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ABSTRACT

The Twin Lakes chlorinated ethene plume at the Department of Energy’s

Savannah River Site (SRS) emerges in a wetland in which trichloroethene (TCE) is

completely reduced to ethene and ethane. Novel strains of Dehalococcoides have been

detected from the wetland area. The objectives of this study were 1) to develop an

enrichment culture capable of completely dechlorinating TCE and tetrachloroethene

(PCE) to ethene using samples from the wetland; 2) to evaluate the use of lactate,

emulsified vegetable oil and corn syrup as possible electron donors for biostimulation of

the P-area chlorinated ethene plume at SRS that is not undergoing natural attenuation;

and 3) to evaluate the use of the enrichment culture for bioaugmentation of the P-area

chlorinated ethene plume.

The enrichment culture was started with samples from microcosms that were used

to confirm reductive dechlorination activity in the SRS Twin Lakes area. Samples were

transferred to an anaerobic mineral medium, repeatedly fed with TCE and PCE, and

transferred a second time to mineral medium. TCE and PCE concentrations of 35-40

mg/L and 4-8 mg/L, respectively, were completely consumed by the enrichment culture

within three to five weeks. Quantitative polymerase chain reaction (PCR) analysis

indicated a linear increase in Dehalococcoides as increasing amounts of PCE and TCE

are reduced to ethene. The Dehalococcoides cell density in the enrichment culture has

stabilized at approximately 4.5 x 108 cells per mL. Lactate was used as the electron

donor and carbon source. An electron donor balance indicated that most of the lactate is



iv

fermented to acetate and propionate, with less than 3% used for reductive dechlorination.

Methanogenesis in the enrichment culture is insignificant.

A laboratory study was conducted to compare biostimulation and

bioaugmentation for removal of PCE and TCE from the SRS P-area plume. Microcosms

were prepared with sediment and groundwater from the site, at PCE and TCE

concentrations close to the reported maxima of 5 mg/L and 35 mg/L, respectively. The

pH of the groundwater was adjusted from 5.7 to 7 with NaOH and resazurin was added as

a redox indicator. Lactate, corn syrup and emulsified vegetable oil were used for

biostimulation. Bioaugmentation was assessed using varying doses of the SRS

enrichment culture (1.0, 0.1, 0.01, and 0.001% v/v), along with one treatment using a

commercial bioaugmentation culture (1.0% v/v). After more than eight months of

incubation, there was no evidence of PCE or TCE dechlorination in any of the

biostimulated treatments, even though the amount of donor added was in considerable

excess and redox and pH conditions were favorable. The microcosms were

bioaugmented after three months of incubation (to establish favorable redox conditions)

and the response was immediate. In the treatment that received the 1.0% dose of SRS

culture, reduction of the PCE and TCE to ethene was completed in approximately three

weeks. The lower doses of SRS culture were also effective, although up to seven months

of incubation was needed before dechlorination was complete. In contrast,

dechlorination of PCE and TCE was much slower and incomplete in the treatment that

received the commercial bioaugmentation culture, over the same incubation period. The

microcosm results indicate that the SRS enrichment culture holds promise for use in
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bioaugmentation of the P-area groundwater plume. Efforts are underway to scale up the

enrichment culture in preparation for a pilot-scale field test.
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CHAPTER 1

INTRODUCTION

Chlorinated ethenes are among the most common groundwater contaminants

found at industrial sites throughout the United States. The Department of Energy’s SRS

located in Aiken, South Carolina, is no exception. The P-Area plume is one of many

chlorinated ethene plumes found at SRS. Little is known about the P-Area plume, and

work is in progress to characterize it. Field data has shown this site to be contaminated

with PCE, TCE, and cis-dichloroethene (cDCE). Figures 1.1 through 1.3 show maps of

the PCE, TCE and cDCE plume found at the P-Area, respectively. P-Area groundwater

discharges to Steel Creek where TCE levels above the current Federal drinking water

standard maximum contaminant level set by the United States Environmental Protection

Agency have been detected (22). There are two separate source zones for the P-Area

plume; the P-Area Burning/Rubble Pit (PBRP) and the P-Area Reactor.

The PBRP was built in 1951 to serve as a burning pit for organic chemicals, waste

oils, wood, paper, plastics, and rubber. In 1973, burning was terminated and the pit was

covered with soil. From 1973 until it reached its capacity in 1978, the pit was used to

dispose of rubble such as brick, tile, concrete, asphalt, rubber, non-returnable empty

drums, and waste solvents including chlorinated ethenes (24). After reaching capacity,

the pit and debris were covered with soil and no other actions were taken to remediate

this site. As a result of these past disposal practices, chlorinated ethenes contaminated

both the soil and groundwater beneath the PBRP (24).
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The second area contributing to the P-Area plume is the P-Area Reactor operable unit. In

this area, both TCE and PCE have been detected at levels as high as 35,000 ppb and

2,500 ppb, respectively (25). These compounds have been detected in groundwater at a

depth of approximately 15 m. While the exact source of the contamination is unknown, it

is believed that dense non-aqueous phase liquid is located near the reactor facility (22).

A similar site at SRS, the C-Area Burning/Rubble Pit, is close to the PBRP and

the chlorinated ethene plume is undergoing complete reduction to ethene and ethane. A

map of the C-Area Burning/Rubble Pit is given in Figure 1.4. One branch of this plume

extends approximately 1220 m to the west and outcrops in the seepline along Twin Lakes

and Fourmile Branch. Another branch of the plume extends to the south and outcrops at

Castor Creek (23). In collaboration with SRS, the Department of Environmental

Engineering & Science at Clemson University conducted a microcosm study using

samples from the Twin Lakes seepline in the C-Area to confirm the occurrence of natural

attenuation by reductive dechlorination (1). Dehalococcoides spp. were detected in

sediment samples taken closest to the wetland, but the product signal was especially weak

and not considered definitive. None of the sediment samples yielded signature terminal

restriction fragments corresponding exactly to in silico digest predictions from 16S rRNA

genes of Dehalococcoides ethenogenes strain 195 or other Dehalococcoides-like

sequences. However, samples from the microcosms that actively dechlorinated cDCE

and vinyl chloride (VC) to ethene and ethane exhibited strong positive signals for

Dehalococcoides compared to the field samples. Restriction digest analysis indicates

strong genotypic similarity between the Bachman Road Dehalococcoides 16S rRNA gene
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Figure 1.4 TCE plume in the C-Area.
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sequence and those from the microcosms prepared with sediment closest to the wetland.

Perhaps most significantly, variant genotypes were also recovered, suggesting the

presence of novel strains of Dehalococcoides (2).

Since the PCE plume in the PBRP is not attenuating naturally beyond cDCE, an

active form of in situ remediation is necessary. Both biostimulation (i.e., addition of

electron donor) and bioaugmentation (i.e., addition of microorganisms plus electron

donor) are possible remediation options. However, biostimulation alone is not likely to

be successful. The lack of daughter products beyond cDCE suggests that the required

Dehalococcoides microorganisms are not present, so even if an excess of electron donor

is provided, further dechlorination is unlikely, at least at a reasonable rate. For this

reason, bioaugmentation may prove to be the best option for this particular site. Since the

microcosms from the C-Area Burning/Rubble Pit have proved able to completely reduce

TCE to ethene and ethane, they could be a viable source of culture for use in

bioaugmenting the P-Area plume.

In many situations, bioaugmentation has been the most attractive method of

enhancing in situ dechlorination, especially at sites at which chlorinated daughter

products have accumulated. A comparison of biostimulation versus bioaugmentation was

done at the Bachman Road Residential Wells Site near Lake Huron, a site contaminated

with PCE. This site used two plots, 4.6 m by 5.5 m, which were separated by a control

plot in order to simultaneously compare biostimulation and bioaugmentation. The

sediment was composed mostly of sand (7.3 m) above low conductivity clay. The

groundwater lies approximately 2.5 m below the surface (16). Two sets of inocula were

used, a pure culture of Desulfurmonas michiganensis strain BRS1 and a mixed culture
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containing at least one Dehalococcoides sp. A total of 200 L (0.056% v/v) of inoculum

was added to the test portion of the aquifer (355 m3) (16). The bioaugmentation plot was

amended with lactate, phosphate, and nitrate after inoculation. The biostimulation plot

was only given lactate (16). The comparison showed that bioaugmentation was not only

more complete but occurred in less than half the time of biostimulation. The

bioaugmentation plot showed almost complete reduction of the initial PCE, TCE, and

cDCE to ethene in 43 days. In the biostimulation plot, there was only 76% reduction to

ethene over 121 days (16).

Bioaugmentation has also proven to be effective in pilot scale studies at several

other sites contaminated with chlorinated ethenes. One such study was done at Dover

Air Force Base, where reduction of TCE had not proceeded past cDCE. An enrichment

culture known to dechlorinate both TCE and cDCE to ethene was used in

bioaugmentation, and complete reduction to ethene was demonstrated (10). Of a 1.5

million square meter contaminated area, the study site covered approximately 900 square

meters. The wells were at a depth of 12 to 15 m below the surface. The soil was

composed of sand and silt on top of a Miocene Calvert Clay aquitard. The total organic

carbon in the soil was low (less than 1%) and the site was initially aerobic (10).

Therefore, in order to obtain reduced conditions lactate was added as an electron donor

prior to bioaugmentation. An enrichment culture from the Department of Energy’s

Pinellas site in Largo, Florida, was used and grown in a chloride-free minimal salts

medium. Enrichments were developed through 10% (v/v) transfers until enough culture

was obtained. TCE-saturated solution was used to spike the culture to a concentration of

5 mg/L. A total of 351 L of culture was injected (10). However, it is unclear how this
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compares with the total liquid volume in the test area. During the bioaugmentation

process, lactate was added continuously at a concentration of 200 mg/L. The first signs

of success were seen 91 days after bioaugmentation, when VC was first detected.

Complete reduction took approximately 200 days and almost 75% of the molar

concentration of TCE was recovered as ethane (10).

Another bioaugmentation study was done at Kelly Air Force Base, Texas, where

dechlorination of PCE also stopped at cDCE. The size of the test area was 10 m by 7.6 m

and 3.1 m deep. The soil was made up of a thin layer (0.31-1.2 m) of organic clay

followed by a layer of tan silt-like clay and a thick layer of limestone and chert gravel

(17). The hydraulic conductivity of the clay-like sediment was not reported. The culture

used was obtained from a site in Southern Ontario and is designated KB-1. It was

enriched by repeated 10% (v/v) transfers to pre-reduced mineral medium and was fed

TCE and methanol. In order to encourage growth, occasionally 20% of the culture was

removed and replaced with fresh medium and the pH was adjusted to 7. For the study at

Kelly Air Force Base, 13 L of KB-1 culture was injected (17). Based on the size of the

test area and assuming a porosity of 0.3, the volume of water treated was 7.1 x 104 L.

The 13 L of KB-1 added represents a dose of 0.018% (v/v). Seventy-three days after

inoculation with KB-1, ethene was detected at all of the wells. Ethene became the

dominant compound in all wells 69 days later. First order reaction rate constants were in

the range of 0.1-0.9 h-1 for cDCE and VC and 1-3 h-1 for PCE and TCE (17). More

importantly, the data showed an increase in the rate over time. All of the wells showed

greater than 70% molar recovery of PCE as ethene. PCR results from final samples
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showed an order of magnitude increase in Dehalococcoides cells per mL of groundwater

from the original inoculum (17).

The effectiveness of bioaugmentation depends at least in part on the number of

Dehalococcoides cells that are delivered, which is a function of the cell density in the

enrichment culture and the volume added. At Bachman Road, Dover Air Force Base, and

the Kelly Air Force Base, the cell densities per mL were 1.12 x 108, 2 x 108, and 108,

respectively (10, 16, 17).

Commercially available cultures could be used for bioaugmentation of the P-area

and other chlorinated ethene plumes at SRS. However, use of a site-developed culture

for application at SRS has several potential benefits. First, the likelihood of obtaining

regulatory approval for use of a site-developed culture is higher than using a commercial

culture developed from a different location. Second, since the site where the

microorganisms were discovered and the site that is being investigated are similar in

geochemistry, the culture may be better suited to survive and grow in the PBRP than a

commercial culture. Third, there is a potential financial advantage in using the site-

developed culture as opposed to a commercially available culture.



CHAPTER 2

RESEARCH OBJECTIVES

The main objectives of this thesis are 1) to develop a sediment-free enrichment

culture from the SRS C-Area microcosms that is capable of using chlorinated ethenes as

terminal electron acceptors and completely dechlorinating the chlorinated ethenes to

ethene and/or ethane, and 2) using microcosms, to compare the effectiveness of

biostimulation and bioaugmentation using the SRS enrichment culture to dechlorinate

chlorinated ethenes in the PBRP plume. The performance of the SRS enrichment culture

will be compared to a commercially available bioaugmentation culture. Groundwater and

soil samples from the PBRP will be used to prepare the microcosms.

The specific objectives are:

1) To develop a sediment-free enrichment culture capable of using PCE,

TCE, cDCE, and VC as terminal electron acceptors and achieving

complete reduction to ethene and/or ethane using the C-Area

Burning/Rubble Pit microcosms as the inoculum source.

2) To evaluate biostimulation as a remediation technique for the PBRP

plume, using lactate, corn syrup, and emulsified vegetable oil as electron

donors. Treatments with no electron donor will be used as controls; and

3) To evaluate bioaugmentation as a remediation technique for the PBRP

plume, comparing the SRS enrichment culture developed in objective 1 with a
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commercially available culture known to reduce chlorinated ethenes completely to

ethene.



CHAPTER 3

MATERIALS AND METHODS

3.1 Chemicals

VC (99.5%) was obtained from Fluka. Ethene (polymer grade, 99.9%), ethane

(Matheson purity grade, 99.95%), and methane (C.P. grade, 99%) were obtained from

Matheson. PCE (99.9%) was obtained from Sigma-Aldrich, TCE (99.5%) from Fisher,

cDCE (99%) from TCI America, and 1,1 DCE (99.5%) from Chem Services. PCE, TCE,

and cDCE were added to microcosms as saturated water solutions (approximately 0.90

mM PCE, 8.4 mM TCE, and 8.2 mM cDCE). Sodium lactate syrup (containing 58.8-

61.2 % sodium lactate; specific gravity = 3.1) was obtained from EM Science. Newman

Zone Nonionic emulsified vegetable oil was obtained from Remediation & Natural

Attenuation Services, Inc. (Brooklyn Center, MN) and regular type 42/43 corn syrup was

obtained from Sweetener Products Company (Vernon, CA). It has a density of 1.418

g/mL and contains 80.3% solids (all sugars), corresponding to approximately 1.2 g/mL of

chemical oxygen demand (COD). This was close to the experimentally determined value

of 1.6 g/mL (see section 3.4). All other chemicals used were reagent grade quality.

3.2 Enrichment Culture

The starting point for the enrichment culture was a set of microcosms prepared by

Bratt (1) that actively dechlorinated TCE, cDCE, and VC to ethene and ethane, using

lactate as the electron donor. After his research was completed, Bratt added chlorinated

ethenes and electron donor to the microcosms and stored them at 4oC. This thesis
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research was initiated by warming Bratt’s nine lactate-fed microcosms (three each from

sites CRP-44, CRP-48, and CRP-50, as shown in Figure 1.4) to room temperature and

adding lactate and TCE and cDCE. These microcosms were selected because when

combined, they offered the best opportunity to accomplish complete dechlorination of

TCE to ethene and ethane. The CRP-44 microcosms exhibited a high level of

dechlorination activity with TCE, although complete dechlorination was sluggish. The

CRP-48 and CRP-50 microcosms exhibited a high level of activity with cDCE and VC,

hence the decision to use a combination of samples from these microcosms to develop an

enrichment culture capable of completely reducing TCE to ethene and ethane.

The enrichment culture was developed in two phases, each representing a

significant dilution of the culture that was used for inoculation. Phase I was prepared by

combining 3 mL from each of Bratt’s nine microcosms, distributing this inoculum to

triplicate 160 mL serum bottles and adding 91 mL of anaerobic mineral medium per

bottle, for a total liquid volume of 100 mL per bottle. This was done in an anaerobic

chamber containing an atmosphere of approximately 98% N2 and 2% H2. The medium

is described by Edwards and Grbić-Galić (9), with the following modifications: the

phosphate buffer was made using 52.5 g K2HPO4 per liter instead of 27.2 g KH2PO4 and

34.8 g K2HPO4; 4.7 g CaCl2·2H2O and 1.8 g FeCl2·H2O were used instead of 7.0 g

CaCl2·6H2O and 2.0 g FeCl2·2H2O for the salt solution; 0.2 g ZnSO4·7H2O was used

instead of 0.1 g ZnCl2 for the trace metal solution; the bicarbonate solution was made

with 16 g NaHCO3 per liter instead of 260 g/L; 50 mL of the bicarbonate solution was

added to the medium instead of 10 mL; and a 5 g/L solution of yeast extract was used
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instead of a vitamin solution (Appendix A). These changes were made based on the

availability of chemicals and the solubility of sodium bicarbonate in water.

The Phase I serum bottles were sealed with Teflon-faced red rubber septa and

aluminum crimp caps. The headspace of the three Phase I enrichment bottles was

sparged with a 30% CO2-70% N2 gas instead of the 20% CO2-80% N2 used by Edwards

and Grbić-Galić (9). TCE (25 µL saturated water, providing 0.21 µmol/bottle, or an

aqueous phase concentration of 230 µg/L) and cDCE (50 µL saturated water, providing

0.41 µmol/bottle, or an aqueous phase concentration of 1,600 µg/L) were added to each

bottle. Lactate was added to meet the electron donor demand. Over approximately 80

days the bottles were given two additional doses of cDCE (50 µL saturated water,

providing 0.41 µmol/bottle, or an aqueous phase concentration of 1,600 µg/L), TCE (100-

300 µL saturated water, providing 0.83-2.5 µmol/bottle, or an aqueous phase

concentration of 910-2,700 µg/L) and one dose of PCE (500 µL saturated water,

providing 0.45 µmol/bottle, or an aqueous phase concentration of 540 µg/L).

After the Phase I enrichments repeatedly reduced PCE, TCE, and cDCE to ethene,

the Phase II enrichments were started by combining the contents of the three Phase I

bottles and transferring 100 mL of the mixture to three 2.6 L glass reagent bottles.

Mineral medium was added (1.6 L) so that these larger bottles had the same ratio of

liquid volume to headspace volume as in the Phase I serum bottles. The bottles were

covered with aluminum foil to exclude light. A Teflon-faced rubber septum (35 mm)

was placed inside the cap, which was modified by drilling 24-33 holes (3mm) to provide

access for a syringe for sampling. The bottles were stored in the anaerobic chamber

horizontally to keep liquid in contact with the septa. These bottles received neat PCE and
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TCE (rather than water-saturated solutions) along with lactate as an electron donor. The

amount of PCE and TCE added was determined gravimetrically by weighing the syringe

with PCE or TCE present, then immediately after adding the PCE or TCE to the bottles.

Sodium hydroxide (8 M) was added each time chlorinated ethenes were added to

neutralize the HCl produced from dechlorination and as needed to maintain the pH

between 6.7 and 7.2. The Phase II enrichment culture received increasing amounts of

PCE and TCE until the concentrations added were comparable to the maximum

concentrations present in PBRP groundwater (2.5 and 35 mg/L, respectively).

Several aspects of developing the Phase II enrichment culture are noteworthy.

First, yeast extract was added on day 23 (1.636 mg/bottle, or 1 mL of a solution

containing 1.636 g/L), based on concerns that the initially slow activity on PCE and TCE

was due to a micronutrient limitation. Second, to prevent the accumulation of inhibitory

compounds (e.g., salts and sulfides), operation of the bottles beginning on day 87

included settling of particulates (taking approximately 3 h), removing the cap (inside the

anaerobic chamber) and decanting of 150 mL of the clarified liquid. The 150 mL was

replaced with fresh medium, new septa were placed in the caps, the bottles were resealed

and more chlorinated ethenes and lactate were added. The amount of liquid removed was

gradually increased to 300 mL on day 311. Addition of fresh media provided nutrients

and avoided accumulation of salt (NaCl from neutralization) and sulfide from reduction

of sulfate in the medium. Approximately 200 mg/L of lactate was added each time the

bottles were monitored on the gas chromatograph (GC) for chlorinated ethenes. This

dose was doubled when PCE and TCE were added. Periodically, 100-500 mL of

completely mixed liquid was removed for addition to the bioaugmentation microcosms
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and for measurement of the Dehalococcoides spp. concentration by Dr. Christopher

Bagwell at the Savannah River National Laboratory . The Phase II enrichment has been

maintained for more than 411 days. It will be used in the near future to grow a large

enough amount of culture for field-testing in the P-Area.

3.3 Microcosm Experimental Design

Microcosms were prepared with soil and sediment from the P-Area to address the

options of biostimulation and bioaugmentation. All treatments were prepared in

triplicate. There were two sets of microcosms.

Set I consisted of four live anaerobic treatments to investigate the effect of

biostimulation:

• sediment + groundwater only (“as-is”);

• sediment + groundwater amended with lactate;

• sediment + groundwater amended with corn syrup;

• sediment + groundwater amended with emulsified vegetable oil;

Set II investigated the effectiveness of bioaugmentation, using five live anaerobic

treatments:

• sediment + groundwater amended with lactate + bioaugmented with 1.0%

(v/v) of the SRS enrichment culture developed in the laboratory;

• sediment + groundwater amended with lactate + bioaugmented with 0.1%

(v/v) of the SRS enrichment culture developed in the laboratory;

• sediment + groundwater amended with lactate + bioaugmented with

0.01% (v/v) of the SRS enrichment culture developed in the laboratory;
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• sediment + groundwater amended with lactate + bioaugmented with

0.001% (v/v) of the SRS enrichment culture developed in the laboratory;

and

• sediment + groundwater amended with lactate + bioaugmented with 1.0%

(v/v) of a commercially available bioaugmentation culture.

Lactate was used as the electron donor for set II because lactate was the electron

donor used for the enrichment culture.

In addition to the live treatments, two sets of autoclaved controls (ACs) and two

sets of water controls (WCs) were prepared to evaluate the extent of abiotic losses. One

set of ACs was prepared containing sediment + groundwater + PCE + TCE + cDCE +

VC + ethene. PCE and TCE were added at concentrations comparable to the maximum

concentration measured in PBRP groundwater. cDCE, VC, and ethene were added in

half the molar amount per bottle of TCE. The other set of ACs contained ethane and

methane, which were added in the same amount as VC and ethene. A separate set of ACs

for methane and ethane was prepared to avoid interference with ethene, since these three

compounds elute close together on the GC column used (i.e., in less than 1 min; see

section 3.6). Two sets of WCs were prepared identically to the ACs, although only

distilled, deionized (DDI) water was used in place of groundwater and no sediment was

added.

3.4 Microcosms

The microcosms consisted of 160 mL serum bottles. The live and AC treatments

received 20 g of sediment (wet weight; 16 g dry weight, occupying approximately 11

mL) plus 50 mL of groundwater. The groundwater received resazurin (1 mg/L), which
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served as a redox indicator. The groundwater was then adjusted from pH 5.65 to pH 7.4

with sodium hydroxide (8 M), prior to addition to the microcosms. pH adjustment was

considered necessary to provide a more favorable environment for chlororespiration.

The sediment and groundwater samples were taken by SRS from the PBRP area.

Groundwater samples were taken at a depth of 15.2 m from well PDT-2, an

uncontaminated background well. Soil samples were taken at site PGCPT94 (Figures 1.1-

1.3) from depths of 3.0-13.7 m. Samples were transported on ice to Clemson

University’s Department of Environmental Engineering and Science. They were

received on August 16, 2005.

All of the live treatments and ACs were prepared in an anaerobic chamber with an

atmosphere of approximately 98% N2 and 2% H2. Aseptic techniques were used during

preparation of the live treatments. A scale was placed in the anaerobic chamber to

measure out the sediment. The killed controls were prepared by autoclaving the

microcosms for 60 minutes at 121oC for three consecutive days before adding the

chlorinated compounds. The WCs were prepared and incubated on the bench top, with

room air present in the headspace.

Because the groundwater was taken from an uncontaminated well, no PCE or

TCE were present. It was therefore necessary to add PCE and TCE in sufficient amounts

to yield aqueous phase concentrations of approximately 35 mg/L TCE and 2.5 mg/L

PCE. PCE and TCE were added using saturated water solutions; the approximate

concentrations are given in see section 3.1. PCE, TCE, and cDCE were added to the

controls also using saturated water solutions. VC, methane, ethene, and ethane were

added to the controls using a 1.0 mL gas tight syringe (Pressure-Lok®). All bottles were
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sealed with Teflon-faced red rubber septa and aluminum crimp caps, and were incubated

in an inverted position (liquid and/or sediment in contact with the septa), at room

temperature (21-24 oC) and in boxes (to exclude light). The live bottles were incubated

in the anaerobic chamber, except during sampling.

The amount of electron donor added to the live treatments was based on the

amount of PCE and TCE present, along with competing electron acceptors (i.e., nitrate

and sulfate). Anion analysis of the groundwater gave a nitrate concentration of

approximately 10 mg/L and a sulfate concentration of approximately 20 mg/L (see

section 4.3). This required 0.32 mg COD per bottle to remove the nitrate and 0.67 mg

COD per bottle to remove the sulfate. To convert 2.5 mg/L of PCE (1.7 µmol/bottle) and

35 mg/L of TCE (22.5 µmol/bottle) to ethene required 1.2 mg COD per bottle. Donor

was added on days 9 and 16 to all of the microcosms (16.8 and 42.2 mg COD/bottle,

respectively), for a total of 59 mg COD per bottle. This provided approximately a 50-

fold excess based on the stoichiometric electron donor needs for chlorinated ethene

reduction. The amount of lactate, corn syrup, and vegetable oil needed was calculated

based on COD values of 0.669 g COD/mL for sodium lactate syrup, 0.927 g COD/g for

corn syrup, and 1.389 g COD/mL for emulsified vegetable oil. The value for lactate

syrup was calculated based on its composition (60% by weight) and density (1.31 g/mL)

while the values for the vegetable oil and corn syrup were determined experimentally.

For the biostimulation only treatments donor was added two more times, on days

105 and 237. This brought the total COD added to 152.8 mg COD per bottle, providing

127 times more electron donor than needed for stiochiometric reductive dechlorination.

Additional donor was also added to the bioaugmentation microcosms to insure the
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electron donor was not a limiting factor. These amounts are reported in the Results

section.

3.5 Bioaugmentation Procedures

For the bioaugmentation experiments, 1.0, 0.1, 0.01, and 0.001% (v/v) of SRS

culture and 1% (v/v) of a commercially available bioaugmentation culture were added to

the Set II microcosms following a period of incubation with only electron donor added.

A delay between electron donor addition and bioaugmentation was necessary to allow

enough time for establishment of the low redox conditions required for chlororespirators

in the enrichment culture. Shortly before bioaugmentation, the mass of volatile

compounds present was measured by headspace analysis on a gas chromatograph (see

section 3.6).

Preliminary data on the Dehalococcoides cell concentration in the Phase II

enrichment ranged from 1.6 x104-4.6x104 cells/mL (C.E. Bagwell, personal

communication). Previous work has shown that a Dehalococcoides cell concentration of

106 to 108 cells/mL is preferable for bioaugmentation in field studies (10, 16, 17). In

order to achieve a fair comparison between the SRS culture and the commercially

available culture, the enrichment culture was concentrated 100 fold. It was decided that

instead of adding 5 µL of the concentrate for the 0.01% addition and 0.5 µL of the

concentrate for the 0.001% addition, it would be simpler to add 500 µL and 50 µL of the

unconcentrated inoculum, respectively. Table 3.1 shows the inoculum percent and the

volume of concentrated or unconcentrated culture used to achieve this percent.

The enrichment culture was concentrated aseptically in the anaerobic chamber as

follows: Samples from the Phase II enrichment bottles (240 mL total) were added to two
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Table 3.1 Volume and type of Phase II SRS enrichment culture used for
bioaugmentation.

Volume of Culture Added (µL/bottle)

Percent Inoculum (v/v) 100x Concentrate Unconcentrated

1.0 500 -

0.1 50 -

0.01 - 500

0.001 - 50

250 mL Sepcor centrifuge bottles (120 mL per bottle) with screw top caps containing

gaskets. The bottles were centrifuged for 25 min at 10,000 rpm and 23oC on a Sorvall®

Evolution RC centrifuge equipped with a SLA-1500 Super-Lite® 6 hole, 250 mL rotor.

In the anaerobic chamber, 108 mL was pumped out of the bottles without disturbing the

centrifuged solids. Pumping was accomplished using a Cole Palmer model #2016

peristaltic pump with Master-flex 3 mm inner diameter tygon tubing. The remaining 12

mL was agitated to resuspend the solids, combined and transferred to two 12 mL glass

conical centrifuge tubes, which were then sealed with Teflon-faced rubber septa and

aluminum crimp caps. These were centrifuged for 10 min at 3,000 rpm and 23oC on a

Fisher Centrific™ Centrifuge with a 12 hole 15 mL rotor. Centrate (10.8 mL) was

pumped from each tube, leaving 1.2 mL. The contents of both tubes were combined.

This provided 2.4 mL of 100x concentrated enrichment culture, to inoculate the 1% and

0.1% (v/v) bioaugmentation treatments. The amount remaining was shipped to C.E.

Bagwell at the Savannah River National Laboratory for measurement of the

Dehalococcoides concentration.
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3.6 Volatile Organic Compound Analysis

PCE, TCE, cDCE, VC, ethene, ethane, and methane were monitored by

headspace analysis using a Hewlett Packard Series II 5890 GC. The mass of each

compound present in a bottle was determined by analysis of a 0.5 mL headspace sample,

using a flame ionization detector in conjunction with a column packed with 1% SP-1000

on 60/80 Carbopack-B (Supelco, Inc.). The carrier gas used was nitrogen (12).

Standards for the enrichment cultures (Phases I and II) were prepared by adding

known amounts of each compound to 160 mL serum bottles containing 100 mL DDI

water. Standards for the microcosms were prepared in the same manner except the serum

bottles contained 20 g of sediment and 50 mL DDI water. The number of moles of gases

added was calculated using the ideal gas law, based on the volume added at room

temperature and atmospheric pressure. A stock solution of PCE, TCE, cDCE, and 1,1-

DCE was prepared gravimetrically in methanol. After adding known amounts of the

gases and stock solution to the serum bottles, they were incubated for 1-4 h. This

allowed sufficient time for the compounds to equilibrate, but not enough time for

significant biotic or abiotic losses to occur. Peak areas obtained from headspace analysis

were used to determine response factors for each compound, in terms of the total mass

per bottle per peak area unit from a 0.5 mL headspace sample (12). Since the standards

were prepared in 160 mL serum bottles, response factors for the larger Phase II bottles

were determined by multiplying the response factors for the 160 mL bottles times the

ratios of the total volumes (2650 mL/160 mL). This was possible because the ratio of the

headspace and liquid volumes was kept constant (i.e. Vg/Vl = 0.6). Representative

response factors are provided in Appendix B.
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The GC response to a headspace sample was calibrated to give the total mass of

the compound (M) in that bottle. Assuming that the headspace and aqueous phases were

in equilibrium, the total mass present was converted to an aqueous phase concentration:

Cl =
M

Vl + HcVg

(1)

where Cl = concentration in the aqueous phase (µM); M = total mass present

(µmol/bottle); Vl = volume of the liquid in the bottle (50 mL for the microcosms, 100 mL

for the Phase I enrichments, and 1625 mL for the Phase II enrichment culture); Vg =

volume of the headspace in the bottle (99 mL for the microcosms, 60 mL for the Phase I

enrichments and 975 mL for the Phase II enrichments); and Hc = Henry's constant

(dimensionless) at 23°C (calculated from Gossett (12)). Vg for the microcosms was

calculated by subtracting Vl and the measured volume of 20 g of sediment (11 mL) from

the total volume (160 mL).

3.7 Hydrogen Analysis

Hydrogen was monitored by headspace analysis of 0.5 mL samples using a

Hewlett Packard Series II 5890 GC and a thermal conductivity detector with a 3.2-mm x

3.2-m stainless-steel column packed with 100/120 Carbosieve S-II (Supelco, Inc.). The

carrier gas used was nitrogen with the column and reference flow rates set at 46.1

mL/min. The column temperature was isothermal at 105oC and the injector and detector

temperatures were 200oC. Thermal conductivity detector sensitivity was set at high,

resulting in a minimum detection level of 1.7 µmol H2 per 2.6 L bottle. This is

equivalent to 4.3x10-5 atm in a bottle with 60 mL of headspace and assuming a pressure
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of 1 atm. The sample run time was 12 min. Representative response curves are shown in

Appendix B.

3.8 Anion Analysis

A Dionex DX-100 Ion Chromatograph was used to determine the concentrations

of nitrate and sulfate. A sodium bicarbonate (3.9 mM) and sodium carbonate (3.1 mM)

eluant was pumped at 1.0 mL/min through a Dionex IonPac AS5A-5µ column (4 mm x

150 mm). Samples were filtered (0.20 µm, Pall) and injected onto the IonPac column,

with a sample loop size of 25 µL. Response factors were determined using KNO3 and

K2SO4 standards. Representative response curves are given in Appendix B.

3.9 Soil Analysis

The amount of organic matter, carbon, nitrogen, nitrate, phosphorous, potassium,

calcium, magnesium, sodium, sulfur, boron, zinc, manganese, copper, iron, and

aluminum in P-Area soil used to prepare the microcosms was determined by the Clemson

University Agricultural Services Laboratory. A 300 g sample of dried soil was used.

The moisture content of the soil was determined by drying triplicate samples at 102oC to

a constant weight. The volume of 20 g of wet soil (the amount added to the microcosms)

was determined by water displacement.

3.10 Soluble COD Analysis

Soluble COD was measured using the Bioscience Mid Range (20-900 mg/L)

accu-TEST kit. Samples were run in duplicate. Preparation of groundwater samples

consisted of filtration through triple rinsed 0.45 µm filters (Nalgene; Teflon with PTFE

membrane). The soluble COD of the groundwater gave an indication of the background

level of electron donor available for reductive dechlorination.
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3.11 TOC Analysis

Total organic carbon (TOC) was measured using a TOC-V CSH Total Organic

Carbon Analyzer (Schimadzu). Measurements were made in accordance with Standard

Method 5310B, a combustion method using infrared detection (8). Samples were filtered

through a 0.2 µm Nalgene Teflon filter with a PTFE membrane and diluted to within the

range of 0.1 to 30 mg/L. Standards were prepared using a 1000 mg TOC/L stock

solution made using potassium hydrogen phthalate. The stock solution was diluted to

concentrations of 0.1, 0.5, 1, 5, 10 and 30 mg TOC/L for standards. A representative

response curve is shown in Appendix B.

3.12 pH Analysis

pH of the Phase II enrichments was measured in 2 mL samples using a Corning pH

meter 345. The pH meter was calibrated before samples were analyzed using pH 4, 7 and

10 buffer solutions. pH of the microcosms was analyzed using test strips. Baker-pHIX

strips were used for the pH range of 6.0 to 7.7, in 0.3 pH unit increments. If the pH was

below this range, EMD colorpHast indicator strips were used, which have a range of 4.0

to 7.0 in 0.3 pH unit increments. A 50 µL drop was placed on the test strip and the color

was read approximately 3 sec after contact.

3.13 Analysis of Organic Acids

Analysis of organic acids was performed by high performance liquid

chromatography (HPLC) on a Waters (Milford, MA) instrument equipped with a 600E

System Controller, a 490E Programmable Multiwavelength Detector (420 nm) and a 717

plus Autosampler. An Aminex HPX-87H ion exclusion column (300 mm x 7.8 mm,

BioRad, Hercules, CA) was used with 0.01 N H2SO4 as the eluant, delivered at 0.6
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mL/min. Calibration curves for lactate, acetate and propionate were used for

quantification of these fatty acids in samples from the Phase II enrichment culture.

Representative calibration curves are shown in Appendix B. One milliliter samples were

filtered through a 0.2 µm PVDF filter (Pall Life Sciences, East Hills, NY) before

analysis. A 200 µL sample loop was used to deliver 50 µL samples. The method run

time was 60 min in order to detect any possible longer-chain organic acids such as

butyrate, valerate and caproate.
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CHAPTER 4

RESULTS

The results for the original microcosms obtained from Bratt are shown first,

followed by results for the Phase I and Phase II enrichments. Results for the

characteristics of the P-Area soil and groundwater are presented next, followed by the

biostimulation and bioaugmentation microcosm study.

4.1 Original Microcosms

Triplicate microcosms from the CRP-44, CRP-48 and CRP-50 sampling locations in

the C-Area (Figure 1.4) were obtained from Bratt (1) after being refrigerated for 12

months. The microcosms were allowed to acclimate to room temperature for five days.

Approximately 0.3 µmol of TCE per bottle (an aqueous phase concentration of 0.4 mg/L,

based on equation 1) was added to each of the three CRP-44 microcosms. An initial dose

of 1.4 mg of lactate per bottle was also delivered. Because of the high concentration of

methane initially present in the CRP-48 and CRP-50 microcosms, these bottles were

opened inside the anaerobic chamber and allowed to equilibrate for 5 min before 4.2

µmol of cDCE per bottle (aqueous phase concentration of 6.4 mg/L) and 0.6 mg of

lactate per bottle were added.

All of the microcosms proved to be viable, even after 12 months of refrigeration.

Figures 4.1, 4.2 and 4.3 show representative results from the triplicate CRP-44, CRP-48

and CRP-50 microcosms, respectively. On day 42, the nine bottles were opened in the

anaerobic chamber and 3 mL of mixed liquid was removed from each one. This explains
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the drop in cDCE, VC, ethene, ethane and methane on that day. The 27 mL of samples

were combined and added to mineral medium in order to start the Phase I enrichments

(see section 4.2). Since it was unclear if the microcosm culture would continue to

dechlorinate when added to mineral medium, the microcosms were maintained beyond

day 42 until the results for the Phase I enrichments were definitive. The microcosms

proved able to degrade up to 4.0 µmol of TCE per bottle for the CRP-44 microcosms

(Figure 4.1), 8.0 µmol of cDCE per bottle for the CRP-48 microcosms (Figure 4.2) and

19.5 µmol of cDCE per bottle for the CRP-50 microcosms (Figure 4.3). These amounts

are equivalent to aqueous phase concentration of 6.2, 12.1 and 29.6 mg/L, respectively.

Continual respiking of the CRP-44 bottles with TCE led to an accumulation of

cDCE and VC. The microcosms from this upgradient location did not completely reduce

TCE to ethene. By contrast, the CRP-48 and CRP-50 microcosms did completely reduce

cDCE and VC. This is why microcosms from these three locations were combined, i.e.,

to develop an enrichment culture capable of completely dechlorinating TCE.

4.2 Development and Characterization of an SRS Enrichment Culture

4.2.1 Phase I Enrichment Culture

The purpose of Phase I was to acclimate the microcosm culture to growth in

mineral medium, to develop a tolerance for higher levels of TCE than what was added to

Bratt’s microcosms, and to determine if the microcosm culture could dechlorinate PCE,

which was not added to Bratt’s microcosms (1). In order to accomplish this, the

concentrations of TCE and PCE were gradually increased. Representative results from

the triplicate Phase I enrichment bottles are shown in Figure 4.4. The initial cDCE and

TCE amounts (2.9-4.0 and 0.2-0.3 µmol/bottle, respectively) are equivalent to aqueous
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phase concentrations of 2.6-3.6 and 0.2-0.3 mg/L, respectively, based on equation 1. The

rate of reduction of TCE increased with each addition. One interesting difference

between the Phase I enrichment bottles and the microcosms is the lack of ethane

accumulation in the enrichment, whereas ethane was a significant end-product in the

microcosms. It is not completely clear what caused the loss of ethene reduction to

ethane, but it is likely that the organisms responsible were no longer present in sufficient

numbers.

Another difference between the behavior of the nine original microcosms and the

Phase I enrichment was observed. Methane production was robust in the microcosms but

was almost completely inhibited in the Phase I enrichment bottles, most likely due to the

increased levels of TCE and PCE added. In spite of the fact that the microcosms were

never exposed to PCE, PCE was dechlorinated by the Phase I enrichments. However,

PCE reduction did not start until most of the TCE was consumed, even though most

cultures dechlorinate PCE before switching to TCE. The rate of PCE reduction

significantly increased when the TCE concentration dropped below 0.5 µmol per bottle.

The average molar recovery of ethene from the PCE, TCE and cDCE consumed over 79

days of incubation in the Phase I enrichment bottles was 112% (± 3.4%). 

4.2.2 Phase II Enrichment Culture

When the final addition of PCE, TCE and cDCE to the Phase I enrichment was

reduced to ethene on day 79, the complete contents of these bottles were used to start the

three Phase II enrichment bottles (E-2A, E-2B, and E-2C), as described in section 3.2.

After diluting the entire contents of the Phase I enrichment bottles into fresh mineral

medium (0.3 L culture added to 4.9 L medium), increasing amounts of PCE and TCE
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were added until the concentrations were comparable to the maximum expected at the

PBRP site. It can be seen from results for one of the triplicate Phase II enrichment bottles

shown in Figure 4.5 that the increasing concentrations of PCE and TCE contributed to an

increase in the reduction rate of the chlorinated ethenes. The highest amounts of PCE

and TCE added (185 and 633 µmol/bottle, respectively) are equivalent to aqueous phase

concentrations of 13.4 and 41.5 mg/L, based on equation 1.

The Phase II enrichment bottles were approximately 15 times larger than the

Phase I serum bottles, which explains the larger y-axis scales used in Figure 4.5 in

comparison to Figure 4.4 (expressed as µmoles per bottle). The drop in ethene that

occurred with each new addition of PCE and TCE was due to opening the bottles in the

anaerobic chamber to remove some of the settled liquid and replacing it with fresh media,

as described in section 3.2. On day 196 samples of the enrichment were removed to

bioaugment the P-Area microcosms.

Table 4.1 is a summary of the stoichiometry of PCE and TCE dechlorination for

each of the Phase II enrichment bottles for a time period when the highest amounts of

TCE and PCE were being added (days 145 to 353). An overall average of 88.5%

(±11.4%) of the chlorinated ethenes present at the start of a cycle (i.e., when PCE and

TCE were added) was accounted for as daughter products at the end of each cycle (i.e.,

after complete degradation of the PCE and TCE). This is a reasonable accounting for the

initial chlorinated ethenes when taking into account losses of the volatiles, variability in

GC response factors, etc. Ethene was the predominant daughter product; only low

amounts of cDCE and VC remained prior to respiking the bottles with PCE and TCE.

The overall average of ethene as the final daughter product was 97.6% (±3.8%).
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Table 4.1 Summary of stoichiometry of PCE and TCE dechlorination for the Phase II enrichment bottles.

Cyclea

Initial Chlorinated
Ethenesb and Ethene

(µmol/bottle)

Final Chlorinated
Ethenesb and Ethene

(µmol/bottle) % Recoveryc % Ethened

E-2A E-2B E-2C E-2A E-2B E-2C E-2A E-2B E-2C E-2A E-2B E-2C

1 1,322 1,428 1,424 1,081 1,214 1,280 81.7% 85.0% 90.1% 98.7% 97.8% 99.6%

2 1,474 1,517 1,670 1,246 1,521 1,563 84.6% 100.3% 93.6% 83.5% 92.2% 94.3%

3 1,636 1,669 1,750 1,545 1,203 1,947 94.4% 72.1% 111.2% 98.5% 97.7% 99.5%

4 1,849 1,659 2,147 1,126 1,528 1,911 60.9% 92.1% 89.0% 99.9% 98.4% 99.2%

5 1,643 1,747 1,686 1,446 1,528 1,870 88.0% 87.5% 110.9% 99.8% 98.4% 96.6%

6 1,714 2,084 1,686 1,530 1,647 1,632 89.3% 79.1% 96.8% 99.6% 99.4% 99.3%

7 2,001 1,585 - 1,758 1,276 - 87.8% 80.5% - 98.6% 98.9% -

8 1,545 - - 1,278 - - 83.9% - - 99.5% - -

Averages - - - - - - 83.8% 85.2% 98.6% 97.3% 97.6% 98.1%
a Cycle refers to the time from spiking with PCE and TCE and addition of fresh medium and lactate to complete reduction of
PCE and TCE to daughter products
b Chlorinated ethenes = ∑(PCE + TCE + cDCE + VC)
c % Recovery = (µmoles of final chlorinated ethenes + ethene)/(µmoles of initial chlorinated ethenes + ethene) x 100
d % Ethene = (µmoles ethene)/(µmoles of final chlorinated ethenes + ethene) x 100

38
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Complete data for calculation of the stoichiometry shown in Table 4.1 is presented in

Appendix D.

Methane production in the Phase II enrichment bottles was minimal compared to

the amount produced in the microcosms. This continued the trend observed in the Phase

I enrichment, i.e. the high levels of chlorinated ethenes and ethene most likely inhibited

methanogenesis. Over the period from day 145 to 353, a total of 8.8-9.2 g of sodium

lactate was added per bottle, which is equivalent to 7.5-8.3 g of COD. Over the same

period, cumulative methane production was 0.17 to 0.74 mmol per bottle, which is

equivalent to 10.9-47.4 mg of COD, or less than 1.0% of the lactate COD added.

Calculations for lactate and methane were started on day 145 because that is the time

when the addition of TCE reached the highest expected concentration of 35 mg/L.

For one cycle of PCE and TCE addition and dechlorination (days 311-356), a

COD balance was performed to determine the disposition of the electron donor added (in

the form of lactate), including the percent COD used in the reduction of PCE and TCE to

ethene. Tables 4.2, 4.3 and 4.4 show the complete electron donor balance for the three

Phase II enrichment bottles (E-2A, E-2B, and E-2C, respectively). Initial and final

concentrations of lactate, acetate and propionate were measured by HPLC. Only peaks

for lactate, acetate and propionate were quantified from the 60 min chromatogram, which

is a sufficiently long run time to detect longer chain organic acids such as butyrate,

caproate and valerate, if they were present. The initial sulfate concentration was

calculated using the known concentration of sulfate in the media (0.87 mM) and the

amount of fresh media added at the start of each feeding cycle (0.3 L). The COD of the
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Table 4.2 Donor Balance for Phase II Enrichment Bottle E-2A (Days 311-356).

Initial Final

mM mmol/bottlea mg
COD/bottle

mM mmol/bottlea mg
COD/bottle

COD
Balance

(mg/bottle)c

Donor Lactate 10.2 16.9 1,620 1.38 2.28 219 + 1,400

Acetate 8.63 14.3 914 11.1 18.4 1,180 - 262

Propionate 9.24 15.3 2,710 14.0 23.2 2,600 - 886

SO4
2- 0.260 0.430 27.7 0.0 0.0 0.0 - 27.7

CH4 -b 0.130 8.51 -b 0.249 16.0 - 7.44

H2 -b 0.0 0.0 -b 0.0 0.0 - 0.0

Ethene from
PCE

-b 0.0 0.0 -b 0.0876 5.61 - 5.61

Products

Ethene form
TCE

-b 0.0 0.0 -b 0.597 28.6 - 28.6
a Volume of liquid in E-2A = 1.656 L.
b GC results in terms of mmol/bottle.
c Initial COD – Final COD, except for SO4

2-, which was calculated as final COD – Initial COD, since it was consumed rather
than produced.
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Table 4.3 Donor Balance for Phase II Enrichment Bottle E-2B (Days 311-356).

Initial Final

mM mmol/bottlea mg
COD/bottle

mM mmol/bottlea mg
COD/bottle

COD
Balance

(mg/bottle)c

Donor Lactate 10.3 17.0 1,630 1.13 1.87 180 + 1,450

Acetate 9.00 14.9 954 12.2 20.3 1,290 - 388

Propionate 9.63 15.9 1,770 13.3 22.0 2,460 - 679

SO4
2- 0.26 0.430 27.7 0.0 0.0 0.0 - 27.7

CH4 -b 0.0490 3.11 -b 0.111 7.1 - 4.01

H2 -b 0.0 0.0 -b 0.0 0.0 - 0.0

Ethene from
PCE

-b 0.0 0.0 -b 0.0923 5.91 - 5.91

Products

Ethene form
TCE

-b 0.0 0.0 -b 0.581 27.9 - 27.9
a Volume of liquid in E-2A = 1.656 L.
b GC results in terms of mmol/bottle.
c Initial COD – Final COD, except for SO4

2-, which was calculated as final COD – Initial COD, since it was consumed rather
than produced.
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Table 4.4 Donor Balance for Phase II Enrichment Bottle E-2C (Days 311-356).

Initial Final

mM mmol/bottlea mg
COD/bottle

mM mmol/bottlea mg
COD/bottle

COD
Balance

(mg/bottle)c

Donor Lactate 10.7 16.8 1,610 0.670 1.05 101 + 1,510

Acetate 11.8 18.5 1,180 14.4 22.6 1,450 - 264

Propionate 11.0 16.7 1,870 16.1 25.2 2,820 - 948

SO4
2- 0.260 0.410 26.1 0.0 0.0 0.0 - 26.1

CH4 -b 0.238 15.3 -b 0.404 25.9 - 10.6

H2 -b 0.0 0.0 -b 0.0 0.0 - 0.0

Ethene from
PCE

-b 0.0 0.0 -b 0.0971 6.21 - 6.21

Products

Ethene form
TCE

-b 0.0 0.0 -b 0.554 26.6 - 26.6
a Volume of liquid in E-2A = 1.564 L.
b GC results in terms of mmol/bottle.
c Initial COD – Final COD, except for SO4

2-, which was calculated as final COD – Initial COD, since it was consumed rather
than produced.

42
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sulfate was calculated by assuming that the sulfate was completely reduced to sulfide (the

decanted liquid always had a sulfide odor). H2 and CH4 were measured by headspace

analysis at the beginning of the cycle (day 311, just after adding PCE and TCE) and at the

end of the cycle (day 356, when all of the PCE and TCE had been dechlorinated).

Table 4.5 summarizes the average COD recovery and percent of the total COD

used in PCE and TCE reduction, based on the data in Tables 4.2-4.4. The average COD

recovery was 82.2%, which is reasonable given the uncertainties in measuring all the

components in a COD balance. On average 2.3% of the lactate COD added was used for

reductive dechlorination of PCE and TCE. This electron donor balance demonstrated

that most of the lactate added to the Phase II enrichment culture ended up as acetate and

propionate, in almost equal molar concentrations, and relatively little of the COD added

was actually used for reduction of the chlorinated ethenes.

Table 4.5 Electron Donor Balance for Phase II Enrichment Bottles (Days 311-356).
Bottle % COD Recoverya % COD to PCE and TCE Reductionb

E-2A 86.9% 2.4%
E-2B 74.6% 2.3%
E-2C 85.0% 2.2%

Average 82.2% 2.3%
a(COD of products)/(COD of Donor) x 100
b(COD of ethene from TCE and PCE)/(COD of Donor) x 100

The concentration of Dehalococcoides spp. was measured at three time points in

order to monitor their growth in the Phase II enrichment culture, during the period when

the amount of PCE and TCE added was being increased. Cell densities are shown in

Table 4.6 (C.E. Bagwell, personal communication). These numbers were used to evaluate

the amount of culture needed to bioaugment the P-Area microcosms (section 3.5). The

cell densities were converted to the number of 16S rRNA gene copies per bottle based on
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the volume of culture in the bottles (approximately 1.6 L). These values were plotted

against the cumulative amount of PCE plus TCE consumed per bottle for the

Table 4.6 Dehalococcoides cell concentrations in the Phase II enrichment culture.

Date Day
DHC

(copies/mL)
DHC

(copies/bottle)

Cumulative PCE
+ TCE consumed

(µmol/bottle)

Cumulative Cl-

released
(µmol/bottle)

8/16/2005 87 1.6x106 a 2.60x109 250 927

10/5/2005 137 2.0x106 b 3.25x109 1,183 4,053

12/3/2005 196 4.6x106 a 7.48x109 3,670 11,748
a Data for E-2A only.
b Average for E-2A, E-2B and E-2C.

Table 4.7. Dehalococcoides cell concentrations in the Phase II enrichment at the time of
bioaugmenting the P-Area microcosms.

Culture
Replicate 1
(cells/mL)

Replicate 2
(cells/mL)

Replicate 3
(cells/mL)

Average
(cell/mL)

95%
Confidence

Interval
E-2A 3.60x108 4.10x108 4.10x108 3.93x108 3.27x107

E-2B 4.60x108 4.30x108 4.40x108 4.43x108 1.73x107

E-2C 5.20x108 3.60x108 4.50x108 4.43x108 9.08x107

KB-1 1.60x108 1.50x108 1.70x108 1.60x108 1.13x107

100X
Concentration 1.90x1010 1.80x108 NR 1.85x1010 9.80x108

Table 4.8. Comparison of initial Dehalococcoides cell densities for each treatment.

Dose

Cell Density in
the Culture or
Concentrate

Used (cells/mL)

Volume of
Culture Added

(mL)

Initial Amount
of Cells per
Microcosm

Initial Density
in the

Microcosms
(cells/mL)

1% SRS 1.85x1010 0.5a 9.25x109 1.85x108

0.1% SRS 1.85x1010 0.05a 9.25x108 1.85x107

0.01% SRS 4.43x108 0.5b 2.22x108 4.44x106

0.001% SRS 4.43x108 0.05b 2.22x107 4.44x105

1% KB-1 1.60x108 0.5b 8.00x107 1.60x106

a 100X concentrate of the SRS Phase II enrichment culture.
b Unconcentrated culture.
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corresponding days (Figure 4.6a) and against the cumulative amount of chloride released

(calculated based on the PCE and TCE consumed; Figure 4.6b). The strong correlation

between the increase in Dehalococcoides 16S rRNA gene copies and PCE + TCE

consumed, as well as chloride released provides evidence that PCE and TCE

dechlorination is a growth-linked process in the enrichment culture. A yield of 4.7E5

copies of Dehalococcoides 16 S rRNA gene per µmol Cl- is apparent from the slope of

the best fit line in Figure 4.6b.

Dehalococcoides concentrations in the Phase II enrichment used for

bioaugmentation are provided in Table 4.7. Note that these densities are two orders of

magnitude higher than the values shown in Table 4.6 for day 196. This is most likely due

to a change in the qPCR method used (C.E. Bagwell, personal communication), as will be

discussed further in section 5. The inoculum was made up of equal volumes from bottles

E-2B and E-2C; at the time E-2A was not dechlorinating as fast and therefore was not

included. Table 4.8 provides a comparison of the initial Dehalococcoides concentrations

for each of the treatments. The microcosms that received the 0.01% (v/v) dose of the

SRS culture provide the closest comparison, based on initial number of Dehalococcoides

cells, to the bottles that received the 1% (v/v) dose of the commercially available

bioaugmentation culture.

4.3 P-Area Groundwater and Sediment Characterization

A sample of soil from site PGCPT94 was analyzed by the Clemson University

Agriculture Service Laboratory and the results are shown in Table 4.9. The soil is

notably low in organic carbon, meaning that it is not likely to serve as a source of

electron donor for reductive dechlorination. The soil is also low in most other nutrients,
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46



47

Table 4.9 P-Area soil characteristics.

Parameter Units Amount

Moisturea % 18.9 ± 0.94

Dry Matter % 81.10

Organic Matter % 0.023

Soil pH - 4.7

Buffer pH - 7.85

Carbon % 0.024

Nitrogen % 0.012

C/N Ratio - 2.00

Nitrate-N ppm 2.00

Phosphorousb ppm 1

Potassiumb ppm 2

Calciumb ppm 25

Magnesiumb ppm 8.5

Sodiumb ppm 5.5

Sulfur ppm 32.51

Boronb ppm 0.05

Zincb ppm 0.1

Manganeseb ppm 0

Copperb ppm 0.1

Iron ppm 2.92

Aluminum ppm 50.12

a Average based on triplicate sediment samples ± one standard deviation.
b Results were provided in lb/acre and converted to ppm by dividing by 2.

causing concern for the ability of the soil to provide the necessary nutrients for cell

growth, including the bioaugmentation culture.
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Groundwater samples were analyzed for nitrate, sulfate, TOC, and soluble COD.

Duplicate samples were used for nitrate, sulfate and TOC. Nitrate concentrations ranged

from 10.1-10.2 mg/L; sulfate concentrations ranged from 20.3-20.4 mg/L; and TOC

ranged from 0.57-0.61 mg/L. Soluble COD was below the detection limit of 20 mg

COD/L (based on the procedure used), which is consistent with the low TOC

concentration of the groundwater.

Nitrate inhibits reductive dechlorination and it must be removed before

dechlorination can begin. Sulfate in the groundwater can act as a competing electron

acceptor for electron donor. Consequently, the electron donor added to the P-area

microcosms took into account the amount needed for stiochiometric removal of the

nitrate and sulfate (ignoring cell synthesis). The soluble COD in the groundwater was

insignificant compared to the electron donor needed for reduction of the nitrate, sulfate,

PCE and TCE. Therefore, the background amount of COD in the groundwater was not

taken into account when calculating the amount of donor added to the microcosms.

4.4 Biostimulation Results

The biostimulation treatments consisted of triplicate microcosms with no electron

donor added (also referred to as the “as-is” treatment), lactate added, corn syrup added

and emulsified vegetable oil added. Average results for each treatment are given in

Figures 4.7-4.10. The average initial amounts of PCE and TCE present were 1.4 and 22.7

µmol per bottle, respectively, which is equivalent to aqueous phase concentrations of 2.0

and 34.4 mg/L, based on equation 1. No daughter products were detected during the 356

days of incubation. When compared to the control microcosms (Figures 4.11-4.14), there

were no significant losses of PCE or TCE in any of the biostimulation microcosms.
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The resazurin that was added to the groundwater turned from pink to clear within 24-40

days for the “as-is” bottles, 16-19 days for the lactate amended bottles, 6-16 days for the

corn syrup amended bottles and 24-55 days for the emulsified vegetable oil bottles. The

colorless condition indicated that the Eh was below -100 mV and was therefore amenable

to reductive dechlorination. pH was checked bimonthly and adjusted if it dropped below

6.7. The pH for the lactate and emulsified vegetable oil amended microcosms stayed

within the acceptable range of 6.7-7.3 during the 240 days of incubation. On day 89 and

again on day 102 the pH in the corn syrup amended bottles dropped below 6.7 but not

below 5.7. Both times the pH was brought up to 7.0 with the addition of sodium

hydroxide (8 M). The redox conditions, pH and amount of donor added were sufficient

for reductive dechlorination to occur in the biostimulation bottles, yet it did not during

240 days of incubation. This suggests the organisms needed to reduce PCE and TCE to

ethene are not present or were unable to grow in the PRBP soil and groundwater.

4.5 Bioaugmentation Results

The microcosms were bioaugmented on day 101. The incubation period prior to

bioaugmentation provided time for the redox conditions to become sufficiently low (i.e.,

< -100 mV) and allowed enough time to build up the population of Dehalococcoides in

the Phase II enrichment culture. The microcosms were monitored as long as 250 days

after bioaugmentation or until complete reduction of the PCE and TCE occurred. pH was

checked periodically and stayed between 6.7 and 7.0 for all the bioaugmentation

microcosms, which received lactate as an electron donor.
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4.5.1 1% Bioaugmentation Dose with Phase II Enrichment Culture

Results for the microcosms that received a 1% dose of the concentrated SRS

enrichment culture are presented in Figures 4.15-4.17. PCE and TCE were both reduced

to cDCE and VC 12 days after bioaugmentation. PCE decreased at the same time as

TCE. Complete reduction of all chlorinated ethenes to ethene occurred 32 days after

bioaugmentation. For the period of day 101 to day 125, the average molar recovery of

PCE and TCE as ethene was 90% (± 3.4%), with 98.5% (± 0.4%) of the daughter

products recovered as ethene. Methane production was very low during this interval.

However, after day 125, methane production increased significantly. Overall, methane

accounted for an average of 2.9% (± 1.4%) of the COD added to the bottles as lactate and

the reduction of PCE and TCE to ethene accounted for 0.31% (± 0.001%).

The drop in ethene and methane on day 147 was due to changing the septa in the

anaerobic chamber.

4.5.2 0.1% Bioaugmentation Dose with Phase II Enrichment Culture

Results for the microcosms that received a 0.1% dose of the SRS enrichment

culture are presented in Figures 4.18 and 4.19. Results for the third bottle are not shown

because a significant leak was detected on day 160 and it was not monitored thereafter.

For the period of day 101 to day 356, the molar recovery of PCE and TCE as ethene

average 88.9%, with 90-100% of the daughter products recovered as ethene. Unlike the

1% (v/v) microcosms, PCE did not begin to transform until the TCE was almost

completely reduced. The rate of TCE reduction slowed after approximately day 120 and

slowed even further after day 160. pH was checked and more donor was added, neither

of which seemed to restore the initially higher rate of TCE dechlorination.
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Methane production was slow at first, but as the concentration of TCE and PCE

dropped below 5 µmol per bottle the rate of methane production increased. This occurred

during the time period when the rate of dechlorination was slowest. Methane output

leveled off between days 250 and 300 and then increased again, most likely in response

to new additions of lactate. Methane accounted for 3.1-4.7% of the COD added to the

bottles as lactate and the reduction of PCE and TCE to ethene accounted for 0.21%.

4.5.3 0.01% Bioaugmentation Dose with Phase II Enrichment Culture

Results for the microcosms that received a 0.01% dose of the SRS enrichment

culture are presented in Figures 4.20-4.22. Compared to the microcosms that received a

1% or 0.1% SRS enrichment culture dose, the microcosms receiving a 0.01% dose of the

SRS enrichment culture exhibited slow dechlorination rates at first. It was not until the

final one to three months of incubation that dechlorination increased to a rate comparable

to that of the 1% (v/v) bottles. Dechlorination of PCE and TCE was complete by the

final day of analysis (day 355). PCE dechlorination was negligible until all of the TCE

was consumed, as often occurs in the enrichment culture (Figure 4.5).

cDCE and VC were present starting 12 days after bioaugmentation. These

daughter products stayed at a relatively constant concentration until TCE was completely

reduced but before reduction of PCE began. For the period of day 101 to day 356, the

average molar recovery of PCE and TCE as ethene was 78.6% (± 0.6%), with 99.6% (±

0.8%) of the daughter products recovered as ethene. Methane production began between

day 175 and 200 and rose significantly as the concentration of chlorinated ethenes

continued to decrease. The total amount of methane produced ranged between 139 and

394 µmol/bottle. Methane accounted for an average of 3.1% (± 1.8%) of the COD added



65

05

1
0

1
5

2
0

2
5

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

T
im

e
(d

a
ys

)

PCE,TCE,cDCE,VC,ethene(µmol/bottle)

05
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

Methane(µmol/bottle)

P
C

E

T
C

E

cD
C

E

V
C

E
th

e
n

e

M
e

th
a

n
e

la
ct

a
te

a
d

d
iti

o
n

F
ig

ur
e

4.
20

R
es

ul
ts

fr
om

a
0.

01
%

(v
/v

)
S

R
S

cu
lt

ur
e

bi
oa

ug
m

en
ta

ti
on

m
ic

ro
co

sm
(C

E
-L

A
-B

A
_0

.0
1%

-1
).

S
ol

id
di

am
on

ds
in

di
ca

te
w

he
n

la
ct

at
e

w
as

ad
de

d
(3

2.
8

m
g/

bo
tt

le
fo

r
th

e
fi

rs
ta

dd
it

io
n,

95
.7

m
g

fo
r

th
e

se
co

nd
ad

di
ti

on
an

d
81

.9
m

g
fo

r
th

e
su

bs
eq

ue
nt

ad
di

ti
on

s
ex

ce
pt

th
e

la
st

tw
o,

w
hi

ch
w

er
e

80
.0

m
g)

.
T

he
ar

ro
w

in
di

ca
te

s
w

he
n

bi
oa

ug
m

en
ta

ti
on

oc
cu

rr
ed

.



66

05

1
0

1
5

2
0

2
5

3
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

T
im

e
(d

a
ys

)

PCE,TCE,cDCE,VC,ethene,(µmol/bottle)

02
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

Methane(µmol/bottle)

P
C

E

T
C

E

cD
C

E

V
C

E
th

e
n

e

M
e

th
a

n
e

la
ct

a
te

a
d

d
iti

o
n

F
ig

ur
e

4.
21

R
es

ul
ts

fr
om

a
0.

01
%

(v
/v

)
S

R
S

cu
lt

ur
e

bi
oa

ug
m

en
ta

ti
on

m
ic

ro
co

sm
(C

E
-L

A
-B

A
_0

.0
1%

-2
).

S
ol

id
di

am
on

ds
in

di
ca

te
w

he
n

la
ct

at
e

w
as

ad
de

d
(3

2.
8

m
g/

bo
tt

le
fo

r
th

e
fi

rs
ta

dd
it

io
n,

95
.7

m
g

fo
r

th
e

se
co

nd
ad

di
ti

on
an

d
81

.9
m

g
fo

r
th

e
su

bs
eq

ue
nt

ad
di

ti
on

s
ex

ce
pt

th
e

la
st

tw
o,

w
hi

ch
w

er
e

80
.0

m
g)

.
T

he
ar

ro
w

in
di

ca
te

s
w

he
n

bi
oa

ug
m

en
ta

ti
on

oc
cu

rr
ed

.



67

F
ig

ur
e

4.
22

R
es

ul
ts

fr
om

a
0.

01
%

(v
/v

)
S

R
S

cu
lt

ur
e

bi
oa

ug
m

en
ta

ti
on

m
ic

ro
co

sm
(C

E
-L

A
-B

A
_0

.0
1%

-3
).

S
ol

id
di

am
on

ds
in

di
ca

te
w

he
n

la
ct

at
e

w
as

ad
de

d
(3

2.
8

m
g/

bo
tt

le
fo

r
th

e
fi

rs
ta

dd
it

io
n,

95
.7

m
g

fo
r

th
e

se
co

nd
ad

di
ti

on
an

d
81

.9
m

g
fo

r
th

e
su

bs
eq

ue
nt

ad
di

ti
on

s
ex

ce
pt

th
e

la
st

tw
o,

w
hi

ch
w

er
e

80
.0

m
g)

.
T

he
ar

ro
w

in
di

ca
te

s
w

he
n

bi
oa

ug
m

en
ta

ti
on

oc
cu

rr
ed

.

05

1
0

1
5

2
0

2
5

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

T
im

e
(d

a
ys

)

PCE,TCE,cDCE,VC,ethene(µmol/bottle)

02
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

Methane(µmol/bottle)

P
C

E

T
C

E

cD
C

E

V
C

E
th

e
n

e

M
e

th
a

n
e

la
ct

a
te

a
d

d
iti

o
n



68

to the bottles as lactate and the reduction of PCE and TCE to ethene accounted for 0.25%

(± 0.01%).

4.5.4 0.001% Bioaugmentation Dose with Phase II Enrichment Culture

Results for the microcosms that received a 0.001% dose of the SRS enrichment

culture are presented in Figures 4.23-4.25. The 0.001% (v/v) microcosms began

dechlorination sooner and had a faster rate of dechlorination than the 0.01% (v/v)

microcosms, which was unexpected based on the lower bioaugmentation dose. PCE

degradation did not begin until after TCE was reduced, which is consistent with the

behavior of the microcosms that received a 0.1% or 0.01% (v/v) dose of the SRS

enrichment culture. For the period of day 101 to day 300, the average molar recovery of

PCE and TCE as ethene was 79.8% (± 6.1%), with 99.1% (± 0.8%) of the daughter

products recovered as ethene. Methane accounted for an average of 2.2% (± 1.3%) of the

COD added to the bottles as lactate and the reduction of PCE and TCE to ethene only

accounted for 0.30% (± 0.06%).

One of the replicates receiving a 0.001% dose of the SRS enrichment culture

exhibited behavior significantly different from the other two bottles in the set (Figure

4.25), i.e., it showed activity much sooner than expected based on the bioaugmentation

dose. There is no logical explanation for this behavior other than the possibility that an

incorrectly large dose of the SRS enrichment culture was used.

4.5.5 1% Bioaugmentation Dose with Commercially Available KB-1 Culture

Results for the microcosms that received a 1% dose of the commercially available

KB-1 culture are presented in Figures 4.26-4.28. A modest reduction in TCE occurred in

the first 12 days after bioaugmentation on day 106. Reductive dechlorination ceased
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after day 126 and only resumed in two of the bottles between days 230 and 300. pH was

checked regularly along with the addition of electron donor to exclude both as reasons for

a lack of activity. Increased production of methane occurred during the interval when

reductive dechlorination ceased. For the period of day 106 to day 355, the average molar

recovery of PCE and TCE as daughter products was 70.3% (±19.8%); less than 10% of

the daughter products were recovered as ethene. Methane accounted for 7.7% (± 3.8%)

of the COD added as lactate.

Only one of the microcosms that received a 1% dose of KB-1 underwent

complete dechlorination of TCE to VC by the time when monitoring was stopped (Figure

4.26). PCE did not undergo dechlorination in any of the triplicate microcosms.
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CHAPTER 5

DISCUSSION

Bioaugmentation has been tested in several pilot scale studies and recommended

as a possible remediation technique for many sites contaminated with chlorinated

solvents (3, 10, 16, 17, 21). The results of this study suggest that bioaugmentation is a

feasible treatment for the PCE and TCE plume in the P-Area at SRS. The dechlorination

activity in the bioaugmentation microcosms was significantly higher than the “as-is” or

any of the biostimulation microcosms. Although bioaugmentation is a relatively new

treatment technique for remediation of sites contaminated with chlorinated ethenes, it has

been recommended for use by several studies (3, 10, 16, 17, 21). 

A number of previous studies have evaluated the potential for bioaugmentation

using microcosms. A study was preformed for Kelly Air Force Base before proceeding

to a pilot scale field study. In these microcosms, 3 mL of a KB-1 enrichment culture (2%

v/v or an initial cell density of 2 x 106 cells per mL after addition of the inoculum) was

added to the bioaugmentation treatments (17). Complete conversion of TCE to ethene

occurred in all the bioaugmentation treatments with the time required depending on the

initial TCE concentration (60 days for an initial TCE concentration of 6 µM or 0.8 mg/L

and 150 days for 600 µM or 80 mg/L) (17). The trend of decrease in concentration of

TCE followed by an increase in concentration of cDCE, then VC, and finally ethene

followed that of the trends seen in the 1% (v/v) SRS enrichment culture bioaugmentation
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microcosms. However, the 1% (v/v) microcosms only required 32 days for complete

reduction of 31 mg/L TCE and 1.7 mg/L PCE to ethene.

Both a column and microcosm study were done using the Pinellas culture before

its use in field studies at the Dover Air Force Base (5, 10, 14). Both studies concluded

that bioaugmentation was the best remediation strategy for this site. In the column part of

this study, a 4% and a 1% inoculum were evaluated. They showed similar degradation

trends as other studies, including first the appearance of cDCE followed by VC and

finally ethene. The fact that the column with the 4% inoculum reduced TCE to ethene in

about half the time as the column bioaugmented with the 1% inoculum agrees with the

results from the SRS enrichment culture bioaugmented microcosms, i.e., the more

concentrated the initial cell density the faster reductive dechlorination occurs (14).

This study investigated the effects of biostimulation on the P-Area. Lactate, corn

syrup and emulsified vegetable oil were used to biostimulate the P-Area microcosms. All

three donors have been successful in acting as an electron donor for cultures containing

Dehalococcoides (7, 18-21). Data from the PBRP shows the presence of cDCE,

indicating the site has undergone some natural attenuation (Figure 1.3). However, neither

the “as-is” nor any of the biostimulation treatments showed reduction of PCE or TCE to

cDCE. One possible explanation for this is based on the location at which the soil

samples were taken. Only one area in the PBRP is showing natural attenuation of TCE to

cDCE. The soil samples were taken from an area that is not currently exhibiting signs of

reductive dechlorination. It is possible that microcosm studies with sediment taken from

the area where cDCE is present would exhibit increased reduction of PCE and TCE to

cDCE with the addition of electron donor such as lactate, corn syrup or emulsified
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vegetable oil. However, since there is no field evidence for reduction past cDCE, it is

unlikely that biostimulation alone would be sufficient to remediate the PBRP chlorinated

ethene plume.

Nevertheless, the biostimulation results provide some insight into the preferred

electron donor for establishing low enough redox conditions prior to bioaugmentation.

The “as-is” microcosms incubated 20 to 40 days before the resazurin turned from pink to

clear. Since the soil and groundwater were low in organic matter, it was most likely

hydrogen from the anaerobic chamber atmosphere that was used to lower the redox level

in the as-is microcosms. This was similar to the microcosms amended with emulsified

vegetable oil, which incubated 24 to 55 days before turning clear. Emulsified vegetable

oil was apparently not readily biodegraded, since this treatment reached low redox levels

no faster than the as-is treatment. Lactate reduced the time needed to reach low redox

conditions, requiring 16 to 19 days. Corn syrup was fastest, with the resazurin in the

groundwater turning from pink to clear within 16 days. One drawback to using corn

syrup as an electron donor is its effect on pH. The biostimulation microcosms amended

with corn syrup required pH adjustments twice during the 238 days of incubation.

Neither the lactate nor emulsified vegetable oil amended microcosms required a pH

adjustment during incubation. The time benefit from using corn syrup to establish low

redox conditions is more than offset by the likely need for subsequent pH adjustment or

increased addition of a buffer.

Bioaugmentation has been proven in several field studies (10, 16, 17). One

important aspect of bioaugmentation is the addition of sufficient Dehalococcoides cells.

Past research showed densities of Dehalococcoides between 1 x 106 and 2 x 108 cells/mL
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were successful (10, 16, 17). For this study, microcosms received Dehalococcoides

densities ranging from 4.4 x 103 to 1.9 x 106 (Table 4.8). The 1% (v/v) SRS enrichment

bioaugmented microcosms completely reduced the PCE and TCE faster than the other

treatments, including the microcosms bioaugmented with 1% (v/v) of the commercially

available culture. The 0.1% (v/v) SRS enrichment bioaugmented microcosms were the

second treatment to show dechlorination activity (with one exception being bottle CE-

LA-BA_0.001%-3, Figure 4.25). However, as the PCE and TCE concentration decreased

so did the rate of reduction. This was different from the other SRS enrichment

bioaugmentation treatment in which the dechlorination rate stayed either constant or

increased with time. The 0.01% (v/v) bottles started dechlorinating more slowly than the

1% and 0.1% (v/v) but the rate accelerated after days 240-270. The 1%, 0.1% and 0.01%

acted as expected; the higher the initial concentration of Dehalococcoides cells (after

inoculation), the faster reductive dechlorination proceeded. The 0.001% (v/v) SRS

enrichment bioaugmented microcosms behaved similarly to the 0.01% treatments with

the exception of the bottle CE-LA-BA_0.001%-3, which was unexpectedly faster,

perhaps due to an error in the amount of inoculum added. Harkness et al. (14)

demonstrated a faster rate of TCE removal in columns inoculated with 4% culture versus

1% culture, as expected. No other studies were found that evaluated the effect of

different inoculum doses.

While KB-1 has proven successful in other laboratory and field studies (7, 17),

two out of the three replicates in this study were unable to completely dechlorinate the

TCE and PCE. None of the replicate KB-1 treatments showed significant dechlorination
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of PCE. The reason for this is not clear. Lactate was provided in excess and the redox

and pH conditions remained favorable.

To obtain a yield for the SRS enrichment culture the total Dehalococcoides 16S

rRNA gene copies per bottle were plotted against the calculated amount of Cl- released,

based on the measured amounts of PCE and TCE that were dechlorinated (Figure 4.6).

The results was 4.7 x 105 copies of the 16S rRNA gene per µmol Cl- released. Cupples et

al. (4) determined an average yield for Dehalococcoides strain VS to be 5.2 x 108 (±1.5 x

108) copies of the 16S rRNA gene per µmol Cl-. Other studies have shown that the yield

for Dehalococcoides spp. ranges from 1.6 x 108 to 5.2 x 108 gene copies per µmol Cl-

released (4, 15). It is not yet clear why the yield for Dehalococcoides in the SRS

enrichment culture is three orders of magnitude lower than previously reported values.

One possible explanation is a significant difference in the method of quantification.

Cupples et al. (4) used a cPCR approach while Bagwell (personal communication) used a

qPCR method modeled after Ritalahti et al. (20). 

 In order for reductive dechlorination to occur an electron donor must be provided.

In this study both the SRS enrichment culture and the bioaugmentation bottles were given

lactate as the electron donor. Lactate was chosen because it was the donor given to the

original microcosms by Bratt (1). The biostimulation microcosms received either lactate,

emulsified vegetable oil or corn syrup as an electron donor. Many other electron donors

have proven successful for reductive dechlorination, including hydrogen release

compound, molasses, formate, and methanol. While hydrogen release compound,

molasses, and lactate solutions are most commonly used in field studies, methanol has
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proven to be most effective in laboratory studies, based on the percentage of the electron

donor used for reductive dechlorination (6, 21). 

From the donor balance preformed on the enrichment culture, an average of

2.3% of the lactate added was used in the dechlorination of PCE and TCE. This is much

lower than the reported 31% reported for methanol (6). Most of the lactate ended up as

acetate or propionate (Tables 4.2-4.4). The ratio of propionate to acetate was

approximately 2:1 in E-2A and E-2C, and 1:1.1 in E-2B. The 2:1 ratio is consistent with

fermentation of lactate by the acrylate pathway (13):

3 lactate � 2 propionate + acetate + CO2 (2)

The higher amount of acetate in E-2B suggests that some of the propionate may have

been converted to acetate + CO2. The lack of succinate as an end product (it was

detectable with the HPLC method used but did not appear) indicates the fermentation

most likely occurs in the SRS enrichment culture via the acrylate pathway rather than the

succinate-propionate pathway (13).

Harkness et al. (14) performed an electron donor balance on one of the columns

used in their study. The column was amended with lactate and methanol. At low TCE

concentrations (30 µM) reductive dechlorination accounted for only 0.25% of the

electron donor consumed. The percentage of donor used for reductive dechlorination

increased to 6% when the TCE concentration was increased to 1300 µM (14). These

percentages are close to the value of 3% of donor used for reductive dechlorination by the

SRS enrichment culture, at TCE concentrations of approximately 300 µM. Harkness et
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al. (14) also determined that methanogenesis does not play a large role at high

concentrations of chlorinated ethenes, but does play a role at low concentrations. This

agrees with the results from the SRS enrichment culture and the microcosm study.

This study demonstrated the successful use of the SRS enrichment culture in

bioaugmentation of the P-Area microcosms. The lack of evidence for dechlorination in

the “as-is” and biostimulation microcosms indicates that the organisms needed are not

present in sufficient number or at all in the P-Area. Therefore, neither monitored natural

attenuation nor biostimulation would be an acceptable choice for remediation at this site.

The bioaugmentation aspect of the study indicates that using the SRS enrichment culture

may be a feasible option for bioaugmenting the P-Area chlorinated ethene plume.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

1) A sediment-free enrichment culture was developed using inoculum derived from

the TCE groundwater plume in the C-area at SRS. The culture grows in a defined

anaerobic mineral medium with PCE and TCE provided as the electron acceptors and

lactate as the electron donor. TCE and PCE concentrations of 35-40 mg/L and 4-8 mg/L,

respectively, are completely consumed by the enrichment culture within three to five

weeks. Quantitative PCR analysis indicated a linear increase in Dehalococcoides as

increasing amounts of PCE and TCE are reduced to ethene. The Dehalococcoides cell

density in the enrichment culture stabilized at approximately 4 x 106 cells per mL. An

electron donor balance indicates that most of the lactate provided is fermented to acetate

and propionate, with less than 3% used for reductive dechlorination. Methanogenesis in

the enrichment culture is insignificant.

2) Biostimulation using lactate, corn syrup and emulsified vegetable oil was

evaluated as a remediation strategy for the P-Area chlorinated ethene plume. After

more than eight months of incubation, there was no evidence of PCE or TCE

dechlorination in any of the biostimulated treatments, even though the amount of donor

added was in considerable excess and redox and pH conditions were favorable. This

indicates that the organisms needed for reductive dechlorination or either not present or

are in too small of numbers in the PBRP. During this study, it was determined that corn

syrup causes the redox conditions in the microcosms to become favorable more quickly
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than either lactate or emulsified vegetable oil, but also caused a significant drop in the

pH.

3) The microcosm results indicate that the SRS enrichment culture holds promise

for use in bioaugmentation of the P-area groundwater plume. In the treatment that

received the 1.0% (v/v) dose of SRS enrichment culture, reduction of PCE and TCE to

ethene was complete in approximately three weeks. The lower doses of SRS culture

were also effective, although up to seven months of incubation was needed before

dechlorination was complete. In contrast, dechlorination of PCE and TCE was much

slower and incomplete in the treatment that received the commercial bioaugmentation

culture, over the same incubation period.

Based on the results of this study the following recommendations are offered:

1) The enrichment culture should be scaled-up in preparation for its use in a field trial

in the P-area groundwater. This will require increasing the volume of culture and

maintaining or increasing the concentration of Dehalococcoides present, by increasing

the rate and possibly concentrations of PCE and TCE additions.

2) The lack of nutrients in the P-area soil and groundwater suggest that growth of the

enrichment culture in this environment might be improved by addition of nutrients during

bioaugmentation. An additional microcosm study should be performed to assess the

effect of macronutrients (including nitrogen, phosphorus, iron, calcium and magnesium)

and micronutrients (including trace metals and yeast extract) on growth of the SRS

enrichment culture in P-area soil and groundwater.

3) Further characterization of the enrichment culture should be performed. This

should include an assessment of how well the culture grows on individual chlorinated
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ethenes, by providing PCE, TCE, cDCE and VC separately to sub-cultures. In addition,

the ability of the culture to utilize other chlorinated aliphatic compounds should be tested,

including 1,2-dichloroethane, 1,2-dibromoethane, vinyl bromide, and chlorinated

benzenes. Electron donors other than lactate should be evaluated, with the aim of finding

a substrate that is more efficiently used for dechlorination.

4) A pilot scale test of the enrichment culture should be conducted in the P-area. This

test should include control plots with no addition, biostimulation, and bioaugmentation.

This will allow an assessment of bioaugmentation for the P-area as well as a comparison

between the field results and the microcosm study, to determine how well the microcosm

results are predictive of the field response.
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Appendix A

Preparation of Enrichment Culture Media

Solutions needed for media-
- Phosphate buffer-

In a 100 mL volumetric flask add 5.25 g K2HPO4. Then fill to 100 mL with DDI
water.

- Salt solution-
In a 100 mL volumetric flask add 5.35 g NH4Cl, 0.46976 g CaCl2·2H2O, and
0.17787 g FeCl2·H2O. Then fill to 100 mL with DDI water.

- Trace metals solution
In a 100 mL volumetric flask add 0.03 g H3BO3, 0.0211 g ZnSO4·7H2O, 0.075 g
NiCl2·6H2O, 0.1 g MnCl2·4H2O, 0.01 g CuCl2·2H2O, 0.15 g CoCl2·6H2O, 0.002
g Na2SeO3, 0.01 g Al2(SO4)3·16H2O, and 1 mL concentrated HCl. Then fill to
100 mL with DDI water.

- Magnesium sulfate solution-
In a 100 mL volumetric flask add 6.25 g MgSO4·7H2O. Then fill to 100 mL with
DDI water.

- Bicarbonate solution-
In a 500 mL volumetric flask add 8.0 g NaHCO3. Then fill to 500 mL with DDI
water.

- Redox solution-
In a 10 mL volumetric flask add 0.01 g resazurin. Then fill to 10 mL with DDI
water.

- Amorphous ferrous sulfide solution-
In 160 mL serum bottle add 3.9169 g Fe(NH4)2(SO4)2·6H2O and 2.4018 g
Na2S·9H2O. To this add 100 mL boiling autoclaved water, let solution settle and
decant clear water. Wash solution 4 more times the same way. Bring volume to
100 mL with boiling water and cap with a grey rubber septum. Store in an
anaerobic chamber (9).

- Yeast extract solution
In a 100 mL volumetric flask add 0.5 g yeast extract. The fill to 100 mL with
DDI water.

Media Preparation
In a 1 L bottle add 10 mL phosphate solution, 10 mL salt solution, 2 mL trace

metals solution, 2 mL magnesium sulfate solution, 1 mL redox solution, and 900 mL DDI
water. Autoclave this solution and then add 50 mL filter sterilized bicarbonate solution,
10 mL filter sterilized yeast extract, and 10 mL amorphous ferrous sulfide solution.
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Appendix B

Response Factors and Standard Curves

Table B.1 GC response factors for enrichment culture.

Compound

GC
Retention

Time (min)

Response
Factor

(µmol/bottle) R2

Conversion
Factora

(µmol/btl to
µM)

Conversion
Factora

(µmol/btl to
mg/L)

Methane 0.49 2.0574E-06 0.9949 0.00086 0.00001
Ethene 0.70 1.2051E-06 0.9979 0.11515 0.00322
Ethane 0.79 1.0749E-07 0.9873 0.05529 0.00166

VC 2.60 2.8180E-06 0.9894 0.38366 0.02398
cis-DCE 6.84 1.3410E-05 0.9997 0.56737 0.05503

TCE 10.02 6.4240E-06 1.0000 0.50888 0.06687
PCE 14.64 3.9840E-06 1.0000 0.44376 0.07359

a Assumes 100 mL liquid, 60 mL headspace, 23oC
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Figure B.1 GC response curves for methane (a), ethene (b), and ethane (c).
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Figure B.2 GC response curves for VC (a), cDCE (b) and TCE (c).
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Figure B.3 GC response curve for PCE.
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Table B.2. GC response factors for microcosms.
GC RT Response Factor Conversion Factor*

Compound (min) (µmol/bottle) R2
(µmol/btl to

µM)
(µmol/btl to

mg/L)

Methane 0.49 2.0574E-06 0.9950 0.01 0.00
Ethene 0.70 1.2051E-06 0.9979 1.31 0.04
Ethane 0.79 1.0749E-06 0.9873 0.58 0.02
VC 2.60 2.8180E-06 0.9894 6.71 0.42
cis-DCE 6.84 8.6345E-06 0.9956 15.65 1.52
TCE 10.0 4.6154E-06 0.9952 11.85 1.55
PCE 14.6 3.4975E-06 0.9897 8.81 1.46

* Assumes 50 mL liquid, 98.5 mL headspace, 23oC
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Figure B.4 GC response curves for methane (a), ethene (b) and ethane (c).
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Figure B.4 GC response curves for VC (a), cDCE (b) and TCE (c).
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Figure B.5 GC response curves for PCE.
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Table B.3 HPLC response factors.

Std conc. (mM)
lactate acetate propionate

Retention time (min 12.8-12.9 15.3-15.5 17.9-18.0
0.07614 23110 10278 11558
0.38069 117704 64434 74827
0.7614 236832 150633 178750
3.8069 1207667 754340 950466

Response factor 3.155E-06 6.637E-06 5.281E-06
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Figure B.7 HPLC response curves for lactate, acetate and propionate
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Appendix C

Microcosm Results
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Figure C.1 Results for one of the CRP-44 microcosms (CRP-44-2).
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Figure C.3 Results for one of the CRP-48 microcosms (CRP-48-2)
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Figure C.4 Results for one of the CRP-48 microcosms (CRP-48-3).
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Figure C.5 Results for one of the CRP-50 microcosms (CRP-50-2).
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Figure C.6 Results for one of the CRP-50 microcosms (CRP-50-3).
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Figure C.7 Results for one of the Phase I enrichments (E-1B).
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Figure C.8 Results for one of the Phase I enrichments (E-1C).
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Figure C.9 Results for one of the Phase II enrichments (E-2B).
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Figure C.10 Results for one of the Phase II enrichments (E-2C).
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Appendix D

Complete Electron Donor Balance and Stoichiometry of CE
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Table D.1 Complete Electron Donor Balance and Stoichiometry of CE

E-2A

Day Cycle

PCE
(umol/bottle)

TCE
(umol/bottle)

Initial

cDCE
(umol/bottle)

VC
(umol/bottle)

Ethene
(umol/bottle)

sum
(umol/bottle) Day

PCE
(umol/bottle)

TCE
(umol/bottle)

cDCE
(umol/bottle)

VC
(umol/bottle)

ethene
(umol/bottle)

sum
(umol/bottle)

%
Recovery % Ethene

145 1 50 577 32 74 589 1,322 155 0.2 0.9 3.5 8.9 1,067 1,081 81.7% 98.7%
155 2 42 556 1.2 2.8 872 1,474 167 1.2 4.9 56 144 1,040 1,246 84.6% 83.5%
167 3 57 574 48 112 845 1,636 186 0.2 0.7 2.6 20 1,522 1,545 94.4% 98.5%
186 4 83 584 2.1 13 1,167 1,849 214 0.0 0.0 1.4 0.1 1,124 1,126 60.9% 99.9%
214 5 115 585 0.9 0.2 942 1,643 270 0.0 0.0 2.9 0.0 1,443 1,446 88.0% 99.8%
270 6 86 584.5 0.0 0.0 1,044 1,714 293 0.0 0.0 5.7 0.1 1,524 1,530 89.3% 99.6%
293 7 42 556 4.0 0.0 1,399 2,001 311 0.8 9.2 4.8 10 1,732 1,758 87.8% 98.6%
311 8 88 597 0.0 0.9 860 1,545 353 0.0 0.0 5.9 0.0 1,291 1,297 83.9% 99.5%

E-2B

Day Cycle
PCE

(umol/bottle)
TCE

(umol/bottle)
cDCE

(umol/bottle)
VC

(umol/bottle)
ethene

(umol/bottle)
sum

(umol/bottle) Day
PCE

(umol/bottle)
TCE

(umol/bottle)
cDCE

(umol/bottle)
VC

(umol/bottle)
ethene

(umol/bottle)
sum

(umol/bottle) % Recovery % Ethene
145 1 54 571 176 168 458 1,428 167 0.0 0.0 8.1 19 1,187 1,214 85.0% 97.8%
167 2 56 561 6.2 11 883 1,517 186 0.0 0.9 50 67 1,403 1,521 100.3% 92.2%
186 3 86 535 22 41 985 1,669 208 0.1 1.2 13 13 1,176 1,203 72.1% 97.7%
208 4 77 586 11 11 973 1,659 234 0.0 0.1 24 0.2 1,503 1,528 92.1% 98.4%
234 5 75 570 17 0.0 1,085 1,747 293 0.0 0.1 24 0.2 1,503 1,528 87.5% 98.4%
293 6 75 570 17 0.0 1,422 2,084 311 0.0 4.0 4.6 0.9 1,638 1,647 79.1% 99.4%
311 7 92 581 0.0 0.1 912 1,585 353 0.0 0.0 14 0.0 1,262 1,276 80.5% 98.9%

E-2C

Day Cycle
PCE

(umol/bottle)
TCE

(umol/bottle)
cDCE

(umol/bottle)
VC

(umol/bottle)
ethene

(umol/bottle)
sum

(umol/bottle) Day
PCE

(umol/bottle)
TCE

(umol/bottle)
cDCE

(umol/bottle)
VC

(umol/bottle)
ethene

(umol/bottle)
sum

(umol/bottle) % Recovery % Ethene
145 1 48 557 75 140 600 1,421 160 0.1 0.1 2.1 2.4 1,275 1,280 90.1% 99.6%
160 2 52 569 2.3 1.2 1,045 1,670 178 0.1 1.6 8.4 79 1,474 1,563 93.6% 94.3%
178 3 43 561 4.3 45 1,097 1,750 196 0.1 0.0 9.4 0.7 1,937 1,947 111.2% 99.5%
196 4 41 550 8.7 0.2 1,548 2,147 234 0.0 0.0 14 0.0 1,896 1,911 89.0% 99.2%
234 5 54 562 20 0.0 1,050 1,686 311 6.5 43 13 1.2 1,806 1,870 110.9% 96.6%
311 6 97 554 0.9 0.1 1,034 1,686 353 0.0 0.0 11 0.0 1,621 1,632 96.8% 99.3%

Final

Initial Final

Initial Final
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