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Abstract

This paper concerns robust parameter estimation of the two-parameter Weibull distribution

and the two-parameter Birnbaum-Saunders distribution. We use the proposed method to estimate

the distribution parameters from (i) complete samples with and without contaminations (ii) type-II

censoring samples, in both distributions. Also, we consider the maximum likelihood estimation and

graphical methods to compare the maximum likelihood estimation and graphical method with the

proposed method based on quantile. We find the advantages and disadvantages for those three

different methods.
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Chapter 1

Introduction

The Weibull distribution is named for its inventor, Waloddi Weibull. Because of its versa-

tility and relative simplicity, the Weibull distribution is widely used in reliability engineering and

widely employed as a model in life testing. The Birnbaum-Saunders distribution is derived to model

times to failure for metals subject to fatigue. Both distributions are worth considering. The method

of the maximum likelihood is one of the most popular technique for estimation. But for the Weibull

distribution the calculations involved are not always simple. And for the Birnbaum-Saunders dis-

tribution it’s hard to derive the closed-form expressions for both the shape and the scale parameter

by the maximum likelihood estimation. The proposed method is in a closed-form so it is easier to

obtain. In addition it is robust under contamination.

In this paper, we also consider censored samples from the Weibull distribution and the

Birnbaum-Saunders distribution. Especially we use the type-II censoring samples. Type-II censoring

occurs if an experiment has a set number of subjects or items and stops the experiment when a

predetermined number is observed to have failed; the remaining subjects are then right-censored.

For more details about censoring, see Lawless (1982). In this paper, we will use the proposed method

to estimate both complete and censored observations. Then we compare the proposed method with

the maximum likelihood estimation and graphical method and discuss the results.
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Chapter 2

Maximum Likelihood Estimation

2.1 Maximum Likelihood Estimation in the Weibull Distri-

bution

2.1.1 Estimate the Weibull Distribution without Censoring

The probability density function of the two-parameter Weibull distribution is

f(x;β, δ) =


β
δ

(
x
δ

)β−1
e−(x/δ)

β

if x ≥ 0,

0 if x < 0.

The cumulative distribution function of Weibull distribution is

F (x;β, δ) = 1− e−(x/δ)
β

for x ≥ 0,

and F (x; δ, β) = 0 for x < 0, where β is shape parameter and δ is scale parameter which are positive.
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For the pdf given above, we can find the likelihood function

L(β, δ) =

n∏
i=1

f(xi;β, δ)

= (
βn

δn
)

n∏
i=1

(
xi
δ

)β−1e−(xi/δ)
β

,

= (
β

δ
)ne−

∑n
i=1(

xi
δ )β

n∏
i=1

(
xi
δ

)β−1.

The log-likelihood function is

l(β, δ) = lnL(β, δ) = nlnβ − nlnδ −
n∑
i=1

(
xi
δ

)β + (β − 1)ln(

n∏
i=1

xi
δ

),

= nlnβ − nlnδ −
n∑
i=1

xi
β

δβ
+ (β − 1)

n∑
i=1

(lnxi)− n(β − 1)lnδ.

Differentiating the above log-likelihood with respect to δ and β, we have

∂l

∂δ
= 0− n

δ
+ β

n∑
i=1

(xβi δ
−β−1)− n(β − 1)

δ
,

∂l

∂β
=

n

β
+

n∑
i=1

(lnxi)− nlnδ −
∑n
i=1[xβi ln(xi)]− ln(δ)

∑n
i=1 xi

β

δβ
.

Setting the above equations equal to zero, we obtain

δ =
(
∑n
i=1 x

β
i )

1
β

n
1
β

, (2.1)

and

0 =
n

β
+

n∑
i=1

(lnxi)− nlnδ −
∑n
i=1[xβi ln(xi)]− ln(δ)

∑n
i=1 xi

β

δβ
. (2.2)

Substituting (2.1) into (2.2) and solving for β, we obtain β, which is the MLE. And then

3



we can derive δ easily.

2.1.2 Estimate the Weibull Distribution with Censoring

Now we consider censored samples under the Weibull distribution. We will derive the

likelihood function with censored observations.

We denote di = 1 if the ith observation is not censored and di = 0 if the ith observation is

censored. And n1 is the predetermined number. (An experiment has a set number of subjects or

items and stops the experiment when the predetermined number are observed to have failed.)

The cdf of the Weibull distribution is

F (x;β, δ) = 1− e−(x/δ)
β

.

Then we can get

F (Xn1
;β, δ) = 1− F (Xn1

;β, δ) = 1− (1− e−(Xn1/δ)
β

) = e−(Xn1/δ)
β

.

Then the log-likelihood in censored cases will be:

l(β, δ) = lnL(β, δ) = ln

(∏
di=1

f(xi;β, δ)
∏
di=0

F (xi;β, δ)

)

=

n∑
i=1

di(lnβ − lnδ − xi
β

δβ
+ (β − 1)lnxi − (β − 1)lnδ) +

n∑
i=1

(1− di)(−
xi
β

δβ
).

Then easily we can derive the log-likelihood for type-II censoring. For known n1 and the

order statistics {X(1), X(2), . . . , X(n1)} of the sample {X1, X2, . . . , Xn} are given (where n1 < n),

and X(j) ≥ X(n1), ( where {j ∈ (n1 + 1, n)}). And d(1), . . . , d(n1) = 1, d(n1+1), . . . , d(n) = 0.

4



Then the log-likelihood function will be

l(β, δ) = lnL(β, δ) = ln[(
β

δ
)n1 · e−

∑n1
i=1(

X(i)
δ )β

·
n1∏
i=1

(
X(i)

δ
)β−1 · (1− (1− e−(

X(n1)
δ )β ))n−n1 ],

= n1lnβ − n1lnδ −
∑n1

i=1X(i)
β

δβ
+ (β − 1)

n1∑
i=1

(lnX(i))

−n1(β − 1)lnδ − (n− n1)
Xβ

(n1)

δβ
.

Differentiating the above log-likelihood with respect to δ and β, we have

∂l

∂δ
= β

∑n1

i=1 βX(i)
β

δβ+1
− n1β

δ
+
βXβ

(n1)
(n− n1)

δβ+1
,

∂l

∂β
=

n1
β

+

n1∑
i=1

lnX(i) − n1lnδ −
∑n1

i=1(X(i)
β lnX(i))

δβ
+

(lnδ)(
∑n1

i=1X(i)
β)

δβ

+
Xβ

(n1)
ln(δ)(n− n1)

δβ
−
Xβ

(n1)
ln(X(n1))(n− n1)

δβ
.

Setting the above equations equal to zero, we obtain

δ =
(
∑n1

i=1X(i)
β + (n− n1)Xβ

(n1)
)

1
β

n1
1
β

, (2.3)

and

0 =
n1
β

+

n1∑
i=1

lnX(i) − n1lnδ −
∑n1

i=1(X(i)
β lnX(i))

δβ

+
(lnδ)(

∑n1

i=1X(i)
β)

δβ
+
Xβ

(n1)
ln(δ) · (n− n1)

δβ
−
Xβ

(n1)
ln(X(n1)) · (n− n1)

δβ
. (2.4)

Substituting (2.3) into (2.4) and solving for β, we obtain β, which is the MLE. And then

we can derive δ.
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2.2 The Maximum Likelihood Estimation in the Birnbaum-

Saunders Distribution

2.2.1 Estimate the Birnbaum-Saunders Distribution without Censoring

In 1969, Birnbaum and Saunders described a life distribution model that could be derived

from a physical fatigue process where crack growth causes failure. Since one of the best ways to

choose a life distribution model is to derive it from a physical/statistical argument that is consistent

with the failure mechanism, the Birnbaum-Saunders fatigue life distribution is worth considering.

The Birnbaum-Saunders distribution which is fatigue life distribution has several alterna-

tive formulations of probability density function. The general formula for the pdf of the Birnbaum-

Saunders distribution is

f(t;µ, α, β) =

√
t−µ
β +

√
β
t−µ

2α(t− µ)
φ(

√
t−µ
β −

√
β
t−µ

α
) (x > µ;α, β > 0),

where α is the shape parameter; µ is the location parameter; β is the scale parameter; and φ is the

probability density function of the standard normal distribution.

We use the two-parameter probability density function of the Birnbaum-Saunders Distribu-

tion which is

f(t;α, β) =
1

2αβ

√
β

t
(1 +

β

t
)φ[

1

α
(

√
t

β
−
√
β

t
)], (t > 0).

The cumulative distribution function of the Birnbaum-Saunders distribution is

F (t;α, β) = Φ[
1

α
(

√
t

β
−
√
β

t
)],

where Φ is the cumulative distribution function of the standard normal distribution.

For the pdf given above, we can find the maximum likelihood estimator of α and β.

The likelihood function of Birnbaum-Saunders distribution is
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L(α, β) =

n∏
i=1

f(ti;α, β),

=

n∏
i=1

1

2αβ

√
β

ti
(1 +

β

ti
)φ[

1

α
(

√
ti
β
−
√
β

ti
)],

=
1

2nαnβn
βn/2

t1 · · · tn
(1 +

β

t1
)(1 +

β

t2
) · · · (1 +

β

tn
)

n∏
i=1

φ(
1

α
(

√
ti
β
−
√
β

ti
)).

Then we can have the log-likelihood function

l(α, β) = lnL(α, β),

= −nln2− nlnα− nlnβ +
n

2
lnβ −

n∑
i=1

ln(ti) +

n∑
i=1

ln(1 +
β

ti
) +

n∑
i

ln(φ(
1

α
(

√
ti
β
−
√
β

ti
))).

Differentiating the above log-likelihood with respect to α and β, we have

∂l

∂α
= −n

α
+

1

α3

n∑
i=1

(

√
β

ti
−
√
ti
β

)2,

∂l

∂β
=

n∑
i=1

1

ti

(
β
ti

+ 1
) − n

2β
−

∑n
i=1

(
1

2ti
√

β
ti

+ ti

2β2
√
ti
β

)
˙(√

β
ti
−
√

ti
β

)
α2

.

Setting the above equations equal to zero, we obtain

α =


∑n
i=1

(√
β
ti
−
√

ti
β

)2
n


1
2

(2.5)

0 =

n∑
i=1

1

ti

(
β
ti

+ 1
) − n

2β
−

∑n
i=1

(
1

2ti
√

β
ti

+ ti

2β2
√
ti
β

)
˙(√

β
ti
−
√

ti
β

)
α2

. (2.6)

7



Substituting (2.5) into (2.6) and solving for β, we obtain β, which is the MLE. And then

we can derive α.

2.2.2 Estimate the Birnbaum-Saunders Distribution with Censoring

Also we can derive the likelihood function of the Birnbaum-Saunders Distribution in type-II

censoring.

For known n1 and the order statistics {t(1), t(2), . . . , t(n1)} of the sample {t1, t2, . . . , tn} are

given (where n1 < n), and t(j) ≥ t(n1), ( where {j ∈ (n1 + 1, n)}) we can derive the likelihood

function of the Birnbaum-Saunders Distribution in type-II censoring.

L(α, β) =

n1∏
i=1

f(t(i))
(
1− F (t(n1))

)n−n1
,

=

n1∏
i=1

1

2αβ

√
β

t(i)
(1 +

β

t(i)
)φ

[
1

α

(√
t(i)

β
−

√
β

t(i)

)](
1− Φ

[
1

α

(√
t(n1)

β
−

√
β

t(n1)

)])n−n1

,

=
1

2n1αn1βn1

βn1/2

t(1) · · · t(n1)
(1 +

β

t(1)
)(1 +

β

t(2)
) · · · (1 +

β

t(n1)
)

n1∏
i=1

φ

(
1

α

(√
t(i)

β
−

√
β

t(i)

))
(

1− Φ

[
1

α

(√
t(n1)

β
−

√
β

t(n1)

)])n−n1

.

Then we can have the log-likelihood function with censored observations.

l(α, β) = −n1ln2− n1lnα− n1lnβ +
n1
2

lnβ −
n1∑
i=1

ln
(
t(i)
)

+

n1∑
i=1

ln

(
1 +

β

t(i)

)

+

n1∑
i

ln

(
φ

(
1

α

(√
t(i)

β
−

√
β

t(i)

)))
+ (n− n1)ln

(
1− Φ

[
1

α
(

√
t(n1)

β
−

√
β

t(n1)
)

])
.

A root-finding routine is needed to solve for α and β. And we can see that is very difficult

to derive the maximum likelihood estimator of α and β in this regular method.
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Chapter 3

The Proposed Method Based on

Quantile

3.1 Parameter Estimation Based on Quantile in the Weibull

Distribution

3.1.1 Quantile Method

In the robust parameter estimation based on quantile method in the Weibull distribution,

we use the median X̃ of the sample X and the 63.21% percentile to derive the scale and shape

parameters.

In the cdf of the Weibull Distribution, we know that

F (X) = 1− e−(
X
δ )β .

We let X = δ, then we have

F (δ) = 1− e−1 ≈ 0.6321.

Thus, it is easily seen that δ̂ is the 0.6321 quantile. So using the above method, we will use

9



63.21% sample percentile for the estimate of scale parameter. We denote δ̂ by the 63.21% sample

percentile, δ̂ = 63.21% sample quantile. The breakdown point of δ̂ will be 1−63.21% = 36.79%. The

breakdown point of an estimator is the proportion of incorrect observations (i.e. arbitrarily large

observations) an estimator can handle before giving an arbitrarily large result.

And also we can derive

1

2
= e−(

X̃
δ )β ,

ln2 = (
X̃

δ
)β ,

lnln2 = β(ln(X̃/δ)).

Then we can have

β̂ =
log(log(2))

log(X̃/δ̂)
, (3.1)

to get the estimate of β.

For censored cases in the Weibull distribution, we will apply Kaplan-Meier method into the

proposed method then it can solve for survival data of the Weibull distribution. For more about

Kaplan-Meier, see E. L. Kaplan and Paul Meier(1958).

3.1.2 Properties of the Proposed Method in the Weibull Distribution

With out considering the sample, we can still get the mean and the variance of δ̂ by the

known sample size. We use the pdf of the order statistic to calculate the mean and the variance of

the δ̂.

We will easily see that δ̂ ≈ X(i), when i ≈ 0.6321 · n (rounding).

If we assume β = 2 and δ = 3 as the true value of the two parameters of the Weibull

distribution, then we will have

f(0.6321·n)(x) =
n!

(i− 1)!(n− i)!
(2/9)x(e−

x2

9 )n−i(1− e−
x2

9 )i−1,

Ei[x
2] =

∫ ∞
0

x2
n!

(i− 1)!(n− i)!
(2/9)x(e−

x2

9 )n−i(1− e−
x2

9 )i−1dx,

Ei[x] =

∫ ∞
0

x
n!

(i− 1)!(n− i)!
(2/9)x(e−

x2

9 )n−i(1− e−
x2

9 )i−1dx.

10



When n=10000, we have i = 10000 · 0.6321 = 6321, Ei[x
2] = 8.99872 and Ei[x] = 2.99972,

then V ar(δ̂) = 8.99872− 2.999722 = 0.0003999216 and E[δ̂] = 2.99972 ≈ 3.

When n=20, we have i = 20 · 0.6321 = 12.642 ≈ 13, Ei[x
2] = 9.04394 and Ei[x] = 2.97627,

then V ar(δ̂) = 9.04394− 2.976272 = 0.18576 and E[δ̂] = 2.97627 ≈ 3.

3.2 Parameter Estimation Based on Quantile in the Birnbaum-

Saunders Distribution

From the cumulative distribution function of the Birnbaum-Saunders distribution, we know

that

F (t;α, β) = Φ[ 1α (
√

t
β −

√
β
t )].

Then if we assume t = β:

F (β) = Φ[
1

α
(

√
β

β
−

√
β

β
)],

= Φ(0),

=
1

2
.

We can see that

β̂ = median(t1, . . . , tn), (3.2)

where (t1, . . . , tn) are iid variables from Birnbaum-Saunders distribution. And the breakdown point

of β̂ is 50%.

By the properties of Birnbaum-Saunders distribution, we know that

Yi =
1

2
(

√
ti
β
−
√
β

ti
) ∼ N(0,

1

4
α2)

11



Since we have obtained β̂, we can import β̂ into above equation. Then for known (t1, . . . , tn) we can

have Y = (Y1, . . . , Yn).

Since Y follows the normal distribution, we can have Y ∼ N(0, σ2) and σ2 = 1
4 α̂

2. Since

1.349σ = 2Φ−1(0.75) = IQR(Y ), we have

1.349σ = 1.349
1

2
α = IQR(Y ), (3.3)

α̂ = 2
IQR(Y )

1.349
, (3.4)

where IQR(Y ) is the interquartile range of the sample (Y1, . . . , Yn). The interquartile range, also

called midspread or middle fifty, is a measure of statistical dispersion, being equal to the difference

between the upper and lower quartiles, that is IQR = Q3−Q1and the breakdown point of IQR(Y )

is 25%. Then we will get α̂ and β̂.

12



Chapter 4

Graphical Estimation Method

4.1 Graphical Estimation in the Weibull Distribution

There is a graphical method to estimate the parameters in a population in the Weibull

distribution. For more detail see Razali, Salih and Mahdi(2009). In this paper we use the robust

regression. Robust regression is an alternative to least squares regression when data are contami-

nated with outliers or influential observations, and it can also be used for the purpose of detecting

influential observations. For more about robust regression see Hampel, Ronchetti, Rousseeuw, and

Stahel(1986).

The cdf of the Weibull distribution is

F (x;β, δ) = 1− e−(x/δ)
β

.

Then we can get the following functions

1− F (x;β, δ) = e−(x/δ)
β

,

−ln(1− F (x;β, δ)) =
(x
δ

)β
,

ln(−ln(1− F (x;β, δ))) = βlnx− βlnδ. (4.1)

13



Then we can set

yi = ln(−ln(1− F (xi;β, δ))); (4.2)

x′i = lnxi; (4.3)

b1 = β; (4.4)

b0 = −βlnδ, (4.5)

and imported into (4.1). Then we will have a linear function yi = b1x
′
i + b0. Then we use the robust

linear regression to solve for b1 and b0, and by the setting we can have

β̂ = b1,

δ̂ = e−
b0
b1 .

4.2 Graphical Estimation in the Birnbaum-Saunders Distri-

bution

The cumulative distribution function of the Birnbaum-Saunders distribution is

F (t;α, β) = Φ[
1

α
(

√
t

β
−
√
β

t
)],

where Φ is the cumulative distribution function of the standard normal distribution.

We can linearize as follows:

pi = Φ[
1

α
(

√
ti
β
−
√
β

ti
)],

Φ−1(pi) =
1

α

1√
β

√
ti −

√
β

α

1√
ti
,

Φ−1(pi) ·
√
ti =

1

α
√
β
ti −

√
β

α
,
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= −(

√
β

α
) + (

1

α
√
β

)ti, (4.6)

= C0 + C1ti, (4.7)

where C0 = −(
√
β
α ) and C1 = ( 1

α
√
β

).

Then we can estimate α and β as follows:

α = −
√
β

C0
,

also

α =
1√
βC1

.

Then we can have

1√
βC1

= −
√
β

C0
.

Solving for α and β, we have α̂ and β̂ which are estimates for α and β.

β̂ = −C0

C1
, (4.8)

α̂ = −

√
−C0

C1

C0
. (4.9)

But in the Birnbaum-Saunders distribution, graphical method is not always useful. When

the contamination is too large (e.g. noise=1000) and the sample size n = 200, the graphical method

will have both C0 and C1 in the same sign. That causes β̂ < 0, then

√
β̂ can not be solved now.
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Chapter 5

Simulation Study and Results

5.1 Introduction

We start by generating X = {X1, X2, . . . , Xn} for a given shape parameter β and scale

parameter δ in the Weibull distribution, and t = {t1, t2, . . . , tn} for a given shape parameter α and

scale parameter β in the Birnbaum-Saunders distribution.

For those complete data sets, we add noise to X = {X1, X2, · · · , Xn}, or t = {t1, t2, · · · , tn}

by replacing the last value of the sample.

For type-II censoring data sets, we have n1 order statistics {X(1), X(2), . . . , X(n1)} or {t(1), t(2),

. . . , t(n1)} of the samples. Then we can use the methods in Chapter 2, Chapter 3 and Chapter 4

to estimate the two parameters in the observed order statistics. For comparing the advantages and

disadvantages of the proposed method, the maximum likelihood estimation method, and graphical

method, we repeat the simulation 10,000 times to obtain the MSE (mean square error) and RE

(relative efficiency) for every method.

5.2 Comparing Methods in the Weibull Distribution

In this section, we will show the simulations and the results in the Weibull distribution for

complete and censoring data.
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5.2.1 In Complete Data of the Weibull Distribution

5.2.1.1 Simulation Settings and Process

We set β = 2, δ = 3, and the sample size n = 200. We change the last observation in the

sample to the different noises given by 0.01, 0.02, . . . , 100 using the equations (2.1) and (2.2), we

obtain the estimated parameter through the MLE method.

Using the equations (3.1), we obtain the estimated parameter through the proposed method.

For graphical method, we use the equation (4.1) and use rlm function in R language to have

b0 and b1, and use (4.6) to obtain δ̂ and β̂.

5.2.1.2 Results and Conclusion

Figure 5.1: Difference in quantile, MLE and graphical method in estimate β in the Weibull distri-
bution
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Figure 5.2: Difference in quantile, MLE and graphical method in estimate δ in the Weibull distri-
bution

In Figures 5.1 and 5.2, we can see that for those Weibull samples which contain contamina-

tions, the proposed method and graphical method are much better than the MLE method. We can

also see that the proposed method is as good as graphical method.

5.2.2 In Type-II Censoring Data of the Weibull Distribution

5.2.2.1 Simulation Settings and Process

We set β = 2, δ = 3, for type-II censoring the predetermined number is n1 = 190, 180,

160, and the sample size n = 200. For three cases which are n1 = 190, n1 = 180, and n1 = 160

observations in the samples, we will have the value of X(190), X(180), and X(160) as the last failed time.

We can get d(1), . . . , d(n1) = 1 and d(n1+1), . . . , d(n) = 0, then d = {d(1) = 1, . . . , d(n1) = 1, d(n1+1) =

0, . . . , d(n) = 0}. We import them into the equations (2.3) and (2.4) to get the estimated parameter

through the MLE method.

Using the equation (3.1), we obtain the estimated parameter through the proposed method.
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For survival data, we use the function ”survfit( Surv(X,d) 1, type=”kaplan-meier” )” and ”ECDF=c(1-

out$surv)” in R language to have the empirical CDF for the sample and ”approx(ECDF,

out$time,xout=1-exp(-1))” in R language to estimate δ then use (3.1) to estimate β.

For graphical method, we use the equation (4.1) and use rlm function in R language to

estimate b0 and b1, and use (4.6) to obtain δ̂ and β̂.

5.2.2.2 Results and Conclusion

Table 5.1: cases for n1 = 190 n1 = 180 n1 = 160 censored data set in repeat times= 10, 000 and
sample size n = 200 of Weibull(2,3)

n1 Methods True value Mean Variance MSE RE = MSE(MLE)
MSE(Methods)

n1 = 190 βMLE 2.014624 0.01426682 0.02334235

βRobust β = 2 2.082453 0.1589585 0.2549708 0.09154911

βRLM 2.017383 0.0174336 0.02856898 0.81705227

δMLE 2.998914 0.01261977 0.0207021

δRobust δ = 3 2.997964 0.01927802 0.03168974 0.6532745

δRLM 2.990646 0.01295376 0.02126529 0.9735160

n1 = 180 βMLE 2.01915 0.01563721 0.02569902

βRobust β = 2 2.081754 0.1575484 0.2531769 0.1015062

βRLM 2.035482 0.02004398 0.03339141 0.7696297

δMLE 2.997367 0.01301804 0.02134336

δRobust δ = 3 2.998802 0.01964424 0.03214544 0.6639622

δRLM 2.974105 0.01350316 0.02257922 0.9452656

n1 = 160 βMLE 2.019376 0.01952878 0.03192576

βRobust β = 2 2.087008 0.1594661 0.2561862 0.1246193

βRLM 2.091688 0.02559376 0.04654212 0.6859541

δMLE 2.997688 0.01388084 0.02265297

δRobust δ = 3 2.99847 0.0190771 0.03131216 0.723456

δRLM 2.916488 0.01447393 0.0285543 0.793330

For those Weibull samples which are censored, we can see that (in table 5.1) the MLE method

is better the proposed method and graphical method. But for fixed sample size, the increasing in
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the amount of censored data will cause the increasing in accuracy of the proposed method and

decreasing in accuracy of graphical method (from RE).

In (table 5.1)the βMLE and δMLE are estimated by the MLE method,and βRobust and δRobust

are estimated by the proposed method, and βRLM and δRLM are estimated by graphical method.

5.3 Comparing Methods in the Birnbaum-Saunders Distri-

bution

In this section, we will show the simulations and the results in the Birnbaum-Saunders

distribution for complete and censoring data.

5.3.1 In Complete Data of the Birnbaum-Saunders Distribution

5.3.1.1 Simulation Settings and Process

We set α = 1, β = 1 and the sample size n = 200. We change the last observation in the

sample to the different noises given by 0.01, 0.02, . . . , 100 using the equations (2.5) and (2.6), we

obtain the estimated parameter through the MLE method.

Using the equations (3.2), we obtain the estimated β through the proposed method then we

use (3.3) to obtain estimated α.

For graphical method, we use the equation (4.6) and use rlm function in R language to get

C0 and C1, then we use (4.8) to obtain α̂ and β̂.
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5.3.1.2 Results and Conclusion

Figure 5.3: Difference in quantile, MLE and graphical method in estimate α in the Birnbaum-
Saunders distribution
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Figure 5.4: Difference in quantile, MLE and graphical method in estimate β in the Birnbaum-
Saunders distribution

In Figure 5.3 and 5.4 we can see that for those Birnbaum-Saunders samples which contain

contaminations, the proposed method and graphical method are much better than the MLE method.

We can also see that the proposed method is as good as graphical method.

5.3.2 In Type-II Censoring Data of the Birnbaum-Saunders Distribution

5.3.2.1 Simulation Settings and Process

We set α = 1, β = 1, and predetermined number isn1 = 190, 180, 160, and the sample size

n = 200. For three cases which are n1 = 190, n1 = 180, and n1 = 160 observations in the samples,

we will have the value of X(190), X(180), and X(160) as the last failed time. We import them into the

log-likelihood function to get the estimated parameter through the MLE method.

Using the equations (3.2 and 3.3), we obtain the estimated parameter through the proposed

method.

For graphical method, we use the equation (4.6) and use rlm function in R language to get
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C0 and C1, then we use (4.8) to obtain α̂ and β̂.

5.3.2.2 Results and Conclusion

Table 5.2: cases for n1 = 190 n1 = 180 n1 = 160 censored data set in repeat times= 10, 000 and
sample size n = 200 of Birnbaum-Saunders(1,1)

n1 Methods True value Mean Variance MSE RE = MSE(MLE)
MSE(Methods)

n1 = 190 αMLE 0.996023 0.002661084 0.004385978

αRobust α = 1 0.9946663 0.006107257 0.009972275 0.4398172

αRLM 0.983849 0.003349655 0.005654915 0.7756046

βMLE 1.000524 0.003914823 0.006422559

βRobust β = 1 1.003194 0.007404566 0.01216938 0.5277638

βRLM 1.000546 0.004536282 0.00740304 0.8675570

n1 = 180 αMLE 0.9946913 0.002986336 0.004926754

αRobust α = 1 0.9912729 0.00655287 0.01080154 0.4561159

αRLM 0.9658971 0.003920155 0.008262377 0.5962877

βMLE 1.002994 0.004094853 0.006653023

βRobust β = 1 1.006539 0.007497102 0.01215567 0.5473184

βRLM 0.9945711 0.004640039 0.009616217 0.6918545

n1 = 160 αMLE 0.9962564 0.003581742 0.005798788

αRobust α = 1 0.9938684 0.006774637 0.0112778 0.5141773

αRLM 0.9096282 0.003322905 0.01204432 0.4814542

βMLE 0.9995712 0.004518238 0.007374897

βRobust β = 1 1.004081 0.007381647 0.01212146 0.6084164

βRLM 0.9672553 0.005586472 0.011304232 0.6524014

For those Birnbaum-Saunders samples which are censored, we can see that (in Table 5.2) the

MLE method is better than the proposed method and graphical method. But for fixed sample size,

the increasing in the amount of censored data will cause the increasing in accuracy of the proposed

method and decreasing in accuracy of graphical method (from RE).

In (table 5.2) αMLE and βMLE are estimated by the MLE method, and αRobust and βRobust

are estimated by the proposed method,and αRLM and βRLM are estimated by graphical method.
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Chapter 6

Future Work

Because our method is related to quantile, we need to study the Bahadur’s representation

to get the asymptotic variance of our method and compare it with the simulated variance.

6.1 Bahadur’s Representation

Bahadur’s representation Let X1, . . . , Xn be iid random variables from a CDF F. Sup-

pose that F ′(ξp) exists and is positive. Then

ξ̂p = ξp +
F (ξp)− Fn(ξp)

F ′(ξp)
+ op(

1√
n

).

Proof : Let t ∈ R, ξnt = ξp + tn−1/2, Zn(t) =
√
n[F (ξnt) − Fn(ξnt)]/F

′(ξp), and Un(t) =√
(n)[F (ξnt)− Fn(ξ̂p)]/F

′(ξp). It can be shown that

Zn(t)− Zn(0) = op(1),

note that |p− Fn(ξ̂p)| ≤ n−1. Then,

Un(t) =
√
n[F (ξnt)− p+ p− Fn(ξ̂p)]/F

′(ξp),

=
√
n[F (ξnt)− p]/F ′(ξp) +O(n−1/2)→ t.
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Let ηn =
√
n(ξ̂p − ξp). Then for any t ∈ R and ε > 0,

P (ηn ≤ t, Zn(0) ≥ t+ ε) = P (Zn(t) ≤ Un(t), Zn(0) ≥ t+ ε),

≤ P (|Zn(t)− Zn(0)| ≥ ε/2) + P (|Un(t)− t| ≥ ε/2)→ 0.

Then we can get

P (ηn ≥ t+ ε, Zn(0) ≤ t)→ 0.

It follows that ηn − Zn(0) = op(1) with Lemma given below, which is the same as the

assertion.

Lemma Let {Xn} and {Yn} be two sequence of random variables such that Xn is bounded

in probability and, for any real number t and ε > 0, limn[P (Xn ≤ t, Yn ≥ t+ε)+P (Xn ≥ t+ε, Yn ≤

t)] = 0. Then Xn − Yn
p−→ 0.

Proof. For any ε > 0, there exists and M > 0 such that P (|Xn| > M) ≤ ε for any n, since

Xn is bounded in probability. For this fixed M, there exists an N such that 2M/N < ε/2.

Let ti = −M + 2Mi/N, i = 0, 1, · · · , N . Then,

P (|Xn − Yn| ≥ ε) ≤ P (|Xn| ≥M) + P (|Xn| < M, |Xn − Yn| ≥ ε),

≤ ε+

N∑
i=1

P (ti−1 ≤ Xn ≤ ti, |Xn − Yn| ≥ ε),

≤ ε+

N∑
i=1

P (Yn ≤ ti−1 − ε/2, ti−1 ≤ Xn) + P (Yn ≥ ti + ε/2, Xn ≤ ti).

This, together with the given condition, implies that

lim sup
n
P (|Xn − Yn| ≥ ε) ≤ ε.

Since ε is arbitrary, we conclude that Xn − Yn
p−→ 0.

Remark Actually, Bahadur gave an a.s. order for op(n
−1/2) under the stronger assumption

that F is twice differentiable at ξp with F ′(ξp) > 0. The theorem stated here is in the form later

given in Ghosh (1971). The exact a.s. order was shown to be n−3/4(log log n)3/4 by Kiefer (1967)

in a landmark paper. However, the weaker version presented here suffices for proving the following
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CLTs.

The Bahadur representation easily leads to the following two joint asymptotic distributions.

Corollary Let X1, . . . , Xn be iid random variables from a CDF F having positive derivatives at ξpj ,

where 0 < p1 < · · · < pm < 1 are fixed constants. Then

√
n[( ˆξp1 , . . . ,

ˆξpm)− (ξp1 , . . . , ξpm)]
d−→ Nm(0, D),

where D is the m× n symmetric matrix with element

Dij = pi(1− pj)/[F ′(ξpi)F ′(ξpj )], i ≤ j.

Proof By Bahadur’s representation, we know that the
√
n[( ˆξp1 , . . . ,

ˆξpm)− (ξp1 , . . . , ξpm)]T

is asymptotically equivalent to
√
n[
F (ξp1 )−Fn(ξp1 )

F ′(ξp1 )
, . . . ,

F (ξpm )−Fn(ξpm )
F ′(ξpm ) ]T and thus we only need to

derive the joint asymptotic distribution of
√
n[F (ξpi )−Fn(ξpi )]

F ′(ξpi )
, i = 1, . . . ,m. By the definition of

ECDF, the sequence of [Fn(ξp1), . . . , Fn(ξpm)]T can be represented as the sum of independent random

vectors

1

n

n∑
i=1

[I{Xi≤ξp1}, . . . , I{Xi≤ξpm}]
T .

Thus, the result immediately follows from the multivariate CLT by using the fact that

E(I{Xi≤ξpk}) = F (ξpk), Cov(I{Xi≤ξpk}, I{Xi≤ξpl}) = pk(1− pl), k ≤ l.

But due to the time limits, we can’t have the simulation and the theory done by this time,

and we wish there will be other researchers can complete this part and compare the proposed method

with the maximum likelihood method.
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Chapter 7

Conclusions and Discussion

This paper introduces the maximum likelihood estimation, robust parameter estimation

based on quantile and graphical estimation methods. The proposed robust method is based on the

quantile of certain samples. We compared it with the maximum likelihood estimation and graphical

methods.

In Chapter 2 and Chapter 3, estimation in the Weibull distribution and the Birnbuam-

Saunders distribution with type II censored sample is considered in detail. The maximum likelihood

estimators are calculated for both distributions. For both distributions, we carry out the simulation

to study their behaviors. The simulation results are compared to that of quantile and graphical

method. We can conclude that the proposed method for the shape parameter β and scale δ in

the Weibull Distribution, or shape parameter α and scale parameter β in the Birnbaum-Saunders

distribution are much more easily to be obtained than the maximum likelihood and graphical es-

timators. The proposed estimators for the shape and scale parameter is much better than the

maximum likelihood estimator and as good as graphical estimators in those samples which contain

contaminations. The proposed estimators for the shape and the scale parameter is not as good as

the maximum likelihood estimators and graphical estimators for small censoring portion of a sample,

but the mean square error of the proposed estimator decreases rapidly as the the amount of censored

data increasing.

We can conclude that (i) the proposed method is much robust and this gives the great

result on complete data with contain contaminations. (ii) The proposed method would have a

decent efficiency property (future work needed). (iii) The proposed method is much simple than the
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maximum likelihood method. Since the closed-form of the proposed method can be derived easily.

(iv) The proposed method will be much more easily applied into the censored samples of the Weibull

distribution and the Birnbaum-Saunders distribution as what we have shown in Chapter 5.
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