cellular activity of 

cells seeded on partially demineralized bone fragments.  
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 An alternative method of bone preparation was employed for the final evaluation 

of DBM.  Stereomicroscope images taken before and during demineralization 

demonstrated that the bone fragments were more similar in physical structure when a 

rotor speed mill was used to grind the larger bone fragments into small pieces than when 

they were prepared for the media cocktail study.  Images of fragments after 80 minutes of 

demineralization showed that the majority of the fragments had demineralization levels 

similar to each other (Figure 14).  Although there were a few outliers which either 

demineralized quicker or slower than other fragments, the majority of the bone fragments 

had mineralized cores consistent with one another.  Demineralization appeared to have 

occurred at a more consistent rate (Figure 14) than in previous demineralization attempts.  

Von Kossa images of the bone fragments at Day 4 (Figure 17) also support the theory 

that the PDBM fragments used in this study had consistent demineralization levels.  

CDBM fragments also showed complete demineralization in images obtained from 

stereomicroscopy and after von Kossa staining.  Some of the CDBM fragments had small 

flecks of mineralized areas.  Although stereomicroscope images made it appear that the 

fragments were completely demineralized, the fragments may have been able to undergo 

another demineralization cycle; however, care was taken to avoid excess 

demineralization of the bone fragments.  Previous research has revealed that excessive 

demineralization decreases the osteoinductive properties of the substrate [5].   

Due to the inconsistency with the Sigmacote™ well treatments, ultra-low 

attachment well plates were used for the final study.  Microscopy of the cells and 

substrates throughout the study revealed that the cells did not adhere to the bottom of the 
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wells.  LIVE/DEAD image analysis confirmed the lack of cells on the surface of the 

wells and the presence of cells covering the surface of the substrates (Figure 15).  A 

direct comparison of the difference in the attachment of D1 cells on the bone fragments 

can be made from PDBM samples cultured in osteogenic supplemented media from the 

media cocktail study and PDBM samples in the final study.  PDBM samples from the 

second study were more evenly demineralized than OSTEO fragments from the first 

study.  On average, the PDBM samples had smaller demineralized cores than OSTEO 

fragments.  On Day 4, a larger number of cells were detected on the PDBM samples than 

on the OSTEO samples.  These fragments were cultured in the same media and both 

contained partially demineralized bone fragments.  The ultra-low attachment plates and 

the consistency in fragment processing and demineralization likely improved the 

environment for cell attachment.  It is also possible that the surfaces of the bone 

fragments differed between the two bone preparation methods.  Cells might have been 

able to attach to the PDBM samples more readily than OSTEO samples. 

All sets of bone fragments were metabolically active throughout the course of the 

study, as noted by the increase in lactic acid production and glucose uptake (Figure 18-

19).  Again, significant differences in metabolic activity via Alamar Blue™ (Figure 20) 

might demonstrate changes in cell cycle.  The data from the lactic acid analysis, the 

glucose analysis, and the metabolic activity analysis show that the D1 cells were 

metabolically active on the PDBM, CDBM, and NDBM substrates.   

As time progressed, the thickness of the cell layers attached to the outside of the 

bone fragments increased between each subsequent time point, as indicated by the H&E 
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images (Figure 16).  By the end of the study, the PDBM fragments had more cell layers 

on the surface of the bone fragments than CDBM fragments and it appears that there was 

greater cellular infiltration of the PDBM fragments as compared to infiltration of the 

CDBM fragments.   

It appears, based on the von Kossa images, that the cells on the PDBM fragments 

were causing mineralization (Figure 17).  Images of the early time point specimens show 

the lining of the mineralized bone core with smooth edges; on the 24th day this edge, 

separating the mineralized and demineralized areas, was uneven and there were small 

specks of mineralized bone just outside the mineralized core.  Day 36 von Kossa images 

show a very uneven line between the mineralized and demineralized areas of the bone.  It 

is difficult to decipher if the cells on the CDBM fragments caused mineralization by the 

end of the study; since some of the fragments were not completely demineralized.  It is 

not known whether or not the mineralized areas on Day 36 are a result of the fragments 

not being completely demineralized or a result of cellular mineralization.   

Similar trends, showing a significant increase (p < 0.05) in intracellular protein 

between Days 4 and 13 and a drop in level between Days 13 and 24, followed by another 

significant (p < 0.05) increase between Days 24 and 36, occurred on both the PDBM and 

CDBM samples.  These trends indicate that proliferation of D1 cells on the substrates 

occurred at approximately the same time points.  An improved view of the differences in 

cellular response to the two fragments might be determined if the assay is run more 

frequently.  Overall, there was an increase in proliferation over the course of the study.   
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ALP levels appeared to be consistent for the CDBM samples.  A significant 

increase in cellular ALP levels was observed between Days 13 and 36 on the PDBM 

fragments.  A combination of an increase in ALP activity and higher cell numbers within 

the PDBM fragments suggests that the oxygen and nutrients were adequate for cell 

growth and differentiation [62].  An increase in ALP activity was not noted for the 

CDBM fragments but an increase in cellular infiltration (H&E images) was noted over 

time.  This behavior might indicate that differentiation was inhibited by the media 

conditions, such as the low pH.   

The increase in cellular attachment and infiltration of the cells indicates that 

cellular proliferation did occur.  It is possible that the PDBM fragments released BMPs at 

a more ideal rate than did the CDBM fragments, allowing osteoblast formation [38].  

Chondrocytes and osteoblasts express ALP [63].  The presence of ALP activity suggests 

that the culture system can induce bone formation, although this point is not guaranteed.   

An in vitro study by Zhang showed that over a range of residual calcium content 

percentages, 32.7%-1.2%, ALP activity level increased as the residual calcium level 

decreased from 32.7% to 2%.  A subsequent decrease in ALP activity level was observed 

as the residual calcium level continued to decrease from 2% to 1.2% [5].  The lower ALP 

activity levels by cells seeded on CDBM substrates, as compared to PDBM substrates, 

indicates that the in vitro data obtained from this study correlate with Zhang’s data.  If the 

lower ALP values were not observed for the CDBM cultures it would not mean that the 

study contradicted previous work since the residual calcium levels before culture were 

not measured; therefore, the placement of the ALP activity levels on a bell curve (as 
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demonstrated by Zhang’s data) is unknown.  A review of clinical cases involving surface 

decalcified bone states that it is easier to contour the surface decalcified implants for the 

defect site [64].  It is not known what the surface decalcified implant is compared.     

An in vitro study, reported in 2005 [33], evaluated the ALP activity of partially 

demineralized and fully demineralized substrates on Days 7 and 14 and resulted in 

similar ALP activity patterns as observed in the current study.  ALP activity levels did 

not change drastically over time for the fully demineralized substrates, but increased for 

the partially demineralized substrates.  It has been suggested that the difference in activity 

between PDBM and CDBM substrates could be that, as demineralization continues, 

osteogenic factors are removed, or that hydroxyapatite nucleation sites are exhausted 

[33].  The osteogenic factors that are exposed during demineralization are thought to 

recruit MSCs, which facilitate the bone induction principle [33, 36].         

The consistent level of extracellular calcium in the NDBM and CDBM samples 

demonstrates that the cells in these samples were not mineralizing.  The low and 

consistent levels of calcium could be a result of some of the fragments not being 

completely demineralized before seeding with cells and resulting in the release of 

calcium during the assay process.  The PDBM samples had varying levels of calcium 

over the four time points studied.  It is possible that human error caused the variation in 

results for the decrease in extracellular calcium.  Perhaps when the lysates were removed 

from the wells for this assay they were not mixed properly causing the contents to be 

evenly distributed which would cause a skew in the results.  This study did not include 

determining the extracellular calcium levels of fully mineralized bone fragments.  If the 
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extracellular calcium level of fully mineralized bone fragments was known, then a 

comparison could be made concerning the amount of mineralization occurring over time 

for each of the sample groups. 

RNA samples were inadvertently thawed for an unknown amount of time while 

they were in the -80°C freezer.  RNA samples from Days 4, 13, and 24 were rerun on the 

Bioanalzyer once this problem was observed and it was determined from comparison of 

the results that Day 13 samples were not suitable for analysis since they were almost 

completely denatured (Table 22).  When real-time RT-PCR was run, the data was 

acquired during the annealing stage.  Therefore, it is inaccurate to run quantitative 

analysis on this data.  It is feasible to determine if reactions occurred for each RNA 

sample.  Table 23 shows that reactions occurred for all samples on all time points for all 

genes studied except for Runx2 on Day 24 for the PDBM samples.  Mature genes such as 

osteocalcin were present in the CDBM and PDBM cultures.  Other assays, such as von 

Kossa staining, completed on CDBM fragments did not show signs of mineralization.  If 

signs of mineralization were evident, mature genes would be expected.  The relative 

levels of gene expression are unknown so it is possible that the genes are expressed in 

low levels from CDBM samples and higher levels in PDBM samples, since 

mineralization appeared to occur in PDBM samples.  Also, the presence of genes from 

real-time RT-PCR does not automatically mean that protein translation occurred in vitro, 

just that it has the possibility to occur.  Real-time RT-PCR is measuring the protein 

translation from the reaction of the RNA with the primers and not the protein translation 

that occurred in vitro.  Real-time RT-PCR should be repeated and data gathered during 
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the extension phases to give a better idea of the osteoblast activity over the course of the 

study since the RNA is being amplified during these stages.    

The results presented in this thesis demonstrate that a difference in cellular 

activity was noted between PDBM and CDBM samples.  These differences appear to be 

at which time points the cells were proliferating and differentiating.  Thorough research 

on more time intervals should be completed to see these differences more accurately.  

This research appears to corroborate findings from other studies involving the differences 

between bone fragments of varying demineralization methods.  Although it is also 

difficult to compare extracellular calcium levels, ALP activity levels, intracellular protein 

levels, and metabolic activity levels between this study and studies performed by other 

researchers due to discrepancies between preparation of samples and the specific 

equipment used, it is possible to note when and if cells are proliferating and 

differentiating.    
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CONCLUSIONS 
 

 Qualitative microscopy and quantitative assays indicate that D1 mouse stromal 

cells attach to PDBM substrates and subsequently proliferate and differentiate, regardless 

of whether the samples are cultured in medium containing osteogenic supplements.  

Contrary to prior results in the literature, the substrates cultured in medium containing 

osteogenic supplements did not differentiate faster than cells in the medium, without 

osteogenic supplements.  Although the intent of the medium study was to examine 

partially demineralized substrates, visual analysis showed that the level of the substrate 

demineralization was minimal and variable.  This variability likely caused skewed 

results. 

Qualitative and quantitative assays also indicated that D1 cells attach to, 

proliferate, and differentiate on PDBM and CDBM scaffolds.  The metabolic activity of 

the cells on the two scaffolds appeared to be similar.  The proliferation and differentiation 

levels of D1 cells on the PDBM and CDBM scaffolds were significantly different on Day 

24 of the study.  According to von Kossa images and the varying levels of extracellular 

calcium extracted from the PDBM scaffolds, mineralization of the PDBM occurred 

between Day 24 and Day 36.  Although the cells proliferated and differentiated on 

CDBM fragments, the assays performed showed no evidence of mineralization.  The 

reactions that occurred from real-time RT-PCR demonstrate that cells were 

differentiating towards the osteoblast phenotype. 
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RECOMMENDATIONS 

 
Further evaluation of the DBM scaffolds and preparation of the scaffolds is 

needed to fully evaluate the effectiveness of the scaffolds and the differences in bone 

formation triggered by PDBM versus CDBM samples.  Additional studies should be 

performed to determine if the addition of dexamethasone to the media cocktail has 

inhibitory effects on bone formation.   

Media conditions were acidic before each media change; decreasing the 

DBM/media proportion might allow a more physiological pH and higher rate of cellular 

proliferation and/or differentiation. 

Further evaluation of the cellular activity of the cells needs to be completed in 

order to gain a better overall understanding of the cellular activity of the cells over time.  

All assays should be completed on Day 0 samples to offer a better comparison between 

later time points and the initial seeding of cells on the scaffold.  Metabolic activity, 

intracellular protein, ALP, and extracellular calcium assays should be performed more 

often to gain a better overall understanding of the activity of the cells seeded on the 

substrates.  Real time RT-PCR should be repeated in order to elucidate which genes are 

being expressed over time and to obtain a better understanding of osteoblast maturation 

in this system.   

Previous studies examining the DBM substrates showed that the control culture, 

NDBM, had cellular activity similar to that found in PDBM and CDBM cultures.  The 

activity of cells cultured on 2D surfaces in varying media conditions should be 
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investigated to determine if the proliferation and differentiation of D1 cells into 

osteoblasts can result from the media alone.   

Studies should be performed to determine if the size of the bone particles might 

affect the ability of the cells to proliferate and differentiate.  If a specific size fragment 

allows for greater cell to bone surface area then it is possible that this specific fragment 

size might be optimal for differentiation of the cells into osteoblasts.   

In order to more completely evaluate the effectiveness of the proposed DBM 

preparation methods and the assays in an in vitro setting, in vivo studies should be 

conducted to assess the effects of DBM in a critical sized defect.  This step will 

necessitate refining the DBM processing variables so that all fragments are of equal size, 

shape, thickness, and mineralization level.  The in vitro characterization should be 

compared to the in vivo characterization to determine the efficacy of the in vitro model.  

In vivo models that demonstrate the effectiveness of DBM when care is taken in the 

processing of the scaffold might help companies and bone banks understand the 

importance of standardizing the preparation methods of DBM products.  Once an 

accurate in vitro model is established, it would interesting to evaluate the effects of  non-

steroidal anti-inflammatory drugs (NSAIDS) on the ability of the DBM scaffold to induce 

bone formation, since patients might receive these drugs as they are recovering from 

surgery or during the course of their recovery. 
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Appendix A 

H&E Staining Protocol 
 

1. Rehydrate sections 
a. 100% ETOH  10 dips 
b. 100% ETOH  1 min 
c. 95% ETOH  10 dips 
d. 95% ETOH  1 min 
 

2. Rinse in running tap water until “sheeting” action occurs 

3. Soak in distilled water for one minute 

4. Stain with hematoxylin for 5 minutes. 

5. Rinse in running tap water until clear 

6. Perform 12 dips in clarifier 

7. Rinse in running tap water until “sheeting” action occurs 

8. Soak in bluing reagent for one minute 

9. Rinse in running tap water for one minute 

10. Perform 10 dips in 95% ETOH  

11. Stain with eosin for 45 seconds 

12. Rinse in 2 changes of 95% ethanol.  Perform 10 dips in each. 
 

13. Rinse in 2 changes of 100% ethanol.  Perform 10 dips in each. 
 

14. Soak in 100% ethanol for one minute 
 

15. Perform 10 dips in xylene followed by a 5 minute soak 

16. Mount with paramount. 

 
* This protocol was slightly modified from RICHARD-ALLAN™ HEMATOXYLIN & 
EOSIN protocol 
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Appendix B 

Von Kossa Staining Protocol for GMA 

1.  Rehydrate sections. 
a. Soak in 100% Ethanol for 2 minutes. 
b. Soak in 95% Ethanol for 2 minutes. 
c. Soak in distilled Water for 2 minutes. 

2. Stain with 2% silver nitrate for 30 minutes in sunlight or UV light. 

3. Rinse slides thoroughly with distilled water until water is clear. 

4. Stain with hematoxylin for 6 minutes. 

5. Rinse slides thoroughly with distilled water until water is clear. 

6. Rinse with 0.25% ammonium hydroxide for 10 seconds. 

7. Rinse slides thoroughly with distilled water until water is clear. 

8. Stain with 0.3% eosin Y for 5 minutes. 

9. Rinse slides thoroughly with distilled water until water is clear. 

10. Rinse with 2 changes of 95% Ethanol.  Perform 15 dips in each. 

11. Rinse with 2 changes of 100% Ethanol.  Perform 15 dips in each. 

12. Soak in xylene.  Perform 10 dips followed by a 1 minutes soak. 

13. Soak in xylene for 5 minutes. 

14. Mount with paramount. 
 
* Protocol was obtained from Dr. Chuck Thomas (dissertation) and slightly modified. 
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Appendix C 

Primer Design Protocol 
 

1. On the National Center for Biotechnololgy Information’s (NCBI) webpage, 
www.ncbi.nlm.nih.gov/, search for the gene(s) of interest. 

2. Locate appropriate gene and  follow the link to the mRNA sequence on the 
GenBank data page. 

3. Highlight and paste the sequence into the nucleotide/nucleotide BLAST search at 
www.ncbi.nlm.nih.gov/BLAST.  Choose a homologous mRNA sequence that 
contains a “complete CDS” sequence 

4. Paste the mRNA CDS sequence into the mRNA sequence box in Spidey found at 
www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/ 

5. Paste the original genomic sequence from step 1 into the genomic sequence box 
on the Spidey webpage. 

6. Align the genomic and mRNA sequences in Spidey. 
7. Open the Primer 3 homepage, frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi.  Paste in the mRNA derived complete cds from 
the NCBI page 

a. The search parameters should be set as follows: 
i. Human mis-priming library 

ii. Create a new sequence ID for the primer 
iii. Product size range: 100-150 
iv. Number of results to return: 10 
v. Primer Size: 18/20/22 

vi. Melting Temperature:  60/62/65 
vii. GC%:  40/50/60 

viii. Mex self-complimentary:  5 
ix. Max 3’ complimentarity:  2 
x. Max Poly-X:  3 

xi. GC clamp: 1 
b. Search for primers 

8. From the Primer 3 output, choose a primer that is close to the 3’ end, binds to  
portions of at least 2 different exons (ideally with >400 basepairs intervening the 
genomic sequence). 

9. Validate primer choice by copy and pasting the forward primer into BLAST, 
typing in at least 10 intervening bases.  Coping and paste in the reverse primer 
immediately following the intervening base pairs.  Perform BLAST search. 

10. Verify that the expected products match the targeted gene. 
11. Order primers from Integrated DNA Technologies (IDT) using the primer 

sequences from Primer 3 for each targeted gene. 
 
* This protocol was obtained from class notes presented by Dr. Ken Webb for a 
Bioengineering Cell Analysis Class 
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