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Abstract

This thesis seeks to detect transient disturbances in power system signals in

a sparse framework. To this end, an overcomplete wavelet packet dictionary and

damped sinusoid dictionary are considered, and for each dictionary Matching Pursuit

is compared with Basis Pursuit. Previous work in developing waveform dictionary

theory and sparse representation is reviewed, and simulations are run on a test signal

in both noisy and noiseless environments. The solutions are viewed as time-frequency

plane tilings to compare the accuracy and sparsity of these algorithms in properly

resolving optimal representations of the disturbances. The advantages and disadvan-

tages of each combination of dictionary and algorithm are presented.
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Chapter 1

Introduction

In recent years, the eyes of both industry and government turned toward the

technological advancement of power systems to ease problems with growing energy

needs, shrinking energy supplies, and irreversible environmental damage. A key com-

ponent of this focus is power quality monitoring and fault detection. These transient

faults need to be understood and characterized to properly identify and subsequently

analyze the sources of disruption. Detecting transients within noise is a challenging

task to automate, and much research has gone into this pursuit. Algorithms have been

proposed to analyze the signal in the temporal domain, various transform domains,

and adaptive pursuit algorithms as in this thesis.

In applied mathematics, the research area of sparse representation is also seeing

an infusion of interest. A signal can be decomposed by Fourier series, wavelets, or

other waveforms, usually with increasing accuracy as the the number of waveforms

used increases. Yet, in addition to the accuracy of the representation it has become

a priority to pursue a sparse representation. A sparse representation is one in which

the signal is decomposed into only a few elements. This clearly results in a higher

compression and less data storage, but sparse representation also ensures accurate
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extraction and sharper classification of the main signal elements.

Two adaptive pursuit algorithms, matching pursuit and basis pursuit, as per-

taining to simulated power systems signals are investigated in this thesis. While the

fields of power systems analysis and sparsity constraints emerge separately, this thesis

seeks their marriage in an effort to produce an optimal method for analyzing power

systems signals and faults.

1.1 The Signal

The power system signal is a complicated one because of its dynamic nature,

dependent on constantly changing loads. The current model for power system phe-

nomena is developed through [23, 27, 2]. In [23], power system signal is characterized

by

1. Low frequency harmonics ranging from the system fundamental frequency (60Hz

in the US) to 3kHz. These are caused by power electronic devices, arc furnaces,

transformers, rotational machines, and aggregate loads.

2. Swells and Sags of the RMS Voltage from a half cycle of the fundamental up to

a minute in duration.

3. Transients observed as impulses superimposed to the fundamental frequency.

These can be caused by lightnings, equipment faults, switching operations, and

more.

Essentially, power systems are built from transmission lines, sources, and loads. In

these circuits the voltages closely follow the solutions of differential equations [17].

Because of this, damped sinusoids are proposed to model the signal. Due to their
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impulsive nature, this model reflects the transient disturbances well. The proposed

model is

f(t) =
Q∑
q=1

Aqe
−λq(t−t0) · sin(2πfq(t− tq) + φq) · u(t− tq) (1.1)

where Aq is the initial amplitude, fq is the frequency in Hertz, λq is the damping

factor, and φ is the phase angle, and tq is the starting time of the qth impulse. The

function u(t) is zero before tq and 1 during the impulse. In noise the model becomes

f(t) =
Q∑
q=1

Aqe
−λq(t−t0) · sin(2πfq(t− tq) + φq) · u(t− tq) + n(t) (1.2)

where n(t) is white Gaussian noise. This thesis focuses on the detection of the tran-

sients modeled in this way.

1.2 The Problem

A dictionary of size p, D, is defined as a collection of parameterized waveforms

{φi}pi=1 called atoms. Many dictionaries have been developed and tested over the last

decade, with a particular emphasis on wavelet dictionaries. With such a general

definition of a dictionary, many can be created, but the choice of which waveforms to

include is critical for ensuring accurate and sparse representations.

A discretized power system signal can be decomposed into m dictionary wave-

forms as

x =
m∑
i=1

αiφi +R(m) (1.3)

where R(m) is a residual and αi represents the coefficient on the dictionary waveform

φi. Assuming the dictionary contains a basis for l2, an exact decomposition can be
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made with

x =
∑
φ∈D

αiφi. (1.4)

What the signal x is decomposed into depends on the choice of dictionary.

Ideally, the major features are represented in only a few waveforms from D. In the

case of power quality monitoring, the transient disturbances should be isolated as the

few major features. If this is done properly, then the transients will be detected and

identified.

If the dictionary represents a simple basis, the decomposition will be unique.

However, of more interest are overcomplete dictionaries. These dictionaries allow

for many different decompositions of the signal. Considering the waveforms of the

dictionary as discretized with length n, a dictionary of p waveforms can be represented

as an n-by-p matrix, Φ. Then, 1.4 becomes

x = Φα. (1.5)

If the dictionary is a simple basis then Φ is a nonsingular n-by-n matrix and the

decomposition can be easily found using the inverse. However, when the dictionary is

overcomplete the system becomes n-by-p and the system is underdetermined, meaning

there is no unique solution. Which of these solution is best and what method should

be used to choose it are the remaining questions.

Minimizing the l2 norm, a measure of energy, is one way to choose the solution.

This problem formulation is

min
α

‖α‖2 subject to x = Φα. (1.6)

One of the primary motivations for minimizing the l2 norm is that the problem
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formulation has a unique solution of the form

α = ΦT (ΦΦT )−1x. (1.7)

However, while this minimizes the l2 norm, it does not result in a sparse solution as

the energy is dissipated over the coefficients. A sparse solution is such that ‖α‖0 << p

where

‖α‖0 = #(i : αi 6= 0). (1.8)

The problem formulation in this sparse framework is then

min
α

‖α‖0 subject to x = Φα. (1.9)

Unfortunately, solving this formulation of the problem is NP-Hard [1]. Over the last

decade, much research has gone into solving this problem, particularly by relaxing

the condition slightly to

min
α

‖α‖1 subject to x = Φα. (1.10)

When the problem is convexified in this way and then solved, it is known as Basis

Pursuit. The solution is found through advanced linear programming techniques.

The solution of 1.10 will match the solution of 1.9 under certain conditions developed

by Donoho and Elad [7]. This thesis will investigate the effectiveness of this convex

relaxation problem on the proposed power system signal.

In the presence of noise, 1.10 must be recast to an approximation

min
α

‖α‖1 subject to ‖x− Φα‖2 ≤ δ, (1.11)
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which is known as Basis Pursuit Denoising.

The solution to this problem is the same as the solution to the unconstrained

optimization problem

min
α
λ ‖α‖1 +

1

2
‖x− Φα‖2

2 (1.12)

for a suitable λ value. The higher the λ, the harsher the punishment for the solution

to go away from sparsity. The λ value will depend on the δ range for which the

solution is to stay within.

Basis Pursuit, solving 1.10, and Basis Pursuit Denoising, solving 1.11 or 1.12,

are simply different problem formulations. In fact, Basis Pursuit is a version of Basis

Pursuit Denoising with δ = 0. In Basis Pursuit an exact representation is found, but

in Basis Pursuit denoising an approximation within a specified tolerance is sought.

Most algorithms are optimized to solve the more challenging Basis Pursuit Denoising,

but also work for the Basis Pursuit case where δ = 0.

1.3 The Dictionary

This thesis uses two dictionaries, a wavelet packet dictionary and a damped

sinusoid dictionary. A wavelet packet dictionary has n log2(n) waveforms of length N,

indexed by (j, p, k) where 1 ≤ j ≤ log2(N), 0 ≤ p ≤ 2−jN − 1, and 0 ≤ k ≤ 2j − 1.

Each of these atoms has a similar time-frequency localization property to a discrete

window function, dilated by 2j, centered at 2j(p+ 1
2
), and modulated by a sinusoidal

wave of frequency 2π2−j(k + 1
2
) [18, 12, 25].

A variety of mother wavelets can be chosen such as Haar, Daubechies, Coiflets,

and Symlets. For power quality application the wavelet should be oscillatory with

short support. The most widely chosen such wavelet is the Daubechies 4, db4,
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wavelet [3, 13].

The second dictionary is a damped sinusoid dictionary. This dictionary is

constructed similarly to the wavelet packet dictionary, but using a mother wavelet of a

damped sinusoid. Because the features searched for are in fact damped sinusoids, this

dictionary should do well in identifying these transients, but its lack of orthogonality

and high level of coherence make such a dictionary less popular.

This thesis investigates the aforementioned mutual coherence of these dictio-

naries. The mutual coherence is defined as

µ(Φ) = max
1≤k,j≤m,k 6=j

∣∣∣φTk φj∣∣∣
‖φk‖2 ‖φj‖2

. (1.13)

With an appropriately low mutual coherence, the solutions to 1.10 and 1.9 will

match. The theorem, proved by Donoho and Elad [7], states

Theorem 1.1 If a solution α exists obeying

‖α‖0 <
1

2
(1 +

1

µ(Φ)
)

then that solution is both the unique solution of 1.10 and 1.9.

Another theorem from Donoho [1] uses the coherence in relation to the match-

ing pursuit algorithm:

Theorem 1.2 If a solution α exists obeying

‖α‖0 <
1

2
(1 +

1

µ(Φ)
)

then an Orthogonal Greedy Algorithm with threshold parameter ε0 = 0 is guaranteed

to find it exactly.
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1.4 The Algorithms

This thesis investigates two different algorithms adaptive pursuit algorithms

that pursue sparse solutions. They will be evaluated on the two dictionaries and in

noisy and noiseless scenarios.

1.4.1 Matching Pursuit

The matching pursuit algorithm proposed by Mallat and Zhang [19], is a greedy

algorithm which addresses solving 1.9 directly by piecing the decomposition together

step by step. Starting with an initial approximation x(0) = 0 and residual R(0) = x

a sparse approximation is built by adding a new atom to the decomposition at each

iteration. At the kth stage, the dictionary is searched for the atom that has the largest

correlation with the current residual. This is the piece that will reduce the residual

the most by adding it to the approximation. The approximation x(k) = x(k−1) +αkφk,

where αk =
〈
R(k−1), φk

〉
, the l2 inner product. The new residual is R(k) = x − x(k),

and the algorithm iterates until a stopping condition is met on the residual.

If the dictionary is orthogonal, the Matching Pursuit algorithm works flaw-

lessly. If this is the case and the signal consists of only m objects, then running

Matching Pursuit for m iterations will find this solution. However, as is often the

case in overcomplete dictionaries, the dictionary is not always orthogonal. Because

the algorithm is a greedy algorithm, a poor choice early on can result in the algo-

rithm spending its time trying to correct itself. This potential drawback does occur

in practice [1, 6, 5].
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1.4.2 Basis Pursuit

Basis Pursuit is concerned with finding a sparse solution through solving 1.10.

The term Basis Pursuit does not refer to a single specific algorithm, but instead refers

to any algorithm which solves the Basis Pursuit problem formulation. The methods

for accomplishing this task initially suggested by the authors of [6] are of the linear

programming variety due to strides made in computational efficiency with interior

point methods. The convexity of the problem formulations allows linear program

solvers to find the global solution to 1.10. In recent years, many algorithms have

been proposed to accurately and quickly solve 1.12, and they are reviewed in [1].

This thesis uses a primal-dual log-barrier linear program technique to solve

1.10. In the presence of noise, 1.12 is transformed to a second order cone program

and then solved using a primal-dual log-barrier algorithm. These solvers are readily

available in the SparseLab package available for Matlab.

9



Chapter 2

Research Design and Methods

The goal of the research presented is to determine the effectiveness of using

sparsity constraints and adaptive pursuit techniques for transient detection in power

systems signals. The methods will be considered effective if the transient disturbances

are represented correctly and sparsely in the time frequency plane. This implies a

crisp detection of the transient.

2.1 Test Signals

In the interest of simplicity and computational tractibility, this thesis focuses

on a specific type of transient, capacitor switches. Energizing a capacitor bank results

in a quick voltage recovery that overshoots and results in an oscillating transient

voltage superimposed to the system fundamental. Following Zhu’s description of

capacitor switches in [26], this thesis focuses on damped sinusoids with frequency

ranging from several hundred to a couple thousand Hertz, damping factors of 450-

500, and phase angles from −π
2

to π
2
.

The synthetic signal is designed to test the algorithms’ ability to not only de-
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tect these transients, but to differentiate between two different disturbances that may

occur in close proximity. The signal is designed to model a power system signal after

it has been through a high pass filter that takes out the low harmonics, particularly

the 60Hz fundamental, and leaves the transients, namely capacitor switching tran-

sients. The signal is sampled at N=512 equally spaced points on the interval [0, .1].

This means the sampling frequency is 5120 Hz, and frequencies up to 2560 Hz can be

accurately resolved. The first signal, f1, is without noise

f1(t) = e−460.5(t−.03) sin(2π875(t− .03))u(t− .03) +

e−475(t−.033) sin(2π2000(t− .033))u(t− .033) +

e−500(t−.08) sin(2π1500(t− .08))u(t− .08),

while f2 is affected by noise

f2(t) = f1(t) + n(t)

where n(t) is random Gaussian white noise, ranging from -.3 to .3 with a mean of 0.

2.2 Dictionary

Two dictionaries are considered in this research: a wavelet packet dictionary

based on the Daubechies 4 wavelet and a damped sinusoid dictionary. The wavelet

packet dictionary is constructed from the db4 wavelet, with n log(n) atoms. Since

N=512, the dictionary includes all of the wavelet packet atoms up to level log(n) = 9,

for a total of 4608 waveforms. The Damped Sinusoid Dictionary is built similarly to

11



Figure 2.1: The tested model without noise sampled at 512 points from 0 to .1 seconds.
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Figure 2.2: The tested model with noise sampled at 512 points from 0 to .1 seconds.
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a wavelet packet dictionary by scaling, dilating, and translating

ψ(t) = e−480t sin(2π1250t). (2.1)

The parameters of this damped sinusoid are chosen to be average in the range of

capacitor switches transients previously given as the focus of this detection scheme.

Since the type of transient to be searched for is defined, the idea is that a waveform

similar to the transient is the best suited to create a dictionary from.

The respective mutual coherences will be calculated numerically and each will

be evaluated on the test signals using both algorithms.

2.3 Motivation for Pursuit Algorithms and Spar-

sity

In detecting and identifying transients, a sparse solution will associate certain

dictionary atoms with certain types of transients. If the solution is sparse in the time

frequency display, the transient can be characterized by its frequency resolution, and

the time of the disturbance can be identified. The two pursuit algorithms, Matching

Pursuit and Basis Pursuit, are used in this thesis instead of the popular wavelet trans-

form [20]. Because the goal of sparsity has been set forth, the wavelet transform will

not be sufficient. Using f1(t), a multilevel wavelet decomposition using db4 wavelets

and depth nine gives the coefficient vector shown in Figure 2.3. This wavelet trans-

form method shows a clear ringing and the energy is dispersed over many coefficients.

This method will not give as sparse of a solution as the results presented later using

Basis Pursuit and Matching Pursuit.

Wavelet shrinkage, a process of denoising by thresholding the detail coefficients

14



Figure 2.3: The coefficient vector of a wavelet decomposition using db4 wavelets and
depth 9.
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of the multilevel discrete wavelet transform, can be used to denoise a signal and then

analyze it. This concept is not visited in this thesis. Instead the implemented adaptive

pursuit algorithms address the sparsity issue directly.

2.4 Comparing Sparsity

The time frequency plane displays the concentration of various dictionary

atoms. In this study, the sparsity of a representation will be viewed through this

tool as well as a simple plot of the coefficients. In the time frequency plane the boxes

representing a particular atom are referred to as Heisenberg boxes, and concentration

of the atom is displayed through the darkness of its Heisenberg box. Crisp, sparse

representations will have time frequency representations with few dark boxes at the

appropriate locations.

2.5 Importance of the Study

Enforcing sparsity constraints has proven to be key in other applications, and

this concept has not yet been fully addressed in power system signals. Matching

pursuit algorithms for power systems analysis and transient detection have previously

been proposed [15, 16, 17], but using basis pursuit has not been properly investigated.

With a sparse representation of the transient disturbances, the characteristics of each

disturbance have been identified, an important task in power quality monitoring.
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Chapter 3

Related Work

3.1 Sparsity Development

This thesis’s primary reference for results in sparsity is a sequence of papers

from David Donoho and Michael Elad with others [7, 8, 9] along with their com-

prehensive review article [1]. These articles develop two concepts to use as tools for

measuring the ability of pursuit algorithms to find the sparsest solution. First, the

spark of a matrix is defined as

spark(Φ) = the smallest number of columns from Φ that are linearly dependent.

(3.1)

Using this concept the following theorem was proven in [7]:

Theorem 3.1 If a system of linear equations Φα = x has a solution α obeying

‖α‖0 <
spark(Φ)

2
, this solution is necessarily the sparest possible.

While this was a breakthrough, there is no efficient way to find the spark of

matrix other than an exhaustive search. However, it is shown that the spark is related

to the mutual coherence defined in 1.13.

17



Theorem 3.2 For any matrix Φ ∈ <n×m, the following relationship holds:

spark(Φ) ≥ 1 +
1

µ(Φ)

Since the mutual coherence can be used as a bound on the spark, the following result

is given in [7]:

Theorem 3.3 If a system of linear equations Φα = x has a solution α obeying

‖α‖0 <
1

2
(1 +

1

µ(Φ)
)

then this solution is necessarily the sparsest possible.

Then from here the mutual coherence can be used to get the results of Theorem

1.1 and Theorem 1.2. That is, the ability of the solution of 1.10 to match the solution

of 1.9, and the ability of Matching Pursuit to find the sparsest solution. The coherence

level theory is extended to deal with stability in finding the sparest solution in noise.

The main result from [8] is:

Theorem 3.4 For a noise bound of ε, a bound on ‖x− Φα‖2 of δ, a dictionary of

size N × M, and an arbitrarily small T, if

‖α‖0 <
1 + µ(Φ)

2µ(Φ) + 2
√
N(ε+δ)
T

then with δ ≥ ε the solution to 1.11 exhibits stability

‖α− α0‖1 ≤ T

18



where α0 is the sparest solution.

Since T is arbitrary, any can be chosen to balance its effect on the bound of ‖α‖0 and

its bound on ‖α− α0‖1.

Extending beyond a simple coherence argument, Joel Tropp introduced the

cumulative coherence function in [21]:.

µ1(m) = max
|Λ|=m

max
ψ

m∑
λ=1

| 〈ψ, ϕλ〉 |, (3.2)

where Λ is any collection of dictionary waveforms, in this case with cardinality m, ψ

ranges over the atoms in the dictionary which are not included in Λ, and the ϕλ are

the individual waveforms comprising Λ .

The reasoning behind this measure is to soften the effect of one high correlation

in the dictionary, which is always reflected in the mutual coherence. Instead, Tropp

noticed that the same results can be reached depending instead on the rate at which

the correlation of dictionary waveforms grows.

Theorem 3.5 If the following condition is met

µ1(m− 1) + µ1(m) < 1,

then both orthogonal matching pursuit and basis pursuit will find the correct sparse

solution.

This thesis evaluates the mutual coherence of the tested dictionaries before

applying them directly to the test signals.
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3.2 Algorithm Development

Matching pursuit was developed by Mallat and Zhang in [19]. They use Ga-

bor time frequency atoms as dictionary waveforms and explain this choice because

these atoms are optimally localized in time and frequency. A tweaked version of this

algorithm is applied to power system signals by Lovisolo and others in [15, 16, 17].

These works use an expanded Matching Pursuit algorithm on a dictionary of damped

sinusoids to empirically successful results.

Basis pursuit was introduced in [6]. In this seminal work, the problem is

formulated and a primal-dual log-barrier linear programming approach is suggested to

solve the problem. Many different test signals are used to show the difference between

Basis Pursuit, Matching Pursuit, and what is referred to as the Method of Frames. In

the Method of Frames, the l2 norm of the solution vector is minimized as formulated

in 1.6. It is evident that the Method of Frames is not sparsity preserving, as searching

for a single time-frequency atom solution instead returns a solution with the energy

spread amongst many atoms. Further examples are contrived in which the matching

pursuit algorithm preforms poorly because of missteps in its first few iterations, and

the value of Basis Pursuit resulting in the global solution to the problem formulation

is evident. Basis Pursuit Denoising, 1.11,is also introduced and developed in [6].

3.3 Dictionary Development

3.3.1 Damped Sinusoid

A parameterized damped sinusoid is sometimes referred to as the Laplace

wavelet in literature. This wavelet is used in [14, 24, 10]. A version of matching

pursuit is used along side a damped sinusoid, or Laplace wavelet, dictionary in [26,
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15, 16, 17, 11]. The parameterized waveform is defined explicitly in [26] as

gγ(t) = Ae−λt sin(2πft+ φ) (3.3)

for t ∈ [0, T ].

The waveforms are indexed by γ = (f, λ, φ) where f is frequency in Hertz, λ

is the damping factor, φ is the phase angle, A is the initial amplitude, and T is the

support range. In [15, 16, 17, 11] the waveform is given time supports to allow for

different starting points. The dictionary is formed by adding each combination of

waveforms over a mesh of the parameters. In [26] the range used is 851-1220 Hz with

185 elements, 450-500 s−1 with 15 elements, and −π
2

to π
2

with 45 elements for the

phase angle. The different combinations here gives a dictionary with 124,875 wave-

forms. These parameters were previously mentioned as a guide for the power system

capacitor switching transients sought by this thesis. However, the damped sinusoid

dictionary used in this thesis is built similarly to wavelet packets by scaling, dilating,

and translating a single mother damped sinusoid function instead of including each

parameter combination of damped sinusoids as in [26, 15, 16, 17, 11].

3.3.2 Wavelet Packet Dictionary

Wavelet Packets were first introduced by Coifman and Wickerhauser [4]. They

were designed to improve computational speed as from a wavelet packet, there are

many choices for a wavelet basis. To choose which basis to use an entropy based

function is minimized, and the result is known as the best basis. In [18] there is a

comprehensive chapter detailing wavelet packets. The key difference between wavelet

analysis and wavelet packet analysis is that in a multilevel decomposition wavelet

analysis filters the approximation coefficients at each step, while a wavelet packet
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filters both approximation coefficients and detail coefficients.

Taking all the waveforms from a wavelet packet and adding them to a dic-

tionary, resulting in n log(n) waveforms, was done in [12, 25, 22]. In [25], a wavelet

packet dictionary based upon a Symmlet wavelet is used with Basis Pursuit to detect

faults in rolling element bearings. This research model is echoed by the design of this

thesis. In [12], a wavelet packet dictionary is again formed, but this time Matching

Pursuit is used for ultrasonic inspection. Finally, in [22] a wavelet dictionary is used

with matching pursuit for parametric audio coding.
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Chapter 4

Results

First, the mutual coherence of the wavelet packet dictionary is calculated at

different sizes. Then, the algorithms and dictionaries proposed were tested on the

noiseless and noisy signals. The results are presented here as time frequency represen-

tations as well as coefficient plots. The representations that show the key components

accurately and in a sparse way are preferred, because this implies the algorithm was

stable in the noise and the transient features accurately identified.

4.1 Dictionary Coherence

The mutual coherence of the damped sinusoid dictionary is one due to the

redundancy and lack of orthogonality in the atoms. None of the theory mentioned as

1.1 or 1.2 can be applied, and the empirical test here will have to suffice as evidence

regarding the effectiveness of the dictionary. The mutual coherence of the wavelet

packet dictionary is given in the following table. 1 ≤ L ≤ log(N) represents the

maximum level the wavelet packet reaches (giving N ∗D waveforms in the dictionary),

and µ is the mutual coherence. The signal length needs to be at least 512 out of these
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N L µ

512 9 .7457
512 8 .7457
512 7 .7148
512 6 .7148
512 5 .7148
512 4 .7148
512 3 .7148
512 2 .7148
512 1 ≈ 0
256 4 .7148
256 3 .7148
256 2 .7148
128 3 .7148
128 2 .7148

Table 4.1: Mutual Coherence Table

options so that it can resolve frequencies as high as are typical with these types of

transients. As shown in this table, the coherence drops slightly as fewer waveforms are

included in the decomposition, but the coherence is still high. Other than with only a

one level split, in which the db4 waveforms are orthogonal, is the coherence low. Even

at small signal lengths and levels, the coherence is high. This is because the coherence

reflects the extremes of the dictionary. In spite of many orthogonal waveforms in the

dictionary, as seen in the one level test, it only takes one redundancy to push the

coherence over .7, which renders the theory of Theorem 1.1 or Theorem 1.2 unusable

for this wavelet packet dictionary. Again, just as in the damped sinusoid dictionary,

the empirical evidence shall serve as the metric for the success in finding sparse

solutions. In terms of the theory developed by Donoho and Elad [7], a sharper metric

is needed to evaluate the effectiveness of the increasing number of dictionaries used in

today’s applications. The cumulative coherence function suggested by Tropp in [21]

is a step in this direction, but is still not sharp enough to apply in this situation.
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4.2 Simulation without Noise

The Matching Pursuit and Basis Pursuit algorithms are run on f1 using both

the wavelet packet and damped sinusoid dictionaries. From the equation for f1, the

time frequency plane should reflect two disturbances early. It should also be able to

separate them both by time and by frequency, as the first impulse has a frequency

component of 875 Hz and the second impulse has a frequency component of 2000 Hz.

Further, the impulse towards the end of the window should be detected and localized

reasonably well in time and frequency.

4.2.1 Wavelet Packet Dictionary

4.2.1.1 Matching Pursuit

Figure 4.1 shows the Matching Pursuit algorithm does a good job of finding

each of the three impulses, even though the first two are close together. The coefficient

plot reveals a sparse representation. Using this dictionary and this algorithm in a

noiseless environment appears to work well.

4.2.1.2 Basis Pursuit

Figure 4.2 shows the Basis Pursuit solution. Similar to the Matching Pursuit

algorithm in this case it resolved the three different disturbances accurately and with

only a few coefficients as shown by the coefficient vector.
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Figure 4.1: Time Frequency representation and coefficient vector after Matching Pur-
suit on Wavelet Packet Dictionary without noise
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Figure 4.2: Time Frequency representation and coefficient vector Basis Pursuit on
Wavelet Packet Dictionary without noise
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Figure 4.3: Time Frequency representation and coefficient vector Matching Pursuit
on Damped Sinusoid Dictionary without noise
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4.2.2 Damped Sinusoid Dictionary

4.2.2.1 Matching Pursuit

Figure 4.3 shows that the Matching Pursuit algorithm isolated the three tran-

sients in both time and frequency. This time the time-frequency atoms are sharp in

time, and less localized in frequency. With the shape of the damped sinusoid wave-

forms in the dictionary, it is no surprise that a sparse solution is found here, it appears

to be even more sparse than the wavelet packet dictionary results.

4.2.2.2 Basis Pursuit

In Figure 4.4, once again without noise the algorithm is able to identify the

three impulses. Similarly to Matching Pursuit in the damped sinusoid dictionary, the

solution is heavily localized in time and less so in frequency. The overall coefficient

vector shows quite a sparse solution.

4.3 Simulation with Noise

The Matching Pursuit and Basis Pursuit algorithms are run on f2 using both

the wavelet packet and damped sinusoid dictionaries. Even with noise added the

goal is for these algorithms to identify sparse, accurate, solutions. Because an exact

representation no longer makes sense in the presence of noise, a δ value of 1 is set and

the solutions will obey ‖x− Φα‖ ≤ δ.
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Figure 4.4: Time Frequency representation and coefficient vector Basis Pursuit on
Damped Sinusoid Dictionary without noise
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Figure 4.5: Time Frequency representation and coefficient vector Matching Pursuit
on Wavelet Packet Dictionary with noise
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4.3.1 Wavelet Packet Dictionary

4.3.1.1 Matching Pursuit

Figure 4.5 shows that the Matching Pursuit algorithm picked up a lot of the

noise despite only being required to iterate until ‖x− Φα‖ ≤ 1. The main components

of the first two impulses are represented strongly, but the third impulse is barely

visible. The coefficient vector suggests a pretty sparse representation of the signal,

but the time frequency representation shows that while there may not be that many

coefficients there are too many large ones coming from noise. It would be difficult to

pick out the impulses from this representation.

4.3.1.2 Basis Pursuit

Figure 4.6 shows that the Basis Pursuit algorithm picked up significantly less

of the noise than the Matching Pursuit algorithm even though they were held to the

same standard of ‖x− Φα‖ ≤ 1. However, similar to the Matching Pursuit attempt,

the third impulse is weakly represented. The coefficient vector shows a decently sparse

solution, albeit with more coefficients than Matching Pursuit.

4.3.2 Damped Sinusoid Dictionary

4.3.2.1 Matching Pursuit

In Figure 4.7, due to its similarity with the mother function that was used

to create the dictionary, the third impulse is picked up the heaviest unlike when the

wavelet packet dictionary was used. However, other garbage is picked up intensely.

Where the wavelet packet dictionary picked up significant amounts of scattered noise,

the damped sinusoid dictionary picked up atoms with high amplitude that were not
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Figure 4.6: Time Frequency representation and coefficient vector Basis Pursuit on
Wavelet Packet Dictionary with noise
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Figure 4.7: Time Frequency representation and coefficient vector Matching Pursuit
on Damped Sinusoid Dictionary with noise
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Figure 4.8: Time Frequency representation and coefficient vector Basis Pursuit on
Damped Sinusoid Dictionary with noise

impulses. This is not good for a fault detection scheme. At the low levels the solution

is not particularly sparse.

4.3.2.2 Basis Pursuit

Figure 4.8 shows less noise than its Matching Pursuit counterpart, and does

not pick up any particularly strong false positives. Again, due to similarity to the

function used in the creation of the dictionary, the third impulse is picked up the

strongest, and the other two are weaker. The time localization of these impulses is

stronger than the frequency localization. The coefficient vector is not sparse at low
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levels.

4.4 Conclusion of Results

The theoretical coherence arguments proved to be irrelevant due to the high

coherence of both dictionaries, but the dictionaries do not preform the same. This

suggests the need for a better metric. When noise is added, the wavelet packet dictio-

nary resulted in much sparser coefficient vectors than the damped sinusoid dictionary.

However, the coherence arguments currently available do not give information to sug-

gest this result, and only the empirical evidence is relied upon. Further comparing the

dictionaries, the damped sinusoid dictionary did a superior job in time localization

of the impulses, while the wavelet packet dictionary localized in a better compromise

between time and frequency.

Without noise present, the Matching Pursuit algorithm and the Basis Pursuit

algorithm gave similar time frequency representations, but the Matching Pursuit ap-

pears to give slightly better sparsity in the coefficient vector. Once noise is added, the

Matching Pursuit algorithm picked up more noise in both dictionary tests, in spite

of the fact that the algorithms were held to the same standard of accuracy. Most

damaging is the Matching Pursuit algorithm revealed a strong atom where there was

no impulse in the damped sinusoid dictionary case.
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Chapter 5

Conclusions and Discussion

5.1 Answering the Research Questions

This thesis aimed to compare two dictionaries and two algorithms as they

pertain to transient detection in power systems signals, particularly in the presence

of noise.

5.1.1 Dictionary

The mutual coherence calculations showed that there was too much redun-

dancy in either dictionary to apply the theory currently developed. However, the

structure of the wavelet packet dictionary has less coherence than the damped sinu-

soid dictionary.

The two dictionaries, wavelet packet and damped sinusoid, preformed with

advantages and disadvantages. The conclusion made is that when it is of primary

importance to find the exact instants the transients hit the damped sinusoid dictio-

nary does a good job because the dictionary resolved time instants better in both

dictionaries, in noise and without noise. However, they did not localize the frequency
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as well as the wavelet packet dictionary, so if the goal is to compare and identify the

transient types then the wavelet packet dictionary is preferable.

In the damped sinusoid dictionary it is hard to tell the difference between the

higher frequency transient and the lower frequency transient. This is likely because

of the damped nature of these dictionary atoms instead of being pure sinusoids. The

damping will lead to broader resonance peaks, meaning the frequencies present will

not be sharply, or sparsely, identified. Empirically, this was the case.

Due to the redundancy in the damped sinusoid dictionary it did not resolve

very sparse solutions as compared with the wavelet packet dictionary. Even though

both dictionaries do not have low enough mutual coherence to apply the theorems

referenced, the wavelet packet dictionary certainly has more orthogonality, and as

a consequence had more sparse coefficient vectors. In noise, the damped sinusoid

dictionary was more likely to find a high correlation with an atom that was not a

part of the impulses.

5.1.2 Algorithms

Both algorithms fare well in finding sparse solutions when no noise is present.

Either method proved to be acceptable in this case. In the presence of noise, Matching

Pursuit picked up a larger spread of the white noise. Neither method found the

perfect atoms, but Basis Pursuit included less noise atoms that were unrelated to

the simulated impulses. Matching Pursuit used fewer coefficients, so if the goal is for

superior compression this algorithm would be better. However, because less noise was

picked up the argument can be made that Basis Pursuit solvers should be looked at

alongside the plethora of Matching Pursuit algorithms being proposed on the power

systems signal analysis community.
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5.2 Discussion of future work

A new way to compare the ability of different dictionaries to resolve sparse

solutions is needed. The mutual coherence arguments have serious limitations, and

the only tool available to compare the two dictionaries in this thesis was simulation

and empirical evidence. This is an area where the gap between electrical engineering

and mathematics could be bridged if the sparsity theory can be applied to the more

generalized dictionaries that work well with power system transients.

Instead of pursuit algorithms, wavelet shrinkage algorithms can be investigated

as denoising tools, and further analysis can be preformed on the denoised signal.

These types of algorithms have value in larger scale problems. A longer sample of

the power system signal would be prohibitively large for the pursuit algorithms due

to the size and complexity of the dictionaries.

Common in radar signal processing, the ambiguity function is used with a

matched filter to detect signal features in a time-frequency setting, and a similar pro-

cess could be extrapolated to power system signals. Similarly, the Wigner-Ville trans-

form is another attractive approach for alternate representations in time-frequency

for transient identification.

This thesis focused on a specific type of transient disturbance, the ones caused

by capacitor switches. Similar analysis should be applied to all forms of power sys-

tem phenomena, perhaps changing the makeup of the dictionaries to better match the

type of transient being searched for. To help with computational complexity, a par-

allel processing system could be used to simultaneously search hundreds of different

dictionaries looking for matches.

The methods applied here were tested on a synthetic signal. This worked well

for the purposes of this thesis because a key part of the analysis was knowing what
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exactly the solution should be. The future of the research should focus on actual

samples drawn from power lines.
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