
Clemson University
TigerPrints

All Theses Theses

5-2012

OneCloud: A Study of Dynamic Networking in an
OpenFlow Cloud
Gregory Stabler
Clemson University, gstable@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Stabler, Gregory, "OneCloud: A Study of Dynamic Networking in an OpenFlow Cloud" (2012). All Theses. 1359.
https://tigerprints.clemson.edu/all_theses/1359

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1359?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1359&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

OneCloud: A Study of Dynamic Networking in an
OpenFlow Cloud

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science

Computer Science

by

Gregory Eugene Stabler

May 2012

Accepted by:

Dr. Sebastien Goasguen, Committee Chair

Dr. Kuang-Ching Wang

Dr. James Martin

Abstract

Cloud computing is a popular paradigm for accessing computing resources. It provides

elastic, on-demand and pay-per-use models that help reduce costs and maintain a flexible infras-

tructure. Infrastructure as a Service (IaaS) clouds are becoming increasingly popular because users

do not have to purchase the hardware for a private cloud, which significantly reduces costs. How-

ever, IaaS presents networking challenges to cloud providers because cloud users want the ability

to customize the cloud to match their business needs. This requires providers to offer dynamic

networking capabilities, such as dynamic IP addressing. Providers must expose a method by which

users can reconfigure the networking infrastructure for their private cloud without disrupting the

private clouds of other users. Such capabilities have often been provided in the form of virtualized

network overlay topologies.

In our work, we present a virtualized networking solution for the cloud using the OpenFlow

protocol. OpenFlow is a software defined networking approach for centralized control of a network’s

data flows. In an OpenFlow network, packets not matching a flow entry are sent to a centralized

controller(s) that makes forwarding decisions. The controller then installs flow entries on the network

switches, which in turn process further network traffic at line-rate. Since the OpenFlow controller

can manage traffic on all of the switches in a network, it is ideal for enabling the dynamic networking

needs of cloud users. This work analyzes the potential of OpenFlow to enable dynamic networking

in cloud computing and presents reference implementations of Amazon EC2’s Elastic IP Addresses

and Security Groups using the NOX OpenFlow controller and the OpenNebula cloud provisioning

engine.

ii

Dedication

To my parents, Bill and Donna, and my fiancé, Angela, for their their love, support, and

guidance.

iii

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Sebastien Goasguen, for

giving me the opportunity to work with him. I have learned a lot from you over the years through

various classes and research. Your support and guidance have been instrumental in completing this

work. Thank you for pushing me when I needed it and challenging me intellectually.

I would also like to thank the other members of my research committee, Dr. Kuang-Ching

Wang and Dr. James Martin, for their time spent reviewing my work. Dr. Wang provided me

with guidance on OpenFlow and networking during the last year and allowed me to use his existing

OpenFlow network for my research.

Also, I thank my parents. They have always been there to support me in life and have made

me the person I am today. Thank you for always encouraging me to work harder and achieve more

in life.

I also thank my fiancé, Angela, for her love, encouragement, and patience. I am looking

forward to our new life together.

I also thank Aaron Rosen for his expertise and support with OpenFlow and networking.

Your help and guidance was instrumental in completing my work.

Throughout my academic career, I have had the support of numerous friends. I would like

to thank all of you for your support and friendship over the years.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

List of Listings . viii

1 Introduction and Proposed Work . 1
1.1 Cloud Computing . 1
1.2 Cloud Networking Scenarios . 3
1.3 Proposed Work . 6

2 Background and Technologies . 8
2.1 Amazon Web Services . 8
2.2 OpenFlow . 10
2.3 Open vSwitch . 11
2.4 Global Environment for Network Innovations (GENI) 11
2.5 OpenNebula . 11
2.6 OneCloud . 13

3 Related Work . 15
3.1 Virtual Network Topologies and Overlays . 15
3.2 OpenFlow and the Cloud . 17
3.3 Comparison of Cloud Solutions . 18

4 Solution . 21
4.1 OpenFlow Controller . 21
4.2 Elastic IP Addresses . 23
4.3 Security Groups . 28

5 Results . 35
5.1 Elastic IP Addresses . 35
5.2 Security Groups . 44

6 Conclusions and Future Work . 50

v

Bibliography . 52

vi

List of Tables

3.1 Comparison of Cloud Solutions . 19

4.1 OneCloud Elastic IP EC2 Commands . 24
4.2 Outgoing Packet Field Modifications . 25
4.3 Incoming Packet Field Modifications . 26
4.4 OneCloud Security Group EC2 Commands . 29

vii

List of Figures

1.1 Connecting Nodes in a Single Site . 4
1.2 Re-Routing Traffic Between Multiple Sites . 5

2.1 OpenNebula Architecture Components . 12
2.2 OneCloud Architecture . 13

viii

List of Listings

4.1 OpenFlow Controller Layer 2 Switch Functionality 22
4.2 OpenFlow Controller ARP Request Handling . 25
4.3 Installing Incoming Elastic IP Flows . 26
4.4 Disassociate Elastic IP and Remove Flows . 27
4.5 Converting Source Field into Security Group Flows 30
4.6 Installing the DROP Rule . 32
4.7 Authorizing New Security Group Rules . 34

5.1 Elastic IP Scenario 1: OpenFlow Rules . 36
5.2 Elastic IP Scenario 1: ping Output . 37
5.3 Elastic IP Scenario 1: tcpdump Output . 38
5.4 Elastic IP Scenario 2: OpenFlow Rules . 39
5.5 Elastic IP Scenario 2: ping Output . 39
5.6 Elastic IP Scenario 2: tcpdump Output . 40
5.7 Elastic IP Scenario 3: OpenFlow Rules . 41
5.8 Elastic IP Scenario 3: ping Output . 42
5.9 Elastic IP Scenario 3: tcpdump Output . 43
5.10 Security Group Source Formats: Allow All . 45
5.11 Security Group Source Formats: Allow IP Range . 45
5.12 Security Group Source Formats: Allow IP Subnet . 46
5.13 Security Group Source Formats: Allow Single IP . 46
5.14 Security Group Scenario 1: OpenFlow Rules . 46
5.15 Security Group Scenario 1: tcpdump Output . 47
5.16 Security Group Scenario 2: OpenFlow Rules . 49

ix

Chapter 1

Introduction and Proposed Work

1.1 Cloud Computing

Cloud computing has emerged as a new paradigm for on-demand access to shared computing

resources for end-users over the network. Cloud computing has become very popular because it

saves organizations and businesses money. Data centers are expensive to build and maintain, and

hardware becomes outdated and needs to be replaced frequently. Additionally, data center resources

are frequently under-utilized. By moving applications and services to a cloud infrastructure, entities

no longer have to maintain the hardware for their services. Most cloud providers offer a “pay as

you go” service, where users only pay for the resources they consume. Therefore, entities can scale

their services as demand changes. This allows them to save money when demand is low, yet react

quickly to spikes in demand. Since these resources are shared by other users, the resource utilization

is much higher, which lowers costs for all users. [12]

Early cloud infrastructures offered “Software As a Service” (SaaS) to end-users. They

provided access to applications that were hosted on the cloud instead of local computing resources.

Users accessed these applications through a web browser on their local machine. Examples of SaaS

applications are Google Docs and Microsoft Office 365. Developers that wanted to write their

own applications for the cloud turned to clouds that offered “Platform As a Service” (PaaS). PaaS

provides the ability to deploy custom applications on the cloud without managing the underlying

cloud infrastructure. These applications are developed using programming languages and tools

supported by the cloud provider. Google App Engine, Windows Azure, and Heroku are examples

1

of PaaS clouds. “Infrastructure As a Service” (IaaS) clouds are exemplified by the Amazon Web

Services (AWS) such as EC2 and S3 as well as Rackspace (http://www.rackspace.com) services.

IaaS clouds allow users to provision computing resources for processing, storage, and networking.

Users can control the operating systems, storage environments, and networking components of their

applications deployed in the cloud without managing the underlying cloud infrastructure [26].

As enterprises adopted the cloud computing paradigm, four deployment models emerged:

private, community, public, and hybrid clouds. A private cloud is a cloud that is used by a single

organization. It may be run by the organization or managed by a third party. A community cloud

is shared between several organizations that usually have a common interest. Public clouds are

available to the general public and are owned and operated by an organization that sells cloud

services. A cloud infrastructure that consists of two or more clouds is known as a hybrid cloud. The

individual clouds in a hybrid infrastructure can be private, public, or community clouds “that remain

unique entities but are bound together by standardized or proprietary technology that enables data

and application portability” [26].

At the IaaS layer, virtualization has been the key technology enabling on-demand, elastic

resource provisioning [28]. Virtualization allows multi-tenancy of resources while providing isolation

between applications. Key research thrust in on-demand provisioning of virtual machines (VMs) has

led to several IaaS solutions such as Nimbus [23], Eucalyptus [29] and OpenNebula [36]. Recently,

OpenStack [4] has received a lot of attention as well.

All of these solutions provide an EC2 interface, but few provide networking services. Cloud

networking research has up till now been limited to the development of efficient overlay strategies

to create networks of virtual machine instances [17], [34]. Providing users with dynamic networking

capabilities poses several challenges to IaaS providers. Providers must ensure that users cannot

adversely affect the functionality of the network for other users. They must isolate network services

from other users and ensure the stability of the network. In this paper, we explore these challenges

and show how OpenFlow coupled with one of these cloud solutions can provide an implementation

for networking services offered by Amazon.

2

http://www.rackspace.com

1.2 Cloud Networking Scenarios

Cloud users range from individuals to large enterprises. This diverse range of users presents

many challenges to cloud providers because of the significantly different requirements of each user

group. Individuals may only use the cloud for experimentation and education. Or, they might be

exploring the use of the cloud to offset costs for a small start-up company. On the other hand,

large enterprises are looking for highly scalable, reliable infrastructures to support their existing IT

infrastructures. Differences aside, all users are looking for customized solutions to fit their needs.

Standard cloud providers allow users to customize computing and storage environments.

Users can select the operating system, hardware specifications, and execution environments of their

virtual machines. They have access to various storage solutions such as block storage, relational

databases, and non-structured database applications. However, most cloud providers do not allow

users to extensively customize their network environments.

Amazon Web Services provides a very flexible network infrastructure for its users. Users

can customize the network topology, quality of service, and security access of the network for their

cloud applications. Unfortunately, Amazon has not published details on the implementation of their

customizable network solutions because of the competitive market. Research into dynamic cloud

networking services has focused on the use of virtual network overlays to enable such services. Yet,

few cloud computing platforms provide implementations of dynamic cloud networking such as those

offered by Amazon Web Services.

Dynamic network services can be grouped into several use-case scenarios based on users’

desires. When launching an instance in the cloud, a typical user cares about the location of re-

sources, security, portability, and scalability. An analysis of these scenarios will provide a basis for

understanding how OpenFlow can enable networking services within the cloud.

1.2.1 Resource Location

1.2.1.1 Instances in Single Site

The most common use-case is launching multiple instances in the cloud within the same data

center, or region. Nodes in the data center run multiple instances and a user’s instances may reside on

different nodes within the cluster. The user’s instances are connected via a common layer 2 domain

(possibly through VLAN tagging) and belong to a single IP subnet, allowing easy communication

3

Figure 1.1: Connecting Nodes in a Single Site

within the user’s network. More complicated configurations would partition instances into multiple

subnets and layer 2 domains in the data center.

The cluster nodes would be connected together via OpenFlow-enabled network switches.

As seen Figure 1.1, this could be done with virtual switches that support OpenFlow, such as Open

vSwitch [5]. An OpenFlow enabled switch allows for greater control over inter-instance traffic. The

switch can operate at layer 2, layer 3, or selectively between the two. Network Address Translation

(NAT) can become customer specific and layer 2 domain specific. It can also be done for an entire

group of instances on a single server or distributed among multiple servers. Using OpenFlow to

implement NAT functionality also means the controller can dynamically alter flow rules to manage

the translation between public IP addresses and private IP subnets.

1.2.1.2 Instances Across Multiple Sites

Some users desire the ability to launch instances at multiple locations, either to reduce

latency or increase fault tolerance. However, firewalls and NAT translation may prevent instances

from sharing layer 2 or layer 3 domains, complicating communication between them. Using Open-

Flow enabled switches provides cloud providers with flexible tunnels between data centers. This

allows instances in multiple data centers to share a common layer 2 or layer 3 domain. If multiple

OpenFlow switches exist between the data centers, then Figure 1.2 shows how the tunnels can be

4

(a) Traffic Routed through Path 1 (b) Traffic Routed through Path 2

Figure 1.2: Re-Routing Traffic Between Multiple Sites

intelligently rerouted to improve network performance and adapt to network failures. Initially, traffic

from Site A to Site B flows through the left OpenFlow switch in Figure 1.2a. When a failure occurs,

traffic can easily be redirected through the right OpenFlow switch, as in Figure 1.2b. OpenFlow

also allows providers to dynamically reroute IP addresses from an instance at one location to an

instance an another location - the basis of Amazon’s Elastic IP Addresses.

1.2.2 Security

Cloud computing raises many security concerns for users ([33] [14]). Users want their re-

sources to be isolated from other users’ resources. This can be done using VLAN tagging to create

isolated layer 2 domains. An OpenFlow enabled cloud also supports VLAN tagging to isolate net-

work traffic for each user. In addition, it is common practice to place some instances in a security-

heightened subnet. Between this secure subnet and the default subnet, a firewall server is typically

placed to filter and audit network traffic (see [19] for example). In an OpenFlow enabled cloud, the

networking hardware becomes the firewall. OpenFlow rules are installed on the networking switches

to block unwanted traffic to protected subnets - the basis for the Security Groups implementation

presented later.

Another form of protection is against the distributed denial of service (DDoS) attacks that

are increasingly problematic for popular service providers. In addition to the interest of detecting

the onset of DDoS attempts, it is also useful to dynamically ramp up the service capability amidst

5

an attack by launching new virtual servers and new, distinct IP subnets to cope with the short-term

excessive demands. [22] demonstrates this capability using OpenFlow to mitigate the attack.

1.2.3 Scalability

In addition to the DDoS scenario described above, customer demands can increase for

legitimate reasons as well. Addressing it requires either increased network throughput or increased

server capacity or both. There is more than one way to increase a cloud’s network and computing

capacity depending on the physical and virtual organization of the infrastructure. The solution

might involve utilizing more network interfaces and hosts in the data center, or it might require

expanding the application across multiple data centers. As discussed previously, an OpenFlow cloud

removes the limitations placed on applications that must scale across data centers, and can provide

load balancing support to numerous instances ([41]).

1.3 Proposed Work

To enable such scenarios, we propose creating an OpenFlow cloud that enables dynamic net-

working services for its users. Our approach is to create an experimental cloud, Clemson OneCloud,

that uses OpenFlow to manage network traffic within the cloud. The network traffic within OneCloud

will be managed by a custom OpenFlow controller implemented on top of the NOX controller [3].

The cloud will use the OpenNebula 3.0 provisioning engine. The OpenNebula front-end server will

be responsible for providing the OpenFlow controller with changes in the networking environment.

Initially, OneCloud will focus on two networking services: dynamic mapping of IP addresses and

dynamic firewall solutions. These services are inspired by Amazon’s EC2 Elastic IP Addresses and

EC2 Security Groups.

Our proposed solution will differ from current open-source cloud offerings in that it will

provide an open-source implementation of dynamic networking services through the use of OpenFlow

for network management. Other cloud offerings, such as OpenStack and Eucalyptus, provide Elastic

IP and Security Group services through centralized network servers that analyze and rewrite each

packet individually. OneCloud will use the network hardware to enable such services, leading to

enhanced network performance. CloudNaaS and other cloud implementations have used OpenFlow

in the cloud, but its use is limited to isolating networks with VLAN tagging and creating optimal

6

paths in a data center. OneCloud will use OpenFlow to control network traffic routing and enforce

higher-level security rules that cannot be implemented with VLAN tagging.

7

Chapter 2

Background and Technologies

2.1 Amazon Web Services

Amazon began offering IT infrastructure services to businesses in 2006 in the form of Amazon

Web Services (AWS) [10]. These services offered users low-cost, agile solutions to cloud computing

in the form of computing power, storage, databases, messaging, and networking. AWS solutions

are flexible, scalable, elastic, and reliable [8]. Amazon’s Elastic Compute Cloud (EC2) provides

users with the ability to provision and scale compute power across the cloud platform. Simple

Storage Service (S3) provides users with a distributed, scalable, storage architecture for fast and

reliable data storage. Dynamic networking services provided include Virtual Private Cloud (VPC),

which allows users to create custom network topologies, Elastic IP, which provides dynamic IP

addressing, Route53, which provides a scalable dynamic Domain Name System (DNS) service, and

many others. Database solutions include DynamoDB for NoSQL database services and Relational

Database Service (RDS) for MySQL and Oracle databases. All of these services combine to form a

very robust and flexible cloud computing platform that has revolutionized the way many businesses

approach information technology.

2.1.1 Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is a “web service that provides resizable compute

capacity in the cloud” [8]. Users are provided with complete control over their computing envi-

8

ronments such as networking, security, scaling, load balancing, and physical location. Users can

provision instances in the cloud and control the networking infrastructure with Elastic IP addresses

and Virtual Private Cloud (VPC). AWS also offers dynamic DNS, routing, and firewall services to

its users. Instances can scale automatically to accommodate changes in demand, which lowers IT

costs because users are charged only for the resources that they use. Additionally, users can control

access to computing resources using EC2 Security Groups. The flexibility provided by Amazon’s

EC2 service has made it an extremely popular platform for cloud computing. Due to EC2’s rising

popularity, many major cloud platforms now offer an EC2 compatible interface [23][29][36][4].

2.1.1.1 Elastic IP Addresses

Amazon Elastic IP addresses are static IP addresses that can be dynamically remapped to

running instances within the cloud [35]. Each instance in Amazon’s EC2 is assigned static public

and private IP addresses. The public address is mapped to the private address using a 1:1 NAT

mapping [35]. Once the instance is terminated, the public address is no longer valid. Any new

instances will have different IP addresses, so providing a service to users becomes difficult. However,

Elastic IPs are associated with a user’s account and not a specific instance. Therefore, users can

programmatically remap the address to a new instance in the cloud. This enables the user to mask

any network changes or failures without having to wait for a DNS update to propagate through the

network or a new host to be configured and brought online.

2.1.1.2 Security Groups

AWS provides firewall services through EC2 Security Groups. EC2 Security Groups consist

of a set of rules that govern incoming traffic destined for an instance in the cloud. All outbound

traffic is automatically allowed for EC2 instances and cannot be controlled by EC2 security groups.

An instance can be assigned to any number of security groups when it is launched. Once launched,

it cannot be removed from or added to any groups; however, a group’s rules can be added, removed,

or modified, and the changes are applied to instances in real time. The rules for each group are ag-

gregated together and applied to the instance. This allows the user greater flexibility in determining

firewall rules for a virtual machine by assigning it to multiple groups at runtime. [9]

Security Group rules consist of a protocol, from port, to port, and source. Rules enable a

specific source to access an instance using a certain protocol (TCP, UDP, or ICMP). For TCP and

9

UDP traffic, the from and to ports specify a range of ports to which the rule is applied. In the case

of ICMP rules, the from port is the ICMP type number and the to port is the ICMP code. The

source can be a single IP address, a range of IP addresses, or another Security Group. [9]

2.2 OpenFlow

OpenFlow is a protocol that provides the capability to control flows within a network from

a centralized software controller. The OpenFlow standard is built on the fact that most networking

hardware contains flow tables for managing network traffic [25]. The OpenFlow API provides a

method for accessing and updating the hardware’s flow tables to control the network without ex-

posing the internal workings of the vendors’ hardware. When a switch or router receives a packet, it

checks to see if it matches any flows in the flow table. If not, it forwards the packet to the software

controller. The controller examines the packet and decides where it should be sent. The resulting

flow rule is then sent to the switch and installed in its flow table. All future packets that match

this flow rule will be processed by the switch at line rate. This eliminates the bottleneck of previous

software controlled networks in that once a flow rule has been created, packets are processed at line

rate by the hardware, not by a central server. OpenFlow supports filtering network traffic at layers

two, three, and four, but the controller can examine packet contents at any layer. [25]

OpenFlow is aptly suited for cloud computing because of its dynamic range of capabilities.

Controlling a network with OpenFlow allows users to 1) flexibly associate computing end hosts (with

layer two, three, or higher addresses or contexts) with network datapaths, 2) dynamically alter such

associations for load balancing or failure fallback, 3) provision distinct network datapath properties

such as security, isolation, or quality of service, and 4) enable virtualization of the physical network

into traffic “slices” and delegate their control to different admin entities (as seen in [1]). These

features are useful from either a provider or a user’s perspective. A provider can leverage OpenFlow

to implement such user features according to its policy preferences, while users can explore a range

of customization of the cloud environment to better meet their applications.

10

2.3 Open vSwitch

Open vSwitch [30] is a “production quality open source software switch designed to be used

as a [virtual switch] in virtualized server environments” [5]. It supports standard management in-

terfaces such as sFlow, NetFlow, RSPAN, and CLI, and can be extended programmatically. It can

be used to manage the networking for VMs on the same physical host or forward traffic between

VMs on different physical hosts. Open vSwitch supports popular Linux-based virtualization plat-

forms including KVM, VirtualBox, Xen, and XenServer. Additionally, Open vSwitch supports the

OpenFlow protocol. This means that an Open vSwitch switch can be controlled by an OpenFlow

controller within a network.

2.4 Global Environment for Network Innovations (GENI)

The Global Environment for Network Innovations (GENI) is an NSF sponsored “virtual

laboratory for at-scale networking experimentation”[2]. It is a collaboration between research insti-

tutions, private industrial teams, and non-profit organizations. GENI is designed to facilitate future

Internet research and provides a shared, heterogeneous infrastructure of federated compute systems

across the United States.

GENI employs OpenFlow technology for its core network services. The GENI network is

composed of OpenFlow-enabled switches managed by aggregate managers, allowing users to pro-

vision a slice of the network resources for research. The GENI network features two core VLANs

that span the Internet2 and National Lambda Rail fiber networks [2] and interconnect several col-

lege campuses and research institutions. These VLANs provide experimenters with end-to-end layer

2 connectivity that spans multiple geographic locations. This enables experimenters to test new,

innovative, non-IP based network protocols for the future Internet.

2.5 OpenNebula

OpenNebula is an open-source cloud computing framework “aimed at developing the indus-

try standard solution for building and managing virtualized data centers and cloud infrastructures”

[6]. The flexibility of the OpenNebula framework enables the creation and management of virtualized

infrastructures that provide private, public, and hybrid IaaS clouds. It supports KVM, VMware, and

11

Figure 2.1: OpenNebula Architecture Components

Xen as the underlying hypervisors. OpenNebula also provides a centralized management interface

for virtual and physical resources. OpenNebula allows seamless integration with other products and

services - management tools, VM schedulers, virtual image managers, and hypervisors - through its

highly extensible plug-in framework [6].

The core of OpenNebula provides operations related to storage, networking, and virtualiza-

tion through a set of drivers [36]. The drivers are key to OpenNebula’s extensibility and flexibility.

Figure 2.1 shows the various components of OpenNebula and drivers supported by each component.

The networking component supports drivers for creating host-managed VLANs through the Linux

Kernel and interfacing with Open vSwitch. This allows users to tailor the networking infrastruc-

ture to meet their environment. Similarly, the storage component supports shared file systems,

non-shared file systems, and Logical Volume Manager (LVM). The storage component is configured

for each host in the cloud, so users can share NFS volumes on some hosts, but use SSH to copy

virtual machine images between other hosts. As mentioned previously, the virtualization module

supports multiple hypervisors. Each hypervisor is encapsulated in a driver that abstracts the basic

virtualization functionality needed to provision and manage instances. OpenNebula also supports

drivers for its authentication component. A cloud can use the built-in support for access control

lists (ACLs) and local user accounts, or rely on external authorization such as LDAP or X509.

12

Figure 2.2: OneCloud Architecture

2.6 OneCloud

Clemson University OneCloud (https://sites.google.com/site/cuonecloud/) is an ex-

perimental cloud infrastructure based on the OpenNebula cloud framework. It is an IaaS system

that enables users to provision virtual machine instances using the KVM hypervisor. OneCloud

offers an EC2 front-end to its users.

OneCloud was created to research dynamic cloud networking infrastructures; it is available

to external users upon request. Current research is focused on the dynamic networking capabilities of

the OpenFlow protocol and how they can be leveraged within the cloud. Early results of developing

OneCloud are presented in this paper. All hypervisors of OneCloud are physically connected on an

OpenFlow network and use Open vSwitch [5] as the virtual machine bridge.

2.6.1 OneCloud Architecture

The OneCloud infrastructure consists of a front-end server and cluster nodes. The OneCloud

front-end server is running OpenNebula 3.0 and the OpenNebula EC2 Query service, which provides

an Amazon EC2 Query API compatible interface. The network within OneCloud is controlled by

an OpenFlow controller running inside a virtual machine on the front-end node. Our controller

application is written in Python and uses the NOX OpenFlow controller [3]. It also exposes an

XML-RPC interface for interaction with the OpenNebula EC2 API.

13

https://sites.google.com/site/cuonecloud/

OneCloud cluster nodes use the Kernel-based Virtual Machine (KVM) hypervisor for vir-

tualization. In addition, virtualized networking for each node is provided by Open vSwitch 1.2.2

with the bridge compatibility layer enabled. Open vSwitch is a software-based virtual switch that

supports the OpenFlow protocol. As seen in Figure 2.2, each node is configured with a single Open

vSwitch bridge that is connected to our OpenFlow controller. When a virtual machine instance is

started, it is assigned a single private IP address. The instance’s network interface is attached to

the Open vSwitch bridge on the host node, allowing our controller to manage its network traffic.

14

Chapter 3

Related Work

Networking research has shifted towards a focus on future Internet architectures in recent

years. This shift has led to an increased interest in the use of OpenFlow for managing networking

environments. However, dynamic networking in cloud environments has mainly focused on network

overlays to deliver custom topologies to cloud users. Other OpenFlow research has focused on load

balancing and virtual machine migrations, but not in the context of IaaS cloud offerings. Some

research has been conducted on the use of OpenFlow in cloud computing, but it does not focus on

providing networking services to the end user. We will examine current research related to these

topics and how OneCloud differs from these solutions.

3.1 Virtual Network Topologies and Overlays

The majority of research in dynamic networking in grid computing has focused on the use of

virtual network topologies, or network overlays, to provide custom network topologies to users. Most

overlays are implemented at the application-level, using custom software to translate between the

virtual and physical networks, as seen in [11][37][38][39][40]. More recent research has investigated

the use of peer-to-peer (P2P) technology for managing network overlays [16][17][28][18][42].

Application-level overlays require processes on nodes to pass packets between the virtual

network space and the physical network space. These processes translate packet headers between

the two domains. One such implementation of this approach is ViNe [39]. ViNe creates a mapping

between private IP addresses in the virtual address space and physical IP addresses in the physical

15

infrastructure. IP aliasing is used to map the physical addresses to the nodes hosting the corre-

sponding virtual addresses. A similar project, VNET [37][38], uses a proxy application to create

a virtual network at layer 2 of the network stack. The proxy application resides on physical hosts

and creates a layer 2 network topology across multiple physical nodes. [43] formalizes the virtual

network embedding problem and presents a brokered architecture for creating custom topologies

using VLAN tagging at layer 2.

P2P technology has also been used to implement robust, scalable overlays in [16][17][28][18][42].

The P2P approach takes advantage of the stability and reliability of P2P networks. Additionally,

the overlays scale well due to the decentralized nature of P2P networking. The IPOP system [16]

implements the IP protocol over a distributed P2P network overlay. Existing IP-based protocols

can be implemented on top of the IPOP overlay with no additional modifications. IPOP uses the

Brunet P2P library to handle P2P routing and NAT/firewall traversal. The WOW project [17] uses

the IPOP system to implement self-organizing wide-area network overlays. It provides a user-level

framework for generating such overlays and demonstrates its capabilities to process high-throughput

sequential jobs in a grid environment. IPOP is also used by [28] to create self-provisioning and adapt-

able clusters. While these approaches have the reliability and scalability properties of peer-to-peer

networking, they still incur overhead due to application-level processing of packets to maintain the

network overlay topologies. Initial IPOP performance experiments added 6-10ms of latency to traffic

in the network overlay [16].

Another approach to network overlays is to implement overlay components as virtual ma-

chines. VIOLIN [20] uses User Mode Linux (UML) virtual machines to implement virtual hosts,

routers, and switches to create a virtual network topology. It uses a centralized manager to setup

network links and node addresses. Each component is a separate, light-weight VM instance. This

approach relies on the isolation provided by machine virtualization libraries to isolate user applica-

tions from the underlying physical resources. VIOLIN has already been used to create middleware

for grid computing [34]. While VIOLIN uses light-weight VM instances to implement the overlay

architecture, it still suffers from the performance overhead of overlay networks. Initial tests of VIO-

LIN on PlanetLab demonstrated a 5% degradation of TCP throughput over the underlying physical

network [20].

[21] argues that overlay networks are too complicated and not necessary. It presents a single

router abstraction to the end-user that attempts to avoid complicated overlay networks. The user

16

configures a single router to implement the desired network topology and the router abstraction

handles the physical network infrastructure.

Virtual network topologies require application-level or VM level solutions. These solutions

suffer from performance degradation due to the overhead of processing network packets. Some

solutions require packets to traverse the kernel’s network stack two times. The additional overhead

adds latency to all network traffic in the overlay throughout the overlay’s lifetime. In our OpenFlow

approach, the cost overhead of dynamic networking is very small and short-lived. Initial tests

indicate a 2-5 ms average increase in packet delay for one or two packets while OpenFlow rules are

generated and installed. Once the OpenFlow rules are installed, future packet processing occurs at

line-rate as it would on the underlying physical network, so there is no degradation of performance.

3.2 OpenFlow and the Cloud

Research into the uses of OpenFlow for networking within a cloud or grid environment has

only recently increased in popularity. OpenFlow has been used to improve the performance of live

migrations, load balancing, and network stitching.

Amazon’s EC2 provides users with the ability to migrate instances and images between data

center regions. [31] presents a migration model using Xen and OpenFlow. A VM is migrated from

physical node to another and OpenFlow is used to re-route network traffic to the VM. The use of

OpenFlow also removed the need for Xen to create/manage virtual networks. This implementation

resulted in faster migrations with zero packet loss.

EC2 also provides users with Elastic Load Balancing to balance network traffic between

multiple instances. [41] presents an OpenFlow-based load balancing solution. OpenFlow is used to

partition the client IP address space and direct traffic from each partition to a specific instance.

The algorithm minimizes the number of flow rules required to balance client traffic through the use

of wildcard rules. The algorithm also adapts to changes in network traffic by re-partitioning the

address space. It uses microflow rules to allow existing TCP connections to continue while it installs

the new rules.

CloudNaaS [13] is the closest effort related to our work. CloudNaaS is a cloud networking

platform for enterprise applications that uses OpenFlow for its network management. CloudNaaS

(Cloud Networking-as-a-Service) extends the self-service provisioning model for cloud services to

17

include networking services. The CloudNaaS Network Controller is used to provision virtual network

segments between network devices that meet the constraints of the requested resources. It then uses

OpenFlow to join the segments to create the desired path between resources. This network segment

provisioning algorithm is used to guarantee quality of service (QoS) requirements and direct traffic

through middleboxes placed in the network. The resulting path is also used when considering where

to place a VM in the cloud to meet latency requirements. CloudNaaS also uses OpenFlow to allow

applications to use custom addressing. OpenFlow rules installed on each cloud node using a software

switch translate addresses from application addresses to cloud-assigned addresses.

While CloudNaaS presents a cloud environment that uses OpenFlow to enable networking

services, it is not the same as our OneCloud solution. CloudNaaS mainly uses OpenFlow to stitch

together network segments between two cloud resources. It also uses OpenFlow to enable applications

to use custom addressing. However, it does not use OpenFlow to enable a range of customizable

network services for end-users nor does it present an API for end-users to manage the networking

environment. The networking environment is controlled by the attributes of the resources being

provisioned. Additionally, CloudNaaS uses OpenNebula 1.4 for its provisioning engine, which is

now obsolete. OneCloud is built using the latest version of OpenNebula and its features are being

integrated into the source code.

Another network virtualization framework for the cloud is presented in [24]. This framework

builds upon an abstract cloud model by creating an abstract representation of virtualized cloud

networking. It discusses the use of OpenFlow to implement the virtualized networking framework

in a real cloud environment, but does not provide an actual implementation. Furthermore, the

framework only addresses the issue of custom network topologies in a cloud environment. It does

not address dynamic networking features such as Elastic IP addresses, load balancing, or security

groups.

3.3 Comparison of Cloud Solutions

There are numerous cloud solutions available to users. Table 3.1 compares popular solu-

tions based on supported APIs, networking features, and their limitations. OpenStack, OpenStack

Quantum (a Cisco Systems, Inc.-led initiative), and Eucalyptus all provide Elastic IP functionality.

The OpenStack implementation relies on NAT translation provided by iptables, which can be

18

API Networking Features Limitations
Amazon EC2
[9]

− EC2 Query
− EC2 SOAP

− Elastic IP
− Security Groups
− VPC
− Route Tables
− VPN Connections
− Route 53 DNS
− Elastic Load Balancing

− Implementation unknown
− Paid Service

Rackspace [32]
− Cloud Servers − DDoS Mitigation

− Persistent Public IPs
− Shared IP Addresses
− Cloud DNS
− Cloud Load Balancers

− Implementation Unknown
− No Elastic IPs
− No Custom Network

Topologies
− Paid Service

OpenStack [4]
− EC2 Query
− Cloud Servers

− Floating IPs
− Network Models: VLAN, Flat,

FlatDHCP

− No control over IP address-
ing

− No custom topologies

OpenStack
Quantum [7]

− EC2 Query
− Cloud Servers

− Plugins for network implementa-
tions (SDNs, Overlays, etc)

− QoS Guarantees
− Firewall & Security Groups
− VPC

− Still in Beta

OpenNebula
[27][6]

− EC2 Query
− EC2 SOAP
− OCCI
− XML-RPC

− Custom Subnets
− Firewall
− Host-Managed VLANs
− Ebtables Support
− Open vSwitch Support
− Native VMware Networking Sup-

port

− No control over IP address-
ing

− Firewall only supports ipt-
ables rules

Eucalyptus
[15]

− EC2 Query
− EC2 SOAP

− VM Network Isolation through
VLAN

− Elastic IP
− Security Groups

− Cloud Controller maintains
Elastic IP mappings, not
networking hardware

− Network Controller per-
forms packet translations

CloudNaaS
[13]

− EC2 Query
− EC2 SOAP
− OCCI
− XML-RPC

− 1:1 NAT at Host nodes allow-
ing apps to use existing address
spaces

− Guarantees QoS
− Middlebox Interposition

− Implemented on outdated
version of OpenNebula 1.4

− No API for controlling net-
work

− Experimental

Table 3.1: Comparison of Cloud Solutions

19

cumbersome to manage. The Eucalyptus network controller manages translating packets for Elastic

IP addresses, which requires it to process all packets destined for that address. OpenStack Quantum

provides plugins to use OpenFlow or other technologies for software-defined networking, however,

it is still under development. The OneCloud approach will use a centralized controller to generate

rules when a mapping is first created, but all packet modifications will occur on the individual net-

work switches. OpenStack Quantum, OpenNebula, and Eucalyptus also provide implementations

of Security Groups. The Quantum implementation is still under early development, but provides

a pluggable infrastructure that can use iptables or OpenFlow. OpenNebula and Eucalyptus both

install firewall rules on cloud nodes using iptables. The OneCloud solution will use OpenFlow

rules to turn each network switch into a firewall for instances in the cloud.

Our survey of open-source cloud solutions (see Table 3.1) indicates that dynamic network

services remained largely unavailable to cloud users. Amazon’s EC2 is the leading provider of

dynamic networking services, followed closely by RackSpace, but both require paid subscriptions.

Eucalyptus provides Elastic IP and Security Groups functionality, but packets must be processed by

the network controller. Clemson’s OneCloud attempts to fill this void by enabling dynamic network-

ing services in an open-source cloud platform through the use of OpenFlow. OpenFlow will provide

a centralized management infrastructure for controlling the network flow within the cloud, but will

use the distributed network resources to enforce the network policies. This will enable users to dy-

namically alter the networking environment in real time without impacting network performance. In

addition, using OpenFlow can enhance other capabilities that are currently available in open-source

cloud offerings, such as quality of service enforcement, DDoS mitigation, load balancing, and custom

network topologies.

20

Chapter 4

Solution

4.1 OpenFlow Controller

The main component of the OpenFlow cloud is the OpenFlow controller (http://code.

google.com/p/onenox/). The OpenFlow controller implements the network control logic, which

determines how switches should route traffic within the cloud. OneCloud’s OpenFlow controller

is written in Python and built on top of the NOX controller platform. The OneCloud OpenFlow

controller exposes an XML-RPC server to the OpenNebula front-end server. This enables the Open-

Nebula server to send commands to the OpenFlow controller requesting changes in the network

environment. The controller maintains a set of data structures that describes the relationships

between instances in the cloud, security groups to which they belong, and Elastic IP address asso-

ciations. When it receives commands from OpenNebula, it constructs the appropriate OpenFlow

rules and installs them on the networking hardware in the cloud.

The controller module registers event handlers with the NOX platform when it loads. It

registers handlers that are called when a switch issues a join or leave event to the controller. This

allows the controller to manage a list of the switches that it controls. In addition, it registers handlers

for packet in events, which are generated whenever a switch sends a packet to the controller for

analysis. This allows the controller to analyze packets sent by the switches to determine where to

send them.

21

http://code.google.com/p/onenox/
http://code.google.com/p/onenox/

Listing 4.1: OpenFlow Controller Layer 2 Switch Functionality

1 def learnAndForward(self , dpid , inport , packet , buf , bufid):

Convert src and dst MAC addr to string

mac_src = mac_to_str(packet.src)

mac_dst = mac_to_str(packet.dst)

6 # Get Switch data structure

sw = self.SwitchesMap[dpid]

Learn the port for the source MAC addr

sw.MacToPortMap[mac_src] = inport

11
If IP packet , save IP -to -MAC relationship

iph = packet.find(’ipv4’)

if iph != None:

srcip = ip_to_str(iph.srcip)

16 sw.IpToMacMap[srcip] = mac_src

If destination MAC of the packet is known

send packet out appropriate switch port

if mac_dst in sw.MacToPortMap:

21 outport = sw.MacToPortMap[mac_dst]

Get flow attributes

flow = extract_flow(packet)

flow[core.IN_PORT] = inport

26 # Send packet on outport

actions = [[openflow.OFPAT_OUTPUT , [0, outport]]]

install flow rule on the switch

self.install_datapath_flow(dpid , flow , IDLE_TIMEOUT , HARD_TIMEOUT , actions

, bufid , openflow.OFP_DEFAULT_PRIORITY , inport , buf)

31
if iph!=None:

Check if src ip is one of the instances with a security group

if srcip in self.instances:

Need to install temp rule to allow reply packets

36 replyFlow = flow.copy()

replyFlow[core.IN_PORT] = outport

replyFlow[core.DL_DST] = flow[core.DL_SRC]

replyFlow[core.DL_SRC] = flow[core.DL_DST]

replyFlow[core.NW_DST] = flow[core.NW_SRC]

41 replyFlow[core.NW_SRC] = flow[core.NW_DST]

replyFlow[core.TP_DST] = flow[core.TP_SRC]

replyFlow[core.TP_SRC] = flow[core.TP_DST]

actions = [[openflow.OFPAT_OUTPUT , [0, inport]]]

46 # install flow rule on the switch

this rule is temporary and will expire

self.install_datapath_flow(dpid , replyFlow , IDLE_TIMEOUT ,

HARD_TIMEOUT , actions , None , SG_PRIORITY , None , None)

else:

flood packet out everything but the input port

51 self.send_openflow(dpid , bufid , buf , openflow.OFPP_FLOOD , inport)

22

4.1.1 Default Behavior

By default, the OneCloud OpenFlow controller behaves as a Layer 2 learning switch, for-

warding packets based on their destination MAC address. Listing 4.1 presents the main logic in the

learning switch. When the controller receives a packet, it saves the incoming port and source MAC

address on line 10. This is how the switch learns which hosts are on which ports. The controller also

learns the IP address associated with a packet’s source MAC address in lines 13-16. This allows the

controller to resolve the MAC address of the Elastic IP network gateway when installing flow rules

for Elastic IP addresses.

The controller then decides how to forward the packet. If the packet’s destination MAC is

not known, the switch floods the packet out on all switch ports on line 51. If the destination host is

connected to the switch, it will receive the packet. If the destination MAC is known, the controller

creates a flow rule for the packet and installs the rule on the switch (lines 20-30). This ensures the

switch will forward future packets instead of sending them to the controller.

Lines 34-48 in Listing 4.1 handle a special case for EC2 Security Groups. This code block

generates temporary flow rules that allow response traffic to reach a virtual machine that belongs

to a Security Group. We will discuss this in greater detail in subsection 4.3.4.

4.2 Elastic IP Addresses

OneCloud provides users with the capabilities of EC2 Elastic IP addresses by managing

the network with the OpenFlow protocol. When an instance is launched in OneCloud, its network

interface is attached to the Open vSwitch bridge on the host node. The OpenFlow controller installs

rules on the bridge interface to manage the Elastic IP translations. In this section we discuss the

EC2 interface for Elastic IP addresses, how the OpenFlow controller handles ARP Requests for

Elastic IP addresses, and how the controller creates flow rules for an Elastic IP address.

4.2.1 EC2 Interface

OneCloud users can use the Amazon EC2 API to request and allocate Elastic IP addresses.

Table 4.1 summarizes the Elastic IP EC2 API commands and their functions. Users can request

Elastic IP addresses using the Amazon EC2 API command AllocateAddress. This command

instructs the OpenNebula server to reserve an Elastic IP address from the address pool and associate

23

EC2 API Command Description
AllocateAddress Reserve Elastic IP address from pool
AssociateAddress Map an Elastic IP to an instance
DisassociateAddress Remove mapping of Elastic IP to an instance
ReleaseAddress Return Elastic IP to address pool

Table 4.1: OneCloud Elastic IP EC2 Commands

it with a user’s account. When the user no longer needs the Elastic IP address, the API command

ReleaseAddress instructs the OpenNebula server to return the reserved address to the address pool.

Elastic IP addresses are associated with an instance using API command AssociateAddress, which

instructs the OpenFlow controller to install the flow rules. The command DisassociateAddress

removes this associate and the corresponding flow rules.

4.2.2 Handling ARP Requests

Since an instance does not know if it has an Elastic IP associated with it, it cannot respond

to ARP requests for the Elastic IP address. Therefore, the OpenFlow controller in OneCloud is

responsible for sending ARP replies for Elastic IP addresses. Listing 4.2 contains an excerpt of the

packet in handler that examines ARP Requests. When an ARP request is sent out in the network,

the switch on which it originated forwards the packet to the controller. The controller analyzes the

packet and checks if it is an ARP request (line 4). If the packet is an ARP request, it retrieves the

ARP Target Protocol Address field, which is the IP address of the intended receiver. On line 10, the

controller checks if this IP address matches an Elastic IP address that is associated with an instance

in the cloud. If it is, the controller generates an ARP reply message and sends it to the source of

the request packet. If the target address is not an Elastic IP address, then the controller instructs

the switch to flood the packet out on all switch ports so the appropriate host can reply.

24

Packet Field Replaced with...
Source IP Elastic IP
Source MAC Open vSwitch bridge’s MAC
Destination MAC Elastic IP Gateway’s MAC
VLAN ID Elastic IP VLAN ID

Table 4.2: Outgoing Packet Field Modifications

Listing 4.2: OpenFlow Controller ARP Request Handling

1 arph = packet.find(’arp’)

if arph != None:

3 # Found ARP Packet

if arph.opcode == arp.REQUEST:

5 # ARP Request

Get target IP address

7 targetIp = ip_to_str(arph.protodst)

9 # Check if target IP is an Elastic IP

if targetIp in self.ElasticIpMap:

11 log.error("Replying to ARP Request for IP "+targetIp)

Create ARP Reply packet and send it

13 return self.sendArpReply(dpid , inport , packet)

4.2.3 Creating OpenFlow Rules

When the OpenNebula server receives the AssociateAddress command, it will instruct the

OpenFlow controller to associate the Elastic IP address with the instance’s private IP address. To

do this, the OpenNebula server must provide the controller with information about the instance:

private IP, MAC address, Open vSwitch bridge and port number to which the instance is attached,

and the Elastic IP address. If the Elastic IP belongs to a VLAN, OpenNebula also provides the

VLAN ID and gateway IP address of the Elastic IP subnet. When the OpenFlow controller receives

this information, it creates a set of wildcard OpenFlow rules for incoming and outgoing IP packets

to the instance. Tables 4.2 and 4.3 show the fields in the packet headers that will be modified

by the OpenFlow rules for outgoing and incoming packets respectively and their new values after

modification. The net effect of the installed rules is to make the Open vSwitch bridge act like a

NAT router for the instances on the node.

Once these flow rules have been created, they are installed on the bridge to which the

instance is attached. These rules are given a higher OpenFlow priority so that they will override

any rules that were created by the basic layer 2 switch (the default behavior of the controller). The

25

Packet Field Replaced with...
Destination IP Private IP
Destination MAC Instance’s MAC
Source MAC Open vSwitch bridge’s MAC
VLAN ID Instance’s VLAN ID

Table 4.3: Incoming Packet Field Modifications

rules are installed permanently without soft or hard timeout values so they last the lifetime of the

instance. When the Elastic IP is mapped to an instance, the OpenFlow controller assumes the

responsibility of replying to ARP requests for the Elastic IP address.

Listing 4.3: Installing Incoming Elastic IP Flows

def installIncomingElasticIpFlows(self , eip):

2 # Get switch that virtual machine is attached to

sw = self.SwitchesMap[eip.dpid]

try:

gatewayMac = sw.IpToMacMap[eip.gatewayIp]

gatewayPort = sw.MacToPortMap[gatewayMac]

7 except KeyError:

raise Exception("FAIL: Unable to install Incoming flows. Unknown Gateway

MAC or Port Number")

Set matching criteria for this flow rule

flow = {}

12 flow[core.DL_TYPE] = ethernet.IP_TYPE

flow[core.NW_DST] = eip.elasticIp

flow[core.IN_PORT] = gatewayPort

Add actions to translate packet fields

17 actions = []

actions.append ([openflow.OFPAT_SET_NW_DST , eip.privateIp])

actions.append ([openflow.OFPAT_SET_DL_SRC , mac_to_str(eip.dpid)])

actions.append ([openflow.OFPAT_SET_DL_DST , eip.privateMac])

actions.append ([openflow.OFPAT_STRIP_VLAN])

22 actions.append ([openflow.OFPAT_OUTPUT , [0, int(eip.port)]])

Install flow on switch with elevated priority

and add it to EIP data structure

self.install_datapath_flow(eip.dpid , flow , openflow.OFP_FLOW_PERMANENT ,

openflow.OFP_FLOW_PERMANENT , actions , None , SG_PRIORITY , None , None)

27 eip.incomingFlows.append(flow)

Listing 4.3 contains the code that creates OpenFlow flow rules for incoming packets destined

for an Elastic IP address. The controller first obtains the data structure that represents the switch

on which the virtual machine is attached. It then tries to get the MAC address and switch port of

the gateway host for the Elastic IP’s subnet (lines 4-8). If it cannot acquire this information, then

the controller will not know where to send the packet after it is processed. Lines 12-14 specify the

attributes of packets that should match this flow rule, namely IP packets destined for the Elastic IP

26

address. Lines 16-22 configure the actions that are applied to a packet that matches this flow rule.

These actions translate the packet fields as defined in Table 4.3. Finally, the controller permanently

installs the flow rule on the switch and saves the rule in the Elastic IP address’s data structure so

it can be uninstalled in the future. The controller function that generates flow rules for outgoing

packets is very similar, except the actions translate the packet according to the rules in Table 4.2.

To remove an Elastic IP address mapping, the DisassociateAddress command is issued.

This command instructs the OpenFlow controller to remove the installed flow rules and stop replying

to ARP requests for the Elastic IP address. The code for DisassociateAddress can be found in

Listing 4.4. When DisassociateAddress is called, the controller verifies the Elastic IP address is

associated with an instance (line 3). It then removes all incoming and outgoing flow rules that were

created for that address and removes the Elastic IP address from its data structures. Removing the

installed flow rules is trivial, as seen in the removeIncomingElasticIpFlows method (lines 20-24).

The installed flows for an Elastic IP are saved in an array, so the controller just iterates over the

array and uninstalls each flow from the switch (lines 23-24).

Listing 4.4: Disassociate Elastic IP and Remove Flows

def DisassociateAddress(self , elasticIp):

Verify EIP is actually associated with instance

3 if elasticIp in self.InstalledElasticIps:

eip = self.InstalledElasticIps[elasticIp]

Remove incoming/outgoing flows that are installed

Calls removeIncomingElasticIpFlows () and removeOutgoingElasticIpFlows ()

8 result = self.removeElasticIpFlows(elasticIp)

Remove EIP from data structures

if result == ’SUCCESS ’:

del self.ElasticIpMap[elasticIp]

13 del self.ElasticIpReverseMap[eip.privateIp]

del self.InstalledElasticIps[elasticIp]

return result

else:

18 return ’SUCCESS ’

def removeIncomingElasticIpFlows(self , elasticIp):

eip = self.InstalledElasticIps[elasticIp]

Remove all saved incoming flows for this EIP

23 for flow in eip.incomingFlows:

self.delete_datapath_flow(eip.dpid , flow)

If a user issues the AssociateAddress command for an address that is already mapped to

a running instance, the OpenFlow controller will disassociate the address from the current instance

27

and install flow rules to map the address to the new instance. Similarly, if the instance already has

an Elastic IP address mapped to it, the existing mapping will be removed before the new mapping

is created. Also, if the user terminates an instance that is mapped to an Elastic IP address, the

OpenFlow controller will remove any flow entries for that address.

4.3 Security Groups

OneCloud provides firewall services to users by implementing the Amazon EC2 Security

Groups API. OneCloud’s Security Groups implementation uses OpenFlow rules to manage network

access to virtual machines. However, the OneCloud implementation currently does not support

specifying another Security Group as the source of a traffic in a rule. In order to implement EC2

Security Groups, extensive modifications to the OpenNebula source code were made to support

storing Security Groups in its database. This section describes these modifications, the EC2 Security

Groups interface, converting Security Group rules to OpenFlow rules, and managing instances that

belong to a Security Group.

4.3.1 OpenNebula Extensions

In order to implement EC2 Security Groups, it was necessary to extend the core OpenNebula

source code. Modifications included adding objects for Security Groups and group rules. These

extensions enabled OpenNebula to save information such as the owner of a group, user’s permitted

to use the group, and the group’s rules in its database. The OpenNebula server already manages

user access rights to other resources in the cloud, so it is natural for it to manage security groups.

This also meant the OpenFlow controller did not have to store all of this information. This leads to

a faster, streamlined controller that focuses solely on network management.

4.3.2 EC2 Interface

OneCloud users can use the Amazon EC2 API to create and manage Security Groups for

their account. Table 4.4 lists the available commands and their functions. Security Groups are

created and removed using the API commands CreateSecurityGroup and DeleteSecurityGroup

respectively. Once a security group has been created, a user can add or remove rules for incoming

packets only. The Amazon API does not permit outgoing packet rules for EC2 Security Groups.

28

EC2 API Command Description
CreateSecurityGroup Create a new Security Group
DeleteSecurityGroup Delete an existing Security Group
AuthorizeSecurityGroupIngress Add a new rule to a Security Group
RevokeSecurityGroupIngress Remove a rule from a Security Group

Table 4.4: OneCloud Security Group EC2 Commands

A rule is added by issuing the command AuthorizeSecurityGroupIngress and removed with the

command RevokeSecurityGroupIngress.

4.3.3 Generating OpenFlow Rules

If an instance is launched as part of one or more Security Groups, the OpenNebula server

notifies the OpenFlow controller. The controller is provided with attributes about the launched

instance and a list of its Security Groups and their rules. The controller converts each Security

Group rule into a Rule object. Each object is responsible for converting the rule into the proper

OpenFlow rule(s). When the controller installs the rules on a switch, it simply requests the OpenFlow

rule(s) from the Rule object.

Conversion of the security group rules is fairly trivial. The protocol field is translated from

the EC2 API constant to the corresponding NOX controller constant. If the rule is a TCP or UDP

rule and specifies a port range, then an OpenFlow rule must be created for each port in that range.

The port number is used as the destination port in the rule. If the protocol is ICMP, the from port

becomes the ICMP type field and the to port becomes the ICMP code field. When these fields

are converted, their values are stored in a Python dictionary object, creating a single flow rule. In

the case of a range of ports, multiple flow rule dictionaries are created. These flow rules are stored

in a list, which is then passed to the method createFlowsFromIprange (see Listing 4.5).

29

Listing 4.5: Converting Source Field into Security Group Flows

1 def __createFlowsFromIpRange(self , flows):

Ip is 0.0.0.0

if self.__ipRange == "0.0.0.0":

log.error("Rule from 0.0.0.0")

self.__flows = flows

6 return

Ip addr range , i.e. 192.168.2.1 -196.168.2.5

m = re.match(’((\d{1,3}) \.(\d{1,3}) \.(\d{1 ,3}) \.(\d{1,3}))([]*\-[]*) ((\d

{1,3}) \.(\d{1,3}) \.(\d{1 ,3}) \.(\d{1,3}))$’, self.__ipRange)

if m != None:

11 startIp = m.groups ()[1:5]

endIp = m.groups () [7:11]

Enumerate IP addresses in the range

for s4 in range(int(startIp [3]), int(endIp [3]) +1):

for flow in flows:

16 f = flow.copy()

f[NW_SRC] = ".".join([startIp [0], startIp [1], startIp [2],str(s4)])

log.error(f[NW_SRC])

self.__flows.append(f)

return

21
Ip addr block using full Netmask 192.168.2.1/255.255.255.0

m = re.match(’((\d{1,3}) \.(\d{1,3}) \.(\d{1 ,3}) \.(\d{1,3}))(/)((\d{1,3}) \.(\d

{1,3}) \.(\d{1,3}) \.(\d{1 ,3}))$’, self.__ipRange)

if m != None:

ip = m.groups ()[0]

26 # Convert netmask to number of bits set to 1

netmask = int_to_bits(ipstr_to_int(m.groups ()[6]))

for flow in flows:

f = flow.copy()

f[NW_SRC] = ip

31 # Number of bits in mask is opposite of standard CIDR notation

f[NW_SRC_N_WILD] = 32 - netmask

self.__flows.append(f)

return

36 # Ip addr block using CIDR 192.168.2.1/24

m = re.match(’(\d{1 ,3}\.\d{1 ,3}\.\d{1 ,3}\.\d{1 ,3})/(\d{1 ,2})$’, self.__ipRange

)

if m != None:

ip = m.group (1)

cidr = m.group (2)

41 for flow in flows:

flow[NW_SRC] = ip

Number of bits in mask is opposite of standard CIDR notation

flow[NW_SRC_N_WILD] = 32 - int(cidr)

self.__flows.append(flow)

46 return

Single IP address

if (re.match(’\d{1 ,3}\.\d{1 ,3}\.\d{1 ,3}\.\d{1,3}$’, self.__ipRange) != None):

for flow in flows:

51 flow[NW_SRC] = self.__ipRange

self.__flows.append(flow)

return

30

The final field, source, is more complicated to parse. The source can have one of several

values: 0.0.0.0, a single IP address, or a range of IP addresses. Listing 4.5 contains the Python code

that converts the source field into the proper OpenFlow flow rules. The code uses Python regular

expressions to match the various formats of the source field. Lines 3-6 handle the simplest case:

the value is 0.0.0.0. In this case, a wildcard is used in the flow rule to match all source IP addresses.

Lines 9-20 check if the value is an IP address range. If this is the case, the IP addresses within the

range are enumerated because a flow rule must be created for each individual address. The next

case to consider is if the source is an IP address and netmask. In this case, the controller determines

the number of bits set to 1 in the netmask to be used in the OpenFlow rule. Lines 37-46 detect if

the value is in CIDR notation. If so, the CIDR prefix length is used in the OpenFlow rule. Finally,

the last case is checked in lines 49-53: the source is a single IP address. In this case, the IP address

is used directly in the OpenFlow rule.

While some of the values of source generate a single flow rule, one may note that each case

loops through an array named flows. This array contains partial flow rules that were generated

based on the ports specified in the Security Group. If multiple ports were specified, then a flow rule

for each port must be created. Similarly, if multiple source IP addresses were specified, multiple rules

must be created. If both cases occur, a flow rule must be generated for every possible combination

of port and source IP address. Therefore, the code iterates over the partial flow rules, creates all

combinations of ports and source addresses, and stores them in the Rule object’s class variable

flows.

4.3.4 Installing OpenFlow Rules for Security Groups

When an instance is launched, the user provides a list of security groups to which the

instance should belong. After the instance has been deployed to a node in the cloud, the OpenNebula

server notifies the OpenFlow controller that an instance has been started. It provides the controller

with the instance’s private IP address, the node on which the instance is launched, and the list of

security groups and their rules. The OpenFlow controller then converts the security group rules into

OpenFlow rules before installing them on the switch.

Once the rules are converted to the OpenFlow format, the controller must install the rules on

the switch. The default behavior for EC2 Security Groups is to block all new incoming traffic, allow

all outgoing traffic from an instance, and allow related incoming network traffic. Therefore, the con-

31

troller installs a default rule that drops all incoming packets to the instance (we will refer to this as the

DROP rule), as seen in Listing 4.6 (lines 1-14). The OpenFlow specification does not have an explicit

DROP action. Instead, an empty actions list is passed to install datapath flow to implicitly

drop matching packets (line 7). This rule is given an elevated priority over existing rules on the

switch. The rules for a security group are then installed on the switch with a priority higher than the

DROP rule. This ensures all packets matching the incoming rules will be allowed and all other pack-

ets will be dropped by the switch. This occurs in the method installIncomingSecurityGroupFlows

on lines 16-32 of Listing 4.6, which iterates over an instance’s Security Groups and installs each

groups’ rules on the switch. The DROP rule and all incoming rules are installed permanently on

the switch and removed only when an instance is terminated.

Listing 4.6: Installing the DROP Rule

def installDefaultSecurityGroupFlows(self , instance):

2 log.error("Installing default security group flows")

sw = self.SwitchesMap[instance.dpid]

flow = {}

NO actions == DROP packet

7 actions = []

flow[core.DL_TYPE] = ethernet.IP_TYPE

flow[core.DL_DST] = instance.privateMac

flow[core.NW_DST] = instance.privateIp

12
self.install_datapath_flow(instance.dpid , flow , openflow.OFP_FLOW_PERMANENT ,

openflow.OFP_FLOW_PERMANENT , actions , None , SG_DROP_PRIORITY , None , None)

instance.incomingFlows.append(flow)

def installIncomingSecurityGroupFlows(self , instance):

17 sw = self.SwitchesMap[instance.dpid]

Iterate over instance ’s security groups

for gid in instance.groups:

Iterate over each rule in the group

22 for rule in instance.groups[gid].rules():

for flow in rule.getFlows ():

actions = []

Add instance specific attributes to rule

flow[core.DL_TYPE] = ethernet.IP_TYPE

27 flow[core.DL_DST] = instance.privateMac

flow[core.NW_DST] = instance.privateIp

actions.append ([openflow.OFPAT_OUTPUT , [0, int(instance.port)]])

self.install_datapath_flow(instance.dpid , flow , openflow.

OFP_FLOW_PERMANENT , openflow.OFP_FLOW_PERMANENT , actions , None ,

SG_PRIORITY , None , None)

32 instance.incomingFlows.append(flow)

32

When an instance generates outgoing traffic, the switch installs a temporary rule allowing it

to reach the network. However, the current rules for the security group may not allow the response

traffic to reach the instance. Therefore, when the outbound rule is generated, the controller installs

a corresponding temporary rule for the response packet. The code responsible for this action is

found in the learning switch code (see lines 34-48 in Listing 4.1) because it analyzes all packets sent

to the controller by the switch and creates flow rules for them. This rule is given a priority higher

than the DROP rule to ensure the packet is allowed to reach the instance. Unlike the incoming rules

for the security group, this rule does not have wildcard values. It matches only the flow created by

the outbound traffic. Once the outbound flow of traffic stops, the idle timeout on the incoming flow

rule expires and it is removed from the switch.

4.3.5 Modifying Security Group Rules

The Amazon EC2 specification [9] allows users to add or remove rules to a security group and

have the changes automatically applied to all instances in the group. OneCloud also provides this ca-

pability to its users. When a user adds a rule to a security group, the OpenNebula server notifies the

OpenFlow controller of the new rule with the XML-RPC command AuthorizeSecurityGroupIngress.

Listing 4.7 contains the source code for this method.

The OpenFlow controller generates a list of instances that belong to the modified security

group on line 5. For each instance, it adds the new rule to the instance’s local copy of the Security

Group. Once the rule is added, the generated flow rules are installed on the switch (lines 13-22).

In a similar manner, if the user removes a rule from a security group, the OpenFlow controller will

uninstall the corresponding flow rules for each instance from their respective switches.

33

Listing 4.7: Authorizing New Security Group Rules

def AuthorizeSecurityGroupIngress(self , sgid , protocol , fromPort , toPort , ipRange

):

Check that an instance belongs to this group

3 if str(sgid) in self.groupsInstancesMap:

Get list of instances in the group

instances = self.groupsInstancesMap[str(sgid)]

for privateIp in instances:

log.error("Updating instance %s" %(privateIp))

8 instance = self.instances[privateIp]

group = instance.groups[str(sgid)]

Add the new rule to the group

group.addRule(Rule(protocol , fromPort , toPort , ipRange))

Get the flows created for the NEW RULE ONLY

13 flows = group.rules()[-1]. getFlows ()

Install only the flows created by the new rule

for flow in flows:

actions = []

flow[core.DL_TYPE] = ethernet.IP_TYPE

18 flow[core.DL_DST] = instance.privateMac

flow[core.NW_DST] = instance.privateIp

actions.append ([openflow.OFPAT_OUTPUT , [0, int(instance.port)]])

self.install_datapath_flow(instance.dpid , flow , openflow.

OFP_FLOW_PERMANENT , openflow.OFP_FLOW_PERMANENT , actions , None ,

SG_PRIORITY , None , None)

instance.incomingFlows.append(flow)

34

Chapter 5

Results

5.1 Elastic IP Addresses

In order to test our Elastic IP implementation, we recorded network traffic between instances

on Clemson’s OneCloud and a client on the Clemson network. We used ping to generate traffic

because it provides measurements on packet loss and packet round trip time (RTT) between the

client and instance. It is important to note that the Elastic IP address pool in OneCloud is assigned

a specific VLAN ID for Clemson’s core network. Therefore, our implementation must also add and

remove VLAN tags as needed during the packet modification. Also of importance is the fact that our

OpenFlow controller’s default behavior is a learning switch. So, before any Elastic IP addresses are

mapped to an instance, the instance’s network traffic will appear to originate from node within our

cloud using Network Address Translation (NAT). The Elastic IP rules installed by our OpenFlow

controller are given an elevated priority to override any rules that exist from the default learning

switch behavior.

There are several scenarios of interest when testing the functionality of our Elastic IP im-

plementation. The most basic case is mapping a single Elastic IP address to a single virtual machine

instance in the cloud. To ensure compatibility with Amazon’s EC2 Elastic IP addresses, we must

also consider two other cases. If we have an Elastic IP address mapped to an instance, we have a

scenario where a user may remap the Elastic IP to another instance in the cloud. Additionally, if

we have an address mapped to an instance, a user may decide to map a new Elastic IP address to

that same instance. This section presents the results of these scenarios in the Clemson OneCloud.

35

5.1.1 Scenario 1: Mapping Elastic IP to Single Host

The most common scenario for Elastic IPs occurs when a user maps a single Elastic IP

address to a single instance in the cloud. Prior to this mapping, the instance did not have an Elastic

IP address mapped to it nor did the Elastic IP address map to another instance in the cloud.

In this scenario, the instance has a private IP address of 10.10.1.50. The Elastic IP address

to be mapped to the instance is 130.127.38.236. The instance is sending packets to a client whose

IP address is 130.127.39.58. Since our OpenFlow controller behaves as a learning switch by default,

we note that the IP address of the cloud node hosting the virtual machine instance is 130.127.39.10.

Listing 5.1 shows the OpenFlow rules installed on the cluster node to apply the Elastic IP

to incoming and outgoing IP traffic. The first rule rewrites the source IP address of outgoing traffic

from 10.10.1.50 to 130.127.38.236 using the action mod nw src. It also replaces the source MAC

address with the MAC address of the cluster node using the action mod dl src. This ensures reply

packets will find the correct node in the cloud upon return. It also replaces the destination MAC

address of the packet with the MAC address of the Elastic IP VLAN’s gateway to ensure proper

routing within the campus network.

Listing 5.1: Elastic IP Scenario 1: OpenFlow Rules

1 priority =32778 ,ip,in_port=8,nw_src =10.10.1.50 actions=mod_nw_src :130.127.38.236 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :00:17: df:2b:08:00 , output :1

2 priority =32778 ,ip,in_port=1,nw_dst =130.127.38.236 actions=mod_nw_dst :10.10.1.50 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :02:00:0a:0a:01:32 , strip_vlan ,output :8

The second rule rewrites incoming traffic’s destination IP address from 130.127.38.236 to

10.10.1.50 using the action mod nw dst. It also replaces the destination MAC address with the MAC

address of the virtual machine instance using the action mod dl dst. Since our Elastic IP address is

also VLAN tagged, the rule uses the action strip vlan to remove the VLAN tag from the incoming

packet before sending it to the instance. The last action in the OpenFlow rule, output, directs the

switch to send the packet out on the port on which the instance is attached.

Listing 5.2 shows the output from ping during our scenario. The session statistics indicate

that the instance had 0% packet loss when the Elastic IP address mapping was established and then

removed. Also, line 7 indicates a spike in the packet delay from less than 1 ms to 13.5 ms. This is due

to the time it takes the OpenFlow controller to install the rules on the switch, the switch to re-route

36

the network traffic, and the client to send ARP Requests for the Elastic IP. After this initial spike in

delay, the packet delay is noticeably higher (lines 8-14) because our Elastic IP belongs to a VLAN

on the campus network. Therefore, it is routed through the VLAN gateway server, whereas before

we mapped the Elastic IP address, the packets were only routed through the switch connecting the

cluster node and the client. When we removed the Elastic IP mapping, the next packet sent had an

ICMP sequence number of 13 (see line 25 in Listing 5.3). A corresponding spike in the packet delay

is seen on line 15 as our OpenFlow controller installs the new flow rules. The ping output shows

the packet delay returning to values below 1 ms on lines 16-18, indicating the packet returned to its

original route.

Listing 5.2: Elastic IP Scenario 1: ping Output

root@ec2 -vm -589:~# ping 130.127.39.58

2 PING 130.127.39.58 (130.127.39.58) 56(84) bytes of data.

64 bytes from 130.127.39.58: icmp_req =1 ttl =63 time =68.5 ms

4 64 bytes from 130.127.39.58: icmp_req =2 ttl =63 time =3.81 ms

64 bytes from 130.127.39.58: icmp_req =3 ttl =63 time =0.604 ms

6 64 bytes from 130.127.39.58: icmp_req =4 ttl =63 time =0.685 ms

64 bytes from 130.127.39.58: icmp_req =5 ttl =63 time =13.5 ms

8 64 bytes from 130.127.39.58: icmp_req =6 ttl =63 time =3.16 ms

64 bytes from 130.127.39.58: icmp_req =7 ttl =63 time =3.05 ms

10 64 bytes from 130.127.39.58: icmp_req =8 ttl =63 time =3.38 ms

64 bytes from 130.127.39.58: icmp_req =9 ttl =63 time =2.97 ms

12 64 bytes from 130.127.39.58: icmp_req =10 ttl =63 time =3.14 ms

64 bytes from 130.127.39.58: icmp_req =11 ttl =63 time =3.05 ms

14 64 bytes from 130.127.39.58: icmp_req =12 ttl =63 time =2.93 ms

64 bytes from 130.127.39.58: icmp_req =13 ttl =63 time =15.0 ms

16 64 bytes from 130.127.39.58: icmp_req =14 ttl =63 time =0.690 ms

64 bytes from 130.127.39.58: icmp_req =15 ttl =63 time =0.627 ms

18 64 bytes from 130.127.39.58: icmp_req =16 ttl =63 time =0.660 ms

20 --- 130.127.39.58 ping statistics ---

16 packets transmitted , 16 received , 0% packet loss , time 15010ms

22 rtt min/avg/max/mdev = 0.604/110.967/1317.517/321.744 ms , pipe 2

Listing 5.3 contains the tcpdump trace of our ping session. The traffic is originating from

the instance and tcpdump is collecting the traffic on the client machine. Without the Elastic IP

address, the virtual machine traffic is filtered through NAT on the cloud node. Initially, the ICMP

Echo Request packets originate from 130.127.39.10, our cloud node’s network interface (see lines

1-8). After we associate the Elastic IP address with the instance, the packets appear to originate

from 130.127.38.236, our Elastic IP address. This is seen in lines 9-24 in network trace. We then

disassociate the Elastic IP address and the packets originate from our cluster node again (lines

25-32). The trace results show a continuous flow of ICMP packets between the instance and the

37

physical host as evidenced by the continuous sequence numbers for the same ICMP identifier value.

Listing 5.3: Elastic IP Scenario 1: tcpdump Output

22:47:20.493454 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 1

2 22:47:20.493514 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 1

22:47:21.459825 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 2

4 22:47:21.459870 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 2

22:47:22.458633 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 3

6 22:47:22.458683 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 3

22:47:23.457816 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 4

8 22:47:23.457896 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 4

22:47:24.464819 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 5

10 22:47:24.464892 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 5

22:47:25.459463 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 6

12 22:47:25.459488 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 6

22:47:26.460872 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 7

14 22:47:26.460952 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 7

22:47:27.462211 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 8

16 22:47:27.462296 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 8

22:47:28.463693 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 9

18 22:47:28.463731 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 9

22:47:29.464951 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 10

20 22:47:29.465029 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 10

22:47:30.466285 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 11

22 22:47:30.466366 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 11

22:47:31.465821 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1348,seq 12

24 22:47:31.465880 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1348,seq 12

22:47:32.479222 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 13

26 22:47:32.479290 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 13

22:47:33.466915 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 14

28 22:47:33.466993 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 14

22:47:34.465882 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 15

30 22:47:34.465939 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 15

22:47:35.465831 IP 130.127.39.10 > 130.127.39.58: ICMP echo request ,id 1348,seq 16

32 22:47:35.465908 IP 130.127.39.58 > 130.127.39.10: ICMP echo reply ,id 1348,seq 16

5.1.2 Scenario 2: Transferring an Elastic IP Between Hosts

Another common scenario for Elastic IPs is remapping the Elastic IP address to a failover

instance. In this scenario, an Elastic IP is mapped to one virtual machine instance in the cloud. The

user then maps the same Elastic IP address to a different instance in the cloud. End-users should

not notice a significant disruption in the service provided by the instances.

In this scenario, we have two instances, I1 and I2, with private IP addresses of 10.10.1.50 and

10.10.1.51 respectively. The Elastic IP address to be mapped between the instances is 130.127.38.236.

The client generating traffic to the instance has an IP address of 130.127.39.58.

Listing 5.4 shows the two OpenFlow rules that were installed when the Elastic IP address

was mapped to I1 (lines 2-3), and the two new rules installed after the Elastic IP address was mapped

38

to I2 (lines 5-6). When the mapping changed, the first two rules (lines 2-3) were removed. The first

rule on line 2 modifies outgoing packets, setting their source IP address to the Elastic IP address.

The second rule on line 3 modifies incoming packets and rewrites their destination IP address to the

instance’s private IP address. When the Elastic IP is mapped to I2, the private IP address used in

the rules changes to 10.10.1.51. Also, the action mod dl dst on line 6 now changes the destination

MAC address of the packet to the MAC address of I2.

Listing 5.4: Elastic IP Scenario 2: OpenFlow Rules

1 # Rules for Elastic IP mapped to Instance 1

2 priority =32778 ,ip,in_port=8,nw_src =10.10.1.50 actions=mod_nw_src :130.127.38.236 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :00:17: df:2b:08:00 , output :1

3 priority =32778 ,ip,in_port=1,nw_dst =130.127.38.236 actions=mod_nw_dst :10.10.1.50 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :02:00:0a:0a:01:32 , strip_vlan ,output :8

4 # Rules for Elastic IP mapped to Instance 2

5 priority =32778 ,ip,in_port=9,nw_src =10.10.1.51 actions=mod_nw_src :130.127.38.236 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :00:17: df:2b:08:00 , output :1

6 priority =32778 ,ip,in_port=1,nw_dst =130.127.38.236 actions=mod_nw_dst :10.10.1.51 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :02:00:0a:0a:01:33 , strip_vlan ,output :9

Listing 5.5: Elastic IP Scenario 2: ping Output

bash -3.2$ ping 130.127.38.236

2 PING 130.127.38.236 (130.127.38.236): 56 data bytes

64 bytes from 130.127.38.236: icmp_seq =0 ttl =63 time =15.563 ms

4 64 bytes from 130.127.38.236: icmp_seq =1 ttl =63 time =4.471 ms

64 bytes from 130.127.38.236: icmp_seq =2 ttl =63 time =2.970 ms

6 64 bytes from 130.127.38.236: icmp_seq =3 ttl =63 time =3.014 ms

64 bytes from 130.127.38.236: icmp_seq =4 ttl =63 time =3.300 ms

8 64 bytes from 130.127.38.236: icmp_seq =5 ttl =63 time =2.968 ms

64 bytes from 130.127.38.236: icmp_seq =6 ttl =63 time =4.475 ms

10 64 bytes from 130.127.38.236: icmp_seq =7 ttl =63 time =2.899 ms

64 bytes from 130.127.38.236: icmp_seq =8 ttl =63 time =2.933 ms

12 64 bytes from 130.127.38.236: icmp_seq =9 ttl =63 time =3.266 ms

64 bytes from 130.127.38.236: icmp_seq =10 ttl=63 time =2.920 ms

14 64 bytes from 130.127.38.236: icmp_seq =11 ttl=63 time =3.290 ms

64 bytes from 130.127.38.236: icmp_seq =12 ttl=63 time =3.134 ms

16 64 bytes from 130.127.38.236: icmp_seq =13 ttl=63 time =5.176 ms

64 bytes from 130.127.38.236: icmp_seq =14 ttl=63 time =3.377 ms

18 64 bytes from 130.127.38.236: icmp_seq =15 ttl=63 time =3.249 ms

64 bytes from 130.127.38.236: icmp_seq =16 ttl=63 time =3.492 ms

20 64 bytes from 130.127.38.236: icmp_seq =17 ttl=63 time =5.177 ms

22 --- 130.127.38.236 ping statistics ---

18 packets transmitted , 18 packets received , 0.0% packet loss

24 round -trip min/avg/max/stddev = 2.899/4.204/15.563/2.851 ms

Listing 5.5 shows the output from ping during our scenario. The session statistics indicate

that the client experienced 0% packet loss when the Elastic IP address was remapped to I2 and then

39

back to I1. Before the ping session begins, the Elastic IP is mapped to instance I1. After ping sends

packet 5, the Elastic IP address is remapped to I2. Line 9 shows a small spike in the round-trip

delay of the next packet. The Elastic IP address is remapped back to instance I1 after packet 12

is sent. The round-trip delay of the next packet indicates a small spike on line 16. These spikes

correspond to the overhead required to remap the Elastic IP address and re-route network traffic.

Listing 5.6: Elastic IP Scenario 2: tcpdump Output

Captured on Instance 1

2 23:50:28.800251 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 0

23:50:28.800281 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 0

4 23:50:29.796307 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 1

23:50:29.796333 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 1

6 23:50:30.794960 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 2

23:50:30.794989 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 2

8 23:50:31.795226 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 3

23:50:31.795259 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 3

10 23:50:32.795599 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 4

23:50:32.795625 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 4

12 23:50:33.795365 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 5

23:50:33.795396 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 5

14 23:50:42.796956 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 14

23:50:42.796985 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 14

16 23:50:43.797241 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 15

23:50:43.797271 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 15

18 23:50:44.797660 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 16

23:50:44.797687 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 16

20 23:50:45.799463 IP 130.127.39.58 > 10.10.1.50: ICMP echo request ,id 25411,seq 17

23:50:45.799487 IP 10.10.1.50 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 17

22 # Captured on Instance 2

23:50:35.164414 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 6

24 23:50:35.164450 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 6

23:50:36.163047 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 7

26 23:50:36.163077 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 7

23:50:37.163218 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 8

28 23:50:37.163247 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 8

23:50:38.163722 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 9

30 23:50:38.163754 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 9

23:50:39.163486 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 10

32 23:50:39.163516 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 10

23:50:40.164016 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 11

34 23:50:40.164050 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 11

23:50:41.164054 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 12

36 23:50:41.164081 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 12

23:50:42.166206 IP 130.127.39.58 > 10.10.1.51: ICMP echo request ,id 25411,seq 13

38 23:50:42.166233 IP 10.10.1.51 > 130.127.39.58: ICMP echo reply ,id 25411 ,seq 13

Listing 5.6 contains the tcpdump traces of our ping session between the client and the Elastic

IP address. The traffic originates from the client and tcpdump is collecting the traffic on instances

I1 (lines 2-21) and I2 (lines 23-38). Lines 2-13 show that I1 received six packets from our client at

130.127.39.58. Note that the IP address for I1 in the trace is its private IP address, 10.10.1.50. This

is because it does not know that an Elastic IP address has been mapped to it. After line 13, we

40

observe a break in the ICMP sequence numbers of the packets received by I1. This is because the

Elastic IP address has been remapped to I2. I2 received eight packets on lines 23-38 from the client

machine. The private IP address in the network trace is 10.10.1.51, which is the IP address of I2.

After packet 13 is received, the Elastic IP address is remapped back to I1. Lines 14-21 show that I1

received the remaining packets sent by the client to the Elastic IP address. Note that between the

two network traces, all of the packets sent by the client were received and acknowledged by one of

the two instances.

5.1.3 Scenario 3: Assigning New Elastic IP to Host With Elastic IP

The final scenario discussed for Elastic IP addresses is assigning a new Elastic IP address to

an instance that already has an Elastic IP address mapped to it. In this scenario, the new Elastic

IP address will replace the current mapping because only one Elastic IP can be mapped to a single

instance.

We have a single instance with a private IP address of 10.10.1.50. We have been allocated

two Elastic IP addresses from the address pool, 130.127.38.236 and 130.127.38.237. We will refer to

these as E1 and E2 respectively. Traffic will be directed from the instance to a client with an IP

address of 130.127.39.58 and the network traffic is recorded using tcpdump on the client.

Listing 5.7: Elastic IP Scenario 3: OpenFlow Rules

1 # Rules when E1 is installed

2 priority =32778 ,ip,in_port=8,nw_src =10.10.1.50 actions=mod_nw_src :130.127.38.236 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :00:17: df:2b:08:00 , output :1

3 priority =32778 ,ip,in_port=1,nw_dst =130.127.38.236 actions=mod_nw_dst :10.10.1.50 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :02:00:0a:0a:01:32 , strip_vlan ,output :8

4 # Rules when E2 is installed

5 priority =32778 ,ip,in_port=8,nw_src =10.10.1.50 actions=mod_nw_src :130.127.38.237 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :00:17: df:2b:08:00 , output :1

6 priority =32778 ,ip,in_port=1,nw_dst =130.127.38.237 actions=mod_nw_dst :10.10.1.50 ,

mod_dl_src :00:1a:a0:1d:ba:81, mod_dl_dst :02:00:0a:0a:01:32 , strip_vlan ,output :8

Listing 5.7 shows the flow rules installed during our scenario. When E1 is mapped to the

instance, two flow rules are installed (lines 2-3). The first rule modifies outgoing packets by changing

the instance’s private IP address, 10.10.1.50, to E1. The second rule converts the destination IP

address from E1, 130.127.38.236, to that of the instance’s private IP address, 10.10.1.50. When E2

is mapped to the instance, the rules for E1 are removed from the switch. Then the rules for E2 (lines

5-6) are installed on the switch. These rules are identical to the original rules, except the Elastic IP

41

address is now that of E2.

Listing 5.8: Elastic IP Scenario 3: ping Output

root@ec2 -vm -589:~# ping 130.127.39.58

2 PING 130.127.39.58 (130.127.39.58) 56(84) bytes of data.

64 bytes from 130.127.39.58: icmp_req =1 ttl =63 time =12.2 ms

4 64 bytes from 130.127.39.58: icmp_req =2 ttl =63 time =6.29 ms

64 bytes from 130.127.39.58: icmp_req =3 ttl =63 time =2.93 ms

6 64 bytes from 130.127.39.58: icmp_req =4 ttl =63 time =3.00 ms

64 bytes from 130.127.39.58: icmp_req =5 ttl =63 time =19.2 ms

8 64 bytes from 130.127.39.58: icmp_req =6 ttl =63 time =2.94 ms

64 bytes from 130.127.39.58: icmp_req =7 ttl =63 time =3.44 ms

10 64 bytes from 130.127.39.58: icmp_req =8 ttl =63 time =3.24 ms

64 bytes from 130.127.39.58: icmp_req =9 ttl =63 time =3.24 ms

12 64 bytes from 130.127.39.58: icmp_req =10 ttl =63 time =2.97 ms

64 bytes from 130.127.39.58: icmp_req =11 ttl =63 time =2.87 ms

14 64 bytes from 130.127.39.58: icmp_req =12 ttl =63 time =11.2 ms

64 bytes from 130.127.39.58: icmp_req =13 ttl =63 time =6.22 ms

16 64 bytes from 130.127.39.58: icmp_req =14 ttl =63 time =2.99 ms

64 bytes from 130.127.39.58: icmp_req =15 ttl =63 time =4.48 ms

18
--- 130.127.39.58 ping statistics ---

20 15 packets transmitted , 15 received , 0% packet loss , time 14019ms

rtt min/avg/max/mdev = 2.872/5.825/19.264/4.629 ms

Listing 5.8 shows the output from ping during our scenario. The session statistics indicate

that the instance had 0% packet loss when the new Elastic IP address, E2, was mapped to the

instance. Before the ping session begins, the Elastic IP E1 is mapped to the instance. E2 is mapped

to the instance after packet 4 has been sent to the client. Line 7 shows a large spike in the packet

delay from 3.00 ms to 19.2 ms. This corresponds to the time it takes to uninstall the old Elastic IP

mapping, install the new mapping, and for the ARP cache to update on the client machine. The

packet delay seen in lines 8-13 are stable values averaging 3.11 ms. Then the address E1 is mapped

back to the instance and the E2 mapping is removed. Line 14 shows another large spike in the

packet delay when this remapping occurs.

The tcpdump trace of our ping session is contained in Listing 5.9. The traffic is originating

from the instance and tcpdump is collecting the traffic on the client machine. Initially, the address

E1 is mapped to the instance, so the client sees traffic originating from 130.127.38.236 (see lines

1-8). We then map address E2 to the instance. The controller recognizes that the instance already

has an address mapped to it and removes any associated flow rule entries. It then installs the new

flow rules on the switch to map E2 to the instance. This can be observed on line 9 when the source

of the ICMP traffic changes to 130.127.38.237, or E2. Note that the ICMP Identification number

remains the same. The traffic continues to originate from E2 until we remap E1 to the instance.

42

Lines 23-30 indicate the source address of the traffic is back to E1.

Listing 5.9: Elastic IP Scenario 3: tcpdump Output

1 23:23:52.859807 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 1

23:23:52.859870 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 1

3 23:23:53.859938 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 2

23:23:53.860019 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 2

5 23:23:54.857920 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 3

23:23:54.857999 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 3

7 23:23:55.859103 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 4

23:23:55.859184 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 4

9 23:23:56.867188 IP 130.127.38.237 > 130.127.39.58: ICMP echo request ,id 1430,seq 5

23:23:56.867267 IP 130.127.39.58 > 130.127.38.237: ICMP echo reply ,id 1430,seq 5

11 23:23:57.861837 IP 130.127.38.237 > 130.127.39.58: ICMP echo request ,id 1430,seq 6

23:23:57.861907 IP 130.127.39.58 > 130.127.38.237: ICMP echo reply ,id 1430,seq 6

13 23:23:58.862934 IP 130.127.38.237 > 130.127.39.58: ICMP echo request ,id 1430,seq 7

23:23:58.863014 IP 130.127.39.58 > 130.127.38.237: ICMP echo reply ,id 1430,seq 7

15 23:23:59.864618 IP 130.127.38.237 > 130.127.39.58: ICMP echo request ,id 1430,seq 8

23:23:59.864710 IP 130.127.39.58 > 130.127.38.237: ICMP echo reply ,id 1430,seq 8

17 23:24:00.866064 IP 130.127.38.237 > 130.127.39.58: ICMP echo request ,id 1430,seq 9

23:24:00.866143 IP 130.127.39.58 > 130.127.38.237: ICMP echo reply ,id 1430,seq 9

19 23:24:01.867464 IP 130.127.38.237 > 130.127.39.58: ICMP echo request ,id 1430,seq 10

23:24:01.867533 IP 130.127.39.58 > 130.127.38.237: ICMP echo reply ,id 1430,seq 10

21 23:24:02.868574 IP 130.127.38.237 > 130.127.39.58: ICMP echo request ,id 1430,seq 11

23:24:02.868635 IP 130.127.39.58 > 130.127.38.237: ICMP echo reply ,id 1430,seq 11

23 23:24:03.876051 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 12

23:24:03.876127 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 12

25 23:24:04.875417 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 13

23:24:04.875489 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 13

27 23:24:05.873506 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 14

23:24:05.873590 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 14

29 23:24:06.874735 IP 130.127.38.236 > 130.127.39.58: ICMP echo request ,id 1430,seq 15

23:24:06.874800 IP 130.127.39.58 > 130.127.38.236: ICMP echo reply ,id 1430,seq 15

5.1.4 Summary

This section presented three scenarios where Elastic IP addresses were mapped to instances

in the cloud. The most common scenario occurs when a user maps a new Elastic IP address to

an instance without an Elastic IP address mapped to it already. Another common scenario occurs

when a user must remap an Elastic IP to another instance in the cloud as in the case with failovers.

The final scenario presented occurs when a user maps a new Elastic IP address to an instance that

already has an Elastic IP address mapped to it. In this case, the old mapping is removed and the

new mapping is installed by the OpenFlow controller.

Because our Elastic IP implementation uses the OpenFlow controller, there is minimal delay

in associating an Elastic IP address with a running instance. The flow rules are installed on the

cloud node’s bridge interface and do not have to propagate throughout the cloud. Once the rules are

43

installed, all packet modification occurs at line-rate on the networking hardware avoiding latency

due to centralized processing. This behavior is seen in the observed packet delay in the ping output.

Packets experience a brief spike in round trip time when new flow rules are installed. After the

initial spike, the network stabilizes quickly.

5.2 Security Groups

In order to test our Security Groups implementation, we recorded network traffic between

instances on Clemson’s OneCloud and a client on the Clemson network. We used the netcat

application to make connections to our instances from clients. netcat was chosen because of its

ability to make connections using both TCP and UDP transport protocols without the overhead of

any application protocols (SSH, HTTP, etc).

There are several scenarios of interest when testing the functionality of our Security Groups

implementation. Since security groups allow users to specify the source of incoming traffic using a

variety of formats, it is important to consider how these formats affect the resulting OpenFlow rules

that are generated. Also, we must demonstrate that these rules do in fact prevent applications from

connecting to an instance unless the security group permits it. Additionally, an instance can belong

to multiple Security Groups. Therefore, it is important to observe how the rules from each group

are aggregated together for an instance. This section presents the results of these scenarios in the

Clemson OneCloud.

5.2.1 OpenFlow Rules Resulting from Various source Formats

As previously discussed, the source field of a Security Group rule has multiple valid for-

mats. The first format allows network traffic from any source IP address, a value of 0.0.0.0.

When 0.0.0.0 is given as the source, the OpenFlow rule’s source IP field is set to a wildcard to

match all IP addresses. Listing 5.10 shows the resulting rule when TCP traffic on port 22 is al-

lowed from any IP address. The rule does not display the field nw src because it is wildcarded.

44

Listing 5.10: Security Group Source Formats: Allow All

1 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:36 , nw_dst =10.10.1.54 , tp_dst =22 actions=

output :5

Sometimes it is desirable to specify a range of IP addresses that are allowed access. For

example, an administrator may want to restrict TCP traffic on port 22 to an instance by only

allowing the traffic to originate from an IP address in the range 10.10.1.2 - 10.10.1.5. In this case,

the OpenFlow controller must enumerate the range of IP addresses and create a rule for each address

in the range. Listing 5.11 contains the four resulting OpenFlow rules if the source field is set to

10.10.1.2-10.10.1.5. The rules are identical except for the field nw src.

Listing 5.11: Security Group Source Formats: Allow IP Range

1 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:36 , nw_src =10.10.1.5 , nw_dst =10.10.1.54 ,

tp_dst =22 actions=output :5

2 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:36 , nw_src =10.10.1.4 , nw_dst =10.10.1.54 ,

tp_dst =22 actions=output :5

3 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:36 , nw_src =10.10.1.2 , nw_dst =10.10.1.54 ,

tp_dst =22 actions=output :5

4 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:36 , nw_src =10.10.1.3 , nw_dst =10.10.1.54 ,

tp_dst =22 actions=output :5

In most cases, the network access is restricted to traffic originating from a specific subnet.

A subnet can be specified using the full netmask, such as 10.10.1.0/255.255.255.0, or using CIDR

notation such as 10.10.1.0/24. In the former case, the controller must convert the full netmask

to CIDR notation. Both cases result in the same rule being generated, as seen in Listing 5.12.

The OpenFlow protocol supports specifying subnets for source and destination IP addresses, so the

controller does not need to enumerate the addresses in the subnet.

The final case for the source field is a single IP address. In this case, the controller simply

sets the value of nw src in the OpenFlow rule to the IP address specified. This can be seen in

Listing 5.13. The Security Group rule created allows TCP traffic on port 22 from the IP address

10.10.1.32.

45

Listing 5.12: Security Group Source Formats: Allow IP Subnet

1 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:36 , nw_src =10.10.1.0/24 , nw_dst =10.10.1.54 ,

tp_dst =22 actions=output :5

Allowing different formats for the source field of a Security Group rule provides greater

flexibility when granting network access to an instance. The OneCloud OpenFlow controller can

correctly generate OpenFlow rules for any of the valid source formats, as illustrated by the examples

presented.

Listing 5.13: Security Group Source Formats: Allow Single IP

1 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:36 , nw_src =10.10.1.32 , nw_dst =10.10.1.54 ,

tp_dst =22 actions=output :5

5.2.2 Enabling Access to an Instance by Adding Security Group Rules

This scenario addresses the use case where an instance has been started in the cloud and

belongs to one or more Security Groups, none of which allow access for a particular application. To

simplify this example, the instance will belong to a single Security Group, however, the process is

identical for membership in multiple Security Groups.

Listing 5.14: Security Group Scenario 1: OpenFlow Rules

1 # Before enabling 8080

2 priority =32773 ,ip,dl_dst =02:00:0a:0a:01:34 , nw_dst =10.10.1.52 actions=drop

3 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:34 , nw_dst =10.10.1.52 , tp_dst =80 actions=

output :10

4
5 # After enabling 8080

6 priority =32773 ,ip,dl_dst =02:00:0a:0a:01:34 , nw_dst =10.10.1.52 actions=drop

7 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:34 , nw_dst =10.10.1.52 , tp_dst =8080 actions=

output :10

8 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:34 , nw_dst =10.10.1.52 , tp_dst =80 actions=

output :10

Suppose a network administrator has created a Security Group to protect a web server.

This group only allows HTTP traffic on TCP port 80 to reach the virtual machine. One of the

web developers requests access to TCP port 8080 for development work on the web server. The

administrator must now modify the rules for the Security Group to allow the new traffic.

46

Listing 5.14 shows the OpenFlow rules installed by the controller when the instance is first

launched in the cloud (lines 2-3) and after the new rule has been added (lines 6-8). The first rule on

line 2 is the DROP rule that blocks all incoming traffic to the instance. This rule has an elevated

priority, 32773, so that it takes precedence over the rules installed by the controller’s default behavior,

a learning switch. The next rule on line 3 allows TCP traffic on port 80 to reach the instance. Any

TCP traffic destined for the instance’s IP and MAC address on port 80 will be forwarded by the

switch out port 10, where the instance resides. This rule has a priority of 32778, which is higher

than the DROP rule. This ensures packets that match this rule are forwarded by the switch and

not dropped. After the administrator enables traffic for TCP port 8080, a new flow rule is installed

(see line 7). This rule is identical to the rule on line 8, except the TCP port is now 8080.

Listing 5.15: Security Group Scenario 1: tcpdump Output

00:34:15.362712 IP 10.10.1.1.52380 > 10.10.1.52.80: Flags[S],seq 2072315589

2 00:34:15.377504 IP 10.10.1.52.80 > 10.10.1.1.52380: Flags[S.],seq 2695841706 , ack

2072315590

00:34:15.377531 IP 10.10.1.1.52380 > 10.10.1.52.80: Flags[.],ack 1

4 00:34:18.161429 IP 10.10.1.1.52380 > 10.10.1.52.80: Flags[P.],seq 1:7,ack 1

00:34:18.161683 IP 10.10.1.52.80 > 10.10.1.1.52380: Flags[.],ack 7

6 00:34:20.305407 IP 10.10.1.1.52380 > 10.10.1.52.80: Flags[F.],seq 7,ack 1

00:34:20.305747 IP 10.10.1.52.80 > 10.10.1.1.52380: Flags[F.],seq 1,ack 8

8 00:34:20.305779 IP 10.10.1.1.52380 > 10.10.1.52.80: Flags[.],ack 2

00:34:28.962676 IP 10.10.1.1.56313 > 10.10.1.52.8080: Flags[S],seq 2292193873

10 00:34:31.962320 IP 10.10.1.1.56313 > 10.10.1.52.8080: Flags[S],seq 2292193873

00:34:37.962324 IP 10.10.1.1.56313 > 10.10.1.52.8080: Flags[S],seq 2292193873

12 00:35:27.778677 IP 10.10.1.1.56315 > 10.10.1.52.8080: Flags[S],seq 3209508960

00:35:27.792671 IP 10.10.1.52.8080 > 10.10.1.1.56315: Flags[S.],seq 3841054552 , ack

3209508961

14 00:35:27.792697 IP 10.10.1.1.56315 > 10.10.1.52.8080: Flags[.],ack 1

00:35:30.817437 IP 10.10.1.1.56315 > 10.10.1.52.8080: Flags[P.],seq 1:7,ack 1

16 00:35:30.817716 IP 10.10.1.52.8080 > 10.10.1.1.56315: Flags[.],ack 7

00:35:34.481346 IP 10.10.1.1.56315 > 10.10.1.52.8080: Flags[F.],seq 7,ack 1

18 00:35:34.481672 IP 10.10.1.52.8080 > 10.10.1.1.56315: Flags[F.],seq 1,ack 8

00:35:34.481708 IP 10.10.1.1.56315 > 10.10.1.52.8080: Flags[.],ack 2

A tcpdump trace of network traffic is shown in Listing 5.15. The tcpdump trace was recorded

on the cloud node’s physical ethernet port so that all packets could be observed before the switch

dropped any of them. Lines 1-8 show a session between the client and the instance using TCP port

80. The client connected to the instance on port 80 using netcat, sent a short message, and then

closed the TCP connection. The client then attempts to connect to the instance on port 8080, which

is currently blocked. Lines 9-11 show three TCP SYN packets sent to the instance attempting to

establish a TCP connection port 8080. The client never receives an ACK packet from the instance

indicating it wants to complete the TCP handshake. The administrator then adds the new rule

47

allowing TCP traffic on port 8080 to reach the instance. The controller installs the new rule on

the switch and the client tries to connect again. Lines 12-14 indicate that the client sent a TCP

SYN packet on port 8080, received an ACK packet from the instance, and the completed the TCP

handshake, establishing a TCP connection. Lines 15-19 show the client sending a brief message to

the instance and then terminating the TCP connection.

5.2.3 An Instance Belongs to Multiple Security Groups

In most cases, an instance will belong to multiple Security Groups, each group allowing a

particular type of access (i.e. ICMP, HTTP, SSH, etc). In these cases, the OpenFlow controller must

aggregate all of the Security Group rules for an instance and install them in the switch connected

to the instance.

Suppose we have three different Security Groups named pingGroup, httpGroup, and ssh-

Group. The pingGroup allows ICMP Echo Request and ICMP Echo Reply packets to reach the

instance so you can check for network connectivity using ping. The httpGroup allows users to

connect to the instance over TCP port 80 from any source IP address. The sshGroup allows users

to login to the instance using the SSH protocol on TCP port 22 from any source IP address. The

pingGroup consists of two rules, one for requests and another for replies, and the other two groups

each have a single rule.

To test the rule aggregation, we start an instance in the cloud that belongs to all three

Security Groups. As seen in Listing 5.16, the OpenFlow controller has installed five OpenFlow rules

governing traffic to our instance. The first rule is the DROP rule that prevents any network traffic

from reaching the instance. The rule on line 2 is the result of the httpGroup. It allows TCP traffic

on port 80 to reach the instance. The sshGroup’s rule allowing TCP traffic on port 22 is rule seen

on line 3 in the listing. The last two rules correspond to the pingGroup’s rules: one allowing Echo

Request packets and the other Echo Reply packets.

Anyone who sees the result of the aggregated rules would assume the instance belongs to

a single Security Group that allows HTTP, SSH, and ICMP traffic to the instance. However, the

Security Groups feature allows administrators to create groups with a single purpose (web server,

remote login, etc) and combine the required groups for a particular instance. This simplifies the

management of network security in the cloud and allows users to adjust security requirements for

an instance when it is launched.

48

Listing 5.16: Security Group Scenario 2: OpenFlow Rules

1 priority =32773 ,ip,dl_dst =02:00:0a:0a:01:35 , nw_dst =10.10.1.53 actions=drop

2 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:35 , nw_dst =10.10.1.53 , tp_dst =80 actions=

output :4

3 priority =32778 ,tcp ,dl_dst =02:00:0a:0a:01:35 , nw_dst =10.10.1.53 , tp_dst =22 actions=

output :4

4 priority =32778 ,icmp ,dl_dst =02:00:0a:0a:01:35 , nw_dst =10.10.1.53 , icmp_type =8,

icmp_code =0 actions=output :4

5 priority =32778 ,icmp ,dl_dst =02:00:0a:0a:01:35 , nw_dst =10.10.1.53 , icmp_type =0,

icmp_code =0 actions=output :4

5.2.4 Summary

This section presented two scenarios where instances were placed in Security Groups in the

cloud. In the first scenario, an instance was started in a Security Group. The group was modified to

allow incoming traffic for an application after the instance was already started. The second scenario

demonstrated how the OpenFlow controller aggregates rules from multiple Security Groups for a

single instance in the cloud. This section also shows the resulting OpenFlow rules generated from

the various formats of the source field in a Security Group rule.

Because our Security Groups implementation uses the OpenFlow controller, there is minimal

delay when adding or removing rules from a Security Group. Firewall services do not have to be

restarted and the network connectivity of the virtual machine remains available the entire time.

Also, since the network hardware manages the security, there is no longer a bottleneck at a single

firewall appliance. The firewall functionality is distributed across the network devices.

49

Chapter 6

Conclusions and Future Work

We presented a virtualized networking solution for the cloud using the OpenFlow protocol

on Clemson’s OneCloud. This work analyzes the potential of OpenFlow to enable dynamic net-

working in cloud computing and presents reference implementations of Amazon EC2’s Elastic IP

Addresses and Security Groups using the NOX OpenFlow controller and the OpenNebula cloud

provisioning engine. It differs from current research in that it does not use network overlays or route

all packets through a single server, which can lead to degraded network performance. While other

cloud offerings, such as OpenStack and Eucalyptus, provide Elastic IP and Security Group services,

OneCloud uses the network hardware to enable such services instead of a centralized network server.

CloudNaaS and other cloud implementations have used OpenFlow in the cloud, but its use is lim-

ited to isolating networks with VLAN tagging. OneCloud uses OpenFlow to control network traffic

routing and enforce higher-level security rules that cannot be implemented with VLAN tagging.

The solution presented requires some modifications to improve performance and reliability

and be fully compliant with the EC2 specification. The current Elastic IP implementation terminates

existing TCP connections when a mapping is established. When the mapping for an Elastic IP is

removed in the current implementation, all flow rules are removed from the switch immediately.

Likewise, if the user is assigning a new Elastic IP to an instance, all existing flow rules for the instance

are removed immediately, causing existing connections to terminate abruptly. Extensions to the

current implementation will include the installation of microflow rules for existing flows that timeout

once the flow has stopped generating network traffic. This would allow current connections to remain

alive until the user has closed the network connection. Amazon’s EC2 Security Groups allows users

50

to specify another security group as the source of network traffic. Our current implementation only

allows users to specify IP addresses as the source of incoming traffic. Future work will investigate

adding these missing features to the Security Groups implementation in OneCloud.

Currently, work is being done to analyze the performance of our reference implementations

and measure their scalability. Initial scalability testing will be conducted using Clemson’s Pal-

metto Cluster, a high-performance computing cluster. Tests will measure the performance of our

OpenFlow controller and the networking overhead of our solution. Future scalability testing will

investigate deploying Clemson OneCloud to the GENI research infrastructure using GENI Racks.

GENI Racks are self-contained racks of compute, storage, and networking hardware accompanied

by GENI management software. These racks enable organizations to easily join the GENI infras-

tructure and deploy meso-scale experiments on distributed, heterogeneous resources. OneCloud will

provision resources across the GENI infrastructure to conduct at-scale cloud networking research.

Large-scale cloud environments consist of multiple data centers, known as regions or zones,

to minimize network latency and maximize reliability by isolating failures to specific data centers.

However, this creates barriers for cloud users’ resources. Instances launched within one region do

not have layer 2 connectivity to instances launched in a separate region. This also presents problems

if users wish to live migrate a virtual machine instance to another node because the node must be

located in the same data center. OpenNebula and KVM support live virtual machine migration,

however, the disk image must be on a shared file system that can be accessed by all of the cloud nodes.

Future research will focus on the ability to perform live migrations between separate physical data

centers. For OpenNebula, this means migrating instances between Virtual Data Centers (VDCs) by

extending the OpenNebula Zones Server. We will also investigate re-routing live network traffic via

OpenFlow to fail-over instances located in different data centers.

51

Bibliography

[1] Flowvisor. http://flowvisor.org, Nov 2011.

[2] Geni: Exploring networks of the future. http://www.geni.net, Nov 2011.

[3] Nox. http://www.noxrepo.org/, 9 2011.

[4] Openstack open source cloud computing software. http://www.openstack.org, Nov 2011.

[5] Open vswitch. http://openvswitch.org/, February 2012.

[6] Opennebula home page. http://www.opennebula.org, January 2012.

[7] Openstack quantum. http://wiki.openstack.org/Quantum, 3 2012.

[8] Amazon. Overview of amazon web services. White paper, December 2010.

[9] Inc. Amazon. User guide for amazon elastic compute cloud.
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/, Feb 2012.

[10] Inc. Amazon. What is aws? http://aws.amazon.com/what-is-aws/, March 2012.

[11] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient overlay
networks. SIGCOMM Comput. Commun. Rev., 32(1):66–66, January 2002.

[12] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew
Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, and Matei Zaharia. Above the
clouds: A berkeley view of cloud computing. Technical report, 2009.

[13] T. Benson, A. Akella, A. Shaikh, and S. Sahu. Cloudnaas: a cloud networking platform for
enterprise applications. In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 8.
ACM, 2011.

[14] B.J. Brodkin, C. Computing, et al. Gartner: Seven cloud-computing security risks. Infoworld,
pages 2–3, 2008.

[15] Inc. Eucalyptus Systems. Cloud computing software from eucalyptus.
http://www.eucalyptus.com/, 3 2012.

[16] A. Ganguly, A. Agrawal, P.O. Boykin, and R. Figueiredo. Ip over p2p: enabling self-configuring
virtual ip networks for grid computing. In Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, page 10 pp., april 2006.

[17] A. Ganguly, A. Agrawal, P.O. Boykin, and R. Figueiredo. Wow: Self-organizing wide area
overlay networks of virtual workstations. In High Performance Distributed Computing, 2006
15th IEEE International Symposium on, pages 30–42. IEEE, 2006.

52

[18] A. Ganguly, D. Wolinsky, P.O. Boykin, and R. Figueiredo. Decentralized dynamic host con-
figuration in wide-area overlays of virtual workstations. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages 1 –8, march 2007.

[19] Dell Inc. Dynamic insertion of services in a multi-tenant virtual data center.
http://opennetsummit.org/demonstrations.html, Oct 2011.

[20] X. Jiang and D. Xu. Violin: Virtual internetworking on overlay infrastructure. Parallel and
Distributed Processing and Applications, pages 937–946, 2005.

[21] E. Keller and J. Rexford. The platform as a service model for networking. In Proceedings of
the 2010 internet network management conference on Research on enterprise networking, pages
4–4. USENIX Association, 2010.

[22] Radware Ltd. Scalable dos attack detection and mitigation.
http://opennetsummit.org/demonstrations.html, Oct 2011.

[23] P. Marshall, K. Keahey, and T. Freeman. Elastic site: Using clouds to elastically extend site
resources. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pages 43–52. IEEE Computer Society, 2010.

[24] J. Matias, E. Jacob, D. Sanchez, and Y. Demchenko. An openflow based network virtualization
framework for the cloud. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, pages 672 –678, 29 2011-dec. 1 2011.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[26] P. Mell and T. Grance. The nist definition of cloud computing (draft). NIST special publication,
800:145, 2011.

[27] Dejan Miloji andi and, Ignacio M. Llorente, and Ruben S. Montero. Opennebula: A cloud
management tool. Internet Computing, IEEE, 15(2):11 –14, march-april 2011.

[28] M.A. Murphy, L. Abraham, M. Fenn, and S. Goasguen. Autonomic clouds on the grid. Journal
of Grid Computing, 8(1):1–18, 2010.

[29] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov.
The eucalyptus open-source cloud-computing system. In Cluster Computing and the Grid, 2009.
CCGRID’09. 9th IEEE/ACM International Symposium on, pages 124–131. IEEE, 2009.

[30] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker. Extending networking
into the virtualization layer. Proc. HotNets (October 2009), 2009.

[31] Pedro Pisa, Natalia Fernandes, Hugo Carvalho, Marcelo Moreira, Miguel Campista, Lus Costa,
and Otto Duarte. Openflow and xen-based virtual network migration. In Ana Pont, Guy Pujolle,
and S. Raghavan, editors, Communications: Wireless in Developing Countries and Networks
of the Future, volume 327 of IFIP Advances in Information and Communication Technology,
pages 170–181. Springer Boston, 2010. 10.1007/978-3-642-15476-8-17.

[32] RackSpace. Cloud computing, managed hosting, dedicated server hosting by rackspace.
http://www.rackspace.com/, 3 2012.

[33] S. Ramgovind, M.M. Eloff, and E. Smith. The management of security in cloud computing. In
Information Security for South Africa (ISSA), 2010, pages 1 –7, aug. 2010.

53

[34] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Virtual distributed environments in a shared
infrastructure. Computer, 38(5):63–69, 2005.

[35] Santiago@AWS. Feature guide: Amazon ec2 elastic ip addresses.
http://aws.amazon.com/articles/1346, July 2010.

[36] B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster. Virtual infrastructure management
in private and hybrid clouds. Internet Computing, IEEE, 13(5):14–22, 2009.

[37] Ananth I. Sundararaj and Peter A. Dinda. Towards virtual networks for virtual machine grid
computing. In Proceedings of the 3rd conference on Virtual Machine Research And Technology
Symposium - Volume 3, VM’04, pages 14–14, Berkeley, CA, USA, 2004. USENIX Association.

[38] Ananth I. Sundararaj, Ashish Gupta, and Peter A. Dinda. Dynamic topology adaptation of
virtual networks of virtual machines. In Proceedings of the 7th workshop on Workshop on
languages, compilers, and run-time support for scalable systems, LCR ’04, pages 1–8, New
York, NY, USA, 2004. ACM.

[39] M. Tsugawa and J.A.B. Fortes. A virtual network (vine) architecture for grid computing. In
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pages
10–pp. IEEE, 2006.

[40] M. Tsugawa and J.A.B. Fortes. Characterizing user-level network virtualization: performance,
overheads and limits. International Journal of Network Management, 20(3):149–166, 2010.

[41] Richard Wang, Dana Butnariu, and Jennifer Rexford. Openflow-based server load balancing
gone wild. In Proceedings of the 11th USENIX conference on Hot topics in management of
internet, cloud, and enterprise networks and services, Hot-ICE’11, pages 12–12, Berkeley, CA,
USA, 2011. USENIX Association.

[42] David Isaac Wolinsky, Yonggang Liu, and Renato Figueiredo. Towards a uniform self-
configuring virtual private network for workstations and clusters in grid computing. In Proceed-
ings of the 3rd international workshop on Virtualization technologies in distributed computing,
VTDC ’09, pages 19–26, New York, NY, USA, 2009. ACM.

[43] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, and A. Yumerefendi. Embedding virtual
topologies in networked clouds. In Proceedings of the 6th International Conference on Future
Internet Technologies, pages 26–29. ACM, 2011.

54

	Clemson University
	TigerPrints
	5-2012

	OneCloud: A Study of Dynamic Networking in an OpenFlow Cloud
	Gregory Stabler
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Listings
	Introduction and Proposed Work
	Cloud Computing
	Cloud Networking Scenarios
	Proposed Work

	Background and Technologies
	Amazon Web Services
	OpenFlow
	Open vSwitch
	Global Environment for Network Innovations (GENI)
	OpenNebula
	OneCloud

	Related Work
	Virtual Network Topologies and Overlays
	OpenFlow and the Cloud
	Comparison of Cloud Solutions

	Solution
	OpenFlow Controller
	Elastic IP Addresses
	Security Groups

	Results
	Elastic IP Addresses
	Security Groups

	Conclusions and Future Work
	Bibliography

