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ABSTRACT 

The use of game theory to analyze the optimal behaviors of both pursuers and 

evaders originated with Isaac’s work at the Rand Corporation in the 1950’s. Although 

many variations of this problem have been considered, published work to date is limited 

to the case where both players have constant velocities. In this thesis, we extend previous 

work by allowing players to accelerate. Analysis of this new problem using Newton’s 

laws imposes an additional constraint to the system, which is the relationship between 

players’ velocities and allowed turning radius. We find that analysis of this relationship 

provides new insight into the evader capture criteria for the constant velocity case. We 

summarize our results in a flow chart that expresses the parameter values that determine 

both the games of kind and games of degree associated with this problem. Pursuit-

evasion games in the literature typically either assume both players have perfect 

knowledge of the opponent’s position, or use primitive sensing models. These 

unrealistically skew the problem in favor of the pursuer who need only maintain a faster 

velocity at all turning radii. In real life, an evader usually escapes when the pursuer no 

longer knows the evader’s position. We analyze the pursuit-evasion problem using a 

realistic sensor model and information theory to compute game theoretic payoff matrices. 

Our results show that this problem can be modeled as a two-person bi-matrix game. This 

game has a saddle point when the evader uses strategies that exploit sensor limitations, 

while the pursuer relies on strategies that ignore sensing limitations. Later we consider 

for the first time the effect of many types of electronic counter measures (ECM) on 

pursuit evasion games. The evader’s decision to initiate its ECM is modeled as a function 
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of the distance between the players. Simulations show how to find optimal strategies for 

ECM use when initial conditions are known. We also discuss the effectiveness of 

different ECM technologies in pursuit-evasion games. 

Keywords: Pursuit-Evasion, game theory, information theory, Electronic Counter 

Measures.
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CHAPTER ONE 

INTRODUCTION

Consider the problem of one vehicle attempting to overtake and capture a vehicle 

belonging to an opponent. In addition to being the central element of many Hollywood 

movie scripts, this problem has many practical applications, for example in the law 

enforcement and military domains. This problem is commonly known as a pursuit-

evasion game; recent surveys of related research are in [1] and [26].

Pursuit-evasion games were originally posed in the 1950’s as the “Homicidal 

Chauffeur Problem” in a series of Rand technical reports [9]. In that version of the 

problem, a slow pedestrian evader E, that can change direction at will, attempts to avoid 

being run over by a fast car driven by a homicidal pursuer P. E and P travel with constant 

speeds ve and vp, respectively. P’s minimum turning radius, i.e. the tightest turn possible 

for the vehicle due to its steering mechanism (see Figure 1.1), is Rpm.

Figure 1.1: The vehicle cannot turn into the circular region defined by its minimum 

turning radius. 

Depending on = ve/vp < 1, P captures E when:

1sin11 12
pmR     (1.1) 

If this inequality is reversed, E escapes from P [9].  
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In 1967, Cockayne [6] derived two necessary and sufficient conditions for P to be 

able to capture E. Using the notation introduced in this chapter, the conditions are: 

vp > ve , and     (1.2) 

vp
2 / Rpm ve

2 / Rem      (1.3) 

Note that when velocities are constant and the terrain uniform, if capture is 

possible, with enough time it is asymptotically certain. 

Analyses of pursuit-evasion games typically assume the pursuer has a faster 

velocity and the evader has a smaller minimum turning radius. But these models are not 

easily applied to most realistic situations, since they assume the velocities of both players 

are constant. This ignores the fact that each vehicle’s ability to maneuver evasively 

during pursuit is largely constrained by its ability to accelerate and/or decelerate. In 

addition, as anyone who has driven an automobile can attest to, the maximum safe speed 

a vehicle can maintain is a function of its turning radius.

In this thesis, we start with the variant of the pursuit evasion game: a pursuer in an 

automobile tries to capture an intelligent evader in an automobile where both vehicles 

have limited acceleration and turning ability [2]. In this work, we find the conditions that 

determine the games of kind (the solution is a winning strategy for one of the players) but 

not the games of degree (the solution is a continuous value, ex. time to capture). This 

work also shows how the results of our analysis provide a new insight into the physical 

meaning of the capture criteria given in [6]. 

In this thesis, we modified this problem by having the pursuer and the evader both 

rely on sensors to determine the location of their opponents [3]. In that context, the 
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evader escapes when the pursuer no longer has actionable information about the evader’s 

current position. Our sensor model considers the decay of the target’s signature over 

distance. The sensor detection process in the model also has type I (false negative) and 

type II (false positive) errors. Information theoretic analysis of the sensor model provides 

a utility function that the evader uses to find its optimal escape strategy. Simulations 

confirmed that, by considering the pursuer’s sensing limitations, the evader can greatly 

enhance its ability to escape. 

In this thesis, we allow the evader to use Electronic Counter Measures (ECM) to 

modify the true positive and false positive error rates of the pursuer’s radar. In modern 

combat, electronic counter measures play an important role in this process. A number of 

electronic counter measures exist where one participant can intentionally disrupt the 

sensing capability of their opponent. Common countermeasure technologies include: 

Chaff – used to trigger a large number of false positives. 

Aerosols – used to attenuate signals and lower the true positive rate. 

Deception and blip enhancement – modifies the readings returned by a sensor to 

skew readings, increase their variance, or modify target classification. 

Flares and decoys – mimic target signatures to produce multiple tracks, only one 

of which belongs to the real target. 

The rest of this thesis is organized as follows: Chapter Two reviews previous 

pursuit-evasion game researches; In Chapter Three, a review of vehicle dynamics, critical 

path, maximum region, and front boundary are provided; Chapter Four explains our 

pursuit-evasion game with acceleration; Chapter Five explains our pursuit-evasion game 
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with sensor; Chapter Six explains our pursuit-evasion game with electronic counter 

measures; Chapter Seven gives conclusions and describes areas for future research. 
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CHAPTER TWO 

PURSUIT-EVASION BACKGROUND AND RELATED RESEARCH 

In this Chapter we review related pursuit-evasion games that have been presented 

in the literature. The pursuit-evasion problem was originally called the “Homicidal 

Chauffeur Problem” in [9]. A more agile but slower evader E tries to avoid being run 

over by a faster pursuer P. P’s motion is constrained by a minimum turning radius R. E

has no minimum turning radius and can change direction at will. A more symmetric 

variant of this problem, where both P and E drive cars with fixed speeds and respective 

turning radii Rpm and Rem, is presented in Merz’s 1971 PhD dissertation [20]. He fully 

solved the games of kind and degree1 for this problem [21]. He also considered the 

problem of finding which player, given specific initial conditions, is better positioned to 

be the pursuer [23]. This analysis is very useful for determining aerial combat strategies 

as shown in [22] and [14]. Vehicles that move in 3-dimensions have six degrees of 

freedom. In addition to movement in the x, y, and z directions, there are the following 

degrees of freedom related to their orientation: pitch, roll and yaw. If we consider a 

vehicle centered coordinate system where the y-axis is the vehicle’s longitudinal (from 

tail to nose) axis, the x-axis is the horizontal perpendicular to the y-axis (parallel to the 

wings), and the z-axis is perpendicular to the xy plane. Then, the vehicle pitch is rotation 

about the x-axis, roll is rotation about the y-axis and yaw is rotation about the z-axis.

Most conventional aircraft and high speed missiles have limited yaw rates and therefore 

1 A game of kind is a qualitative game with a fixed set of outcomes; typically the outcome is simply which player wins. 
A game of degree is a quantitative game that has an infinite number of possible outcomes, e.g. the time to capture. 
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perform bank-to-turn maneuvers to avoid using the yaw degree of freedom. The results in 

[24] use this insight to show how the 3-D problem reduces to the 2-D problem for these 

classes of aircraft. They show how to calculate critical values for the difference between 

the roll rates of the pursuer and evader. If the pursuer’s roll rate is not sufficiently larger 

than the evader’s, then the evader will escape. If the pursuer’s roll rate is sufficiently 

greater, the pursuer has optimal maneuvers that allow it to constrain the evader to 

maneuvers within the same xy plane. In which case, as long as it is safe to assume that the 

maximum allowable velocities for the vehicles are limited by the centrifugal force that 

they experience, then our results should hold for 3-D problems as well. Note that our 

results should apply to combat aircraft where maneuverability is limited by the amount of 

force the pilot can sustain without losing consciousness. 

One recent pursuit-evasion variant is the “herding dog and sheep problem,” in 

which one dog attempts to steer many sheep to a given location. The deterministic case of 

this problem can be solved using dynamic programming [12]. A stochastic variant is 

considered in [13]. That work extends the pursuit-evasion problem by allowing multiple 

evaders, but it doesn’t consider some real world factors such as varying speed, turning 

radius, vehicle rollover, acceleration, etc. Many on many games are considered in [31]. A 

team of unmanned aerial and ground vehicles pursues a team of evaders in an unknown 

terrain. They integrate autonomous agents with heterogeneous capabilities into an 

intelligent adaptive system and propose a distributed hierarchical hybrid system 

architecture that emphasizes the autonomy of each agent and allows for coordinated team 

efforts.  
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Very little work has been done on pursuit evasion problems with imperfect 

information. Some researchers have considered pursuit-evasion games in classes of 

terrains where the pursuer’s field of view is limited. A path-planning algorithm in [16] 

guarantees that all evaders will eventually be detected in an environment with occlusions 

defined by arbitrary curves. This extends the work in [15]. Occluded visions in polygonal 

environments were considered in [10]. In that work, randomized pursuer strategies were 

analyzed. The only ECM related pursuit evasion research to our knowledge is Ph.D. 

dissertation [17] where the evader uses decoys to confuse the pursuer. To the best of our 

knowledge this is the first research to consider the classes of ECM problems that we have 

used.
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CHAPTER THREE 

MODELS FROM PHYSICS AND MATHEMATICS 

3.1 Vehicle Dynamics 

In our game, the pursuing vehicle P chases the evading vehicle E. Both vehicles 

follow Newton’s laws for circular motion along a circle of radius R, where R is limited 

from below by Rpm and Rem, respectively, as in Figure 1.1.

Our approach determines the nominal path that a vehicle should follow during a 

pursuit-evasion game. Many problems with real vehicle motion, such as wheel slippage, 

are not explicitly expressed in these equations. Wheel slippage is outside the scope of this 

thesis, since it is a reaction to an unforeseen event and not something that affects the 

vehicle’s pursuit-evasion strategy. It would be trivial to extend our approach to handle 

slippage and related issues, by using our solutions as a nominal control signal for a drive-

by-wire feedback controller, like the one in [31] that senses the vehicle’s interactions 

with its environment. 

Another problem with vehicle motion is roll over. As a vehicle turns, a centripetal 

force is generated on its center of mass. This force in turn generates a torque that may 

cause the vehicle to rollover. The strength of this torque is easily predicted using 

Newton’s second law. The centripetal force on a vehicle with mass M moving with 

turning radius R and velocity v has magnitude Froll = M v2/R. The vehicle will roll over if 

the centripetal force exceeds a threshold value Froll that depends on its suspension and 

design. The vehicle will remain stable when v2/R Froll/M. Since Froll and M are 

properties of the vehicle, this constraint becomes:  
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MFKRv rollroll
2     (3.1) 

Note that factor Kroll adds physical insight to the capture condition from Cockayne [6]; 

vehicles able to turn at higher velocities have an advantage. From Equation (3.1), we 

derive the vehicle’s safe velocity vs. A vehicle traveling at a velocity slower than vs can 

turn with any turning radius greater than or equal to its minimum turning radius. If the 

minimum turning radius is Rm and the maximum velocity is vm, then: 

mrollms RKvv ,min      (3.2) 

We also derive the safe turning radius Rs. The vehicle can travel at any velocity 

less than its maximum velocity with the turning radius greater than or equal to Rs, i.e.: 

rollmms KvRR 2,max     (3.3) 

Given the current velocity vc, we derive the current allowed minimum turning 

radius Rc. The vehicle can turn with any turning radius greater than or equal to its Rc, i.e.: 

rollcmc KvRR 2,max     (3.4) 

Each player has two control variables, u(t) and a(t). The use of control variable 

u(t), where u(t) = Rc/R(t), is described in [9]. The vehicle travels on a circle of radius R(t)

= Rc/u(t), where u(t) ranges from -1 to 1. This lets the player choose the instantaneous 

turning radius and also allows the vehicle to move in a straight line (i.e. u(t) = 0), without 

explicitly dealing with an infinite turning radius. The other control variable, a(t), is the 

instantaneous acceleration at any point in time, which is bounded from above by a 

vehicle dependent maximum acceleration constant, am. The instantaneous vehicle 

velocity, which is also bounded from above by a vehicle dependent constant, can be 
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calculated at any point in time from the vehicle’s initial velocity and the history of a(t)

values. These equations of motion from [5] express Newton’s equations for circular 

motion with acceleration in terms of the two control variables (see Figure 3.1): 

t

c

rollcmc

cc

c

c

davtv

KtvRtR

tRtutvt
ttvty
ttvtx

00

2,max

cos
sin

    (3.5) 

where x and y represent the position with respect to (0, 0);  represents the vehicles 

orientation with respect to Y-axis; v0 is the initial velocity and Kroll is the rollover 

constant . 

Figure 3.1: Geometry of the vehicle dynamics in the absolute (world) coordinate system. 

3.2 Finding an Optimal Path to a Point on the Plane 

In this chapter, we define the optimal path to any point W in the plane as the path 

that takes the vehicle from its initial position to W in the minimal amount of time. If the 
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vehicle can reach W without turning, that path is a straight line and its ability to reach W

is limited only by its maximum velocity and acceleration. If W is on the current allowed 

minimum turning circle with radius Rc defined by Equation (3.4), the optimal path is an 

arc on that circle.  

If W is inside the vehicle’s current allowed minimum turning circle defined by Rc,

it is temporarily unreachable. The optimal path to these points is more difficult to 

determine, since the vehicle must reach a position where W is outside that circle (see [9] 

for a detailed analysis of this problem with the homicidal chauffeur constraints). For the 

rest of this Chapter, we discuss only paths to points to the right of the vehicle. Equivalent 

paths for points to the left can be found by symmetry.  

For some points, finding the optimal path is straightforward. Let v0 be the initial 

velocity. If v0 < vs (Equation (3.2)), until the vehicle reaches vs it can accelerate with the 

maximum rate am and turn with any turning radius greater than or equal to Rm. For any 

point W outside the turning circle with radius Rm, there is a line tangent to the circle that 

passes through W. The vehicle travels first along the minimum turning circle. If the 

vehicle reaches the point where the tangent line intersects the circle before it reaches vs,

the optimal path follows the circle with radius Rm to the tangent line and then follows the 

tangent line to W. While on this path, the vehicle accelerates with am until it reaches vm.

Once it reaches vm, the vehicle must stop accelerating. This path is clearly optimal, since 

it is the shortest distance the vehicle can follow between the two points and the vehicle is 

moving as quickly as possible at all points on the path. There is a region in front of the 

vehicle that contains all these points. 
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The rest of Chapter 3 explains how to find the boundaries of regions containing 

points whose optimal paths are found using similar methods. By finding the paths that are 

boundaries between regions, we determine how to find the optimal path to any given 

point.

Since the optimal path from any initial position to the point where the vehicle 

reaches vs is clearly defined, we ignore this path segment for the rest of the discussion 

and assume that the vehicle starts from a position with velocity v0 vs. We also express 

circles as “Circle (center, radius)” for the rest of the discussion.  

If the vehicle reaches vs before reaching the tangent point on its minimum turning 

circle, from that point on the turning radius and velocity are mutually constrained by 

Equation (3.1). From Equation (3.4), given an instantaneous velocity vc, the allowed 

minimum turning radius is Rc = vc
2/Kroll Rm. We now consider the path where the 

vehicle accelerates with am (until reaching vm) while turning as tightly as possible (i.e., 

u(t)=1) without rolling over. 

In Figure 3.2, the vehicle starts at point I with initial velocity v0 = vs directed 

along the arrow. It turns around Circle(M, Rm). Its velocity increases with vc(t) = v0 + am t,

during which the allowed minimum turning radius increases as vc(t)2/Kroll. This continues 

until the vehicle reaches vm at point Q. The vehicle can then go straight following the 

tangent line Q-Q1 or continue turning along the circle with radius Rs (Equation (3.3)) 

following arc Q-Q2.
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Figure 3.2: Geometry of critical path of the vehicle with velocity not less than vs.

Path I-Q-Q1 is the Critical Path. The minimum turning circle is Circle(M, Rm) and 

the safe turning circle is Circle(S, Rs). For any point T on path IQ, when the vehicle is at 

T it has velocity vt and allowed turning circle, Circle(C, Rt). For each point T on path IQ,

the vehicle has position (x(t), y(t)) and orientation (t) giving: 

.0)0()0()0(
,/)(0

)(/)(

)(
)(/)()(

))(cos()()(
))(sin()()(

00

2
0

yx
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c

c

 (3.6) 
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We solve these equations by: 
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By substituting variables and applying the same method to y(t), we get: 
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 (3.7) 

Since the initial velocity v0 is greater than or equal to vs, Rt = v0
2/Kroll. The vehicle 

starts at point T (see Figure 3.2), with its heading given by the dotted arrow. The path 

from I (or T) to point Q is uniquely defined by Equation (3.7). Point Q1 is a distant point 

on the tangent line of this path at point Q (where the vehicle reaches vm). 
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Another path I-Q-Q2 occurs when the vehicle continues turning with u(t)=1 from 

Q. It turns with radius Rs towards point Q2. We now separate the problem into three 

distinct cases: 1) points “above” I-Q-Q1 (i.e. point W, Figure 3.3), 2) points between Q-

Q1 and Q-Q2 (Figure 3.4), and 3) points “below” I-Q-Q2 and outside Circle(M, Rm)

(Figure 3.5). The rest of our discussion only considers the path after the vehicle reaches 

velocity vs, since the path to that point is already uniquely defined. For that reason, 

without loss of generality, we will say that the initial velocity is greater than or equal to vs.

3.2.1 Case 1 

Theorem 3.1: The optimal path for point W above path I-Q-Q1 lies between paths I-T0-W

and I-Tm-W.

Figure 3.3: The vehicle reaches a point W above I-Q-Q1 from point I through T0 (case 1). 
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Proof: Suppose the vehicle starts at point I (0, 0) oriented towards Y, and its goal is point 

W located above I-Q-Q1 as in Figure 3.3. One way for the vehicle to reach W is to travel 

along I-Q-Q1 until reaching tangent point T0 and then take the tangent line straight to W.

On path I-T0-W the vehicle accelerates with am until it reaches vm, it then travels with vm.

It is not possible for it to move more quickly along any other path. When compared to 

any path I-T1-W above it, path I-T0-W is shorter and therefore quicker. So the optimal 

path can not lie above I-T0-W.

Alternatively, the vehicle can travel along minimum turning circle Circle(M, Rm)

to point Tm where it intersects its tangent line to W. The vehicle then follows the tangent 

line straight to W. This path I-Tm-W is the shortest possible path to W. Any path below I-

Tm-W will take longer to reach W, since it cannot accelerate more quickly and must travel 

a greater distance. The optimal path, which reaches W in the shortest time, must therefore 

lie between I-T0-W and I-Tm-W. (QED) 

The path I-T0-W has the higher velocity and I-Tm-W has the shorter length. We 

note from Figure 3.3 that these paths are very similar. Using trigonometry we see that as 

the distance to W grows, the size of this difference shrinks asymptotically. Since the 

vehicle accelerates more quickly along I-T0-W it has a higher velocity, so eventually path 

I-T0-W will become optimal. It is the optimal path for almost every point in this region. 

There may be a small set of points between paths I-Tm-W and I-T0-W where I-T0-

W is not optimal. In Appendix B we describe how to find the optimal path numerically 
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for this set of points. In practice, we advise ignoring the results of Appendix B and 

simply following the critical path. This is based on the following insights: 

The distance between paths I-Tm-W and I-T0-W is almost always inconsequential, so 

that any improvement from using the truly optimal path is likely to be minimal. 

The time required to calculate this path numerically is almost certain to be greater 

than the performance improvement attained. 

3.2.2 Case 2 

Theorem 3.2: For any point W between paths Q-Q1 and Q-Q2, the optimal path from I to 

W is I-T0-Q’-W.

Figure 3.4: The vehicle reaches a point W between Q-Q1 and Q-Q2 from point I (case 2). 

Proof: In this case (Figure 3.4) the vehicle’s goal point W is located between line Q-Q1

and curve Q-Q2. We start our analysis by finding the point T0 on Circle(M, Rm) that is the 
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first point that can correspond to point I in Figure 3.3. Path T0-Q’-Q1’ is the critical path 

from T0, where T0 and Q’ correspond to I and Q in Case 1. W must now lie on line Q’-Q1’.

One way to reach W is to travel along Circle(M, Rm) to T0; and then accelerate with am

and set u(t)=1. This is like traveling along the critical path. The vehicle passes Q’ where 

it reaches vm and then goes straight to W, following path I-T0-Q’-W.

An alternative path to W takes critical path I-Q to Circle(S, Rs), which it follows 

to point T1 where the tangent line to W intersects Circle(S, Rs). The vehicle then takes the 

tangent line straight to W. This is path I-Q-T1-W in Figure 3.4.

Let’s define 0 = Angle(IMT0) and 1 =Angle(QST1). In path I-T0-Q’-W, the 

vehicle turns along Circle(M, Rm) for 0 degrees and then travels the critical path. In path 

I-Q-T1-W, the vehicle travels the critical path and then along Circle(S, Rs) for 1 degrees. 

Using trigonometry, we see that 1 = 0. The time difference between these two paths is 

due to the time spent traveling on the two circles.  

The time traveling 0 along Circle(M, Rm) is t1 = Rm 0 / vs. The time traveling 1

along Circle(S, Rs) is t2 = Rs 1 / vm. Since vm
2/Rs = vs

2/Rm and vm > vs, we have vm/Rs<

vs/Rm or Rs / vm > Rm / vs, i.e. t1 < t2. Path I-T0-Q’-W is therefore always faster than path I-

Q-T1-W. The same argument holds for all paths between the two paths. The vehicle 

should therefore never travel above path I-T0-Q’-W.

A third path travels along Circle(M, Rm) to point Tm where the circle intersects its 

tangent line to W. It then follows the tangent line straight to W. This is path I-Tm-W in

Figure 3.4. This is the shortest possible path to W. Any path beneath this must travel 

further at a lower velocity. Path I-T0-Q’-W and path I-Tm-W are identical until T0.
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From case 1, we know that path T0-Q’-W is better than any path between T0-Q’-W

and T0-Tm-W. This demonstrates that the optimal path can not lie beneath path I-T0-Q’-W.

This proves that path I-T0-Q’-W is the optimal path to any point W between Q-Q1 and Q-

Q2. (QED) 

3.2.3 Case 3 

Theorem 3.3: Path I-T0-cp-W is the time optimal path from points I to W in Figure 3.5. 

Figure 3.5: The vehicle reaches a point W between Circle(M, Rm) and I-Q-Q2 (case 3). 

Proof: In this case (see Figure 3.5) the vehicle’s goal point W is located between 

Circle(M, Rm) and path I-Q-Q2. (Note that games involving points inside Circle(M, Rm)

are handled in detail in [9].) As with case 2, we find point T0 on Circle(M, Rm) that is the 

earliest point with a critical path of the form T0-Q’-Q1’ that reaches W. Using the same 

logic as in case 2, W must lie on path T0-Q’-Q1’. If W is on curve T0-Q’, the vehicle will 

not be traveling with velocity vm at W. If W is on line Q’-Q1’, it will have velocity vm at W.
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One way to reach W is path I-T0-cp-W, which follows Circle(M, Rm) to T0 and 

then follows the critical path to W. As with cases 1 and 2 any path above I-T0-cp-W will 

be suboptimal, since the path will be longer than I-T0-cp-W and the vehicle can not be 

moving with a larger velocity at any point in time.  

We now draw a tangent line from W that intersects Circle(M, Rm) at Tm and

consider path I-T0-Tm-W. Using the same logic as in case 2, any path beneath I-T0-Tm-W

will require more time than I-T0-Tm-W and any path between I-T0-Tm-W (including I-T0-

Tm-W) and I-T0-cp-W will require more time than path I-T0-cp-W.

Path I-T0-cp-W must therefore be the optimal path to any point W between 

Circle(M, Rm) and I-Q-Q2 from I. (QED) 

3.2.4 The General Case 

From almost all initial conditions, the shortest time path from an initial starting 

position to a given point in the plane can be found following the same general procedure. 

The two exceptions being: 

Points inside the minimum turning circle require complicated maneuvers. We do not 

treat this problem here, as it is handled in depth in [9]. To reach these points, the 

pursuer maneuvers to a position where the point is no longer in its minimum turning 

circle. Without loss of generality, we can perform the analysis given in this Chapter 

at the end of the maneuver suggested in [9]. 

Some goal points from Case 1 are reached more quickly using a path between I-T1-W

and I-T0-W. These exceptions are discussed in depth in Chapter 3.2.1. 
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For all other cases, given any initial velocity v0 and an arbitrary goal point on the 

plane, if v0 is less than vs, accelerate with am until the velocity is vs or vm and turn with u(t)

being 1 or -1 until one of the following occurs:  

If the tangent line is reached, take the tangent line directly to W.

When v is greater than or equal to vs, find the instantaneous critical path. If the 

point is above the critical path, accelerate with am until v is vm and turn as much 

as possible (i.e. u=1 or -1) until the line tangent to W is reached, then follow the 

line to W.

If the point is below the critical path, use the current velocity to turn along the 

current minimum turning circle (a=0, u=1 or -1). When W is on the vehicle’s 

critical path, follow the critical path to W (a=am before vm, a=0 after vm; u=1 or -

1 before the tangent line, u=0 after).  

Note that the vehicle always sets its control values to some combination of a = 0

or am and u = 0, 1, or -1. This can be visualized using an elastic string and a spool. The 

string will follow the constraining spool (i.e. u(t)=1) until there is a straight line to its 

other end (i.e. u(t)=0). The elastic string naturally conforms to the shortest path between 

its ends to minimize the tension. For the acceleration, if the vehicle needs to hug the 

currently allowed minimum turning circle, it sets a to 0; otherwise, it accelerates using 

the maximum acceleration am as long as it can.2

                                                
2 This behavior could have been predicted by noting that the characteristics of Equation (3.5) indicate the Hamiltonian 
corresponding to the minimum time problem has a degenerate critical point in the controls. That is, the control is 
expected to be “bang-bang.” This derivation is not used since it requires more complex mathematics and omits all 
intuition gained in our preceding discussion. 
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3.3 Finding the Maximum Region for a Vehicle 

This chapter shows how to find the maximum region MR(t), the region containing 

all points the vehicle can reach by time t starting from the initial conditions. Alternatively, 

this could be considered the smallest region guaranteed to contain a vehicle at time t that

started from a known initial position at time t0.

The vehicle starts at point O (0, 0) with velocity v0 vm. If the vehicle travels in a 

straight line, it may accelerate for at most ta = min (T, (vm-v0)/am) time units. Therefore, 

the longest distance d it can travel by time T is:  

).(2/)( 2
0 amama tTvtatvTd     (3.8) 

If v0 is less than vs, the vehicle requires time Ts = (vs-v0)/am to reach vs. As long as 

the current velocity v(t) is less than vs, the vehicle can turn with any turning radius greater 

than the minimum turning radius Rm. To find MR (t) for any time t less than Ts, we first 

calculate d(Ts). We then find MR(t) by cutting a string of length d(Ts), attaching one end 

of the string to the vehicle’s initial position, and tracing the curve defined by the other 

end of the taut string as it moves from the constraining circle defined by Rm on the left to 

the constraining circle defined by Rm on the right. This curve is the involute of a circle of 

radius Rm (see Appendix A for details). The circle involute together with the minimum 

turning circles defines the maximum region for the vehicle up until it reaches vs. The 

point O is the initial position (see Figure 3.6). The two dashed circles are the minimum 

turning circles Circle(M, Rm) and Circle(M’, Rm). The solid curves indicate the front 

boundary of the maximum region at different values of t. The bold solid curve is the safe-
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velocity curve, which indicates when the vehicle reaches vs and intersects the minimum 

turning circle at point S on the right, S’ on the left.

Figure 3.6: The circle involute describes the curve traced by a string of a given length 

when wrapped onto a circle. When the vehicle velocity is less than vs its motion is 

constrained only by its minimum turning radius Rm, and the curve describing the region 

MR(t) when t is less than Ts is defined by a circle involute. This gives the maximum 

region for the vehicle until it reaches vs.

Once the vehicle reaches velocity vs, two cases exist. The rest of our discussion 

considers the right half of the region; results for the left half can be found using 

symmetry. Our two cases are separated by a line tangent to Circle(M, Rm) at the point S,

where the involute intersects the circle.  

3.3.1 Case 1 

This is the region above the tangent line. The vehicle accelerates until it reaches vs

and then continues moving in a straight line. Its motion is not constrained by the factor 

Kroll defined in Equation (3.1). 

To find the maximum region for this case, calculate the maximum straight 

distance d that the vehicle can travel. Cut a string with length d and attach one end on O
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and using the taut string to wrap Circle(M, Rm) until it touches S. The track of another end 

of the string is the front boundary of the max region above the tangent line, which is a 

circle involute. The upper part of the region, shown in Figure 3.7, is defined by this curve 

and the tangent lines. 

Figure 3.7: Until time Ts, region MR(t) is defined by the circle involute. After Ts to reach 

points above the line tangent to the minimum turning radius circle at the point where it 

intersects the circle involute, the vehicle simply moves in a straight line. 

3.3.2 Case 2 

Below the tangent line, the vehicle’s ability to turn is limited by its velocity 

(Equation (3.3)). Recall the optimal path defined in Chapter 3.2. In Chapter 3.2.4, we 

show that a vehicle reaches a given point in the shortest time by following the critical 

path as soon as it exists. 

By using relative coordinates centered on the vehicle when it reaches point S, we 

map this problem to the one shown in Figure 3.2 with equivalent point I. This divides the 

region into two sub-cases: above and below path I-Q-Q1. In the first sub-case, the vehicle 

travels along the critical path for time t1 and then straight. By setting t1 to T – Ts
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(including zero), we find that the region above the critical path from point S is enclosed 

by the end points of these paths. In the second sub-case, in the remaining time T – Ts, the 

vehicle travels along Circle(M, Rm) for time t1 and then follows the critical path once it 

exists. By setting t1 to T – Ts (including zero), we find the set of points enclosing the part 

of the maximum region located below the critical path from point S.

By taking the union of these sub-cases with the results from case 1, we find the 

maximum region (see Figure 3.8) a vehicle can reach by time T.

Figure 3.8: The maximum region the vehicle can reach by time T.

In Figure 3.8, we can see that points inside the left (right) minimum turning circle 

can be reached by traveling to the right (left) then going straight. Alternatively, the 

vehicle can go straight until the point is outside the instantaneous minimum turning circle 

then turn around. 
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3.4 Finding the Approximate Front Boundary 

In this game, there is no discernable advantage to moving at less than the 

maximum velocity possible at any moment. Therefore, we assume in this thesis that each 

player uses the maximum acceleration possible (within constraints imposed by Equations 

(3.1) and (3.4)) at any point in time. This means that each player has only one control 

variable, u(t) the rate of turn. We discuss this assumption further in the Conclusion 

Chapter. If the distance between pursuer and evader is far, the difference between turning 

with Rs and Rc (see Equation (3.2) and (3.3)) could be ignored. Therefore, in optimal play 

with perfect knowledge u(t) is typically set to either 0 or values corresponding to Rs.

Figure 3.9: The geometry of circle involute for pursuer or evader. 

In Figure 3.9, a player with initial position I is traveling along the Y axis. The 

dashed circles have radius Rs. Up to time t, the player can reach any point within region 

IDCBAFGHI. To reach that point, the player turns as quickly as possible for its current 

velocity until it reaches a specific angle then it follows a straight line. The derivation of 
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this optimal strategy is in [2]. We define the angle that the vehicle turns as M (angle DSI

or HTI in Figure 3.9). We refer to angles CSD and GTH as L, and angles CSI and GTI as 

H. Since we assume both players accelerate with their maximum acceleration, the player 

will be somewhere on arc BAF at any given time t. The player can go furthest by going 

straight, and we call this distance travel(t) (line IA in Figure 3.9). Given current velocity 

vc, maximum velocity vm and maximum acceleration am, travel(t) is calculated as: 

)(2/)(
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2
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If we center the XY coordinate system on point I, the equation for arc BAF is: 

0cossin
sincos

)cos()sin(
)sin()cos(

)(
)( s

s

s

HH

HH R
R
R

ty
tx

 (3.10) 

where L H, H = travel(t)/Rsafe, L = max(0, H- M).

The length of BAF is: 

22
LHsRlength      (3.11) 

Figure 3.10: The geometry of the initial condition of pursuit-evasion game. 
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In our game, P initially has velocity vp0 at position (0, 0) heading along the Y-axis. 

E initially has velocity ve0 at position (xE0, yE0) heading along angle  with respect to the 

Y-axis, as shown in Figure 3.10. 

We now express the positions for both players as a function of the safe turning 

radius, acceleration, initial position and time: 

For the pursuer:
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For the evader:
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Equation (3.12) expresses the pursuer’s BAF curve, which we call its front 

boundary. Equation (3.13) is the evader’s front boundary, where  is their relative 

direction and (xE0, yE0) is the relative initial position of the evader as shown in Figure 

3.10. So at time t, the set of possible positions for each player is constrained to the solid 

boundary arcs shown in Figure 3.11. 
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Figure 3.11: Curves show the possible positions at time t for pursuer (Blue, bottom) and 

evader (Red, right), both starting from the positions shown by crosses at time 0. The 

dotted line is Blue’s effective sensing range. 

For any given positions of pursuer and evader, the Euclidean distance between 

them is:  

22 )()()()()( tytytxtxtd PEPEPE   (3.14) 
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CHAPTER FOUR 

PURSUIT-EVASION WITH ACCELERATION 

Assume P (pursuer) and E (evader) move in the plane with constant speeds vp and 

ve, respectively. Rpm and Rem are their respective minimum turning radii. The following 

two conditions determine the game of kind: 

emepmp

ep

RvRvB

vvA
22)

)
    (4.1) 

Theorem 4.1: If and only if A) and B) are satisfied, P can capture E from any initial 

position. The proof of Theorem 4.1 can be found in [6]. 

Instead of assuming a constant velocity for both pursuer and evader, we use the 

vehicle dynamics presented in Equation (3.5) in Chapter 3.1. The players can accelerate 

until they reach maximum velocities. Their velocities and turning radii constrain each 

other. In Figure 3.10, the pursuer P and evader E is characterized by the following 

constants: maximum velocity vpm and vem, maximum acceleration apm and aem, minimum 

turning radius Rpm and Rem and rollover coefficient Kp.roll and Ke.roll, respectively. P

initially has velocity vp0 at position (0, 0) heading along the Y-axis. E initially has 

velocity ve0 at position (x0, y0) heading along angle  with respect to the Y-axis.

Each vehicle’s equations of motion are defined by the initial conditions and 

Equation (3.5). We now analyze the game using a relative coordinate system centered on 

P. If P is at point (xp, yp) heading in direction p and E is at point (xe, ye) heading in 
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direction e in the absolute coordinate system. We let (xr, yr) and r be E’s position and 

heading in the relative coordinate system. This gives: 

per

ppepper

ppepper

yyxxy
yyxxx

cossin

sincos

    (4.2a) 

Or

pe

pe

pe

pp

pp

r

r

r

yy
xx

y
x

100
0cossin
0sincos

   (4.2b) 

The system dynamics in the relative coordinate system becomes: 
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If the distance between both players is bounded from above, we say that the 

pursuer controls the evader. If at some time, the distance between P and E goes to zero, 

we say that the pursuer captures the evader. If the distance between the players is 

unbounded over time, we say that the evader escapes from the pursuer.  

Let’s consider this game using region MR(t) from previous chapter. If vpm > vem,

P’s region will eventually include E’s entire region. So that, for any set of initial 

conditions, P can always control E. But if vpm < vem, if the initial conditions are favorable, 

P can control E for a certain period of time and even capture E. We now determine the 

criteria of both capture and escape. 

Theorem 4.2: If Kp < Ke, i.e. vp
2/Rp < ve

2/Re, E can avoid capture by P.

Proof: Recall conditions A) and B) from [6] (see Equation (4.1)). Although, in contrast to 

[6], velocities are not constant in our game, each vehicle’s motion is constrained by 

condition v2/R  Kroll. As shown in Chapter 3.2, the optimal paths to points where 

velocity and turning radius require are mutually constrained require v2/R = Kroll for part 

of the path. At any point in time, the vehicles current velocity vc limits the vehicle’s 

effective minimum turning radius to Rc vc
2/Kroll. Substituting this inequality into 

condition B) we see that, since Kroll is a constant for each player, condition B) will either 

be uniformly true or false for any instance of our pursuit-evasion game. When Kp.roll < 

Ke.roll, condition B) does not hold. Thus P will not be able to capture E. (QED) 

Theorem 4.3: If Kp.roll Ke.roll and vpm > vem, P captures E eventually. 
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Proof: We consider the game as time t approaches infinity. We have established that 

Kp.roll Ke.roll corresponds to condition B) from Theorem 4.1. If the pursuer has a larger 

maximum velocity, no matter what the initial conditions, eventually vp(t) > ve(t). Then 

condition A) is satisfied. Now since both conditions of Theorem 4.1 are satisfied. We 

conclude that P can capture E. (QED) 

For the rest of this chapter, we consider the case where the pursuer has a larger 

rollover coefficient but smaller maximum velocity than the evader, i.e. Kp.roll Ke.roll and 

vpm < vem. Under these conditions, we need to account for the vehicles’ initial velocities, 

vp0, ve0, and maximum acceleration, apm, aem. For P to capture E, it must have a higher 

velocity than E for some period of time. For E to escape from P, it needs only reach vpm

before capture. Without loss of generalization, we assume that P’s acceleration is greater 

than E’s if P’s maximum velocity is less than E’s.

Since the capture conditions for both players depend on which has the higher 

velocity, there is no reason for them to ever use less than the maximum acceleration until 

they reach their maximum allowed velocities, i.e.: 

assumptioncurrentbyvvaa
otherwise

accelerateandvvifa
a

otherwise
accelerateandvvifa

a

empmempm

emeem
e

pmppm
p

,
0

0

   (4.4)

The following times are critical to our analysis: Te is minimum time for E reaches 

its maximum velocity, Tp is minimum time for P reaches its maximum velocity, and Ted is

minimum time for E reaches the P’s maximum velocity. 
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Lemma 4.1: Assuming apm > aem, vpm < vem, and Ted < Tp. Let ve(t) = min (ve0+aemt, vem),

and vp(t) = min (vp0+apmt, vpm). Then ve(t) > vp(t) for all t.

Proof: Let F(t) = ve(t) – vp(t). When t > Ted, by definition, E will have velocity greater 

than vpm, which is the max velocity of P. Then F(t) > 0 and ve(t) > vp(t). Consider t Ted.

Since apm > aem, vpm < vem, Ted < Tp, it is easy to show ve0 > vp0, i.e. ve(0) > vp(0), and 

ve(Ted) > vp(Ted). Since apm > aem, F(t) is continuous and non-increasing. By mean value 

theorem, it follows that F(t) > 0. (QED) 

Theorem 4.4: Given Kp.roll  Ke.roll, vpm < vem, apm > aem, E can escape from P if (vpm–

vp0)/apm > (vpm–ve0)/aem, i.e. Tp > Ted.

Proof: If Ted < Tp, by Lemma 4.1, E will always have velocity greater than P. Condition A) 

is never satisfied. We conclude that P can never capture E. Since E has a higher velocity, 

the distance between them is unbounded and P cannot control E. E escapes from P. (QED) 

When Ted > Tp, and P has a higher velocity than E for some period of time. Let the 

earliest time when P has a higher velocity be t1. From vp0+apm t1 > ve0+aem t1, we have t1 =

(ve0–vp0) / (apm–aem). If ve0 < vp0, P has higher initial velocity, i.e. t1= 0. So, t1 = max (0, 

(ve0–vp0) / (apm–aem)).
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Let P have a higher velocity no later than t2. E can then turn with its current 

allowed minimum turning radius and then accelerate until it reaches P’s maximum 

velocity. Rec=max (Rem, ve0
2/Ke.roll), t2 = 2 Rec/ve0+ (vpm–ve0)/aem.

P’s capture region, denoted by PCR(t), is calculated by finding the maximum 

region between t1 and t2.

E’s escape region, denoted by EER(t) is calculated by: 1) Calculate the boundary 

of E’s maximum region from time t = t1. 2) Retain the region which is not in PCR(t);

Compute the front boundary in discrete points and calculate the maximum region for time 

t = t1 + dt from the these points.3 Repeat 2) until time t = t2. The union of the regions kept 

in 2) is E’s escape region. 

Theorem 4.5: Given Kp.roll  Ke.roll, vpm < vem, apm > aem and (vpm–vp0)/apm < (vpm–ve0)/aem,

we can find the time period from t1 to t2, when ve < vp: t1 = max {0, (ve0–vp0) / (apm–aem)}

and Rec=max (Rem, ve0
2/Ke.roll), t2 = 2 Rec/ve0+ (vpm–ve0)/aem. Using the optimal path to 

find the capture region for P and the maximum escape region for E, if P’s region covers 

E’s, P can capture E.

Proof: If P’s region covers E’s region, since P has a higher velocity and higher rollover 

constant, condition A) and B) are satisfied, i.e. P captures E, shown in Figure 4.1. 

Otherwise, that means E has a path to go out of P’s control and can violate condition A). 

So E escapes from P, shown in Figure 4.2. (QED) 

3 This is simply a numerical integration using a first order approximation. Improved approximations can be obtained 
using higher order methods. In our experience, this approach is sufficient. 
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Figure 4.1: P’s capture region (solid) covers E’s escape region (dash). P captures E.

Figure 4.2: P’s capture region (solid) doesn’t cover E’s escape region (dash). E escapes. 

The cases where Kp.roll  Ke.roll, vpm < vem and apm < aem, can be solved in a similar 

manner. If P has a lower initial velocity, E can escape. If P has a higher initial velocity, 

Rec=max (Rem, ve0
2/Ke.roll), t2 = 2 Rec/ve0+ (vpm–ve0)/aem.

It is straightforward to apply these results to solving the game of degree for this 

problem. If E can escape then the value of the game is infinite and E’s strategy is to take 
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any trajectory that remains outside of P’s capture region. If E can not escape from P, but

is not controlled by P, then the value of the game is infinite and E’s strategy is to evade P

in the final stages of capture. In both cases P’s strategy is irrelevant, since it is doomed to 

failure. 

If E can not escape and is controlled by P, then the value of the game is the time 

when P’s capture region first envelopes E’s escape region. E’s optimal strategy is to 

follow the optimal path to any of the points that are on the intersection of the boundary’s 

of both regions at that time. P’s optimal strategy is to choose a path that asymptotically 

converges with the observed path of E.
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CHAPTER FIVE 

PURSUIT-EVASION WITH SENSING LIMITATIONS 

5.1 Sensor Model 

Pursuit evasion research to date has concentrated either on systems with perfect 

knowledge, or with sensors whose sole limitation is a geometric range constraint. In real 

life, the ability of a sensor to detect an object is subject to an array of environmental 

influences and noise sources that make sensor range unpredictable at best [11, 32]. For 

military applications, sensor readings can also be subject to electronic counter measures 

(ECM) that are designed to modify sensor inputs in ways that deceive the detection 

process.

 Target present Target absent 

Target detected TP: True Positive 
FP: False Positive 

(Type II error) 

Target not 

detected

FN: False Negative 

(Type I error) 
TN: True Negative 

Table 5.1: Four possible outcomes of the target detection random process 

Instead of using a cookie cutter model [32], we consider sensing to be the process 

of detecting a known target signature obscured by background noise. For a given sensor 

input, this process outputs one of the four outcomes in Table 5.1. TP is true positive, the 

target is detected and present; FP is false positive, the target is detected but absent (Type 

II error); FN is false negative, the target is present but not detected  (Type I error); And 



39

TN is true negative, the target is absent and not detected. For TP and TN, the sensor 

works correctly. FN (FP) corresponds to Type I (Type II) error in decision theory. 

The sensor target (pursuer or evader) emits a signal in a noisy environment. The 

sensor must differentiate between the target signal and random background noise. When 

the target signal is weak, its spectrum is hidden in the noise. Typically, the sensor detects 

a target only when the target signal’s power exceeds a fixed threshold. Receiver 

Operating Characteristics (ROC) curves are used to find the optimal threshold as 

described in [32].

For signals subject to Gaussian noise and propagating in a homogeneous medium, 

the signal strength, and therefore probability of detection, decays as an inverse 

exponential of the distance d between the sensor and the target. This gives probability of 

detection:

CdTPP )(      (5.1) 

where  varies in practice from 2 to 5 [36]. Note that probability should be bounded 

between 0 and 1. And P(TP) is already greater than zero but may exceed one, so in fact, 

P(TP) = min (1, Cd- ). In the following of this thesis, when we mention Cd- , for easy 

representation, it means min(1, Cd- ). In this thesis, we use  = 4, which corresponds to 

the radar equation [32]. Since the false alarm rate is dependent solely on background 

noise, we make the common assumption of a constant false alarm rate, i.e. P(FP) = KFP = 

constant. This assumption is tenable as long as the background noise is uncorrelated, 

which is the case in a homogeneous environment. Using Table 5.1 and the fact that when 
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a target is present it is either detected or not detected, we get P(FN) = 1 – P(TP). 

Similarly, an absent target is either detected or not, giving P(TN) = 1 – P(FP).

We note in passing that, although the Gaussian signal decay in free space 

assumption is ubiquitous in signal processing, it does not always correspond to reality. 

Occlusion, signal shadowing, multi-path fading, scattering, and clutter are often 

responsible for signal decay that does not follow Equation (5.1). A fuller discussion of 

those issues, along with a theoretical approach that allows derivation of more realistic hit 

rates P(TP) and distributions can be found in [34, 35]. For the sake of simplicity, we use 

Equation (5.1) in the examples given here. The concepts in [34, 35] can be used to 

generalize these results to more complex cluttered environments. 

We use decision theory to decide, given a sensor reading, whether the reading is 

correct or in error. Therefore, we conclude that a target is present only when 

P(TP)>P(FP). The effective sensing range of our sensor is therefore Rsense where CRsense

= P(FP), i.e.: 

CFPPRsense )(      (5.2) 

If no a priori evidence is available, we believe that detections within (outside) this 

range are true positives (false alarms) simply because this is the most probable case. 

The signal attenuation factor is typically in the range 2 5 [36] depending on 

the sensing modality. Of particular interest are the following cases: 

 = 2 for acoustic and seismic sensing. The signal propagates in a plane. Its 

power dissipates proportional to the area of a circle centered on the signal source. 

 = 3 for image or video sensors [32]. Detection rate is tied to target size in the 
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image, which shrinks with d 3. For signals propagating in a 3-dimensional space 

power will dissipate proportional to the volume of a sphere centered on the 

source.

 = 4 for radar detection, since it corresponds to the radar equation [32]. Radar is 

an active sensor. The signal dissipates on its way to the target from the sensor 

and while returning to the sensor. We use  = 4 in our examples in this thesis.  

5.2 Information Theory Based Utility Function 

We consider pursuit evasion games like the ones summarized in Chapter 4 and 

handled in detail in [2]. The only difference is that in this chapter the pursuer and evader 

rely on sensors to get information about each other’s position. Since this is a pursuit game 

and not a search game [29], we assume both the pursuer and evader start with a priori 

information regarding each other’s position. 

In a game with perfect information it does not matter how far the evader gets from 

the pursuer or how often it evades capture, the pursuer always knows where the evader is. 

The evader can never elude the pursuer; it can only out run the pursuer. An evader with a 

faster maximum velocity will evade capture even when the pursuer has perfect 

information and does not need to exploit the pursuer’s sensing weaknesses to win. 

Similarly, to exploit sensing weaknesses, the evader will need to be able to reach a region 

where the pursuer’s sensing capability is weak. For these reasons, we assume in this 

game that the pursuer has a larger maximum velocity but the evader has a larger 

maximum acceleration and initial velocity. We also assume that the distance between the 
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two is large enough for the evader to temporarily move outside the pursuer’s radar’s 

effective sensing range.

We assume that the pursuer and evader have perfect a priori information of each 

other’s positions at the beginning of the game. But after that time, both players rely on 

their sensor inputs. A sensor reading is a tuple consisting of time, detection state and 

target coordinates (when a target is detected). When a false positive occurs, the sensor 

returns random coordinates within the effective sensing range. As shown in Figure 5.1, at 

any point in time the pursuer’s radar has two possible states: target detected or no target 

detected. If there is a detection, the pursuer needs to decide whether the detection is a true 

positive (TP) or false positive (FP). This classification is done by determining which case 

is most likely, given the a priori information. When no target is detected (ND), the 

system needs to determine whether the reading is a true negative (TN) or false negative 

(FN), again using a priori information. A no detection event is a true negative if the 

evader is outside the radar’s effective sensing range, as defined in Equation (5.2) in 

Chapter 5.

Figure 5.1: Classification of radar readings. 
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Figure 5.1 illustrates the classification process. There are three detection states: 

TP, FP, and ND and for each state the system can classify it as either true or false. In 

Figure 5.1 “D” refers to the sensor reading and “C” refers to the player’s interpretation 

(classification) of the sensor reading. A detection event classification can refer to one of 

four possible combinations: true positive classified as true positive (TP TP), true positive 

classified as false positive (TP FP), false positive classified as false positive (FP FP) or 

false positive classified as true positive (FP TP). However, no detection only has two 

possible belief classifications: (ND TN) or (ND FN). We explain the reason for this 

distinction later in this chapter. We denote the six blocks on the right to be cases 1 

through 6. Their associated probabilities are p1, p2…p6.

Since the P and E each start with a priori knowledge of each other’s location, 

they are aware that the future positions both players may have at time t are constrained to 

the boundary curves in Figure 3.11. Since both vehicles move with the maximum 

allowable velocity, their strategy is defined purely by the turning rate u(t). This means 

that for pursuer P and evader E each strategy corresponds to a point on their boundary 

curve, and for each combination of P and E strategies the distance d between the two 

vehicles is easily computed. We now derive a payoff matrix where each element (i, j) of

the matrix corresponds to the amount of certainty that P will have about E’s position if P

uses strategy i (corresponding to a discrete point of P’s boundary curve) and E uses 

position j (corresponding to a discrete point of E’s boundary curve). This is done by: 

Calculating the distance d between P and E’s positions, 

Calculating the likelihood pk of each of the cases presented in Figure 6, 
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Calculating the a posteriori belief function pdfk that P would have about E’s 

location as a result of the sensor returns for the associated case, 

Using the entropy ei,j of k k
k

p pdf  to express the amount of disorder in P’s a

posteriori belief function, and 

Setting the payoff matrix element (i, j) value to the expected strength si,j of E’s

target signature should both players pursue strategy (i, j) minus ei,j.

5.2.1 Probabilities of cases 

We now show how to determine the probabilities of each of the six cases in 

Figure 5.1 occurring for any combination of strategies for both players. When the 

opponent is at distance d, the likelihood that the player’s radar will detect the opponent 

(TP) is probability Cd- , and the likelihood that the radar returns a false positive (FP) is 

KFP. Both C and KFP are constants, and d is the distance between the radar and the target. 

The probability of no detection (ND) is P(ND) = 1– (Cd- + KFP). Note that FP and TP 

always have a non-zero probability, regardless of the target’s position. When an ND 

occurs, it is a true negative (TN) when the target is located outside the effective sensing 

range. The ND is a false negative (FN) when the target is located inside the effective 

sensing range. Therefore, at any time in the game there are always two possible detection 

events (TP or FP) and only one possible no detection event (ND). This is why we have 

six cases and not eight cases. 
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The evader will be located on its boundary curve within a width sigma r that we 

use to account for movement uncertainty. The area of this region is A1 = lengthr* r, where 

lengthr is twice of length in Equation (3.11). We denote the area of the sensing range as 

A2 = *Rsense
2. We denote the likelihood that a false positive reading occurs within area A1

as A1/A2.

We now consider true positive detections (D=TP). Based on the true positive and 

false positive probabilities, if Cd- > KFP A1/A2, we conclude it to be a true positive 

(C=TP). Otherwise, we conclude that it is a false positive (C=FP), since that is more 

likely. If the detection is false positive (D=FP), our conclusion will be the same as 

(D=TP). Consider the cases where the radar does not detect a target: true negative (TN) 

and false negative (FN). The probability of non-detection is 1 – Prob(detection) = 1 – Cd-

– KFP. When the target is outside the effective sensing range and we do not detect it, it is 

a TN. When the target is inside the effective sensing range but we don’t detect it, it is a 

FN. The classification decision is based on the sensing range. Since the likelihood of a 

non-detection event is (1 – Cd  – KFP), and the only variable in the equation is d, this 

decision amounts to deciding whether it is more likely that the non-detection is associated 

with values of d greater than the effective sensing range or less than the effective sensing 

range. Since d-  decreases as d increases, the TN decision is the more likely interpretation 

as long as the a priori information allows this possibility. So we have the following 

probabilities for the 6 cases to occur at a given moment: 
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 (5.3) 

Note that these probabilities are solely dependent on the distance between P and E,

and that the first term in the RHS of Equations (5.3) can be calculated geometrically as 

the proportion of the domain where the Boolean statement is true.  

5.2.2 a posteriori belief functions 

Remember that P starts with a maximum entropy a priori belief in E’s position at 

time t, where all points on E’s boundary curve are equally likely. We now consider for 

cases 1 through 4 what P’s a posteriori belief will be as to E’s position. The weighting 

functions (wold and wnew) that we use can be varied to fit the application, as long as they 

sum to unity. In our examples, we set wold=0.2 and wnew=0.8.

Case 1: Detection = TP & Conclusion = TP: 

We have a detection in a position along the boundary arc where we expect to find 

E. As long as the distance between P and E is small enough that detection is more likely 

than a false alarm, we accept the detection as true. The new probability density function 

(pdf1,new) associated with the reading has a probability 1 that E is within r of the 

detection reading and probability 0 of being elsewhere. Our a posteriori belief function 

pdf1 is a weighted average of pdf1,new with our a priori belief function pdfold:
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   (5.4a) 

Case 2: Detection = TP & Conclusion = FP: 

In this case we detect the target, but the distance from P to E is enough to make it 

more likely that the reading is a false alarm. We do not update our belief function so pdf2

= pdfold.

Case 3: Detection = FP & Conclusion = TP: 

In this case, the false alarm returns a reading with coordinates such that the 

probability that the reading is TP is greater than the likelihood that it is FP. The reading 

must be within r  of E’s arc, and a distance d small enough that the Boolean statement 

(Cd- > KFPA1/A2) is true. We define a new a posteriori belief function pdf3 such that: 

positionsother
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 (5.4b) 

Case 4: Detection = FP & Conclusion = FP: 

The detection is a false positive and the conditions in Case 3 do not hold. Since 

we believe that the detection is false, we do not update the belief function. pdf4 = pdfold.

Case 5: Detection = ND & Conclusion = TN. 
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In this case, the radar does not detect the target and E’s arc based on our a priori 

information includes a region outside the effective sensing range. So, we think the evader 

is on E’s arc beyond the effective sensing range with a uniform distribution. We will 

update the belief function as follows: 

positionsother
Routsidepositionatuniform

pdf

pdfwpdfwpdf

sense
new

newnewoldold

0,5

,55

   (5.4c) 

Case 6: Detection = ND & Conclusion = FN. 

In this case the radar does not detect the target, but our a priori knowledge says 

that E must be within the sensing range. Therefore, since we are certain that the reading is 

false, we do not update the belief function and pdf6 = pdfold.

Summary of six cases: 

Base on these six cases, we use the probabilities and the probability distribution 

functions for each case to calculate the expected a posteriori belief function: 

6

1i
iiExpected pdfppdf      (5.5) 

As is typical for problems of this type, we initialize the system by setting the 

initial pdfold to the maximum entropy solution, where all positions on the curves are 

equally likely.  

5.2.3 Pursuit-evasion game solution 
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We use Shannon’s entropy function from information theory to calculate the 

amount of uncertainty [33] as to the location of E that a given pdf provides P. Using the 

expected probability distribution function from Equation (5.5):  

pdfinstateall
pdfpdfEntropy log    (5.6) 

where Equation (5.6) is summed over the set of points (or discrete regions) in E’s arc. 

Higher entropy indicates more uncertainty. The evader E wants to maximize the entropy 

value (P’s expected uncertainty) and the pursuer P wants to minimize it. E should 

therefore follow a game theoretic strategy [19] that maximizes the value of Equation (5.6). 

We note here that when E’s arc is wholly contained within P’s effective sensing 

range the entropy of the a posteriori belief functions is low and almost uniform. This 

would lead to E making sub-optimal random choices. We note that in these situations, P’s 

radar detects E from the strength of the radar signals E reflects. The shorter the distance, 

the stronger the energy is. In these cases, E (P) wants to minimize (maximize) the 

reflected radar signal energy, which is equivalent to maximizing (minimizing) the 

distance between P and E. We combine this with Equation (5.6) to provide the utility 

function with a balance variable that we use for our pursuit-evasion game: 

EnergyEntropypayoff   (5.7) 

Inside the effective sensing range, the entropy value is near 0 and the energy 

value is large. Outside the effective sensing range, the energy value quickly falls to near 

zero, while the entropy metric increases. Equation (5.7) effectively expresses the conflict 

between P and E for both phases of the chase. We use  = 1 for our simulation. 
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We now present the algorithm we use to find P and E’s optimal pursuit-evasion 

strategies for games relying on sensor data: 

Step 0: Calculate the maximum regions for pursuer and evader in time period T.

Find the front boundary arcs for both regions. Divide P’s arc into M-1 equal 

sized segments by M discrete points. Divide E’s arc into N-1 equal sized 

segments by N discrete points. The initial probability distribution for P’s belief 

function is the maximum entropy pdf (i.e. 1/N for each N points), which is pdfold

for the first iteration. 

Step 1: For each pair (i, j) where 1  i  M and 1  j  N, calculate the distance 

for the corresponding. Find probabilities pi (Chapter 5.2.1) and a posteriori 

belief functions pdfi (Chapter 5.2.2) for cases i = 1…6. Find the entropy 

(Equation (5.6)) for pair (i, j). Then use the distance between the players to 

calculate the amount of P’s radar energy reflected by E. We denote the zero-sum 

game payoff matrix [19] as A. Set element (i, j) of A to Entropy – *Energy.

Step 2: Use linear programming [19] to solve the two-person zero-sum game 

posed by A. The solutions of the linear programming problem are pdf’s for E and

P. That denote the optimal mixed strategies that E (P) can use for maximizing 

(minimizing) the value of Equation (5.7). Use the probability distribution 

function of evader as pdfold for the next iteration and repeat Step 1.

Step 3: The algorithm stops when either E’s pdf in Step 2 converges or the 

number of iterations exceeds a threshold value. 
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At the end of this process, we have probability density functions that define the 

optimal mixed strategies for P and E. Each player can choose a random value between 0 

and 1 then moves to the discrete point on the arc corresponding to this choice in the pdf

[19]. By doing so, E can be certain that this process will maximize P’s uncertainty as to 

its position in the future. Similarly, P’s choice limits the amount of confusion E can cause.

For the example situation in Figure 5, E’s pdf will have a high probability of 

turning right to get away from the pursuer and a very low probability of turning left 

towards P. Similarly, P will be very likely to go straight and have low probabilities for 

turning either left or right. 

In this approach, P and E decide their strategies for a sequence of finite time steps. 

The pdf at the end of each time step serves as the initial pdfold for the next time step, 

instead of using a maximum entropy pdf. For the sake of expediency we divide the 

strategy choices and time steps into a set of discrete choices, instead of using continuous 

variables. Doing so allows us to directly apply a number of results from traditional game 

theory [19], which guarantee the existence of optimal strategies. It also allows us to use 

linear programming to compute the optimal strategies. This approach is based on the 

reasonable assumption that as the number of arc points (N and M) and the number of time 

segments grow, the results will converge towards the solution of the corresponding 

continuous problem. 



52

5.3 Strategy for Games with Perfect Information 

To verify the utility of this approach, we contrast it with equivalent strategies for 

games with perfect information. For these games, P and E choose strategies based solely 

on the distance between the two players. Since the reflected signal strength is a function 

of the distance. Minimizing (maximizing) the distance is the same as minimizing 

(maximizing) reflected signal strength. 

First, each player detects the other player’s position either from radar readings or 

by using a priori knowledge. This a priori knowledge includes the results of previous 

radar readings. Each player then calculates the arcs for both players. These arcs are used 

to populate a zero-sum payoff matrix, similar to the one constructed in Step 1 of Chapter 

5.2.3. The value (i, j) in this payoff matrix is simply the distances between the discrete 

points of E’s arc point i and P’s arc point j. Minimax (Maximin) of the distance between 

P’s (E’s) positions is used to find optimal mixed solutions for P (E). E tries to move to 

point furthest away from P, to avoid capture as long as possible. P tries to minimize its 

distance from E and capture it. 

5.4 Experimental Results 

To evaluate this approach, we created simulations of this game in MATLAB. 

Simulations were run for all for possible combinations of strategies: 

Information theory utility function vs. information theory utility function; 

Information theory utility function vs. perfect information utility function; 

Perfect information utility function vs. information theory utility function; 
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And perfect information utility function vs. perfect information utility function. 

In the following figures, Red is the evader E, which starts at position (0, 70) 

heading y+ axis or (-10, 60) heading x+ axis. Blue is the pursuer P, whose initial position 

is (0, 0). Red circles (blue squares) show E’s (P’s) actual positions. Red crosses (blue 

pluses) are E’s (P’s) position as perceived by their opponent. If the cross and square (plus 

and circle) overlap, then E (P) correctly perceived the opponent’s position. Otherwise, 

their interpretation was wrong. We compare the entropy strategy with the perfect 

information strategy for both players. Figures 5.2 through 5.5 show the results from 

sample simulation runs. 
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Figure 5.2: P entropy strategy vs. E entropy strategy. Left: P found E; Right: P lost E.
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Figure 5.3: P entropy strategy vs. E perfect sensor strategy. Left: P found E; Right: P lost 

E.
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Figure 5.4: P perfect sensor strategy vs. E entropy strategy. Left: P found E; Right: P lost 

E.
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Figure 5.5: P and E both perfect sensor strategy. P found E.

We ran 36 repetitions of each scenario to calculate the mean chance for P to 

capture E. Table 5.2 contains the variance, standard deviation and the 95% confident 

intervals for the mean. Table 5.3 presents the mean values for each combination of 

strategies. These results indicate that if P uses the entropy based utility function, E is 

better to use perfect information strategy. But, if P uses the perfect information strategies 

it is guaranteed to perform better than when using the entropy based approach. Similarly 
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when P uses the perfect information approach, there is a very large incentive for E to use 

the entropy based utility function. These results indicate two things: 

Considering the sensor errors is very important for the evader. 

The pursuer’s interests are not adequately represented in the information theory 

based payoff matrix. 

We could, however, consider the game not as a zero-sum game with one payoff 

matrix. It appears that the game is better summarized as a bi-matrix game where the 

pursuer’s strategy is based on the perfect information payoff matrix and the evader’s 

strategy uses the payoff matrix from the information theoretic approach. Table 5.3 shows 

the likelihood of P’s capturing E for all four possible combinations of the two game 

strategies (perfect information and entropy based) and two different sets of initial 

conditions. These results are illustrative of all the tests we have run.

E intl. (0,70) heading Y+ (-10,60) heading X+

P vs. E per - ent per - per ent - ent ent - per per - ent per - per ent - ent ent - per

mean 0.5833 1.0000 0.4167 0.3056 0.8056 1.0000 0.5833 0.3333

found 21 36 15 11 29 36 21 12 

Var. 0.2500 0.0000 0.2500 0.2183 0.1611 0.0000 0.2500 0.2286

Std. 0.5000 0.0000 0.5000 0.4672 0.4014 0.0000 0.5000 0.4781

CI. L 0.4200 1.0000 0.2533 0.1529 0.6744 1.0000 0.4200 0.1772

CI. U 0.7467 1.0000 0.5800 0.4582 0.9367 1.0000 0.7467 0.4895

Table 5.2: Mean, variance, standard deviation, upper and lower 95% confidence interval 

bounds for P’s ability to capture E in the four different scenarios. 
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P ent. P per.  P ent. P per. 

E ent. 0.4167 0.5833 E ent. 0.5833 0.8056

E per. 0.3056 1.0000 E per. 0.3333 1.0000 

Table 5.3: Capture rate from each combination of strategies with different initial 

conditions.

The results in Table 5.3 indicate that the problem should best be modeled as a bi-

matrix game [19]. It is always advantageous for the pursuer to use the strategy that 

assumes perfect information, and it is always advantageous for the evader to use the 

entropy based strategies in order to exploit the pursuer’s sensing limitations. 
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CHAPTER SIX 

PURSUIT-EVASION WITH ELECTRONIC COUNTER MEASURES 

6.1 Effect of Electronic Counter Measures 

As mentioned in Chapter 1, there exists a number of Electronic Counter Measures 

(ECM) where one participant can intentionally disrupt the sensing capability of their 

opponent. Two main ECM methods are to decrease the true positive rate or increase the 

false positive rate. The approach presented earlier in this chapter can be modified to find 

optimal ECM deployment strategies.  

The use of chaff and aerosols is easy to integrate into our approach by adding 

rows to payoff matrix A (see Step3 of the algorithm in Chapter 5.2.3) corresponding to 

modifications of the pi and pdfi for the 6 cases (TP TP, TP FP, FP TP, FP FP, TN, FN) 

caused by increased false positive rates for chaff, or decreased true positive rates for 

aerosols. The false positive rate could be increased to a high percentage. 0% false 

positive rate means the radar will not have any Type II errors, while 100% means the 

radar has Type II errors continuously. The true positive rate could be reduced by a certain 

percentage; a 0% true positive rate reduction means the ECM has no effect and 100% 

reduction produces the radar never detects the target.

During the game, the pursuer will not know whether the evader is using the ECM 

or not. Thus, the pursuer will use the nominal true positive and false positive rates to 

calculate its payoff matrix. Since the evader knows when the ECM is active, it calculates 

the payoff matrix in a way that reflects whether the ECM is active or not.  
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When the players’ radars read the positions of their opponent, any active ECM 

affects the readings. Since the TP and FP rates are based on the distance between the two 

players, the evader initiates its ECM as a function of its distances from the pursuer.  

6.2 Experimental Results 

To evaluate this approach, we created simulations of this game in MATLAB. In 

[3], we found that the pursuer is better served by following a strategy that minimizes the 

distance between itself and the perceived future position of the evader, while the evader 

is better served by following a strategy based on maximizing the uncertainty of pursuer’s 

knowledge of the evader’s future position. So in these simulations with ECM, we use a 

distance-based strategy for the pursuer and an entropy-based strategy for the evader.

In the example presented here, the evader E starts at position (0, 70) heading in 

the positive direction along the y axis and the pursuer P is initially at position (0, 0) 

heading in the positive direction along the y axis. The evader initiates the ECM when its 

distance from the pursuer reaches a threshold value. The pursuer’s maximum velocity is 

30 meters per second and maximum acceleration is 3 meters per second squared. The 

evader’s maximum velocity is 20 meters per second and maximum acceleration is 5 

meters per second squared. We vary this value from 60 to 150 meters with intervals of 5 

meters for each combination of TP and FP. The whole game lasts for 20 seconds and the 

ECM is active for up to 5 seconds. If the pursuer and evader are within 47 meters, we say 

that pursuer captures the evader. Note that the word “capture” is different from what it 
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means in Chapter 4 and [2]. It means that the sensing factor is too low to affect the 

pursuer-evasion game and the game will move to the scenario with perfect information.  

We did three simulations. In the first simulation, we multiplied the true positive 

rate by a percentage of 0 and values varying from 10% to 100% with intervals of 15%. 

The nominal false positive rate is 0.02 (see Figure 6.1). For each combination of the 

modified TP, nominal FP and ECM starting distance, we ran 100 repetitions to calculate 

the mean chance for P to capture E and the 95% confident intervals for the mean. In the 

second simulation, we used false positive rates of zero and varying from 15% to 90% 

with intervals of 15% and used the nominal true positive rate. For each combination of 

the nominal TP, modified FP and ECM starting distance, we ran 100 repetitions to 

calculate the mean chance for P to capture E and the 95% confident intervals for the 

mean (see Figure 6.2). In the third simulation, we integrated the first and the second 

simulations. We multiplied the true positive rate by a percentage varying from 0% to 

70% in intervals of 10% and varied the false positive rate from 10% to 90% with 

intervals of 10%. For each combination of the modified TP, modified FP and ECM 

starting distance, we ran 100 repetitions to calculate the mean chance for P to capture E

and the 95% confident intervals for the mean (see Figure 6.3). 

The following figures show some of these combinations. In the figures, the x-axis 

represents the ECM starting distance and y-axis represents the average capture percentage. 

The error bars show the 95% confident intervals. The TP and FP for the ECM time steps 

are written at the top. Kecm is the false positive rate and Cecm is the coefficient of true 

positive rate during the ECM is active. 
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Figure 6.1: Results for the first simulation using the nominal false positive rate.  
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Figure 6.2: Results for the second simulation using nominal true positive rate. 
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Figure 6.3: Simulation results for representative combinations of TP and FP rates.
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Figure 6.3: Simulation results for representative combinations of TP and FP rates 

(Continued).
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Figure 6.3: Simulation results for representative combinations of TP and FP rates 

(Continued).

From the simulation, we want to find the distance where the evader should start 

the ECM. If we can find a distance where the capture percentage is significantly lower 

than the other cases, the evader’s best option is to initiate the ECM at that distance.  

Figure 6.1 shows the results of using varying the true positive rate using ECM. 

The effect of the ECM becomes significant as the true positive rate decreases. Figure 6.2 

shows the results of varying the false positive rate. We note that these ECM do not 

significantly change the evader’s success rate. Figure 6.3 shows results combining these 

two ECM approaches. We find that the ECM influence is more significant when we 

decrease the true positive rate for a given false positive rate, but it is less significant if we 

increase the false positive rate for a given true positive rate.  

Decreasing the true positive rate appears to be more effective than increasing the 

false positive rate. There are two main reasons for this: 

The probability that a false positive is accepted as a true positive is the area 

along the evader’s front boundary divided by the area of pursuer’s sensing range 

[3]. This is small, so that very few false positives are incorrectly classified.  
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If the false positive is accepted as a true positive, the incorrect sensed position of 

evader is closed to evader’s actual position. Thus, even if the evader increases 

the false positive rate, it does not greatly degrade the pursuer’s actionable 

information. 

We note that these two reasons are a consequence of our game definition. Since 

this is a pursuit evasion game, we assume that both parties know the positions of their 

opponents at the start of the game. In other applications, we expect the false positive 

ECM to be more effective. 

We also note that the capture rate is particularly low when the ECM is triggered at 

a distance of around 85 to 90 meters. In our simulation, the nominal sensing range is 125 

meters, and maximum velocity of pursuer and evader are 30 and 20 meters per second, 

respectively. Consider the situation when the distance between them is 85 meters and 

pursuer is heading towards evader. As shown in Figure 6.4, with the pursuer at point P1

and the evader at point E1. When the evader turns on the ECM for 5 time steps and the 

pursuer assumes the evader continues along a straight line, then the pursuer travels to 

point P2. But if the evader turns, it will reach point E2. The distance between P2 and E2 is 

approximately 125, which is the pursuer’s nominal sensing range. If the pursuer turns but 

the evader goes straight, the distance between their future positions is also approximately 

the nominal sensing range. So, when the evader initiates the ECM at a range where it can 

exit the pursuer’s sensing range while the ECM is active, that strategy significantly 

lowers the pursuer’s capture rate. 
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Figure 6.4: Geometry explains why starting distance 85 has significant low capture rate. 

To verify the utility of this approach, we construct a fourth simulation, where both 

pursuer and evader use perfect-information-based strategies. In this game, the pursuer 

and evader strategies are both based solely on the distance between them. The opponents’ 

position is determined by combining the radar readings and the a priori information. We 

multiplied the true positive rate by a percentage varying from 0% to 100% with intervals 

of 10% and varied the false positive rate being 0.02 and from 10% to 90% with intervals 

of 10%. The configurations are similar to the 3rd simulation. Figure 6.5 shows some 

simulation results. 

From Figure 6.5, the simulation shows that decreasing the TP rate is more 

effective than increasing the FP rate. The decision does not rely on the entropy or 

uncertainty. The ECM is not affecting their strategies. But it does affect the sensor 

reading. And we can see the pursuer has a zero capture rate if the evader starts ECM at 

distance 90 meters and the TP is zero. Also, when we compare this to the result in [2, 9], 

we see the ECM can reduce the capture rate when the pursuer no longer has information 

about the evader even if the pursuer satisfies the capture criteria in [2, 6]. 
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Figure 6.5: Simulation results for ECM where P and E use perfect-information strategies. 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE RESEARCH 

In this thesis, I extended the classical pursuit-evasion problem by adding 

acceleration and turning constraints, this makes the problem more closely match the 

physics of the problem. I then found the criteria for both capture and escape, thus solving 

the game of kind. I then included sensing limitations, which introduces a new layer of 

complexity into the analysis. The optimal strategies I found for both the pursuer and 

evader have a number of practical applications. Finally, Electronic Counter Measures 

(ECM) were added to the problem, reflecting modern combat realities. Optimal strategies 

for evader use of ECM are derived and presented. Interestingly, the ECM game, although 

clearly adversarial, is not strictly zero-sum. 

The work in this thesis considers one-on-one pursuit-evasion games in an un-

occluded 2-D plane. We updated previous studies of pursuit-evasion games by removing 

the constraints that both players have a fixed velocity. This makes the problem more 

realistic for many applications. It also provides new insights into the conditions for 

capture previously reported in [6]. Based on these insights, we found the criteria that 

determine the games of kind for this problem (i.e. the conditions necessary for a given 

player to win) for the capture under new conditions and constraints theoretically. Figure 

7.1 uses a flow chart to summarize our results. As we have noted, since the largest class 

of practical 3-D problems reduces to the 2-D case our work is also relevant in that 

domain. 
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Figure 7.1: A flow chart that summarizes the games of kind for pursuit-evasion games 

with acceleration. 

In the pursuit and evasion game with perfect information in Chapter 4, it is easy to 

see that if the pursuer has a larger maximum velocity than the evader, the pursuer will 
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eventually overtake the evader as time progresses. The evader will therefore go to the 

position furthest from the evader to prolong the time until capture. But in the game 

without perfect information in Chapter 5, the evader is not constrained to follow that 

strategy. It is better served by following a mixed strategy that is more unpredictable. By 

maximizing the pursuer’s uncertainty about its current position, it can eventually reach a 

state where the pursuer has no knowledge of its position, effectively escaping from the 

fastest pursuer. Our simulation results illustrate the utility of this approach. 

It is interesting to note that the same utility function does not define an optimal 

strategy for the pursuer. The pursuer is better served by following a strategy that 

minimizes the distance between itself and the perceived future position of the evader. It 

makes sense that this approach places the pursuer at a point well suited to eventually 

overtake the evader. This position will also, as a by-product, tend to have a higher true 

positive detection rate, which is also advantageous for the pursuer. Both of these 

conclusions are supported by our simulation results. This implies that the pursuit evasion 

game without perfect knowledge is not a truly zero-sum game, since the perfect 

information strategies are more advantageous for the pursuer than the zero sum game 

defined by the entropy-based utility function.

It is amusing to note that using information theory notation; the pursuer (evader) 

should try to minimize (maximize) the information contained in its sensor readings. This 

is quite true (although it seems to be an oxymoron), since the pursuer (evader) attempts to 

make the evader’s future positions predictable (random). 
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In Chapter 6, we allow the evader to use electronic counter measures (ECM) that 

modify the true positive and false positive error rates of the pursuer’s radar.  

We assume that both players know their opponent’s initial positions because this 

is a pursuit-evasion game instead of a search game. Our simulations indicate that in this 

game the evader is better served by using ECM technologies that decrease the true 

positive rate rather than increasing the false positive rate. Also, the pursuer is better 

served by following a strategy that minimizes the distance between itself and the 

perceived future position of the evader. First, this approach places the pursuer at a point 

well suited to eventually overtake the evader. Second, this position will also, as a by-

product, tend to have a higher true positive detection rate, which is also advantageous for 

the pursuer. Third, since the evader can modify the parameters of the pursuer’s radar, the 

information theory entropy metric the pursuer can compute concerning the evader’s 

future positions may be based on incorrect assumptions. The pursuit evasion game with 

ECM is not a truly zero-sum game, since the perfect information strategies are more 

advantageous for the pursuer than the zero sum game defined by the entropy-based utility 

function. This is a consequence of the information imbalance inherent in the game; i.e., 

the evader always has more information than the pursuer. 

The approach presented here solves this continuous problem by using a discrete 

approximation. Although this is expedient, and more easily understood, it would be 

useful to solve the continuous problem directly. On the other hand, it is also 

straightforward to analyze the continuous problem numerically by creating ever-finer 

approximations. 
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Another worthwhile extension would be to relax our assumption that vehicles 

always move at the fastest reachable velocity. It should be possible to do this by not 

looking solely at the boundary arc for each player, but rather integrating over the entire 

area each player could reach from their initial starting point. We suspect that this could be 

done more easily in the continuous domain. We suspect, as well, that the results obtained 

would not greatly differ from those presented here. 

In this thesis, we assume the noise is uncorrelated, which is not always true, but 

can simplify the problem. It would be worthwhile to use the theoretical approach to 

modeling signal propagation in complex environments presented in [34, 35] to extend 

this approach. The resulting strategies should be well suited to pursuit evasion problems 

in urban settings, where signals are subject to fading. That extension should also be 

relatively straightforward. Similarly, we plan on extending this work to include occlusion 

based sensing problems like those in [15, 16]. 

The Ph.D. dissertation [17] analyzing the use of decoys in pursuit evasion games 

is the only relevant research currently available in this domain. Electronic Counter 

Measure pursuit-evasion is an important application domain and the questions as to what 

types of ECM are most useful for this class of games is interesting, since this is a very 

practical way of analyzing deception problems in the larger theory of games. 

Finally, we plan on extending this approach in the near future to the analysis of 

the three-dimension pursuit-evasion game. Vehicles that move in 3-dimensions have six 

degrees of freedom: In addition to movement in the x, y, and z directions, pitch, roll, and 

yaw are degrees of freedom. Most conventional aircraft and high-speed missiles have 
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limited yaw rates and therefore perform bank-to-turn maneuvers to avoid using the yaw 

degree of freedom. The results in [24] use this insight to show how the 3-D pursuit-

evasion problem reduces to the 2-D problem for these classes of aircraft. They show how 

to calculate critical values for the differences between the roll rates of the pursuer and 

evader. If the pursuer’s roll rate is not sufficiently larger than the evader’s, the evader 

will escape. But if the pursuer’s roll rate is sufficiently greater than the evader’s, the 

pursuer has optimal maneuvers that allow it to constrain the evader to maneuvers within 

the same xy plane. It is straightforward, therefore, to adapt the two dimensional analysis 

given here for use by most aircraft. 
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Appendix A

Circle Involute Background

Figure A-1: The circle involute (bold curve) is formed by taking a line segment of a fixed 

length and wrapping it around a circle of a fixed radius. Angle IOM , Line IO = R.

The equation for a circle involute (see Figure A-1) with respect to the tangent 

angle  is: 

cossin
sincos
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    (A1) 

The length of the arc IP it traces is: 
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Appendix B

Analysis of Non-Critical Path Optimal Paths

Figure B-1: Use different acceleration to reach tangent point T and go straight to point W.

The equations of Critical Path with respect to time t are: 
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Find the time from point I to W by varying the acceleration from zero to am. Use 

the acceleration with Equation (B1), to find the equivalent of the critical path. Let (x(t), 

y(t)) be a position on the path and (t) be the direction of the vehicle on that position. 
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Draw a tangent line from W to the curve with intersection at point T. Suppose the time 

from initial position to T is t1 and from T to W is t2. We can derive the minimal time path 

by using the following equations: 
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Then t1 + t2 is the time from point I to point W. Now minimizing t1 + t2 involves 

solving a nonlinear program in Equation (B2). Techniques like Newton’s method can 

find the optimal solution. 
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