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ABSTRACT 

 

Network technology has experienced explosive growth in the past two decades. 

The vast connectivity of networks all over the world poses monumental risks. The 

generally accepted philosophy in the security world is that no system or network is 

completely secure [1] which makes network security a critical concern. The work done in 

this thesis focuses on Distributed Denial of Service Attacks (DDoS) where legitimate 

users are prevented from accessing network services. Although a lot of research has been 

done in this field, these attacks remain one of the most common threats affecting network 

performance.   

 One defense against DDoS attacks is to make attacks infeasible for an attacker, 

by increasing either the amount of attack traffic needed to disable a link or the number of 

attackers needed to disable the network.  

Theoretical work has been done previously which focused on quantifying the 

attack traffic required to disable a set of mincut arcs in a network. In this thesis, we 

experimentally verify the validity of the analysis performed by running simulations using 

the SSFNet network simulator.  A Distributed Denial of Service attack is simulated by 

flooding the mincut arcs in the network. From the results, we analyze  

- The minimum number of zombie processors (attack sources) required to 

disable a  set of arcs 

- The minimum attack traffic volume required to disable the arcs. 
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CHAPTER ONE 

INTRODUCTION 

As computer systems have evolved into today’s complex, enterprise-wide, 

solutions, the security risks and protective measures have also become complex [2]. 

Maintaining the security of a system involves maintaining confidentiality, authentication, 

integrity, non-repudiation, access control and availability [3]. However, the concept of 

complete security is an illusion [4]. Almost anyone can reach out to any network which 

implies that anyone can reach in [5].  

The lack of authentication means an attacker can create a fake identity, and send 

malicious traffic. A Denial of Service (DoS) attack blocks a service for legitimate users 

and is perpetrated by causing a victim to receive malicious traffic and suffer damage as a 

consequence [6]. The attack can be launched in multiple forms. The attack could exploit 

software vulnerabilities of a target thereby crashing the system, or use massive volumes 

of malicious traffic to consume key resources thus rendering it unavailable to legitimate 

users, or simply send a few malformed packets to confuse an application or a protocol on 

the victim machine and force it to freeze or reboot [6]. While it is possible to patch the 

known vulnerabilities in a system to avoid an attack, it is difficult to prevent the second 

and third form of attacks. The targets are vulnerable simply because they are connected to 

the Internet. When the traffic of a DoS attack comes from multiple sources, then it is 

called as a Distributed Denial of Service (DDoS) Attack [7].  
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In today’s world, botnets are a major source of DDoS problems. Since botnets 

usually involve computers from many countries, tracking an attack becomes more 

difficult. Statistics show that about half of the botnets tracked by Arbor networks 

performed DDoS attacks [8]. A DDoS can have a sustained upload bandwidth of 40 Kb/s 

as an average from each bot. A relatively small botnet can overwhelm most companies, 

and a large botnet might be able to take out a fair –sized ISP [9].  

1.1 Motivation 

 In the late 1990’s the world was not dependent on the Internet as it is now. The 

Internet was still limited to research and educational communities. Hence not much 

attention was paid to Internet security. Today, the traditional role of the Internet has 

changed. Internet is used for banking, bill payments, tax payments, booking travel 

reservations, online shopping. It is used by Governments to share information with the 

world, by researchers as a medium for disseminating their research discoveries rapidly 

and for establishing worldwide connectivity [7]. Unfortunately, the growth in the Internet 

has increased the number of attacks on the Internet.  Figure 1.1 shows a graph of the 

number of security incidents reported in the past. 

The recent attacks on popular websites like Facebook and Twitter are an example of the 

rising number of DDoS attacks. One of the major problems with Distributed Denial of 

Service attacks is the difficulty to detect the source of the attack because of the many 

components involved.  Instead of waiting for an enemy to attack, it is better to use 

defenses to protect networks or make the networks immune to attacks [11]. 
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Figure 1.1: The number of Internet security incidents reported from 1988 to 2003 

(Data collected from [10]) 

1.2 Approach 

 The work done in [11] studies the dynamics of DDoS attacks. The attacker places 

“zombie” processes on the network that consume network bandwidth. The attacker then 

attempts to break the legitimate communications links. The legitimate application 

reconfigures its network to re-establish communications. The authors analyze this board 

game using the theory of surreal numbers [12]. The authors also quantify the number of 

zombies and the amount of zombie traffic that an attacker needs to disable a distributed 

application. We perform simulations to verify if the analysis corresponds to reality. The 

simulations are performed for large scale complex networks which are generated 

automatically using Python scripting. We observe from the results that the legitimate 
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traffic is reduced to a significant amount when the attack traffic is increased beyond the 

threshold value calculated by the formula. 

1.3 Defense Mechanisms 

The DDoS defense mechanisms are classified as being reactive and preventive. In 

reactive measures, the attack sources are identified and are prevented from continuing the 

attack. The preventive measures focus on eliminating the possibility of performing a 

DDoS attack. Before concluding that a denial of service attack is under progress, it is 

necessary to identify and separate DoS attacks from flash events. This is discussed in 

more detail in the Chapter on DDoS countermeasures.  

In this thesis, we provide a countermeasure when an enterprise network wants to maintain 

communications even though an opponent launches a DDoS attack. We solve this 

problem using a game theoretical approach which is explained in further detail in the 

chapter on Bandwidth Limited Co-ordination of games. 

1.4 Game Theory based coordination 

We look at scenarios when the legitimate application has a set of networks 

connected by bandwidth limited communication links. The application coordinates 

amongst its networks by sending only the most important information. If there are 

multiple messages, then it becomes necessary to prioritize the messages and send the one 

which is the most consistent with the team goal. We study four different strategies to 
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make this decision – Maximin, Maximax, Central values and Hotstrat and conclude that 

the Hotstrat strategy gives the best results. 

1.5 Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 gives a background on 

Distributed Denial of Service attacks. Chapter 3 gives a brief overview of the SSFNet 

simulator and the implementations of the protocols used. It also explains the simulation 

scenario used for the simulations and explains some simulation scenarios. Chapter 4 

details the steps involved in setting up and automating the simulation generation process 

for large scale networks. Chapter 5 explains the simulation scenario and the results 

obtained. Chapter 6 focuses on the countermeasures used for DDoS attacks and a 

summary of the work done. Chapter 7 explains our approach to mitigation using the 

principles of combinatorial game theory. We conclude the thesis with Chapter 8 

presenting our conclusions and future directions for research.   
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CHAPTER TWO 

BACKGROUND ON DISTRIBUTED DENIAL OF SERVICE ATTACKS 

 

In a denial of service attack, an attacker deliberately consumes resources making 

them unavailable to legitimate users. One common denial of service attack is the 

‘flooding attack’. Typically, to access a website, a request is sent to the website’s server. 

Since there is an upper limit on the number of requests that a server can process, the 

request is rejected if this limit is exceeded.  In a flooding attack, the attacker floods the 

website’s server with a large number of requests thus preventing legitimate users from 

accessing information or services [13]. Similarly, for a free mailing service, there is a 

specific disk quota assigned to an email account. The quota limits the amount of data that 

a user can store in his account at any point of time. If an attacker sends a large amount of 

data to the email account, it might prevent the user from receiving legitimate emails. This 

is a practical example of a Denial of Service attack. 

In a Distributed Denial of Service attack, multiple machines launch the attack. 

The attack thus has a distributed nature. The attacker can make use of the security 

vulnerabilities of a system to launch the attack. There is a high probability that the 

machine used to launch the attack is unaware that it is participating in the attack.  

Sometimes, it becomes difficult to distinguish a distributed denial of service from 

normal network activity. At other times, there might be some indications that an attack is 

under progress.  
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The single attacker who coordinates the attack is called the Master. The Master 

coordinates multiple hijacked systems. These hijacked systems are called zombies. Figure 

2.1 shows the different components of a DDoS attack. 

  

 

Figure 2.1: DDoS Attack 

(Data taken from [11]) 

 

DDoS attacks are considered more effective and complicated than their DoS 

counterparts because the attack can be performed from multiple sites simultaneously and 

the task of detecting the attacker becomes almost impossible. The next section discusses 

some of the commonly used methods of Denial of Service attacks.  

Network 
Infrastructure 
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2.1 Common Denial of Service Attacks 

2.1.1 Smurf attack 

In a Smurf attack, the attacker sends a large number of ICMP echo requests to a 

set of IP broadcast addresses. All the echo requests have a spoofed source IP address of 

the intended victim. On receiving the echo requests, most of the hosts will respond to the 

request with an echo reply. This increases the flooding traffic by the number of hosts 

responding.  

2.1.2 SYN Flood attack  

This attack exploits the standard TCP three-way handshake that is initiated before 

a TCP transmission. The handshake consists of a three packet exchange sent by client to 

the server. The server upon receiving the initial SYN from the client responds with a 

SYN/ACK packet and waits for the client to send a final ACK. If the client sends a huge 

number of SYNs without sending their corresponding ACKs, then the server keeps 

waiting for the non-existent ACKs making it impossible for the server to serve other 

incoming connections. 

2.1.3 UDP Flood attack 

Here the attacker uses the UDP echo and character generator service. Forged UDP 

packets are used to connect the echo service on one machine to the character generator 
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service on another machine. The two services consume a lot of network bandwidth as 

they exchange characters between themselves. [13] 

Some variations of Distributed Denial of Service attacks are mentioned below. These 

attacks use the techniques mentioned in the section above. 

2.2 Known Distributed Denial of Service Attacks  

2.2.1 Trinoo 

One of the most popular DDoS attacks is the Trinoo attack where the attack 

daemons use UDP flood attacks to disable the victim. It consists of an attacker system, 

several compromised systems, which include one or more masters (referred to as 

handlers), one or more daemon systems (referred to as agents), and one or more victims. 

The attack begins by loading the Trinoo program on one or more compromised systems. 

These systems act as handlers and agents. The agents send a UDP packet to let the 

handler know that the agent systems are ready. When the attack system sends the attack 

command, the handler sends a message to the agents to launch the attack. After receiving 

the command to launch an attack, the agent sends a UDP flood to random port numbers 

on the victim. This attack was experienced in 1999 by University of Massachusetts. 

2.2.2 Tribe Flood Network 

The TFN attack is more complicated than a Trinoo attack. The TFN software is 

loaded by the TFN attacker onto compromised systems. In order to launch the attack, the 
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attack systems simply need remote access to the handler. TFN’s attacks daemons can 

implement Smurf, SYN flood, UDP flood and ICMP flood attacks.  

2.2.3 Stacheldraht 

Stacheldraht is a combination of Trinoo and TFN attack and relies on TCP for 

transport. The handlers and agents periodically exchange ICMP reply packets. It encrypts 

the communication between the attacker and the masters and performs automated update 

of the agents. It can implement Smurf, SYN flood, UDP flood and ICMP flood attacks. 

[14] 

2.3 Prevalence of Distributed Denial of Service attacks  

Businesses have been shut down for several hours by faceless hackers in the past. 

The DDoS attack slows the system performance and ultimately crashes the system. This 

section talks about some of the DDoS attacks experienced in the last decade.  

DoS attacks crippled high visibility Internet websites like Yahoo, CNN and major 

ecommerce sites like Amazon.com and Buy.com which were down for three hours as a 

result of the attack in the February of 2000.  The sites started behaving poorly with the 

Amazon site timing out at various stages throughout the night. Yahoo experienced traffic 

levels of 1 GB per second. This attack is believed to have been a DDoS where multiple 

compromised machines were involved.  
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In January 2001, Microsoft’s name server infrastructure was disabled by a Denial 

of Service assault. The root DNS servers were targeted in the following year and SCO’s 

corporate website was incapacitated in late 2003. [15] 

Recently, in August 2009, a string of major websites experienced a DDoS attack. 

This DDoS was interesting as the attack seems to have been URLs embedded in spam. 

People clicking on the spam links generated enough traffic to kill the websites. The 

malicious online attacks affected services of major social networking websites like 

Facebook, Twitter and Google.  Facebook encountered network issues that resulted in 

degraded service for some of the users. Twitter’s website was unavailable for at least two 

hours. [16] 

The military has been the victim of cyber attacks in the past. [3] A National 

Security Agency red team of hackers was organized to infiltrate the Pentagon systems. 

The team was able to infiltrate and take control of the Pacific command centre 

computers, as well as power grids and 911 systems in nine major US cities. Code Red 

was a worm that first appeared in 2001 and ultimately affected nearly 300,000 computers 

in the United States. It exploited a hole in Microsoft’s IIS web servers. In its first 

variation, the affected computers were programmed to launch a denial of service attack 

against the White House website at a certain date and time. [17]  
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2.3.1 Information Warfare 

The cyber attack in Estonia was considered as the first war in cyberspace. It was 

deemed as a national security situation.  In Estonia, ‘ the most wired country’, the 

Internet is vital and is used routinely to vote, file taxes, and even to shop or pay for 

parking. The bulk of the cyber assaults used DDoS to bombard the country's Web sites 

with data. The attackers clogged not only the country's servers, but also made it difficult 

to direct traffic on the network. In one of the first attacks, a flood of junk messages were 

thrown at the e-mail server of the Parliament, shutting it down. In another, hackers broke 

into the Web site of the Reform Party, posting a fake letter of apology from the prime 

minister. Traffic spiked to thousand times the normal flow. The biggest bank in Estonia 

had to shut down its online service for more than an hour. It suffered losses of about $1 

million. The 10 largest assaults blasted streams of 90 Mbps of data at Estonia’s networks. 

The attackers used a giant network of bots – perhaps as many as one million computers as 

far as Vietnam and United States, to amplify the impact of their assault. There is evidence 

that they rented time on other so-called botnets.  [18] 

 The vast majority of attacks are not even publicized. The victims include a wide 

range of targets victims from small commercial sites to education institutions. The work 

in [15] is based on backscatter analysis to estimate the worldwide prevalence of denial of 

service attacks. They established an alarming presence of roughly 2000 – 3000 active 

denial of service attacks per week. 
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2.4 What makes DDoS attacks possible? 

We elaborate some of the design issues of the Internet which makes DDoS attacks 

possible [6]. 

1. The end-to-end paradigm pushes the complexity to end hosts, leaving the 

intermediate network simple and optimized for packet forwarding. Thus if one 

party in a two way communication misbehaves; it can do arbitrary damage to its 

peer.  

2. Attacks are commonly launched from systems that are subverted through security 

related compromises. So regardless of how well secured the victim system may 

be, its susceptibility depends on the state of the security of the global internet.  

3. Since each Internet entity has limited resources, it can be consumed if there are 

too many users. 

4. The intelligence needed for service guarantees resides with the end hosts. High 

bandwidth pathways are available in the intermediate network, while the end 

networks have bandwidth only as much as they need.  Thus malicious clients can 

misuse the abundant resources of the intermediate network for delivery of 

numerous messages to a less provisioned victim. 

5. Due to IP spoofing, attackers get a powerful mechanism to escape accountability 

for their actions. 
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2.5 Reasons for DDoSing 

There can be numerous reasons for a DDoS, the primary goal being to inflict 

damage on the victim. The true victim of the attack might not be the actual target, but 

others who rely on the target’s correct operation. The reasons for DDoS could be 

personal where an attack can be perpetrated for the purpose of revenge or they could be 

material in which the attack damages a competitor’s resources. The attacks could be 

performed by hackers simply to gain respect (by successfully attacking popular websites) 

or may be performed for serious political reasons where a country at war could perpetrate 

attacks against its enemy’s critical resources.  Victims may be blackmailed into paying to 

avoid DDoS attacks. Recent reports have botnets being rented for performing DDoS 

attacks at a rate of $1000 per spam or DDoS event [39]. 

2.6 Challenges faced in DDoS Defense 

There are several serious factors that hinder the advance of DDoS research. We list some 

of them in this section [6]. 

1. There are very few DDoS attacks which can be handled only by the victim. In 

order to deal with DDoS, it often becomes necessary to have a distributed and 

coordinated response system.  The Internet being a system which itself is 

administered in a distributed manner, it is difficult to enforce cooperation between 

networks which discourages researchers from designing distributed solutions.  
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2. Deployment of a distributed response system implies that parties that will bear the 

deployment cost are parties that do not suffer direct damage and hence do not 

benefit directly from the system.  

3. There is lack of information on attack parameters used for popular DDoS attacks 

since publicly reporting DDoS attacks damages the reputation of the victim 

4. There is no bench mark suite of attack scenarios that enables comparison between 

defense systems [6]. 

2.7 Previous Work 

We consider mechanisms for constructing distributed DDoS defense that do not 

require cooperation among uninvolved parties. The results in this thesis build on previous 

research documented in [11]. The work in [11] analyzes a two player game played on a 

computer network in which Player 1 (Blue player) is a legitimate distributed application 

on a network and Player 2 (Red player) is an attacker who places zombie processes in the 

network with an intention of attacking node capacities or flooding the arcs between 

nodes. By finding out the minimum number of zombies needed to disable Blue’s 

network, the authors quantify the resistance of the Blue player to DDoS attacks. This 

approach helps to design networks with a structure that either resist DDoS attacks or 

adapt around them. This result is relevant to item 4 in Section 2.6 in that it provides a 

metric for comparing DDoS countermeasures. 

The mincut of a network configuration is a set of network edges whose removal 

prevents source communication with the destination. The attacker would be interested in 
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determining the smallest number of arcs that need to be disabled from this mincut. The 

authors in [11] describe an algorithm to determine the minimum number of arcs that need 

to be disabled between the source and the destination to avoid the attacker wasting 

resources attacking arcs that need not be attacked.  

Once the arcs that need to be disabled are known, the work further determines the 

amount of flow to be directed towards these arcs in order to disable them. If RT denotes 

the minimum amount of traffic that should be generated by the zombies (also called red 

traffic), λ denotes the Blue (Legitimate) traffic required by Blue’s application and C 

represents that capacity of the physical arc to be attacked, then the total traffic T is given 

by 

 ( )T RTλ= +  (2.1) 

The traffic dropped is represented as D 

 ( )D RT Cλ= + −  (2.2) 

Percentage of legitimate traffic in the total traffic P is given by 

 / ( )P RTλ λ= +  (2.3) 

Expected rate of legitimate traffic loss (LTL) is given by 

 / ( )[( ) ]LTL RT RT Cλ λ λ= + + −  (2.4) 

If the Blue slack traffic is BS, then the attacker wins in flooding the arc if 

 LTL BS≥  (2.5) 

where  

 BS Capacity -[Blue Flow]=  (2.6) 

From equations (2.4) and (2.5) 
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 BS LTL≤  (2.7) 

Solving further, we get 

 
( )

( )
BS RT

RT C
λ

λ
λ

+
∴ ≤ + −  (2.8) 

Thus the minimum amount of Red traffic required is given by 

 
1 ( )

C
RT

BS
λ

λ

= −
−

 (2.9) 

where 

 BS C λ= −  (2.10) 

Equation (2.9) represents the threshold value of the zombie traffic that should be 

generated to disable an arc.  
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CHAPTER THREE 

SSFNET NETWORK SIMULATOR 

 

3.1 Purpose of Simulations 

Communication networks are rapidly increasing in complexity, volume, and cost. 

This has been exponential in the recent past, making it imperative to study the behavior 

of a network before it is deployed. An experimental network test bed comes across as a 

practical approach to observe network behavior. However, the cost and time involved in 

deploying such a test bed is the same as deploying the network itself, making such a 

study infeasible.  

Simulations are a cost effective solution to this problem. They are inexpensive, 

and quickly deployed. Network simulation tools help researchers and developers estimate 

network functionality and performance prior to deployment. They are a virtual 

environment for testing the performance of new networking protocols. They model 

networks and analyze their performance under different scenarios. To make network 

operations effective, simulations can inspect the vulnerabilities that may exist in the 

network.  Simulations are often used in test scenarios where it is difficult and infeasible 

to use network hardware. Simulations provide a controlled and reproducible environment 

for simulating network attacks. 
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Simulators allow users to specify the nodes in a network, the links connecting 

nodes and the flow over links [19]. Most simulators offer a programming framework 

through which the user can customize the network environment. They reflect the 

behavior of network components like routers, multiple hosts and various types of network 

links. The following sections explain the reasons SSFNet is suitable for simulating large 

networks.  

3.2 Scalable Simulation Framework 

The Scalable Simulation framework is written in Java and C++. The framework 

(SSF) allows discrete-event simulation for large complex networks. [20] Researchers 

have used this framework to design network simulators like DaSSF and SSFNet.  

3.3 SSFNet 

SSFNet has a single integrated interface which can be used to design networks. It 

models Internet protocols at and above the network layer.  

The Internet consists of a large number of heterogeneous network elements making it 

difficult to simulate. The Internet is an ‘immense moving target” which grows at an 

exponential rate undergoing dramatic qualitative changes over time [21]. The scalable 

simulation framework was developed as a scalable model of the Internet. SSFNet has a 

modular structure, allowing additional packages to be used to model specific domains. 

This strategy promotes independence of models from the simulation fabric and liberates 

the simulation fabric from the specifics of parallel discrete-event simulation engines [19]. 
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SSFNet describes a series of objects which when combined make it possible to define 

large networks. The simulation sizes that can be handled are directly proportional to the 

processing power of the system the simulations are run on.   

The SSFNet distribution consists of two frameworks - SSF.OS and SSF.Net. Any 

Internet model can be constructed using these frameworks. The simulator architecture 

consists of three main components. 

1. DML (Domain Modeling Language): The network configuration files 

needed for running simulations are written in DML. DML files consist of a 

hierarchical list of recursively defined attribute value pairs. [22] 

2. SSF: It is a public domain standard for discrete event simulations of large 

complex networks.  

3. SSFNet: This is a collection of SSF based open source Java models of 

protocols, network elements and supported classes. This consists of SSF 

Network models for modeling and simulation. [23] 

Figure 3.1 shows the SSFNet simulation layers 
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Figure 3.1 Simulation layers in SSFNet 

3.4 SSFNet Objects 

SSFNet segments the network structure into groups. Groups are repeated as necessary 

and patched together to create large networks. 

3.4.1 Net 

The top level Net cannot have an ID. Every network configuration is simply the 

value of the Net attribute enclosed within Net […]. The included Net is a collection of 

Hosts, Routers and links and must contain a single ID value or a range of ID values, 

which identify the network it is configuring.  The ID values should be unique.  
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3.4.2 Frequency  

The frequency parameter sets the time resolution of the simulation as the number 

of simulation ticks per clock second. For instance, if the frequency is set to 1000000, then 

the simulated time will advance by intervals measured in microseconds. It is used only in 

the top level Net.  

3.4.3 Host 

A host could be a client computer or a server. It can have zero or more configured 

interfaces.  The host must have an ID value assigned to it and the ID values must be 

unique for a particular Net loop. 

3.4.4 Graph 

The graph component specifies the list of protocols to be used. It is mandatory for 

every host to have a graph attribute in its definition. The graph attribute has a number of 

sub attributes within it and there is one graph per installed protocol. The ‘name’ is a 

symbolic tag by which a protocol implementation finds its configuration and ‘use’ 

specifies the SSFNet class that should be loaded to do the protocol’s job. 
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Figure 3.2 Graph attribute 

3.4.5 Interface 

The interface facilitates the configuration of the network interface of the Ethernet 

card. The interface also needs to have an ID value which uniquely identifies network 

interfaces for a particular host. A host may have multiple interfaces, but typically has one 

or two. A router can have multiple interfaces as in the case of our simulation. An 

important attribute of the interface is the bitrate which specifies the rate at which packets 

leave the interface. The default bitrate in SSFNet is 10 Mbps. In our simulation, we have 

specified the bitrate for every interface to be between 6000000 and 7000000 bps. The 

latency attribute of an interface specifies the delay introduced by the interface itself. The 

queue and the buffer attributes are optional. The queue specifies the queue manager for a 

particular interface whereas the buffer attribute specifies the buffer of the queue in bytes.  

If the size of the incoming packet is greater than the currently available free buffer space, 

then the packet is dropped. It is possible to assign an IP address to an interface. If one is 

not assigned, then the simulator assigns one. 

 

 

  graph [ 
   ProtocolSession [ 
    name foo 
    use SSF.OS.bar 
    other protocol-dependent parameters 
   ] 
  ]  
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3.4.6 Router 

The router component is similar to the host component.  The difference is that it 

will have distinct protocols in its graph component. It could be considered as an 

intermediate host which cannot originate data.  

3.4.7 Link 

 It specifies a link layer connection. It connects a set of hosts, or router interfaces. 

It must include the attribute ‘attach’ which specifies the attached network interfaces. The 

delay attribute specifies the contribution of the link to the total transmission delay.  

3.4.8 Traffic 

 The traffic component specifies the traffic scenario for different client/servers. It 

is used by protocols like TCP, UDP and HTTP. Traffic could have one or more sub 

patterns and each pattern should specify one client attribute and one or more server 

attributes. The client should be specified with the NHI address of the host or client. The 

format for the traffic attribute is as shown in Figure 3.3 

           

 

   

 

Figure 3.3 Traffic attribute 

  traffic [ 
   pattern [ 
    client 2 
    servers [nhi 1(0) port 1600] 
   ] 
  ] 
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3.5 Addressing 

NHI addressing is used as an internal addressing format for model building 

convenience [33]. It has the form as shown in equation (3.1). 

 : : : ....... : ( )N N N N H I  (3.1) 

Where N represents the network ID, H is the host ID, and I is the interface ID. 

The addressing uses concatenated IDs of each network from the outermost network to the 

innermost network/host which are separated by colons, followed by the interface number 

(NIC ID) in parenthesis after the host containing the interface. For instance, if a Network 

with ID 1 contains a host with ID 3 which has an interface ID 4, then the interface would 

have a NHI address that is represented as 1:3(4). Figure 3.4 shows a simple example of a 

network with two networks and a host in each network. 

 

 

Figure 3.4 A simple network configuration 
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The individual networks are defined as in Figure 3.5 

 

 

 

Figure 3.5 Net definition 

The top level Net is defined as shown in Figure 3.6 

 

 

 

 

Figure 3.6 Top level Net definition. 

CIDR addresses may also be explicitly assigned to a network or link. If they are not 

assigned, then SSF.Net.Net automatically computes them relative to the Net in which 

they are defined. The IP addresses may be assigned manually, or by using optional 

attributes to guide the IP address algorithm implemented by SSFNet or could be 

automatically assigned if no attributes are provided. 

 

 

 

  Net[ 
   Host [id 1 interface [id 1]] 
   link [attach 1(1) attach 0(1)] 
  ] 
 

  Net[ 
   Net [id 1 …..] 
   Net [id 2 …..] 
   link [attach 1:0(0) attach 2:0(0)] 
  ] 
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3.6 Protocol Implementation in SSFNet 

3.6.1 IP implementation  

The IP implementation in SSFNet keeps tracks of all the interfaces configured on 

a particular host or router and the IP addresses of the interfaces that are attached to the 

links. Routes are not computed by SSF.OS.IP but are computed by routing protocols. The 

IP protocol session decrements the TTL field in the IP header and drops the packet when 

the field decrements below zero. The packet is pushed down to the next hop interface by 

the host/router if the destination is not reached. If the host/router is the destination, then 

the packet is pushed up to the appropriate protocol mentioned in the Protocol Session. 

3.6.2 OSPF implementation  

In our simulation, the routers use the OSPF protocol to compute the routing 

tables. The specification of the OSPF protocol occurs in the router’s Protocol Graph 

specification.  At the start of the simulation, protocol finds all the neighbor routers, 

creates the link state database and computes the routes. The static version of the link state 

protocol (sOSPF) is used in our simulations, which is a simplified version of the OSPFv2 

protocol. This protocol implementation does not perform load balancing between paths of 

equal cost.  
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3.6.3 UDP implementation  

We use client server models with UDP streaming traffic. The UDP client 

configuration should specify the earliest time to send a request to the UDP server and 

must specify the size of the requested file in bytes. The UDP server configures itself with 

the parameters specified in the DML file. These parameters include the datagram size 

which is the payload in bytes and the send interval which specifies the interval between 

two consecutive chunks of data. The client sends one integer specifying the amount of 

data it wants to the server’s well known address. On receiving a client’s request, the 

server spawns a slave server which periodically sends the requested datagram size to the 

client until all the bytes of the file are sent [24]. UDP is used, since it does not contain 

flow control. TCP contains end to end flow control, which decreases transmission speed 

exponentially once packets start being dropped. In the context of our study, this has the 

following drawbacks: 

• It would make flooding DDoS attacks aimed at decreasing available 

bandwidth easier to implement, 

• It makes it impossible to exactly quantify the throughput rates that can be 

achieved during a DDoS, and 

• TCP was designed to provide reasonable throughput for a set of 

cooperating network flows. It does not provide reasonable strategies for either 

performing or countering selfish DDoS attacks. 
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3.7 Simulation software environment 

The automation of the network generation process is performed using the Python 

programming language. The version used is 2.5; however some of the libraries from 

version 2.6 are also required. The Python plugin - Pydev is integrated in the Eclipse 

software environment. Pydev is installed by the Eclipse update manager which 

automatically downloads the plugin from the website entered. The maxflow mincut 

program is written in Matlab. The input from Python is appropriately converted to a 

format accepted by Matlab. 

3.8 Simple SSFNet Examples 

In this section, we discuss some simple simulation examples to illustrate SSFNet. 

3.8.1 Configuration 1 

The network configuration simulated had the structure shown in Figure 3.7. Since 

the connections between networks are between the routers of the corresponding networks, 

the interface of the router of Network 1 is connected to the interface of the router of 

Network 2. Network 1 and 3 each consist of two hosts as shown in Figure 3.7. The clients 

in Network 3 request a certain amount of data from the corresponding servers in Network 

1. The data flows from the server to the client according to the UDP client server 

implementation in SSFNet. In the simulation, both clients request a file size of 3000000 

bytes and the data gram size is set to 1000 bytes, so 3000 packets are sent by each server 

to their corresponding clients. The simulations are made to start at the same time. This is 
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achieved by adjusting the start time and the start window parameters in the client 

configuration in the DML file. 

 

 

Figure 3.7 Simulation of 3 networks 

 

It is necessary to choose the send interval and the datagram size such that the resulting 

bandwidth does not exceed the bit rate specified on the server’s host link interface. The 

following parameters need to be changed in the DML script to achieve this.  

- The rate at which the server generates data. This is defined by the attribute 

‘send interval’ in the server definition 

- The bitrate of the interface of the server which connects to the router of the 

network. This is also included in the definition of the server. 

- The bitrate of the interface of the router which goes to the server.  This is 

included in the definition of the Network. 

Table 3.1 shows the amount of data received in bytes at the clients.  
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Link a Link b Data received from 

standard server (bytes) 

Data receive from 

attack server (bytes) 

8000000 8000000 1503000 bytes 6000 bytes 

8500000 8000000 798000 711000 

9000000 8000000 505000 1004000 

10000000 8000000 305000 1204000 

 

Table 3.1 Data received for different bitrates for Configuration 1 

The DML script for the above configuration can be found in Appendix A. 

3.8.2 Configuration 2 

In the second configuration, the servers are placed a hop away from the mincut 

arc.  Figure 3.8 shows the configuration that is simulated. 

 

 

Figure 3.8 Simulation of 5 networks 
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Link a Link b Drops received from 

attack server (bytes) 

Data received from 

standard server (bytes) 

4000000 4000000 9000  3000000  

4000000 5000000 613000 2396000 

4000000 6000000 1007000 2003000 

4000000 8000000 1505000 1505000 

  

Table 3.2 Data received for different bitrates for Configuration 2 

From the observations tabulated, it is clear that as the data generation rate of the attack 

server increases, the number of drops observed for the legitimate traffic also increases. 

The DML script for Configuration 2 is shown in Appendix B.  

3.8.3 Configuration 3 

The configuration in figure 3.9 was simulated to understand the working of the 

OSPF protocol in SSFNet. The static version of the OSPF protocol (sOSPF) in SSFNet 

uses the hop count as the cost attribute for routing packets from the source to the 

destination. For all paths having the same cost to the destination, the path having the next 

hop as the smallest network ID is selected.  This is verified by simulating the 

configuration in Figure 3.9. The packets are routed along path 1 -2 4- 6.  The sOSPF 

protocol in SSFNet does not perform load balancing across equal cost links.  
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Figure 3.9 Network configuration for OSPF verification 
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CHAPTER FOUR 

            DML SCRIPT GENERATION 

 

Our aim is to simulate Distributed Denial of Service attacks for large scale 

networks. We use the SSFNet simulator for this task, because it is capable of simulating 

larger networks than its competitors (ex. Ns-2). To run the simulations, network 

configuration files need to be written using the Domain Modeling Language (DML) in 

SSFNet.  

As the size of the DML script details all the nodes and links in the network, it is 

impractical to manually generate DML scripts for a number of large networks as the 

process could be time consuming and error prone. Figure 4.1 shows a configuration of 

400 networks. 

 

Figure 4.1. Network diagram of 400 nodes. 



35 
 

To generate large scripts that are consistent, we automate the process using 

Python. Network size is the only input to the script. Python outputs a DML script with the 

appropriate number of networks. Networks of any size can be generated; the only limiting 

factor is the processing power of the system which handles the simulation.  For this 

thesis, we created networks of up to 400 sub-networks. 

4.1 Graph Theory 

Graphs are commonly used to model the structure of the internet for the study of 

various problems. This section reviews some of the concepts of graph theory.  

Graph: A graph is defined as a graphical representation of a network where the hosts are 

represented as vertices of the graph and the links connecting these hosts are represented 

by edges of the graph. A graph is traditionally defined as the tuple [V, E] where V is a set 

of vertices and E is the set of edges. Each edge e in defined as (i, j) where i and j 

represent the two vertices connected by e. In the work done in this thesis, we consider 

graphs that are undirected (where (i,j) = (j,i)) and are not multigraphs (where multiple 

edges connect the same end points) 

Connectivity: Two nodes A and B are connected if the graph contains at least one path 

from node A to node B [34]. 

Source node: A node that is the starting point of a flow is called as a source node or 

simply a source. 
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Sink node: A node where the flow terminates is called as the sink node or destination. 

Max-flow : In a network graph, the max-flow is the maximum possible flow that one can 

route from the source to the destination [34]. 

Min-cut : The min-cut is the smallest set of edges or arcs that are necessary for a source 

to communicate with a sink. The removal of these edges disconnects the source from the 

sink. 

Connectivity matrix: The connectivity matrix M is a square matrix where each element 

m(i,j) is 1(0) if there is (not) an edge connecting the vertices i and j [35]. In case of 

undirected graphs, this matrix is symmetric. The diagonal of this matrix could consist of 

either 0s or 1s depending on the simple assumption that each vertex is connected to itself 

[35]. 

Walk : A walk is defined as an ordered list of z edges [(i0 ,j0). (i1 ,j1),…. (iz ,jz)], where 

each vertex ja  is the same as vertex ia+1.  

Path: A path of length z is a walk where all ia are unique. 

Cycle: If jz is the same as i0, the path is a cycle. 

A random graph starts as a set of n isolated vertices and develops by successively 

acquiring edges at random. [25] We use this theorem 6.10 from [25] (where t is the 

number of edges in the random graph and n the number of nodes): 
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Theorem 1: The global structure of a typical random graph Gt becomes surprisingly 

simple as time grows substantially larger than the phase transition time (t = n/2): it 

contains no small components with many edges and all its small components have order 

O(log n).  

It is important to have a giant component for the simulation. The giant component is the 

largest component of a random graph after the phase change described by Theorem 1. It 

contains O(n) nodes.  The expected number of hops between nodes in these graphs grows 

proportionally to the log of the number of nodes [36]. If E represents the number of edges 

in the graph, when E – n/2 < -n 2/3, the graph is in a subcritical phase and almost certainly 

not connected.  A phase change occurs in the critical phase where E = n/2 + O(n2/3) and in 

the supercritical phase where E – n/2  > -n 2/3, a single giant component becomes almost 

certain. When E = n log n/2 + O (n), the graph is fully connected. [37] 

The expected number of edges for a graph is n (n-1)p/2 where p is the uniform 

probability of an edge existing between any two nodes.  

 2/3( 1)
( )

2 2

n n p n
O n

−
= +  (4.1) 

Thus the probability of an existence of an edge between two nodes at the phase change is 

given by 

 2/31
( )

1
p O n

n
≈ +

−
 (4.2) 
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Our simulations therefore require p greater than 1/n to insure the existence of a giant 

component. 

4.2 Max-flow min-cut 

Theorem 2: The max-flow min-cut theorem states that the maximum of all flows is equal 

to the minimum of all cut capacities. [38] 

The concept of max-flow min-cut is illustrated with the help of the example 

shown in Figure 4.2. If node 1 is the source and node 6 is the destination, then there are 

two paths from the source to the destination – path A which is 1-2-4-6 and path B which 

is 1-3-5-6. The maximum flow over path A is bounded by arc 1-2 which has a capacity of 

2. The maximum flow over path B is bounded by arc 5-6 which also has a capacity of 2. 

Since these paths are disjoint the maximum flow from the source to the destination is 6. 

The removal of arc 1-2 in path A and arc 5-6 in path B completely disconnects the source 

from the destination. So the mincut is the set of arcs 1-2 and 5-6. [11] 

 

 

 

 

Figure 4.2 Max-flow min-cut for a graph. 
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4.3 Script Generation Process 

We generate a random graph where the probability that an arc exists between 

nodes i and j is pi,j, which is constant for all i and j.   The most important part in our script 

generation process is the network connectivity matrix denoted by mconn.   pi,j determines 

how well populated mconn will be and should be varied depending on the network size.   

The connectivity matrix is a matrix of all the links that exist between any two 

networks. It has a form as shown in (4.3).   
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 (4.3) 

The element mconn[i][j] in the connectivity matrix signifies the connection from 

network i to network j. A zero element indicates that there is no connection between the 

networks represented by the element’s indices.  mconn is a symmetric matrix and since a 

network need not have a connection to itself, the diagonal elements of the matrix are 

zero. The non-zero elements of the matrix which are generated with a probability of pi,j 

have arbitrary values between 6000000 and 7000000. This number specifies the bitrate at 

which the interfaces between the corresponding networks communicate.  
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The network IDs have values starting from 1. So, if mconn[1][0] ≠ 0, there exists a 

connection between Network 2 and Network 1. Since mconn is a symmetric matrix, 

elements are generated randomly above the diagonal and the elements below the diagonal 

have the same values as their corresponding mirror elements. So if 

 
[1][0]

[0][1]

0

0
conn

conn

m

then m

≠

≠
 (4.4) 

 For every network, the description is enclosed in a network loop in the DML 

script and has a structure as shown in the figure 4.3. There are two hosts, two servers and 

one router in every network. The following convention has been maintained in every 

network, 

Host 1 is a standard server 

Host 2 is an attack server 

Host 3 is a standard server 

Host 4 is an attack server 

All connections between networks are via routers.  The router of every network 

has multiple interfaces and these interfaces are connected via links to other networks. 

There can be only one link per interface so the number of links originating in or 

terminating at a network directly determines the number of interfaces required by the 

router of the network. 
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The interface details of the router are defined in the router loop which is included 

in the network loop. The first four interfaces (interface 0/1/2/3) are allocated to the 

internal hosts of the network. This pattern is followed for all the networks in the script to 

maintain consistency. The interface details within a network are as shown in the figure 

4.3. The interfaces from 4 are free to be assigned to the links between networks.   

The interface numbers are assigned sequentially in the connectivity matrix 

starting from 4 in a column wise fashion. If N represents the total number of networks, m 

represents the row number and n represents the column number, then the interface 

number for each non-zero element in mconn is calculated using equation 4.5. The 

interfaces are generated only for the elements below the diagonal. 

 4interface number n N m= ∗ + +  (4.5) 

As mentioned earlier, the links in SSFNet are bidirectional so there is only one 

direct link between any two networks. 

 

Figure 4.3 Interface details of a network in a simulation 
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The network loop for every individual network consists of a definition of the router, the 

hosts in the network and the link which connects the router and the host within the 

network. The router and the host definitions consist of definition of their own interfaces.  

4.3.1 Top level Net 

Once all the individual networks are defined, the main Network loop is defined 

which contains the links which connect the individual networks together. Similar to the 

interfaces, the links are created only for the elements either above or below the diagonal. 

The links are defined in the format as in (4.6) 

link[attach network_id1:0(interface_no) attach network_id2:0(interface_no) delay 0.0]  (4.6) 

Here network_id1 and network_id2 are the networks between which the link exists.   

4.3.2 Traffic 

The traffic attribute in the Network loop defines the traffic components that are 

involved in sending and receiving traffic. The client and the server are defined in the 

dictionary component of the DML script. When a blue traffic pattern is specified, the 

standard client directs traffic to a standard server in some other network. Similarly the 

attack client sends traffic to the attack server when a red traffic pattern is specified. The 

need for having separate servers in a network arises because of the necessity to adjust the 

rates of both the servers exclusively.  
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The dictionary is used to define all the common components that are used 

throughout the DML script. Once the network is set up, the next phase involves finding 

two nodes to place the blue nodes.  

4.3.3 Determining blue node placement 

This is done by the Python script. The blue source and the destination nodes are 

selected so that no blue destination is less than four hops from the blue source.  

Theorem 3: If M = mconn, and if 

 4 3 2[ ][ ] 0conn m i j  in M M M M+ + + ≠  (4.7) 

 and 

 3 2[ ][ ] 0connm i j  in M M M+ + =  (4.8) 

   

 then there exists two nodes which are at least four hops away from each other.  

Proof: Each non zero element (j, k) represents the existence of an edge between the 

nodes j and k. The result of multiplying M with itself is M2. Each non-zero element of M2 

except the diagonals represents the existence of a path of length two between the nodes j 

and k [35]. By proof of induction, every non zero element of M3 represents the existence 

of a path of length three between nodes j and k.  If equation (4.8) is true, then it implies 

that there exist no paths between nodes j and k which are connected by three hops or 

lesser. If equation (4.7) is satisfied, then it implies that the nodes are connected by either 
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one, two, three or four hops. If both equations are satisfied, then it implies that the nodes 

are connected by at least four hops. 

   The chance of finding a combination of blue nodes which are at least four hops 

away from each other depends on the arc generation probability pij. For a scenario of 400 

networks, pij  is set to 0.03 (since 1/400 < 0.03 according to Theorem 1 in section 4.1) to 

ensure that there is sufficient connectivity between networks and the required 

configuration is found. On finding one such configuration, the script stops computing the 

possible locations for placing the blue nodes. Blue traffic is directed from the blue source 

to the blue destination and is included in the traffic component of the DML script. If the 

script fails to find such a combination, then the configuration must be ignored and the 

program must be rerun till such a situation occurs.  

4.4 Mincut Arcs 

The non-zero elements are fed as input to the maxflow Matlab program in the 

format shown in (4.9). The maxflow program determines the mincut set of arcs between 

two specific network nodes; in this case the two nodes are the blue source and the blue 

destination.  

 from_network    to_network    capacity_of_link  (4.9) 

where from_network is the network ID from where the link originates,  

to_network is the network ID where the link terminates,  
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capacity_of_the_link is the capacity of the link between the two networks. 

By definition, at least one of the mincut arcs has to be on the four hop path 

between the blue source and the blue destination. The output of the Matlab code is a set 

of all mincut arcs between the blue source and the blue destination. Once the mincut arcs 

are known, the zombie locations can be determined. For a large network, there is a high 

probability that there will be multiple mincut arcs between the blue source and the blue 

destination.   

The algorithm in [11] determines how many mincut arcs need to be disabled to 

stop Blue from sending a given volume of traffic. Call denotes the summation of the 

capacities of all the mincut arcs and the blue traffic is chosen as a random value between 

Call/2 and Call. This is justified using equations (4.10) and (4.11), where if C is the 

capacity of a mincut arc, then  

 1
C λ

λ

−
<  (4.10) 

 
2

C
Cλ< <  (4.11) 

The number of arcs that need to be disabled to send the calculated amount of blue traffic 

can then be calculated using the algorithm.  

4.5 Zombie placement 

With an intention of flooding the mincut arcs, zombies are placed near the arc 

sources. In our simulations, the zombies (Red nodes) are placed a hop away from the 
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source node. This is accomplished by inspecting the column corresponding to the source 

of the mincut arc in mconn. The zombie location is selected by randomly choosing one out 

of the possible zombie locations.  For example, as shown in the figure 4.4, the possible 

zombie locations could be nodes 1, 2, 3 or 4 as all these have outgoing arcs to the mincut 

source.  

 

Figure 4.4 Possible zombie locations 

The zombie destination is the destination of the mincut arc. The zombie server is placed 

on the destination.  Also, we ensure that no direct connection exists between the zombie 

source and the zombie destination.  Once the zombie source and destination nodes are 

finalized, they are included in the traffic component as the Red traffic. 

 This completes the script generation process.  

4.6 Selecting one mincut arc at a time 

The OSPF protocol in SSFNet does not perform load balancing; it chooses the 

least cost path to route traffic from the blue source to the blue destination.  This is 

contradictory to the way traffic flows in the Internet. To deal with this problem, we 
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consider each mincut arc sequentially by disconnecting all but one mincut arc at a time 

and rerunning the simulation for all the mincut arcs individually.  

We start with the mincut arc having the maximum capacity. For a Blue traffic rate of 

6000000 bits per second, the Red traffic rate needed to flood the arc is calculated using 

Equation (2.9). This is the threshold value of the Red traffic denoted by Rthresh. Readings 

are taken by varying the Red traffic rate above and below this value and keeping the Blue 

traffic rate constant.  

This procedure is followed for all of the mincut arcs and the results are recorded.  
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CHAPTER FIVE 

SIMUALTION SCENARIO AND RESULTS 

In this chapter, we illustrate the simulations explained in Chapter 4 with an 

example.  

5.1 Simulation Scenario 

The scenario consists of 400 nodes. The network graph is generated by setting pij 

in the Python script. As mentioned in Chapter 4, Blue players are placed on two nodes 

which are at least four hops away. The zombie locations are calculated after knowing the 

details of the mincut arcs in the network. Figure 5.1 details the network configuration 

obtained. Nodes 10 and 159 are chosen as blue node locations.  

 

Figure 5.1: 400 Node configuration 
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Figure 5.2: Node configuration details of the Network 

 

The node configuration details are shown in the Figure 5.2. Blue traffic flows 

from node 10 (B1) to node 159 (B2). There are six mincut arcs between the blue source 

and the blue destination (M1 to M6). The mincut arcs are centered on the destination.  

According to the algorithm detailed in [11] four out of the six mincut arcs need to be 

disabled.  The zombies are placed on Z1, Z2, Z3 and Z4 corresponding to the four mincut 

arcs. The Red traffic flows from the zombie source to the zombie destination which is the 

same as the mincut arc destination in this case. The amount of data requested by the Blue 

and the Red clients is the same. 



50 
 

We first target the mincut arc with the maximum capacity. In our case, this is link 

M1, between nodes 256 – 159. The link has a capacity of 6916382 bits per second. The 

zombie is placed on node 377.  The configuration is as shown in Figure 5.3. The attack 

traffic flows from the red server (node 159) to the red client (node 377) whereas the 

legitimate traffic flows from the blue server (node 159) to the blue client (node 10).  

 

Figure 5.3: Mincut Arc 1 

 

The red traffic rate threshold (Rthresh) is calculated for a constant blue traffic rate 

of 6000000 bps using the Equation (2.9). The red traffic rate is increased from 500000 

bps to 7000000 bps and the effective bandwidth allocated to Blue and Red is noted down. 

On increasing the red traffic value above the threshold value, a significant reduction in 

blue bandwidth is observed. This is shown in Graph 5.1. Thus by increasing the rate at 

which an attacker generates data, he can limit the bandwidth allocated to the legitimate 

source and effectively cause a DDoS attack. 

 



 

Graph 5.1: Bandwidth allocated to players with increase in Red Traffic rate

 

The procedure is followed for all three remaining mincut arcs. 

detail the configuration of the arcs.

Figure 5.4: Mincut Arc 2 
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Graph 5.1: Bandwidth allocated to players with increase in Red Traffic rate

procedure is followed for all three remaining mincut arcs. Figures 5.4, 5.5 and 5.6 

detail the configuration of the arcs. 

                     

    Figure 5.5: Mincut Arc 3
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Graph 5.1: Bandwidth allocated to players with increase in Red Traffic rate 

Figures 5.4, 5.5 and 5.6 

        

Figure 5.5: Mincut Arc 3 
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Figure 5.6: Mincut Arc 4 

The graphs for these configurations have similar results. To prevent repetition, they have 

not been included in this thesis.  

Graph 5.2 shows the drops observed by the total traffic (Red and Blue) over all 

the four mincut arcs. It can be seen that the arc with the maximum capacity observes the 

least number of drops. Also as the red traffic rate increases, the number of drops increase 

linearly which is in line with our understanding. 

 

Graph 5.2: Drops observed by the traffic for all mincut arcs 
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To check the effectiveness of the DDoS attack when the legitimate source increases the 

amount of traffic we increase the blue traffic rate from 4000000 bps to 5500000 bps. It 

should be noted that the blue traffic rate has to be greater than half the capacity of the 

mincut arc. The red traffic rate was set to the value obtained from the formula. It can be 

observed that the blue bandwidth is limited to a particular value and in spite of the 

increase in the blue traffic rate, the blue bandwidth does not increase. This is shown in 

Graph 5.3. 

Graph 5.3: Bandwidth allocated to Players with increase in Blue traffic rate
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To check the effectiveness of the DDoS attack when the legitimate source increases the 

amount of traffic we increase the blue traffic rate from 4000000 bps to 5500000 bps. It 

ted that the blue traffic rate has to be greater than half the capacity of the 

mincut arc. The red traffic rate was set to the value obtained from the formula. It can be 

observed that the blue bandwidth is limited to a particular value and in spite of the 

increase in the blue traffic rate, the blue bandwidth does not increase. This is shown in 

Graph 5.3: Bandwidth allocated to Players with increase in Blue traffic rate
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ted that the blue traffic rate has to be greater than half the capacity of the 

mincut arc. The red traffic rate was set to the value obtained from the formula. It can be 

observed that the blue bandwidth is limited to a particular value and in spite of the 

increase in the blue traffic rate, the blue bandwidth does not increase. This is shown in 

 

Graph 5.3: Bandwidth allocated to Players with increase in Blue traffic rate 
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In absence of red traffic, the effective bandwidth occupied by Blue approac

rate at which the Blue server generates data. This can be verified from graph 5.4. The 

network overhead contributes some losses and hence the bandwidth occupied is not equal 

to the blue traffic rate. 

Graph 5.4: Effective Bandwidth of Blue in abse
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In absence of red traffic, the effective bandwidth occupied by Blue approac

rate at which the Blue server generates data. This can be verified from graph 5.4. The 

network overhead contributes some losses and hence the bandwidth occupied is not equal 

Graph 5.4: Effective Bandwidth of Blue in absence of Red traffic

The equation is pessimistic and gives an upper bound on the amount of attack traffic that 

is required to cause a DDoS attack. It is difficult to estimate a lower bound on the amount 

of attack traffic needed as it is dependent on the underlying network hardware and 

software and is thus difficult to estimate.  
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In absence of red traffic, the effective bandwidth occupied by Blue approaches the 

rate at which the Blue server generates data. This can be verified from graph 5.4. The 

network overhead contributes some losses and hence the bandwidth occupied is not equal 

 

nce of Red traffic 

The equation is pessimistic and gives an upper bound on the amount of attack traffic that 

is required to cause a DDoS attack. It is difficult to estimate a lower bound on the amount 

rlying network hardware and 
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 Similar simulations were performed for two other configurations which were 

generated randomly by Python. The equation was found to be pessimistic for these 

configurations as well.  
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CHAPTER SIX 

DISTRIBUTED DENIAL OF SERVICE COUNTERMEASURES 

 

This chapter presents some of the mechanisms provided to defend against Distributed 

Denial of Service Attacks. 

6.1 Defense Mechanisms 

DDoS defense may be regarded as a resource allocation problem in which the 

server resources are fairly allocated to clients to prevent attackers from consuming an 

excessive amount of resources. DDoS attacks can also be thwarted by filtering or rate 

limiting attack packets. An attack detection module is used to extract the characteristics 

of the attack packets and once the characteristics have been summarized, packet filtering 

modules are used to filter malicious packets. [40] 

 Some detection techniques use attack source traceback and identification as a 

response to a DDoS attack. The routers record information about the packets they have 

seen for later traceback requests or they send additional information about the packets 

they have seen to the packet’s destination. However, traceback is ineffective in DDoS 

attacks in which the attack traffic comes from legitimate sources. [41] 

 Activity profiling monitors the average packet rate for a network flow, which 

consists of consecutive packets with similar packet fields. The total network can be 
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measured as the sum over the average packets rates of all inbound and outbound flows. 

An attack can be detected if an increase is observed in the network flows. [42] 

 In the backscatter analysis, the researchers monitor a wide IP address space for 

incoming backscatter packets. The backscatter packet’s source address is that of the 

victim, but the packet’s destination address is randomly spoofed. An attack that uses 

uniformly distributed address spoofing leads to a finite probability that any monitored 

address space will receive backscatter packets. The packets are clustered based on the 

unique victim source address. To detect attacks, the researchers analyze a cluster’s 

destination address distribution uniformity. [42] 

The authors in [26] classify the DDoS defense mechanisms as being reactive and 

preventive. In reactive measures, the attack sources are identified as early as possible and 

are prevented from executing further attacks. The countermeasures here may be attack 

specific, when the attack is consuming fewer resources than available.  The preventive 

measures focus on eliminating the possibility of performing a DDoS attack. This 

mechanism is not 100 % effective but does ensures a decrease in the frequency and 

strength of DDoS attacks by making a host resilient to the attacks which includes 

identifying loopholes in the system and eliminating the vulnerabilities or removing 

application bugs to prevent intrusions. [6]. 
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6.2 Differentiating between Flash events and DDoS 

Before concluding that a denial of service attack is under progress, it is necessary 

to identify and separate DoS attacks from flash events. If any attempt to undermine a 

website is considered to be a Denial of Service attack, then the preventive techniques 

might end up throttling the excess legitimate traffic. Work has been done in the past in 

this field. A flash event is defined as a sudden increase in traffic for a particular website. 

This results in a dramatic increase in server load putting severe strain on the network 

links leading to the server. The end result is considerable increase in packet loss and 

congestion.  

6.3 Summary of work done 

The authors in [11] set up a game between the attacker and multiple distributed 

applications of an enterprise. The attacker might not have sufficient resources to disrupt 

all the processes of an enterprise. It will try to maximize the number of processes it can 

disable. In reaction, an enterprise can shift to another configuration that has not been 

attacked. Both the players have to determine the best process to make a move in. Since 

the problem is P-Space complete, the authors analyze it using Combinatorial Game 

Theory and Thermographs. Reconfiguration strategies are provided for distributed 

applications using Thermostrat strategy.  

The work presents an example which consists of 3 distributed applications. The 

values of the distributed applications are known a priori. For determining the process in 
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which a move has to be made, the authors make use of the Thermostrat strategy. The 

strategy is explained in detail in Chapter 7.  Figure 6.1 shows the three distributed 

applications.  

 

                    

Figure 6.1(a) Configuration 1    Figure 6.1(b) Configuration 2 

 

 

Figure 6.1(c) Configuration 3  
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CHAPTER SEVEN 

BANDWIDTH LIMITED COORDINATION OF GAMES 

We now consider what happens when an enterprise (Blue) attempts to maintain 

operations in spite of an adversary (Red) launching a DDoS attack. Blue has a set of 

networks it needs to coordinate. For example, it may have accounting, finance, 

administration, research and development, and manufacturing systems that must remain 

operational while competing for the same scarce resources. Blue has to maintain 

communications for these separate networks over bandwidth limited links. The aim of 

Red is to disrupt Blue’s communications. Due to limited bandwidth availability over the 

links, Blue needs to coordinate among its networks by sending only the most important 

information. Blue will be successful in achieving this depending on whether it is able to 

find the most important message that needs to be transmitted. It would be ideal if this 

could be done without requiring out-of-band coordination messages. 

 We model this problem using combinatorial game theory. We first explain some 

of the basic terms required to understand the concepts of game theory.  

7.1 Surreal Numbers 

The authors in [27] define surreal numbers as an extension of real numbers with a 

tangible concept of infinity and infinitesimals. They describe surreal numbers as a pair of 

sets (Left and Right) of previously created surreal numbers such that no member of the 

right set maybe less than or equal to any member of the left set. By definition Left wins 
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the game if the final score is greater than zero, or if the final score equals zero and it is 

Right’s turn to play when the game ends [28]. If every element of the left set is not less 

than every element of the Right set, then it results in an ill-formed surreal number, also 

called as a game. Every surreal number is a game, but not all games are surreal numbers.  

A combinatorial game involves two players – Left and Right. A game tree has a 

root node which represents the initial position. The root node has zero or more branches 

going downwards to the left (representing moves for the left player) and downwards to 

the right (representing moves for the right player). At each point, the player considers the 

options he has and chooses the one which will maximize his payoff value. Game trees 

can be typically represented as shown in equation (7.1). 

 1 2 1 2,{ , ,...... | , ...... }n mL L L R R R  (7.1) 

 The options for left are represented as ��… �� and the options for right are 

options from ��… ��.  The equation has a numeric value if  

 :i j i jL R L R∀ ∀ <  (7.2) 

The value of a surreal number where equation (7.2) holds is the “simplest” number 

between the greatest L value (Lmax) and the smallest R value (Rmin) [29]. If equation 

(7.2) is not satisfied, then the number is ill formed and it is a game. 

 :i j i jL R L R∃ ∃ ≥  (7.3) 
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The value of the game then depends on the sequence of moves taken. Figure 7.1 shows a 

diagram of a game tree which can be represented by equation (7.4) 

 {15,{25 |10}| 5}G = −  (7.4) 

 

Figure 7.1 Game tree represented by G 

If Right plays first, then he has only one option to move and he ends up gaining 5 

points from the Left player. If Left makes the first move, then he has two options which 

are represented by two branches going down leftwards. He can either choose the first 

option and gain 15 points from Right or choose the second option and move to the game 

{25 | 10}. If he chooses the second option, then Right plays next and gives the Left player 

10 points. The Left player would prefer winning 25 points to 10 and hence if Left plays 

first, he would choose the first option. 
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7.2 Combinatorial Game Theory 

A combinatorial game involves two players – Left and Right. These are perfect 

information games in which all players know all the moves that have taken place. 

Combinatorial game theory does not study games of chance. In our example scenario, 

there are multiple networks which want to coordinate and communicate over the network 

links. The Blue player needs to prioritize data and send the most important information. 

This effectively translates into a Sum of Games problem, where the Blue player is 

engaged in multiple games with Red and the aim is to maximize the overall payoff 

function. This sum of games is represented by 

 ,
1

n

i i j
j

G G
=

=∑  (7.5) 

Yedwab proved the following theorems in [28] which state that 

Theorem 1: Calculating the value of the Sum of Games is NP-hard. 

Theorem 2: Finding the optimal sequence of moves for a Sum of Games problem is 

PSPACE complete.  

These theorems state that a truly optimal strategy for a sum of games is only 

found by an exhaustive search of alternatives which requires exponential time. Instead of 

finding the best possible solution, it is possible to find a solution within a constant offset 

of the optimal.  



64 
 

Mathematical studies have been carried out using game trees to analyze the 

strategies used for playing games and winning them.  We introduce a concept called 

thermographs which could be used for chilling the games and finding the optimal 

strategies for the sum of games. In order to understand thermographs, we first explain the 

concept of ‘temperature’ of a game. 

The temperature of a game signifies the variability of the game. It signifies the 

amount that stands to be gained by either player initiating a move. A game where a much 

(little) stands to be gained or lost is called as hot (cold). The variability of a game can be 

reduced if a tax t is imposed for making a move. This is also called as process of cooling. 

It is done by modifying the game.  

 { | }L R
t t tG G t G t= − +  (7.6) 

We use the concept of thermographs in calculating the value of a game. 

Thermographs are plotted on graphs in which the co-ordinate system used has the tax on 

the y-axis and the game value on the x-axis. The values on the x-axis are plotted in 

decreasing order to keep the Left player’s options to the left side of the graph.  As tax t 

increases, both sides reach a common value which is called as the ‘mean value’ of the 

game. The smallest tax needed to reach the game’s mean value is called as the 

temperature of the game.  
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7.3 Plotting thermographs 

The authors in [30] explain the procedure for plotting a thermograph. They start with 

Left and Right’s choices and recurse upwards. For example, Figure 7.2 shows the 

thermograph of {{5 | -5} | -20}.  The thermograph of {5 | -5} is first plotted by marking 

the Left and Right choices for t=0 on the horizontal axis and then plotting the game 

values as t increases until the Left and Right values converge [12]. Since the value on the 

right is already a number (-20), its thermograph is just a vertical mast.  

The next step is to plot the thermograph of {{5 | -5} | -20} using the thermograph of {5 

| -5}. After Left has moved to {5 | -5} it will be Right’s turn so -5 is the starting point on 

the left. The temperature of the freezing point of {5|-5} is 5. So the left edge of the 

thermograph starts at point (-5, 5). 

The game -20 has value -20 and freezing point t = 0. So the right edge of the 

thermograph starts at point (-20, 0). We recursively subtract a tax t from the left and add 

it to the right, until the two values converge. As shown in Figure 7.3, this gives us the 

freezing point (temperature) of 10 and a mean value of -10.  
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               Figure 7.2: Plot of {5|-5}                                  Figure 7.3: Plot of {{5|-5}|-20} 

7.4 Berlekamp’s Strategies 

Choosing a strategy to play the sum of games problem would help to make a 

decision. In [12], Berlekamp presented three strategies for deciding which game to play 

in.  

Sentestrat: This strategy tells us to respond to the opponent’s move by making a move in 

the same game. This strategy is not of any importance for the work in this thesis, as we 

do not have an idea of where the opponent is. 

Thermostrat: In this strategy, by plotting the friendly side and the enemy side of the sum 

of games, we find the component game whose thermograph has the maximum width at 

different temperatures. The temperature at which the widest component occurs is called 

the ambient temperature. According to the Thermostrat strategy, the component game 

widest at the ambient temperature is the game that needs to be played in.  
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For example, in figure 7.4, there are three games being played simultaneously. G1 

= {{15|5}|{4|3}}, G2 = {30|20}, G3 = {{50|45}|75/2}. The thermographs for the games 

are shown from left to right. The left hand side is the sum of the left hand sides of the G1, 

G2, and G3 thermographs; that is 80 = 45 + 30 + 5. The right hand side is found by 

subtracting the maximum width of the three thermographs at each temperature. We note 

that the furthest right point of this graphic has value 69, which occurs at temperature 3/2. 

Since the thermograph of G2 has the maximum width at this temperature, Thermostrat 

advises to play in G2.  

 

Figure 7.4: Thermostrat strategy example. From right, Thermograph of G1, thermograph 

of G2, thermograph of G3, and thermograph evaluation of the sum of these three games 

In our work, we are playing in a game with one of the components masked. In such cases, 

the unmasked game might have extreme values or a single surreal number which could 
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drastically change the width and accordingly the decisions of playing in a game. Thus the 

Thermostrat strategy fails to be applicable in the work pertinent to this thesis. 

Hotstrat : Hotstrat strategy recommends play in a game which has the highest 

temperature. In other words, the Hotstrat strategy when applied to a sum of games 

problem would choose a game with the highest variability. Since the variability directly 

relates to the payoff values, this strategy correctly reflects the most important component 

game.  

The Hotstrat strategy [30] when applied to a sum of games problem would choose 

a game with the highest temperature and will correspondingly choose that game. Since 

the temperature of the game signifies the importance and variability of the game, the 

higher the variability of the game, the higher is the payoff that can be obtained by playing 

that game. In this example scenario, the result would give us the most important message 

that needs to be transmitted. This ensures that communication is maintained till the 

affected links are restored back to their normal state.   

7.5 Example Game 

We have multiple departments which need to coordinate in order to maintain 

communication. If the links between the departments experience a DDoS attack, there 

would be a heavy constraint on the bandwidth that can be assigned to the players. This 

limits the number of messages that could be transmitted. At such times, it would be of 

paramount importance to prioritize the messages that need to be sent. We model this as a 
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two player game with the two players being Red and Blue.  The aim of the Blue player is 

to maintain communication within its departments and the aim of the Red player is to try 

and disrupt it. If the attacker is able to disrupt the communication between the 

departments then the Red player wins.  

Multiple departments share a limited communications channel and more than one 

department can simultaneously detect changes in the network. The player needs to 

prioritize messages before deciding which is the most important. This problem was 

solved by Virtenen in [31] by considering Maximax, Maximin and central values 

prioritization schemes. We modify the problem to compare game trees instead of 

comparing range of values. We represent our set of messages as different branches of a 

game tree with payoff values assigned to each branch. In essence, m departments are 

simultaneously deciding which of the n attackers to engage (one attacker might target 

multiple links). Thus the message prioritization problem is changed from a team decision 

problem to a Sum of Games problem from combinatorial game theory.  

7.6 Playing in a game with one of the options masked 

Since more than one department can simultaneously detect changes in the 

network, a subset of the game changes, however because of bandwidth limitations, the 

players can not accurately know the details of all the games in the set. They need to 

choose the games which are more important. So the players end up playing in a sum of 

games problem where they are ignorant about the payoffs in a subset of the games. 
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7.7 Incorporating chance moves 

In order to deal with combinatorial game theory, we need to modify Conway’s 

surreal number approach to include chance moves. Surreal number representations of the 

game assume perfect information. Unfortunately, the underlying nature of this problem is 

probabilistic in nature. Figure 7.5 shows an extensive form representation of a chance 

move. Extensive form is a tree structure with each interior node of the tree representing a 

decision point. Leaves are associated with payoffs. At the root node, Blue wants to 

maximize the payoff. If Blue chooses the alternative on the left, two choices exist on the 

left with probability 0.4 and right with probability 0.6. After those chance moves are 

nodes that represent Red’s choices. Since Red wants to minimize, the left (right) node has 

value 5 (14). We state a theorem which helps us solve this problem. 

 

 

Figure 7.5 Extensive form representation of a chance move 
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Theorem 3. Given a probability distribution function {p1, p2, …pi} where pk is the 

probability of surreal number {Lk | Rk}, the expected value is a surreal number. 

Since addition and multiplication of well formed surreal numbers is a surreal number 

[27], for all elements in a game tree,  

 kp  surreal number = surreal number∗  (7.7) 

Blue uses the expected value of its left node 0.4 * 5 + 0.6 * 14 = 10.4 as its expected 

payoff in calculating which alternative to take. It can also be viewed as compressing the 

two Red moves into a single information set where Blue cannot know in advance which 

node in the information set it chooses. In extensive form, each player’s possible moves 

are expressed in alternation with chance moves inserted as necessary. By replacing 

chance moves in a game tree, we convert an imperfect information game into an 

equivalent perfect knowledge game. The next section talks about the algorithm to 

prioritize the messages.  

7.8 Message Prioritization Algorithm 

1. Each network monitors the state of its links. 

2. Each network constructs game trees based on the monitored data 

3. Surreal numbers are constructed for each engagement 

4. Thermographs are constructed from each surreal number and the freezing point is 

noted 

5. The data is prioritized using the temperature of its associated surreal number 

6. An alarm is set proportional to the inverse of the temperature.  
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7. As soon as the alarm expires, if the bandwidth is not occupied then data is 

transmitted. 

7.9 Simulation of Game Scenario 

The simulation game scenario developed using Python helps explain the example 

game. We also show that the Hotstrat strategy dominates the strategies used in [31] for 

game theory problems. 

Both the players – Red and Blue start the game with a common operating view. The 

common operating view is a set of three randomly generated games (G1, G2, G3). The 

two players compete by playing a sum of games problem on this set. On monitoring their 

links, the players determine that the games G2 and G3 are replaced by games G4 and G5. 

Since the players have bandwidth enough to transmit information of only one game, they 

have to choose between game G4 and G5. The decision about which player makes the 

first move is made randomly with both players having an equal probability. Both players 

are now playing a sum of games problem which consists of G1 G4 and G5. However, the 

players are forced to choose between the information sets of {G1, G2, G5} and {G1, G4, 

G3}. The players choose a strategy from Maximax, Maximin, Central values and Hotstrat 

to help them decide which game to play in and make a move in that game. This procedure 

is followed until payoff values are obtained for all three games. The payoff values 

corresponding to the real scenario are summed to give the payoff for the sum of games. If 

the sum is greater than or equal to half the maximum payoff possible, then Blue player 

wins, else Red wins.  
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The five randomly generated games are 

�� �  	
12|32� | 
33|32�   �  
48|9�|
43|19��    

�� �  	
4|9� | 
49|34�   �  
24|1�|
9|4��    

�� �  	
6|37� | 
49|2�   �  
10|34�|
21|18��    

�� �  	
10|2� | 
4|45�   �  
32|39�|
32|34��    

�� �  	
15|5� | 
14|43�   �  
13|27�|
3|27��    

The steps taken to choose the game which it prefers to see are listed in Table 7.1. The 

following conventions are used to describe the simulation example.  

S:  Set of games which the player sees and applies the strategy to.  

x:  Strategy chosen 

Ig:  Game which is inconsistent with the real scenario  

cg:  Game chosen to be modified after applying x  
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Time 

step 

Action performed by Blue Action performed by Red 

1 S = { G1, G2, G3} 

x = Maximax 

S = { G1, G2, G3} 

x = Maximax 

2 Apply x to G4 and G5 

Ig = G5 

S = { G1, G4, G3} 

Apply x to G4 and G5 

Ig = G5 

S = { G1, G4, G3}  

Table 7.1: Procedure to decide the starting scenario 

Table 7.2 details the steps followed after choosing the inconsistent game. In our 

simulation run, Blue player starts the game. 

Time 

step 

In 

action 

Scenario before S Action Scenario after S 

1 Blue G1 = {{12|32}|{33|32}|| 

{48|9}|{43|19}}  

G4 = {{10|2}|{4|45}|| 

{32|39}|{32|34}}  

G3 = {{6|37}|{49|2}|| 

{10|34}|{21|18}} 

 

Apply x to S 

cg = G3 

 

 

G1 = 

{{12|32}|{33|32}|| 

{48|9}|{43|19}} 

G4 = {{10|2}|{4|45}|| 

{32|39}|{32|34}} 

G3 = {6|37}|{49|2} 
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2 Red G1 = {{12|32}|{33|32}|| 

{48|9}|{43|19}}  

G4 = {{10|2}|{4|45}|| 

{32|39}|{32|34}}  

G3 = {6|37}|{49|2} 

 

Apply x to S 

cg = G4 

G1 = 

{{12|32}|{33|32}|| 

{48|9}|{43|19}}  

G4 = {32|39}|{32|34} 

G3 = {6|37}|{49|2} 

 

3 Blue G1 = {{12|32}|{33|32}|| 

{48|9}|{43|19}}  

G4 = {32|39}|{32|34} 

G3 = {6|37}|{49|2} 

 

Apply x to S 

cg = G3 

G1 = 

{{12|32}|{33|32}|| 

{48|9}|{43|19}}  

G4 = {32|39}|{32|34} 

G3 = {6|37} 

 

4 Red G1= {{12|32}|{33|32}|| 

{48|9}|{43|19}}  

G4 = {32|39}|{32|34} 

G3= {6|37} 

 

Apply x to S 

cg = G3 

G1= 

{{12|32}|{33|32}|| 

{48|9}|{43|19}}  

G4 = {32|39}|{32|34} 

G3=  37 

 

Table 7.2: Steps to play the game 

At time step 4, a final payoff value is obtained for G3. The procedure is continued until 

payoff values are obtained for all the games. Since the payoff values corresponding to the 
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real scenario are considered, the payoff value in this case is the summation of the payoff 

values for games G1 G4  and G5 which is 69 (32 for G1 + 32 for G4 + 5 for G5). 

The simulations are run 500 times for each pair of strategies. The percentage wins for 

Blue player are recorded. The rows represent the strategies chosen by Blue and the 

columns represent to strategies chosen by Red. 

 Maximax Maximin Central Values Hotstrat 

Maximax 0.53 0.518 0.55 0.27 

Maximin 0.492 0.548 0.488 0.354 

Central Values 0.564 0.538 0.534 0.362 

Hotstrat 0.75 0.71 0.718 0.542 

Table 7.3: Recorded percentage wins for Blue 

The test for statistical significance between binomial distributions [7] is used to verify 

that the values in Table 7.3 are significantly different. 

 1 2

2 1

(1 )
log 0.41

(1 )

p p

p p

 −
< 

− 
 (7.8) 

Row wise and column wise comparisons are performed to determine the most optimal 

strategy for Red and Blue.  

For a Red strategy, the most optimal strategy for Blue can be determined by comparing 

values within columns. This is shown in Table 7.4. Sub columns are created within 



77 
 

columns to show which strategies are being compared. We note that Hotstrat’s 

performance is significantly better than the other three, no matter which strategy was 

chosen by Red. So Hotstrat is marked as a + and the others are marked as -. When there is 

no significant difference between the strategies, then they are marked as ≈. 

On comparing within rows, we obtain the strategy that performs best for Red against a 

given Blue strategy. Similarly, Hotstrat causes Blue to win fewer games than other 

strategies. This is shown in Table 7.5.  Thus the Hotstrat provides an effective strategy 

for determining the priority of the games when competing for bandwidth.  

 Maximax Maximin Central 

Values 

Hotstrat 

Maximax - ≈ - ≈ - ≈ -  - ≈ 

Maximin - ≈ - ≈ - ≈ - ≈  ≈ 

Central Values - ≈ - ≈ - ≈ - ≈ +  

Hotstrat +  +  +  +    

Table 7.4: Choosing an optimal strategy for Blue 
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 Maximax Maximin 
Central 

Values 
Hotstrat 

Maximax 
+ + + - 

≈ ≈ ≈  

Maximin 
+ + + - 

≈ ≈ ≈  

Central Values 
+ + + - 

≈ ≈ ≈  

Hotstrat 
+ + + - 

≈ ≈ ≈  

Table 7.5: Choosing an optimal strategy for Red 
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CHAPTER EIGHT 

SUMMARY 

We verified, by performing simulations, the work in [11] to quantify the number 

of resources that an attacker would need to disable a network. Performing a DDoS on a 

large scale network is more reasonable than a DDoS on a small scale network. We choose 

the SSFNet simulator over its competitors as it is capable of handling large networks.  To 

simplify the tedious and error prone process of writing script for large networks, we 

automate the network generation process.  

The formula derived in [11] is developed for an ideal network. It does not account 

for processing and the overhead contributed by the network. Since the network simulator 

is not really the actual network, the statistics obtained give an upper bound of the amount 

of attack traffic required to cause a DDoS. It is slightly conservative in quantifying the 

zombie traffic.  The lower bound is dependent on the underlying network implementation 

and we suspect that a better estimate would have to be empirical. However, considering 

the fact that we cannot ethically perform a DDoS on a functioning network, it is unlikely 

that further empirical work can be done.  

In Chapter 7, we develop an alternative application of combinatorial game theory 

in which we allocate bandwidth between processes. We present an example scenario by 

setting up a game between an attacker and multiple distributed applications of an 

enterprise. The enterprise coordinates between its different networks by maintaining 

communication over bandwidth communication links. The limited bandwidth links make 
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it necessary to determine the most important message that an enterprise needs to transmit.  

In order to account for the probabilistic nature of the problem, we convert a game with 

imperfect information into perfect information games. We compare four strategies – 

Maximin, Maximax, Central value and Hotstrat to determine the priority of the messages 

and conclude that Hotstrat gives us the best possible results. We verify our understanding 

by running simulations. The results indicate that our proposed technique will be part of 

an effective DDoS countermeasure.  

Further research can be focused on 

1. Introducing background traffic 

2. Simulating with a protocol that performs load balancing and more closely 

simulates the working of the Internet.  

3. Implementing a prototype of the Bandwidth Limited coordination of 

games 
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APPENDIX A – DML SCRIPT OF 3 NETWORKS 

 

#Starting to write the dml file 
schema [_find .schemas.Net] 
 
Network1 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 4000000 latency 0.0] 
 interface [id 1 bitrate 8000000 latency 0.0] 
 interface [id 2 bitrate 4000000 latency 0.0] 
 interface [id 3 bitrate 9000000 latency 0.0] 
 interface [id 4 bitrate 4000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
 
 
 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
 
 
 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 
  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
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 # starting of udp attack server declaration 
 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
 
 
Network2 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 4000000 latency 0.0] 
 interface [id 1 bitrate 4000000 latency 0.0] 
 interface [id 2 bitrate 4000000 latency 0.0] 
 interface [id 3 bitrate 4000000 latency 0.0] 
 interface [id 4 bitrate 4000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 interface [id 5 bitrate 8000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
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  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
 
 
 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
 
 
 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 
  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
 
 
 # starting of udp attack server declaration 
 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
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  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
 
 
Network3 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 4000000 latency 0.0] 
 interface [id 1 bitrate 4000000 latency 0.0] 
 interface [id 2 bitrate 4000000 latency 0.0] 
 interface [id 3 bitrate 4000000 latency 0.0] 
 interface [id 5 bitrate 8000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
 
 
 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
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 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 
  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
 
 
 # starting of udp attack server declaration 
 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
 
 
 
Net [ 
 frequency 1000000000000000  
  AS_status boundary  
  ospf_area 0 
 
 #random number generation  
 randomstream [  
 generator "MersenneTwister"  
 stream DefaultStream  
 ] 
 
 
 Net [id 1 _extends .Network1.Net] 
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 Net [id 2 _extends .Network2.Net] 
 
 Net [id 3 _extends .Network3.Net] 
 
 
link [attach 1:0(4) attach 2:0(4) delay 0.0] 
 
link [attach 2:0(5) attach 3:0(5) delay 0.0] 
 
traffic [ 
 pattern [  
  client 3:1  
  servers [port 10 nhi 1:2(0)]  
 ]   
 
 pattern [  
  client 3:3  
  servers [port 10 nhi 1:4(0)]  
 ]   
 
] 
 
] #Net loop closes 
 
dictionary[ 
 
 standardClient [ 
  interface [id 0 _extends .dictionary.10BaseT]  
  route [dest default interface 0] 
  graph [  
  ProtocolSession [  
   name client use SSF.OS.UDP.test.udpStreamClient  
   start_time 30.0  
   start_window 0.0  
   file_size 3000000  
   _find .dictionary.appsession.request_size  
   _find .dictionary.appsession.datagram_size  
   _find .dictionary.appsession.show_report  
   _find .dictionary.appsession.debug  
  ] 
  ProtocolSession [name socket use 
SSF.OS.Socket.socketMaster]  
  ProtocolSession [name udp use SSF.OS.UDP.udpSessi onMaster  
   _find .dictionary.udpinit]  
  ProtocolSession [name ip use SSF.OS.IP]  
  ]  
 ] 
 
 attackClient [ 
  interface [id 0 _extends .dictionary.10BaseT]  
  route [dest default interface 0]  
  graph [  
   ProtocolSession [  
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  name client use SSF.OS.UDP.test.udpStreamClient  
  start_time 30.0  
  start_window 0.0  
  file_size 3000000 
  _find .dictionary.appsession.request_size  
  _find .dictionary.appsession.datagram_size  
  _find .dictionary.appsession.show_report  
  _find .dictionary.appsession.debug  
  ]  
   ProtocolSession [name socket use SSF.OS.Socket.s ocketMaster]  
   ProtocolSession [name udp use SSF.OS.UDP.udpSess ionMaster  
    _find .dictionary.udpinit]  
   ProtocolSession [name ip use SSF.OS.IP]  
  ]  
 ] 
 
 10BaseT [  
  bitrate 4000000  
  latency 0.0  
 ] 
 
 10BaseTBT [ 
  bitrate 8000000 
  latency 0.0 
 ] 
 
 10BaseTRT [ 
  bitrate 9000000 
  latency 0.0 
 ] 
 
 udpinit [  
  max_datagram_size 100000  
  debug false  
 ] 
 
 standardServer [  
   interface [id 0 _extends .dictionary.10BaseTBT]  
   route [dest default interface 0]  
   graph [  
   ProtocolSession [  
    name server use SSF.OS.UDP.test.udpStreamServer   
    port 10  
    client_limit 10  
    _find .dictionary.appsession.request_size  
    _find .dictionary.appsession.datagram_size  
    _find .dictionary.appsession.send_interval  
    _find .dictionary.appsession.show_report  
    _find .dictionary.appsession.debug  
   ]  
   ProtocolSession [name socket use 
SSF.OS.Socket.socketMaster]  
   ProtocolSession [name udp use 
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SSF.OS.UDP.udpSessionMaster  
    _find .dictionary.udpinit]  
   ProtocolSession [name ip use SSF.OS.IP]  
   ]  
  ] 
 
 attackServer [  
  interface [id 0 _extends .dictionary.10BaseTRT]  
  route [dest default interface 0 ]  
  graph [  
  ProtocolSession [  
   name server use SSF.OS.UDP.test.udpStreamServer  
   port 10  
   client_limit 10  
   _find .dictionary.appsession.request_size  
   _find .dictionary.appsession.datagram_size  
   _find .dictionary.appsession.send_attk_interval  
   _find .dictionary.appsession.show_report  
   _find .dictionary.appsession.debug  
   ]  
  ProtocolSession [name socket use 
SSF.OS.Socket.socketMaster]  
  ProtocolSession [name udp use SSF.OS.UDP.udpSessi onMaster  
   _find .dictionary.udpinit]  
  ProtocolSession [name ip use SSF.OS.IP]  
  ]  
 ] 
 
 hostLANinterfaceMonitored [interface [id 0 _extend s 
.dictionary.100Gb  
 _find .dictionary.queueMonitor.monitor  
 ]] 
 
 100Gb [  
 bitrate 900000000  
 latency 0.0  
 ] 
 
 baseRouterGraph [  
 ProtocolSession [name ip use SSF.OS.IP]  
#changed ospf version 
 ProtocolSession [name ospf use SSF.OS.OSPF.sOSPF]  
 ] 
 
 routerGraphFlowMonitored [graph [  
 _extends .dictionary.baseRouterGraph  
 ProtocolSession [  
  name ip use SSF.OS.IP  
  monitor [  
  name ipnetflow use SSF.OS.NetFlow.IpFlowCollector   
  protocol_type all  
  max_inactive_time 10  
  max_flow_time 100000  
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  ]  
 ]  
 ProtocolSession [  
 name probe use SSF.OS.ProbeSession  
 file "sampada.dat"  
 stream netflow  
 ]  
 ]] 
 
 baseServerGraph [  
 ProtocolSession [  
  name server use SSF.OS.TCP.test.tcpServer  
  port 10  
  _find .dictionary.appsession.request_size  
  _find .dicitonary.appsession.show_report  
  _find .dictionary.appsession.debug  
  _find .dictionary.appsession.qlimit  
 ]  
 ProtocolSession [name socket use SSF.OS.Socket.soc ketMaster]  
 ProtocolSession [name tcp use SSF.OS.TCP.tcpSessio nMaster  
  _find .dicitonary.tcpinit]  
 ProtocolSession [name ip use SSF.OS.IP  
 monitor [  
 use SSF.App.DDoS.RequestsMonitor  
 probe_interval 100.0  
 debug true  
 ]  
 ]] 
 
 serverGraphNICMonitored [graph [  
 _extends .dictionary.baseServerGraph  
 ProtocolSession [  
  name probe use SSF.OS.ProbeSession  
  file "sampada.dat"  
  stream netflow  
 ]  
 ]] 
 
 #TCP initial parameters  
 tcpinit[  
 ISS 10000  
 MSS 1000  
 RcvWndSize 32  
 SendWndSize 32  
 SendBufferSize 128  
 MaxRexmitTimes 12  
 TCP_SLOW_INTERVAL 0.5  
 TCP_FAST_INTERVAL 0.2  
 MSL 60.0  
 MaxIdleTime 600.0  
 delayed_ack false  
 fast_recovery false  
 show_report true  
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 ] 
 
 queueMonitor [monitor [  
 use SSF.Net.droptailQueueMonitor_1  
 probe_interval 0.1  
 protocol_type udp  
 debug true  
 ]] 
 
 appsession [  
 request_size 500  
 datagram_size 1000  
 send_attk_interval 0.00088888 
 send_interval 0.001 
 qlimit 5000  
 show_report true  
 debug true  
 ] 
] #dictionary loop closes 
 
graphics [  
render [ ]  
transform [  
 affine 1.0,0.0,0.0,1.0,495.0,396.0  
]  
]  
background "197,246,251(T):126,235,246(B)"  
width 600 height 600 
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APPENDIX B – DML SCRIPT OF 5 NETWORKS 

#Starting to write the dml file 
schema [_find .schemas.Net] 
 
Network1 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 8000000 latency 0.0] 
 interface [id 1 bitrate 8000000 latency 0.0] 
 interface [id 2 bitrate 8000000 latency 0.0] 
 interface [id 3 bitrate 8000000 latency 0.0] 
 interface [id 4 bitrate 4000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 interface [id 5 bitrate 4000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 interface [id 6 bitrate 5000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
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 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
 
 
 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 
  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
 
 
 # starting of udp attack server declaration 
 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
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Network2 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 8000000 latency 0.0] 
 interface [id 1 bitrate 8000000 latency 0.0] 
 interface [id 2 bitrate 8000000 latency 0.0] 
 interface [id 3 bitrate 8000000 latency 0.0] 
 interface [id 4 bitrate 4000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 interface [id 5 bitrate 8000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
 
 
 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
 
 
 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 



94 
 

  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
 
 
 # starting of udp attack server declaration 
 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
 
 
Network3 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 8000000 latency 0.0] 
 interface [id 1 bitrate 8000000 latency 0.0] 
 interface [id 2 bitrate 8000000 latency 0.0] 
 interface [id 3 bitrate 8000000 latency 0.0] 
 interface [id 5 bitrate 8000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
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 ] #end of interface 
 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
 
 
 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
 
 
 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 
  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
 
 
 # starting of udp attack server declaration 
 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
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 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
 
Network4 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 8000000 latency 0.0] 
 interface [id 1 bitrate 4000000 latency 0.0] 
 interface [id 2 bitrate 8000000 latency 0.0] 
 interface [id 3 bitrate 8000000 latency 0.0] 
 interface [id 5 bitrate 4000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
 
 
 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
 
 
 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 
  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
 
 
 # starting of udp attack server declaration 



97 
 

 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
 
Network5 [ 
Net [ 
 router[ 
 id 0 
 interface [id 0 bitrate 8000000 latency 0.0] 
 interface [id 1 bitrate 8000000 latency 0.0] 
 interface [id 2 bitrate 8000000 latency 0.0] 
 interface [id 3 bitrate 5000000 latency 0.0] 
 interface [id 6 bitrate 5000000.0 latency 0.0 
  queue [  
  use  SSF.Net.droptailQueue  
  ]  
  monitor[  
  use SSF.Net.droptailQueueMonitor_1  
  probe_interval 0.1  
  debug true 
  ] 
 buffer 10000  
 ] #end of interface 
 
 _find .dictionary.routerGraphFlowMonitored.graph 
 
 ] #end of the router loop 
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 # starting of udp standard client declaration 
 host[id 1  
  _extends .dictionary.standardClient 
  nhi_route [dest default interface 0 next_hop 0(0) ] 
 ] #end of udp standard client 
 
 
 # starting of udp standard server declaration 
 host[id 2  
  _extends .dictionary.standardServer 
 nhi_route [dest default interface 0 next_hop 0(1)]  
 ] #end of host2 
 
 
 # starting of udp attack client declaration 
 host[id 3  
  _extends .dictionary.attackClient 
  nhi_route [dest default interface 0 next_hop 0(2) ] 
 ] #end of udp attack client 
 
 
 # starting of udp attack server declaration 
 host[id 4  
  _extends .dictionary.attackServer 
 nhi_route [dest default interface 0 next_hop 0(3)]  
 ] #end of host4 
 
  link [attach 0(0) attach 1(0)]  
  link [attach 0(1) attach 2(0)] 
 
  link [attach 0(2) attach 3(0)]  
  link [attach 0(3) attach 4(0)] 
 
 graphics [  
  collapsed false  
  render [  
   net [  
  expanded [  
  ]  
  ]  
  ]  
 x 100.0  
 y 100.0  
 transform [  
  affine 0.66,0.0,0.0,0.66,-300.0,-400.0  
 ]  
 ] 
 
] #end of the Net loop 
] #end of Network loop 
 
 



99 
 

 
Net [ 
 frequency 1000000000000000  
  AS_status boundary  
  ospf_area 0 
 
 #random number generation  
 randomstream [  
 generator "MersenneTwister"  
 stream DefaultStream  
 ] 
 
 
 Net [id 1 _extends .Network1.Net] 
 
 Net [id 2 _extends .Network2.Net] 
 
 Net [id 3 _extends .Network3.Net] 
 
 Net [id 4 _extends .Network4.Net] 
 
 Net [id 5 _extends .Network5.Net] 
 
 
  
link [attach 1:0(4) attach 2:0(4) delay 0.0] 
 
link [attach 2:0(5) attach 3:0(5) delay 0.0] 
 
link [attach 4:0(5) attach 1:0(5) delay 0.0] 
 
link [attach 5:0(6) attach 1:0(6) delay 0.0] 
 
traffic [ 
 
 pattern [  
  client 3:3  
  servers [port 10 nhi 5:4(0)]  
 ]   
 
 pattern [  
  client 3:1  
  servers [port 10 nhi 4:2(0)]  
 ]   
 
] 
 
] #Net loop closes 
 
dictionary[ 
 
 standardClient [ 
  interface [id 0 _extends .dictionary.10BaseT]  
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  route [dest default interface 0] 
  graph [  
  ProtocolSession [  
   name client use SSF.OS.UDP.test.udpStreamClient  
   start_time 30.0  
   start_window 0.0  
   file_size 3000000  
   _find .dictionary.appsession.request_size  
   _find .dictionary.appsession.datagram_size  
   _find .dictionary.appsession.show_report  
   _find .dictionary.appsession.debug  
  ] 
  ProtocolSession [name socket use 
SSF.OS.Socket.socketMaster]  
  ProtocolSession [name udp use SSF.OS.UDP.udpSessi onMaster  
   _find .dictionary.udpinit]  
  ProtocolSession [name ip use SSF.OS.IP]  
  ]  
 ] 
 
 attackClient [ 
  interface [id 0 _extends .dictionary.10BaseT]  
  route [dest default interface 0]  
  graph [  
   ProtocolSession [  
  name client use SSF.OS.UDP.test.udpStreamClient  
  start_time 30.0  
  start_window 0.0  
  file_size 3000000 
  _find .dictionary.appsession.request_size  
  _find .dictionary.appsession.datagram_size  
  _find .dictionary.appsession.show_report  
  _find .dictionary.appsession.debug  
  ]  
   ProtocolSession [name socket use SSF.OS.Socket.s ocketMaster]  
   ProtocolSession [name udp use SSF.OS.UDP.udpSess ionMaster  
    _find .dictionary.udpinit]  
   ProtocolSession [name ip use SSF.OS.IP]  
  ]  
 ] 
 
 10BaseT [  
  bitrate 8000000  
  latency 0.0  
 ] 
 
 10BaseTRT [ 
  bitrate 5000000 
  latency 0.0 
 ] 
 
 10BaseTBT [ 
  bitrate 4000000 
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  latency 0.0 
 ] 
 
  
  udpinit [  
  max_datagram_size 100000  
  debug false  
 ] 
 
 standardServer [  
   interface [id 0 _extends .dictionary.10BaseTBT]  
   route [dest default interface 0]  
   graph [  
   ProtocolSession [  
    name server use SSF.OS.UDP.test.udpStreamServer   
    port 10  
    client_limit 10  
    _find .dictionary.appsession.request_size  
    _find .dictionary.appsession.datagram_size  
    _find .dictionary.appsession.send_interval  
    _find .dictionary.appsession.show_report  
    _find .dictionary.appsession.debug  
   ]  
   ProtocolSession [name socket use 
SSF.OS.Socket.socketMaster]  
   ProtocolSession [name udp use 
SSF.OS.UDP.udpSessionMaster  
    _find .dictionary.udpinit]  
   ProtocolSession [name ip use SSF.OS.IP]  
   ]  
  ] 
 
 attackServer [  
  interface [id 0 _extends .dictionary.10BaseTRT]  
  route [dest default interface 0 ]  
  graph [  
  ProtocolSession [  
   name server use SSF.OS.UDP.test.udpStreamServer  
   port 10  
   client_limit 10  
   _find .dictionary.appsession.request_size  
   _find .dictionary.appsession.datagram_size  
   _find .dictionary.appsession.send_attk_interval  
   _find .dictionary.appsession.show_report  
   _find .dictionary.appsession.debug  
   ]  
  ProtocolSession [name socket use 
SSF.OS.Socket.socketMaster]  
  ProtocolSession [name udp use SSF.OS.UDP.udpSessi onMaster  
   _find .dictionary.udpinit]  
  ProtocolSession [name ip use SSF.OS.IP]  
  ]  
 ] 
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 hostLANinterfaceMonitored [interface [id 0 _extend s 
.dictionary.100Gb  
 _find .dictionary.queueMonitor.monitor  
 ]] 
 
 100Gb [  
 bitrate 900000000  
 latency 0.0  
 ] 
 
 baseRouterGraph [  
 ProtocolSession [name ip use SSF.OS.IP]  
 ProtocolSession [name ospf use SSF.OS.OSPF.sOSPF]  
 ] 
 
 routerGraphFlowMonitored [graph [  
 _extends .dictionary.baseRouterGraph  
 ProtocolSession [  
  name ip use SSF.OS.IP  
  monitor [  
  name ipnetflow use SSF.OS.NetFlow.IpFlowCollector   
  protocol_type all  
  max_inactive_time 10  
  max_flow_time 100000  
  ]  
 ]  
 ProtocolSession [  
 name probe use SSF.OS.ProbeSession  
 file "sampada.dat"  
 stream netflow  
 ]  
 ]] 
 
 baseServerGraph [  
 ProtocolSession [  
  name server use SSF.OS.TCP.test.tcpServer  
  port 10  
  _find .dictionary.appsession.request_size  
  _find .dicitonary.appsession.show_report  
  _find .dictionary.appsession.debug  
  _find .dictionary.appsession.qlimit  
 ]  
 ProtocolSession [name socket use SSF.OS.Socket.soc ketMaster]  
 ProtocolSession [name tcp use SSF.OS.TCP.tcpSessio nMaster  
  _find .dicitonary.tcpinit]  
 ProtocolSession [name ip use SSF.OS.IP  
 monitor [  
 use SSF.App.DDoS.RequestsMonitor  
 probe_interval 100.0  
 debug true  
 ]  
 ]] 
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 serverGraphNICMonitored [graph [  
 _extends .dictionary.baseServerGraph  
 ProtocolSession [  
  name probe use SSF.OS.ProbeSession  
  file "sampada.dat"  
  stream netflow  
 ]  
 ]] 
 
 #TCP initial parameters  
 tcpinit[  
 ISS 10000  
 MSS 1000  
 RcvWndSize 32  
 SendWndSize 32  
 SendBufferSize 128  
 MaxRexmitTimes 12  
 TCP_SLOW_INTERVAL 0.5  
 TCP_FAST_INTERVAL 0.2  
 MSL 60.0  
 MaxIdleTime 600.0  
 delayed_ack false  
 fast_recovery false  
 show_report true  
 ] 
 
 queueMonitor [monitor [  
 use SSF.Net.droptailQueueMonitor_1  
 probe_interval 0.1  
 protocol_type udp  
 debug true  
 ]] 
 
 appsession [  
 request_size 500  
 datagram_size 1000  
 send_attk_interval 0.0016 
 send_interval 0.002 
 qlimit 5000  
 show_report true  
 debug true  
 ] 
] #dictionary loop closes 
 
graphics [  
render [ ]  
transform [  
 affine 1.0,0.0,0.0,1.0,495.0,396.0  
]  
]  
background "197,246,251(T):126,235,246(B)"  
width 600 height 600  
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APPENDIX C – SIMULATION ISSUES 

 

Some of the issues with the SSFNet simulator that were encountered while gathering 

results are listed below.  

1. Lack of adaptive routing: SSF.OS.OSPF is a partial implementation of OSPFv2, 

based on the Internet Engineering Task Force’s Request for Comments number 

2328 (RFC 2328). It is designed to quickly compute the routing tables for 

arbitrary topologies in SSFNet network models. The unsupported requirements 

include dynamic neighbor discovery and link state updates in response to dynamic 

topology changes. We use this OSPF version in our simulations. This does not 

reflect the way the Internet works in reality. Future research could include 

implementation of protocols that accurately simulate the working of the Internet. 
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Figure: Glitch observed when Blue traffic rate equals Red Traffic rate

As shown in the figure above, a glitch is observed at a specific network traffic 

level when the rate at which blue server generates data is equal to the rate at 

which red server generates data. The bandwidth allocated to Blue spikes 

unexpectedly whereas the bandwidth allocated to Red is significantly less. This 

behavior is observed for all the mincut arcs of all the configurations. We believe 

this to be an artifact of the simulator. The simulator fails to behave as expec
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