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ABSTRACT

Network technology has experienced explosive growth in the pastiéeades.
The vast connectivity of networks all over the world poses monuingsks. The
generally accepted philosophy in the security world is that stesy or network is
completely secure [1] which makes network security &atitoncern. The work done in
this thesis focuses on Distributed Denial of Service Attackso@®)Dwvhere legitimate
users are prevented from accessing network services. Althougbfadsearch has been
done in this field, these attacks remain one of the most commotsthfescting network
performance.

One defense against DDoS attacks is to make attacks inéefmildn attacker,
by increasing either the amount of attack traffic needed &blkdisa link or the number of
attackers needed to disable the network.

Theoretical work has been done previously which focused on quantifyang
attack traffic required to disable a set of mincut arcs met@vork. In this thesis, we
experimentally verify the validity of the analysis perfodv®y running simulations using
the SSFNet network simulator. A Distributed Denial of Serdaitack is simulated by
flooding the mincut arcs in the network. From the results, we analyze

- The minimum number of zombie processors (attack sources) required to

disable a set of arcs

- The minimum attack traffic volume required to disable the arcs.



CHAPTER ONE

INTRODUCTION

As computer systems have evolved into today’'s complex, enterpigg-wi
solutions, the security risks and protective measures have also beocompéex [2].
Maintaining the security of a system involves maintaining confidkty, authentication,
integrity, non-repudiation, access control and availability [3]. H@rethe concept of
complete security is an illusion [4]. AlImost anyone can reaghto any network which

implies that anyone can reach in [5].

The lack of authentication means an attacker can create aéikey, and send
malicious traffic. A Denial of Service (DoS) attack blockseavige for legitimate users
and is perpetrated by causing a victim to receive malicraffictand suffer damage as a
consequence [6]. The attack can be launched in multiple forms. fBlo& abuld exploit
software vulnerabilities of a target thereby crashing th&esysor use massive volumes
of malicious traffic to consume key resources thus renderingavailable to legitimate
users, or simply send a few malformed packets to confuse anadigplior a protocol on
the victim machine and force it to freeze or reboot [6]. Whiis fiossible to patch the
known vulnerabilities in a system to avoid an attack, it is diffitulprevent the second
and third form of attacks. The targets are vulnerable simply becausaréhegnnected to
the Internet. When the traffic of a DoS attack comes from phelgources, then it is

called as a Distributed Denial of Service (DDoS) Attack [7].



In today’s world, botnets are a major source of DDoS problems. Soicets
usually involve computers from many countries, tracking an attackntes more
difficult. Statistics show that about half of the botnets trackgdAbbor networks
performed DDoS attacks [8]. A DDoS can have a sustained upload bamaivith Kb/s
as an average from each bot. A relatively small botnet can oVenwhest companies,

and a large botnet might be able to take out a fair —sized ISP [9].

1.1 Motivation

In the late 1990’s the world was not dependent on the Internet asoivisThe
Internet was still limited to research and educational commanikience not much
attention was paid to Internet security. Today, the traditional oblthe Internet has
changed. Internet is used for banking, bill payments, tax payments, bom&ire)
reservations, online shopping. It is used by Governments to sharmatiom with the
world, by researchers as a medium for disseminating thedanas discoveries rapidly
and for establishing worldwide connectivity [7]. Unfortunately, the gnawtthe Internet
has increased the number of attacks on the Internet. Figurédwk & graph of the

number of security incidents reported in the past.

The recent attacks on popular websites like Facebook and Twetanagxample of the
rising number of DDoS attacks. One of the major problems withibuséd Denial of
Service attacks is the difficulty to detect the sourcehefdttack because of the many
components involved. Instead of waiting for an enemy to attack, better to use

defenses to protect networks or make the networks immune to attacks [11].
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Figure 1.1: The number of Internet security incidents reported from 1988 to 2003

(Data collected from [10])

1.2 Approach

The work done in [11] studies the dynamics of DDoS attacks. Tiekattplaces
“zombie” processes on the network that consume network bandwidth. THesattaen
attempts to break the legitimate communications links. The reg application
reconfigures its network to re-establish communications. The authalga this board
game using the theory of surreal numbers [12]. The authors alsofguaatnumber of
zombies and the amount of zombie traffic that an attacker needsatdeda distributed
application. We perform simulations to verify if the analysis esponds to reality. The
simulations are performed for large scale complex networks wareh generated

automatically using Python scripting. We observe from the rethdiisthe legitimate



traffic is reduced to a significant amount when the attackdrisfincreased beyond the

threshold value calculated by the formula.

1.3 Defense Mechanisms

The DDoS defense mechanisms are classified as beingzecant preventive. In
reactive measures, the attack sources are identified apdeented from continuing the
attack. The preventive measures focus on eliminating the pogsitiliperforming a
DDoS attack.Before concluding that a denial of service attack is under pgiters
necessary to identify and separate DoS attacks from flastisevihis is discussed in

more detail in the Chapter on DDoS countermeasures.

In this thesis, we provide a countermeasure when an enterprise network wantgaomma
communications even though an opponent launches a DDoS attack. We sslve thi
problem using a game theoretical approach which is explainedtherfutetail in the

chapter on Bandwidth Limited Co-ordination of games.

1.4 Game Theory based coordination

We look at scenarios when the legitimate application has afseetworks
connected by bandwidth limited communication links. The application cooedinat
amongst its networks by sending only the most important informaliothere are
multiple messages, then it becomes necessary to priohgzaméssages and send the one

which is the most consistent with the team goal. We study fotereliit strategies to



make this decision — Maximin, Maximax, Central values and Hottichtconclude that

the Hotstrat strategy gives the best results.

1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 gibeslkayround on
Distributed Denial of Service attacks. Chapter 3 gives a briefview of the SSFNet
simulator and the implementations of the protocols used. It alsoirexpfee simulation
scenario used for the simulations and explains some simulationrisser@hapter 4
details the steps involved in setting up and automating the sionulggineration process
for large scale networks. Chapter 5 explains the simulationagoeand the results
obtained. Chapter 6 focuses on the countermeasures used for DDd& aita a
summary of the work done. Chapter 7 explains our approach to mitigatiog the
principles of combinatorial game theory. We conclude the thegis Ghapter 8

presenting our conclusions and future directions for research.



CHAPTER TWO

BACKGROUND ON DISTRIBUTED DENIAL OF SERVICE ATTACKS

In a denial of service attack, an attacker deliberatelyuwrnas resources making
them unavailable to legitimate users. One common denial of sentiack is the
‘flooding attack’. Typically, to access a website, a reguesent to the website’s server.
Since there is an upper limit on the number of requests that er sEmw process, the
request is rejected if this limit is exceeded. In a flooditack, the attacker floods the
website’s server with a large number of requests thus prevdetitgnate users from
accessing information or services [13]. Similarly, for a fregling service, there is a
specific disk quota assigned to an email account. The quota limésihent of data that
a user can store in his account at any point of time. If arkettaends a large amount of
data to the email account, it might prevent the user from regeiegitimate emails. This

is a practical example of a Denial of Service attack.

In a Distributed Denial of Service attack, multiple machines lauhe attack.
The attack thus has a distributed nature. The attacker can mak# tise security
vulnerabilities of a system to launch the attack. There is @ pigbability that the

machine used to launch the attack is unaware that it is participating incitle at

Sometimes, it becomes difficult to distinguish a distributed dehisérvice from
normal network activity. At other times, there might be some indicathat an attack is

under progress.



The single attacker who coordinates the attack is called tlsteM&he Master
coordinates multiple hijacked systems. These hijacked systems are call@dszdfigure

2.1 shows the different components of a DDoS attack.

HANDLER

Network
Infrastructure

Figure 2.1: DDoS Attack

(Data taken from [11])

DDoS attacks are considered more effective and complicated hieanCioS
counterparts because the attack can be performed from multgdessnultaneously and
the task of detecting the attacker becomes almost impossh#enéixt section discusses

some of the commonly used methods of Denial of Service attacks.



2.1 Common Denial of Service Attacks

2.1.1 Smurf attack

In a Smurf attack, the attacker sends a large number of ICK®Prequests to a
set of IP broadcast addresses. All the echo requests have a ssmofexl IP address of
the intended victim. On receiving the echo requests, most of thewibhsesspond to the
request with an echo reply. This increases the flooding traffitheynumber of hosts

responding.

2.1.2 SYN Flood attack

This attack exploits the standard TCP three-way handshake thétated before
a TCP transmission. The handshake consists of a three packet eéxsbanhgy client to
the server. The server upon receiving the initial SYN fromctient responds with a
SYN/ACK packet and waits for the client to send a final AQKhé client sends a huge
number of SYNs without sending their corresponding ACKs, then the skeegs
waiting for the non-existent ACKs making it impossible for gerver to serve other

incoming connections.

2.1.3 UDP Flood attack

Here the attacker uses the UDP echo and character generator. $@mngeel UDP

packets are used to connect the echo service on one machine to teteciysrerator



service on another machine. The two services consume a lot of ndtaumdlwidth as

they exchange characters between themselves. [13]

Some variations of Distributed Denial of Service attacks asationed below. These

attacks use the techniques mentioned in the section above.

2.2 Known Distributed Denial of Service Attacks

2.2.1 Trinoo

One of the most popular DDoS attacks is the Trinoo attack wherattek
daemons use UDP flood attacks to disable the victim. It consists aftacker system,
several compromised systems, which include one or more mast&ge@eto as
handlers), one or more daemon systems (referred to as agentsjieamdmore victims.
The attack begins by loading the Trinoo program on one or more conge systems.
These systems act as handlers and agents. The agents send padkBPto let the
handler know that the agent systems are ready. When the attterk Sg1ds the attack
command, the handler sends a message to the agents to launcictheAtttr receiving
the command to launch an attack, the agent sends a UDP flood to randomrpoers

on the victim. This attack was experienced in 1999 by University of Massachusetts.

2.2.2 Tribe Flood Network

The TFN attack is more complicated than a Trinoo attack. Hi¢ Joftware is

loaded by the TFN attacker onto compromised systems. In ordaiurtoH the attack, the



attack systems simply need remote access to the handlets afdcks daemons can

implement Smurf, SYN flood, UDP flood and ICMP flood attacks.

2.2.3 Stacheldraht

Stacheldraht is a combination of Trinoo and TFN attack and relieSCéh for
transport. The handlers and agents periodically exchange ICMPpagkgts. It encrypts
the communication between the attacker and the masters andrgedotomated update
of the agents. It can implement Smurf, SYN flood, UDP flood and IG@b#&I attacks.

[14]

2.3 Prevalence of Distributed Denial of Service attacks

Businesses have been shut down for several hours by facelessshiadke past.
The DDoS attack slows the system performance and ultimatedhes the system. This

section talks about some of the DDoS attacks experienced in the last decade.

DoS attacks crippled high visibility Internet websites like YahooNGIXd major
ecommerce sites like Amazon.com and Buy.com which were dowhree hours as a
result of the attack in the February of 2000. The sites stheieaving poorly with the
Amazon site timing out at various stages throughout the night. Yatp@sienced traffic
levels of 1 GB per second. This attack is believed to have &&dDoS where multiple

compromised machines were involved.

10



In January 2001, Microsoft’s name server infrastructure was disapladDenial
of Service assault. The root DNS servers were targeted imltbeihg year and SCO'’s

corporate website was incapacitated in late 2003. [15]

Recently, in August 2009, a string of major websites experiead200S attack.
This DDoS was interesting as the attack seems to have bees é&/tedded in spam.
People clicking on the spam links generated enough traffic to kilweiesites. The
malicious online attacks affected services of major sociakarking websites like
Facebook, Twitter and Google. Facebook encountered network issuesstiitgd in
degraded service for some of the users. Twitter’'s website wasilaide for at least two

hours. [16]

The military has been the victim of cyber attacks in the p8$tA[National
Security Agency red team of hackers was organized to itdilttee Pentagon systems.
The team was able to infiltrate and take control of the Racdkmmand centre
computers, as well as power grids and 911 systems in nine majoitiekS Code Red
was a worm that first appeared in 2001 and ultimately affewtarly 300,000 computers
in the United States. It exploited a hole in Microsoft's IIS vesovers. In its first
variation, the affected computers were programmed to launch d déservice attack

against the White House website at a certain date and time. [17]

11



2.3.1 Information Warfare

The cyber attack in Estonia was considered as the firstirm@y/berspace. It was
deemed as a national security situation. In Estonia, * the most wbuntry’, the
Internet is vital and is used routinely to vote, file taxes, and &veshop or pay for
parking. The bulk of the cyber assaults used DDoS to bombard the couviety'sites
with data. The attackers clogged not only the country's serveralsoutnade it difficult
to direct traffic on the network. In one of the first attackdpad of junk messages were
thrown at the e-mail server of the Parliament, shutting it dowvanbther, hackers broke
into the Web site of the Reform Party, posting a fake letteqpofogy from the prime
minister. Traffic spiked to thousand times the normal flow. The bidggsk in Estonia
had to shut down its online service for more than an hour. It suffeseds of about $1
million. The 10 largest assaults blasted streams of 90 Mbpsaat&stonia’s networks.
The attackers used a giant network of bots — perhaps as many as one million agpute
far as Vietnam and United States, to amplify the impact of their assaeit iBhevidence

that they rented time on other so-called botnets. [18]

The vast majority of attacks are not even publicized. The \gcitirtiude a wide
range of targets victims from small commercial sitegducation institutions. The work
in [15] is based on backscatter analysis to estimate the wdddwevalence of denial of
service attacks. They established an alarming presence of ra2@bdly— 3000 active

denial of service attacks per week.

12



2.4 What makes DDoS attacks possible?

We elaborate some of the design issues of the Internet which rbdkeS attacks

possible [6].

1. The end-to-end paradigm pushes the complexity to end hosts, leaving the
intermediate network simple and optimized for packet forwardings Thone
party in a two way communication misbehaves; it can do arbittamyage to its

peer.

2. Attacks are commonly launched from systems that are subvertedhhseaurity
related compromises. So regardless of how well secured thm dgstem may

be, its susceptibility depends on the state of the security of the globaétntern

3. Since each Internet entity has limited resources, it cazobsumed if there are
too many users.

4. The intelligence needed for service guarantees resides hwitend hosts. High
bandwidth pathways are available in the intermediate network, \heleend
networks have bandwidth only as much as they need. Thus malidienis clan
misuse the abundant resources of the intermediate network for debVery

numerous messages to a less provisioned victim.

5. Due to IP spoofing, attackers get a powerful mechanism to eacapantability

for their actions.

13



2.5 Reasons for DDoSing

There can be numerous reasons for a DDoS, the primary goal beinfjcto
damage on the victim. The true victim of the attack might nahbeactual target, but
others who rely on the target’s correct operation. The reasons DoiS xould be
personal where an attack can be perpetrated for the purpose of revehgg could be
material in which the attack damages a competitor’'s resouftes.attacks could be
performed by hackers simply to gain respect (by successiiidgking popular websites)
or may be performed for serious political reasons where a cainirgr could perpetrate
attacks against its enemy’s critical resources. Victimayg be blackmailed into paying to
avoid DDoS attacks. Recent reports have botnets being rented formpegdDDoS

attacks at a rate of $1000 per spam or DDoS event [39].

2.6 Challenges faced in DDoS Defense

There are several serious factors that hinder the advance of BBesdch. We list some

of them in this section [6].

1. There are very few DDoS attacks which can be handled only byi¢tim. In
order to deal with DDoS, it often becomes necessary to halstrdbuted and
coordinated response system. The Internet being a system wbath is
administered in a distributed manner, it is difficult to enforce ecatpn between

networks which discourages researchers from designing distributed solutions.

14



2. Deployment of a distributed response system implies that p&nae will bear the
deployment cost are parties that do not suffer direct damagéesrog do not
benefit directly from the system.

3. There is lack of information on attack parameters used for popula6itacks
since publicly reporting DDoS attacks damages the reputation of the victim

4. There is no bench mark suite of attack scenarios that enableartsmngbetween

defense systems [6].

2.7 Previous Work

We consider mechanisms for constructing distributed DDoS defensdathrat
require cooperation among uninvolved parties. The results in this buglsioon previous
research documented in [11]. The work in [11] analyzes a two pimyee played on a
computer network in which Player 1 (Blue player) is a legiténdistributed application
on a network and Player 2 (Red player) is an attacker whosptacebie processes in the
network with an intention of attacking node capacities or flooding the lztgeen
nodes. By finding out the minimum number of zombies needed to disablés Blue
network, the authors quantify the resistance of the Blue playeDmSDattacks. This
approach helps to design networks with a structure that either BE3&S attacks or
adapt around them. This result is relevant to item 4 in Section 2tftint torovides a
metric for comparing DDoS countermeasures.

The mincut of a network configuration is a set of network edgesse removal

prevents source communication with the destination. The attacker @uderested in
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determining the smallest number of arcs that need to be disabtedHrs mincut. The
authors in [11] describe an algorithm to determine the minimum nuohiaecs that need
to be disabled between the source and the destination to avoid ttierattasting
resources attacking arcs that need not be attacked.

Once the arcs that need to be disabled are known, the work furteeniskes the
amount of flow to be directed towards these arcs in order to disedte If RT denotes
the minimum amount of traffic that should be generated by the zorfadsescalled red
traffic), »denotes the Blue (Legitimate) traffic required by Blue’s aapion andC
represents that capacity of the physical arc to be attattiedthe total traffic T is given
by

T=(1+RT) (2.2)
The traffic dropped is represented as D
D=(1+RT)-C (2.2)
Percentage of legitimate traffic in the total traffic P is given by
P=A/(1+ RT) (2.3)
Expected rate of legitimate traffic loss (LTL) is given by
LTL=A/(A+RM[(1+ R)- ¢ (2.4)
If the Blue slack traffic is BS, then the attacker wins in flooding the arc if
LTL> BS (2.5)
where
BS= Capacity -[Blue Flow (2.6)

From equations (2.4) and (2.5)
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BS< LTL (2.7
Solving further, we get

.'.WS(/I+ RT)- C 2.8)

Thus the minimum amount of Red traffic required is given by

RT=—C

- - (2.9)
1- ()

where
BS= C-4 (2.10)
Equation (2.9) represents the threshold value of the zombie traffic that should be

generated to disable an arc.
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CHAPTER THREE

SSFNET NETWORK SIMULATOR

3.1 Purpose of Simulations

Communication networks are rapidly increasing in complexity, volamneé,cost.
This has been exponential in the recent past, making it impetatstedy the behavior
of a network before it is deployed. An experimental networkliedtcomes across as a
practical approach to observe network behavior. However, the cost andhtialved in
deploying such a test bed is the same as deploying the netwelfk mhaking such a

study infeasible.

Simulations are a cost effective solution to this problem. Theynasgensive,
and quickly deployed. Network simulation tools help researchers artbgers estimate
network functionality and performance prior to deployment. They areirtaal
environment for testing the performance of new networking protocols. el
networks and analyze their performance under different scenariomake network
operations effective, simulations can inspect the vulnerabilitias may exist in the
network. Simulations are often used in test scenarios whexdliificult and infeasible
to use network hardware. Simulations provide a controlled and reprodecibtenment

for simulating network attacks.
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Simulators allow users to specify the nodes in a network, the dioksecting
nodes and the flow over links [19]. Most simulators offer a progreng framework
through which the user can customize the network environment. Thectrefie
behavior of network components like routers, multiple hosts and various types of network
links. The following sections explain the reasons SSFNet isbéeiifar simulating large

networks.

3.2 Scalable Simulation Framework

The Scalable Simulation framework is written in Java and CHe. flamework
(SSF) allows discrete-event simulation for large complex netwd@} Researchers

have used this framework to design network simulators like DaSSF and SSFNet.

3.3 SSFNet

SSFNet has a single integrated interface which can be usedigm networks. It

models Internet protocols at and above the network layer.

The Internet consists of a large number of heterogeneous netveonkerds making it
difficult to simulate. The Internet is an ‘immense moving tHrgehich grows at an
exponential rate undergoing dramatic qualitative changes over Ziffje The scalable
simulation framework was developed as a scalable model of thredht&SFNet has a
modular structure, allowing additional packages to be used to moddlicspemains.
This strategy promotes independence of models from the simutaban and liberates

the simulation fabric from the specifics of parallel disceatent simulation engines [19].
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SSFNet describes a series of objects which when combined mpéssible to define
large networks. The simulation sizes that can be handled ardydpemportional to the

processing power of the system the simulations are run on.

The SSFNet distribution consists of two frameworks - SSF.OS 8RdNBt. Any
Internet model can be constructed using these frameworks. The simadehitecture

consists of three main components.

1. DML (Domain Modeling Language): The network configuration files
needed for running simulations are written in DML. DML files g¢shsf a
hierarchical list of recursively defined attribute value pairs. [22]

2. SSF: It is a public domain standard for discrete event simulatibterge
complex networks.

3. SSFNet: This is a collection of SSF based open source Java nuddels
protocols, network elements and supported classes. This consists of SSF
Network models for modeling and simulation. [23]

Figure 3.1 shows the SSFNet simulation layers
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[ SSk ] } Simulator

Figure 3.1 Simulation layers in SSFNet

3.4 SSFNet Objects

SSFNet segments the network structure into groups. Groups asteck@s necessary

and patched together to create large networks.

3.4.1 Net

The top level Net cannot have an ID. Every network configurationmplgithe
value of the Net attribute enclosed within Net [...]. The includedidlet collection of
Hosts, Routers and links and must contain a single ID value orge @nID values,

which identify the network it is configuring. The ID values should be unique.
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3.4.2 Frequency

The frequency parameter sets the time resolution of the siotuk the number
of simulation ticks per clock second. For instance, if the frequency is set to 1008600, t
the simulated time will advance by intervals measured in n@corgls. It is used only in

the top level Net.

3.4.3 Host

A host could be a client computer or a server. It can have zero eramofigured
interfaces. The host must have an ID value assigned to ithentD values must be

unique for a particular Net loop.

3.4.4 Graph

The graph component specifies the list of protocols to be usednéndatory for
every host to have a graph attribute in its definition. The grapghuaé has a number of
sub attributes within it and there is one graph per installed protbbel ‘name’ is a
symbolic tag by which a protocol implementation finds its configomaand ‘use’

specifies the SSFNet class that should be loaded to do the protocol’s job.
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graph [
ProtocolSession [
name foo
use SSF.OS.bar
other protocol-dependent parameters

Figure 3.2 Graph attribute

3.4.5 Interface

The interface facilitates the configuration of the network iatexfof the Ethernet
card. The interface also needs to have an ID value which uniquelifieke network
interfaces for a particular host. A host may have multiplefaates, but typically has one
or two. A router can have multiple interfaces as in the caseupfsimulation. An
important attribute of the interface is the bitrate which specthe rate at which packets
leave the interface. The default bitrate in SSFNet is 10 Mbpsur simulation, we have
specified the bitrate for every interface to be between 6000000 and 7000€0The
latency attribute of an interface specifies the delay intratlbgethe interface itself. The
gueue and the buffer attributes are optional. The queue specifiggsehe manager for a
particular interface whereas the buffer attribute spedifiedbuffer of the queue in bytes.
If the size of the incoming packet is greater than the curramdijable free buffer space,
then the packet is dropped. It is possible to assign an IP addressteréace. If one is

not assigned, then the simulator assigns one.
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3.4.6 Router

The router component is similar to the host component. The diffeigiicat it
will have distinct protocols in its graph component. It could be coreidas an

intermediate host which cannot originate data.

3.4.7 Link

It specifies a link layer connection. It connects a set oshostrouter interfaces.
It must include the attribute ‘attach’ which specifies thechttd network interfaces. The

delay attribute specifies the contribution of the link to the total transmissiay. del

3.4.8 Traffic

The traffic component specifies the traffic scenario fored#iit client/servers. It
is used by protocols like TCP, UDP and HTTP. Traffic could have asnmore sub
patterns and each pattern should specify one client attribute andranere server
attributes. The client should be specified with the NHI addre#isechost or client. The

format for the traffic attribute is as shown in Figure 3.3

traffic [
pattern [
client 2
servers [nhi 1(0) port 1600]

Figure 3.3 Traffic attribute

24



3.5 Addressing

NHI addressing is used as an internal addressing format for nhbodding

convenience [33]. It has the form as shown in equation (3.1).

N:N:N:.... N:H(I) (3.1)

Where N represents the network ID, H is the host ID, and | isntegface ID.
The addressing uses concatenated IDs of each network from theasiteatwork to the
innermost network/host which are separated by colons, followed bgtdréace number
(NIC ID) in parenthesis after the host containing the interfeoe instance, if a Network
with ID 1 contains a host with ID 3 which has an interface 1thdn the interface would
have a NHI address that is represented as 1:3(4). Figure 3.4 skonwge@example of a

network with two networks and a host in each network.

N
Met 1 S \ et 2 /

IS

Figure 3.4 A simple network configuration
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The individual networks are defined as in Figure 3.5

Net[
Host [id 1 interface [id 1]]
link [attach 1(1) attach 0(1)]

Figure 3.5 Net definition

The top level Net is defined as shown in Figure 3.6

Net[
Net[id1 .....]
Net [id 2 .....]
link [attach 1:0(0) attach 2:0(0)]

Figure 3.6 Top level Net definition.

CIDR addresses may also be explicitly assigned to a netarotikk. If they are not
assigned, then SSF.Net.Net automatically computes them relatithee tNet in which
they are defined. The IP addresses may be assigned manually, usinigy optional
attributes to guide the IP address algorithm implemented by &SBN could be

automatically assigned if no attributes are provided.
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3.6 Protocol Implementation in SSFNet

3.6.1 IP implementation

The IP implementation in SSFNet keeps tracks of all the adesfconfigured on
a particular host or router and the IP addresses of the intwetlzateare attached to the
links. Routes are not computed by SSF.OS.IP but are computed imgnorttocols. The
IP protocol session decrements the TTL field in the IP headedrapd the packet when
the field decrements below zero. The packet is pushed down toxthleapeinterface by
the host/router if the destination is not reached. If the host/rautbe idestination, then

the packet is pushed up to the appropriate protocol mentioned in the Protocol Session.

3.6.2 OSPF implementation

In our simulation, the routers use the OSPF protocol to compute thagrouti
tables. The specification of the OSPF protocol occurs in the rolReot®col Graph
specification. At the start of the simulation, protocol findstlad neighbor routers,
creates the link state database and computes the routes. ticheession of the link state
protocol (sOSPF) is used in our simulations, which is a simpkgesion of the OSPFv2
protocol. This protocol implementation does not perform load balancingéetpaths of

equal cost.
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3.6.3 UDP implementation

We use client server models with UDP streaming traffice THDP client
configuration should specify the earliest time to send a reqodbe UDP server and
must specify the size of the requested file in bytes. The &HDier configures itself with
the parameters specified in the DML file. These paramételsde the datagram size
which is the payload in bytes and the send interval which spetifesinterval between
two consecutive chunks of data. The client sends one integer spectigiragnount of
data it wants to the server's well known address. On receivingert’sl request, the
server spawns a slave server which periodically sends thestegudatagram size to the
client until all the bytes of the file are sent [24]. UDRused, since it does not contain
flow control. TCP contains end to end flow control, which decreasesttissien speed
exponentially once packets start being dropped. In the context stualy, this has the

following drawbacks:
e It would make flooding DDoS attacks aimed at decreasing &aila
bandwidth easier to implement,

e It makes it impossible to exactly quantify the throughput rditascan be

achieved during a DDoS, and

e TCP was designed to provide reasonable throughput for a set of
cooperating network flows. It does not provide reasonable strafegiegher

performing or countering selfish DDoS attacks.
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3.7 Simulation software environment

The automation of the network generation process is performedthgiRython
programming language. The version used is 2.5; however some of thesdidram
version 2.6 are also required. The Python plugin - Pydev is integraténd Eclipse
software environment. Pydev is installed by the Eclipse update geanahich
automatically downloads the plugin from the website entered. Téelow mincut
program is written in Matlab. The input from Python is appropriatelgverted to a

format accepted by Matlab.

3.8 Simple SSFNet Examples

In this section, we discuss some simple simulation examples to illuSB&atdet.

3.8.1 Configuration 1

The network configuration simulated had the structure shown urd-i8}7. Since
the connections between networks are between the routers of the correspondingsnetwor
the interface of the router of Network 1 is connected to the amterdf the router of
Network 2. Network 1 and 3 each consist of two hosts as shown in Figure 3.7. Ttee client
in Network 3 request a certain amount of data from the corresgpgeivers in Network
1. The data flows from the server to the client according toUb® client server
implementation in SSFNet. In the simulation, both clients requekd siZe of 3000000
bytes and the data gram size is set to 1000 bytes, so 3000 maekstsit by each server

to their corresponding clients. The simulations are made to sthg aame time. This is
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achieved by adjusting the start time and the start window paesnet the client

configuration in the DML file.

Figure 3.7 Simulation of 3 networks

It is necessary to choose the send interval and the datagrasusiz¢hat the resulting
bandwidth does not exceed the bit rate specified on the server’srikostiérface. The
following parameters need to be changed in the DML script to achieve this.

- The rate at which the server generates data. This is defindtke attribute

‘send interval’ in the server definition

- The bitrate of the interface of the server which connects tootner of the

network. This is also included in the definition of the server.

- The bitrate of the interface of the router which goes to the rservhis is

included in the definition of the Network.

Table 3.1 shows the amount of data received in bytes at the clients.
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Link a Link b Data received from | Data receive fromn
standard server (byteshattack server (bytes)

8000000 8000000 1503000 bytes 6000 bytes

8500000 8000000 798000 711000

9000000 8000000 505000 1004000

10000000 8000000 305000 1204000

Table 3.1 Data received for different bitrates for Configuration 1

The DML script for the above configuration can be found in Appendix A.

3.8.2 Configuration 2

In the second configuration, the servers are placed a hop away framinte

arc. Figure 3.8 shows the configuration that is simulated.

Figure 3.8 Simulation of 5 networks
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Link a Link b Drops received fromData received from

attack server (bytes) | standard server (bytes

4000000 4000000 9000 3000000
4000000 5000000 613000 2396000
4000000 6000000 1007000 2003000
4000000 8000000 1505000 1505000

Table 3.2 Data received for different bitrates for Configuration 2
From the observations tabulated, it is clear that as the dat¢aagjen rate of the attack
server increases, the number of drops observed for the legitiratiie also increases.

The DML script for Configuration 2 is shown in Appendix B.

3.8.3 Configuration 3

The configuration in figure 3.9 was simulated to understand the workitige of
OSPF protocol in SSFNet. The static version of the OSPF prot@@8IP(s) in SSFNet
uses the hop count as the cost attribute for routing packets frorsothiee to the
destination. For all paths having the same cost to the destinatigrgtthkaving the next
hop as the smallest network ID is selected. This is verifig simulating the
configuration in Figure 3.9. The packets are routed along path 1 -2 Zhé sOSPF

protocol in SSFNet does not perform load balancing across equal cost links.
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SOURCE DESTINATION

Figure 3.9 Network configuration for OSPF verification
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CHAPTER FOUR

DML SCRIPT GENERATION

Our aim is to simulate Distributed Denial of Service attafkslarge scale
networks. We use the SSFNet simulator for this task, becaissedpable of simulating
larger networks than its competitors (ex. Ns-2). To run the siranitinetwork
configuration files need to be written using the Domain Modeliagguage (DML) in

SSFNet.

As the size of the DML script details all the nodes and linksh& network, it is
impractical to manually generate DML scripts for a numbelagfe networks as the
process could be time consuming and error prone. Figure 4.1 shawdiguation of

400 networks.

Figure 4.1. Network diagram of 400 nodes.

34



To generate large scripts that are consistent, we autdimat@rocess using
Python. Network size is the only input to the script. Python outputs a DML wsatipthe
appropriate number of networks. Networks of any size can be generated; thenibinly
factor is the processing power of the system which handles theasonul For this

thesis, we created networks of up to 400 sub-networks.

4.1 Graph Theory

Graphs are commonly used to model the structure of the internéefstudy of

various problems. This section reviews some of the concepts of graph theory.

Graph: A graph is defined as a graphical representation of a netmlogre the hosts are
represented as vertices of the graph and the links connectirghthets are represented
by edges of the graph. A graph is traditionally defined as the [Mpke where V is a set
of vertices and E is the set of edges. Each edgedefined asi( j) wherei and]
represent the two vertices connectedebyn the work done in this thesis, we consider
graphs that are undirected (wherg) (= (,i)) and are not multigraphs (where multiple

edges connect the same end points)

Connectivity: Two nodesA andB are connected if the graph contains at least one path

from nodeA to nodeB [34].

Source node A node that is the starting point of a flow is called asoarce node or

simply a source.
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Sink node A node where the flow terminates is called as the sink node or destination.

Max-flow: In a network graph, the max-flow is the maximum possible fltat bne can

route from the source to the destination [34].

Min-cut: The min-cut is the smallest set of edges or arcs teatecessary for a source
to communicate with a sink. The removal of these edges disconnestautice from the

sink.

Connectivity matrix: The connectivity matriM is a square matrix where each element
m(i,j) is 1(0) if there is (not) an edge connecting the verticasd| [35]. In case of
undirected graphs, this matrix is symmetric. The diagonal ofhisix could consist of
either Os or 1s depending on the simple assumption that each vertemeésted to itself

[35].

Walk: A walk is defined as an ordered listo&dges [ip ,jo). (1 ,j1),---- (z,])], where

each vertex, is the same as vertexi.

Path: A path of lengtlz is a walk where ail, are unique.

Cycle: If j,is the same asg, the path is a cycle.

A random graph starts as a setrpfisolated vertices and develops by successively
acquiring edges at random. [25] We use this theorem 6.10 from [2igrdw is the

number of edges in the random graph atige number of nodes):
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Theorem 1: The global structure of a typical random graphbecomes surprisingly
simple as time grows substantially larger than the phassiticm time { = n/2): it
contains no small components with many edges and all its somafjanents have order

O(log n).

It is important to have giant componentor the simulation. The giant component is the
largest component of a random graph after the phase change desgrilieeblem 1. It

contains Of) nodes. The expected number of hops between nodes in these goayhs gr
proportionally to the log of the number of nodes [36E Hepresents the number of edges

2/3

in the graph, whei& —n/2 < n “°,the graph is in a subcritical phase and almost certainly

2/3
)

not connected. A phase change occurs in the critical phase &hev@ + O(™~) and in

the supercritical phase whelfe- n/2 > n %3, a single giant component becomes almost

certain. WherkE =nlogn/2 + O ), the graph is fully connected. [37]

The expected number of edges for a grapm in-1)p/2 where p is the uniform

probability of an edge existing between any two nodes.

n(n-)p_n 213
T— 2+O(n ) (41)

Thus the probability of an existence of an edge between two nbttesEhase change is

given by

pzn—+ o(r’®) (4.2)
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Our simulations therefore requipegreater than 1/to insure the existence of a giant

component.

4.2 Max-flow min-cut

Theorem 2 The max-flow min-cut theorem states that the maximuml dfoats is equal

to the minimum of all cut capacities. [38]

The concept of max-flow min-cut is illustrated with the helptiod example
shown in Figure 4.2. If node 1 is the source and node 6 is the destinatiothehe are
two paths from the source to the destination — path A which is 1-2ad-6ath B which
is 1-3-5-6. The maximum flow over path A is bounded by arc 1-2 whislaltapacity of
2. The maximum flow over path B is bounded by arc 5-6 which also bagagity of 2.
Since these paths are disjoint the maximum flow from the sdarte destination is 6.
The removal of arc 1-2 in path A and arc 5-6 in path B compldistonnects the source

from the destination. So the mincut is the set of arcs 1-2 and 5-6. [11]

Figure 4.2 Max-flow min-cut for a graph.
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4.3 Script Generation Process

We generate a random graph where the probability that an ats dedtween
nodes andj is p;j, which is constant for allandj. The most important part in our script
generation process is the network connectivity matrix denoted.by npi; determines

how well populated @, will be and should be varied depending on the network size.

The connectivity matrix is a matrix of all the links thaiséxbetween any two

networks. It has a form as shown in (4.3).

0 0m, m, m, L m]
m, 0 m, m, L m
rnconn: rn'ZO n.bl O n}S L rr}n (43)
m, m, m, 0 L m
M M M M M M
(M My M Mg L 0

The element @, {i][j] in the connectivity matrix signifies the connection from
networki to networkj. A zero element indicates that there is no connection between the
networks represented by the element’s indicegeni1® a symmetric matrix and since a
network need not have a connection to itself, the diagonal elemertie ofidtrix are
zero. The non-zero elements of the matrix which are genenatiech probability ofp;
have arbitrary values between 6000000 and 7000000. This number specifiesatbeabit

which the interfaces between the corresponding networks communicate.
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The network IDs have values starting from 1. So, d.mjo; # O, there exists a
connection between Network 2 and Network 1. Singg,ims a symmetric matrix,
elements are generated randomly above the diagonal and thatsl&elew the diagonal

have the same values as their corresponding mirror elements. So if

rnconr{l][O] # O

(4.4)
then Moo # 0

For every network, the description is enclosed in a network loop iDlkhie
script and has a structure as shown in the figure 4.3. Thete@tests, two servers and
one router in every network. The following convention has been maintainedery

network,

Host 1 is a standard server

Host 2 is an attack server

Host 3 is a standard server

Host 4 is an attack server

All connections between networks are via routers. The routeresy eaetwork
has multiple interfaces and these interfaces are connectdohkgato other networks.
There can be only one link per interface so the number of linksnatilgg in or
terminating at a network directly determines the number offatdes required by the

router of the network.
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The interface details of the router are defined in the router Idwghvis included
in the network loop. The first four interfaces (interface 0/1/2#®) allocated to the
internal hosts of the network. This pattern is followed for all thevorks in the script to
maintain consistency. The interface details within a netwogkaa shown in the figure

4.3. The interfaces from 4 are free to be assigned to the links between networks.

The interface numbers are assigned sequentially in the conneatiatrix
starting from 4 in a column wise fashionNfrepresents the total number of networks,
represents the row number andrepresents the column number, then the interface
number for each non-zero element in.mis calculated using equation 4.5. The

interfaces are generated only for the elements below the diagonal.

interface numbe: n N m4 (4.5)

As mentioned earlier, the links in SSFNet are bidirectionahscetis only one

direct link between any two networks.

Ido

Router

Figure 4.3 Interface details of a network in a simulation
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The network loop for every individual network consists of a definitiorhefrouter, the
hosts in the network and the link which connects the router and thewttbst the

network. The router and the host definitions consist of definition of their own interfaces.

4.3.1 Top level Net

Once all the individual networks are defined, the main Network logefised
which contains the links which connect the individual networks togetimairlaSto the
interfaces, the links are created only for the elements etiwre or below the diagonal.
The links are defined in the format as in (4.6)

link[attach network_id1:0(interface_no) attach netk id2:0(interface_no) delad.0] (4.6)

Herenetwork_idlandnetwork _id2are the networks between which the link exists.

4.3.2 Traffic

The traffic attribute in the Network loop defines the traffic poments that are
involved in sending and receiving traffic. The client and the seaxerdefined in the
dictionary component of the DML script. When a blue traffic patterapecified, the
standard client directs traffic to a standard server in some péteork. Similarly the
attack client sends traffic to the attack server when aradfictpattern is specified. The
need for having separate servers in a network arises bexfabgenecessity to adjust the

rates of both the servers exclusively.
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The dictionary is used to define all the common components that ate us
throughout the DML script. Once the network is set up, the next phasleas finding

two nodes to place the blue nodes.

4.3.3 Determining blue node placement

This is done by the Python script. The blue source and the destinaties are

selected so that no blue destination is less than four hops from the blue source.

Theorem 3 If M = m¢onn and if

M, [l ] in M*+ M3+ M?+ M =0 4.7)
and
M L[ 1 in M?+M?+M =0 (4.8)

then there exists two nodes which are at least four hops away from each other.

Proof: Each non zero elemenj, k) represents the existence of an edge between the
nodes andk. The result of multiplying M with itself is ¥ Each non-zero element oM
except the diagonals represents the existence of a path tf termgbetween the nodgs
andk [35]. By proof of induction, every non zero element ofriepresents the existence
of a path of length three between nogesdk. If equation (4.8) is true, then it implies
that there exist no paths between nodesdk which are connected by three hops or

lesser. If equation (4.7) is satisfied, then it implies thahties are connected by either
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one, two, three or four hops. If both equations are satisfied, then iegriphat the nodes

are connected by at least four hops.

The chance of finding a combination of blue nodes which are atf¢éemshops
away from each other depends on the arc generation probahilfpr a scenario of 400
networks,p; is set to 0.03 (since 1/400 < 0.03 according to Theorem 1 in section 4.1) to
ensure that there is sufficient connectivity between networks thed required
configuration is found. On finding one such configuration, the script stapguting the
possible locations for placing the blue nodes. Blue traffic is téideitom the blue source
to the blue destination and is included in the traffic component of khie $2ript. If the
script fails to find such a combination, then the configuration musgrmeed and the

program must be rerun till such a situation occurs.

4.4 Mincut Arcs

The non-zero elements are fed as input to the maxflow Matlabgonogr the
format shown in (4.9). The maxflow program determines the mincwif sets between
two specific network nodes; in this case the two nodes are ukesblurce and the blue

destination.

from_network to_network capacity knk (4.9)

wherefrom_networkis the network ID from where the link originates,

to_networkis the network ID where the link terminates,
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capacity _of the_links the capacity of the link between the two networks.

By definition, at least one of the mincut arcs has to be orfaime hop path
between the blue source and the blue destination. The output of thé Badkis a set
of all mincut arcs between the blue source and the blue destiratioa.the mincut arcs
are known, the zombie locations can be determined. For a largerketiere is a high
probability that there will be multiple mincut arcs between the lsource and the blue

destination.

The algorithm in [11] determines how many mincut arcs need widadled to
stop Blue from sending a given volume of traffic @enotes the summation of the
capacities of all the mincut arcs and the blue traffic is ¢chasea random value between
Ca/2 and Gu. This is justified using equations (4.10) and (4.11), wher€ i§ the
capacity of a mincut arc, then

C-4 4 (4.10)

%</1<C (4.112)

The number of arcs that need to be disabled to send the calculated afmuaurttraffic

can then be calculated using the algorithm.
4.5 Zombie placement

With an intention of flooding the mincut arcs, zombies are placed theaarc

sources. In our simulations, the zombies (Red nodes) are placgul amMay from the
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source node. This is accomplished by inspecting the column corresptmdieysource
of the mincut arc in g@a,,» The zombie location is selected by randomly choosing one out
of the possible zombie locations. For example, as shown in the figuréhe possible
zombie locations could be nodes 1, 2, 3 or 4 as all these have outgsing e mincut

source.

O

Mincut source Mincut destination

Figure 4.4 Possible zombie locations

The zombie destination is the destination of the mincut arc. The z@®ivier is placed
on the destination. Also, we ensure that no direct connection exiatsemethe zombie
source and the zombie destination. Once the zombie source andtibestioades are

finalized, they are included in the traffic component as the Red traffic.
This completes the script generation process.
4.6 Selecting one mincut arc at a time

The OSPF protocol in SSFNet does not perform load balancing; it chtwese
least cost path to route traffic from the blue source to the Hestination. This is

contradictory to the way traffic flows in the Internet. To dedth this problem, we
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consider each mincut arc sequentially by disconnecting all butmamzut arc at a time

and rerunning the simulation for all the mincut arcs individually.

We start with the mincut arc having the maximum capacity.a&8tue traffic rate of
6000000 bits per second, the Red traffic rate needed to flood thecalcutated using
Equation (2.9). This is the threshold value of the Red traffiotel by Ryesn Readings
are taken by varying the Red traffic rate above and belowdhi® and keeping the Blue

traffic rate constant.

This procedure is followed for all of the mincut arcs and the results are recorded.
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CHAPTER FIVE

SIMUALTION SCENARIO AND RESULTS

In this chapter, we illustrate the simulations explained in Chaptaith an

example.

5.1 Simulation Scenario

The scenario consists of 400 nodes. The network graph is generatetlitgyp;;
in the Python script. As mentioned in Chapter 4, Blue players aredptat two nodes
which are at least four hops away. The zombie locations arelai@d after knowing the
details of the mincut arcs in the network. Figure 5.1 details theorletconfiguration

obtained. Nodes 10 and 159 are chosen as blue node locations.

Figure 5.1: 400 Node configuration
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Figure 5.2: Node configuration details of the Network

The node configuration details are shown in the Figure 5.2. Bluectifédtvs
from node 10 (B1) to node 159 (B2). There are six mincut arcs éetthe blue source
and the blue destination (M1 to M6). The mincut arcs are centereldeoatiestination.
According to the algorithm detailed in [11] four out of the six ratnarcs need to be
disabled. The zombies are placed on Z1, Z2, Z3 and Z4 correspondinddorthencut
arcs. The Red traffic flows from the zombie source to the zemstination which is the
same as the mincut arc destination in this case. The amournthokdaested by the Blue

and the Red clients is the same.
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We first target the mincut arc with the maximum capadityur case, this is link
M1, between nodes 256 — 159. The link has a capacity of 6916382 bits per second. The
zombie is placed on node 377. The configuration is as shown in Figuréhg. attack
traffic flows from the red server (node 159) to the red client (88 whereas the

legitimate traffic flows from the blue server (node 159) to the blue cliexie(40).

6811034

Figure 5.3: Mincut Arc 1

The red traffic rate threshold ¢Rsp) is calculated for a constant blue traffic rate
of 6000000 bps using the Equation (2.9). The red traffic rate is iectdemsm 500000
bps to 7000000 bps and the effective bandwidth allocated to Blue and Red idowited
On increasing the red traffic value above the threshold valugndisant reduction in
blue bandwidth is observed. This is shown in Graph 5.1. Thus by increasirajet e
which an attacker generates data, he can limit the bandwidttatt to the legitimate

source and effectively cause a DDoS attack.
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Graph 5.1: Bandwidth allocated to players with @ase in Red Traffic re

Theprocedure is followed for all three remaining mihatcs.Figures 5.4, 5.5 and 5

detail the configuration of the ar

Figure 5.4: Mincut Arc 2 Figure 5.5: Mincut Arc
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Figure 5.6: Mincut Arc 4

The graphs for these configurations have similar results. To prepetition, they have

not been included in this thesis.

Graph 5.2 shows the drops observed by the total traffic (Red and @ieejll
the four mincut arcs. It can be seen that the arc with thenmiaxicapacity observes the
least number of drops. Also as the red traffic rate incredsesumber of drops increase

linearly which is in line with our understanding.

s00. Drops observed by Traffic
3000 -
——209 - 159
. 22907 ——390 - 159
& 2000 - 192 - 159
@]
1500 256 - 159
1000 -
500 -
0 T T T 1
0 2000000 4000000 6000000 8000000
Red Traffic

Graph 5.2: Drops observed by the traffic for all mincut arcs
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To check the effectiveness of the DDoS attack whenlegitimate source increases
amount of traffic we increase the blue traffic r&tmm 4000000 bps to 5500000 bps
should be nted that the blue traffic rate has to be greatan thalf the capacity of tr
mincut arc. The red traffic rate was set to theigadbtained from the formula. It can
observed that the blue bandwidth is limited to aipalar value and in spite of tl
increase in the blue traffic rate, the blue bandhwidbes not increase. This is showr

Graph 5.3.

Bandwidth Allocated to Players

Bandwidth for Blui

7000000 Bandwidth for Re

6000000 - =3
5000000 -
4000000
3000000 -
2000000 -
1000000 -

4000000 4200000 4500000 5000000 5200000 5500000

Bandwidth in bps

Blue Traffic Rate (bps)

Graph 5.3: Bandwidth allocated to Players with @ase in Blue traffic ra
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In absence of red traffic, the effective bandwidticupied by Blue approhes the
rate at which the Blue server generates data. ddmsbe verified from graph 5.4. T
network overhead contributes some losses and hkadsmndwidth occupied is not eq!

to the blue traffic rate.

Bandwidth for Blue
Bandwidth for Blue

6000000 -

— |

5000000 - & = =

= | =

a— = | =

7] H | || |

S 40000001 @ 3 | - = g

c u u u u u |
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S ] ] ] ] ] ]

S 3000000 - ] ] ] ] ] ]

o B n -] n -] n

% -] n -] n -] n
@ 2000000 -
1000000

0 T T T T T T

400000( 4200000 4500000 5000000 5200000 550000
Blue Traffic Rate (bps)

Graph 5.4: Effective Bandwidth of Blue in ance of Red traffi

The equation is pessimistic and gives an upper thaumnthe amount of attack traffic tt
is required to cause a DDoS attack. It is diffi¢alestimate a lower bound on the amc
of attack traffic needed as it is dependent on uhderlying network hardware ar

software and is thus difficult to estima
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Similar simulations were performed for two other configuratiasrisch were
generated randomly by Python. The equation was found to be pessifarsthese

configurations as well.
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CHAPTER SIX

DISTRIBUTED DENIAL OF SERVICE COUNTERMEASURES

This chapter presents some of the mechanisms provided to defend against Distributed

Denial of Service Attacks.

6.1 Defense Mechanisms

DDoS defense may be regarded as a resource allocation problemchn the
server resources are fairly allocated to clients to prevéstkars from consuming an
excessive amount of resources. DDoS attacks can also be thwartiéiérimg or rate
limiting attack packets. An attack detection module is usedttaatxhe characteristics
of the attack packets and once the characteristics have beenr&zedp@acket filtering

modules are used to filter malicious packets. [40]

Some detection techniques use attack source traceback and iamtifias a
response to a DDoS attack. The routers record information abouadketp they have
seen for later traceback requests or they send additional infonradiout the packets
they have seen to the packet’s destination. However, tracebawéffisctive in DDoS

attacks in which the attack traffic comes from legitimate sources. [41]

Activity profiling monitors the average packet rate for awmoek flow, which

consists of consecutive packets with similar packet fields. Tz tetwork can be
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measured as the sum over the average packets ratesntfoalhd and outbound flows.

An attack can be detected if an increase is observed in the network flows. [42]

In the backscatter analysis, the researchers monitor allidddress space for
incoming backscatter packets. The backscatter packet’'s sourcessdsdrthat of the
victim, but the packet’s destination address is randomly spoofed. Ack dltat uses
uniformly distributed address spoofing leads to a finite probalihiég any monitored
address space will receive backscatter packets. The packettustered based on the
unique victim source address. To detect attacks, the researctadygzeaa cluster’s

destination address distribution uniformity. [42]

The authors in [26] classify the DDoS defense mechanisms asrieeictive and
preventive. In reactive measures, the attack sources areigtbasfearly as possible and
are prevented from executing further attacks. The countermedsere may be attack
specific, when the attack is consuming fewer resources thantdeaildhe preventive
measures focus on eliminating the possibility of performing ao®ttack. This
mechanism is not 100 % effective but does ensures a decrease fieqinency and
strength of DDoS attacks by making a host resilient to theckatwhich includes
identifying loopholes in the system and eliminating the vulnetasilior removing

application bugs to prevent intrusions. [6].
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6.2 Differentiating between Flash events and DDoS

Before concluding that a denial of service attack is under psgtes necessary
to identify and separate DoS attacks from flash events. Ifatteynpt to undermine a
website is considered to be a Denial of Service attack, thenrdélrenpive techniques
might end up throttling the excess legitimate traffic. Work @sn done in the past in
this field. A flash event is defined as a sudden increase fictiaf a particular website.
This results in a dramatic increase in server load putting esesteain on the network
links leading to the server. The end result is considerable incregsscket loss and

congestion.

6.3 Summary of work done

The authors in [11] set up a game between the attacker and mdisplbuted
applications of an enterprise. The attacker might not have isaffieesources to disrupt
all the processes of an enterprise. It will try to maxintieenumber of processes it can
disable. In reaction, an enterprise can shift to another configur&i@rhas not been
attacked. Both the players have to determine the best processkéoa move in. Since
the problem is P-Space complete, the authors analyze it using i@ortal Game
Theory and Thermographs. Reconfiguration strategies are provided diibudied

applications using Thermostrat strategy.

The work presents an example which consists of 3 distributed appisaiihe

values of the distributed applications are knawpriori. For determining the process in
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which a move has to be made, the authors make use of the Thermtvategy. The

strategy is explained in detail in Chapter 7. Figure 6.1 showghiee distributed

applications.

K={{0l 4 H{IKI|-10p (1 ) K

{014} (3)UKI10}

Blue's Choice
Red's Choice

Blue's Choice Red's Choice

Figure 6.1(a) Configuration 1

R = {{{-2|-4H{-1|-BHN{-3|-4]} o

{21418 (2]

Hlue's Choice

Red's Choice

L:={-2|Q:{{1Q||-8}I{-3|-5H}

-z o (3) G:H0IEH3 5]
0 31

Loop 8 -3

Hiue's Choice / Hiue's Choice W
Red's Choice HRed's Choice

Figure 6.1(b) Configuration 2

[Bluel Choice I Hlue's Choice

Red's Choice Red's Choice

Figure 6.1(c) Configuration 3



CHAPTER SEVEN

BANDWIDTH LIMITED COORDINATION OF GAMES

We now consider what happens when an enterprise (Blue) atteanpigiritain
operations in spite of an adversary (Red) launching a DDo&kaBhee has a set of
networks it needs to coordinate. For example, it may have accaouriiivance,
administration, research and development, and manufacturing sysinmust remain
operational while competing for the same scarce resources. l2lseto maintain
communications for these separate networks over bandwidth limitesl The aim of
Red is to disrupt Blue’s communications. Due to limited bandwidth diyaover the
links, Blue needs to coordinate among its networks by sending onlydseimmportant
information. Blue will be successful in achieving this depending on whétrseable to
find the most important message that needs to be transmitted. i Wweudteal if this

could be done without requiring out-of-band coordination messages.

We model this problem using combinatorial game theory. We figgaiexsome

of the basic terms required to understand the concepts of game theory.

7.1 Surreal Numbers

The authors in [27] define surreal numbers as an extension of real isunithea
tangible concept of infinity and infinitesimals. They describeesdmumbers as a pair of
sets (Left and Right) of previously created surreal numbers atmé member of the

right set maybe less than or equal to any member of thestefByg definition Left wins

60



the game if the final score is greater than zero, dreiffinal score equals zero and it is
Right’s turn to play when the game ends [28]. If every elerattite left set is not less
than every element of the Right set, then it results in daritted surreal number, also

called as a game. Every surreal number is a game, but not all games atensankers.

A combinatorial game involves two players — Left and Right. Agyémee has a
root node which represents the initial position. The root node has zerorembnanches
going downwards to the left (representing moves for the left playel downwards to
the right (representing moves for the right player). At eachtpthie player considers the
options he has and chooses the one which will maximize his paglok.vGame trees

can be typically represented as shown in equation (7.1).

{L Ly, [RLR R (7.1)

The options for left are represented Igs.. L, and the options for right are

options fromR; ... R,,. The equation has a numeric value if

VLVR i L <R (7.2)

The value of a surreal number where equation (7.2) holds is the “sitthpliember
between the greatest L value (Lmax) and the smallest R {Ré) [29]. If equation

(7.2) is not satisfied, then the number is ill formed and it is a game.

L3R 1L 2R (7.3)
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The value of the game then depends on the sequence of moves tgies.7F shows a

diagram of a game tree which can be represented by equation (7.4)

G ={15,{25|10}| -5} (7.4)

Figure 7.1 Game tree represented by G

If Right plays first, then he has only one option to move and heugndaining 5
points from the Left player. If Left makes the first move, therm&® two options which
are represented by two branches going down leftwards. He ttean ehoose the first
option and gain 15 points from Right or choose the second option and moveg&rbe
{25 | 10}. If he chooses the second option, then Right plays next and gives the Left player
10 points. The Left player would prefer winning 25 points to 10 and henadtiplays

first, he would choose the first option.
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7.2 Combinatorial Game Theory

A combinatorial game involves two players — Left and Right. Tlaeseperfect
information games in which all players know all the moves that hakentplace.
Combinatorial game theory does not study games of chance. Ikxampke scenario,
there are multiple networks which want to coordinate and commurueatehe network
links. The Blue player needs to prioritize data and send the mpsttant information.
This effectively translates into a Sum of Games problem, wtiereBlue player is
engaged in multiple games with Red and the aim is to maxirheeo¥erall payoff

function. This sum of games is represented by

G=>G, (7.5)

Yedwab proved the following theorems in [28] which state that
Theorem 1 Calculating the value of the Sum of Games is NP-hard.

Theorem 2 Finding the optimal sequence of moves for a Sum of Games praklem

PSPACE complete.

These theorems state that a truly optimal strategy for acfugames is only
found by an exhaustive search of alternatives which requires ex@rigné. Instead of
finding the best possible solution, it is possible to find a solutiohninvéd constant offset

of the optimal.
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Mathematical studies have been carried out using game tieamatyze the
strategies used for playing games and winning them. We intraalwoecept called
thermographs which could be used for chilling the games and finding theabpt
strategies for the sum of games. In order to understand thermagnegpfist explain the

concept of ‘temperature’ of a game.

The temperature of a game signifies the variability of theegdt signifies the
amount that stands to be gained by either player initiating a.mdogame where a much
(little) stands to be gained or lost is called as hot (cold).vanability of a game can be
reduced if a tax is imposed for making a move. This is also called as procesmbing.

It is done by modifying the game.

G={G-1G+} (7.6)

We use the concept of thermographs in calculating the value ofme.ga
Thermographs are plotted on graphs in which the co-ordinate sysesirhas the tax on
the y-axis and the game value on the x-axis. The values on this afaxplotted in
decreasing order to keep the Left player’'s options to theitkftd the graph. As takk
increases, both sides reach a common value which is called asdae Value’ of the
game. The smallest tax needed to reach the game’s mean vabatlesd as the

temperature of the game.
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7.3 Plotting thermographs

The authors in [30] explain the procedure for plotting a thermograpgy Stiart with
Left and Right's choices and recurse upwards. For example, FiglAreshows the
thermograph of {{5 | -5} | -20}. The thermograph of {5 | -5} is first péat by marking
the Left and Right choices far0 on the horizontal axis and then plotting the game
values ag increases until the Left and Right values converge [12]. Since bhe oa the
right is already a number (-20), its thermograph is just a vertical mast.

The next step is to plot the thermograph of {{5 | -5} | -20} usheythermograph of {5
| -5}. After Left has moved to {5 | -5} it will be Right’s turn sb is the starting point on
the left. The temperature of the freezing point of {5|-5} is 5. Sol¢fteedge of the
thermograph starts at point (-5, 5).

The game -20 has value -20 and freezing pbiat 0. So the right edge of the
thermograph starts at point (-20, 0). We recursively subtract taftam the left and add
it to the right, until the two values converge. As shown in Figure 7.3gihes us the

freezing point (temperature) of 10 and a mean value of -10.
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5 4 3 2 1 0 -1 -2 -3 -4 -5 - -7 -8 -0 -12 14 A6 -8 -20

Figure 7.2: Plot of {5|-5} Figure 7.3: Plot of {{5]-5}|-20}

7.4 Berlekamp’s Strategies

Choosing a strategy to play the sum of games problem would helpki® ana
decision. In [12], Berlekamp presented three strategies for dganhich game to play

in.

Sentestrat This strategy tells us to respond to the opponent’s move by makmaye in
the same game. This strategy is not of any importance favdhein this thesis, as we

do not have an idea of where the opponent is.

Thermostrat: In this strategy, by plotting the friendly side and the enemy side of the sum
of games, we find the component game whose thermograph has threumawiidth at
different temperatures. The temperature at which the widest comtpoo®urs is called

the ambient temperature. According to the Thermostrat stratiegycomponent game

widest at the ambient temperature is the game that needs to be played in.
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For example, in figure 7.4, there are three games being playetiasieously. G1
= {{15|5}|{4|3}}, G2 = {30]20}, G3 = {{50|45}|75/2}. The thermographs for the games
are shown from left to right. The left hand side is the sum oktihddnd sides of the G1,
G2, and G3 thermographs; that is 80 = 45 + 30 + 5. The right handssidend by
subtracting the maximum width of the three thermographs at eaetature. We note
that the furthest right point of this graphic has value 69, which oetuesnperature 3/2.
Since the thermograph of G2 has the maximum width at this teraperdhermostrat

advises to play in G2.

o
T

80 69 %7 30 20 4

Figure 7.4: Thermostrat strategy example. From right, Thermograph di€tadgraph

of G2, thermograph of G3, and thermograph evaluation of the sum of these three games

In our work, we are playing in a game with one of the components masked. lcasash

the unmasked game might have extreme values or a single swnelaér which could
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drastically change the width and accordingly the decisioptaging in a game. Thus the

Thermostrat strategy fails to be applicable in the work pertinent to this.thes

Hotstrat: Hotstrat strategy recommends play in a game which has highest
temperature. In other words, the Hotstrat strategy when appmlied Sum of games
problem would choose a game with the highest variability. Sinceatability directly
relates to the payoff values, this strategy correcthgcef the most important component

game.

The Hotstrat strategy [30] when applied to a sum of games probderd whoose
a game with the highest temperature and will correspondingly chibasgame. Since
the temperature of the game signifies the importance and vayiadfilthe game, the
higher the variability of the game, the higher is the payotf¢ha be obtained by playing
that game. In this example scenario, the result would give uadkeimportant message
that needs to be transmitted. This ensures that communication nsaimed till the

affected links are restored back to their normal state.

7.5 Example Game

We have multiple departments which need to coordinate in order to mainta
communication. If the links between the departments experience a BfftaX, there
would be a heavy constraint on the bandwidth that can be assigrtesl gtayers. This
limits the number of messages that could be transmitted. At suel,tit would be of

paramount importance to prioritize the messages that need to bé/sembdel this as a
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two player game with the two players being Red and Blue. inmefahe Blue player is
to maintain communication within its departments and the aim of ¢depRyer is to try
and disrupt it. If the attacker is able to disrupt the communicatiaweba the

departments then the Red player wins.

Multiple departments share a limited communications channel andtharene
department can simultaneously detect changes in the network. Ther plegds to
prioritize messages before deciding which is the most imporfdns problem was
solved by Virtenen in [31] by considering Maximax, Maximin anchti@ values
prioritization schemes. We modify the problem to compare game iretead of
comparing range of values. We represent our set of mesaagkerent branches of a
game tree with payoff values assigned to each branch. In essemspartments are
simultaneously deciding which of theattackers to engage (one attacker might target
multiple links). Thus the message prioritization problem is changed & team decision

problem to a Sum of Games problem from combinatorial game theory.

7.6 Playing in a game with one of the options masked

Since more than one department can simultaneously detect chendke
network, a subset of the game changes, however because of bandwititiohsi the
players can not accurately know the details of all the gamdisei set. They need to
choose the games which are more important. So the players end ung jphagt sum of

games problem where they are ignorant about the payoffs in a subset of @se gam
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7.7 Incorporating chance moves

In order to deal with combinatorial game theory, we need to mdbiyway’s
surreal number approach to include chance moves. Surreal numberngpi@se of the
game assume perfect information. Unfortunately, the underlyingenatuhis problem is
probabilistic in nature. Figure 7.5 shows an extensive form remiason of a chance
move. Extensive form is a tree structure with each interior nbtlee tree representing a
decision point. Leaves are associated with payoffs. At the root rilde, wants to
maximize the payoff. If Blue chooses the alternative on thetied choices exist on the
left with probability 0.4 and right with probability 0.6. After those mt& moves are
nodes that represent Red’s choices. Since Red wants to minimize, thghéfinode has

value 5 (14). We state a theorem which helps us solve this problem.

Elue moves

Chance moves

Red moves

Figure 7.5 Extensive form representation of a chance move
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Theorem 3. Given a probability distribution functionp{, p, ...p} where px is the
probability of surreal numbelL{| R}, the expected value is a surreal number.

Since addition and multiplication of well formed surreal numbees ssirreal number
[27], for all elements in a game tree,

p, * surreal number = surreal numb (7.7)

Blue uses the expected value of its left node 0.4 * 5 + 0.6 * 14 = 10t4 aspected
payoff in calculating which alternative to take. It can also leeved as compressing the
two Red moves into a single information set where Blue cannot km@asvance which
node in the information set it chooses. In extensive form, each @gyassible moves
are expressed in alternation with chance moves inserted assargceBy replacing
chance moves in a game tree, we convert an imperfect informgame into an
equivalent perfect knowledge game. The next section talks aboualgbathm to

prioritize the messages.

7.8 Message Prioritization Algorithm

1. Each network monitors the state of its links.

2. Each network constructs game trees based on the monitored data

3. Surreal numbers are constructed for each engagement

4. Thermographs are constructed from each surreal number andeth@drpoint is
noted

5. The data is prioritized using the temperature of its associated surrealrnumbe

6. An alarm is set proportional to the inverse of the temperature.
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7. As soon as the alarm expires, if the bandwidth is not occupied thanisdat

transmitted.

7.9 Simulation of Game Scenario

The simulation game scenario developed using Python helps explairathplex
game. We also show that the Hotstrat strategy dominatesrétegtes used in [31] for

game theory problems.

Both the players — Red and Blue start the game with a commontingeveew. The
common operating view is a set of three randomly generated d&the&2, G3). The
two players compete by playing a sum of games problem on thiSs@honitoring their
links, the players determine that the games G2 and G3 areaéfig games G4 and Gb5.
Since the players have bandwidth enough to transmit information obaelgame, they
have to choose between game G4 and G5. The decision about whichnpédger the
first move is made randomly with both players having an equal prapaBibth players
are now playing a sum of games problem which consists of G1 G4&ardo®wever, the
players are forced to choose between the information sets of {&1G% and {G1, G4,
G3}. The players choose a strategy from Maximax, Maximin, Cevditaks and Hotstrat
to help them decide which game to play in and make a move in that game. This procedure
is followed until payoff values are obtained for all three ganfdse payoff values
corresponding to the real scenario are summed to give the paytfefsum of games. If
the sum is greater than or equal to half the maximum payoff pestign Blue player

wins, else Red wins.
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The five randomly generated games are

G, = {{12|32} | {33]32} I {48]9}I{43|19}}

G, = {{4193 1 {49134} || {24|1}1{9|4}}

Gs = ({6137} (4912} I {10]34}|{21]18}}

G, = {{10]2} | {4]45} I {32]|39}I{32|34}}

Gs = ({155} [ (14|43} 1| (13]27}(3]27})

The steps taken to choose the game which it prefers to séstedein Table 7.1. The

following conventions are used to describe the simulation example.

S: Set of games which the player sees and applies the strategy to.
X: Strategy chosen

lg: Game which is inconsistent with the real scenario

Cy: Game chosen to be modified after applying
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Time | Action performed by Blue Action performed by Red
step
1 S={ Gy, G, Gg} S={ Gy, Gy, G3}
X = Maximax X = Maximax
2 Apply x to G4 andGs Apply x to G4 andGs
lg =Gs lg=Gs
S={ Gy, G4, Gg} S={ Gy, Gy, G3}

Table 7.2 details the steps followed after choosing the inconsigeame. In our

simulation run, Blue player starts the game.

Table 7.1: Procedure to decide the starting scenario

Time | In Scenario before S Action Scenario after S

step | action

1 Blue | G={{12|32}|{33|32}]| Apply xto S Gi=
{48|9}1{43]19}} Cg =Gs {{12[32}[{33[32}]]

Ga= {{10[2}[{4|45}|
{32[39}|{32|34}}
Gs= {{637}{49[2}|

{10[34}|{21|18}}

{48[9}{43]19}}
Ga= {{10[2}[{4|45}|
{32[39}|{32|34}}

Gs = {6|37}[{49]2}
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2 Red | G={{12[32}{33[32}]| Apply xt0'S Gi=
{48|9}|{43[19}} Cg=Gs {{12]32}|{33(32}]|
G4 = {{10]2}{4[45}| {48|9}|{43[19}}
{32[39}|{32[34}} G4 = {32]39}{32]34}
Gs= {637}{49]2} Gs= {637}{49]2}
3 Blue | G ={{12|32}|{33]32}]] Apply X0 S Gi=
{48|9}|{43[19}} Cg=Gs {{12]32}|{33(32}]|
G4 = {32]39}{32]34} {48|9}|{43|19}})
Gs= {637}{49]2} G4 = {32]39}{32]34}
Gs= {637}
4 Red | G={{12[32}{33[32}]| Apply xt0'S Gi=
{48|9}{43|19}} Cg=Gs {{12]32}|{33(32}]|
G4 = {32[39}|{32/34} {48|9}|{43|19}
Ga= {6]37} G4 = {3239}{32]34}
Gs= 37

Table 7.2: Steps to play the game

At time step 4, a final payoff value is obtained €&y The procedure is continued until

payoff values are obtained for all the games. Since the paglowy corresponding to the
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real scenario are considered, the payoff value in this cake sitnmation of the payoff

values for game&; G4 and Gwhich is 69 (32 for G1 + 32 for G4 + 5 for G5).

The simulations are run 500 times for each pair of strategiespdittentage wins for
Blue player are recorded. The rows represent the strategeesen by Blue and the

columns represent to strategies chosen by Red.

Maximax Maximin Central Values| Hotstrat
Maximax 0.53 0.518 0.55 0.27
Maximin 0.492 0.548 0.488 0.354
Central Values | 0.564 0.538 0.534 0.362
Hotstrat 0.75 0.71 0.718 0.542

Table 7.3: Recorded percentage wins for Blue

The test for statistical significance between binomial ibhistions [7] is used to verify

that the values in Table 7.3 are significantly different.

| Mj 0.41 7.8
Og( pz(l_ pl) ) ( )

Row wise and column wise comparisons are performed to determimaatteoptimal

strategy for Red and Blue.

For a Red strategy, the most optimal strategy for Blue catetsgmined by comparing

values within columns. This is shown in Table 7.4. Sub columns are dre@tan
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columns to show which strategies are being compared. We note thatratts
performance is significantly better than the other three, ntemahich strategy was
chosen by Red. So Hotstrat is marked as a + and the others are marked asthevéhe

no significant difference between the strategies, then they are marked as

On comparing within rows, we obtain the strategy that perfdres$ for Red against a
given Blue strategy. Similarly, Hotstrat causes Blue to vewer games than other
strategies. This is shown in Table 7.5. Thus the Hotstrat provideBemtive strategy

for determining the priority of the games when competing for bandwidth.

Maximax | Maximin| Central Hotstrat
Values
Maximax - ~ | - | = - ~ - [ ~
Maximin - ~ | - | = - ~ - ~ ~
Central Values - | o= - =~ - ~ - ~ | +
Hotstrat + + + ¥

Table 7.4: Choosing an optimal strategy for Blue
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Central

Maximax Maximin Hotstrat
Values

+ + + -
Maximax

+ + + -
Maximin

+ + + -

Central Values
+ + + -

Hotstrat

u

u

u

Table 7.5: Choosing an optimal strategy for Red

78




CHAPTER EIGHT

SUMMARY

We verified, by performing simulations, the work in [11] to quantiife humber
of resources that an attacker would need to disable a netwoférnfieag a DDoS on a
large scale network is more reasonable than a DDoS on a small scale nete/cHodsle
the SSFNet simulator over its competitors as it is capabitaradling large networks. To
simplify the tedious and error prone process of writing scriptldoye networks, we

automate the network generation process.

The formula derived in [11] is developed for an ideal network. It doeacoount
for processing and the overhead contributed by the network. Since therknsimulator
is not really the actual network, the statistics obtained giwgpar bound of the amount
of attack traffic required to cause a DDoS. It is sligletiypservative in quantifying the
zombie traffic. The lower bound is dependent on the underlying netmpi&mentation
and we suspect that a better estimate would have to be empiloeeever, considering
the fact that we cannot ethically perform a DDoS on a functioningonket it is unlikely

that further empirical work can be done.

In Chapter 7, we develop an alternative application of combinatmarak theory
in which we allocate bandwidth between processes. We present aplexs@menario by
setting up a game between an attacker and multiple distributeccadiopls of an
enterprise. The enterprise coordinates between its differemtorks by maintaining

communication over bandwidth communication links. The limited bandwidth firsése
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it necessary to determine the most important message thaeaprisetneeds to transmit.
In order to account for the probabilistic nature of the problem,omeest a game with
imperfect information into perfect information games. We compave strategies —
Maximin, Maximax, Central value and Hotstrat to determine thaifyr of the messages
and conclude that Hotstrat gives us the best possible results.rifyeoue understanding
by running simulations. The results indicate that our proposed technitijuee part of

an effective DDo0S countermeasure.

Further research can be focused on

1. Introducing background traffic

2. Simulating with a protocol that performs load balancing and mosei
simulates the working of the Internet.

3. Implementing a prototype of the Bandwidth Limited coordination of

games
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APPENDIX A — DML SCRIPT OF 3 NETWORKS

#Starting to write the dml file
schema [_find .schemas.Net]

Networkl [
Net [
router[
id0

interface [id O bitrate 4000000 latency 0.0]
interface [id 1 bitrate 8000000 latency 0.0]
interface [id 2 bitrate 4000000 latency 0.0]
interface [id 3 bitrate 9000000 latency 0.0]
interface [id 4 bitrate 4000000.0 latency 0.0

queue [

use SSF.Net.droptailQueue

]

monitor[

use SSF.Net.droptailQueueMonitor_1

probe_interval 0.1

debug true

]
buffer 10000
] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop

# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2

# starting of udp attack client declaration
host[id 3

_extends .dictionary.attackClient

nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client
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# starting of udp attack server declaration
host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach 0(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [

]
]

]

x 100.0

y 100.0

transform [

affine 0.66,0.0,0.0,0.66,-300.0,-400.0

]
]

] #end of the Net loop
] #end of Network loop

Network2 [

Net [

router[
idO
interface [id O bitrate 4000000 latency 0.0]
interface [id 1 bitrate 4000000 latency 0.0]
interface [id 2 bitrate 4000000 latency 0.0]
interface [id 3 bitrate 4000000 latency 0.0]
interface [id 4 bitrate 4000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor|
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]

buffer 10000

] #end of interface

interface [id 5 bitrate 8000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
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]

monitor|

use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1

debug true

]
buffer 10000
] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop

# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2

# starting of udp attack client declaration
host[id 3

_extends .dictionary.attackClient

nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client

# starting of udp attack server declaration
host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach 0(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [
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]

]

x 100.0

y 100.0

transform [

affine 0.66,0.0,0.0,0.66,-300.0,-400.0

]
]

] #end of the Net loop
] #end of Network loop

Network3 [

Net [

router[
id0
interface [id O bitrate 4000000 latency 0.0]
interface [id 1 bitrate 4000000 latency 0.0]
interface [id 2 bitrate 4000000 latency 0.0]
interface [id 3 bitrate 4000000 latency 0.0]
interface [id 5 bitrate 8000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor[
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]
buffer 10000
] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop

# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2
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# starting of udp attack client declaration
host[id 3

_extends .dictionary.attackClient

nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client

# starting of udp attack server declaration
host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach O(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [

]
]

]

x 100.0

y 100.0

transform [

affine 0.66,0.0,0.0,0.66,-300.0,-400.0

]
]

] #end of the Net loop
] #end of Network loop

Net [

frequency 1000000000000000
AS_status boundary
ospf_area 0

#random number generation
randomstream |

generator "MersenneTwister"
stream DefaultStream

]

Net [id 1 _extends .Network1.Net]
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Net [id 2 _extends .Network2.Net]

Net [id 3 _extends .Network3.Net]

link [attach 1:0(4) attach 2:0(4) delay 0.0]
link [attach 2:0(5) attach 3:0(5) delay 0.0]

traffic [
pattern [
client 3:1
servers [port 10 nhi 1:2(0)]
]

pattern [
client 3:3
servers [port 10 nhi 1:4(0)]

]

] #Net loop closes
dictionary|

standardClient [

interface [id O _extends .dictionary.10BaseT]

route [dest default interface 0]

graph [
ProtocolSession [
name client use SSF.OS.UDP.test.udpStreamClient
start_time 30.0
start_window 0.0
file_size 3000000
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug

ProtocolSession [name socket use
SSF.0S.Socket.socketMaster]
ProtocolSession [name udp use SSF.OS.UDP.udpSessi onMaster
_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]
]
]

attackClient [
interface [id O _extends .dictionary.10BaseT]
route [dest default interface 0]
graph [
ProtocolSession |
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name client use SSF.OS.UDP.test.udpStreamClient
start_time 30.0
start_window 0.0
file_size 3000000
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug
]
ProtocolSession [name socket use SSF.OS.Socket.s ocketMaster]
ProtocolSession [name udp use SSF.OS.UDP.udpSess ionMaster
_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]
]
]

10BaseT |
bitrate 4000000
latency 0.0

]

10BaseTBT [
bitrate 8000000
latency 0.0

]

10BaseTRT [
bitrate 9000000
latency 0.0

]

udpinit [
max_datagram_size 100000
debug false

]

standardServer [

interface [id O _extends .dictionary.10BaseTBT]

route [dest default interface 0]

graph [
ProtocolSession |
name server use SSF.OS.UDP.test.udpStreamServer
port 10
client_limit 10
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.send_interval
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug
]
ProtocolSession [name socket use

SSF.0S.Socket.socketMaster]
ProtocolSession [name udp use
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SSF.0S.UDP.udpSessionMaster
_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]
]
]

attackServer [

interface [id 0 _extends .dictionary.10BaseTRT]

route [dest default interface 0 ]

graph [
ProtocolSession [
name server use SSF.OS.UDP.test.udpStreamServer
port 10
client_limit 10
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.send_attk_interval
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug
|
ProtocolSession [name socket use

SSF.0S.Socket.socketMaster]

ProtocolSession [name udp use SSF.OS.UDP.udpSessi
_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]
]

]

hostLANinterfaceMonitored [interface [id 0 _extend
.dictionary.100Gh
_find .dictionary.queueMonitor.monitor

1l

100Gb [
bitrate 900000000
latency 0.0

]

baseRouterGraph |
ProtocolSession [name ip use SSF.OS.IP]
#changed ospf version
ProtocolSession [name ospf use SSF.OS.OSPF.sOSPF]

]

routerGraphFlowMonitored [graph [
_extends .dictionary.baseRouterGraph
ProtocolSession |
name ip use SSF.OS.IP
monitor [
name ipnetflow use SSF.OS.NetFlow.IpFlowCollector
protocol_type all
max_inactive_time 10
max_flow_time 100000

onMaster
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]
] _
ProtocolSession |
name probe use SSF.OS.ProbeSession

file "sampada.dat”
stream netflow

]
1l

baseServerGraph [

ProtocolSession |
name server use SSF.OS.TCP.test.tcpServer
port 10
_find .dictionary.appsession.request_size
_find .dicitonary.appsession.show_report
_find .dictionary.appsession.debug
_find .dictionary.appsession.glimit

ProtocolSession [name socket use SSF.OS.Socket.soc

ProtocolSession [name tcp use SSF.OS.TCP.tcpSessio
_find .dicitonary.tcpinit]

ProtocolSession [name ip use SSF.OS.IP

monitor [

use SSF.App.DDoS.RequestsMonitor

probe_interval 100.0

debug true

]
1l

serverGraphNICMonitored [graph [
_extends .dictionary.baseServerGraph
ProtocolSession |
name probe use SSF.OS.ProbeSession
file "sampada.dat"
stream netflow

]
1l

#TCP initial parameters
tepinit|

ISS 10000

MSS 1000

RcvWndSize 32
SendWndSize 32
SendBufferSize 128
MaxRexmitTimes 12
TCP_SLOW_INTERVAL 0.5
TCP_FAST_INTERVAL 0.2
MSL 60.0

MaxIdleTime 600.0
delayed_ack false
fast_recovery false
show_report true

ketMaster]
nMaster
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]

queueMonitor [monitor [

use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1

protocol_type udp

debug true

1l

appsession [

request_size 500
datagram_size 1000
send_attk interval 0.00088888
send_interval 0.001

glimit 5000

show_report true

debug true

] #dictionary loop closes

graphics [

render [ ]

transform [

affine 1.0,0.0,0.0,1.0,495.0,396.0
|

]
background "197,246,251(T):126,235,246(B)"
width 600 height 600
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APPENDIX B — DML SCRIPT OF 5 NETWORKS

#Starting to write the dml file
schema [_find .schemas.Net]

Networkl [

Net [

router[
id0
interface [id O bitrate 8000000 latency 0.0]
interface [id 1 bitrate 8000000 latency 0.0]
interface [id 2 bitrate 8000000 latency 0.0]
interface [id 3 bitrate 8000000 latency 0.0]
interface [id 4 bitrate 4000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor|
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]
buffer 10000
] #end of interface

interface [id 5 bitrate 4000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor|
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]
buffer 10000
] #end of interface

interface [id 6 bitrate 5000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue

]

monitor|

use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1

debug true

]
buffer 10000
] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop
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# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2

# starting of udp attack client declaration
host[id 3

_extends .dictionary.attackClient

nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client

# starting of udp attack server declaration
host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach 0(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [

]
]

]

x 100.0

y 100.0

transform [

affine 0.66,0.0,0.0,0.66,-300.0,-400.0
]

]

] #end of the Net loop
] #end of Network loop
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Network?2 [

Net [

router[
idO
interface [id O bitrate 8000000 latency 0.0]
interface [id 1 bitrate 8000000 latency 0.0]
interface [id 2 bitrate 8000000 latency 0.0]
interface [id 3 bitrate 8000000 latency 0.0]
interface [id 4 bitrate 4000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor|
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]
buffer 10000
] #end of interface
interface [id 5 bitrate 8000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor|
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]
buffer 10000
] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop

# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2

# starting of udp attack client declaration
host[id 3
_extends .dictionary.attackClient
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nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client

# starting of udp attack server declaration
host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach 0(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [

]
]

]

x 100.0

y 100.0

transform [

affine 0.66,0.0,0.0,0.66,-300.0,-400.0

]
]

] #end of the Net loop
] #end of Network loop

Network3 [

Net [

router[
idO
interface [id O bitrate 8000000 latency 0.0]
interface [id 1 bitrate 8000000 latency 0.0]
interface [id 2 bitrate 8000000 latency 0.0]
interface [id 3 bitrate 8000000 latency 0.0]
interface [id 5 bitrate 8000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor|
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]
buffer 10000
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] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop

# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2

# starting of udp attack client declaration
host[id 3

_extends .dictionary.attackClient

nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client

# starting of udp attack server declaration
host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach O(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [

]
]

]
x 100.0

y 100.0
transform [
affine 0.66,0.0,0.0,0.66,-300.0,-400.0
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]
]

] #end of the Net loop
] #end of Network loop

Network4 [
Net [
router[
id 0

interface [id O bitrate 8000000 latency 0.0]
interface [id 1 bitrate 4000000 latency 0.0]
interface [id 2 bitrate 8000000 latency 0.0]
interface [id 3 bitrate 8000000 latency 0.0]
interface [id 5 bitrate 4000000.0 latency 0.0

queue [

use SSF.Net.droptailQueue

]

monitor|

use SSF.Net.droptailQueueMonitor_1

probe_interval 0.1

debug true

]
buffer 10000
] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop

# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2

# starting of udp attack client declaration
host[id 3

_extends .dictionary.attackClient

nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client

# starting of udp attack server declaration
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host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach O(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [

]
]

]
x 100.0

y 100.0
transform [
affine 0.66,0.0,0.0,0.66,-300.0,-400.0

]
]

] #end of the Net loop
] #end of Network loop

Network5 [

Net [

router[
idO
interface [id O bitrate 8000000 latency 0.0]
interface [id 1 bitrate 8000000 latency 0.0]
interface [id 2 bitrate 8000000 latency 0.0]
interface [id 3 bitrate 5000000 latency 0.0]
interface [id 6 bitrate 5000000.0 latency 0.0
queue [
use SSF.Net.droptailQueue
]
monitor|
use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1
debug true

]
buffer 10000
] #end of interface

_find .dictionary.routerGraphFlowMonitored.graph

] #end of the router loop
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# starting of udp standard client declaration
host[id 1

_extends .dictionary.standardClient

nhi_route [dest default interface 0 next_hop 0(0)
] #end of udp standard client

# starting of udp standard server declaration
host[id 2

_extends .dictionary.standardServer
nhi_route [dest default interface 0 next_hop 0(1)]
] #end of host2

# starting of udp attack client declaration
host[id 3

_extends .dictionary.attackClient

nhi_route [dest default interface 0 next_hop 0(2)
] #end of udp attack client

# starting of udp attack server declaration
host[id 4

_extends .dictionary.attackServer
nhi_route [dest default interface 0 next_hop 0(3)]
] #end of host4

link [attach 0(0) attach 1(0)]
link [attach 0(1) attach 2(0)]

link [attach 0(2) attach 3(0)]
link [attach 0(3) attach 4(0)]

graphics [
collapsed false
render [
net [
expanded [

]
]

]

x 100.0

y 100.0

transform [

affine 0.66,0.0,0.0,0.66,-300.0,-400.0
]

]

] #end of the Net loop
] #end of Network loop
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Net [
frequency 1000000000000000
AS_status boundary
ospf_area 0
#random number generation
randomstream [

generator "MersenneTwister"
stream DefaultStream

]

Net [id 1 _extends .Networkl.Net]
Net [id 2 _extends .Network2.Net]
Net [id 3 _extends .Network3.Net]
Net [id 4 _extends .Network4.Net]

Net [id 5 _extends .Network5.Net]

link [attach 1:0(4) attach 2:0(4) delay 0.0]
link [attach 2:0(5) attach 3:0(5) delay 0.0]
link [attach 4:0(5) attach 1:0(5) delay 0.0]
link [attach 5:0(6) attach 1:0(6) delay 0.0]
traffic [

pattern [

client 3:3
servers [port 10 nhi 5:4(0)]

]
pattern [

client 3:1
servers [port 10 nhi 4:2(0)]

]
]

] #Net loop closes
dictionary[

standardClient [
interface [id 0 _extends .dictionary.10BaseT]
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route [dest default interface 0]

graph [
ProtocolSession |
name client use SSF.OS.UDP.test.udpStreamClient
start_time 30.0
start_window 0.0
file_size 3000000
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug
]
ProtocolSession [name socket use

SSF.0S.Socket.socketMaster]

ProtocolSession [name udp use SSF.OS.UDP.udpSessi onMaster
_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]

]

]

attackClient [
interface [id 0 _extends .dictionary.10BaseT]
route [dest default interface 0]
graph [
ProtocolSession [
name client use SSF.OS.UDP.test.udpStreamClient
start_time 30.0
start_window 0.0
file_size 3000000
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug
]
ProtocolSession [name socket use SSF.OS.Socket.s ocketMaster]
ProtocolSession [name udp use SSF.OS.UDP.udpSess ionMaster
_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]
]
]

10BaseT [
bitrate 8000000
latency 0.0

]

10BaseTRT [
bitrate 5000000
latency 0.0

]

10BaseTBT [
bitrate 4000000
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latency 0.0
]

udpinit [
max_datagram_size 100000

debug false

]

standardServer [
interface [id 0 _extends .dictionary.10BaseTBT]

route [dest default interface 0]
graph [
ProtocolSession [
name server use SSF.OS.UDP.test.udpStreamServer
port 10
client_limit 10
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.send_interval
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug

]

ProtocolSession [name socket use

SSF.0S.Socket.socketMaster]
ProtocolSession [name udp use

SSF.0S.UDP.udpSessionMaster
_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]

]
]

attackServer [
interface [id 0 _extends .dictionary.10BaseTRT]

route [dest default interface 0 ]
graph [
ProtocolSession |
name server use SSF.OS.UDP.test.udpStreamServer
port 10
client_limit 10
_find .dictionary.appsession.request_size
_find .dictionary.appsession.datagram_size
_find .dictionary.appsession.send_attk_interval
_find .dictionary.appsession.show_report
_find .dictionary.appsession.debug

]

ProtocolSession [name socket use

SSF.0S.Socket.socketMaster]
ProtocolSession [name udp use SSF.OS.UDP.udpSessi

_find .dictionary.udpinit]
ProtocolSession [name ip use SSF.OS.IP]

]

onMaster

101




hostLANinterfaceMonitored [interface [id 0 _extend s
.dictionary.100Gb
_find .dictionary.queueMonitor.monitor

1]

100Gb [
bitrate 900000000
latency 0.0

]

baseRouterGraph [
ProtocolSession [name ip use SSF.OS.IP]
ProtocolSession [name ospf use SSF.0S.OSPF.sOSPF]

]

routerGraphFlowMonitored [graph [
_extends .dictionary.baseRouterGraph
ProtocolSession |
name ip use SSF.OS.IP
monitor [
name ipnetflow use SSF.OS.NetFlow.IpFlowCollector
protocol_type all
max_inactive_time 10
max_flow_time 100000
]
]
ProtocolSession |
name probe use SSF.OS.ProbeSession
file "sampada.dat"
stream netflow

]
1]

baseServerGraph [
ProtocolSession |
name server use SSF.OS.TCP.test.tcpServer
port 10
_find .dictionary.appsession.request_size
_find .dicitonary.appsession.show_report
_find .dictionary.appsession.debug
_find .dictionary.appsession.qlimit
]
ProtocolSession [name socket use SSF.OS.Socket.soc ketMaster]
ProtocolSession [name tcp use SSF.OS.TCP.tcpSessio nMaster
_find .dicitonary.tcpinit]
ProtocolSession [name ip use SSF.OS.IP
monitor [
use SSF.App.DDoS.RequestsMonitor
probe_interval 100.0
debug true

]
1]
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serverGraphNICMonitored [graph [
_extends .dictionary.baseServerGraph
ProtocolSession |
name probe use SSF.OS.ProbeSession
file "sampada.dat”
stream netflow
]
1]

#TCP initial parameters
tepinit|

ISS 10000

MSS 1000

RcvWndSize 32
SendWndSize 32
SendBufferSize 128
MaxRexmitTimes 12
TCP_SLOW_INTERVAL 0.5
TCP_FAST_INTERVAL 0.2
MSL 60.0

MaxldleTime 600.0
delayed_ack false
fast_recovery false
show_report true

]

gueueMonitor [monitor [

use SSF.Net.droptailQueueMonitor_1
probe_interval 0.1

protocol_type udp

debug true

1]

appsession [
request_size 500
datagram_size 1000
send_attk_interval 0.0016
send_interval 0.002

glimit 5000

show_report true

debug true

] #dictionary loop closes

graphics [

render [ ]

transform [

affine 1.0,0.0,0.0,1.0,495.0,396.0
]

]
background "197,246,251(T):126,235,246(B)"
width 600 height 600
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APPENDIX C — SIMULATION ISSUES

Some of the issues with the SSFNet simulator that were encountered wingiengat
results are listed below.
1. Lack of adaptive routing: SSF.OS.OSPF is a partial implementati@SPFv2,

based on the Internet Engineering Task Force’s Request for Gasnmanber
2328 (RFC 2328). It is designed to quickly compute the routing tables for
arbitrary topologies in SSFNet network models. The unsupported reguitem
include dynamic neighbor discovery and link state updates in response to dynamic
topology changes. We use this OSPF version in our simulatibms.dbes not
reflect the way the Internet works in reality. Future regeacould include

implementation of protocols that accurately simulate the working of the Ihterne
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Figure: Glitch observed when Blitraffic rate equals Red Traffic r:

. As shown in the figure above, a glitch is obseraé@ specific network traffi
level when the rate at which blue server generdtga is equal to the rate
which red server generates data. The bandwidthcaa#d o Blue spike:
unexpectedly whereas the bandwidth allocated to iResiignificantly less. Thi
behavior is observed for all the mincut arcs oftladl configurations. We belie
this to be an artifact of the simulator. The sinmidails to behave as exfted at

this point.
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