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ABSTRACT

 
One vehicle subassembly that is of great importance to automobile manufacturers 

for tuning final vehicle performance is the pneumatic tire. Pneumatic tires present 

themselves as unique tuning tools as they 1) are the sole link between the roadway 

surface and the integrated vehicle suspension, chassis and steering systems, and 2) 

provide a wide range of tunability over many vehicle performances, including handling 

(steering feel as well as chassis dynamics), traction (braking, driving, and cornering), and 

ride comfort (roadway isolation). Therefore the vehicle manufacturing industry continues 

to research and refine various aspects of tire modeling to improve up-front integrated 

tire/vehicle CAE/CAD model fidelity over a wide range of operating conditions. 

Because tires are highly complex, nonlinear, viscous-elastic composite structures 

they prove to be difficult to accurately model over their entire operating range. As a 

result, vehicle and tire manufacturers continue to work with relatively simple models that 

adequately represent the tire for the integrated vehicle performance over an operating 

regime of interest. This paper evaluates several simple tire models in order to compare 

their relative advantages and applicability. One of the tire models being compared is a 

new embodiment in MatLab Simulink of a rigid ring tire model designed for ride comfort 

modeling of low-frequency and moderate amplitude roadway inputs, and whose data file 

is capable of being populated quickly using inexpensive standardized laboratory test 

methods. In addition to the aforementioned tire models, several iterations of an F-Tire tire 

model are interfaced with Intec’s SIMPACK multi-body simulation software as an 

industry reference. 
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EXPLANATION OF SYMBOLS

 
 
 α  Obstacle engagement angle, referenced from horizontal ( )rad  

 a  One half contact patch length ( )m  

 axleC  Vehicle suspension damping ( )rad
Nm sec−  

 θtire_C  Tire sidewall torsional viscous damping ( )rad
Nm sec−  

 tread_crC  Tire tread block circumferential viscous damping ( )m
N sec−  

 tread_vrC  Tire tread block radial viscous damping ( )m
N sec−  

 resistF  Tire aerodynamic and rolling resistance drag ( )N  

 tracF  Longitudinal tire traction ( )N  

 normF  Normal force on the tread blocks in the contact patch ( )N  

 XF  Longitudinal tire spindle force ( )N  

 ZF  Vertical tire spindle force ( )N  

 H  Obstacle height ( )m  

 beadI  Rotational moment of inertia of the tire bead ( )2mkg ⋅  

 rimI  Rotational moment of inertia of the rim ( )2mkg ⋅  

 sysI  Multi-Body Simulation (MBS) ground reference system 

 treadI  Rotational moment of inertia of the tread block ( )2mkg ⋅  

 axle_zK  Suspension spring rate 






m
kg  
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 tire_xK  Tire carcass longitudinal spring rate 






m
kg  

 tire_zK  Tire carcass vertical spring rate 






m
kg  

 θtire_K  Tire sidewall torsional spring rate ( )rad
Nm  

 tread_crK  Tread block circumferential spring rate 






m
kg  

 tread_vrK  Tread block radial spring rate 






m
kg  

 L  Obstacle length in the direction of wheel travel ( )m  

 µ  Coefficient of friction ( )N
N  

 axleM  Mass of one-half of the vehicle axle ( )kg  

 MBS  Multi-Body Simulation 

 carM  Mass of one-quarter of the car ( )kg  

 drivelineM  Drive moment applied to the wheel rim ( )Nm  

 rimeffective_M  Mass of the rim plus one-half the mass of the tire sidewall ( )kg  

 MOI  Moment of Inertia 

 rimM  Mass of the rim ( )kg  

 ω  Rotational velocity of the rim ( )sec
rad  

 effectiveR  Rolling radius of the tire/wheel assembly ( )m  

 rimθ  Rotational position of the rim ( )rad  

 ringθ  Rotational position of the tire rigid ring ( )rad  

 treadθ  Rotation angle of the tread block relative to horizontal ( )rad  
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 axlex  Longitudinal position of the axle ( )m  

 carx  Longitudinal position of the car chassis ( )m  

 groundx  Longitudinal position along the ground reference plane ( )m  

 rimx  Longitudinal position of the wheel rim ( )m  

 ringx  Longitudinal position of the tire rigid ring (summit) ( )m  

 rcespindle_fox  Longitudinal spindle force ( )N  

 treadx  Longitudinal position of the tire tread block ( )m  

 axlez  Vertical position of the vehicle axle ( )m  

 carz  Vertical position of the vehicle chassis, or sprung mass ( )m  

 dot_axlez  Vertical velocity of the vehicle axle ( )sec
m  

 dot_roadz  Vertical rate of the tread block due traversal of the obstacle ( )sec
m  

 treadz  Vertical position of the tire tread block ( )m  

 rimz  Vertical position of the axle ( )m  

 ringz  Vertical position of the tire rigid ring ( )m  

 roadz  Vertical position of road contact due to the obstacle ( )m  

 rcespindle_foz  Vertical spindle force ( )N  

 treadz  Vertical position of tread block ( )m  

 

 



   

  

 
CHAPTER 1

 
INTRODUCTION 

 
 

Research Motivation and Problem Statement  

Fierce competition and over-capacity in the automotive industry mandate constant 

product innovation in an attempt to differentiate one manufacturer’s product from 

another. This results in the reduction of the lifecycle of the vehicle models [1] and drives 

the manufacturers to different product design philosophies and design tools, as one would 

expect. As seen from the perspective of an outside component supplier, however, the 

generalized product design process itself seems at least globally similar in methodology 

and consists of: 

- product functional specifications based upon customer expectations and 

marketing (the voice of the customer). These include passenger layout, 

interior volume, carrying and towing capacity, fuel economy, acceleration 

and braking performance, cost, etc. 

- basic product design specifications that dictate the overall vehicle 

configuration, including: 

- chassis layout (2 door / 4 door / lift-back, etc.) 

- chassis construction (body on frame, monocoque, composite 

monocoque/subframe, chassis material selection, etc.) 

- power train specifications (engine type and displacement, basic 

drive line configuration such as front wheel drive, rear wheel 

drive, or all wheel drive, etc.) 
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- suspension and steering system configurations, including 

- independent or semi-independent, strut vs. control arm vs. 

multi-link, etc. 

- rack and pinion vs. recirculating ball steering gear 

- power steering boost system (mechanically or electrically-

driven hydraulic power assist, electrical power assist, and 

various boost assist control strategies) 

- forward/rearward steering gear placement relative to the wheel 

spindle, spindle control arm configuration, etc. 

Besides the design of the components themselves, business considerations such as 

the availability of existing off-the-shelf components, cost and other manufacturing and 

packaging constraints dictate many of the chassis, steering, and suspension components 

and their layout. These components are either specified and designed or selected from 

existing designs from the onset of the vehicle development process in an effort to satisfy 

the final vehicle performance specifications while achieving the lowest possible final 

cost. Many of the vehicle-manufactured components in the chassis, suspension and 

steering system are therefore necessarily fixed or “frozen” early in the development 

process in order to ensure subsystem compatibility and manufacturability. This leaves a 

significant portion of the final performance adjustments to bolt-on components that are 

tuned specifically for the vehicle manufacturer. Tires, shock absorbers, suspension 

bushings, and anti-roll bars are examples of bolt-on components that are able to directly 

influence performance compromises inherent in the frozen chassis, suspension, and 

steering system design. Manufacturers depend upon these bolt-on components to achieve 
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the final degree of tuning with minimum disruption as the vehicle design approaches 

production. 

A wide array of performances is continuously being influenced either deliberately 

or unintentionally throughout the vehicle design process. These performances include: 

- noise and vibration (both airborne and structure borne), 

- road isolation and comfort 

- steady-state and transient chassis handling (in both the linear and non-

linear regimes) 

- on-center steering performance and feel 

All of these performance issues are greatly influenced by the design or tuning of bolt-on 

components that do not significantly impact the manufacturing process of the vehicle. 

One simple example of this is the influence of anti-roll bars on the vehicle steady-

state under steer coefficient. The anti-roll bars (sometimes called sway bars, roll bars, 

stabilizer bars, or anti-sway bars) directly influence the relative proportioning of the 

vertical load transferred between the inside and outside tires of the front and rear axles 

during cornering. Because the tire’s ability to generate cornering force for a given slip 

angle is not linear with respect to vertical load, adjusting the rate of load transfer via the 

anti-roll bars will influence the relative rate of slip that is generated at the front and rear 

axles. Differences in the relative rate of slip angle change between the front and rear 

axles over a range of lateral acceleration is what determines the vehicle understeer 

characeristics, a first order handling parameter. This example illustrates that the vehicle 

manufacturer can, by varying the characteristics of a single bolt-on component, adjust the 
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final steady-state vehicle under steer characteristics for a given chassis, suspension, and 

steering system configuration whose design has long since been frozen for production.  

The tire, by virtue of its position as the sole interface between the road surface 

and the vehicle suspension, is one of the key bolt-on components fitted during the vehicle 

assembly process. The tire is unique in that it can provide a final degree of tuning for 

virtually all of the integrated vehicle ride, comfort, handling, traction and noise 

performances. Vehicle manufacturers recognize this and therefore press tire 

manufacturers into a performance tuning role. Consequently, tire manufacturers employ a 

variety of predictive modeling tools to assist in these tuning roles in which they will be 

asked to participate. 

One of the performance factors that continues to challenge designers is that of 

vehicle longitudinal and vertical ride comfort. Tire tuning for comfort can be particularly 

important for integrated tire/vehicle tuning as absorbing and damping the effect of 

traversing roadway obstacles depends heavily on the combination of both tire and 

chassis/suspension characteristics. Since the vehicle design characteristics that can 

significantly affect ride comfort are frequently frozen before final vehicle tuning and 

design release, the tire’s role is of great importance to the final satisfactory ride and 

comfort performance of the vehicle. 

One can better understand the comfort tuning options available to the vehicle 

designer by examining the available tuning parameters in the vertical and horizontal 

direction. For the vertical component of ride comfort, the principal chassis and 

suspension tuning parameters include:  

- suspension vertical spring rate 
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- low and high-speed shock absorber damping characteristics 

- suspension vertical friction (hysteresis) 

- suspension bushing stiffness, damping, and hysteresis principally for those 

bushings located: 

- at the end of the shock absorber or strut attachment points 

- between the suspension components and the chassis frame or sub 

frame 

As suspension travel is oriented vertically, there are more options for suspension ride 

tuning in the vertical direction. However, vertical road perturbations are accompanied by 

some corresponding longitudinal force component which must also be absorbed by the 

tire/vehicle system. In the horizontal direction, the principal chassis and suspension 

tuning parameters for ride comfort is suspension longitudinal compliance, consisting of: 

- stiffness, damping, and hysteresis associated with bushings  located 

principally between the suspension components and the chassis frame or 

sub frame and 

- kinematic reaction (fore/aft movement of the wheel spindle upon vertical 

displacement of the spindle as it traverses the road perturbance) 

Since the roadway perturbances must be accommodated by the chassis after passing 

through the tire, the tire’s transfer function between the roadway and suspension: 

- has a first order effect on ride and comfort performance 

- provides the vehicle manufacturer with additional integrated tire/vehicle 

tuning possibilities that may be particularly important in the horizontal 
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direction, where longitudinal suspension tuning is limited in both options 

and range. 

The transfer function between the roadway and the wheel spindle as a tire 

traverses an obstacle, necessary to evaluate longitudinal and vertical ride comfort as well 

as predicting vehicle suspension loadings, is a subject of ongoing research. Because the 

tire is a complex integration of natural and synthetic rubber polymers, metallic and non-

mettalic cords and composite laminar structures, the transmission of forces between the 

tire contact patch and the vehicle spindle due to: 

- lateral forces as a result of tire slip angle and tire camber angle relative to 

a smooth roadway surface, or 

- the generation of longitudinal braking or driving forces as a result of a 

differential interface velocity between the tire tread band and the roadway 

surface, or 

- the generation of longitudinal and vertical forces as the tire traverses a 

roadway obstacle 

is highly non-linear and dependent upon the solicitation frequency and amplitude of 

inputs at the tire contact patch. Therefore accurate modeling and prediction of the 

generated tire forces and force transfer between the tire contact patch and the wheel 

spindle is complex even when examined for the most simple tire solicitations. In order to 

obtain useful vehicle simulation results, vehicle manufacturers use a myriad of techniques 

to represent the tire forces: 

- representative statistical data from on-track analytical test machines and 

instrumented test hubs,  
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- indoor laboratory force and moment measurement machines, 

- modal and FEA models 

Recognizing some of the specific development needs of both vehicle manufacturers 

and tire manufacturers for ride comfort modeling, it was postulated that examination of 

simple tire models could result in the development of a more utilitarian tire model that 

could aid tire manufacturers bridge the gap between: 

- complex non-linear models, such as 

1. FEA tire models, which require numerous complex inputs, such as 

anisotropic nonlinear material properties 

2. sophisticated multi-body simulation (MBS) tire models, which require 

extensive laboratory testing to characterize and optimize the model 

parameters and validation testing to verify their performance 

3. modal substructure modeling, which again requires sophisticated test 

measurement and careful validation of performance over the intended 

regime of interest 

- and elementary tire models (consisting of simple linear spring and dampers) 

A simplified tire model that could incorporate parameters that were easily 

measurable with standard laboratory tire tests could improve the ability of tire companies 

to work with vehicle manufacturers to optimize ride and comfort performance tuning 

with the tire as the vehicle passes through its final stages of prototyping. It could also 

help tire companies to better diagnose ride issues associated with integrated tire/vehicle 

ride comfort performance in order to better tune their tires.  
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This investigation examines a spectrum of tire models, ranging from an array of 

simple linear tire models that are used for initial ride comfort tuning, to several more 

complicated rigid ring tire models, and finally to a sophisticated commercially-available 

multi-body simulation of a flexible ring tire model, FTire. The purpose of this 

investigation is to better understand limitations and advantages inherent with the different 

types of tire models for ride comfort modeling. The goal is to better serve integrated 

tire/vehicle tire design by establishing general guidelines for applying the various tire 

models. Steps to implement this investigation will include: 

1. Develop an understanding of tire model selection criteria for use with integrated 

tire/vehicle ride/comfort modeling 

2. Develop a method for evaluating the ride comfort tire model parameters either by 

measuring physical tires in a laboratory environment or by simulating the tire 

properties in an FEA development environment. Determining the ride comfort tire 

model parameters using existing physical tires should: 

a. use simple and readily-available non-destructive machine test methods 

b. emphasize speed and the understanding of potential relative  performance 

differences between tires (e.g. the physical testing and examination of 

competitor tires, where FEA tire models are not available) 

3. Validate some of the tire model and parameter measurement methods by 

comparing results from laboratory fixed spindle road wheel cleat testing, and a 

commercial, flexible-ring tire model, FTire (in a multi-body simulation package 

SIMPACK). 
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Background and Literature Review 

Simply stated, the functions of tires on ground vehicles are to support the weight 

of the vehicle, provide longitudinal and lateral tractive forces to accelerate and decelerate 

the vehicle, and help cushion the vehicle from the effects of road surface irregularities in 

order to improve driver and passenger ride comfort [2]. Interestingly, the invention of the 

pneumatic tire was not for improving its vehicle weight capacity or increasing traction or 

handling, but for improved ride comfort. This is evidenced by the patent filed in France 

in 1846 by Robert William Thompson, the inventor of the pneumatic tire, which stated 

that his tire was inflated with air so that the wheels presented “a cushion of air to the 

ground, rail or track on which they run.” 

The need for pneumatic tire models to provide the transfer function between the 

irregular roadway surface and the vehicle in order to predict vehicle ride performance has 

long been recognized. Gough and Jones [3] developed rigorous experimental testing of 

pneumatic tires as early as 1952. Lippman [4] extended Gough’s contention in the early 

60’s that a tire rotating about a spindle of fixed height and slowly traversing an obstacle 

whose width is much shorter than the length of the tire contact patch would result in 

distinct characteristic signatures for vertical and longitudinal force. This research 

introduced the distinction between 1) point contact models, which assumed that all of the 

tire vertical tire force was the result of a single point which followed the terrain contours 

precisely, and 2) enveloping models, which take into account spatial frequency filtering 

due to contact patch length and mitigation of the peak vertical forces due to physical 

deformation within the contact patch. 
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Captain et al [5] summarized the state of the art for tire comfort models in 1974 as 

part of their research for the Army-Tank Automotive Command. Their work provides a 

succinct summary of the following basic tire models 

1. the simple point contact model 

2. a rigid tread band model (a point model which takes into account spatial path 

frequency filtering) 

3. a fixed footprint model (constant contact patch area) 

4. an adaptive footprint model (tire contact conforms to the terrain and the 

contact patch area changes with vertical deflection) 

Later on Kisilowski et al [6] and Zegelaar [7] provided summaries of various 

enveloping models, the latter as late as 1998. These summaries include more complex 

enveloping models, including flexible ring and sophisticated radial / inter-radial spring 

models that represent degrees of freedom which are orders of magnitude greater than 

earlier models and require numerically more powerful computers. Enveloping models 

were further advanced by Guo and Liu [8], who include distributed vertical stiffness over 

the length of the contact patch, and flexible roller terrain following. Schmeitz [9] also 

discusses various enveloping models as well as distinguishing between “static” and 

“dynamic” tire models, the latter of which take into account tire mode shapes. Schmeitz 

subsequently describes applications of these semi-empirical “dynamic” tire models for 

traversing road profiles, his model using an interesting approach for obstacle 

envelopment by utilization of tandem ellipses or “cams” (one each representing the front 

and rear of the tire contact patch, respectively) to describe the envelopment of 

perturbances by an effective road plane surface. Gipser [10] developed a multi-
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bodysimulation approach for a flexible ring model, representing the composite lamina in 

the summit belt package as consecutive mass/spring elements forming a series of 

circumferential hoops positioned parallel and laterally across the tread span.  

The use of tire models in multi-body vehicle simulations (MBS) for up-front 

computer aided engineering (CAE) drives the development of many of the tire models. 

Eichberger and Schittenhelm [11] describe the classification of tire models as either 

simple (based upon spring/damper representation) or approximation (based upon 

mathematical modeling of tire forces from measured force and moment behaviors). They 

address the selection of appropriate tire models for vehicle MBS for the performance of 

interest, the amplitude of the vehicle oscillation, and the frequency of the vehicle 

oscillation. Lugner et al [12] describe three dynamic tire models for MBS simulations: 

FTire (including both flexible and non-flexible summit belt configurations), RMOD-K (a 

detailed finite element model of the actual tire structure), and SWIFT (a hybrid model 

using both empirical force fitting and the physical modeling of the belt package ring).  

This investigation will provide another point of comparison among the multitude 

of continuously evolving tire models. FTire, developed by Dr. Michael Gipser and 

marketed under Cosin Inc. is implemented with SIMPACK Automotive Plus MBS 

software, developed by Intec as one of the industry standards for multibody ground 

vehicle simulation. FTire will be compared to laboratory measurements and simulation 

results from other tire models to explore the gain in model fidelity using this current 

state-of-the-art model and the resultant improvement on vehicle comfort modeling. 
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Outline of Thesis 

Chapter 1 provides a general introduction to this thesis. In this chapter, 

background information is provided, including the motivation behind the thesis research 

and a framework of how research of this type is relevant as it pertains to the overall 

integration of the tire as a subsystem in the tire/vehicle design process. In addition, the 

objectives of the thesis are outlined. To complete the introduction, a brief review of some 

of the relevant literature is presented. 

The ride comfort tire models used in this investigation are discussed in Chapter 2. 

These models cover a range schemes to account for obstacle envelopment within the tire 

contact patch, from basic single-point terrain following to the more sophisticated terrain-

adaptive footprint models. These models also cover different schemes for accounting for 

the tire dynamics that occur between the tire contact patch and the wheel spindle and 

which modify the spindle forces transmitted to the vehicle suspension.  

The two point contact follower rigid ring model is derived in Chapter 3. The 

derivation starts using the basic assumptions of the rigid ring model developed by 

Mustafa El-Gindy [2]. The model is further developed to include a two-point contact 

terrain follower to emulate the tire contact patch. A brief overview of using laboratory 

test results to provide the tire model parameters is provided. Finally, the two-point 

contact rigid ring model is extended to a five point contact patch model. 

In Chapter 4, implementation of the models for simulation is discussed. The use 

of MatLab Simulink for conducting simulation of both fixed-spindle laboratory road 

wheel cleat testing and quarter vehicle modeling is explained. In this chapter, a brief 
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overview is given of the implementation of SIMPACK multi-body (MBS) simulation tool 

by Intec, Inc. and Cosin FTire. 

Chapter 5 consists of simulation results for the fixed-spindle height laboratory 

road wheel test using the range of tire models presented in Chapter 4. The validation of 

the model against laboratory testing is presented. 

In Chapter 6, the tire models are attached to a simple quarter vehicle model. 

Simulation results are presented for traversing two different obstacles – a short cleat of 

the same dimension that was used in the fixed spindle laboratory test, and a parking lot 

speed bump. The tire models are compared not only for their accuracy relative to the to 

the commercial FTire model, but also for their suitability based upon their functional 

capability, range of applicability, and ease of use. Finally, a summary of the research 

findings is presented and future research topics are identified. 



 

  

 
CHAPTER 2

 
RIDE COMFORT TIRE MODELS  

 
 

Introduction 

Because they are the sole link between the ground and the vehicle, the tires 

generate the majority of forces acting upon the vehicle (the other principal forces are due 

to aerodynamics). Therefore, some minimal representation of tire force generation is a 

primary requirement for modeling ground vehicle dynamics. 

The tire is a complex assembly of a variety of visco-elastic polymer compounds 

as well as a number of orthotropic laminate composites embedded in a tensile structure. 

Consequently, tire force generation is non-linear and is a function of 1) operating 

conditions (environmental temperature, wear condition, operating pressure, 

characteristics of the ground surface and the terrain obstacles over which it must traverse) 

and 2) imposed solicitations (frequency and magnitude of loading, slip angle and 

camber). Consequently the development and appropriate application of tire models is an 

ongoing challenge with all but the most simple vehicle dynamics models. 

The seven tire models that are used in this ride comfort investigation represent a 

wide range of models in terms of sophistication and use. The objective of developing 

these tire models is to gain an understanding of the limitations and suitability of the 

various models. This includes understanding the final objective of the integrated 

tire/vehicle model, the capabilities of the various tire models as well as the cost and 
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availability of data to determine the model parameters. These issues will ultimately 

determine the suitability and selection of the tire model for the simulation task at hand. 
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Considerations for Selecting a Ride Comfort Tire Model 

 

Ride Comfort Tire Model Functional Requirements 

Ride comfort tire models must reproduce the forces at the wheel spindle with 

sufficient accuracy such that the vehicle comfort metrics of the integrated tire/vehicle 

system can be predicted. For the two-dimensional case, these wheel spindle forces consist 

of vertical force, longitudinal force, and torsional moment about the wheel spin axis 

(driving or braking torque). 

Even simple ride comfort models, such as a quarter vehicle model or a chassis 

pitch plane model, can provide insight into ride comfort modeling using only vertical 

spindle force inputs. For these classic chassis representations, a simple tire model which 

provides only vertical spindle forces via a point contact follower may be perfectly 

adequate for those instances where the terrain or obstacle being traversed has a 

wavelength greater than the length of the tire contact patch. Conversely, this same point 

contact follower may not be able to adequately predict vertical wheel spindle forces when 

the wavelength of the terrain or obstacle is less than the length of the contact patch. This 

is because the point contact follower has no provision for emulating the complex 

mechanical interaction which occurs when the tire contact patch encounters and then 

envelopes or “drapes” over short obstacles within the length of the contact patch. In 

addition, the ride metrics themselves need also be considered. Vertical ride comfort, as 

measured by vertical chassis acceleration, benefits from the high frequency filtering of 
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spindle forces via the compliant suspension system and the suspension and chassis 

masses. Horizontal ride comfort, as measured by horizontal chassis acceleration, does not 

benefit as much from from this filtering effect as there is relatively little longitudinal 

compliance in the suspension system. 

Vehicle ride comfort testing can be quite complex, as the tire/vehicle system must 

be evaluated over a wide range of obstacle types. For example, obstacles exist not only 

above the roadway plane (rectangular or square-edged cleats, bumps, etc.), but also below 

the roadway plane in the form of depressions (“potholes”). Obstacles such as cleats have 

short wavelengths which mimic impulse type inputs. Obstacles such as parking lot speed 

bumps and the longer roadway speed “humps” have long wavelengths. Another type of 

obstacle mimics step inputs. Step-up and step-down obstacles are a frequent occurrence 

on concrete interstate highways due to the uneven settling or shifting of concrete slabs. 

Faced with such a wide variety of obstacles, vehicle and tire manufacturers have 

necessarily relied upon a number of standard obstacles upon which to base their ride 

comfort performance. The tire’s ability to absorb and dampen the impulse energy of 

relatively small obstacles and mitigate its effect at transmitting forces to the wheel 

spindle is a frequent measure of tire ride performance. This is the “enveloping power,” or 

the ability of the tire contact patch to deflect down, around, and envelop the obstacle, 

thereby reducing the peak forces at the tire center. Testing on rectangular, triangular, or 

rounded cleats of various dimensions that are shorter than the length of the tire contact 

patch are almost universally used as part of a measure of the tire’s ability to provide good 

ride comfort. Likewise, a tire’s ability to mitigate inputs from larger obstacles is also an 
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important ride performance characteristic. The tire carcass must be able to deflect over 

obstacles whose lengths are longer than the contact patch, thereby contributing to the 

total suspension compliance and helping the suspension isolate the sprung mass and 

improve ride comfort. Obstacles such as parking lot “speed bumps” have sufficiently 

long wavelength and height to measure the tire’s ride performance in this regime of 

operation. 

Because vehicle testing uses both short and long wavelength obstacles to evaluate 

tire ride performance, this investigation will include simulations of both a rectangular 

cleat and a parking lot bump when evaluating the suitability of the seven tire ride comfort 

models. These two obstacles represent opposite ends of the range of wavelength and 

amplitude characteristics, but do not include the family of obstacles which represent 

“potholes” (depressions below the roadway median plane). 

 

Ride Comfort Tire Model Implementation Considerations 

It is important that tire ride comfort models be easy to implement. As with any 

modeling endeavor, testing to determine key tire characteristics and calculating the tire 

model parameters must be straightforward and inexpensive. The time required to 

integrate the tire model with existing or future vehicle ride models must also be 

considered. Despite the continuing increase in numerical computational power, tire 

models which require low computational overhead still possess distinct advantages - this 

is especially important if one of the goals is to support real-time driving simulators or 

projects involving “hardware in the loop” controllers. Costs and complexities associated 
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with establishing and maintaining simulation model code and software licensing 

requirements are all important factors that should be considered when selecting a tire 

model. 
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Investigated Tire Models 

 

Overview of Tire Models 

The intention of this investigation is to determine the suitability of tire models for 

ride comfort simulations and to examine the considerations for selecting the appropriate 

tire model. With the exception of the combination of the commercial software model - 

Cosin FTire model running with Intec SIMPACK Automotive Plus MBS software – all 

of tire models developed for this investigation consist of combinations of masses and 

linear springs and damping elements. The more complex and sophisticated models, such 

as modal or FEA models are not included in this investigation. 

The tire models developed in this investigation use different strategies for 

modeling 

- longitudinal driving and braking forces in the contact patch 

- spindle forces as a result tire carcass deformation 

- interactions of the tire and the terrain or obstacles at the tire/ground interface 

within the contact patch, such as the envelopment or “draping” of the contact 

patch over an obstacle whose length is considerably shorter than that of the 

contact patch 

The first four tire models that are investigated consist of a common scheme to 

emulate how the tire carcass transmits forces between the tire contact patch and the wheel 

spindle – a simple spring, mass and damper system. However, each of these four “spring” 
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tire models differ significantly in how they emulate the interactions between the tire and 

the ground within the contact patch.  

The next two tire models emulate the tire carcass as a rigid ring connected to the 

wheel spindle by springs and dampers. These two “rigid ring” tire models assume that the 

tire summit mass – the steel belt package and reinforcing material under the tread - can be 

modeled by an annular ring suspended on the inner circumference by springs representing 

the tire carcass and on the outer circumference by tread blocks. Because the tire summit 

ring is considered to be rigid, these models assume that a tread band model will be able to 

adequately represent the interaction between the terrain or obstacle and the tire contact 

patch without depending on flexibility in the tire summit ring. Figure 2.1 illustrates the 

location of the tread band, “rigid” summit ring, sidewall, and bead area. 



  22 

  

 

 

Figure 2.1: Location of the Principal Tire Structural Components 
 

 

The seventh and last tire model considered is the Cosin FTire model, which 

models the tire summit as a flexible ring. The flexible summit ring consists of a series of 

rigid elements (bodies) arranged in a cylindrical shape. Combined with a sophisticated 

tread model, this model represents an industry standard for MBS modeling. Cosin FTire, 

along with other commercial tire models (such as TNO SWIFT) are capable of providing 
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high fidelity tire force modeling if they are provided with necessary quantities of tire test 

data spanning a wide range of laboratory test methods and test conditions. 

 

Spring-Type Ride Comfort Tire Models 

The quest to understand the suitability of different analytical tire models in order 

to select an appropriate model for vehicle comfort simulations is not new. Khushroo M. 

Captain, et al [5] proposed several models for use with vehicle ride simulation modeling 

for the Army Tank Automotive Command, and they provide a basis for the first four of 

the seven categories of models used in this investigation. These first four categories of 

spring-type tire models consisted of (from most simple to most sophisticate): 

1. Point contact follower 

2. Ring adaptation of the point contact follower 

3. Fixed footprint 

4. Adaptive footprint 

A basic schematic of the first two models, designed to illustrate and contrast their 

differences, is illustrated in Figure 2.2. 
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Figure 2.2: Point vs. Rigid Ring Contact Models  
 

The rigid ring terrain follower for the second spring type tire model described by 

Captain et al originally used a follower ring of radius equal to that of the free radius of 

the tire. This is potentially the best choice for a very stiff tire (for example a commercial 

truck tire) traversing rugged terrain with irregularities of size roughly equivalent in 

magnitude to the diameter of the tire. However, this diameter does not mimic the filtering 

effect that occurs when the flexible contact patch of a conventional passenger tire 
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traverses normal obstacles. Consequently, the radius of the rigid ring terrain follower was 

chosen equal to one-half the length of the contact patch when evaluating this model. 

The third and fourth spring-type tire models invoke compliance in the tire model 

at the tire/ground interface to model the enveloping power of the tire contact patch. The 

third model is the fixed footprint. The fixed footprint assumes that the contact patch 

maintains a constant footprint area, and that the vertical stiffness of the tire is distributed 

evenly along the length of the contact patch. The fourth model is the adaptive footprint. 

The adaptive footprint allows the area of the contact patch to vary as necessary to support 

the wheel spindle loads. The tire carcass stiffness is distributed equally and radially 

around the tire circumference. These two models are illustrated in Figure 2.3. 
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Figure 2.3: Fixed vs. Adaptive Footprint Tire Models  
 

Adaptation of Spring Tire Models for Fixed Spindle Testing 

It should be noted that these first four model spring-type models were used by 

Captain et al to conduct vehicle ride investigations of low to moderate frequencies and 

moderate to high amplitudes for military vehicles. Therefore the models were not 

intended to model the higher-frequency internal dynamics associated with the mass or 

structural properties of the tires themselves – the tire mass properties were simply applied 

to the center of the steel wheel or rim attached to the spindle. Since the primary focus was 
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the ability of the tire model to provide reasonable representations of spindle forces to the 

suspension and chassis system as the tire traversed and enveloped various terrains, it was 

also a reasonable assumption for the tire carcass model to consist exclusively of various 

arrangements of linear springs and dampers. Because any high frequency modes of the 

tire would be effectively filtered by relatively simple vehicle ride models – there were, 

for example, no chassis or suspension bushings – there was no need to model internal tire 

masses associated with tire modal frequencies. Instead of concentrating on modeling 

internal tire masses and structures, the spring-type models focused on different strategies 

for modeling the ability of the tire to envelop varying terrain and obstacles within the 

contact patch. 

For this investigation, the performance of each tire model is determined by its 

comparison to a laboratory road wheel cleat test. The test consists of a “road” wheel to 

which a small rectangular cleat is affixed. Provisions are made for mounting the tire so 

that it remains at a fixed height above the road wheel. The road wheel rotates under the 

tire and sensors in the tire mounting spindle record the forces transmitted to the spindle as 

the cleat passes through the contact patch.  

Since our output metrics of interest consist of spindle forces, there is no vertical 

low-pass filtering effect associated with the relatively simple vehicle models described by 

Captain. Therefore it is was considered necessary to provide a representation of the tire 

sidewall, summit belt package, and tread masses in order to provide a simple 

representation for internal tire dynamics. The developments of these tire models, first in 

the “simple” original form as described by Captain, and then in their modified 
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“equivalent summit mass” form (with an equivalent tire sidewall and summit tread mass, 

as illustrated in Figure 2.4) are provided in the Appendices. 

 

 

Figure 2.4: Single Point Follower “Simple” vs. “Equivalent Summit Mass” Models 
 

Despite their relative simplicity, these first four tire models have been 

successfully utilized for some time, especially for first order tuning of vehicles for low 
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precise and accurate predictive models are required – for example, when conducting road 

load (fatigue modeling of suspension components) or vibration modeling at frequencies 

at or above the first modal longitudinal frequency (typically 20 to 30 Hz) or first modal 

vertical frequency (typically 60 – 70 Hz) - that these models may prove to be inadequate. 

 

Two Point Contact, Rigid Ring, Ride Comfort Tire Model 

The fifth model considered for this investigation is an extension of the rigid ring 

model proposed by Moustafa El-Gindy and under development at the Pennsylvania State 

University Applied Research Laboratory [2]. This rigid ring model was developed to 

provide not only in-plane (X-Z vertical plane) spindle forces, but also 3-D out of plane 

dynamic forces. The intention was to replace a more detailed but computationally-

intensive FEA model with a simpler rigid ring model that would allow faster simulation 

speeds while still maintaining adequate spindle force fidelity for ride, comfort, and 

vehicle durability modeling  

A tire summit typically consists of two or more steel “ply” belts forming a 

composite structure underneath the tread band. These steel lamina create a structure 

which is stiff in comparison to other areas of the tire, such as the tire carcass and tread 

band.The rigid ring model assumes that the summit is completely rigid, and the 

enveloping properties of the tire, wherein the tire contact patch “drapes” over short 

wavelength obstaclesties in the roadway, can be incorporated into the tread block and 

sidewall models. A schematic of this model is shown in Figure 2.5, below. 
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Figure 2.5: Two Dimensional Embodiment of El-Gindy’s Rigid Ring Tire Model [2] 
 

Since a comparison of the tire models for ride comfort modeling is the principal 

theme of this investigation, the rigid ring model was derived only for longitudinal and 

vertical forces in the vertical plane. This two dimensional model was, however, modified 

to include a two point contact patch follower to better emulate the enveloping 

characteristics of the tire contact patch, and a more extensive longitudinal traction force 

model for improved driving and braking force fidelity. 
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Five Point Contact Follower Rigid Ring Ride Comfort Tire Model 

The sixth tire model that was developed is an extension of the of the previous two 

point contact,  rigid ring model. The five point contact follower model divides the single 

contact patch plane previously defined by the two point contact follower into four equal-

length consecutive contact patch plane segments. The intention of using the four elements 

defined by the five point contact follower is to provide higher fidelity of normal forces 

across the length of the contact patch. Since the traction forces are not linear with vertical 

force, the average traction forces developed by the four segments should be more 

accurate than the traction force developed by a single average segment. 

 

Cosin FTire and Intec SIMPACK MBS Automotive Plus 

The seventh and final model used in this investigation is a combination of two 

commercially-available software packages – SIMPACK Multi-Body Simulation Software 

by Intec Corporation and FTire flexible ring tire model by Cosin. These two software 

packages represent the state-of-the-art in multi-body simulation (MBS) programs. 

SIMPACK is used for a wide range of commercial MBS applications, and has become 

accepted as a standard amongst many commercial vehicle manufacturers. FTire is also a 

3D multi-body simulation model that is specific to tire applications. FTire represents the 

stiffness of the tire summit by a series of flexible concentric hoops spanning along the 

spin axis of the tire. As shown in Figure 2.6, this series of flexible hoops consist of mass 

elements connected by tunable springs and dampers designed to mimic the functionality 
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of the physical tire summit structure. FTire has been highly developed such that the MBS 

parameters needed in the model are automatically optimized when tire test data is 

imported into the model. These two MBS programs interface such that the SIMPACK 

MBS chassis and suspension system inputs and outputs (wheel spindle forces, wheel 

plane positions) are continuously exchanged with FTire during the simulation.  

 

Figure 2.6: Flexible Tire Ring Model FTire with Representative Spring/Dampers [10] 
 



   

  

 
CHAPTER 3

 
DERIVATION OF THE RIGID RING TIRE MODELS 

 
 

Introduction 

The tire model developed within this chapter is associated with a class of tire 

models known as rigid ring models. This class of models represents the tire carcass as a 

non-deformable hoop, or rigid ring, as the principal mass element between the ground 

and the wheel spindle. The particular rigid ring model that is developed here is based 

upon the following major characteristics: 

- a multi-point ground follower is used to define the interactions between the 

tire contact patch and the terrain 

- one (in the simplest embodiment) or multiple tread mass elements are used to 

represent the mass of the tire tread within the contact patch 

- a rigid ring is used to represent the mass of the metallic tread bands making up 

the composite laminate structure in the tire summit just beneath the tread 

blocks 

- a bead mass is used to represent that portion of tire metallic reinforcement and 

rubber that anchors the tire to the wheel rim, and can be associated as an 

integral component with the wheel rim to which the tire is mounted 

- a sidewall mass is used to represent the mass of the tire carcass structure 

joining the rigid ring at the tire summit and the bead mass anchored at the 

tire/wheel interface. 
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The model is initially developed by representing the tread band in the contact 

patch as a plane defined by two points – a leading path follower at the front of the contact 

patch, and a trailing path follower at the rear, or exit of the contact patch. The two point 

follower model is further developed into a five point follower model. Using five point 

followers effectively splits the previously-defined single contact patch ground plane into 

four parts – two effective planes ahead and two effective planes behind the midpoint of 

the contact patch. Increasing the number and reducing the length of each effective plane 

increases the resolution of the interactions which take place within the contact patch at 

the tire/ground interface. The greater resolution is intended to allow the tire model to 

accommodate shorter-wavelength roadway obstacles as well as to allow more local 

definition of the tire tread block and ground interface forces, thereby increasing the 

accuracy of the net longitudinal driving/braking traction forces. These forces are 

calculated by a non-linear tire traction model between the contact patch elements and the 

roadway. 

This new embodiment is an extension of rigid ring tire models developed by 

Mustafa El Gindy et al [2] , which included the effects of tire flexibility and nonlinear 

traction modeling, and lateral force generation (cornering forces developed by steering). 

This extension is limited in its current form to improvements ‘in plane’ of the tire wheel 

assembly, i.e., in the vertical and longitudinal coordinates and not in the lateral direction. 

These improvements include the use of an effective tread block mass and use multiple 

point contact patch following to improve both the traction modeling of the tire within the 

contact patch and to better represent the coupling between the tread components and the 
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rigid ring in the summit. One additional consideration for developing the improved model 

is its suitability for using simple standard laboratory tests to measure the required lumped 

parameters for vertical, longitudinal, and torsional sidewall stiffness as well as tread, 

rigid ring, and bead/sidewall mass elements. 

The equations of motion for the tire model were derived using Newton’s Method. 

For simplicity, only the stiffness terms are included in the derivations. This temporary 

simplification is possible as the spring and damping elements function in parallel, making 

the derivation of the damping elements the same as the derivation of the spring elements. 

Once the equations for the spring elements are derived, the damping elements are then 

added by inspection with the only notable difference being that the forces for the 

damping elements are functions of relative velocities between their associated masses as 

opposed to their relative positions. 

The two point follower version of this rigid ring model is characterized by having 

seven degrees of freedom within three component masses: 

1. the tire brake, rim, and bead assembly 

2. the rigid ring, consisting of the tire summit belt package and the tread mass 

not associated with the tire contact patch (i.e., that amount of the tread ring 

not in contact with the ground) 

3. the tread mass associated with the contact patch 

The sidewall mass, although not a principal contributor to the tire's total mass, is 

apportioned equally between the brake/rim/bead assembly and the rigid ring assembly. 

This approximation is not unreasonable given that the tire sidewall is 1) of relatively 
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small mass compared to the tire bead, rigid ring, and tread masses, and 2) typically of 

fairly constant cross thickness about the tire equator. For more specialized tire 

constructions, such as low-profile performance tires of low aspect ratio, tires with 

metallic products in their sidewall, and run-flat tires with thick sidewall constructions, the 

sidewall mass can be re-apportioned between the bead area and the tire summit (rigid 

ring) as appropriate.  

The seven degrees of freedom within the three mass rigid ring models are 

represented as follows: 

- the tire bead, rim and axle assembly in both the vertical z direction (Zrim) and 

the longitudinal x direction (Xrim), 

- the tire bead and rim assembly in the spin axis rotation direction (θrim), 

- the tire rigid ring assembly (representing the tire belt package in the tire 

summit region) in vertical z direction (Zring), longitudinal x direction (Xring), 

and theta rotation directions (θring). 

- the tread block in contact with the ground only in the longitudinal x direction 

(Xtread), as the z location (Ztread) and the rotation angle of the tread block 

(θtread) are dictated by obstacle height as a function of the x position of the 

contact point followers at the leading and trailing edge of the contact patch. 

In all derivations for the tire model, positive deflection is assumed to be upward 

positive for z, forward to the left positive for x, and counterclockwise positive for rotation 

theta when viewed from the left hand side (positive x is pointing to the left). Refer to 

Figure 3.1 for a visual representation of the degrees of freedom and the dimensions of the 
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rigid ring tire model and the two-point follower representing the contact patch enveloping 

the road surface irregularities. 

 

Figure 3.1: Seven Degree-of-Freedom Rigid Ring Tire Model 
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Equations of Motion for the Two Point Follower Rigid Ring Tire Model 

 

The equations of motion are derived using Newton’s Method – defining a set of 

coordinates, drawing an appropriate free body diagram for each of the masses and then 

solving for the equations of motion directly.  This is done for each mass, and each degree 

of freedom associated with the mass, in turn. Note that the equations of motion could also 

have just as easily been performed using Hamilton’s Principle or the Lagrangian 

approach. These lend themselves to systems having many degrees of freedom or when 

most of the forces are derived from potential functions. 

Selecting the rim as the first mass and addressing the degree of freedom in z, we 

define the rim mass as the mass of the rim itself plus the associated brake disk (or drum) 

and axle, the tire bead, and one half of the sidewall mass (the sidewall mass is divided 

equally between the tire bead and the tire summit). Note that the appropriate definitions 

for the rim mass will depend upon the degree of freedom that is being analyzed and will 

be defined for each degree of freedom - the mass properties associated with the tire bead, 

wheel, brake disk and axle are all appropriate for the equation of motion in the vertical 

direction z, but including the axle mass property is not appropriate for the equation of 

motion about the spin axis. Next, the free body diagram of the rim is drawn showing the 

forces on the rim as displacements from the static equilibrium condition and the dynamic 

forces on the body due to acceleration. See Figure3.2: 
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Figure 3.2: Free Body Diagram for the Rim in the Z Axis Direction 
 

Writing the forces in the z direction positive upwards yields: 
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Rearranging and solving for the vertical acceleration yields: 
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Adding the damping coefficients produces the final equation for the vertical degree of  

freedom: 
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 Proceeding with the equation of motion of the rim in x, we note that the car 

chassis mass is included in the x degree of freedom and that the rim, axle, and car 
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represent the mass in the x direction along with the tire bead mass and one-half of the 

sidewall mass. The free body diagram is annotated accordingly and the equation of 

motion is solved as follows. 

 

Figure 3.3: Free Body Diagram for the Rim in the X Axis Direction 
 

Writing the forces in the x direction positive to the left as shown in Figure 3.3 and 

defining the mass of the rim to represent the total effective mass of the rim, the axle, and 

the car along with the appropriate portions of the tire model mass yields: 
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surfaces (concrete, rough or sealed asphalt, etc.) can be introduced into the simulation as 

desired. 

Adding the damping term for the tire longitudinal sidewall stiffness and solving 

for the longitudinal acceleration yields: 

 )({ )( }xresistringrimxtireringrimxtire
rimeffective

rim FxxCxxk
M

x ___
_

1
+−+−−= &&&&  (3.5) 

Proceeding with the third and final equation of motion for the rim, the free body 

diagram associated with the rotation about the spin axis theta is shown in Figure 3.4. 

 

Figure 3.4: Free Body Diagram for the Rim in the Rotational Theta Direction 
 

Defining theta to be positive counterclockwise (driving the car forward in x 

positive) and defining the rotational moment of inertia of the rim to include the 
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Adding the damping term for the tire sidewall torsional stiffness and solving for the 

rotational acceleration yields: 

 )({ )( }drivelineringrimtireringrimtire
beadrim

rim MCk
II

−−+−
+

−= θθθθθ θθ
&&&&

__
1  (3.7) 

 Selecting the rigid ring as the second mass, we first define the ring mass as the 

mass of the tire summit (consisting of the belt plies underneath the tread band) and that 

portion of the tread band outside the tire contact patch, plus any additional mass 

associated with that portion of the tire sidewall. The three degrees of freedom associated 

with the ring are in the vertical z, longitudinal x and rotational theta directions. As with 

the development of the equations of motion for the rim, a set of free body diagrams is 

drawn for each mass or inertia and the equations of motion are derived. Proceeding with 

the equation of motion of the ring in z, we draw the diagrams in Figure 3.5 showing the 

dynamic forces on the body as a displacement from the equilibrium condition: 
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Figure 3.5: Free Body Diagram for the Rigid Ring in the Z Direction 
 
Summing the forces in the z direction and taking into account the angle of incidence with 

the ground plane, angle α, yields the following equation: 
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Adding the damping terms for the tire vertical sidewall stiffness and for the 

circumferential and radial components of tread element stiffness and solving for the 

vertical acceleration yields: 
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Equation (3.9) 

Here, the longitudinal position x of the rim is equivalent to the longitudinal position of 

either the axle or the car. The effective height of the ground plane is determined by the 

position in x of the ring and the contour of the ground designated by the tread contact 

point followers. 

Proceeding with the equation of motion of the ring in x, the free body diagram is 

drawn and annotated accordingly in Figure 3.6. The equation of motion for the ring in x 

is solved as follows. 
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Figure 3.6: Free Body Diagram for the Rigid Ring in the X Direction 
 

Summing the forces in the x direction positive to the left yields: 
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Adding the damping terms for the tire longitudinal sidewall stiffness and for the 

circumferential and radial components of tread element stiffness yields: 
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Equation (3.11) 

 Proceeding with the third and final equation of motion for the rigid ring, the free 

body diagram associated with the rotation about the spin axis theta is shown in Figure 

3.7. 

 

Figure 3.7: Free Body Diagram for the Rigid Ring in the Theta (θ) Direction 
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Defining theta to be positive counterclockwise (driving the car forward in the 

positive x direction) and defining the rotational moment of inertia of the ring to include 

the contribution from both the tire tread summit belts, the tread mass outside the contact 

patch, and the portion of the sidewall attributable to the tire summit, the sum of the 

moments yields: 
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Adding the damping terms for the tire sidewall torsional stiffness and for the 

circumferential and radial components of tread element stiffness yields: 
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 Selecting the tread element as the third mass, we first define the tread mass as the 

mass of the tire tread band residing within the contact patch.  The three degrees of 

freedom associated with the tread mass are in the vertical z, longitudinal x and rotational 

theta directions. As with the development of the equations of motion for the rim and the 

ring, a set of free body diagrams is drawn for each degree of freedom and the equations 

of motion for each degree of freedom are solved for in turn. Proceeding with the equation 
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of motion for the tread in z, we draw the diagrams showing the dynamic forces on the 

body as a displacement from the equilibrium condition in Figure 3.8: 

 

 

Figure 3.8: Free Body Diagram for the Tread Block in the Z Direction 
 
Summing the forces in the z direction yields the following equation: 
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In equation 3.14 the normal force is the combination of the normal forces between the 

ground surface and the tread block due to the static quarter weight of the vehicle and the 

spring displacement and velocity damping between the ring and the tread block normal to 

the effective ground plane. Adding damping terms associated with the circumferential 

and radial components of tread element stiffness yields: 
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Proceeding with the equation of motion of the tread block in x, the free body diagram is 

annotated accordingly as shown in Figure 3.9 and the equation of motion is solved as 

follows: 
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Figure 3.9: Free Body Diagram for the Tread Block in the X Direction 
 
Summing the forces in the x direction positive to the left yields the following equation: 
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Adding the damping terms for the circumferential and radial components of tread element 

stiffness and solving for acceleration of the tread block in x yields: 
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Proceeding with the third and final equation of motion for the tread block, the free 

body diagram associated with the rotation about the spin axis theta is shown in Figure 

3.10. 

 

Figure 3.10: Free Body Diagram for the Tread Block in the Theta (θ) Direction 
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Defining theta to be positive counterclockwise and defining the rotational moment of 

inertia of the tread block to be that associated with the portion of the tread within the 

contact patch the sum of the moments about the tire spin axis yields: 
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Adding the damping terms for the circumferential and radial components of tread element 

stiffness yields: 
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This completes the third and final equation of motion for the tread block within the 

contact patch. 

The equations of motion for all three masses complete the new tire model on the 

most elementary level. 

 



   53 

  

 

Extending from a Two Point to a Five Point Follower for the Rigid Ring 

The transformation of the rigid ring model from a two point follower 

configuration to a five point follower divides the effective plane of the tire contact patch 

into four equal effective planes. The principal advantages associated with breaking the 

single ground plane into multiple planes include: 

- the discretized plane provides higher fidelity in regards to the spatial 

frequency content associated with both the vertical characteristic of the 

obstacle as well as the rotational angle of each discretized plane as it travels 

over the obstacle 

- the sum of the longitudinal traction forces for all of the discretized planes 

provides for greater accuracy than one average plane due to the nonlinear 

characteristic of the tire traction model 

- the shorter length associated with the multiple planes increases the spatial 

frequency response of the model, allowing the model to perform with either 

shorter wavelength obstacles or faster vehicle speeds 

The development of the five point follower can be addressed by first defining the 

tread ring and the positions of each of the four effective segments within the contact 

patch. This is illustrated in Fig 3.11. 
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Figure 3.11: Effective Plane Elements in the Five Point Follower Rigid Ring Model 
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Table 3.1: Longitudinal Offset of Effective Plane Elements in the 5 Point Follower 
Tread Segment Longitudinal Offset 

1st Segment 
(’Leading’ segment at the entry 
point of the contact patch) 

Lead Point = Xtread + (1)a 
Mid Point  = Xtread + (¾)a 
Trail Point = Xtread + (½)a 

2nd Segment 
(Segment immediately in front of 
the contact patch midpoint) 

Lead Point = Xtread + (½)a 
Mid Point  = Xtread + (¼)a 
Trail Point = Xtread 

3rd Segment 
(Segment immediately behind the 
contact patch midpoint) 

Lead Point = Xtread 
Mid Point  = Xtread – (¼)a 
Trail Point = Xtread – (½)a 

4th Segment 
(‘Trailing’ segment at the exit point 
of the contact patch) 

Lead Point = Xtread – (½)a 
Mid Point  = Xtread – (¾)a 
Trail Point = Xtread – (1)a 

Note: The mass, spring rate, and damping rate attributed to each separate 
tread segment are assumed to be equal to one-quarter that of the entire 
contiguous tread segment within the contact patch. 

 

The MatLab Simulink model uses a look-up table to provide a continuous function for the 

vertical position of any defined roadway obstacle as a function of longitudinal position on 

the ground. By using the offsets defined in Table 3.1, the Simulink model can then: 

1. obtain the vertical position for each of the five point followers 

2. calculate the mean vertical position for each of the four effective planes 

3. calculate the angle of engagement for each of the four effective planes  

and use this information when performing the time step integration as the tire model 

traverses the obstacle. 

The previously discussed advantages of the five point follower model (four 

segments, each represented by an effective plane) as opposed to the two point follower 

model (single segment represented by a single effective plane) is perhaps most easily 

conveyed by the illustration in Fig 3.12 below: 
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Figure 3.12: Physical Representation of Five vs. Two Point Contact Follower 
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resolution within the contact patch is important for two general reasons: 

- the engagement of the spatial frequency of the obstacle (the greater the 

division within the contact patch, the shorter the wavelength obstacle that can 
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- the more accurate the modeling of the non-linear traction forces within the 

contact patch, including greater resolution of the normal forces as well as the 

angle at which the normal forces react.  

The latter point is important as this not only improves the traction model, but also more 

accurately represents the generation of longitudinal forces as the tire engages the obstacle 

and exits the obstacle. The enveloping power of the tread is also more accurately 

modeled as it traverses an obstacle with a length shorter than that of the total contact 

patch length. 

Just as there are limitations associated with the use of a two point follower and a 

single effective contact plane, there are also limitations with too great a number of 

contact patch elements. These disadvantages become increasingly troublesome when the 

obstacle contains high spatial frequency content and the effective plane segments in the 

contact patch are short, resulting in modeled angles of obstacle engagement that are 

greater than can be realized in a physical tire of given radius and summit construction 

stiffness. 

- The shorter the length of each effective plane element, the greater the angle of 

obstacle engagement, angle α. This is without regard to the limitation of the 

tread block to physically be pliable enough to conform to the rapid changes in 

obstacle height. In a real tire, the bending stiffness associated with the tread 

band and the tire summit will not allow the tire to ‘drape’ completely over 

high frequency or ‘jagged’ obstacle asperities. The result is that the modeled 
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tire will generate traction forces with greater efficiency (erroneously higher) 

than can be realized in an actual tire. 

- The greater the angle of obstacle engagement, angle α, the greater the portion 

of modeled longitudinal inertial forces acting normal to the tread block. This 

results in modeled traction forces (parallel to the tread block) which are 

greater than traction forces normally associated with the physical tire. This is 

because the traction model is based upon an analytical model derived from a 

single complete contact patch plane being tested on a homogenous surface. 

- There is error caused by the lack of modeling of the bending rigidity between 

the consecutive effective plane segments. It is a common accepted assumption 

that the effect of the bending stiffness as the tire enters and exits the contact 

patch is negligible in comparison to the effect of other measured compliances. 

However, combining the bending stiffnesses at the entry and exit of the 

contact patch with the bending stiffnesses between the consecutive plane 

segments within the contact patch may no longer be negligible, especially 

with large differences in segment engagement angles. 

It can be concluded that this tire model is appropriate for obstacles of intermediate length, 

and that the most appropriate number of follower elements needs to be determined based 

not only upon the physical characteristics of the obstacle being traversed, but also the 

length of the tire contact patch (principally determined by inflation pressure and normal 

static load, but also to a lesser degree the tire construction parameters). 
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Because the rigid summit ring does not deflect, the application of forces on the 

rigid ring can be applied without restriction as to the circumferential position at which 

those forces are applied. The application of the simple displacement offsets described in 

Table 3.1 can therefore be applied to each of the four tread segments and allow the re-use 

of the code for generating the tread block effective plane and engagement angle α, greatly 

simplifying the software. The effect as the contact patch engages the front side of a 

sinusoidal obstacle, as in Fig. 3.12 is shown conceptually in Fig 3.13. 

 

Figure 3.13: Transfer of Contact Patch Tread Element Forces to the Rigid Ring 
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CHAPTER 4

 
CONDUCTING THE INVESTIGATION OF THE TIRE MODEL 

 
 

Introduction 

The overall goal of this work is to develop an understanding of basic tire models 

used in ride comfort simulations. This will permit more informed decisions as to the 

selection of tire models for integrated tire/vehicle ride modeling. This is accomplished in 

two distinct and separate phases. The first phase concentrates on the development of the 

tire models and comparing simulation results to laboratory measurements of a tire 

running over a small cleat test cleat attached  to test drum. This first phase, or “Cleat” 

phase, consists of:  

- the development of the tire models themselves,  

- implementing them in MatLab Simulink 

- implementing commercial tire model Cosin FTire in Intec SIMPACK 

Automotive Plus MBS 

- comparing the results against the laboratory road wheel cleat test. 

The second phase consists of combining the tire models developed in the Cleat 

Phase with a simple quarter vehicle ride model. In this Ride Phase, simulations of the 

integrated quarter vehicle and tire model are performed over two obstacles: 

- a sinusoidal equivalent of the 9.5 mm tall and 19 mm long rectangular 

road wheel cleat 

- a sinusoidal parking lot bump measuring 4 inches high and 12 inches long 
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in order to assess the effect of the tire model with respect to ride comfort performance. 

The investigative process is illustrated graphically in Figure 4.1. 

 

Figure 4.1: Investigation Process Flow Chart 
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There are several fundamental considerations which were addressed when 

forming the investigation implementation strategy. One of the issues is the need to 

validate the tire models that were developed. Although the commercially-available tire 

model Cosin FTire and simulation package Intec SIMPACK Automotive Plus MBS are 

thoroughly tested and accepted as validated models in the vehicle industry, laboratory 

measurements provide not only an absolute comparison but also offer an invaluable “real 

world” perspective. Also, comparing simulated tire model performance against a 

laboratory tire test provides a direct means to evaluate tire model performance metrics 

per se. 
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Cleat Phase – Laboratory Measurement to Validate Tire Models 

 

Simulation Software 

Two different simulation paths were utilized. In one simulation path, the 

equations of motion for the six tire models that were developed are implemented in 

MatLab Simulink software. In the second simulation path a seventh tire model – Cosin 

FTire (Flexible Ring Tire Model) was implemented in SIMPACK Automotive Plus. The 

simulations from all seven models are compared to the measured results from the 

laboratory road wheel cleat test. The MatLab Simulink path is shown on the left side and 

the Cosin FTire path is shown on the right side of Figure 4.1. 

 

Laboratory Tests 

In this test, the tire is loaded against a road wheel to which a single rectangular 

cleat is affixed. The test hub is locked in place such that the spindle height is constant 

throughout the test. The road wheel drives the test tire and the instrumented test hub 

records the wheel spindle forces as the free-rolling tire passes over the road wheel cleat. 

The equipment is illustrated in Figure 4.2. 
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Figure 4.2: Laboratory Road Wheel Test Machinery 
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loads anticipated during tire uniformity measurement. This limits the 

maximum size of the cleats so as not to over-range the spindle force 

transducers. As a consequence, only one relatively small road wheel cleat of 

rectangular cross section – 9.5 mm tall and 19 mm wide – was available for 

use. This prevented the use of a range of input excitations into the tire, and the 

one input that was relatively small in magnitude. Having a variety of cleat 

sizes with larger dimensions would have allowed the investigation to better 
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compare the various tire models under different operating conditions and in 

operating ranges that may have been more useful for ride comfort 

performance. 

2. The Michelin precision high-speed uniformity road wheel is 8.5 meters in 

circumference and is designed to operate in a test speed range between 10 and 

200 Kph. This prevents testing at the slower speeds needed to confirm the tire 

compliance characteristics, such as the change in vertical compliance as the 

cleat first enters, then traverses, and finally exits the contact patch. The lowest 

solicitation speed of which the machine is capable is 8 Kph (2.22 m/sec), 

which is already fast enough to excite the internal tire dynamics as the cleat 

passes through the contact patch, as evidenced by “ringing” of the spindle 

forces. For the test tire in question, a European (non P-metric) 245/45ZR18 

Michelin Pilot Sport 2, the contact patch length (the length of the tire which 

remains in continuous contact with the ground) is approximately 0.158 meters 

at the test conditions of 2.0 bar inflation pressure and 5,780 N vertical load. 

The total time that the tire engages the cleat (neglecting the curvature of the 

roadway drum and the height of the cleat) is only 71 msec at 8 Kph. So 

although this precision road wheel machine is ideally suited for measuring tire 

uniformity and tire vibration modes that occur at high speeds, it is not 

optimized for operating in a manner that would be used for validating tire ride 

comfort models. Ideally, testing would commence using very slow speeds – 

perhaps 1 Kph or even slower - to first verify the tire compliance without any 
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significant dynamic effects before increasing speed to verify the internal tire 

dynamic effects. 

These limitations on road wheel cleat testing do not allow for ideal data sets with which 

to validate the tire model simulations. However, the data are adequate such that the 

relative merits of the various tire models can be explored and provide insight into tire 

functionality which exceeds that which could be obtained through simulations alone. 

The simulated waveforms and the normalized peak spindle forces obtained from 

the simulation outputs of all seven tire models are compared to the laboratory test results. 

These results are expected to confirm that the most sophisticated tire model will perform 

with the greatest fidelity, and will subsequently be used as a reference for the simulations 

in the second phase of the investigation, the “Ride” phase. 

 

Testing for Tire Model Parameters 

A means was needed to provide data for the tire model parameters. This was 

accomplished by utilizing Michelin’s machine test facility. The tire tests were chosen on 

the basis of testing ease, speed, and cost. The testing consisted of: 

1. Static stiffness testing in longitudinal (x-axis), lateral (y-axis) and vertical (z-axis) 

directions at multiple inflation pressures. 

2. Moment of inertia testing about the spin axis for both the tire and the test wheel 

used with the road wheel cleat test 
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3. Tire weight and measurement of standard “Omega” cuts to determine the relative 

mass and moment of inertia contributions of the tire components to the tire bead 

area, the sidewall, the summit package, and the tread. 

These test and measurements, as well as the numerical techniques for determining the 

relative contributions of tire sidewall and tread compliance needed for the Simulink 

models, are detailed in the appendices. 
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Development of Tire Models in Simulink 

 

The six types of tire models that were developed for this investigation were 

implemented using MATLAB Simulink. Once the two software development tools were 

defined, a strategy for implementing the various tire/laboratory road wheel (Cleat Phase) 

and tire/vehicle model (Ride Phase) was needed.  

 

Implementation Strategy 

The implementation strategy of the MatLab Simulink modeling process is 

illustrated in Figure 4.3. 
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Figure 4.3: Tire/Vehicle Model Implementation in Simulink 
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Obstacle “Conditioning” 

 

Each of these three models use an obstacle conditioning algorithm in which the 

effective height, length, and geometry of the obstacle is modified. The resulting 

longitiduinal position vs. displacement and effective contact patch engagement angle is 

passed to the tire carcass model. These input conditioning schemes are described in detail 

in the appendices, but the general implementation and their characteristic effect is as 

follows: 

- The point contact follower emulates the rectangular cleat by first conditioning the 

rectangular road wheel cleat, transforming the rectangular obstacle shape into a 

sinusoidal input that maintains both: 

-  identical peak input height (9.5 mm) and 

-  identical area under the height vs. distance curve. 

The resulting sinusoidal input is passed to the tire carcass model. 

- The ring follower conditioning scheme is slightly more complex than the single 

point contact follower. The ring follower input conditioning is characterized by 1) 

maintaining the obstacle’s peak input amplitude in the vertical direction and 2) 

increasing the obstacle’s wavelength. The resulting input waveform is passed to 

the identical tire carcass model that was used for the single point contact follower.  

- The constant footprint conditioning averages the obstacle height of the obstacle 

by enveloping it mathematically, thereby lowering the effective obstacle height 
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and increasing its wavelength. The resulting input signature is also passed to the 

identical tire carcass model that was used for the case of the single point contact 

follower. 

- Because the adaptive footprint model uses radial carcass elements, its 

implementation was more complex and was best performed by writing a specific 

Simulink model that contained an embedded MatLab function. This function 

carries out a numerical integration of the vertical and fore/aft tire spindle force 

contributions attributed to each of the radial spring element deflections. The 

adaptive footprint model lengthens the obstacle wavelength due to the contact 

patch length, which will vary as a function of total static and dynamic vertical 

load. 

The two point rigid ring model and the five point rigid ring model are significantly more 

complex than the previous four models. These two models account for the tread mass in 

the contact patch separately from the summit (rigid ring) mass. In addition, the static and 

normal dynamic forces in the tread elements are used with a traction model to generate 

longitudinal force based upon a longitudinal sliding friction model. The two point 

follower and five point follower schemes are both executed using similar code, the only 

difference being that the five point model represents the contact patch as four individual 

segments interacting independently with the traction model and the rigid ring as opposed 

to a single contact patch element for the two point model. Although not utilized in this 

investigation, these tire models provide the capability of generating driving and braking 

longitudinal force at the contact patch, making them suitable for studies involving 
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driveline accelerating torque and braking decelerating torque. The overall effect of the 

input conditioning for the two point and five point models is to mitigate the height of the 

obstacle as it is enveloped within the contact patch. 
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Implementation of the Tire Models in Simulink 

 

The approach for implementing the tire models in Simulink is straightforward and is 

performed as follows: 

1. The tire model is defined (using simple linear second order equivalent 

mass/spring/damper systems). 

2. The free body diagrams are drawn for each degree of freedom. 

3. The equations of motion are written for each of the coordinates. 

4. The roadway obstacle and the algorithm for the tire envelopment model is 

generated, i.e., the amplitude of the obstacle vertical input as a function of 

longitudinal wheel displacement x. 

5. the enveloping model (single point follower, ring follower, constant footprint, 

adaptive footprint, 2 point follower, or 5 point follower) is written such that the 

obstacle is filtered as a function of longitudinal position. 

6. auxiliary functions, such as inputting constants for the various lumped tire model 

parameters, initial conditions, traction model (in the case of the rigid ring 

models), etc. are written and incorporated into the Simulink model via MatLab 

‘m’ scripts. 

The process is detailed for each of the Simulink models in the appendices. An example of 

the Simulink code for the most basic tire model – the single contact point follower – is 

illustrated in Figure 4.4. 
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Figure 4.4: MatLab Simulink: Top Level for Single Point Contact Tire Model. 
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position of the axle or wheel center (Zaxle) and its instantaneous rate (Zdot_axle). The 

fifth and final input to this tire model is the angle of incidence, or the angle between 

horizontal and the tangent to the obstacle (Alpha_road). The outputs for the Simulink 

module are the vertical and horizontal spindle forces (Zspindle_force and 

Xspindle_force, respectively). The additional two output ports for the spindle forces 

(Zspindle_force_out and Xspindle_force_out) are used to make the output forces 

available in the MatLab workspace. 

The subsystem for the Z spindle position and force model is shown in Figure 4.5. 

As an ordinary second order differential equation, there are two integration blocks and a 

summation of forces which act upon the mass of the effective tire mass. 
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Figure 4.5: MatLab Simulink: Point Contact Model Z Spindle Force Subsystem 
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Development of the FTire and Simulink Combined Model 

 

The overall implementation scheme for the FTire model in SIMPACK is similar 

to but distinctly separate from the implementation of the Simulink models. As with a 

myriad of other analytical and statistical tire models, FTire is designed to be incorporated 

into a vehicle model via an interface that allows for the exchange of: 

1. Tire solicitation, as imposed by the steering and suspension and the prevailing 

state of the vehicle. Tire solicitation includes the imposed tire slip angle, 

camber angle, vertical spindle load, and percent of driving or braking slip at 

the tire/ground interface. 

2. Resulting tire force and moments, as returned to the steering and suspension 

system as a result of the imposed tire solicitation. These tire forces and 

moments include lateral force, driving or braking torque, and overturning 

moment as a result from the interaction between the tire and the ground at the 

tire/ground interface. 

Therefore, suitable MBS software was needed to provide the vehicle interface required 

by FTire. The software selected to represent the vehicle (or, for the simulation of our 

laboratory road wheel test, the laboratory road wheel and spindle) is Intec SIMPACK 

Automotive Plus MBS. 

The same data that was used to generate the simulation initial conditions, vehicle 

parameters, and obstacle characteristics are transferred into the FTire and SIMPACK 
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simulation files so that the outputs can be compared directly with that obtained from 

MatLab Simulink. The overall implementation of the MBS simulation is illustrated in 

Figure 4.6. 

 

Figure 4.6: Tire/Vehicle Model Implementation using SIMPACK and FTire 
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finely defined as to require the extensive material property characterization associated 

with finite element mesh models. The value of FTire is that it is sufficiently complex to 

capture relatively short wavelength phenomena, such as enveloping a cleat in the tire 

contact patch. It also provides frequency resolution beyond what can be obtained using 

mass/spring/damper models such as rigid ring models without requiring the increased 

computational power associated with FEA codes. FTire is sufficiently accurate that it is 

used in a variety of vehicle dynamic modeling software suites for such tasks as basic 

chassis dynamics in the linear operating regime, nonlinear handling such as emergency 

avoidance and safety maneuvers, ride comfort modeling, and generating road load 

characteristics for suspension endurance studies. 
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Implementation of the Tire Models in SIMPACK Vehicle Plus 

 

The intent of this investigation is not to explain the science of multi-body 

simulations (MBS) but to merely contrast that this approach, necessary for implementing 

the Cosin FTire model in SIMPACK Automotive Plus, is quite different than that 

required for modeling mechanical systems via other analytical and modeling 

methodologies. Although both MatLab Simulink and SIMPACK MBS approach use time 

step numerical integration solvers, the mechanical systems are defined using different 

techniques. Simulink requires that the mathematics inherent with the model be 

understood and the equations of motion written explicitly. In MatLab, the equations of 

motion are implemented directly in the code. In MatLab Simulink, the equations of 

motion are constructed as a block diagram in the graphical user interface. The SIMPACK 

MBS software does not require that the equations of motion be derived. Rather, the 

software relies upon the characterization of the physical model by the 1) mass properties 

of the components, 2) the constraints which exist between the mass components, and 3) 

any forces that are applied to the masses. The equations of motion are inherent in the 

kinematic chains which result from the system of masses, constraints, and external forces. 

Construction and implantation of the FTire model in SIMPACK involves the 

following steps: 
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1. FTire is one of a number of tire models which can be implemented via the tire 

model interfaces already built into the SIMPACK software. Tire models (or for 

that matter, any force model) can also interface directly to SIMPACK. 

2. The remainder of the physical system is constructed in the SIMPACK MBS 

software. For this investigation simple fixed spindle and quarter vehicle models 

were constructed. Using SIMPACK’s Automotive Plus toolbox provides a 

comprehensive interface to pre-existing tire models, and automates a number of 

functions common to automotive modeling (routines which convert vehicle and 

suspension states into tire solicitations, driver models, speed controllers, etc.). 

3. For the Cosin FTire model, an array of testing is required to populate the FTire 

model via an FTire “workbench.” The software is designed to optimize the FTire 

parameters, and accepts a wide range of testing methods. 

4. The Cosin FTire requires a road definition file to describe the roadway path in 3D 

and has a number of tools for customizing pre-defined roadway obstacles, 

generating obstacle functions, or importing pre-recorded roadway characteristic 

files. Cosin FTire is not compatible with the SIMPACK Automotive Plus 

roadway files. 

5. The MBS is launched via the SIMPACK user interface. The Automotive Plus 

toolbox passes the vehicle state from the SIMPACK MBS vehicle model to the 

FTire model. The FTire model uses the road definition file and the imposed 

vehicle state to determine the generated wheel spindle forces and moments. The 
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Automotive Plus FTire model interface returns these spindle forces and moments 

back to the vehicle simulation in order to carry out the time step integration. 

6. After the simulation is complete, time histories of position, velocity, force, etc. for 

both the FTire and SIMPACK model are saved as a SIMPACK binary output file. 

The binary output file can be analyzed by the SIMPACK post processor. Alternatively, 

the post processor can export selected simulation results to a variety of common formats, 

including MatLab arrays. 

For this investigation, a quarter car MBS vehicle was built using SIMPACK’s 

Automotive Plus toolkit. For the Cleat Phase laboratory road wheel simulation, the wheel 

spindle height of the quarter vehicle model was constrained to a height above the ground 

plane which would correspond to the desired static vertical tire load. For the quarter 

vehicle model simulation in the Ride Phase, the constraint was simply removed. The 

topology for the MBS model that was developed for the quarter vehicle is shown in 

Figure 4.7. 
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Figure 4.7: Quarter Vehicle Car Model Topology – Masses, Constraints, and Forces 
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Figure 4.8: Views of Quarter Vehicle Car Model as Implemented in SIMPACK 
 

Table 4.1: Tire and Quarter Vehicle Model Parameters 
Variable Descriptor Value Units Variable 

    
Tire aspect ratio (section height to width ratio) 45  %  % 

Tire contact patch length 0.158 m CPL_pneu

Area contact between tire and ground 44.8 in2 
CP_Area_i

n2 
Quarter car average suspension viscous damping 2950 N sec/m Caxle 

Tire sidewall rotation damping about the axle 
spin axis 72.1 Nm 

sec/rad Ctire_theta
Tire sidewall fixed spindle longitudinal damping 1354 N sec/m Ctire_x 

Tire sidewall vertical damping 209 N sec/m Ctire_z 
Circumferential damping coefficient of tread 

blocks 2693 N sec/m Ctread_cr
Vertical damping coefficient of tread blocks 1775 N sec/m Ctread_vr

MOI of tire bead structure incl. sidewall 
component  0.23 Kg m2 

Ibead 

Moment of inertia of tire bead structure 0.15 Kg m2 Ibead_mea
s 

Moment of inertia of the wheel about the spin 
axis 0.73 Kg m2 

Irim 
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Moment of inertia of the tire sidewall structure 0.91 Kg m2 Iring 

Moment of inertia of the tire sidewall  0.16 Kg m2 Isidewall_
meas 

Moment of inertia of the tire summit structure 0.63 Kg m2 Isummit_m
eas 

Total moment of inertia of the tire about the spin 
axis 1.16 Kg m2 

Itire 
Moment of inertia of the tread band 0.017 Kg m2 Itread 

Moment of inertia of the tread band outside of the 
tire contact patch associated with the rigid 

summit ring 
0.222 

Kg m2 
Itread_mea

s 
Average suspension vertical wheel rate 31675 Kg m2 Kaxle 

Tire sidewall rotational spring rate 60057 Nm/rad Ktire_theta
Tire sidewall longitudinal spring rate 1354447 N/m Ktire_x 

Tire sidewall vertical spring rate 261347 N/m Ktire_z 
Tread block circumferential damping 2692900 N/m Ktread_cr

Tread block radial damping 1775149 N/m Ktread_vr
Axle mass for one-quarter vehicle 23.8 Kg Maxle 

Moment of inertia of tire bead structure 3.15 Kg Mbead 
MOI of tire bead structure incl. sidewall 

component 2.25 Kg Mbead_me
as 

Quarter vehicle total mass 589 Kg Mcar 
Driving torque at the wheel spindle 0 Kg Mdrive 

Moment of inertia of the wheel about the spin 
axis 17.3 Kg 

Mrim 
Moment of inertia of the tire sidewall structure 8.61 Kg Mring 

Moment of inertia of the tire sidewall 1.80 Kg Msidewall
_meas 

Sprung chassis mass of one-quarter vehicle 536 Kg Msprung 

Moment of inertia of the tire summit structure 5.87 Kg Msummit_
meas 

Mass of tire 11.9 Kg Mtire 
Mass of the tread band in the contact patch 0.15 Kg Mtread 

Total mass of the tread band around the tire circ. 1.99 Kg Mtead_me
as 

Rolling tread width 0.183 m RTW 
Effective Rolling Radius 0.3292 m Reff 

Rim diameter 18 in Rim 
Section Width 0.245 m SW 

Quarter Vehicle Mass 589 Kg 
Spindle_m

ass 

Tire inflation pressure in Pascals 200 kPa 
Tire_press

_kPa 
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Tire inflation pressure in psi 29 Lbf/in2 
Tire_press

_psi 
One-half contact patch length 0.0789 m a 

Fraction of tire circumference in the tire contact 
patch 0.0763 N/A frac_CP 
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Ride Phase – Ride Comfort Predictions of Quarter Vehicle Models 

 

In the Ride Phase, simulations are conducted by incorporating the tire models into 

a simple quarter vehicle model. For MatLab Simulink, this consists of generating the 

equations of motion for a representative quarter model vehicle and applying them via 

block diagrams. For Cosin FTire and SIMPACK MBS software, a quarter-vehicle MBS 

model is created and implemented in SIMPACK Automotive Plus. These models are then 

exercised over: 

- the rectangular laboratory road wheel test cleat – this size was chosen as it 

provides a means of easily verifying the expected mitigation in peak vertical 

spindle forces due to the suspension compliance, and  

- a typical parking lot speed bump. 

Since no on-vehicle measurements are available, the tire model simulation metrics 

are normalized to the SIMPACK MBS software running the Cosin FTire. A comparison 

of the simulation vs. laboratory test results of all tire models in the Cleat Phase confirmed 

that the Cosin FTire model provided the best model fidelity, as was expected – Cosin 

FTire has many additional degrees of freedom and requires considerably more test data 

input to generate the tire model. Consequently, it was possible to assume that the 

combined integrated SIMPACK MBS and Cosin FTire model could represent the 

“control vehicle” to which all other simulation results are compared. 
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The normalized metrics of the integrated tire/vehicle models are compared to 

those of the SIMPACK MBS and Cosin FTire control vehicle determine for obstacles of: 

- short wavelength compared to the contact patch – the 9.5 mm high by 19 mm 

long rectangular cleat (representing a spatial interaction length of only 

approximately 1/8 times the length of the tire contact patch) , and 

- long wavelength compared to the tire contact patch - the sinusoidal-shaped 

parking lot bump measuring 4 inches high and 12 inches long (representing a 

spatial interaction of approximately 1.9 times the length of the contact patch). 

Having two distinct obstacles that are fundamentally both 1) much shorter and 2) much 

longer than that of the contact patch is important, as a primary factor for determining the 

suitability of a tire model for tire/vehicle simulation will be its ability to correctly emulate 

contact patch envelopment of a roadway obstacle. 
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Tire Selection and Tire Modeling Considerations 

 

There were numerous considerations when selecting a tire with which to conduct 

this investigation of tire models for ride comfort simulations. 

1. The data set that is required to populate the algorithms to generate an FTire model 

is extensive and beyond the resources of this investigation. Therefore, an 

available FTire model which had already been created was provided by Michelin 

Americas Research Company’s European research headquarters in Ladoux, 

France. Since the FTire model was generated for a low aspect ratio summer 

performance tire, it presented challenges to the modeling effort that would not be 

anticipated when modeling more generic passenger car or light truck all-season 

tires. For example, the relatively stiff summit structure of this tire consists of not 

only the normal working steel ply lamina, but also: 

a. extensive reinforcing material consisting of circumferentially-wrapped 

nylon belts, at a zero degree angle, over the two steel belt composite in the 

summit (generically referred to as a zero degree cap ply). 

b. additional circumferential Kevlar cord over the zero degree cap ply. 

These two structural reinforcements reduce the summit compliance, which aids 

the assumption that the summit structure is a rigid ring. However, the 

reinforcements also increase the shear stiffness at the base of the tread band, 
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making the representative bulk stiffness more difficult to capture using the 

conventional battery of tire rigidity testing at our disposal. 

In addition to the greater summit stiffness of performance all-season tires, 

performance tire treads can be stiffer than all season or all terrain tires, despite the 

use of softer, more hysteretic rubber compounds. This greater tread band stiffness 

is due to: 

- larger tread blocks with shorter tread depth 

- lack of grooving in existing tread blocks 

- lack of tread blocks in the center ribs, replaced by solid or nearly solid 

ribs 

To illustrate the potential for a wide range of longitudinal and vertical tread block 

stiffnesses, three different tread patterns are illustrated in Figure 4.9. The tread 

pattern at the top of the figure is for the handling-oriented performance handling 

tire that was used in this investigation. This pattern consists of solid ribs or large 

tread blocks of reduced height (shallow tread depth) to increase the rigidity in the 

contact patch. The tread pattern in the middle is that of a typical all-season tire. 

This tread pattern consists of closely-spaced but distinct tread blocks of moderate 

height (moderate tread depth). Under moderate to severe longitudinal shear 

forces, such as those that occur under forceful braking, the small lateral grooves 

and tread blocks come into contact with one another and their mutual 

reinforcement increases the longitudinal tread block rigidity. This tread sculpture 

is less rigid than the sport tire, but typically offers better resistance to 
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hydroplaning, improved snow performance and comfort over the handling 

performance tire. The tread pattern at the bottom of the figure comes from an all-

terrain tire that would be found on light trucks or utility vehicles that are 

occasionally tasked with driving off of paved roads. The tread blocks are widely 

spaced and do not have any possibility of interlocking and reinforcing each other 

during moderate to severe driving or braking forces. These tread blocks have the 

deepest tread depth to improve snow and mud traction performance. 

 

Figure 4.9: Example Tread Patterns Fitted to Modern Production Vehicles 
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The combined effect of geometry and structural differences in pneumatic tires can 

result in a wide range of longitudinal stiffness characteristics. This is evident by 

comparing tire longitudinal stiffness values versus inflation pressure for different 

classes of tires and constructions, as illustrated in Figure 4.10. 

Tire Longitudinal Rigidity as a Function of Pressure
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Figure 4.10: Various Longitudinal Tire Stiffness Values 
 

In general, many factors contribute to the longitudinal stiffness characteristics of 

pneumatic tires. Being able to first measure and then model these static stiffness 

characteristics is the first step in developing the tire ride model. Verification that 

the dynamic characteristics of the tire are adequate for ride comfort modeling 

would then be the next step. 
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2. The FTire model parameters are extensive and are generated by an FTire 

“Workbench,” which optimizes a wide variety of test data. The optimization 

routines in FTire are designed to manage the over-constraints imposed by 

multiple sets of tire test and testing conditions, but the internal criteria for 

resolving these over-constraints are neither available nor visible to the end user. 

The original FTire tire data file supplied by Ladoux was not numerically stable 

when loaded into the combined FTire and SIMPACK MBS vehicle simulation 

software. After an extensive inspection of the existing data file, the intermediate 

pressure from a set of three vertical deflection tests was removed, and a 

numerically-stable composite tire/vehicle model was achieved. 

3. The curvature of the road wheel was neglected in the road wheel cleat 

simulations. However, the radius of the curvature of the road wheel will affect the 

vertical force characteristic to some extent as the cleat traverses the contact patch. 

Specifically, a non-infinite radius of curvature will result in: 

a. The cleat engaging the contact patch at an angle.  

b. The tire having greater vertical deflection at the center of the contact patch 

than if the tire was loaded on a flat surface. This affects the contribution of 

the vertical structural stiffness in the contact patch. The magnitude of the 

structural effect will be less for tires having relatively high sidewalls, such 

as a conventional passenger tire, but greater for tires with low sidewalls, 

such as performance tires. The structural effect will be more pronounced 

with self-supporting “zero pressure” run flat or extended mobility tires, all 
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of which have more structural sidewall rigidity than conventional 

pneumatic tires. 

The relative importance of these effects will depend upon the tire itself as well as 

the radius of the road wheel. However, these effects of these differences are 

considered to be both 1) reasonably small and 2) consistent amongst all of the 

models.  Therefore, they were not considered in this investigation. 

 



 

  

 
CHAPTER 5

 
RESULTS OF FIXED SPINDLE, CLEAT PHASE 

 
 

Introduction 

The general purpose of the investigation is to determine the suitability of a range 

of tire models for integrated tire/vehicle comfort simulations. This was accomplished 

using a two-phase approach: 

1. The Cleat Phase was a comparison of the spindle force fidelity of the seven 

different tire models versus results obtained from laboratory tests. One 

simulation model was Cosin FTire, a commercially-available flexible ring tire 

model implemented in SIMPACK Automotive Plus. This model was expected 

to compare the best with test results, as it is the most complex model and 

requires the greatest amount of testing data to obtain the tire model 

parameters.  

2. The Ride Phase was the implementation of all tire models in a quarter vehicle 

comfort model. Since instrumented vehicle results were not available, the 

results of the simulations using Cosin FTire and SIMPACK were used as the 

reference. The metrics for judging simulation fidelity in this case were peak 

longitudinal and vertical acceleration of the chassis as the quarter vehicle 

model traversed two obstacles – the same small cleat used in the road wheel 

test, and a parking lot bump. These two obstacles respectively have 

wavelengths that are shorter and longer than the tire contact patch. The cleat 
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solicits the enveloping characteristics of the tire’s contact patch whereas the 

parking lot bump solicits the carcass deflections. 

 This chapter (Chapter 5) describes the first phase of the investigation, which is 

the comparison of the spindle force fidelity of the seven different tire models 

versus results obtained from laboratory tests. The next chapter (Chapter 6) will 

describe the second phase of the investigation, which is the comparison of the tire 

models when they are integrated with a quarter vehicle model. 
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Cleat Phase Results – Fixed Spindle Road Wheel Investigation 

 

In the Cleat Phase, the results of the tire model simulations are compared to test 

results. The road wheel cleat test is conducted at eight kilometers per hour and the spindle 

height is fixed after establishing the static vertical tire load. In the case of the 245/45R18 

summer performance test tire, a load of 589 kg (which is the maximum rated load at 180 

kPa or 26 psi inflation pressure) was selected, with a corresponding 200 kPa (or 29 psi) 

inflation pressure. This load/pressure combination represents a typical maximum 

expected tire load at the lowest anticipated, vehicle placard, cold inflation pressure. The 

test cleat consists of a steel bar of rectangular cross section attached to the road wheel 

such that the longest dimension of the bar is perpendicular to the direction of travel. The 

rectangular cross section is 9.5 mm high and 19 mm wide (obstacle length of 19 mm). An 

overview of the physical layout of the Michelin Americas Research Company test 

apparatus used to obtain the spindle force data is shown in Figure 5.1. 
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Figure 5.1: Vertical Test Spindle and Horizontal Road Wheel 

 
This comparison testing for the Cleat Phase is analyzed by plotting the simulated vertical 

and longitudinal spindle forces versus longitudinal road wheel distance and then 

overlaying the measured laboratory road wheel spindle forces for each of the tire models. 

As an example, the results for the fixed spindle test for the single point contact follower 

are shown in Figure 5.2. 
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Figure 5.2: Point Contact Follower – 8 Kph Fixed Spindle Results – Road Wheel Cleat 
 

The intention is to first examine the simulated spindle force vs. distance plots in order to 

understand the characteristic “signatures” of the models and how they compare to the 

corresponding laboratory data. Then, the maximum amplitudes of the vertical and 

longitudinal simulated spindle forces are normalized to the values obtained from the test 

measurements. This allows the models to be compared objectively against the test data 

and each other. 

In the Cleat Phase, two different configurations for the first three models (single 

point contact follower, ring contact follower, and constant footprint) were developed: 

1. A “Simple Spring” configuration, in which the tire/wheel mass is 

concentrated at the wheel hub, and 
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2. An “Equivalent Summit Mass” configuration, in which the equivalent 

mass of the tire summit belt package has an additional degree of freedom 

in the vertical direction. Although the exact physics are not mimicked 

using this approach, it does allow the summit mass to oscillate in a manner 

similar to what is observed when actual tires are tested on a road wheel 

with cleats. 

The various tire models that were studied in the Cleat Phase investigation and their basic 

configurations are listed in Table 5.1. 

Table 5.1 Cleat Phase Configurations for Fixed Spindle Lab Test 
Tire Model Configuration Cleat Comment 

Single Point Contact 
(“1 Pt”) 

Simple Spring 
( “K”) Sinusoid 

“ “ Rectangular 

“ Summit Mass 
(“KM”) Sinusoid 

“ “ Rectangular 

The rectangular cleat 
is represented by a 
trapezoid of equal 
cross sectional area 

Ring Follower Contact 
(“Ring”) Simple Spring Sinusoid 

“ “ Rectangular 
“ Summit Mass Sinusoid 
“ “ Rectangular 

Ring follower may 
have one or two 
points of contact 

Constant Footprint 
(“Const”) Simple Spring Sinusoid 

“ “ Rectangular 
“ Summit Mass Sinusoid 
“ “ Rectangular 

Footprint area stays 
constant. Vertical 
force is distributed 
in contact area. 

Adaptive Footprint 
(“Adapt”) Simple Spring Sinusoid 

“ “ Rectangular 

No logical summit 
mass configuration 

2 Point Follower Rigid Ring 
(“2 Pt”) N/A Sinusoid 

“ “ Rectangular 

Model developed for 
this investigation 

5 Point Follower Rigid Ring 
(“5 Pt”) N/A Sinusoid 

“ “ Rectangular 

Contact patch 
represented by 4 
segments 

Cosin FTire and SIMPACK 
(“FT”) N/A Sinusoid 

“ “ Rectangular 

Commercial Multi-
Body Simulation 
(MBS) Software 
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Note that the sinusoidal cleat consists of one complete sine wave which has the following 

characteristics: 

1. identical peak-to-peak amplitude as the height of the rectangular road wheel 

cleat 

2. length which is twice that of the rectangular road wheel cleat 

3. identical area as the rectangular road wheel cleat 

4. has continuous first and second derivatives 

A generally-accepted assumption for simple tire models is that the resultant spindle force 

vector is normal to the obstacle surface, as shown in Figure 5.3. 

 
Figure 5.3: Generation of Longitudinal Spindle Force 
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However, if the obstacle is of a true rectangular nature, a point follower cannot provide a 

defined longitudinal force component. One solution is to approximate the cleat as a 

trapezoid of equal height and area as the rectangular cleat. In this investigation, the 

trapezoidal representation of the cleat rectangular cross section was created by arbitrarily 

adding 5% of the cleat length to the base of the trapezoid and subtracting 5% of the cleat 

length from the top of the trapezoid. 

Simulating all of the tire model configurations as listed in Table 5.1 will produce 

a total of 40 vertical and horizontal spindle force graphs for the Cleat Phase investigation. 

As the goal of this investigation is to determine the suitability of applying various types 

of tire models to integrated tire/vehicle comfort modeling, a practical approach is needed 

to clarify and summarize the simulation results. Therefore summary bar charts of each 

tire model’s ability to accurately predict two of the most simple yet potentially most 

informative metrics – peak vertical and peak longitudinal spindle forces – are developed 

in order to provide concise objective summaries of relative performance of the tire 

models compared to the laboratory results. 

 

Fixed Spindle Road Wheel Cleat Testing 

For the Cleat Phase investigation, the road wheel cleat test is the standard to 

which all of the fixed spindle simulation results will be compared. Therefore, it is 

important to be familiar with the general characteristics of the spindle forces generated by 

the test. This can be accomplished by examining the spindle force wave forms that result 

when the tire encounters a rectangular test cleat. Figure 5.4 shows the test tire engaging 

the cleat and the resultant spindle forces as a function of distance. The physical length of 
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the rectangular cleat on the drum - 19 mm – is shorter than the distance the tire is actually 

engaged with the cleat because the cleat must pass beneath the entire length of the contact 

patch (approximately 160 mm). Another factor is the geometry of the cleat and the loaded 

tire. As the tire approaches the cleat, the cleat contacts the exterior of the tread band prior 

to the cleat actually entering the contact patch. The cleat remains in contact with the tire 

until after the cleat exits the contact patch and finally clears the exterior of the tread band. 

The higher the cleat and the larger the tire radius, the greater the increase in total cleat 

engagement distance.  

 

Figure 5.4: Road Wheel Tire and Cleat Engagement Distance 
 

Even though the tire is: 

- traveling relatively slowly at 2.22 meters per second 

- traversing a cleat that is only 9.5 mm high and 19 mm in length 
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- operating at a relatively low inflation pressure of 2.0 bars 

the tire oscillations are clearly evident. This ringing is indicative of not only the low 

damping present in modern tire constructions and materials, but also the presence of a 

complex sequence of energy transfer and storage within the tire itself - and the potential 

for complex energy transfer between the tire and the vehicle suspension. 

 

Load and Speed Effects on Laboratory Road Wheel Cleat Tests 

Because this investigation involves multiple types and variations on tire models as 

well as several obstacle types, investigating multiple speed, load, and pressure conditions 

was relegated to future work. However, it is beneficial to examine the relationship 

between the tire test speed and tire test load conditions at least on a rudimentary level. 

The net effect of speed and load on the response of a tire as it encounters a cleat 

obstacle are the result of multiple competing mechanisms in the tire. Using only 

experimental road wheel cleat data, as shown in Figure 5.5, one can examine general 

trends in fixed spindle forces for our study tire. 



 

  

105 

 

Figure 5.5: Matrices of Spindle Force Characteristics Plots for Load and Speed 
 

Some general trends include: 

- The characteristic shape of the vertical spindle force as the cleat traverses the 

contact patch evolves as a function of tire load – concave down to concave up 

– as the load is increased. 

- Peak vertical spindle force decreases as load increases. 

- Peak vertical spindle force increases as tire speed increases 

- Despite a 63% increase in load when going from the low to the high vertical 

static load test conditions, the tire’s resonant vertical spindle frequency 

remains relatively constant at approximately 73 Hz. This is expected, as the 

distributed mass properties and structural stiffness remain essentially constant 

Similarly, one can look for general trends in the horizontal spindle forces: 
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- The characteristic shape of the horizontal spindle force as the cleat traverses 

the contact patch generally does not evolve significantly as a function of tire 

load with one exception: there are local maxima and minima at the low speed 

and high load condition that occur as the cleat traverses across the centerline 

of the contact patch (t =0.3 seconds). 

- The peak horizontal spindle force is lower at the high load condition 

- The peak horizontal spindle force increases with speed 

- As with the resonant frequency of the vertical spindle force, the resonant 

frequency of the horizontal force is a weak function of tire load and speed. 

However, a higher torsional structural stiffness as the contact patch length 

increases with load may account for the higher resonant frequency at the 

higher vertical load condition (approximately 29 Hz for the 589 kg load and 

26 Hz for the 362 kg load condition).  

Greater analysis of tire characteristics will require more sophisticated modeling, such as 

substructure modal analysis, and are beyond the intention of this tire model investigation. 



 

  

107 

 

Fixed Spindle Results – Point Contact Follower 

 

The first three models that were implemented in MATLAB Simulink – the point 

contact follower, the ring contact follower, and the constant footprint tire models - were 

developed both as 1) simple “spring” models, where the tire mass was concentrated at the 

wheel spindle, and 2) “equivalent summit mass” models, where the tire summit mass was 

modeled between the tread blocks and the tire sidewall such that the additional degree of 

freedom would allow the tire to generate a vertical mode, a characteristic of pneumatic 

tires. Unless this additional degree of freedom is added, the simple models degenerate 

into terrain following with a simple spring / damper system transmitting forces between 

the terrain and the wheel spindle. The fourth model that was implemented in MatLab 

Simulink – the adaptive footprint model – was not developed with an equivalent tire 

summit mass, as the radial force elements would require a mass element not unlike that of 

a rigid ring. The two point contact follower and five point contact follower rigid ring 

models already contain an equivalent summit mass with a vertical degree of freedom, as 

does the flexible ring FTire model. 

In order to best develop an understanding of how well the simulations perform 

relative to the laboratory measurements, the graph of the spindle force curves is presented 

first. Visually comparing the spindle force signatures as the tire models traverse an 

obstacle and comparing them to the measured laboratory results is an effective way to 

subjectively evaluate tire model performance. The metrics for each model – peak spindle 

vertical and horizontal forces – are captured, normalized to the laboratory road wheel 
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cleat test, and presented later as bar charts in order to provide a more objective means of 

comparing tire model performance. 

The vertical and horizontal spindle forces generated by the point contact model 

are graphed as functions of position along with the laboratory road wheel. Figure 5.6 

shows the results for the “simple” tire model as it traverses the “sinusoidal equivalent” of 

the rectangular laboratory road wheel cleat. Figure 5.7 depicts the “sinusoidal equivalent” 

of the rectangular cleat of height H and length L that was used in this investigation – 

details of its derivation are in the appendices. 

 

Figure 5.6: “Simple” Single Point Contact Follower Traversing a Sinusoidal Cleat 
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Figure 5.7: “Sinusoidal Equivalent” Model of a Rectangular Cleat 
 

The Simulink point contact model presents a reasonable approximation of the peak 

vertical and horizontal spindle forces. As expected, the duration of the spindle force is too 

short (as there is no longitudinal contact patch through which the cleat traverses) and 

there are no force oscillations as there is no mass between the spindle and the single point 

contact follower – the tire mass is concentrated at the wheel rim. 

The Simulink results for the “equivalent summit mass” exhibit the expected 

vertical ringing as shown in Figure 5.8. Since there is no longitudinal degree of freedom 

in the single point model, there is no visible ringing for the longitudinal spindle forces.  
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Figure 5.8: “Equivalent Summit Mass” Single Point Contact - Sinusoidal Cleat 
 

Calculating the horizontal forces for a point contact follower traversing a 

rectangular cleat poses a unique problem – there is no defined obstacle slope with which 

to calculate horizontal forces. Therefore, a trapezoidal approximation of the rectangular 

cleat is used. The results for the “simple” point contact model are shown in Figure 5.9. 
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Figure 5.9: “Simple” Point Contact Follower Traversing a Trapezoidal Cleat 
 
The positive vertical force spike for the rectangular cleat is the result of the large change 

in velocity as the single point contact travels vertically up the positive slope of the 

trapezoid approximation of the rectangular cleat. Figure 5.10 shows the simulation results 

for the same obstacle being traversed by the point contact model with the “equivalent 

summit mass.” Note that force oscillations afforded by the additional vertical degree of 

freedom effectively mask the shape of the obstacle for this obstacle wavelength and 

simulation speed (eight kilometers per hour). 
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Figure 5.10: “Equivalent Summit Mass” Point Contact Traversing a Trapezoidal Cleat 
 

Several observations can be made concerning the point contact model as it 

simulates traversing a trapezoidal cleat: 

- The peak vertical and horizontal forces for both the “simple” and “equivalent 

summit mass” models are greater than the measured forces. 

- Although the damping coefficients in tires is very small – damping 

coefficients in the order of 0.05 are not atypical - the rapid change in vertical 

velocity as the follower encounters the side of the trapezoid may cause the 

model to over-estimate the vertical spindle forces. 

One concern that is unique to the simulation of tire models as they traverse a rectangular 

cleat is the instantaneous change in vertical velocity (or at least a change that is more 

rapid than can be reasonably expected for the actual physical system) can cause 
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numerical issues in the time step integration process of the simulation itself. Thus, 

simulating the traversal of a rectangular cleat with nothing more than a point contact 

follower must be done with care not only from a modeling perspective, but may also 

cause unpredictable model behavior from a numerical simulation perspective. 
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Fixed Spindle Results – Ring Contact Follower 

The ring contact follower model is identical to the single point contact follower 

model in every way with the exception of the follower geometry – the ring follower uses 

a circular ring to define the input into the tire model instead of a single point. The 

intention of the ring follower is to emulate the filtering effect that occurs when the tire 

contact patch “window averages” the ground undulations along the length of the contact 

patch. The effects of using the ring contact follower are: 

- for positive obstacles (those obstacles which protrude above the roadway 

ground plane) 

- the magnitude of the vertical input is not mitigated (identical to the 

single point contact follower) 

- the effective obstacle wavelength is increased. 

- for negative obstacles (“potholes”, or those obstacles which extend below the 

roadway ground plane) 

- the effective obstacle wavelength does not change 

- depending upon the ring follower and pothole geometry, the 

magnitude of the vertical input may be attenuated. 

For this investigation, the radius of the contact ring was chosen to be one half the 

length of the contact patch. Criteria for selecting the radius of the ring contact follower 

and a discussion of the consequences of changing the radius are discussed in the 

appendices. 
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The vertical and horizontal spindle forces generated by the ring contact follower 

are illustrated in Figure 5.11. As the ring follower does not attenuate the magnitude of the 

vertical input imposed by the cleat, the peak vertical spindle force for the “simple” tire 

model as it traverses the sinusoidal equivalent of the rectangular laboratory road wheel 

cleat are almost identical between the single point contact and the ring contact follower 

models. However, there is an 1) increase in the input wavelength and a resulting 2) 

decrease in the obstacle angle which results when the ring contact follower engages the 

obstacle. The change in the obstacle engagement geometry emulates the obstacle 

wavelength filtering which occurs in the tire contact patch. 

 

Figure 5.11: “Simple” Ring Contact Follower - Sinusoidal Cleat 
 

The results for the “equivalent summit mass” are shown in Figure 5.12. These 

results include a higher overshoot in peak vertical force, and reduced horizontal spindle 
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forces. Although the “effective summit mass” model allows vertical oscillation, the 

overall simulation results are degraded for peak vertical and horizontal spindle force. 

 

Figure 5.12: “Equivalent Summit Mass” Ring Contact Follower - Sinusoidal Cleat 
 

Unlike the single point contact model, simulating a rectangular cleat with the ring 

contact follower does not require a trapezoidal approximation of the cleat. Figure 5.13 

illustrates the “simple” ring contact follower model results, which shows significant 

improvement in spindle force simulation fidelity over that of the previous point contact 

model. 
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Figure 5.13: “Simple” Ring Contact Follower - Rectangular Cleat 
 

The simulation of a rectangular cleat with a ring contact follower and the 

“equivalent summit mass” is shown in Figure 5.14. As with the comparison between the 

“simple” and the “equivalent summit mass” single point contact follower, the tradeoff for 

the extra degree of freedom with the summit mass and the resultant ability of the tire to 

“ring” does not appear to significantly improve spindle force simulation fidelity. Since 

the tire models are functional representations and do not emulate the physics of the 

pneumatic tire structure, the addition of an “equivalent summit mass” does not 

necessarily produce a better tire model.  
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Figure 5.14: “Equivalent Summit Mass” Ring Contact Follower - Rectangular Cleat 
 

The ring contact model has a distinct advantage over the single point contact 

follower – its ability to emulate the tire contact patch interaction with an obstacle by 

increasing the obstacle wavelength. It does this without preconditioning the obstacle 

(generating a sinusoidal or trapezoidal equivalent of the rectangular cleat). However, the 

rigid ring contact follower may require adjustment of the radius of the ring contact 

follower to optimize results, and the ring follower cannot emulate the “draping” 

envelopment of obstacles within the contact patch. 
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Fixed Spindle Results – Constant Footprint Model 

The constant footprint model is identical to the single point contact follower and 

the ring contact follower model with the exception of how the model emulates the 

interaction between the obstacle and the tire as the obstacle passes beneath the contact 

patch. The constant footprint model emulates this interaction by summing the forces 

generated when elements of equally-distributed vertical stiffness across the length of the 

contact patch are displaced vertically by the obstacle. Horizontal forces, as in the 

previous two models, are generated such that the resultant force vector is normal to the 

obstacle. 

The filtering effect of the constant footprint model is such that the contact patch 

begins to develop vertical force as soon as the obstacle begins to enter the contact patch. 

Since 1) the vertical stiffness is evenly distributed along the length of the contact patch, 

and 2) the length of the contact patch is greater than the length of the cleat, the constant 

footprint model mimics both “draping” around an obstacle and increasing the effective 

wavelength of the obstacle.  

The vertical and horizontal spindle forces generated by the “simple” constant 

footprint model as it traverses the sinusoidal equivalent of the rectangular cleat are shown 

in Figure 5.15. As anticipated, the vertical force is small due to the attenuation of the 

vertical input displacement and the horizontal forces are zero when the obstacle is 

“enveloped” within the footprint. 
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Figure 5.15: “Simple” Constant Footprint - Sinusoidal Cleat 
 

The use of an equivalent summit mass model traversing the sinusoid cleat, and the 

resulting oscillations at both the beginning and end of obstacle engagement, are shown in 

Figure 5.16. 
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Figure 5.16: “Equivalent Summit Mass” Constant Footprint - Sinusoidal Cleat 
 

The simulation results for the constant footprint model traversing the rectangular 

cleat are illustrated in Figures 5.17 and 5.18. The results indicate that there is no 

difference in the magnitudes of the vertical forces between the sinusoidal cleat and the 

rectangular cleat when the obstacles are fully enveloped (Fz = 260 N). This is expected, 

as the areas under the curves for both obstacles are identical and the vertical stiffness of 

the tire is linear. 
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Figure 5.17: “Simple” Constant Footprint – Rectangular Cleat 
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Figure 5.18: “Equivalent Summit Mass” Constant Footprint – Rectangular Cleat 
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Fixed Spindle Results – Adaptive Footprint Model 

The adaptive footprint model is a major departure from the previous three tire 

models (point contact follower, ring contact follower, and constant footprint) in that the 

horizontal spindle force is generated by horizontal deflection of the tire carcass. Because 

the model assumes that the tire carcass stiffness always lies radially outward from the 

center of the tire, any imposed deflection that is not parallel to the vertical centerline of 

the tire will result in a horizontal force component. The adaptive footprint model does not 

assume that the resultant spindle force remains normal to the obstacle surface. 

The adaptive footprint model, as with the constant footprint model, does not take 

into account the bending stiffness or shear caused by localized deflection of the belt 

summit. This model will therefore also underestimate the tire spindle forces for objects 

that are shorter than the length of the contact patch. 

Unlike previous models, the adaptive footprint does not lend itself well to the 

development of the “equivalent summit mass” variation. This is because deflection of the 

radial carcass elements develops longitudinal forces at the spindle and an equivalent 

summit mass would necessarily require either neglecting the horizontal force components 

or adding one (horizontal) or more (horizontal and rotational) degrees of freedom for the 

equivalent summit mass - at this point the adaptive footprint model becomes a rigid ring 

model. 

The technique of obstacle filtering to obtain an equivalent obstacle profile cannot 

readily be applied to the adaptive footprint model because of the radial nature of the force 

and damping elements. Modeling is instead accomplished by use of an embedded 
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MatLab Simulink function. The Simulink function emulates the force generation within 

the contact patch for each simulation time step by first displacing the radial carcass 

stiffness elements inward to envelop the obstacle, and then summing the horizontal and 

vertical components of all the radial elements. This requires that that the geometry of the 

obstacle either is passed to the embedded Simulink function during simulation or 

included in the function itself. Details of implementing this model are included in the 

appendices. 

The simulated shapes of the fixed spindle forces for the adaptive footprint model 

traversing a sinusoidal cleat agree favorably with the test results. The vertical force plot 

in Figure 5.19 illustrates obstacle envelopment within the contact patch. The magnitude 

of the peak vertical force is similar to the test results, but the value of the vertical force 

when the obstacle is beneath the center of the contact patch is too low. The 

underestimation of the spindle forces is again due to the even distribution of the measured 

stiffness of the tire measured on a flat plate – there is no accounting for localized bending 

and shear stiffness in the model. The horizontal force plot exhibits the general 

characteristic shape of obstacle envelopment, (less the initial driving force at the entry of 

contact patch at distance equal to 0.12 meters). The horizontal force values, as with 

previous models, are underestimated.  
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Figure 5.19: Adaptive Footprint Model - Sinusoidal Cleat 
 

The fixed spindle simulation results for traversing a rectangular cleat are shown in 

Figure 5.20. The adaptive footprint model again provides for a favorable vertical force vs. 

distance signature. The reduced horizontal force is due to the rectangular cleat length 

being half the length of the sinusoidal equivalent. The larger peak vertical forces are the 

result of the step vertical input in displacement as the radial tread elements engage the 

cleat as a step input. 
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Figure 5.20: Adaptive Footprint Model - Rectangular Cleat 
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Fixed Spindle Results – Two Point Follower Rigid Ring Model 

The two point follower rigid ring model is an adaptation of a model proposed by 

El-Gindy et al [2]. The rigid ring model assumes that the summit mass can be modeled as 

a rigid ring between the tread elements and the tire carcass. The tire carcass is assumed to 

have bulk equivalent stiffness along the horizontal, vertical, and tire spin axes between 

the wheel hub and the rigid summit ring mass. The tread blocks are assumed to have 

radial and circumferential stiffness between the rigid summit ring mass and the ground. 

In the case of the two point follower, the contact patch is assumed to have a constant 

length with its position – vertical, horizontal, and rotational – defined by two single point 

contact followers. The first of two point contact followers is located at the entry of the 

contact patch. The second point contact follower is located at the exit. The resulting 

contact patch “plane” (or line, in the case of this 2D model) reacts with the ground, 

generating normal forces perpendicular to the plane. The relative translational velocity at 

the interface between the contact patch plane and the ground, combined with the normal 

forces, generates the driving and braking forces. 

Although the rigid ring model is more complex than the earlier models, it does 

have some inherent advantages: 

- The rigid ring is the “equivalent summit mass” 

- The rigid ring has the ability to transmit driving and braking torque between 

the wheel hub, rigid ring, and the tread blocks, thereby enabling the rigid ring 

model to interact with vehicle driveline and/or braking components 



 

  

129 

- If driving or braking traction is to be modeled, the rigid ring model uses a 

conventional mu/slip friction model that can be adjusted to match various 

track surfaces 

The simplifying assumption that the summit mass can be modeled as a rigid ring 

does present several shortcomings: 

- The contact patch or tread summit model must be able to adequately represent 

contact patch envelopment for obstacles which have wavelengths significantly 

shorter than the length of the contact patch. This model falls short because 

“abrupt obstacles” such as tall narrow cleats deflect the tire summit, violating 

the rigid ring assumption. 

- The two point follower can emulate obstacle envelopment, but there are no 

provisions which account for bending and shear forces due to the locally-

imposed deflections in the tread band. 

The results for the two point contact follower rigid ring model traversing a 

sinusoidal equivalent of the road wheel test cleat is shown in Figure 5.21. Several 

observations can be made regarding the general behavior of the model as it traverses a 

sinusoidal cleat. The two point contact patch follower provides for obstacle envelopment 

similar to the constant footprint and the adaptive footprint tire models. However, the lack 

of bending stiffness or shear stresses between the leading and trailing point contact 

followers results in the underestimation of the vertical force generation when the obstacle 

is fully enveloped by the contact patch. The model also underestimates the longitudinal 

spindle forces. However, the model does reproduce the horizontal inertial spindle 

reaction forces when the cleat enters the contact patch (+50N). Previous models are 
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incapable of modeling this force. Finally, the oscillation of the horizontal spindle force 

following the cleat exit at the contact patch appears to be modeled accurately. The 

measured horizontal spindle force oscillates at approximately 28.9 Hz whereas the 

modeled force oscillates at approximately 27.3 Hz. 

 

Figure 5.21: Two Point Rigid Ring Model – Sinusoidal Cleat 
 

The results for the two point rigid ring model traversing the rectangular cleat are 

shown in Figure 5.22. The simulation results for traversing a rectangular cleat are similar 

to the results when the model traverses a sinusoidal cleat. The unfiltered vertical input as 

the rectangular cleat enters the contact patch results in higher peak vertical and horizontal 

spindle forces of 19% and 75%, respectively. In addition, the initial driving force as the 

cleat enters the contact patch is more prominent. 
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Figure 5.22: Two Point Rigid Ring Model – Rectangular Cleat 
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Fixed Spindle Results – Five Point Follower Rigid Ring Model 

The five point follower rigid ring model is a refinement of the two point follower rigid 

ring model. Using the five point rigid ring model to develop four individual contact 

planes – two elements in front and two elements behind the center of the contact patch – 

is intended to increase the model fidelity by providing greater resolution of forces 

developed in the contact patch. This is especially important because: 

- the contact patch traction model is highly nonlinear, therefore averaging the 

normal forces across the entire length of the contact patch will not provide as 

accurate a traction model if the normal forces were calculated separately based 

upon each individual plane segments 

- Increasing the number of plane segments in the contact patch should increase the 

precision of obstacle envelopment and provide a better model of obstacle 

wavelength filtering. 

The results of increasing the number of element planes in the contact patch can be seen in 

Figure 5.23. The modeled peak spindle forces better mimic the measured forces than the 

two point contact model. However, the force developed by each individual contact patch 

segment as it is displaced over the cleat introduces an oscillatory vertical spindle force 

that is not present in the measured force. Potential solutions to reduce this artificial 

vertical oscillatory force could include: 

- increase the number of elements within the contact patch so that there would be 

multiple contact plane elements interacting simultaneously with the obstacle, or  
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- modeling the bending moments and shear forces between the individual contact 

plane elements, thus mitigating the vertical displacement differences between the 

elements when a single element encounters the cleat. 

With the exception of FTire, the modeled horizontal spindle forces of the five point 

follower rigid ring model are closer in magnitude and have better waveform fidelity than 

any of the other models investigated. 

 
:Figure 5.23: Five Point Rigid Ring Model – Sinusoidal Cleat 

 
The forces for the rectangular cleat are shown in Figure 5.24. The modeled and 

measured peak vertical forces are within a few percent of each other. Simulations using 

the rectangular cleat in place of the sinusoidal cleat required approximately five times the 

computational time, and there are indications of solver convergence issues at 0.28 and 

0.38 meters. Several Simulink solvers and tolerances were used but the relatively long 
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simulation time was not resolved. An intermediate solution may be to use the trapezoidal 

equivalent cleat that was used for the single point contact follower model.  

 

Figure 5.24: Five Point Rigid Ring Model – Rectangular Cleat 
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Fixed Spindle Results – Cosin FTire and SIMPACK MBS 

The Cosin FTire model running in conjunction with the SIMPACK Automotive 

Plus MBS software is the seventh and last simulation to be examined. The results of the 

simulations for the 1) sinusoidal cleat equivalent and the 2) rectangular cleat are shown in 

Figures 5.25 and 5.26. 

 

Figure 5.25: Cosin FTire SIMPACK Automotive Plus MBS – Sinusoidal Cleat 
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Figure 5.26: Cosin FTire and SIMPACK Automotive Plus MBS – Rectangular Cleat 
 

Several observations are: 

- The FTire produced excellent fidelity for both the vertical and the horizontal 

forces. 

- Just as with the adaptive footprint model, the modeled vertical spindle force of 

the FTire model is too low – almost zero - as the cleat passes through the 

center of the contact patch. 

- Small spindle force oscillations, especially visible in the longitudinal spindle 

force graph of Figure 5.13, are occasionally present in FTire simulations. This 

may be caused by the time-step integration error tolerance present in all MBS 

models. Although SIMPACK MBS provides a wide array of integration 
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schemes, attempts to eliminate the small spindle force oscillations were not 

always successful and may require the assistance of an expert user. 

- FTire results were not significantly affected by using a sinusoidal cleat to 

emulate a rectangular cleat, causing only a slight reduction in peak spindle 

forces – the spindle force signatures are almost identical, as would be 

expected with test data. 

 

 

FTire Simulation Considerations 

Although the simpler models developed and implemented for this report are able 

to rival the commercial software suite in terms of peak spindle force metrics, visual 

examination of the force traces indicate that the commercial software produces the 

highest model fidelity. The fidelity does, however, come at a cost: 

- The FTire model requires additional tire testing to provide sufficient data to 

generate the FTire file. For example, tire vertical stiffness test measurements 

on test cleats as well as the standard flat surface are obviously needed to 

characterize the bending stiffness of the flexible summit belt package in the 

flexible ring tire model. 

- Use of the FTire model requires not only the data reduction and simulation 

software, but also requires a period of learning and familiarization 

- FTire is not a stand-alone simulation – it requires implementation with any 

number of vehicle modeling software packages. The SIMPACK Automotive 

Plus MBS software was intuitive, well-documented, and provided a well-
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integrated environment for generating the MBS road wheel and quarter 

vehicle models, integrating the FTire model, performing simulations, and 

conducting post-processing. 

- Although the simulation time is expected to be much shorter than can be 

expected with any FEA tire simulations, the FTire simulations do require the 

longest simulation time of all models tested in this investigation. 

- FTire does provide for graphic presentation of forces developed in the contact 

patch and SIMPACK MBS provides graphic outputs for the MBS models. 

However, the FTire and SIMPACK MBS output graphics are not integrated 

and cannot be generated or viewed as a single integrated graphic or movie. 

- Some functional characteristics of the FTire model cannot easily be 

parameterized. For example, reducing tread depth would increase the tread 

block rigidity. However, this parameter could not be changed in the FTire data 

set directly – either new tires must be built, tested, and the new test data 

processed in FTire, or the new test data must be approximated by some 

external means and reprocessed in FTire. 
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Cleat Phase Results – Analysis 

 

Cleat Phase Peak Spindle Force Objective Metrics 

Two objective output metrics were selected – peak spindle vertical force, Fz, and 

peak horizontal force, Fx. The spindle force metrics were normalized relative to the cleat 

test so that a value greater than one indicates that the magnitude of the peak force is 

greater than that obtained in the lab. The results for the simulations using the sinusoidal 

cleat are shown in Figure 5.27. The results for simulations using a square cleat (or the 

trapezoid equivalent, in the case of the point contact and constant footprint models) are 

shown in Figure 5.28.  

Fixed Spindle Force Metrics For Sinusoidal Cleat - Peak Fz and Peak Fx
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Figure 5.27: Normalized Peak Spindle Force for Sinusoidal Cleat 
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Fixed Spindle Force Metrics For Rectangular Cleat - Peak Fz and Peak Fx
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Figure 5.28: Normalized Peak Spindle Force for Rectangular Cleat 

 

Several conclusions that can be drawn from examining the objective metrics 

include: 

- Converting (or “pre-conditioning”) the cleat from a rectangular profile to the 

sinusoidal equivalent improved the MatLab simulation results in all cases. 

- Adding the “equivalent summit mass” as an additional degree of freedom in 

the vertical direction did not improve the tire model performance. 

- The simplest model – the point contact follower without any equivalent mass 

– consistently overestimates both Fz and Fx. However, the normalized values 

for both Fz and Fx when traversing the sinusoidal cleat are relatively close to 

one another (2.31 and 1.91, respectively). Since the model has consistent error 

in both Fz and Fx, the model may be useful for first-order ride comfort 
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investigations which place equal importance on the accurate prediction of 

these two inputs. It is important to note that the point contact model could 

only achieve this accuracy if the rectangular cleat was first converted into its 

sinusoidal equivalent. Although the peak force metrics for the point contact 

model are reasonable, the lack of any contact patch filtering will make the 

point contact model perform poorly where reproduction of the spindle force 

waveforms is required, especially for obstacles whose wavelengths are shorter 

than the tire contact patch length. 

- The ring follower performed well and was less sensitive to the differences 

between the rectangular and sinusoidal cleat than the point contact follower 

due to the ring contact geometry increasing the wavelength of the obstacle and 

filtering the input. However, proper selection of the ring follower radius 

directly affects the performance or the obstacle wavelength filtering (see 

appendices for details). Although the ring model overestimated the peak 

vertical force (as expected, due to the lack of obstacle envelopment in the 

vertical direction), the model does provide horizontal obstacle wavelength 

filtering. 

- The constant footprint model is the simplest model which emulates the 

mechanism for obstacle envelopment. However, the constant footprint model 

does not develop sufficient spindle force in either the vertical or the 

longitudinal direction. Longitudinal spindle force Fx was, as expected, close 

to zero, thus making the constant footprint model unsuitable for simulations 

requiring horizontal force modeling. 
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- Both the two point and the five point rigid ring models provided reasonable 

values for both vertical and horizontal peak spindle forces. The five point 

contact rigid ring model performed better than the two point version. 

-  Although the envelope around the vertical force trace appears to be 

acceptable, the five point model results contained force oscillations when the 

contact patch segment lengths interacted with the obstacle wavelength. 

- The FTire results slightly underestimated the peak spindle forces, but 

provided the best spindle force accuracy of all the tire models. 

Because the sinusoidal obstacle provided not only better spindle force fidelity, but also: 

- slightly improved simulation times 

- eliminated time step numerical integration issues 

It was concluded that the sinusoidal equivalent of the rectangular cleat could be used in 

the remainder of the Cleat Phase objective metric analysis and for the entirety of the 

second or Ride Phase - quarter vehicle ride comfort simulations. 

 

 

Cleat Phase Objective Metric Analysis 

The objective metrics – peak magnitudes of the spindle forces in Fz and Fx - are 

normalized to the values obtained in the laboratory test. The tire models of interest are the 

“simple” models which do not use an “equivalent summit mass.” The obstacle of interest 

is the sinusoidal equivalent of the rectangular laboratory cleat. The results of there 

simulations are illustrated in Figure 5.29. 
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Fixed Spindle Force Metrics For Sinusoidal Cleat - Peak Fz and Peak Fx
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Figure 5.29: Normalized Peak Spindle Forces for Sinus Cleat 
 

The objective metrics indicate that the FTire simulation is the most accurate model. 

However, other simpler models may be appropriate as they are less costly in terms of 

both testing requirements to obtain the model parameters and simulation time. Therefore, 

the model objective metrics need to be analyzed to determine which model will be most 

suitable for the ride comfort simulation task. This is accomplished by: 

- Organizing the metrics in tabular format – in this case, peak Fz and peak Fx – for 

each of the tire models. 

- Calculating the absolute value of the percent error for each metric. 

- Ranking the models for each error metric, peak Fz and peak Fx, individually. 
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- Applying a weighting factor, if desired, to place a relative importance each of the 

two error metrics. Since the ride comfort model to which the tire models will be 

applied is not known, no weighting was used. 

- Summing the weighted errors of the metrics in order to rank the overall 

performance of the tire models. 

Table 5.2 is the result of this process for the fixed spindle peak force metrics. 

 

Table 5.2 Cleat Phase Tire Model Ranking via Spindle Force Objective Metrics 
Ranking 

Tire Model 

Peak Fz 
Absolute 
Percent 
Error 

Peak Fz 
Absolute 
Percent 
Error 

Peak 
Fz 

Peak 
Fx 

Model 
Overall 
Ranking 

Lab Test (Reference) 0 0 0 0 0 
Simple Point Contact 131 91 6 5 5 
Simple Ring Contact 126 56 5 2 4 

Simple Constant Footprint 270 >1000 7 7 7 
Adaptive Footprint 3 317 1 6 6 

Two Point Rigid Ring 54 81 4 3 3 
Five Point Rigid Ring 23 85 2 4 2 
FTire with SIMPACK 28 33 3 1 1 

 
Several observations regarding the ranking of the seven tire models for simulating 

fixed spindle force generation include: 

- All tire models were better at predicting the peak vertical forces than the peak 

horizontal forces. 

- The adaptive footprint model achieved the highest performance ranking for 

predicting peak Fz, but second to last for peak Fx. For some ride comfort 

modeling tasks which do not require force modeling in the horizontal 

direction, the adaptive footprint model may provide a better cost / 

performance benefit ratio than FTire. 
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- The point contact model, widely used for first-order exploratory ride comfort 

modeling, does not perform well when used for obstacles whose wavelength is 

shorter than the tire contact patch length. For this model, 

- there is no mechanism to emulate contact patch envelopment; 

consequently, the point contact model does not mitigate peak vertical 

forces, and  

- there is no mechanism to emulate obstacle wavelength filtering that is 

inherent in normal tires. 

- The ring contact model was ranked second for peak Fx, and higher than the 

point contact model for peak Fz. The ring model is almost as easy to 

implement as the single point contact model, but its ability to emulate the 

obstacle wavelength filtering allows it to perform reasonably for peak Fx 

without the additional complications of more sophisticated models. The ring 

contact model may be well suited for ride comfort studies that require higher 

accuracy in the horizontal direction and only moderate accuracy in the vertical 

direction. 

- The five point rigid ring and the two point rigid ring models ranked second 

and third overall, respectively, ahead of all models but FTire. 

- Although the sophisticated MBS tire model, FTire, did not rank highest for 

peak Fz, it achieved the highest overall ranking over the more simple tire 

models. 

The Cleat Phase analysis indicates that the selection of a tire model will depend 

upon a number of factors, such as: 
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- The geometry of the obstacle relative to the tire (for example, the wavelength 

of the obstacle compared to the length of the contact patch and the height of 

the obstacle). This is because each model emulates obstacle wavelength 

filtering and contact patch envelopment differently. 

- The intended application of the vehicle comfort model and the comfort issue 

being addressed. For example: 

- the adaptive footprint model achieved the highest ranking for peak Fz, 

and may be suitable for studies requiring accurate peak vertical load 

models 

- the ring contact model ranked second only to FTire for peak Fx, and 

may be suitable for studies which involve longitudinal suspension 

compliance. 

- The peak force metrics analyzed here are most useful for predicting the shock 

loads on components (wheels, suspension components, etc.). However, 

fidelity of waveform (and consequently fidelity of impulse) will have the most 

effect on ride acceleration. 
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CHAPTER 6
 

RESULTS OF QUARTER VEHICLE, RIDE PHASE 
 

Ride Phase Simulation Overview 

In the Cleat Phase, the tire models were evaluated by comparing the peak vertical 

and horizontal spindle forces while traversing a cleat. The wheel spindle was fixed to a 

set height corresponding to an initial vertical load. For the Ride Phase, the tire models are 

integrated into a quarter vehicle model. The quarter vehicle model provides the same 

static load but allows the tire spindle height to change as part of the integrated tire/vehicle 

system. The metrics of interest for the Ride Phase are those which are of interest to ride 

comfort and chassis engineers: 

- Peak vertical and horizontal chassis accelerations, Az and Ax, respectively. 

These peak accelerations are useful metrics with which to study the effect of 

the different tire models on ride comfort predictions. 

- Peak vertical and horizontal spindle forces, Fz and Fx, respectively. These 

peak forces are useful metrics with which to study the effect of the different 

tire models on “road load” predictions, used when designing wheel and 

suspension components. 

The quarter vehicle model representing the integrated tire/vehicle system provides 

three additional degrees of freedom - 1) axle vertical, 2) chassis vertical, and 3) chassis 

horizontal. As the vehicle model does not contain longitudinal compliance, it is expected 

that the: 
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- integration of the horizontal spindle force Fx as a function of time will 

determine the final change in longitudinal velocity and 

- peak longitudinal chassis acceleration Ax will be directly proportional to the 

peak longitudinal spindle force Fx. 

Peak vertical spindle force Fz should correlate but not necessarily be proportional to peak 

chassis vertical acceleration metrics for most short wavelength obstacles. The vertical 

transmissibility which exists between the roadway obstacle input and the chassis 

acceleration output is complex as: 

- the tire spindle forces are functions of the relative displacement and velocity 

between the tire spindle and the roadway obstacle, and 

- vertical spindle position and velocity are based upon the time history of the 

spindle forces  

As a result, the vertical chassis acceleration will depend upon the magnitude (height) of 

the obstacle as well the frequency (wavelength of the obstacle and the vehicle speed). In 

order to account for this magnitude and frequency dependence, the integrated tire/vehicle 

models will be simulated while traversing: 

- an obstacle of relatively small vertical magnitude and short wavelength relative to 

the length of the contact patch – the 19 mm wide and 9.5 mm tall rectangular 

laboratory cleat previously tested, and 

- an obstacle of relatively large vertical magnitude and long wavelength compared 

to the length of the contact patch – a 12 inch (0.305 m) long by 4 (0.102 m) high 

parking lot “speed bump”. 
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Ride Phase Roadway Obstacles 

Measuring peak acceleration values of a simple quarter vehicle model has the 

effect of inserting a series of low pass filters between the roadway obstacle and the 

chassis. Starting with the interface between the tire and the roadway: 

1. All of the tire models (with the exception of the point contact follower) 

emulate some aspect of either: 

a. obstacle wavelength filtering or  

b. envelopment characteristics of a tire contact patch 

These effects lower the frequency and amplitude of the imposed obstacle 

displacement. 

2. The remaining high frequency displacements are further attenuated by the tire 

mass and damping before being passed as spindle forces into the vehicle 

suspension. 

3. Once at the wheel spindle, high frequency content is again attenuated by the 

two degree of freedom quarter vehicle model, which acts as a low pass filter. 

For the quarter vehicle model parameters used in this study, the modal frequencies 

obtained from eigenvalue analysis are: 

- 13.2 Hz (vertical wheel hop) and  

- 1.16Hz (vertical chassis heave) 

The sinusoidal equivalent of the 19 mm long rectangular cleat entering the contact patch 

at eight kilometers per hour is equivalent to 58 Hz excitation – a frequency that is 

approaching the upper limits of the rigid ring frequency range. Therefore an additional 
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obstacle representing a longer wavelength (lower frequency) was needed to excite the 

tire/vehicle system at the opposite end of the intended input frequency spectrum. A 

common parking lot bump measuring 12 inches long and 4 inches high, used to slow 

vehicles down to walking speed in parking areas where there is high pedestrian traffic, 

was chosen. At eight kilometers per hour, this bump represents a 7.2 Hz input. Additional 

considerations regarding the selection of obstacle wavelength are given in the appendices. 

The conversion of roadway obstacle input displacement into chassis acceleration 

via the tire model and suspension is illustrated in Figures 6.1 and 6.2. The upper graph of 

Figure 6.1 shows the obstacle geometry - in this case, the parking bump. The spindle 

forces that are generated as the simple point follower tire model encounters the obstacle 

are shown in the lower graph of Figure 6.1. 

 
Figure 6.1: Quarter Vehicle with Simple Point Follower Tire Traversing a Bump 
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The upper graph of Figure 6.2 shows these same spindle forces plotted against 

time. The resulting vertical and longitudinal chassis accelerations are shown in the lower 

graph of Figure 6.2. 

 

Figure 6.2: Quarter Model Forces and Accelerations vs. Time 
 
As expected, longitudinal chassis acceleration Ax is proportional to the longitudinal tire 

forces Fx as there are no longitudinal degrees of freedom between the wheel carrier and 

chassis – it therefore accelerates longitudinally as if it were a single point mass. 

Examination of the vertical spindle force Fz and vertical chassis acceleration Az curves 

starting at time t = 0.155 seconds illustrates that Az, unlike Ax, is not proportional to the 

vertical spindle force Fz. The Az curve displays characteristics of vibratory response 

associated with a mass/spring/damper system (sinusoidal response, phase delay) afforded 
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it by virtue of the vertical degree of freedom between the wheel carrier and the chassis 

mass. 

 

Ride Phase Simulation Plots 

The objective metrics for the Ride Phase include both 1) vertical and longitudinal 

chassis accelerations and 2) vertical and longitudinal spindle forces. Therefore, each tire 

model will be evaluated first by inspecting four plots, one plot each containing a pair of 

vertical and longitudinal metrics. The four plots are examined in the following order: 

1. chassis accelerations while traversing the sinusoidal cleat 

2. wheel spindle forces while traversing the sinusoidal cleat 

3. chassis accelerations while traversing the parking lot bump 

4. wheel spindle forces while traversing the parking lot bump 

In the Cleat Phase, the FTire model was proven to have the highest fidelity of all tire 

models when compared against the laboratory road wheel cleat measurements. Since no 

corresponding on-vehicle measurements were available for the Ride Phase, FTire will be 

used as the standard to which the other tire models will be compared. Subsequently, all 

tire model plots include an overlay of the FTire results. 
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Quarter Vehicle Results – Point Contact Follower 

The vertical and horizontal chassis accelerations, Az and Ax, generated by the 

point contact model are graphed as functions of time along with the FTire results. Figure 

6.3 shows the chassis accelerations for the “simple” tire model as it traverses the 

“sinusoidal equivalent” of the rectangular laboratory road wheel cleat. Figure 6.4 shows 

the spindle forces which generated the accelerations. 

 

Figure 6.3: Chassis Accelerations – Point Contact Model Traversing a Cleat 
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Figure 6.4: Spindle Forces – Point Contact Model Traversing a Cleat 
 
As expected, the simulated tire spindle forces occur over a shorter time period than the 

FTire reference – this is because the point contact model has no provision for emulating 

either contact patch length or obstacle wavelength filtering. 

Figure 6.5 shows the chassis accelerations for the “simple” tire model as it 

traverses the “parking bump,” a sinusoidal obstacle measuring 4 inches (101.6 mm) tall 

and 12 inches (304.8 mm) wide. Figure 6.6 shows the spindle forces which generated the 

accelerations. 
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Figure 6.5: Chassis Accelerations – Point Contact Model Traversing a Bump 
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Figure 6.6: Spindle Forces – Point Contact Model Traversing a Bump 
 
The spindle force waveform fidelity as the point contact model traverses the parking 

bump is better than when it traverses the cleat. The absence of obstacle wavelength 

filtering when using the point contact model is not as penalizing as when it is applied to 

long wavelength obstacles whose wavelength is greater than the tire contact patch length. 
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Quarter Vehicle Results – Ring Contact Follower 

The ring contact follower is similar to the point contact model, but the geometry 

of the ring contact follower interacting with the obstacle emulates the obstacle 

wavelength filtering that occurs in the tire contact patch. Figure 6.7 shows the chassis 

accelerations for the “simple” tire model as it traverses the “sinusoidal equivalent” of the 

rectangular laboratory road wheel cleat. Figure 6.8 shows the spindle forces which 

generated the accelerations. 

 

Figure 6.7: Chassis Accelerations – Ring Contact Model Traversing a Cleat 
 



 

  

158 

 

Figure 6.8: Spindle Forces – Ring Contact Model Traversing a Cleat 
 
The simulated tire spindle forces occur over a shorter time period than the FTire 

reference, but longer than the point contact model. If the ride comfort simulations were 

expected to be used with obstacles of specific lengths, it would be possible to adjust the 

effective radius of the ring follower to better emulate obstacle wavelength filtering. 

Figure 6.9 shows the chassis accelerations for the ring contact tire model as it 

traverses the bump, and spindle forces which generated the accelerations are shown in 

Figure 6.10. 
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Figure 6.9: Chassis Accelerations – Ring Contact Model Traversing a Bump 
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Figure 6.10: Spindle Forces – Ring Contact Model Traversing a Bump 
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Quarter Vehicle Results – Constant Footprint Model 

The constant footprint model is the first model which emulates both the obstacle 

wavelength filtering and envelopment characteristics of a pneumatic tire. Figure 6.11 

shows the chassis accelerations for the constant footprint tire model as it traverses the 

sinusoidal equivalent of the  cleat. Figure 6.12 shows the spindle forces which generated 

the accelerations. 

 

Figure 6.11: Chassis Accelerations – Constant Footprint Model Traversing a Cleat 
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Figure 6.12: Spindle Forces – Constant Footprint Model Traversing a Cleat 
 
The spindle forces generated by the constant footprint model show: 

- obstacle wavelength filtering in the Fz trace, and 

- lack of longitudinal force Fx 

The constant footprint model is unable to generate longitudinal forces when traversing 

obstacles whose wavelength is shorter than the contact patch because the tire vertical 

stiffness is generated by vertical elements – there is no mechanism within the tire model 

for generating longitudinal force when the obstacle is enveloped within the contact patch. 

Figure 6.13 shows the chassis accelerations for the constant footprint tire model 

as it traverses the bump, and spindle forces which generated the accelerations are shown 

in Figure 6.14. 
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Figure 6.13: Chassis Accelerations – Constant Footprint Model Traversing a Bump 
 

Unlike traversing the cleat obstacle, the constant footprint model does generate 

longitudinal force when traversing the parking bump. This is because the wavelength of 

the parking bump is long relative to the length of the footprint, generating an angle of 

incidence α between the footprint and horizontal. Since the constant footprint model 

generates longitudinal spindle force Fx using the assumption that the resultant spindle 

force vector is always normal to the obstacle surface (perpendicular to angle of incidence 

α), the constant footprint model will generate longitudinal spindle forces when traversing 

obstacles with long wavelengths. 
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Figure 6.14: Spindle Forces – Constant Footprint Model Traversing a Bump 
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Quarter Vehicle Results – Adaptive Footprint Model 

The adaptive footprint model is similar to the constant footprint model in that is 

can emulate both the obstacle wavelength filtering and the envelopment characteristics of 

a pneumatic tire. The adaptive footprint, however, has two additional characteristics 

which improve model fidelity: 

- the length of the contact patch varies in order to sustain the imposed vertical 

spindle load, and 

- The force elements, instead of being aligned vertically, extend radially 

outward from the rim to the tread band – this feature allows the adaptive 

footprint model to develop longitudinal forces without requiring the previous 

assumption that the resultant of the tire spindle forces always acts 

perpendicular to the obstacle surface. 

Figure 6.15 shows the chassis accelerations for the adaptive footprint tire model as it 

traverses the cleat. Figure 6.16 shows the spindle forces which generated the 

accelerations. 
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Figure 6.15: Chassis Accelerations – Adaptive Footprint Model Traversing a Cleat 
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Figure 6.16: Spindle Forces – Adaptive Footprint Model Traversing a Cleat 
 

Although the horizontal spindle forces generated by the adaptive footprint model still 

underestimate the FTire reference, the adaptive footprint model fidelity is highest of any 

of the previous models. Also, the engagement time between the tire and the cleat is 

closest to the FTire simulation due to the increase in contact patch length when the tire 

model encounters the obstacle. 

Figure 6.17 shows the chassis accelerations for the adaptive footprint tire model 

as it traverses the bump, and spindle forces which generated the accelerations are shown 

in Figure 6.18. When encountering the parking bump, the vertical force is overestimated 

and – in contrast to the cleat obstacle - the contact patch length is subsequently too short. 
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The adaptive footprint force reaches a minimum force of approximately 5,300 N as the 

tire contact patch leaves the ground as a result of striking the parking lot bump.  

 

Figure 6.17: Chassis Accelerations – Adaptive Footprint Model Traversing a Bump 
 



 

  

169 

 

Figure 6.18: Spindle Forces – Adaptive Footprint Model Traversing a Bump 
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Quarter Vehicle Results – Two Point Follower Rigid Ring Model 

The two point rigid ring model emulates both the obstacle wavelength filtering 

and envelopment characteristics of a pneumatic tire using two point followers – one at the 

entrance and one at the exit of the contact patch. The rigid ring, representing the 

relatively inflexible and inextensible steel belts in the tire summit between the tread band 

and the tire sidewall, is intended to model tire internal dynamic modes. Figure 6.19 

shows the chassis accelerations for the two point rigid ring tire model as it traverses the 

“sinusoidal equivalent” of the cleat. Figure 6.20 shows the spindle forces which 

generated the accelerations. 

 

Figure 6.19: Chassis Accelerations – Two Point Rigid Ring Model Traversing a Cleat 
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Figure 6.20: Spindle Forces – Two Point Rigid Ring Model Traversing a Cleat 
 

The spindle forces generated by the two point rigid ring model clearly show internal 

“ringing” of the tire summit as the two point contact model engages, envelopes, and then 

disengages from the cleat. 

Figure 6.21 shows the chassis accelerations for the two point rigid ring tire model 

as it traverses the bump. The ringing as the leading and trailing point followers engage 

and disengage from the bump are visible. The low pass filtering effect on vertical chassis 

acceleration Az (due to the vertical degree of freedom in the chassis) contrasts sharply 

with the longitudinal chassis acceleration Ax. The spindle forces which generated the 

accelerations are shown in Figure 6.22. 
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Figure 6.21: Chassis Accelerations – Two Point Rigid Ring Model Traversing a Bump 
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Figure 6.22: Spindle Forces – Two Point Rigid Ring Model Traversing a Bump 
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Quarter Vehicle Results – Five Point Follower Rigid Ring Model 

The five point rigid ring model is identical to the two point equivalent with the 

exception of the number of elements used to emulate the functions of the contact patch – 

four versus one. Figure 6.23 shows the chassis accelerations for the five point rigid ring 

tire model as it traverses the “sinusoidal equivalent” cleat. Figure 6.24 shows the spindle 

forces which generated the accelerations. 

 

Figure 6.23: Chassis Accelerations – Five Point Rigid Ring Model Traversing a Cleat 
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Figure 6.24: Spindle Forces – Five Point Rigid Ring Model Traversing a Cleat 
 
The spindle forces generated by the five point rigid ring model show: 

- vertical force oscillations as the four contact patch elements each individually 

envelop the cleat 

- longitudinal force generation with tire dynamics due to “ringing” of the rigid ring 

Any improvements afforded by the greater resolution in the contact patch - obtained by 

dividing the contact patch plane into four individual elements – appear to be offset by the 

lack of shear and bending moment stiffness between the plane elements. Bending 

stiffness, generated between the contact plane elements by: 

- material properties in the tread band and tire summit, and 

- tire inflation pressure (hoop stress) 
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would mitigate the angle of engagement α of the individual plane elements and 

potentially improve the simulation results. 

Figure 6.25 shows the chassis accelerations for the five point rigid ring model as 

it traverses the bump, and spindle forces which generated the accelerations are shown in 

Figure 6.26. 

 

 

Figure 6.25: Chassis Accelerations – Five Point Rigid Ring Model Traversing a Bump 
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Figure 6.26: Spindle Forces – Five Point Rigid Ring Model Traversing a Bump 
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Ride Phase Results - Analysis 

 

Ride Phase Peak Chassis Acceleration Objective Metrics 

Two primary output metrics for vehicle ride – peak chassis vertical acceleration 

Az and peak horizontal acceleration Ax - were evaluated for all tire models except for 

those three which used an “equivalent summit mass.” These three models were not used 

as the results from the Cleat Phase of the investigation concluded that adding an 

equivalent summit mass did not improve tire model performance. In addition, only 

simulations using the sinusoidal approximation of the rectangular cleat were used. This 

approach was chosen as the sinusoidal cleat provided better simulation results than the 

rectangular cleat during the Cleat Phase investigation. 

Because on-vehicle measurements were not available, the peak chassis 

acceleration metrics for both the cleat and the bump were normalized to results obtained 

using FTire implemented in SIMPACK Automotive Plus MBS. Figure 6.27 compares the 

peak acceleration metrics for the cleat obstacle. 
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Quarter Vehicle Cleat - Peak Chassis Accelerations Normalized to FTire
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Figure 6.27: Peak Chassis Accelerations - Sinusoidal Cleat Simulation 
 
Several conclusions can be drawn from the quarter car peak accelerations for the 

sinusoidal cleat (short wavelength relative to contact patch length) simulation: 

- The point contact and the ring contact models do not emulate contact patch 

envelopment and therefore overestimate both vertical and horizontal 

accelerations. 

- The constant footprint acceleration results were consistent with the fixed 

spindle force results in that the constant footprint model underestimates 

metrics in both the vertical and longitudinal directions. 

- The distributed vertical spring rate of the constant footprint model emulates 

obstacle envelopment in the contact patch. However, the model does not take 

into account localized bending stiffnesses and therefore does not provide 
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enough vertical spindle force, as evidenced by the low peak vertical 

acceleration. 

The quarter vehicle acceleration results support the general conclusion from the fixed 

spindle simulation results – the tire models which do not have mechanisms to emulate the 

obstacle wavelength filtering or the obstacle envelopment characteristics of a tire contact 

patch will perform poorly in those instances where the obstacle wavelength is shorter 

than that of the tire contact patch length. 

The peak vertical and longitudinal acceleration results for the parking bump are 

summarized in Figure 6.28. 

Quarter Vehicle Bump - Peak Chassis Accelerations Normalized to FTire
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Figure 6.28: Peak Chassis Accelerations – Parking Bump Simulation 
 
Several conclusions that can be drawn from the quarter car peak acceleration metrics for 

the parking bump (long wavelength relative to the contact patch length) simulation: 
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- The peak chassis accelerations are, with the exception of longitudinal 

acceleration for the two point and five point rigid ring models, consistently 

too high. 

- The increased complexity of the five point rigid ring model does not appear to 

provide improvement over the less complex two point rigid ring model. 

- The point contact and the ring contact models produced peak vertical 

acceleration values that are too high. This is because neither of these models is 

capable of emulating obstacle envelopment. 

- With the exception of the two point and five point rigid ring models, all 

models overestimate longitudinal peak acceleration compared to FTire. 

- If absolute values for peak acceleration are not a consideration (determining 

the relative changes between solutions is adequate) and the obstacle 

wavelength is long compared to the contact patch length: 

-  The point contact model works consistently in that both Az and Ax 

are overestimated by approximately the same amount. 

- The point contact model is extremely simple to implement. 

- The ring contact model provides improvement over the point contact 

model with little additional cost 

- If longitudinal fidelity is not a consideration, the constant footprint model 

provides reasonable vertical fidelity for long wavelength obstacles while 

being relatively easy to implement in comparison with the adaptive footprint 

and rigid ring models. 
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- The rigid ring models provide adequate fidelity for both acceleration metrics 

but their added complexity over the simpler adaptive footprint model can only 

be justified if: 

- internal tire dynamics are important (upwards of approximately 70 to 

100 Hz), or 

- driving/braking torque and traction modeling is needed. 

Comparing the chassis acceleration metrics from Figures 6.27 and 6.28 indicates 

that the shorter wavelength cleat is more challenging than the longer wavelength parking 

bump. Some embodiment of both obstacle wavelength filtering and contact patch 

envelopment characteristics is needed in order for the models to perform adequately over 

a range of obstacle wavelengths and geometries, especially those obstacles whose 

wavelengths are shorter than the tire contact patch. 

 

Ride Phase Peak Spindle Force Objective Metrics 

Two additional ride metrics were investigated – peak vertical spindle force Fz and 

peak horizontal spindle force Fx. These forces were evaluated as they are of concern for 

designing wheel and suspension components to withstand anticipated “road loads” during 

vehicle operation. 

Peak spindle forces in the vertical direction are positive (upward) as the vehicle 

traverses an obstacle protruding upwards from the road surface. Spindle forces in the 

horizontal direction, however, are first developed in the negative (braking) direction as 

the obstacle enters the contact patch and then in the positive direction (driving) as the 

obstacle exits the contact patch. The horizontal spindle force metric was defined as the 
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maximum magnitude of the rearward (braking direction) force that occurs as the vehicle 

encounters an obstacle. 

Figures 6.29 and 6.30 compare the peak spindle forces for the quarter vehicle 

model as it traverses the sinusoidal cleat and the parking bump, respectively. As with the 

peak chassis acceleration metrics, on-vehicle measurements were not available, so the 

spindle force metrics were normalized to results obtained using FTire implemented in 

SIMPACK Automotive Plus MBS. 
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Figure 6.29: Spindle Force Metrics - Sinusoidal Cleat Simulation 
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Quarter Vehicle Parking Bump - Peak Spindle Forces Normalized to FTire
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Figure 6.30: Spindle Force Metrics – Parking Bump Simulation 
 

In general, the vertical and horizontal spindle force metrics correspond well to the 

acceleration metrics. Some general observations include: 

- The five point rigid ring model provides the best overall result for the 

short wavelength cleat obstacle. 

- The two point rigid ring model provides the best overall result for the long 

wavelength parking bump. 

- The constant footprint model provided the best vertical spindle force 

fidelity for long wavelength parking bump but performed the worst for the 

longitudinal force metric. 

The general conclusion that was reached using the chassis acceleration metrics is 

supported by the spindle force metrics - simulation of the shorter wavelength cleat is 
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more challenging than the longer wavelength parking bump and requires a more 

sophisticated tire model. 

 

Ride Phase Impulse Metric 

In addition to the peak spindle force and peak chassis acceleration metrics, ride 

comfort response is also related to the complete time/history response of the chassis. 

Therefore, an objective means for comparing the shapes of the chassis acceleration 

curves was also desired. 

The chassis frequency response is relatively slow (approximately 1.16 Hz) 

relative to the frequency associated with the forces developed by the tire/obstacle 

interaction. At eight kilometers per hour these frequencies are approximately 12.4 Hz for 

the cleat obstacle and 4.8 Hz for the parking bump, and they increase linearly with speed. 

Consequently, in many cases, it may be assumed that the tire forces can be considered as 

shock loads, or impulses, to the integrated system. It was therefore postulated that the 

vertical ride comfort could potentially be correlated to the impulse generated by the tire 

model as it encountered the obstacle.. 

The impulse applied to the chassis is the suspension force F(t) acting on the 

chassis over a given time period. Defining the time period: 

- beginning just prior to the tire engaging the obstacle as t = 0-, and 

- ending just after the tire disengages from the obstacle as t = 0+ 

the impulse to the chassis can be expressed as: 

   ∫
+

−

=

=

=
0

0

)(
t

t
suspensionchassis dttFJ      (6.1) 
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As the chassis mass is known, the principle of impulse-momentum can be applied 

to find the change in chassis vertical velocity due to impulse Jchassis as follows: 

   )( initialfinalchassischassischassischassis zzmzmJ &&& −=∆=  (6.2) 

As the initial vertical chassis velocity is zero prior to the tire engaging the obstacle, 

equations 5.1 and 5.2 can be combined to yield: 

  )()(
0

0
finalchassis

t

t
suspension zmdttF &=∫

+

−

=

=

     (6.3) 

Equation 5.3 implies that the integrated time history of the suspension force on the 

chassis as a result of the tire spindle forces encountering the obstacle can be used to 

determine the chassis vertical velocity at the end of the impulse: 

   
chassis

t

t
suspension

final m

dttF

z
∫

+

−

=

==

0

0

)(

&      (6.4) 

Assuming that the chassis was in equilibrium prior to the tire encountering the obstacle, 

the response of the chassis immediately following the impulse will depend solely upon 

the state of the chassis at time t = 0+, starting with the initial conditions: 

  ,0)0()0( === +tzz finalchassis  

  )0()0( +== tzz finalchassis &&  

A similar argument may be made regarding the model response to the horizontal force, 

Fx. Consequently, impulse appears to be a key metric that could be used to assess the 

fidelity of the tire model.  
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An attempt was made to determine the fidelity of the tire models using an impulse 

metric as outlined above. However, this proved to be quite challenging as: 

- The total longitudinal impulse was quite small – the time integral for the 

chassis forces (which are the same as the tire spindle forces) as a result of the 

tire model traversing the cleat obstacle: 

- was close to zero, and 

- varied according to the assumed rolling resistance value for the FTire 

reference model 

As the impulse of the reference model was small and the impulse values of the 

other tire models were large, the resulting normalized longitudinal chassis 

metrics: 

  
FTire

Model

J
JMetricChassisalLongitudinNormalized =  (6.5) 

were large, varied greatly, and were not particularly meaningful for 

comparison purposes. 

- As the FTire “reference standard” took into account tire contact patch 

distortion and cleat geometry internal to the model, the ending time of the 

cleat impulse could not readily be determined as the cleat disengagement was 

hidden by the force oscillations. As a result, the exact impulse imposed by the 

cleat could not be determined. 

- The initial longitudinal velocity for each simulation was eight kilometers per 

hour. However, the time period over which the impulse was calculated was 

different for each of the different tire models because: 
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- the geometry for the interaction between the tires was different for the 

various tire models 

- the longitudinal position of the quarter vehicle model was 

unconstrained  

As a result, use of the impulse metric did not prove satisfactory and is left 

as an area to be further explored in future work. 

 
 

Ride Phase Objective Metric Analysis 

As with the Cleat Phase of the investigation, a summary of the objective criteria 

for the Ride Phase was needed to evaluate the overall performance of the tire models. 

This was accomplished in a tabular manner similar to the Cleat Phase investigation, but 

substituting in turn each of two sets of objective metrics:  

- peak chassis accelerations, and 

- peak spindle forces 

for each of two obstacles: 

- the sinusoidal cleat, and 

- the parking bump. 

As the peak chassis acceleration metrics are primarily used for ride comfort and the peak 

spindle forces are primarily used for suspension durability, the data was grouped by 

metric. Accordingly, the results for the peak chassis accelerations for both the cleat and 

bump obstacle are summarized in Table 6.1 - the results for the peak spindle forces are 

summarized later in Table 6.2. 
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Table 6.1 Ride Phase Tire Model Ranking via Chassis Acceleration Metrics 
Chassis Peak Acceleration Metrics 

Ranking Tire Model Chassis 
Peak Az 
% Error 

Chassis 
Peak Ax 
% Error 

Sum 
% Error Peak Az Peak Ax Overall

Cleat Obstacle (obstacle wavelength less than tire contact patch length) 
Cosin FTire 0 0 N/A N/A N/A N/A 

Point 
Contact 147 854 1001 5 6 6 

Ring 
Contact 172 318 490 6 5 5 
Constant 
Footprint 66 99 165 4 4 4 
Adaptive 
Footprint 20 64 84 2 3 2 
Two Point 
Rigid Ring 13 38 51 1 1 1 
Five Point 
Rigid Ring 52 39 91 3 2 3 

 
Parking Bump Obstacle (obstacle wavelength greater than contact patch length) 
Cosin FTire 0 0 N/A N/A N/A N/A 

Point 
Contact 113 136 249 5 5 6 

Ring 
Contact 98 108 206 4 4 4 
Constant 
Footprint 27 210 237 2 6 5 
Adaptive 
Footprint 129 45 174 6 3 3 
Two Point 
Rigid Ring 27 26 53 1 1 1 
Five Point 
Rigid Ring 77 39 116 3 2 2 

 
 

Examination of the chassis acceleration metrics provides an overall picture of the 

tire model performance for chassis ride comfort while traversing both short and long 

wavelength obstacles. Some of the general conclusions include: 
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- The point contact and the ring contact models perform merely adequately for 

chassis peak acceleration metrics while traversing obstacles with long 

wavelengths. Error associated with the ring contact model, however, is better 

than the point contact model. 

- The ring contact model improves the peak longitudinal chassis acceleration 

metric with minimum added modeling complexity. The ring model performs 

better than the point contact model due to its ability to emulate obstacle 

wavelength filtering – this is especially important with short wavelength 

obstacles. The ring model should be used instead of the point contact model 

for most instances and should be strongly considered when the study includes 

obstacles of short wavelength. 

- The two point rigid ring model provides the highest performance in 

comparison to the FTire standard. The additional complexity of the five point 

rigid ring model does not appear to be warranted. 

- The adaptive footprint model ranks second for short wavelength obstacles and 

appears to be a reasonable performance and cost compromise as long as tire 

braking and driving forces are not required. 

- As the adaptive footprint and the two rigid ring models: 

1. provide means to emulate both wavelength filtering and obstacle 

envelopment, and 

2. develop longitudinal force without depending upon the resolution of 

the horizontal and vertical forces such that the resultant forces are 

always normal to the obstacle surface, 
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they appear to offer the best performance for a variety of obstacles if the FTire 

model is not available for use. 

In order to determine a ranking of tire models for simulating peak wheel spindle 

forces for determining suspension “road loads”, Table 6.2 was created. 
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Table 6.2 Ride Phase Tire Model Ranking via Wheel Spindle Force Metrics 
Wheel Peak Spindle Force Metrics 

Ranking Tire Model Chassis 
Peak Fz 
% Error 

Chassis 
Peak Fx 
% Error 

Sum 
% Error Peak Fz Peak Fx Overall

Cleat Obstacle (obstacle wavelength less than tire contact patch length) 
Cosin FTire 0 0 N/A N/A N/A N/A 

Point 
Contact 259 834 1093 6 6 6 

Ring 
Contact 173 309 482 5 5 5 
Constant 
Footprint 62 99 161 3 4 3 
Adaptive 
Footprint 6 65 71 1 3 2 
Two Point 
Rigid Ring 158 36 194 4 1 4 
Five Point 
Rigid Ring 12 38 50 2 2 1 

 
Parking Bump Obstacle (obstacle wavelength greater than contact patch length) 
Cosin FTire 0 0 N/A N/A N/A N/A 

Point 
Contact 106 131 237 5 5 6 

Ring 
Contact 92 104 196 4 4 4 
Constant 
Footprint 17 203 220 1 6 5 
Adaptive 
Footprint 114 42 156 6 3 3 
Two Point 
Rigid Ring 36 24 60 2 1 1 
Five Point 
Rigid Ring 81 37 118 3 2 2 

 

In general, the spindle force metrics correlate well to the chassis acceleration 

metrics. It is clear from examination of the chassis acceleration and spindle force curves, 

comparison of the normalized metrics, and ranking of the results by percent error that: 
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- The intended use of the integrated tire/vehicle simulation model will dictate the 

suitability of the tire model. 

- Simulations which require modeling of short wavelength obstacles are more 

demanding of the tire model than those simulations which model long wavelength 

obstacles. This is because obstacles whose wavelengths are shorter than the tire 

contact patch length solicit the tire’s ability to: 

1. filter the obstacle wavelength 

2. envelope the obstacle within the contact patch 

The most elementary models are not capable of emulating these tire 

characteristics and therefore should only be used for simulations which include 

long-wavelength obstacles. 

 

For comparison purposes, Table 6.3 is a summary of tire model performance 

ranking for all of the metric/obstacle combinations investigated. 
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Table 6.3 Ride Phase Tire Model Ranking Overview 

Tire 
Model

Accel
Peak Az

Accel
Peak Ax

Force
Peak Fz

Force
Peak Fx

Accel
Peak Az

Accel
Peak Ax

Force
Peak Fz

Force
Peak Fx

Cosin
FTire
Point

Contact
Ring

Contact
Constant
Footprint
Adaptive
Footprint
Two Point
Rigid Ring
Five Point
Rigid Ring

Key:   1st or 2nd ranking
  3rd ranking
  4th ranking
  5th or 6th ranking

Cleat Obstacle Parking Bump Obstacle

3 2 3 23 2 2 2

1 1 2 11 1 4 1

6 3 6 32 3 1 3

4

4 4 3 4 2 6 1 6

N/A

5 6 6 6 5 5 5 5

N/A N/A N/A N/A N/A N/A N/A

5 4 4 46 5 5

 
 

With the exception of the two point rigid ring model simulating peak spindle 

force Fz while traversing a cleat obstacle, the two point rigid ring model appears to 

perform best and remains robust for all simulation metrics. The five point rigid ring 

model also performs well, consistently ranking second or third. 

The adaptive footprint model ranks both first and second for the cleat obstacle, 

but does not perform as well for the vertical metrics over the large parking bump. The 

constant footprint also does not appear to be sufficiently robust, and ranks slightly lower 

than the adaptive footprint model.  

Finally, the point contact and ring contact models ranked the lowest. These 

models were not expected to perform well, as neither of them emulate the obstacle 
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envelopment characteristics of a tire. The obstacle wavelength filtering provided by the 

ring contact model does allow it to place ahead of the point contact model. The point and 

the ring contact models, while useful for simple ride comfort modeling, should only be 

used judiciously and with long wavelength obstacles. The ring contact model should be 

used in place of the point contact model whenever possible. 
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Tire Model Selection 

The tire models that were developed in this thesis can be applied to study the 

sensitivity of commonly-measured tire characteristics on simulated tire-spindle forces. 

However, the tensile pneumatic structure which makes up a modern automotive tire does 

not lend itself easily to lumped parameter modeling, as linear springs and dampers do not 

emulate well the physics of the radial carcass plies and the tire summit. When using 

lumped-parameter tire models, care is required to consider not only the operating 

condition of the tire that is being modeled, but also the size and shape of the obstacle 

relative to the contact patch size, tire section height, etc. Simple tire models can provide 

reasonable inputs for integrated tire/vehicle comfort modeling as long as the tire model is 

carefully considered and judiciously applied. In scenarios where tire frequency response 

of less than 50 Hz is adequate – often the case, since vehicle ride models act as low pass 

filters - these simple tire models may be adequate while being significantly less costly in 

terms of software licenses, testing to obtain tire model parameters, and computational 

requirements. Appropriate statistical commercial tire models, or other physical models 

such as Cosin FTire or TNO MF SWIFT tire model incorporated into SIMPACK 

Automotive Plus or other MBS software may be more costly, but their robustness – 

applicability and accuracy over a wide operating range of circumstances - may warrant 

their additional cost. 

One advantage of the two point and five point rigid ring models developed in this 

investigation may lie in their ability to provide a reasonable compromise in model 

complexity and fidelity for 2D comfort modeling between full FEA or MBS tire models 
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and the simpler footprint models that were implemented in this investigation. A higher 

intrinsic value of the two point and five point rigid ring tire models is that they are 

capable of developing driving and braking forces at the contact patch from driving and 

braking moments at the wheel center. This capability is beyond the simple footprint 

models, but is less costly to implement than Cosin FTire. For example, these rigid ring 

models may be capable of supporting tire/vehicle drive line or braking vibration 

sensitivity studies for tire design characteristics such as such as tread circumferential 

compliance, sidewall damping, and traction parameters within the contact patch or tread 

circumferential compliance. 
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Recommendations for Future Work 

This investigation illustrates that the functionality of the tire can be encapsulated 

into three distinct areas: 

1. transformation of roadway obstacles into contact patch deformations – the 

input amplitudes of short wavelength obstacles are attenuated and their 

effective wavelengths are increased. 

2. transformation of contact patch deformations into spindle forces by the 

tire’s tensile pneumatic carcass structure 

3. generation of friction forces at the interface between the tire and the 

ground surface 

When analyzing the use of a model, all three of these functions must be considered. 

Future work could include isolating the model functional characteristics and attempting 

to better match them to their intended applications. For example, the rigid ring model 

provides internal tire dynamics, but its use of a two point or five point contact patch 

follower to emulate the tire contact patch may hinder it for some applications. 

Functionally, it may be possible and advantageous to use the contact patch model concept 

from the adaptive footprint model instead of the two point or five pint follower, while 

retaining the rigid ring for the tire summit and sidewall dynamics. 

Additional areas for future work include the following: 

- Tire modeling in this investigation was limited to relatively low speeds 

(eight kilometers per hour). The ability of the tire models to deliver 
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sufficient fidelity when encountering different obstacle geometry at 

different speeds should be investigated. 

- The height of the obstacle causes the tire to engage the obstacle in front of 

the contact patch, and to stay engaged after exiting the contact patch. 

Although the overall effect on chassis acceleration was assumed to be 

small and constant across the tire models that were developed for this 

investigation, including this geometry would improve agreement between 

the MatLab Simulink models and FTire in future work. 

- The vehicle model can be upgraded to include two axles (pitch plane 

model) and longitudinal compliance. Both of these modifications will 

affect the chassis acceleration metrics. 

- On-vehicle testing to verify the performance of the integrated 

tire/suspension/chassis system model. 

 



 

  

APPENDICES 



201 

  

Appendix A 
 

A. Single Point Follower Simulink Model 
 

Description 
 

For developing first-order vehicle dynamics models, several approaches at tire 

modeling have been undertaken that have proven adequate for gaining insight into 

vehicle dynamic behavior, especially at steady-state or low solicitation frequencies and 

amplitude (close to the linear region of the systems, where the responses of simplified tire 

and vehicle models can be mathematically superimposed). For two dimensional vertical 

ride comfort modeling, a single point follower, or point contact model, can adequately 

represent the spring stiffness of the tire during encounters with common vertical obstacles 

of low amplitude and low frequency content, such as sinusoidal parking lot speed bumps 

or roadway depression irregularities (“potholes”). This type of tire model proves to be 

adequate because the force transfer function of the tire is relatively simple in this regime, 

and the principal component contributing to the chassis dynamics being studied is the 

suspension, and not the tire. The point follower model is the easiest model to implement, 

but can only adequately represents the transfer of spectral energy into the chassis at low 

frequencies (i.e., well below the 1st vertical modal modes of the tire, approximately 80 Hz 

for typical passenger car tires). The physical representation of the single point contact 

follower model is illustrated in figure A.1, below: 
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Figure A.1: Single Point Contact Follower for Integrated Tire/Vehicle Modeling 

 
Single Spring and Point Follower with Mass at Wheel Center 

 
The development of a single contact point follower model for two dimensional 

ride comfort – vertical and longitudinal - requires the following significant assumptions: 

- The vertical profile (contour) of the roadway and obstacle is transmitted 

instantaneously to the point follower via a point contact that is directly below the 

center of the tire. 
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Rim 
Tire 

Brake 
Suspension 

Ktire_z 

z+ 

Meffective 

Kaxle_z 

rimeffective zM &&

Zrim = 0 

- Tire forces are in compression only – the tire contact force goes to zero when the 

tire extends to its natural uncompressed length and does not go negative (the tire 

is not pulled towards the ground in extension, it merely leaves the ground) 

- The tire mass can be represented by an equivalent single lumped mass 

- A single point contact and vertical tire spring can only transmit forces in the 

vertical direction 

 The equations of motion for the simple point follower shown in Figure A.1 are 

derived using Newton’s method – defining a set of coordinates, drawing an appropriate 

free body diagram for each of the masses and then solving for the equations of motion 

directly.  Since all of the unsprung mass – the tire, rim, brake hardware, and suspension 

system – is represented by a single lumped mass, and the contact point following the 

roadway is without mass, the free body diagram in this most elementary embodiment of a 

tire model for the vertical coordinate Z is simply: 

 

 

 

 

 

 

 

 

Figure A.2: Free Body Diagram (FBD) of Single Point Contact Follower 
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Writing the forces in the z direction positive upwards and neglecting the damping term 

for clarity (as it is easily added by substituting velocities for displacement terms and 

damping rates for spring rates) yields: 

( ) ( ) rimeffectivecontactrimztirecarrimzaxle zMzzkzzk &&=−−−− __  (A.1) 
 

Solving for the rim vertical acceleration term: 

( ) ( )contactrim
effective

ztire
carrim

effective

zaxle
rim zz

M
k

zz
M
k

z −−−−= __&&  (A.2) 

 

Adding the damping term for the tire sidewall damping (Ctire_z) and the vertical vehicle 

suspension damping (Csuspension), and gathering terms yields the final equation for the 

vertical component of the contact point follower model: 

( ) ( )
( ) ( ) 











−−−

+−−−
−=

contactrimztirecarrimzaxle

contactrimztirecarrimzaxle

effective
rim zzczzc

zzkzzk

M
z

&&&&
&&

__

__1  (A.3) 

 

 In order to develop a representative force in the horizontal direction, a constraint 

is added such that the total resultant force at the contact point is always normal to the 

surface of the road profile (Fnormal). If the slope, or angle of incidence α, is known and 

the vertical force Fz is calculated, the longitudinal reaction force Fx and the total normal 

force Fnormal can be calculated using simple trigonometry. Calculating Fx: 

Z

X

F
F

adjacent
oppositeTangent ==α  (A.4) 

 
αTanFF ZX =  (A.5) 
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Calculating Fnormal: 

.  Cosine
NORMAL

Z

F
F

hypotenuse
adjacent

==α          (A.6) 

αcos
Z

NORMAL
F

F =  (A.7) 

 

The value for Fx is necessary to calculate the longitudinal acceleration of the tire mass 

and vehicle body, and Fnormal is required as one input to calculate tire traction forces. 

 The assumption that the resultant force is always normal to the point of contact is 

valid for most terrains where the wavelength of the undulating roadway surface is large 

compared to the length of the tire contact patch and the frequency of the vertical input is 

small compared to the natural vertical frequency of the tire. As the obstacle wavelength 

becomes shorter, the surface normal resultant force becomes more horizontal and the 

required horizontal component for the total force to remain normal becomes excessive as 

the relationship is proportional to the tangent of the angle of incidence, α. Note that this 

excessive horizontal force is mitigated when the surface input is better physically 

represented by the length of the tire footprint – the contact patch – as opposed to the 

simple single point follower model. 
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Two Spring and Point Follower with Effective Summit Mass 
 

For comparing tire models using fixed spindle height data, the simple point 

follower model depicted above needs to be modified as the tire mass lump cannot be 

accounted for in the rim - there is no degree of vertical freedom afforded by a car body 

sprung mass or vehicle suspension. Therefore a single point follower for fixed spindle 

height testing was developed that could both emulate the fixed spindle height test and 

also use the measured tire parameters obtained from the polyvalent machine testing and 

physical mass measurements. For this model, the tire mass associated with the tire bead 

was removed from the total tire mass, as was one-half of the mass associated with the tire 

sidewalls.  The remaining sidewall mass, steel summit area and tread were used to 

represent the bulk mass of the tire summit, as these components would be free to translate 

in the vertical direction. In addition, the tire mass would be bounded underneath by the 

vertical spring rate of the tread blocks (Ktread_vr) and between the top and the rim by the 

combined tire pneumatic and structural spring rate Ktire_z. The same constraint which 

required the resultant tire force to be normal to the contact surface is applied for the 

generation of Fx. This modified single point follower model is depicted in figure A.3, 

below:  
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Figure A.3: Two Spring Point Follower Model for Fixed Spindle Simulation 

 

The development of the two spring version of the point follower model for fixed 

spindle machine testing simulation requires the same assumptions as the single mass 

point follower model described above, with the following additions: 

- The tire, rim suspension and sidewall effective point mass does not include the 

entire mass of the sidewall. One half of the sidewall mass is attributed to the rim 

mass, and one half of the mass is attributed to the rigid ring belt/summit mass. 
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- The amount of mass in the tread that is attributed to the belt/summit mass is 

constant and can be approximated using the fraction of the tread mass in the static 

contact patch under nominal tire load 

- The vertical tread block stiffness, although normally affected by shear and torsion 

between adjacent tread blocks attached to the summit belt package and bending in 

the summit, is constant and adequately represented by a single bulk vertical tread 

stiffness. 

 The equations of motion for the two spring point follower model shown in Figure 

A.3 are derived in the same manner as the simple point follower. For vehicle vertical ride 

comfort simulations, the model has two vertical degrees of freedom – one for each of the 

rim and summit masses. For laboratory road wheel cleat strike simulations, the rim 

vertical displacement is fixed and the model contains only one vertical degree of 

freedom. For vehicle vertical ride comfort simulations, the equations of motion are 

derived by first developing the free body diagram, as shown in Figure A.4, below: 

 

 

 

 

 

 

 

Figure A.4: Free Body Diagram (FBD) of Two Spring Model Rim Mass 
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Ktire_z 
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Ktread_z

summitsummit zM &&

Msummit Msummit 
z+ 

Writing the forces in the z direction positive upwards, temporarily neglecting the 

damping term for clarity, and using a slightly modified effective mass due to the 

redistribution of the sidewall mass yields the identical equation as for the single mass 

point follower: 

( ) ( ) rimeffectivesummitrimztirecarrimzaxle zMzzkzzk &&=−−−− __  (A.8) 
 

Adding the damping terms and solving for the rim vertical acceleration yields the final 

equation for the rim vertical component of the two spring two mass point follower: 

( ) ( )
( ) ( ) 
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Drawing the free body diagram in preparation for solving the vertical equations of 

motion for the summit mass: 

 

 

 

 

 

 

 

 

Figure A.5: Free Body Diagram (FBD) of Two Spring Model Rim Mass 
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Writing the forces in the z direction positive upwards and neglecting the damping term 

for clarity yields: 

( ) ( ) summitsummitcontactsummitztreadrimsummitztire zMzzkzzk &&=−−−− __  (A.10) 
 

Solving for the summit vertical acceleration term: 

( ) ( )contactsummit
summit

ztread
rimsummit

summit

ztire
summit zz

M
k

zz
M
k

z −−−−= __&&  (A.11) 

 

Adding the damping term for the tire sidewall vertical damping (Ctire_z), the tread 

element vertical damping (Ctread_z), and the vehicle suspension vertical damping 

(Csuspension) yields the following equation of motion for the summit package: 

( ) ( )
( ) ( ) 
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Equations A.9 and Equations A.12 represent the EOMs for the two vertical 

degrees of freedom for the rim and summit masses, respectively. When simulating a cleat 

impact on a fixed spindle hub on a laboratory road wheel, only the latter equation is 

applicable. 
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Appendix B
 

B. Ring Follower Simulink Model 
 

Description 
 

The simple single point follower provides a convenient way to input a road profile 

into the tire model – the description of the vertical obstacle height as a function of 

longitudinal displacement is applied to the tire model directly. However, the input into 

the tire model does emulate the filtering effect which occurs in the contact patch. 

Obstacles whose wavelengths are shorter than the length of the contact patch are 

attenuated by the envelopment or “draping” of the contact patch around the obstacle, and 

the effective wavelength of the obstacle is increased and its effective amplitude is 

diminished.  

The single point follower is still useful for ride comfort modeling because the car 

chassis and suspension act as low pass filters. Use of the point contact follower is 

generally considered adequate for road input frequencies of up to 20 or 30 Hz. Therefore, 

a means of attenuating the frequency of short wavelength obstacles is required. One 

method that has been used with success is to replace the point contact follower with a 

rigid ring. A discussion of tire contact patch envelopment will be followed by the 

development of the rigid ring. 

Because of the nature of its structure, the tire’s interaction with obstacles is quite 

complex. In general, this is due to the tire’s requirement to deform upon vertical loading, 

creating a ‘contact patch’ between the tire and the ground. Since the structural 

contribution to the vertical stiffness of tires is generally small compared to that of the 
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pneumatic portion, many tire models are constructed such that the total area in the contact 

patch (the contact patch length times the contact patch width) times the inflation pressure 

of the tire equals the vertical loading of the tire, or:  

WidthPatchContactLengthPatchContactPFvertical ××= inflation  (B.1) 
 

For our 2-D modeling, the contact patch length, 2a, is simply proportional to the vertical 

load divided by the width of the tire in the contact patch. The static length of the contact 

patch, for many tire applications, is of the same order as the width of the tire, but can 

vary greatly depending upon the tire application. For example, wide contact patch widths 

having contact patch “footprints” with rectangular corners are typically associated with 

maximum lateral tire force generation for handling performance at the limit, whereas 

narrow contact patch widths having contact patch “footprints” with rounded corners are 

typically associated with ride comfort. 

 In the case of tire modeling for ride and comfort analysis, a single point follower 

may not sufficiently represent the tire/obstacle interaction that will occur as the tire 

contact patch traverses across the obstacle, particularly with obstacles whose wavelength 

is shorter than the length of the tire contact patch. This is because the tire contact patch 

will tend to engulf, or “drape” over the obstacle when the obstacle passes between the 

entrance and the exit of the contact patch. The bending characteristics of the tire tread 

band and the architecture in the tire summit will become important factors for how the 

obstacle wavelength and amplitude content are transmitted into the tire structure. Two 

obstacle cases are illustrated in Figure B.1, below: 
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Figure B.1: Comparison of Contact Patch Shape vs. Obstacle Spatial Frequency 
 

Because the contact patch and its compliance results in both:  

1. a mitigating effect on the vertical input, as well as 

2. a smoothing effect which filters the vertical frequency input 

to the tire model, a means of applying these effects to the simple single point follower is 

needed. One simple means by which at least one of these effects can be emulated is by 

replacing the point follower with a fixed ring follower, or “roller wheel.” This physical 

manifestation of the tire contact patch and obstacle interaction does not model the physics 

of the compliance of the tire tread and summit structure in the contact patch, but does 

have the potential to produce vertical attenuation and obstacle filtering without the need 
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for introducing complex bending stiffness in the rigid ring tire model. A schematic of this 

rigid ring follower is illustrated in figure B.2, below: 

 

 

Figure B.2: Rigid Ring Contact Follower for Integrated Tire/Vehicle Modeling 

 
The tire model remains essentially unchanged from the single point follower, but the 

characteristic of the input to the tire model changes in that: 

- the obstacle is engaged sooner 

- the obstacle is disengaged later 
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- the peak vertical input height is preserved for convex obstacles (bumps), 

but may be potentially attenuated for concave obstacles (potholes).  

Note that the model in Figure B.2 is the simplest embodiment of the rigid ring follower. 

This simple embodiment is only applicable for integrated tire/vehicle modeling, as the 

mass of the tire and wheel assembly is assumed to be at the wheel spindle. Just as with 

the single point follower, the tire model will need to be modified in order to 

accommodate fixed spindle simulations, i.e., the tire mass needs to be repartitioned 

between the summit and the center of the wheel in order to account for some of the 

dynamic properties within the tire itself. 
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Figure B.3: Rigid Ring Contact Follower Geometry 

 In Figure B.3, above, the height of the obstacle above the horizontal ground plane is 

defined as a function of the longitudinal position along the ground, x. The tangent at the 

point of contact between the rigid ring follower and the obstacle surface is used to 

describes the the obstacle “engagement angle,” angle α. Distance x is the longitudinal 

displacement of the center of the rigid ring follower. Distance ∆x is the additional 

distance along the direction of positive x displacement due to the contour of the obstacle 

and the radius of the rigid ring follower, radius Rring. 
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If the conditions are limited such that obstacle contact occurs on the lower half of 

the rigid ring (as when the tire model is situated above the obstacle), then contact can 

occur ahead of, directly underneath, or behind the longitudinal displacement of the rigid 

ring center. These conditions of admissible contact for an arbitrary obstacle are illustrated 

in Figure B.4. The rigid ring is effectively filtering the input to the tire model by not 

allowing the center of the ring to ‘drop’ into the obstacle whose characteristic wavelength 

is smaller than the rigid ring radius Rring. 

 

Figure B.4: Admissible Conditions of Simultaneous Contact – Resulting Path 
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Just as with the single point follower, there is no physical contact patch with the 

rigid ring follower through which a longitudinal force can be developed. Therefore, the 

same scheme that was used to develop a representative force in the horizontal direction 

for the single point follower model is used, i.e., a constraint is added such that the total 

resultant force at the contact point is always normal to the surface of the road profile 

(Fnormal). This technique is described in detail for the single point follower in Appendix 

A. 

Adapting the rigid ring follower model in MatLab Simulink can be done is a 

variety of manners. The method that was chosen is to describe the complete lower half 

circumference of the rigid ring centered about each x point on the original obstacle 

profile, and use the surface contact constraint to determine which point on the rigid ring 

will describe the highest point of obstacle. This generates the Z height of the modified 

obstacle profile. The logic is relatively straightforward to implement and will work for 

the general case where that are obstacles are both above the reference ground plane 

(‘bumps’) and below (‘potholes’). 

 

Ring Follower Obstacle Filtering 

The characteristic consequences of vertical obstacle filtering using the rigid ring 

model are not necessarily always intuitive and can perhaps best be communicated by 

examining some specific examples using simple sinusoidal obstacles. For well-behaved 

sinusoidal obstacles that are above the reference ground plane (‘bumps’), several 

generalities will always apply: 
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- The peak vertical displacement of the obstacle will always pass 

unattenuated into the tire model. 

- The effective length of the obstacle (from the point of engagement as the 

follower meets the obstacle to the point of disengagement when the 

follower no longer interacts with the obstacle) will always be 

1. equal to or longer than the physical length of the obstacle and  

2. less than the length of the physical obstacle plus twice the radius of 

the rigid ring follower.  

This results in the effective obstacle spatial frequency always being either 

equal to or lower than the spatial frequency of the obstacle. 

These two effects result in an effective obstacle whose: 

- peak amplitude is always equal, and 

- spatial frequency is always either equal or lower 

than that of the original obstacle ‘bump’. These effects can be visualized as illustrated in 

Figure B.5, below:  
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Figure B.5: Alteration of Obstacle Amplitude and Frequency by Rigid Ring Follower 

 

 Likewise, well-behaved obstacles that are depressed below the reference ground 

plane (‘potholes’) also follow several generalities: 

- The peak vertical displacement of the depression will be attenuated in the 

case where the 1st harmonic wavelength of the depression is lower than 

twice the diameter of the rigid ring follower 

- The effective length of the obstacle (from the point of engagement as the 

follower meets the obstacle to the point of disengagement when the 
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follower no longer interacts with the obstacle) will always be less than the 

physical length of the depression. 

These two effects result in an effective obstacle whose: 

- peak amplitude is always either equal to or lower, and 

- spatial frequency is always either equal to or higher 

than that of the original obstacle “pothole.” These effects can be visualized as illustrated 

in Figure B.6, below:  

Figure B.6: Alteration of Pothole Amplitude and Frequency by Rigid Ring Follower 

 

 In order to validate the tire model with real-world data, a laboratory test was set 

up in which a road wheel drum was fitted with a cleat. The tire run over the cleat at fixed 
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spindle heights and speeds, and the vertical and horizontal spindle forces of the free-

rolling tire were measured versus time. It was chosen to generate a sinusoidal obstacle 

model that was equivalent to the cleat. The reason for this model was twofold: 

- the local deformation of the tread blocks as they encounter the rectangular 

cleat can better be approximated by a sinusoid rather than the step input 

represented by the cleat, and 

- generation of an obstacle function with a continuous first order derivative 

should speed simulation time 

The sinusoidal function that was chosen to represent the equivalent input of the 

rectangular cleat was chosen such that: 

- the peak height of the sinusoidal representation is equal to the height of 

the cleat, 

- the cross sectional area of the cleat was equivalent to the cross sectional 

area of the sinusoidal representation 

- the first order derivative of the obstacle height is continuous 

The results of the vertical displacement input for the tire model, using the transformation 

of the original 9.5 mm high by 19 mm long cleat into a sinusoidal equivalent and filtered 

by rigid ring follower or varying radii, are shown in Figure B.7, below:  
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Figure B.7: Rigid Ring Follower Filtering for the Machine Test Cleat Equivalent 

 In the end, a rigid ring follower that encounters a general obstacle containing both 

concave-up ‘bump’ and concave-down ‘depression’ elements can introduce a complex 

shift in both frequency content and amplitude over the original obstacle signature. 

Because the flexible carcass of a rolling tire deforms considerably when carrying a load 

and forms a longitudinal contact patch, it principally attenuates those obstacles whose 

spatial frequencies are below the mode shapes of the tire, even when rolling quasi-

statically over the obstacle. Hence, the lack of vertical attenuation of the rigid ring 

follower for obstacle bumps is an inherent weakness for short obstacles, but the lowering 

of the frequency is a strength. Conversely, the increase of obstacle frequency of the rigid 
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ring follower for an obstacle pothole is an inherent weakness, but the attenuation of the 

vertical amplitude is a strength. Thus the rigid ring follower can be considered an 

improvement over a point follower if its characteristics and the nature of the obstacle are 

carefully considered, but the rigid ring model will ultimately always be limited for ride 

modeling and provide only marginal improvements over a point follower. 
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Appendix C
 

C. Constant Footprint Simulink Model 
 

As was demonstrated in Appendix A, a model of the tire/obstacle interaction 

within the contact patch as the tire traverses an obstacle can improve simulations for 

tire/vehicle ride and comfort analysis. This is necessary as the interactions within the 

contact patch, such as the envelopment or ‘draping’ of the tread blocks around the 

obstacle edges, filter the frequency and the magnitude of the obstacle vertical 

displacement before it is passed from the obstacle into the model system. The use of a 

rigid ring follower in the place of a simple contact point follower, for example, 

effectively filters the vertical frequency content of the obstacle, which in turn improves 

the tire model fidelity for comfort. This is accomplished with the use of a rigid ring 

follower because the rigid ring follower, as developed in Appendix B, increases the 

engagement distance between the obstacle and the tire for obstacles with positive height 

(‘bump’) by distances of up to twice the radius of the rigid ring, and maintains the 

engagement distance for obstacles with negative height (‘potholes’). However, the rigid 

ring model is limited in its ability to duplicate the effect of vertical compliance within the 

contact patch (and the resulting obstacle envelopment) as it is unable to mitigate the 

magnitude of the obstacle height for positive height obstacles. This is because the rigid 

ring must pass over the peak of the obstacle without any benefit of compliance in exactly 

the same manner as a simple point follower. Therefore it also passes the peak obstacle 

displacement directly and unmitigated to the tire model. Hence, additional approaches 
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can be developed which improve obstacle filtering within the compliant contact patch, for 

both spatial frequency and for amplitude. 

 One such approach for improving the modeling of obstacle envelopment within 

the contact patch is to replace the single point follower with a representative tire/ground 

footprint of constant contact patch length. This approach, developed by Captain et al [5] 

is implemented here as both the solution of continuous integration as well as the use of 

discrete elements along the length of the contact patch. It can be found, that for linear 

modeling of the vertical compliance and damping, the two solutions are identical. 

 The development of the constant footprint tire model from the single point model 

is, like the development of the rigid ring follower, a matter of replacing the single contact 

point with a mechanism which will more closely emulate the desired spatial and 

magnitude filtering effects that occur in the tire contact patch. The constant footprint 

model does this by assuming that the interaction between the tire and the ground occurs 

within a constant finite length along the ground, as opposed to an infinitesimal contact 

length of the contact point follower, and is illustrated in Figure C.1, below: 
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Figure C.1: Constant Footprint Follower for Tire/Vehicle Comfort Modeling 

As shown in Figure C.1, the contact patch is assumed to be centered directly below the 

wheel spindle, and of constant length 2a. Both the vertical compliance and damping of 

the tire are assumed to be equally distributed along its length and to act normal to the 

ground surface, i.e., the force acts only vertically. In addition, the mass of the tire, 
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sidewall, and tread band are associated with the rim at the spindle center Zctr, thus 

allowing the forces that are directed towards the spindle to be solely the function of the 

spring and damping characteristics of the tire and the relative motion between the wheel 

spindle and the contact patch, without inertial effects. 

 Assuming that the form of the equations will be similar for both displacement and 

velocity, the equations describing the forces can be written for simplicity using 

displacement and spring rates only. The damping terms can be added by rewriting the 

displacement equations, substituting velocity for displacement and damping for the 

spring constants, and then adding this new equation to the original displacement equation. 

Using this approach and starting with the vertical force in the contact patch as a function 

of vertical displacement from static equilibrium for arbitrary vertical displacement Z(x) 

yields: 

∫∫
−

=
ZctrxZgnda

KdzdxFz
)(

0

2

0

 (C.1)  

 

where Fz is the change in vertical force on the spindle due to displacement from the 

vertical equilibrium position in the contact patch, Zgnd(x) is the vertical displacement of 

the ground as a function of longitudinal position x, Zctr is the displacement from the 

vertical equilibrium position of the wheel spindle at the wheel center, and K is the 

combined vertical spring rate of the tire sidewall per longitudinal unit length (associated 

with the tire carcass stiffness, the pneumatic inflation stiffness, and tire tread element 

stiffness) within the contact patch length 2a. 
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 Using similar logic, the vertical force in the contact patch as a function of the rate 

of the vertical displacement is: 

∫∫
−

=
ctrZxgndZa

dxzCdzF
&&

&&
)(

0

2

0

 (C.2)  

 

Where Fż is the vertical force due to the damping C across the length of the contact patch 

2a, Żgnd(x) is the local rate of change in the vertical displacement of the ground as a 

function of longitudinal position x, Żctr is the vertical velocity of the wheel spindle at the 

wheel center. Damping C is associated with the damping rate of the tire sidewall per 

longitudinal unit length, and is a function of the tire carcass and tread element materials. 

The force elements due to the spring elements (equation C.1) and the damping elements 

(equation C.2) can then be combined to yield an expression for the total force at the 

wheel center as a function of the relative vertical displacements and velocities: 
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Żgnd(x), the local rate of change in the vertical displacement of the ground as a function 

of longitudinal position x, is defined by the forward velocity of the wheel spindle center 

multiplied by the change in the ground height Zgnd(x), or: 

dx
xdZgndXxgndZ SpindleWheel
)()( && =  (C.4)  

 

 In order to develop a representative force in the horizontal direction, a constraint 

is added such that the total resultant force generated by the vertical forces in the contact 
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patch is always normal to the surface of the road profile (Fnormal). If the slope, or angle 

of incidence α, is known and the vertical force Fz(ctr) is calculated, the longitudinal 

reaction force Fx can be calculated using simple trigonometry in the exact same manner 

as for the single point contact follower model. Calculating Fx: 

Z

X

F
F

dx
xdZgnd

adjacent
oppositeTangent ===

)(α  (C.5) 

 
αTanFF ZX =  (C.6) 

 

Where Fz is the total vertical force associated with the displacement of the wheel spindle 

from its vertical equilibrium position and Fx is the total longitudinal force on the wheel 

spindle. Fx is necessary to calculate the longitudinal acceleration of the tire mass and 

vehicle body. Additionally, the normal force, Fnormal, is required to calculate the tractive 

forces generated between the tire and the ground surface. This is again done using simple 

trigonometry and the tangent angle, or engagement angle α, as follows: 
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 Although the development of the constant footprint model per Figure C.1 is 

sufficient for integrated tire/vehicle ride modeling, it suffers from the same limitation for 

fixed spindle cleat response modeling as the constant point follower model in Appendix 

A – the masses are concentrated at the wheel spindle center, which is constrained not to 

move vertically when the tire is subjected to cleat testing on a laboratory roadway drum. 

Therefore, the tire model is modified so that the effective mass of the tread band 

associated with the contact patch and the rigid ring, which represents the relatively 

inextensible laminate rubber/steel belt package, is modeled separately from the wheel 

center spindle. The resulting model, developed in Appendix A for the single point contact 

follower, has the appearance as shown in Figure C.2 for the constant footprint model:  



  232 

  

 

Figure C.2: Constant Footprint Follower for Fixed Spindle Tire Modeling 

For this model, the dynamic inertial effects of the tire mass associated with the tread and 

tire belt summit package are modeled. This type of model is therefore more appropriate 

for fixed spindle laboratory road wheel experiments intended to explore the tire 

enveloping power associated with tread band flexibility within the contact patch. 
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In the special and quite common case where the characteristic spring and damping 

elements associated with the fixed contact patch are assumed linear, the solution of the 

continuous integral and that for discrete finite tire segment lengths in the contact patch 

will be identical. As an illustration, consider the fixed contact patch length shown as four 

individual segments in Figure C.2. If the average vertical displacement along each 

individual tread element is known, the forces provided by the individual springs can be 

added. The summed force will be equal to the force of the combined stiffness of the 

springs multiplied by their average displacement - the sum of the forces will be the same 

no matter the number of distributed elements. Because the solution is the same for anhy 

number of elements, the solution for the continuous integral of the vertical displacements 

along the length of the contact patch will be identical. This infers that when using discrete 

tread elements to model the tire, the number of tread segment elements needed depends 

solely upon the wavelength of the obstacles, and not the characteristics of the tire model. 

Unfortunately, the vertical stiffness of actual tires is not evenly distributed in the 

contact patch. This is the result of the shearing forces and bending moments which occur 

in the tread band and summit reinforcing belts. One must conclude that application of this 

relatively simple tire model may be inadequate when modeling large amplitude, short 

wavelength, or ‘sharp’ deflections, even when integrating across discrete tread elements 

with very fine resolution. 

The additional cost and effort associated with the greater complexity of the fixed 

footprint model compared to the rigid ring contact follower is rewarded by vertical 

filtering characteristics that in some cases more closely resembles that of a physical tire. 
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In the case of obstacles that are above the ground plane (“bumps”), using the constant 

footprint model, the peak vertical amplitude passed into the tire model: 

- is equal to the magnitude of the obstacle when the contact patch length 2A 

is less than the length of the obstacle, 

- is less than the magnitude of the obstacle when the contact patch is greater 

than the length of the obstacle. 

These characteristics roughly emulate the enveloping power of the tire as the contact 

patch passes over obstacles. This effect is illustrated for various ratios of contact patch 

length to obstacle length in Figure C.3, below: 

 

Figure C.3: Constant Footprint Obstacle Envelopment for Various Footprint Lengths 
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The constant footprint model exactly emulates these same vertical obstacle envelopment 

characteristics for negative obstacles (“potholes”) as for positive obstacles (“bumps”). 

This is illustrated in Figure C.4, below: 

 

Figure C.4: Constant Footprint “Pothole Envelopment” for Various Footprint Lengths 

From the above two figures C-3 and C-4, one can conclude that the constant footprint 

model is apparently well suited for modeling positive height “bump” obstacles in that it 

characteristically: 

- increases the effective obstacle wavelength 
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- correctly “envelops” the obstacle for various ratios of obstacle length to 

contact patch length 

In the case of modeling negative height “pothole” obstacles, the constant footprint model 

correctly increases the wavelength (lowers the spatial frequency). The constant footprint 

model also appears to function correctly for filtering the vertical magnitude of potholes 

whose length is reasonable compared to that of the contact patch. However, just as with 

the rigid ring follower, there is no provision to prevent deep potholes whose lengths are: 

- greater than that of the contact patch, but 

- shorter than the diameter of the tire 

from passing the complete pothole depth to the tire model. For a real tire, the pothole 

depth would be sharply mitigated as the diameter of the tire would make the tread band 

sector “catch” on the front and rear edges of the pothole as the tire enters down and into 

the pothole, thus mitigating the pothole depth. So although the constant footprint model is 

an apparent improvement over the rigid ring follower model, it is clear once again that no 

model can be blindly applied without understanding the model assumptions and 

limitations in order to determine its domain of applicability. 

As the tire models are being verified using laboratory test data of the modeled tire as it 

passes over a rectangular cleat mounted to a road wheel, a comparison of the effects of 

varying the ratio of  the tire contact patch length to the length of cleat is desired. As with 

the comparison of the single contact point and rigid ring follower models in Appendices 

A and B, respectively, the physical dimensions of the rectangular cleat’s height and width 

are converted into a sinusoidal cleat profile of identical height. In order to obtain the 



  237 

  

same area under the sinusoidal equivalent cleat profile as the area of the actual 

rectangular cleat, the wavelength of the sinusoidal curve is increased. The constant 

footprint contact patch model is then simulated for various ratios of contact patch length 

to the sinusoidal obstacle length. The result of this simulation is shown in Figure 

C.5.

 

Figure C.5: Constant Footprint Filtering for the Machine Test Cleat Equivalent 

 

From the plots above it can be seen that the constant footprint model appears to 

approximate the enveloping characteristics of the contact patch by both 1) increasing the 

effective wavelength of the cleat obstacle and by 2) mitigating the maximum vertical 
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deflection. In addition, the constant footprint model is capable of maintaining the 

continuous first order derivative characteristics of the equivalent sinusoidal cleat. This is 

because the solution to the constant footprint model is continuous throughout the states of 

the contact patch interaction (contact patch prior to obstacle engagement, contact patch 

engaging the obstacle, contact patch disengaging the obstacle, and contact patch after 

leaving the obstacle).  

For the cases where encounters between the obstacle and the constant footprint 

model are limited to circumstances that do not violate the assumptions that the tire 

vertical stiffness is linear and can be evenly distributed along the length of the contact 

patch, the constant footprint model provides apparent and clear advantages over both the 

single point contact follower and the rigid ring follower. In the case where the obstacle is 

of high amplitude and short wavelength, the ring contact model may be better adapted 

than the constant footprint model. The selection of the best tire model will depend upon 

the domain of application and the purpose of the tire/vehicle study.
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Appendix D
 

D. Adaptive Footprint Simulink Model 
 

Overview of the Adaptive Footprint Model 
 
 The constant footprint model was developed in Appendix C by replacing the 

single point follower developed in Appendix A with a representative tire/ground footprint 

of constant contact patch length. This approach is perhaps the simplest and most direct 

approach for modeling the effect of the contact patch ‘draping’ over obstacles as they 

enter into the contact patch. However, the constant footprint model is somewhat limited 

in that: 

- The vertical elements of the constant footprint model do not provide a direct 

means for modeling longitudinal forces within the contact patch - longitudinal 

forces are determined by vector addition such that the resultant sum of the vertical 

and horizontal forces at the wheel center is normal to the average slope within the 

contact patch length 

- As there is no evolution to the size of the contact patch with varying load, the 

vertical stiffness due to the internal inflation pressure is constant. It is therefore 

also assumed that the structural stiffness is also a constant and combined with the 

pneumatic stiffness. 

By allowing the contact patch to vary in length as a function of vertical load, the total 

force due to the pneumatic stiffness component varies. It is therefore desirable to treat 

and apply the vertical stiffness associated with the tire structural components separately 
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from the pneumatic stiffness. Since the contact patch is allowed to vary in length with 

changing vertical load conditions, the vertical force component due to the pneumatic 

stiffness component can be calculated by integrating the inward radial pressure forces 

across the angle of an arc subtending the length of the contact patch. This scheme is also 

applied to for the development of longitudinal forces as a result of the inward radial 

displacement within the contact patch. Since the internal tire pressure develops a 

rearward force when an vertical ‘bump’ begins to enter the front of the contact patch (and 

conversely, a forward force when the same obstacle exits at the rear of the contact patch),  

it is convenient to develop the model such that the angle describing the longitudinal 

position in the contact patch over which the pressure force is integrated be referenced to 

the vertical centerline of the tire (zero degrees being the vertical from the center of the 

wheel spindle downward to the center of the contact patch).  

Intuitively, the adaptive footprint model seems to reasonably mimic an actual tire 

in that longitudinal forces: 

- due to irregular obstacle envelopment cannot occur when load (and therefore the 

contact patch length) goes to zero, 

- are larger as a function of vertical displacement within the contact patch, due to 

either higher peak obstacle height or higher tire static loading 

This can perhaps best be visualized as a quasi-static rolling envelopment of an obstacle of 

positive height (a cleat or other ‘bump’) that is shorter than the static footprint length by a 

perfectly elastic pneumatic membrane that has been compressed radially downward. As 

the obstacle enters the contact patch, the elastic membrane will move upwards and engulf 
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the obstacle. Because the pressure force is always normal to the surface, the obstacle 

intrusion will result in an unbalanced horizontal pressure force component in the 

rearward direction. After the obstacle is entirely engulfed the unbalanced horizontal 

component (and hence the rearward net spindle reaction force) goes to zero. After the 

obstacle passes the vertical tire centerline and begins to exit at the rear of the contact 

patch, a positive rearward force is generated by the unbalanced pressure horizontal 

pressure force component. The horizontal force component (and the strain energy that 

was generated by the obstacle envelopment) goes to zero as the obstacle exits the contact 

patch. Figure D.1, below, illustrates the generation of fore/aft longitudinal force during 

obstacle envelopment within the contact patch of the adaptive footprint model. 
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Figure D.1: Adaptive Footprint Tire Model Obstacle Envelopment 
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Derivation of the Static Portion of the Adaptive Footprint Model 

 

The concepts for the derivation of the adaptive footprint model come from 

Khusroo M. Captain, et al, as described by their paper on the development of analytical 

tire models for dynamic vehicle simulation [1]. The details of the derivation and its 

implementation were verified by Judhajit Roy as part of his ongoing PhD dissertation 

work on heavy truck ride modeling at Clemson University’s International Center for 

Automotive Research under the tutelage of Professor E. Harry Law. The details presented 

here on Captain’s and Judhajit’s derivations are presented with expanded details for 

clarity. 

The assumptions for the derivation of the adaptive footprint model include: 

1. The tire mass properties are concentrated at the wheel center 

2. Each differential tread element conforms exactly to the obstacle 

3. Each differential tread element can rotate and translate independently from its 

adjoining tread elements, i.e., there are no shear, bending, or tensile/compressive 

stresses imposed by the relative motion between the tread elements (‘perfect 

membrane flexibility’). 

4. The tire assumes its natural circular profile outside of the contact patch 

5. The width of the contact patch, widthcp, is constant 

6. The characteristics of the tire force-deflection can be represented as the sum of 

the following components: 
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a. a non-pneumatic structural component that can be expressed as distributed 

radial stiffness kstructure, and damping coefficient cstructure, across the length 

of the contact patch 

b. a pneumatic force due to a constant inflation pressure Pinfl acting along the 

length of the contact patch 

Although it is not necessary for the derivation of the model, there is no constraint that the  

non-pneumatic structural component be linear. However, practical experience with tire 

measurements over reasonable ranges of vertical deflection indicate that this structural 

stiffness component can typically be well approximated as a constant times the vertical 

displacement. This will not be the case, however, under the following conditions:  

- the obstacle height is ‘sharp and high’ in comparison to sidewall height, 

- the tire is operating at significantly lower inflation pressure than for which it 

was designed, 

- the structural component of its vertical stiffness is significant compared to the 

pneumatic component, 

- the model is being used for reinforced sidewall, bullet-proof military, run flat 

tires, or other tires whose structural rigidity is a significant portion of the total 

tire vertical rigidity.  

 It should also be noted that there are several assumptions that are used in the 

adaptive footprint model that can, as with other lumped parameter models, degrade the 

model fidelity for certain applications. On one hand, the assumption that the forces 

generated by any tread element is not affected by the relative position of its adjacent tread 



  245 

  

elements (the ‘membrane flexibility’ assumption) will necessarily limit the performance 

of this model over short wavelength and high amplitude obstacles. This is because the 

bending stiffness of the tire summit (tread elements, and the summit composite structure 

consisting of the metallic belts and the carcass material) will inhibit the tire’s ability to 

conform to the obstacle. In this particular case, the adaptive footprint assumptions are 

violated and the tire model is better represented by a rigid ring model, such as that 

proposed by Mustafa El-Gindy at Pennsylvania University [2]. On the other hand, the 

additional complication of models that take into account the summit package bending 

stiffnesses, such as F-Tire by Gipser at TNO Delft University, add considerable model 

complexity, computational time, and testing requirements to obtain the parameters for 

their model. When using these more complex models, it will require the application of 

sound engineering principals and experience to determine which of the following sets of 

assumptions: 

- contact patch ‘flexible membrane’ for the adaptive footprint model, 

- rigid summit for the rigid ring model, 

- superposition of measured summit composite bending stiffnesses for the 

F-Tire model 

is most suited or even applicable for the particular modeling domain of applicability, or if 

finite element or modal modeling (and its inherent complexity) is required.  

In developing the adaptive footprint tire model, it is perhaps easiest to start by 

examining the development of the contact patch vertical forces for a static, loaded tire on 

a flat surface, as illustrated in Figure D.2, below: 
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Figure D.2: Geometry for Development of Vertical Forces in the Adaptive Contact Patch 

 In the static condition, the tire deflection is greatest directly below the centerline of the 
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is equal, then the half contact angle referenced to the vertical from the wheel center is 

calculated using the following formula: 

.  
tire

statictire

R
ZR )0(

0
=−

=
θ

θ          (D.1) 

 where: 

- θ0 is the half contact angle referenced to the vertical line drawn at the wheel 

center 

- Rtire is the relaxed, or unloaded free radius of the tire 

- Zstatic(θ) is the vertical static deflection at angle θ referenced from the vertical 

line drawn at the wheel center 

To obtain the structural component of the vertical force, an equilibrium equation for the 

vertical forces across the face of the contact patch is used. Summing forces in the vertical 

direction: 

  WeightAreaPFZF pressstructure =+ ),())(,( infθθ       (D.2) 

where: 

- Fstructure is the vertical structural force as a function of θ and the vertical 

deflection Z at θ, 

- Fpress is the vertical force of the tire pressure as a function of inflation pressure 

Pinf and the area of the contact patch, ‘Area’ 

- Weight is the static vertical weight deflecting the tire 
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Since Fstructure is a function of the angle defining the position in the contact patch and the 

vertical deflection at that point in the contact patch multiplied by the stiffness, then the 

total vertical force due to the deflection of the structure across the length of the contact 

patch can be expressed as: 

 ∫ ∫
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where Kstructure is the radial tire stiffness per meter per unit radian. Since Kstructure 

is most normally approximated as a distributed constant across the length of the contact 

patch, it can be brought out from the integral: 
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and evaluated to yield: 

 ∫
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Since Fstructure can be obtained by static testing of the tire vertical spring rate at various 

pressures, an expression needs to be derived for Zstatic (θ) so that the integral can be 

evaluated for Kstructure. Since Kstructure is considered a constant, this can be done by 

writing an expression for the geometry during deflection on a flat test surface (refer again 

to Figure D.2, above). 

 The vertical distance from the wheel center to the relaxed, or undeflected, element 

at the tire tread at any point along the contact patch is simply Rtire times the cosine of the 
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angle θ. The vertical static deflection at any point along the contact patch is Zstatic(θ). The 

difference between these two distances is identical to the free radius of the tire Rtire and 

the vertical static deflection at the tire centerline, Zstatic(0). This yields the following 

equation: 

 )0()()cos( statictirestatictire ZRZR −=− θθ        (D.6) 

Solving for Zstatic(θ) : 

 )cos()0()( θθ tirestatictirestatic RZRZ −−=−        (D.7) 

Multiplying by negative one and rearranging the order: 

 tiretirestaticstatic RRZZ −+= )cos()0()( θθ        (D.8) 

Finally, gathering the Rtire terms: 

 )1)(cos()0()( −+= θθ tirestaticstatic RZZ        (D.9) 

Substituting the above equation D.9 into the integral for Fstructure 

(equation D.5) so that we can solve for Kstructure yields: 

 ( )∫
+

−

−+=
0

0

)1)(cos()0(
θ

θ

θθ dRZKF tirestaticstucturestructure      (D.10) 

Since Rtire is a constant, the integral can be divided into the sum of three definite integrals 

and re-written as: 
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θθθθ dRdRdZKF tiretirestaticstucturestructure   (D.11) 
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Since Zstatic(0) is a constant, evaluating the three definite integrals yields the following 

expression: 

 { }0

0

0

0

0

0
)sin()0( θ

θ

θ

θ

θ

θ
θθθ +

−

+

−

+

−
−+= tiretirestaticstucturestructure RRZKF    (D.12) 

This expression can be written out as: 

( ) ( ) ( ){ }000000 )sin()sin()0( θθθθθθ ++−−−++++= tiretirestaticstucturestructure RRZKF (D.13) 

Using the property that sin (+θ) equals –sin (-θ), the expression can be further simplified: 

 { }000 2)sin(22)0( θθθ tiretirestaticstucturestructure RRZKF −+=    (D.14) 

Finally, gathering like terms yields the final expression for Fstructure: 

 ( ){ }000 )sin()0(2 θθθ −+= tirestaticstucturestructure RZKF      (D.15) 

Since the vertical force due to the structural component is expressed as a function of the 

structural stiffness and the half angle subtended by the contact patch, the vertical force 

expression for Fstructure, equation D.15, can be substituted into the static equilibrium 

equation for forces at the contact patch, equation D.2, to yield: 

  ( ){ } WeightFRZK presstirestaticstucture =+−+ 000 )sin()0(2 θθθ   (D.16) 

This equation can now be rearranged to solve for the vertical stiffness associated with the 

structural component, Kstructure, in terms of the half angle associated with the length of 

the contact patch, θ0: 

 ( )( )000 )sin()0(2 θθθ −+

−
=

tirestatic

press
stucture RZ

FWeight
K    (D.16) 

where Fpress is equal to the area of the contact patch times the tire inflation pressure Pinfl. 
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Derivation of the Dynamic Portion of the Adaptive Footprint Model 
 

The vertical structural and pneumatic components of the tire have been solved 

explicitly for a given initial static tire loading condition and can now be expressed as a 

single term Kstructure (equation D.16). Next the expressions for the vertical and horizontal 

components of the dynamic portion of the adaptive footprint model need to be developed. 

This is done by evaluating the integral expression for elemental tire segments inside the 

contact patch along the contact patch angle θ. Coordinates and expressions for the 

location of the differential tread elements relative to the wheel spindle and ground are 

shown in Figure D.3, below, and are described in the following paragraphs. 
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Figure D.3: Adaptive Footprint Tire Model for Tire/Vehicle Comfort Modeling 

 

Derivation of the adaptive footprint model is started by first defining the differential 

element and its coordinate system. The coordinate of the differential tread element in the 
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 ( )θsintireelement Rx =        (D.17) 

The rate of change of the x position of the differential element with respect to the angle θ 

in the contact patch relative to vertical is simply the derivative of the above equation 

D.18, or: 

 ( ) θθ dRxd tireelement cos=       (D.18) 

Next, the differential force of the elemental tread segment at angular position θ due to 

compression in the radial direction, δ (θ) due to the tire stiffness and damping can be 

written as: 

 ∫∫ +=
)(

0

)(

0

)(
θδθδ

δδθ
&

&dCdKdF structurestructureradial     (D.19) 

where δ (θ) is the deflection of the elemental segment in the radial direction (positive 

compressive inward) and ( )δ θ
•

 is the rate change of the radial position with respect to 

time. 

If both the structural spring rate Kstructure and the damping Cstructure are constant as 

functions of radial position regardless of their angular position within the contact patch θ, 

then they can be brought out from their respective integrals: 

 ∫∫ +=
)(

0

)(

0

)(
θδθδ

δδθ
&

&dCdKdF structurestructureradial     (D.20) 

The resulting expression for the change in radial compressive force dFradial (θ) as a 

function of angular position within the contact patch becomes: 

 )()()( θδθδθ &
structurestructureradial CKdF +=     (D.21) 
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This expression for the contribution of elemental tread to the total radial force is useful if 

we can write expressions for the radial compression, δ (θ) and its time derivative. The 

resulting expression, if integrated across all of the differential tread elements, will then 

represent the final resultant force for the tire. This requires a closer examination of the 

expression for the geometry associated with δ (θ), which can be aided by using simplified 

Figure D.4, below: 
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Figure D.4: Simplified Geometry for a Tread Element in the Adaptive Contact Patch 

In order to determine δstatic(θ), the radial distance that the tire is statically compressed 

relative to the ground at any particular position in the contact patch described by angle θ, 

one must first determine Zstatic(θ) relative to the measured tire deflection along the 

centerline, Zstatic(0). This is done using simple trigonometry. If θ describes the angle to 

the vertical wheel centerline and Zstatic(θ) describes the vertical deflection of the tire at 

that angle θ, then: 

)(
)()cos(

)()(

θδ
θθ

θθδθθ

static

static

staticstatic

Z
hypotenuse
adjacent

tohypotenuseandtoadjacentZIf

==⇒

==
 (D.22) 

 
Rearranging to solve for δ(θ): 

)cos(
)()(

θ
θθδ static

static
Z

=  (D.23) 

Substituting the previous expression for Zstatic(θ) in terms of Zstatic(0), Rtire, and θ from 

equation D.9 yields: 

( )
)cos(

1)cos()0()(
θ

θθδ −+
= tirestatic

static
RZ  (D.24) 

Expanding the expression by multiplying the terms in the numerator and separating the 

terms over the common denominator cos(θ) yields: 

)cos()cos(
)cos(

)cos(
)0()(

θθ
θ

θ
θδ tiretirestatic

static
RRZ

−+=  (D.25) 

 

Canceling the cos(θ) from the numerator and denominator of the middle term of the right 

hand side and moving it to the first position on the right hand side yields: 
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)cos()cos(
)0()(

θθ
θδ tirestatic

tirestatic
RZR −+=  (D.26) 

Finally, gathering terms over the common denominator, cos(θ), and exchanging the 

position of the second and third terms yields: 

)cos(
)0()(

θ
θδ statictire

tirestatic
ZRR −

−=  (D.27) 

 

This expression is suitable for the tire if the ground has no vertical definition (other than a 

flat plane) and the tire is static, i.e., the center of the hub does not move vertically. In 

order to include the dynamics associated with encountering obstacle geometry along the 

ground plane, an expression for δ(θ) needs to be developed for the Z height of the tread 

element and the changing height of the center of the wheel (i.e., the spindle), Zwheel ctr. A 

geometry expression for δ(θ) which incorporates the changes in both the ground plane 

height at the tread element and the wheel center height Zwheel ctr is derived using simple 

trigonometry in a manner similar to that of equation D.27. The resulting expression is: 

)cos(
)(

)()(
θ

θδθδ ctrwheelelementtread
static

ZxZ −
+=  (D.28) 

 

Taking the derivative of equation D.28 with respect to time yields the velocity of the 

tread element in the radial direction. Since δstatic(θ) is constant, the resulting expression 

for the radial velocity of the tread element at a given angular position θ is simply: 

)cos(
)(

)(
θ

θδ ctrwheelelementtread ZxZ &&
& −

=  (D.29) 
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Now that the expression for radial compression includes dynamic changes in the tread 

element segment height (ground plane change due to an obstacle) and the dynamic 

changes in the vertical position of the wheel center, it is simply a matter of substituting 

equation D.27, the expression of the static radial deflection, δstatic(θ), into the expression 

for the general expression of the radial deflection of a tread element, D.28. The resulting 

equation is: 

)cos(
)(

)cos(
)0()(

θθ
θδ ctrwheelelementtreadstatictire

tire

ZxZZRR
−

+
−

−=  (D.30) 

 

The general equation for the velocity of the tread element in the radial direction can be 

solved by inspection. Using equation D.29, one only needs to consider that the rate of 

change in the height of the tread element is the slope of the road or obstacle at the 

midpoint of the tire segment, or: 

)cos(
)(

)(
θ

θδ ctrwheelZxslope &
& −

=       (D.31) 

 
 Equations D.30 and D.31 are the necessary equations to determine the resultant 

compression of the tire tread elements in the radial direction. This, in conjunction with 

equation D.21, the expression for the generation of tire force in the radial direction due to 

radial compression and radial compression velocity, would be sufficient for calculating 

the radial force of the individual tread elements. However, we are interested in the 

separate component forces in the vertical and horizontal directions due to deflections 

across the entire contact patch. These component forces are determined as follows. 
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Starting with the vertical component, Fvert, the change in vertical force for the differential 

elements will consist of the dynamic and static components and can be written as: 

 αθθθθ cos)(cos)()( inf xdWidthPddFdF compvert ×+=    (D.32) 

where α is the angle of engagement of the tread element relative to the horizontal, Pinf is 

the inflation pressure, and Area in this case is the area associated with the differential 

tread element. Note that: 

- the compressive force dFcomp(θ) is in the radial direction, and therefore 

its vertical component is the cosine of the tire segment angle θ, measured 

at the wheel spindle and referenced vertically downward along the 

centerline of the contact patch. 

- the normal force due to the tire inflation pressure and the area of the 

differential tread element is normal to the tire/roadway interface and 

therefore its vertical component is the cosine of the engagement angle α, 

or the angle between the horizontal reference plane and the tangent to the 

roadway surface 

The expression for the rate of change of the x position of the differential element dx with 

respect to the angle θ in the contact patch, equation D.18, can be substituted directly into 

the equation for the change in vertical force for the differential elements, equation D.32. 

The resulting equation is: 

 ( ) αθθθθθθ cos)cos(cos)()( inf dRWidthPddFdF tirecompvert ×+=  (D.33) 

Using trigonometric identities, the equation can be simplified further. Since secant(α) is 

the inverse of cosine(α):  
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( )

θ
α

θ
θθθθ d

RWidthP
ddFdF tire

compvert sec
cos

cos)()( inf ×
+=   (D.34) 

Since secant(α) is identical to the square root of one plus the square of tangent(α): 

 ( ) θ
α

θθθθθ dRWidthPddFdF tire
compvert

)(tan1
coscos)()(

2
inf

+

×
+=   (D.35) 

Recalling that tangent(α) is the slope of the differential element dx, the final form of the 

equation for the differential force component in the vertical direction is: 

 ( )
( )

θθθθθθ d
xslope

RWidthPddFdF tire
compvert 2

inf

)(1

coscos)()(
+

×
+=   (D.36) 

This equation can be used directly in the MatLab Simulink environment either as 

individual elements or as a custom block function. 

 Similarly, the change in horizontal force for the differential elements will consist 

of the dynamic and static components. These horizontal components can be derived in the 

same manner as the vertical components were in equation D.32, above, by simply 

substituting the appropriate trigonometric function (sine) for the horizontal component 

instead of the vertical component (cosine). The resulting expression for the horizontal 

force differential is: 

 αθθθθ sin)(sin)()( inf xdWidthPddFdF comphoriz ×+=    (D.37) 

Just as with the differential expression for the vertical force component, the goal is to 

rewrite the expression for the horizontal force component in terms of the angular position 

of the differential element within the contact patch (θ) and the slope, or engagement angle 

of the differential element with the obstacle (α). The procedure is as follows: 
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Equation D.37 will need to be re-written such that the expression for sin(α) can be 

expressed using secant(α). This will enable the expression to be re-cast in terms of 

tangent(α), which is the slope of the differential element at x. Since by basic 

trigonometric identities, sin(α) is equivalent to tangent(α) divided by secant(α), these 

definitions can be substituted into equation D.37 to yield: 

 







×+=

)sec(
)tan()(sin)()( inf α

αθθθθ xdWidthPddFdF comphoriz   (D.38) 

Since tan(α) is the same as the slope of the differential element, the equation can be re-

arranged to yield: 

 dxxslopeWidthPddFdF comphoriz 







+=

)sec(
)()(sin)()( inf α

θθθθ   (D.39) 

As with the derivation for the vertical component, the expression for the rate of change of 

the x position of the differential element dx with respect to the angle θ in the contact 

patch, equation D.18, can be substituted directly into the equation D.39 to yield: 

 θθ
α

θθθθ dRxslopeWidthPddFdF tirecomphoriz cos
)sec(
)()(sin)()( inf 







+=  (D.40) 

 Substituting the trigonometric identity which defines secant(α) as identical to the square 

root of one plus the square of tangent(α): 

 
( )

θ
α

θ
θθθθ d

xslopeRWidthP
ddFdF tire

comphoriz
)(tan1

)(cos
sin)()(

2
inf

+

×
+=  (D.41) 

Finally, recognizing that the slope of the differential element at x is the same as 

tangent(α) at position x yields: 
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( )

( ) θθθθθθ d
xslope

xslopeRWidthPddFdF tire
comphoriz cos

)(1

)(sin)()(
2

inf

+

×
+=     (D.42) 

This equation can be used directly in the MatLab Simulink environment for the 

horizontal force component at the wheel center, either as individual elements or as a 

custom block function.  
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Appendix E
 

E. Two Point Follower Rigid Ring Software 
 

Two Point Rigid Ring Matlab MAIN Code 
 
The following MAIN program executes a single Simulink Simulation. This main program 
control is for a single model – in this case, the Two Point Rigid Ring Simulink Model. 
All of the other Simulink models were controlled in a similar manner. 
 
The following supporting scripts are called to support MAIN: 
- input_model_parameters_PS2    (tire model parameters) 
- generate_obstacle_sinusoidal_cleat_LUTS_2pt (obstacle definition) 
- generate_initial_conditions    (simulation ICs) 
- generate_CAR_Ftrac_LUT    (traction tables) 
- generate_CAR_shift_and_engine_torque_LUTS (drive torque tables) 
 
% **************************** 
% ******* MAIN PROGRAM ******* 
% **************************** 
% CP_2dof_ring_model_for_2pt_cleat_CAR_revd_workfeed.m     25 Mar 2009 
% MAIN Program to launch 2 point rigid ring Simulink Model 
 
% ------- Housekeeping 
clc;                        % clears command window history 
clear;                      % clears variables 
close all;                  % closes all graphics windows 
my_home_dir = pwd; 
delete sim_record.txt 
diary  sim_record.txt 
% ------- Set up all the variables for 'one quarter' drive position 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_Gen_Data')    %Data repository 
input_model_parameters_PS2 
 
% ------- Obstacle dimensions 
L = 0.0190;        % 0.019m  = MT Cleat obstacle length (m) 
H = 0.0095;        % 0.0095m = MT Cleat obstacle height (m) 
D0 = 0.50;         % distance from center of cleat to center of tire 
(m) 
Fineness = 10000;  % multiply by 10,000 to convert 0.0001 m to integers 
a_rnd = round(a*Fineness)/Fineness  % round off one-half Contact  
                                    % patc length (a) for indexing 
 
% ------- generate 2-Pt Follower over obstacle LUTs 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_2Pt_Data')   %Data repository 
generate_obstacle_sinusoidal_cleat_LUTS_2pt 
%generate_obstacle_square_cleat_LUTS_2pt 
 
% ------- Set up the initial condtions 
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% Set model initial conditions here in m, m/s (propagates to 
components) 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_Gen_Data')   %Data repository 
generate_initial_conditions 
 
% ------- generate Longitudinal Traction Fz = Fcn(Fnorm, %Slip) LUT 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_Gen_Data')   %Data repository 
generate_CAR_Ftrac_LUT 
 
% ------- load the transmission gear ratios and shift point LUT 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_Gen_Data')   %Data repository 
generate_CAR_shift_program_and_engine_torque_LUT 
 
% ------- Run the Simulink model 
t_end = 0.5; 
time_step = 0.0001; 
t = (0:time_step:t_end)'; 
 
% Change directories and run the simulink model 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_Models') 
sim('Rigid_Ring_2Pt_QV_revb',t, simset('Solver','ode23t','RelTol',    
     5e-14)) 
disp(' ') 
disp('Completed Rigid_ring_model_for_2pt_cleat_FixedSpindle_revb...') 
disp(' ') 
 
% -------  Seed Structured Array Output and Save 
% seed the simulation output parameters 
test_name       = ' QV';  % Fixed Spindle (FS) or Quarter Vehicle (QV); 
model_name      = ' 2Pt'; % Models include: 
                                   % ATAC_1PtK_,   ATAC_1_PtKM_ 
                                   % ATAC_RingK_,  ATAC_RingKM_ 
                                   % ATAC_ConstK_, ATAC_ConstKM_ 
                                   % ATAC_Adapt_ 
                                   % 2Pt_,         5Pt_ 
                                   % FTire_ 
obstacle_name   = ' MTSin';        % MTSqr_ or MTSin_ or BMP_ 
load_name       =  strcat(num2str(Mcar,3),'Kg ');   % Mass of vehicle     
speed_name = strcat(num2str(Xdot_init*3.6,2),'Kph ');% 08, 10,30,50 kph 
tire_press_name = strcat(num2str(Tire_press_bar,2),'b');% 2b or 3b 
sim_comment     = '';  
final_name = strcat(test_name, model_name, obstacle_name,load_name,    
                    speed_name, tire_press_name, sim_comment); 
file_name = 'Vehicle Cleat - 2 Point Rigid Ring Chassis Accelerations'; 
% generate the simulation output structure - return 'sim_data' 
structure 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_Gen_Data') 
my_2Pt_rigid_ring_struc_revb 
 
% ------- Save the 'sim_data' data structure 
cd('C:\Thesis\MatLab\Eight_A\Veh_Common_Out') 
QV_2Pt_MTSin_589Kg_8Kph_2b = sim_data; 
save QV_2Pt_MTSin_589Kg_8Kph_2b 
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% ------ Time when the metrics will be calculated 
t_begin_wave = 0.1809;  % set Fx engagement for each individual model 
t_end_wave   = 0.2686;  % set for Fx disengagement for each model 
t_delta_wave = t_end_wave-t_begin_wave; 
 
% ------- check simulation results 
figure 
plot(sim_data.Chassis.time , sim_data.Chassis.fz, 'm',... 
     sim_data.Chassis.time , sim_data.Chassis.fx, 'b') 
title('MT Cleat - Raw Quarter Vehicle Chassis Forces') 
legend('Chassis Fz',... 
       'Chassis Fx'    ) 
xlabel('Time (sec)') 
ylabel('Raw Chassis Forces from Matlab (N)') 
grid on 
  
new_sim_data.Rim.time = sim_data.Rim.time; 
new_sim_data.Rim.fz   = sim_data.Rim.fz; 
new_sim_data.Rim.fx   = sim_data.Rim.fx; 
  
new_sim_data.Chassis.time = sim_data.Chassis.time; 
new_sim_data.Chassis.fz   = sim_data.Chassis.fz; 
new_sim_data.Chassis.fx   = sim_data.Chassis.fx; 
  
new_sim_data.Chassis.zdotdot   = sim_data.Chassis.zdotdot; 
new_sim_data.Chassis.xdotdot   = sim_data.Chassis.xdotdot; 
  
% find average chassis fz and fx force levels before and after impulse 
my_outer_i = 0; 
for my_i = 1:1:length(new_sim_data.Chassis.time) 
    if  new_sim_data.Chassis.time(my_i)<= t_begin_wave || ... 
        new_sim_data.Chassis.time(my_i)>= t_end_wave 
        my_outer_i = my_outer_i + 1; 
        my_meaner_fz(my_outer_i) = new_sim_data.Chassis.fz(my_i); 
        my_meaner_fx(my_outer_i) = new_sim_data.Chassis.fx(my_i);     
    end 
end 
my_mean_outer_fz = mean(my_meaner_fz); 
my_mean_outer_fx = mean(my_meaner_fx); 
 
% Subtract out the mean offsets 
new_sim_data.Chassis.fz = new_sim_data.Chassis.fz - my_mean_outer_fz; 
new_sim_data.Chassis.fx = new_sim_data.Chassis.fx - my_mean_outer_fx; 
 
% generate the wave = zero outside the valid impact time 
for my_i = 1:1:length(new_sim_data.Chassis.time) 
    if  new_sim_data.Chassis.time(my_i)<= t_begin_wave || ... 
        new_sim_data.Chassis.time(my_i)>= t_end_wave % time in sec 
        new_sim_data.Rim.fz(my_i)   = 0; 
        new_sim_data.Rim.fx(my_i)   = 0; 
        new_sim_data.Chassis.fz(my_i)   = 0; 
        new_sim_data.Chassis.fx(my_i)   = 0; 
        new_sim_data.Chassis.zdotdot(my_i)   = 0; 
        new_sim_data.Chassis.xdotdot(my_i)   = 0; 
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    end 
end 
 
figure 
plot(new_sim_data.Rim.time ,     sim_data.Rim.fz, 'm',... 
     new_sim_data.Rim.time , new_sim_data.Rim.fz, 'b') 
title('MT Cleat - Quarter Vehicle Rim Forces - Fz') 
legend('Old Rim Fz',... 
       'New Rim Fz'    ) 
xlabel('Time (sec)') 
ylabel('Fz Rim Force (N)') 
grid on 
 
figure 
plot(sim_data.Rim.time ,     sim_data.Rim.fx, 'm',... 
     sim_data.Rim.time , new_sim_data.Rim.fx, 'g') 
title('MT Cleat - Quarter Vehicle Rim Forces - Fx') 
legend('Old Rim Fx',... 
       'New Rim Fx'    ) 
xlabel('Time (sec)') 
ylabel('Fx Rim Force (N)') 
grid on 
 
figure 
plot(new_sim_data.Chassis.time ,     sim_data.Chassis.fz, 'm',... 
     new_sim_data.Chassis.time , new_sim_data.Chassis.fz, 'b') 
title('MT Cleat - Quarter Vehicle Chassis Forces - Fz') 
legend('Old Chassis Fz',... 
       'New Chassis Fz'    ) 
xlabel('Time (sec)') 
ylabel('Fz Chassis Force (N)') 
grid on 
 
figure 
plot(sim_data.Chassis.time ,     sim_data.Chassis.fx, 'm',... 
     sim_data.Chassis.time , new_sim_data.Chassis.fx, 'g') 
title('MT Cleat - Quarter Vehicle Chassis Forces - Fx') 
legend('Old Chassis Fx',... 
       'New Chassis Fx'    ) 
xlabel('Time (sec)') 
ylabel('Fx Chassis Force (N)') 
grid on 
 
figure 
plot(new_sim_data.Chassis.time ,     sim_data.Chassis.zdotdot/9.81, 
'm',... 
     new_sim_data.Chassis.time , new_sim_data.Chassis.zdotdot/9.81, 
'b') 
title('MT Cleat - Quarter Vehicle Chassis Z Acceleration') 
legend('Old Chassis Z Acceleration',... 
       'New Chassis Z Acceleration'    ) 
xlabel('Time (sec)') 
ylabel('Chassis Z Acceleration (g)') 
grid on 
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figure 
plot(sim_data.Chassis.time ,     sim_data.Chassis.xdotdot/9.81, 'm',... 
     sim_data.Chassis.time , new_sim_data.Chassis.xdotdot/9.81, 'g') 
legend('Old Chassis X Acceleration',... 
       'New Chassis X Acceleration'    ) 
xlabel('Time (sec)') 
ylabel('Chassis X Acceleration (g)') 
grid on 
 
% ------- Final Acceleration Plots 
% Load Appropriate FTire simulation and FTire suspension forces 
load('C:\Thesis\MatLab\Eight_A\Y_FTire_Cleat_Sinus\Fsuspension_cleat') 
load('C:\Thesis\MatLab\Eight_A\Y_FTire_Cleat_Sinus\FTire_cleat') 
 
figure 
plot(sim_data.Chassis.time, sim_data.Chassis.zdotdot/9.81,'m',... 
    QVFTireMTSqr589Kg8Kph2b.Chassis.time-1,... 
    QVFTireMTSqr589Kg8Kph2b.Chassis.zdotdot/9.81,'g',... 
    new_sim_data.Chassis.time, new_sim_data.Chassis.zdotdot/9.81,... 
    'b','linewidth',2); 
title('Check Accelerations for 
TRAPZ','FontSize',10,'FontWeight','bold'); 
xlabel('Time (sec)','FontSize',08,'FontWeight','bold'); 
ylabel('Chassis Acceleration (g)','FontSize',08,'FontWeight','bold'); 
legend('Sim Data Chassis Accel Az (g)',... 
       'SIMPACK and FTire Az (g)',... 
       'New Sim Data Chassis Az (g)') 
set(gca,'FontSize',08,'FontWeight','bold') 
set(gcf,'Color',[1 1 1]) 
box on, grid on 
 
figure 
plot(sim_data.Chassis.time, sim_data.Chassis.xdotdot/9.81,'m',... 
    QVFTireMTSqr589Kg8Kph2b.Chassis.time-1,... 
    QVFTireMTSqr589Kg8Kph2b.Chassis.xdotdot/9.81,'g',... 
    new_sim_data.Chassis.time, new_sim_data.Chassis.xdotdot/9.81,... 
    'b','linewidth',2); 
title('Check Accelerations for 
TRAPZ','FontSize',10,'FontWeight','bold'); 
xlabel('Time (sec)','FontSize',08,'FontWeight','bold'); 
ylabel('Chassis Acceleration (g)','FontSize',08,'FontWeight','bold'); 
legend('Sim Data Chassis Accel Ax (g)',... 
       'SIMPACK and FTire Ax (g)',... 
       'New Sim Data Chassis Ax (g)') 
set(gca,'FontSize',08,'FontWeight','bold') 
set(gcf,'Color',[1 1 1]) 
box on, grid on 
 
figure 
subplot(2,1,1) 
plot(sim_data.Chassis.time-t_off, sim_data.Chassis.zdotdot/9.81,'r',... 
     QVFTireMTSqr589Kg8Kph2b.Chassis.time-1,... 
     QVFTireMTSqr589Kg8Kph2b.Chassis.zdotdot/9.81,'g','linewidth',2); 
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title(file_name,'FontSize',10,'FontWeight','bold'); 
ylabel('Vertical Acceleration Az 
(g)','FontSize',08,'FontWeight','bold'); 
legend('Model Accel Az','SIMPACK and FTire Az') 
axis([ 0.0, 0.5, -0.1, 0.1]) 
set(gca,'FontSize',08,'FontWeight','bold') 
set(gcf,'Color',[1 1 1]) 
box on, grid on 
 
subplot(2,1,2) 
plot(sim_data.Chassis.time-t_off, sim_data.Chassis.xdotdot/9.81, b',... 
     QVFTireMTSqr589Kg8Kph2b.Chassis.time-1,... 
     QVFTireMTSqr589Kg8Kph2b.Chassis.xdotdot/9.81,'g','linewidth',2); 
xlabel('Time (sec)','FontSize',08,'FontWeight','bold'); 
ylabel('Longitudinal Accel Ax (g)','FontSize',08,'FontWeight','bold'); 
legend('Model Accel Ax','SIMPACK and FTire Ax','location','southeast') 
axis([ 0.0, 0.5, -0.2, 0.2]) 
set(gca,'FontSize',08,'FontWeight','bold') 
set(gcf,'Color',[1 1 1]) 
box on, grid on 
 
% Now save figure 
cd('C:\Thesis\Comfort_Thesis\Accel_Graphics') 
saveas(gcf,final_name,'bmp') 
saveas(gcf,final_name,'fig') 
 
figure 
file_name = 'Vehicle Cleat - 2 Point Rigid Ring Suspension Forces';  
subplot(2,1,1) 
plot(sim_data.Chassis.time-t_off, sim_data.Chassis.fz,'b',...  
     QVFTireMTSqr589Kg8Kph2b.Chassis.time-1,... 
     QVFTireMTSqr589Kg8Kph2b.Chassis.fz-5615,'g','linewidth',2); 
title(file_name,'FontSize',10,'FontWeight','bold'); 
ylabel('Vertical Suspension Fz (N)','FontSize',08,'FontWeight','bold'); 
legend('Model Supension Fz','SIMPACK and FTire Fz') 
axis([ 0.0, 0.5, -1000, 1500]) 
set(gca,'FontSize',08,'FontWeight','bold') 
set(gcf,'Color',[1 1 1]) 
box on, grid on 
 
subplot(2,1,2) 
plot(sim_data.Chassis.time-t_off, sim_data.Chassis.fx,'b',... 
     QVFTireMTSqr589Kg8Kph2b.Chassis.time-1,... 
     QVFTireMTSqr589Kg8Kph2b.Chassis.fx,'g','linewidth',2); 
xlabel('Time (sec)','FontSize',08,'FontWeight','bold'); 
ylabel('Longitudinal Suspension Fx 
(N)','FontSize',08,'FontWeight','bold'); 
legend('Model Suspension Fx','SIMPACK and FTire 
Fx','location','southeast') 
axis([ 0.0, 0.5, -1000, 1000]) 
set(gca,'FontSize',08,'FontWeight','bold') 
set(gcf,'Color',[1 1 1]) 
box on, grid on  
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% Now save figure 
cd('C:\Thesis\Comfort_Thesis\Force_Graphics') 
saveas(gcf,final_name,'bmp') 
saveas(gcf,final_name,'fig') 
 
% ------- Generate Output Metrics 
cd('C:\Thesis\Comfort_Thesis\Diary') 
  
diary ('QV_Az_Ax_PkFz_PkFx_ImpFz_ImpFx_chassis.txt') 
disp('  ') 
disp(file_name) 
fprintf('%.5f \n', max(new_sim_data.Chassis.zdotdot/9.81),... 
                   min(new_sim_data.Chassis.xdotdot/9.81),... 
                   max(new_sim_data.Rim.fz),... 
                   min(new_sim_data.Rim.fx),...                  
                   trapz(sim_data.Chassis.time,sim_data.Chassis.fz),... 
                   trapz(sim_data.Chassis.time,sim_data.Chassis.fx)       
diary off 
% ------- Home directory 
%cd('C:\Thesis\MatLab\Eight_A\A_Point_K_Cleat_Sinus') 
cd(my_home_dir); 
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Two Point Rigid Ring Matlab Support Code 
 
% ****************************************** 
% ******* INPUT MODEL PARAMETERS PS2 ******* 
% ****************************************** 
% input_model_paramters_PS2.m                    08 Feb 2009 
%  
% File contains the following information: 
%  - tire data from Michelin Machine Rigidity Testing 
%  - tire data from tire omega cuts and weighing the components 
%  - simple 1/4 car model mass estimates (total mass: max load at 2.0b) 
%  - tire data comes from Michelin Machine Rigidity Testing 
% 
% T&RA Data is as follows: 
%  - 26 psi / 180 kPa : 589 kg 
%  - 29 psi / 200 kPa : 631 kg 
%  - 32 psi / 220 kPa : 671 kg 
%  - 35 psi / 240 kPa : 710 kg 
%  - Max Section Width = 243mm, 677 OD 
%  - Max RTW = 95% of Max overall width (0.95*243 = 231 mm) 
% 
% Advertised Specifications 
%  - 25 lbs => 11.3 Kg 
%  - Revs per mile = 778 => DLR = (1,609.344)/2/pi/778 
%  - DLR (Dynamic Loaded Radius) =0.3292 m 
%  - O/A diameter = 26.7 inches (678.18 mm) 
  
% *** VEHICLE MASS Properties - weight based upon 2 bar design load 
% MT data was taken at 362 or 589 kgf at 2.0 bar 
% Spindle_mass = 362;    % For minimum solicitation and CP length (kg) 
Spindle_mass = 589;      % For maximum solicitation and CP length (kg) 
Mcar = Spindle_mass      % (kg)  !NF This is for one quarter vehicle 
  
% *** TIRE MASS Properties - from tire that cut & measured manually. 
% Values used are in the Mass and MOI spreadsheet for rigid ring model. 
Mbead_meas     = 2.252;    % decorticage cut (kg) 
Msidewall_meas = 1.798;    % decorticage cut (kg) 
Msummit_meas   = 5.871;    % decorticage cut (kg) 
Mtread_meas    = 1.993;    % decorticage cut (kg) using CSR estimates 
Mtire = Mbead_meas + Msidewall_meas + Msummit_meas + Mtread_meas; %(kg)  
Ibead_meas     = 0.148;    % decorticage cut (kg-m^2) 
Isidewall_meas = 0.155;    % decorticage cut (kg-m^2) 
Isummit_meas   = 0.632;    % decorticage cut (kg-m^2) 
Itread_meas    = 0.222;    % decorticage cut (kg-m^2) 
Itire = Ibead_meas+Isidewall_meas+Isummit_meas+Itread_meas; %(kg-m^2) 
  
% *** RIM MASS Properties 
% Values used in the Mass and MOI spreadsheet for the rigid ring model. 
Mrim = 17.330;             % test rim-measured by MT-alum rim ~10 (kg) 
Irim = 0.725;              % test rim-measured by MT-spin MOI (kg m^2) 
  
% *** AXLE Inputs 2007 Lexus IS350 from Michelin K&C Test FW601 
%                      dated 7 Nov 07 w/ 4 people                *** 
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Maxle = (106/2)-Mrim-Mtire; % mass of axle for one wheel position(kg) 
                            % 1/4 car - '07 IS350 V-6 RWD (kg) 
Kaxle = 1000*(29.4+28.6+34.1+34.6)/4; % avg spring rate (N/m) 
Caxle = (1400+4500)/2;      % Typical avg. comp./rebound [N/(m/s)] 
Mdrive = 0;                 % driveline input torque to rim (Nm) 
  
% *** TIRE/RIM SIZE Inputs *** 
SW = 0.245;                 % Section Width (m) 
RTW = 0.183;                % Rolling Tread Width fm contact patch (m) 
%RTW = 0.197;               % Rolling Tread Width (m) 
AR = 45;                    % Aspect Ratio 
Rim = 18;                   % Rim seat diameter (in) 
% Reff = ((0.5*Rim*25.4)+(AR/100)*SW)/1000; % => 0.3389 (m) 
% Reff = 0.3920;            % Eff. Rolling Radius from TP^2 program (m) 
% Reff = 0.3292;            % RPM data-dynamic loaded radius (m) 
Reff = 0.3292; 
  
% *** CONTACT PATCH LENGTH *** 
% Calculate One-Half Contact Patch Length 'a' (use Z Force=Press*Area) 
% Calculating a (1/2 contact patch length) for tire at 2.0 bar(32 psi) 
% at a loading of spindle_mass kg's static loading using F = P*A. The  
% rolling tread width RTW is approximated by the mean width of the two 
% subtread belts, measured on the tire omega cut. 
Tire_press_psi = 29;            % tire pressure (lb/in^2) 
% Note:35 psi~2.20b 
Tire_press_bar = 1.0*round(10*(Tire_press_psi*0.06894757))/10; % (bar)  
Tire_press_kPa = 29*6.894757;   % tire pressure (kPa) 
Tire_press_Pa  = 29*6894.757;   % tire pressure (Pa) 
  
CP_Area_in2 = Spindle_mass*2.204623/Tire_press_psi;  % CP area (in^2) 
CPL_pneu = (CP_Area_in2*0.00064516/RTW);             % CP length (m) 
% CP_Area_m2 = (Spindle_mass)*9.80665/Tire_press_Pa; % CP area (m^2) 
% CPL_pneu_metric = (CP_Area_m2/RTW);                % CP length (m) 
  
% Half contact patch length 'a' is used in the models 
a = 0.5 * CPL_pneu;                                  % 1/2 * CPL (m) 
disp(' ') 
disp('Calculated Contact Patch Length: '),a 
disp(' ') 
 
% *** TIRE MOI Corrections within the contact patch 
% Appropriate sidewall mass and inertia to bead and summit 
Mbead   = Mbead_meas   + 0.5*Msidewall_meas; % (kg) 
Ibead   = Ibead_meas   + 0.5*Isidewall_meas; % (kg m^2)  
  
% Appropriate tread mass & inertia to summit according to in/out of CP 
frac_CP = (2*a)/(2*pi*Reff); % fraction of circumference w/in CP 
Mring=Msummit_meas+0.5*Msidewall_meas+(1-frac_CP)*Mtread_meas;%(kg) 
Iring=Isummit_meas+0.5*Isidewall_meas+(1-frac_CP)*Itread_meas;%(kg-m^2) 
 
Mtread = frac_CP*Mtread_meas; % (kg) 
Itread = frac_CP*Itread_meas; % (kg-m^2) 
  
Ktire_z = 261347;             % vertical spring constant (N/m) 



 

  

271

Ctire_z = 0.0008*Ktire_z;     % est. of damping constant (N-s/m) 
  
Ktire_x = 1354447;            % longitudinal spring constant (N/m) 
Ctire_x = 0.0010*Ktire_x;     % est. of damping constant (N-s/m) 
  
Ktire_theta = 60057;          % tire torsional stiffness (Nm/rad) 
Ctire_theta = 0.0012*Ktire_theta; % est. torsional damping (Nms/rad) 
  
Ktread_vr = 1775149;          % tread block vert. resid. spring (N/m) 
Ctread_vr = 0.0010*Ktread_vr; % tread block vert. resid. damping(N-s/m) 
  
Ktread_cr = 2692900;          % tread block circum. resid. spring (N/m) 
Ctread_cr = 0.0010*Ktread_cr; % tread block circum. resid. damp (N-s/m) 
  
% *** ADD'L CALCULATED VALUES *** 
Msprung = Spindle_mass - Maxle - Mrim - Mtire; % 1/4 sprung mass (kg) 
  
disp(' ') 
disp('Completed Input Model Parameters for PS2...') 
disp(' ') 
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% *********************************************************** 
% ******* GENERATE OBSTACLE SINUSOIDAL CLEAT LUTS 2PT ******* 
% *********************************************************** 
% generate_obstacle_sinusoidal_cleat_LUTS_1pt.m          03 April 2008 
% 
% 1. Obstacle dimensions 
D0 =0.50;           % distance fm center of cleat to center of tire (m) 
L = 0.019;          % 0.019m  = MT Cleat obstacle length (m) 
H = 0.0095;         % 0.0095m = MT Cleat obstacle height (m) 
Fcorr = 2;          % correct rounded cleat to same area as MT cleat 
new_L = Fcorr*L;    % corrects length of cleat so sinusoidal area is 
                    % identical to area under rectangular cleat  
 
% NOTE: The model runS only after all necessary variables are loaded. 
% Variable 'a' is calculated from 'input_model_parameters_(Tire).m' 
% Variable 'a' is the half contact patch length (m) 
 
% 2. Generate x positions and corresponding z heights for the 1-D LUT 
% preallocate arrays for speed 
Xroad       = zeros(1,2*D0*10000); 
Zroad_lead  = zeros(1,2*D0*10000); 
Zroad_trail = zeros(1,2*D0*10000); 
Zroad_eff   = zeros(1,2*D0*10000); 
Alpha_road  = zeros(1,2*D0*10000); 
 
for i = 1:1:2*D0*10000; % 2 X distance to obstacle, in 0.1 mm 
increments 
                        % to provide the necessary resolution in X 
 
Xroad(i)  = i/10000; % converts distances back to meters 
 
    % Now determine the sin function for the leading point 
    if     Xroad(i) < (D0 - 0.5*new_L) 
           Zroad_lead(i) = 0; 
           Alpha_road(i) = 0; 
            
    elseif (D0 - 0.5*new_L) <= Xroad(i) && Xroad(i) <= D0 + 0.5*new_L 
           Zroad_lead(i) = ((H/2)*(1+cos((2*pi/new_L)*... 
           (Xroad(i)-(D0-0.5*new_L))-pi))); 
           Alpha_road(i) = atan(-sin((2*pi/new_L)*... 
           (Xroad(i)-(D0-0.5*new_L))-pi)); 
            
    else   Zroad_lead(i) = 0; 
           Alpha_road(i) = 0; 
            
    end 
     
    % Now calculate the effective Z plane height and angle alpha 
    % Zroad_eff(i) = (Zroad_lead(i) + Zroad_trail(i)) / 2; 
      Zroad_eff(i) = Zroad_lead(i); 
end 
 
    % Now check the results of the obstacle inputs 
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figure 
plot(Xroad,Zroad_lead,  'r',... 
     Xroad,Zroad_trail, 'g',... 
     Xroad,Zroad_eff,   'b') 
title('MT Cleat Sinusoidal Geometry for BASIC 1 Pt Follower',... 
  'FontWeight','bold') 
xlabel('X Road (m)') 
ylabel('Road Z (m)') 
legend('Zroad lead  (r in m)',... 
       'Zroad trail (g in m)',... 
       'Zroad eff   (b in m)') 
%axis([0.1,0.15,-0,+1]) 
% axis([0,0.2,-0,+0.01]) 
% axis([9.7,10.3,-0.2,+0.2]) 
grid on 
 
figure 
plot(Xroad,Alpha_road,  'm') 
title('MT Cleat Sinusoidal Approach Angle for BASIC 1 Pt Follower',... 
  'FontWeight','bold') 
xlabel('X Road (m)') 
ylabel('Alpha (rad)') 
legend('Alpha road  (m in rad)') 
%axis([0.1,0.15,-0,+1]) 
% axis([0,0.2,-0,+0.01]) 
% axis([9.7,10.3,-0.2,+0.2]) 
grid on 
 
disp(' ') 
disp('Completed Generate Obstacle Sinusoidal Cleat LUTs 1 Point...') 
disp(' ') 
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% ******************************************* 
% ******* GENERATE INITIAL CONDITIONS ******* 
% ******************************************* 
% 
% Initial conditions for the 'integrated system' 
Z_init        = 0  ;            % m 
Zdot_init     = 0 ;             % m/s 
X_init        = 0;              % m 
Xdot_init     = (8) * (1/3.6)   % enter kph to yield m/s 
Theta_init    = X_init/Reff;    % rad/sec 
Thetadot_init = Xdot_init/Reff; % rad/sec 
 
Throttle_initial   = 0.00;      % initial throttle fraction (0 to 1)  
Throttle_final     = 0.00;      % final   throttle fraction (0 to 1) 
Throttle_step_time = 0.00;      % throttle step time (sec) 
Throttle_lag       = 0.00;      % throttle lag of 0.05 seems reasonable 
 
% disp('Initial system velocity '); Xdot_init 
% print speed table and prompt for speed in m/sec (13.42 m/sec=30 mph) 
% for i = 1:1:8 
%     x(:,i) = [(5*i) ; (5*i*3.6/1.609344)]; 
% end 
% disp(''); 
% disp('    m/sec      mph'); 
% disp(x') 
% disp('  ') 
% Xdot_init= ('Initial speed in (m/s)? ') 
  
% % prompt for simulation time, t_end 
% disp('    '); 
% t_end = ('Simulation end time (sec)? ') 
% disp('    ') 
 
% Assign each mass component its initial conditions 
% Z conditions for all components 
Z_ring_0     = Z_init; 
Zdot_ring_0  = Zdot_init; 
Z_rim_0      = Z_init; 
Zdot_rim_0   = Zdot_init; 
Z_truck_0    = Z_init; 
Zdot_truck_0 = Zdot_init; 
 
% X conditions for all components 
X_ring_0     = X_init; 
Xdot_ring_0  = Xdot_init; 
X_rim_0      = X_init; 
Xdot_rim_0   = Xdot_init; 
X_truck_0    = X_init; 
Xdot_truck_0 = Xdot_init; 
X_tread_0    = X_init; 
Xdot_tread_0 = Xdot_init; 
 
% Theta conditions for all components 
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Theta_ring_0     = Theta_init; 
Thetadot_ring_0  = Thetadot_init; 
Theta_rim_0      = Theta_init; 
Thetadot_rim_0   = Thetadot_init; 
Theta_tread_0    = Theta_init; 
Thetadot_tread_0 = Thetadot_init; 
 
% Physical constants needed for the simulation 
rho = 1.204;      % air density [kg/m^3] 
Area = 1.8*1.5/4; % 1/4th the frontal area of the car [m^2] 
Cd = 0.4;         % non-dimensional coefficent of aero  
disp(' ') 
disp('Completed Generate Initial Conditions...') 
disp(' ') 
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% ************************************** 
% ******* GENERATE CAR FTRAC LUT ******* 
% ************************************** 
 
% generate_CAR_Ftrac_LUT                           16 Mar 07 
% generates 3 Fx=fcn(Fz, slip G) 
 
% clear 
% format short 
% format compact 
% ----------Input data For low vertical load Fz ---------------- 
disp('  ') 
disp('Generating Fx as Fcn(Fz, Percent Slip)'); 
B=80; C=1.7; D=1; E=0.97; 
for i = 1:1:201; 
    G(i) = (i-101)/100; 
    mu_lo_Fz(i) = -D*sin(C*atan(B*G(i)-E*(B*G(i)-atan(B*G(i)))));   
end; 
close all; 
% Plot the 1st results 
% figure 
z = [G', mu_lo_Fz']; 
plot(z(:,1),z(:,2),'r') 
title('Mu vs Percent Longitudinal Slip and Fz',...  
      'FontWeight','bold') 
xlabel('Longitdinal Slip G') 
ylabel('Longitudinal Mu (Fx/Fz)') 
% legend('accel', 'vel','position') 
grid on 
hold on 
 
% ---Generate the second curve for Medium vertical load Fz -------- 
B=20; C=2.0; D=1; E=0.99; 
for i = 1:1:201; 
    G(i) = (i-101)/100; 
    mu_med_Fz(i) = -D*sin(C*atan(B*G(i)-E*(B*G(i)-atan(B*G(i)))));    
end; 
 
% Plot the 2nd results 
% figure 
z = [G', mu_med_Fz']; 
 
% ---Generate the third curve for High vertical load Fz ----------- 
B=8; C=2.2; D=1; E=1.01; 
for i = 1:1:201; 
    G(i) = (i-101)/100; 
    mu_hi_Fz(i) = -D*sin(C*atan(B*G(i)-E*(B*G(i)-atan(B*G(i)))));   
end; 
 
% Plot the 3rd results 
% figure 
z = [G', mu_hi_Fz']; 
% plot(z(:,1),z(:,2),'b') 
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% legend('Fz = 9.45 kN', 'Fz = 24.8 kN','Fz = 40.9 kN')  
% ------------ 
load_vector = [508*9.801*0.25 , 508*9.801*1.00, 508*9.801*2.00 ]'; 
slip_vector = G; 
Fx_table = [ mu_lo_Fz *load_vector(1,1)  ;  
             mu_med_Fz*load_vector(2,1)  ; 
             mu_hi_Fz *load_vector(3,1) ]; 
figure 
plot(G, Fx_table(1,:),'r-',G,Fx_table(2,:),'g:',G,Fx_table(3,:),'b-.') 
title('Typical Fx vs. Longitudinal Slip For Constant Loads Fz',...  
      'FontWeight','bold') 
xlabel('Longitdinal Slip G') 
ylabel('Longitudinal Force Fx') 
legend('Fz = 1.245 kN', 'Fz = 4.979 kN','Fz = 9.957 kN') 
grid on 
 
disp(' ') 
disp('Completed Generate Car Ftrac Look Up Tables...') 
disp(' ') 
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% ********************************************************* 
% ******* GENERATE CAR SHIFT AND ENGINE TORQUE LUTS ******* 
% ********************************************************* 
 
% generate_CAR_shift_program_and_engine_torque_LUT 
% MANUAL transmission 
diff_ratio    = 4.10;       % 2.64 in spec sheet 
efficiency    = 0.95;       % total driveline efficiency 
% Reff        = 0.480;      % effective tire radius (m) 
% Only use this Reff for troubleshooting - must synchronize 
% with the initial condition file -  
 
% MANUAL transmission only gear ratios 
gear_ratio_6  = 0.84;  
gear_ratio_5  = 1.00;  
gear_ratio_4  = 1.25;  
gear_ratio_3  = 1.72;  
gear_ratio_2  = 2.61; 
gear_ratio_1  = 4.46; 
  
% AUTOMATIC transmission only gear ratios 
%gear_ratio_4  = 0.69;  
%gear_ratio_3  = 1.00;  
%gear_ratio_2  = 1.57; 
%gear_ratio_1  = 2.84; 
 
% Speed (mps)to shift to next higher gear = mph*(1 mph = 0.44704 m/sec) 
 
MPS_5_6  =  90*0.44704; % 90 MPH * 0.44704 = 40.2336 m/sec (5th => 6th) 
MPS_4_5  =  75*0.44704; % 23 
MPS_3_4  =  50*0.44704; % 18 
MPS_2_3  =  35*0.44704; % 14 
MPS_1_2  =  20*0.44704; %  9   4.0234 m/sec 
 
% Data for RPM vs Torque LUT 
% RPM and TORQUE in Nm 
% Six Cylinder 60deg V, 3778 cc 230.5 in^3, 12 OHV, roller folllowers, 
% Hydraulic lifters, SMPFI 
% Peak 205HP (153 kW) @ 5200 RPM, 240 ft-lb torque (325 Nm) 
Engine_RPM_Breakpoints = [400 800 1200 1600 2000 2400 2800 3200 3600... 
                          4000 4400 4800 5200 5600 6000 6400]; 
Engine_Torque_Data =     [  0 182  198  206  212  220  217  224  233... 
                              233  232  227  211  191  161    0]; 
%convert torque to Nm 
Engine_Torque_Data =  1.35582 .* Engine_Torque_Data; 
 
disp(' ') 
disp('Completed Car shift program and engine torque Look up tables...') 
disp(' ') 
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Two Point Rigid Ring Simulink Diagrams 

 
Quarter Vehicle – Main Program Level  (1 of 18) 
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Quarter Vehicle – Engine Torque Demand Program  (2 of 18) 
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Quarter Vehicle – Transmission Shift and Chassis Top Level  (3 of 18) 
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Quarter Vehicle – Chassis Longitudinal X  (4 of 18) 
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Quarter Vehicle – Chassis Vetical Z and Traction Model  (5 of 18) 
 

 
 
 

 
 



 

  

284

Quarter Vehicle – Aero Drag and  Rolling Resistance Models  (6 of 18) 
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Quarter Vehicle – Obstacle Look Up Tables  (7 of 18) 
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Quarter Vehicle – Rim Model Top Level  (8 of 18) 
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Quarter Vehicle – Rim Rotational Model  (9 of 18) 
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Quarter Vehicle – Rim Longitudinal X and Vertical Z  (10 of 18) 
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Quarter Vehicle – Ring Model Top Level  (11 of 18) 
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Quarter Vehicle – Ring Rotational Model..(12 of 18) 
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Quarter Vehicle – Tire Rigid Ring Longitudinal Model  (13 of 18) 
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Quarter Vehicle – Tire Rigid Ring Vertical Model  (14 of 18) 
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Quarter Vehicle – Tire Tread Model – Top Level  (15 of 18) 
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Quarter Vehicle – Tire Tread Rotational Model  (16 of 18) 
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Quarter Vehicle – Tire Tread Longitudinal Model  (17 of 18) 
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Quarter Vehicle – Tire Tread Vertical Model and Tire Model Top Level  (18 of 18) 
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Appendix F
 

F. Development of the Roadway Smooth Bump and Cleat Obstacles 
 

Spatial Frequency Analysis 
 

The original intention of the tire model was to provide a means of determining the 

effect of basic tire mass and stiffness properties on vehicle comfort as the vehicle 

traversed over a relatively long (12 inches) and tall (4 inches) speed bump at parking lot 

speeds. The vehicle itself could be either coasting or accelerating as it traversed the speed 

bump. Assuming that the maximum speed during engagement of the obstacle was 10 

Kph, a calculation of the spatial frequency was necessary to calculate the approximate 

frequency range of interest in order to determine the required complexity of the tire 

model to ensure that it was suitable for exciting the vehicle. The calculation of the spatial 

frequency is performed using Equation F.1, below: 

 )(sec1 cpsondpercycles
wavelength

frequencyspatial
λ

ν =   (F.1) 

Ignoring the frequency content associated with the transition between the sinusoidal 

waveform bump and the horizontal roadway, the sinusoidal bump will represent one 

wavelength of the fundamental frequency. Substituting in a vehicle speed of 10 Kph into 

equation F.1 and converting into MKS units yields:  

 cpshr
hr
km

km
m

inchminches
cycle

sec3600
1101000

)/0254.0*12(
1

×××=ν   (F.2) 

Solving for ν: 

    Hzfrequencyspatial 1.9=ν     (F.3) 

 



  298 

  

Using the engineering “rule of thumb” that the model of a system must be able to 

accurately represent a frequency approximately ten times greater than the frequency of 

interest, the tire model must therefore be capable of reasonable fidelity of approximately 

91 Hz at the highest anticipated vehicle speed. Thus both the Cosin FTire and SIMPACK 

Automotive Plus multi-body simulation program would be operating within their domain 

of applicability.  

This application of spatial frequency analysis and engineering rule of thumb 

assumes that the sinusoidal bump input can be represented by a true sinusoidal input. In 

reality, the slope of the roadway and the sinusoidal bump is not continuous and therefore 

represents a higher frequency input. However, this has not proven to be an issue with the 

robust solvers of either MatLab Simulink or Intec SIMPACK software suites. In addition, 

the relatively small magnitude of the instantaneous change in slope (dependent upon how 

the tire model represents the contact patch and its engagement with the obstacle) is 

overshadowed by the magnitude of the lower-frequency sinusoidal input.  

 

Both the spatial frequency and the discontinuity in slope have to again be 

considered in the case of the cleat input. By the nature of the tire test machine (fixed 

spindle height, variable spindle force), the cleat is limited in height (9.5 mm) so as not to 

over-range the spindle force sensors during operation with the highest anticipated tire 

dynamic vertical spring rates. Likewise, by the nature of the intended testing of the 

machine, the cleat is also limited in length to 19mm in order to observe the ability of a 

tire to absorb road irregularities shorter in length than the tire footprint, or the so called 
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“enveloping power” of the tire. Since the square cleat represents one wavelength per 

every 19 mm, one can substitute the appropriate values into Equation I.2 to yield the 

spatial frequency of the cleat obstacle to at 10 Kph: 

 cpshr
hr
km

km
m

mmmmm
cycle

sec3600
1101000

)1000/1*19(
1

×××=ν   (F.4) 

Calculating the frequency in cps (Hz) yields an ideal maximum solicitation frequency at 

10 Kph. 

    Hzfrequencyspatial 146=ν    (F.5) 

If one is to again follow the engineering thumb rule that a model or a measurement 

system most be able to support reasonable fidelity at a frequency ten times that of the 

frequency of interest, our best case scenario requires model fidelity at 1,460 Hz – none of 

the available tire models or MBS packages are representative at this frequency. In the 

case of the tire response, the mode shapes of the tire are excited as a complex continuous 

media and which can not be suitably modeled by the simple system of lumped masses 

and rigid belt ring in the summit. The tread band and summit band ring interactions need 

to be taken into consideration, and the true physical mechanisms by which the tire 

generates vertical, torsional, and longitudinal stiffnesses must be more accurately 

represented. From the perspective of the MBS software, the bodies making up the tire 

model need to be sufficiently small and their boundary interactions sufficiently defined so 

that the mode shapes at these higher frequencies are captured - essentially requiring a 

complex collection of masses and dampers approaching that of a finite element mesh. 

Simply stated, the tire modes that occur at approximately 100 Hz cannot be reasonably 
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modeled using a lumped parameter approach, and therefore the transfer function between 

the tire contact patch and the wheel spindle cannot be represented by this approach. The 

only options for representing a cleat response, per Equation (F.4), is to either 1) develop a 

cleat with a long width to increase the path length or to 2) slow the tire longitudinal path 

velocity. 

Assumng that the upper limit of frequency response for our models is 100 Hz and 

that the engineering thumb rule for sampling frequency holds true, the spatial frequency 

must be less than 10 Hz. Using the spatial frequency equation, the maximum speed Vmax 

at which the tire model can be modeled as it encounters an obstacle can be calculated. 

Substituting in 10 Hz and 19mm into the spatial frequency equation F.4 yields: 

 cpshr
hr

V
km

m
mmmmm

cycle
sec3600

11000
)1000/1*19(

1 max
max ×××=ν   (F.6) 

Substituting in for the maximum spatial frequency of 10 Hz yields:  
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hr

V
km

m
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110 max ×××=   (F.7) 

Rearranging, converting Hz to cycles/sec and solving for Vmax in Kph yields: 

 
hr

kmV
cycle

mmmmm
hrm

kmcycles max

1
)1000/1*19(

1
sec3600

1000
1

sec
10

=×××  (F.8) 

 

Hence Vmax is approximately 0.7 Kph. Unfortunately, this is not only well below the 8 

Kph minimum speed of the available test machine that was hoped to provide correlation 

data between the tire model and experimental results, it also assumes that the cleat 

represents frequency content that is no higher than that of a sinusoidal input equal to the 
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cleat length. Therefore, the use of the fixed spindle height machine test at 8 Kph to 

validate the model as it runs over the cleat is not considered capable of providing more 

than a qualitative result to test for robustness as opposed to the mathematical correctness 

of the tire model.  

 

Development of the Sinusoidal Bump Obstacle 
 

The sinusoidal bump is one of a variety of commercially available parking lot 

speed bumps designed to limit the speed of parking lot vehicular traffic to speeds 

typically less than 10 Kph. The pre-formed sinusoid bumps are made of a variety of 

materials, including fiberglass/resin composite, plastic, high density polymers and other 

appropriate materials. They can be designed such that they are anchored permanently 

during the asphalt paving process, or installed with spikes or screw anchors that are 

intended to provide either permanent or semi-permanent installation on pre-existing 

pavement.  

 The size of the sinusoid bump used in this study is approximately 12 inches long 

and 4 inches high. The geometry of the sinusoidal bump needs to be described in both 

horizontal and vertical distances relative to the ground reference so that the forces on the 

components of the tire model can be solved by the time step integration solvers of either 

MatLab Simulink or Intec SIMPACK multi-body simulation software. The geometry of 

the sinusoidal bump and the tire tread blocks are illustrated in Figure F.1, below.  
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Figure F.1  Geometry of Sinusoidal Roadway Obstacle and Tire 
 

The interaction between the tire model and the roadway obstacle geometry is distinct and 

dependent upon the tire model. The simplest tire and roadway interaction is that 

described by the single point contact model, which can be represented by the above 

geometry when the half contact patch length of the tire ‘a’ is zero. The point contact 

model interaction with the roadway is assumed to be in continuous contact with the 

roadway surface (no wheel hop) and is written mathematically for three distinct operating 

states: 

 ( )

)(0

)()()(sin

)(0

2
1

2
1

2
1

2
1

2
1

Ldxforz

LdxLdforLdx
L

Hz

Ldxforz

+>=

+≤≤−−−=

−<=
π  (F.9) 

If one considers the contact patch, then the leading edge of the contact patch and the 

trailing edge of the contact patch each require their own mathematical equations. This is 
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accomplished simply by re-writing the three states for vertical position z with a 

displacement offset of a, one-half the length of the contact patch. In the case of the 

leading edge, the roadway obstacle is encountered before the centroid of the tread band 

contact patch by a distance equal to a. This phase shift is incorporated into the three states 

for the vertical position of the leading edge zL, the first interface to encounter the obstacle, 

as follows: 
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A similar phase shift of one-half contact patch length is applied to the z height at the 

trailing edge (the exit point of the obstacle at the rear) of the contact patch, zR. This 

results in the following three state equations for zR: 
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For a single point follower model, the effective vertical height of the roadway surface 

into the tire model is the vertical displacement of a single point. For the two point contact 

patch model, the effective height of the contact patch, zEFF, is the average vertical 
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Contact Patch Length = 2a

a

aObstacleX

Z

ZL

ZRα

Tire Tread Band

Effective Plane

Distance 'd'

position of the leading edge zL (entry point of the contact patch) and rearmost edge, zR, 

(exit point of the contact patch) of the flat plane approximation of the contact patch:  
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ntdisplacemeverticalaveragez

+
==     (F.12) 

Since the length of the contact patch (2a) and the difference in heights between the 

leading and trailing edges of the contact patch are known, the angle of incidence of the 

effective contact patch plane α, is: 

 radians
a

zz RL

2
)(sin −

=α        (F.13) 

The geometry of the effective contact patch plane, for a single segment contact patch 

encountering a sinusoidal roadway obstacle, is illustrated below. 

 

Figure F.2 Geometry of Effective Contact Patch Plane 
Understanding the mathematical description of the contact patch leading and trailing edge 

heights and the model geometry provide insight as to the resulting effective z plane 

height zEFF and angle of incidence α as the tire model traverses the obstacle. Some of the 
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geometry interactions are quite obvious. One obvious conclusion is that for any given 

upwardly-protruding roadway obstacle (“bump” as opposed to a “dip”) is that the 

effective contact patch plane height is: 

1. maximum for a point follower (when a = zero, maximum vertical input into the 

tire model is equal to the height of the roadway obstacle) 

2. always less than the height of the roadway obstacle for a two point contact patch 

model 

3. zero when the obstacle is in the center of the contact patch, if the length of the 

obstacle is less than the contact patch length 2a, regardless of the actual obstacle 

height H 

Although far from ideal, it is clear that the single plane contact patch footprint model is 

an improvement over the single point follower model in that it provides for a 

representation of the vertical envelopment power of the tire – a mitigating effect of the 

contact patch length - as the tire rolls over an obstacle. In addition, the single plane 

footprint model provides a means to determine the angle of incidence α between the tire 

and the roadway obstacle. This angle α is a reasonable physical approximation by which 

the longitudinal forces can be calculated as the tire contact patch engages and departs 

from the obstacle. This contrasts with the development of longitudinal forces in the single 

point follower model. Longitudinal forces in the single point follower model are 

generated by a relatively crude assumption that there exists a horizontal force component 

that, when combined with the vertical force generated by the spring and damper, 

generates a resultant force that is always be normal to the road surface profile at the point 
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of contact. Note that these calculated resultant longitudinal forces are distinct and 

separate from traction driving or braking forces generated as a result of any differential 

interface velocity between the tread band and the roadway/obstacle surface. 

 

Development of the Rectangular Cleat 
 

The rectangular roadway obstacle, or cleat, is a practical excitation method for 

indoor tire testing on a laboratory test drum. Cleats can be either perpendicular to the 

direction of travel (parallel to the tire spin axis) or angled. Although angled cleats can be 

used to test the generation of lateral force (Fy) and compliance about the vertical steering 

axis (Mz) in three dimensional tire modeling, perpendicular cleats are still a primary 

means of exciting both two and three dimensional models for comfort modeling. A 

simple perpendicular rectangular cleat has several intrinsic advantages for measuring tire 

comfort performance as it: 

1. provides an input pulse much like what is seen when a tire encounters many 

relevant real-world obstacles, such as concrete highway expansion joints,  

2. represents a complete spectrum of excitation frequencies, 

3. solicits the enveloping power of the tire (the tire’s ability to drape over an 

obstacle as it passes through the contact patch as opposed to deflecting up and 

above the obstacle). 

Unfortunately, use of a rectangular cleat also presents some distinct limitations. For 

example, the period of the pulse, or the engagement time of the cleat, is linked to the test 

speed of the drum. Since the dynamic response of a rolling tire depends not only upon the 
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speed of the tire rotation but also the length of the cleat engagement relative to the length 

of the contact patch, the width of the cleat cannot be adjusted to provide a constant period 

of engagement for different speeds – the effect of the cleat width and the tire speed are 

intrinsically confounded.  

Another important consideration with cleats is the selection of their dimensions. 

Cleat height and cleat width both greatly influence the solicitation of the many distinct 

physical regimes of the tire structure. For example, a small cleat comprised of relatively 

low cross section height will solicit principally the tread band and potentially the belt 

package in the summit but will not significantly solicit the sidewall or the bead area 

surrounding the rim. If  the test wheel is fitted with a progressively higher cleat cross 

section height while maintaining a constant cleat width, not only are there increases in the 

tread band localized contact pressures, but also greater changes in the radius of curvature 

in the composite belt structure as the contract patch traverses the cleat. One must progress 

to larger cleat heights before beginning to significantly alter solicitation of the sidewall 

carcass composites and even further still for the bead area adjacent to the rim. Similar 

arguments can be made for the width of the cleat. For example, the wider the cleat 

(longer length relative to the tire contact patch) for a given constant cleat height, the 

greater the solicitation of the carcass plies due to the corresponding increase in sidewall 

deflection and carcass ply deradialization to accommodate the increase in vertical spindle 

load forces. 

 Generation of a model to represent a rectangular cleat for both MatLab Simulink 

and SIMPACK MBS requires a mathematical definition for vertical cleat height as a 
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function of longitudinal position of the tread band along the roadway. Since the time step 

integration process is more robust and is solved more quickly with continuous functions, 

an approximation of the rectangular cleat is needed. The criteria chosen for the 

development of the function for the rectangular cleat are: 

1. the function should be continuous through the first derivative 

2. the function will be convex within the prescribed length of the cleat (i.e., the 

second derivative will be negative between –L/2 and +L/2)  

3. the original cleat height will be maintained (i.e., the peak value of the function 

will be equal to the height of the cleat) 

4. the cross sectional area of the rectangular cleat and the cleat function will be equal 

 

Based upon the above criteria it becomes mathematically expedient to choose a cosine 

function as the basis for the cleat vertical displacement model. Since the height of the 

cleat and the peak value of the mathematical function are to be identical, satisfaction of 

the constant area criteria and the convex criteria dictate that the length of the function 

representing the cleat will be greater than the width of the cleat. It becomes convenient, 

when using the trig functions, to define the length of the mathematical function to be a 

multiple of the cleat width. For cleat and tire contact patch length geometry typically 

used in laboratory testing, the length of the cleat is reasonably represented by modeling 

the width by a factor of two – the cosine function representing the width of the modeled 

cleat will be twice the width of the cleat. 
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 The above criteria - modeling a rectangular cleat to be twice as long as its actual 

width - appears to be a reasonable approximation. This is because the enveloping 

phenomenon as the tire contact patch drapes over a cleat is not only a global effect along 

the length of the contact patch, it is also a local effect that occurs at the leading and 

trailing edges of the cleat. As the leading edge of the contact patch encounters the cleat, 

the tread sculpture deforms in response to the high local stresses at the square shoulder of 

the cleat. The same phenomenon occurs in reverse when the edge of the tread disengages 

from the cleat edge. The result is that the cleat is in effect functionally wider and its 

interaction with the tire contact patch is less abrupt, much like the sinusoidal 

approximation. Additional physical effects of the engagement between the tread and the 

cleat include a reduction in the peak deformation forces and a suppression of the high 

frequency content of the rectangular cleat’s impulse. Since the amount of force and 

frequency attenuation will depend upon the shape and rigidity of the tread blocks relative 

to the size and shape of the cleat, the stiffness of the under tread and belt package, etc. – 

one cannot take this into account without modal and finite element modeling. Therefore, 

these mitigating effects will be assumed to be relatively constant and reasonably 

approximated using this approach. 

 The representation of an equivalent model for a two-dimensional cleat to be used 

with the tire models is illustrated in Figure F.3, below. 



  310 

  

X

Z

H

L

2L

L/2

Z(x) = H/2 {Cos(x-D) + 1}

L/2

+π -π Distance 'D'

Figure F.3 Geometry of an Equivalent Model for a Rectangular Cleat 

The mathematical expression for the cleat is obtained using the same strategy as that used 

for the sinusoidal bump - defining the three states before, during, and after the tread band 

encounters the obstacle:  

 ( )

)(0

)()(1)cos(
2

)(0

π

ππ

π

+>=

+≤≤−+−=

−<=

dxforz

dxdfordxHz

dxforz

  (F.14) 

The above cosine expression satisfies the first three criteria for the mathematical 

representation of the cleat for cleat length L = π, i.e., the first derivative of the function is 

piecewise continuous, the function is convex within the length L of the cleat and concave 

or planar elsewhere, and the original cleat height H is maintained. 
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 In order to satisfy the final criteria, the cross sectional area of the rectangular cleat 

must be identical to area of the modeling functions. This can be most easily achieved 

mathematically by 1) evaluating the function without the initial offset distance d and then 

2) changing the limits of integration for the function in x using L = π, which maintains 

one complete spatial wavelength period of the cosine function over distance 2L. The 

results can be checked by integrating the obstacle function over one complete spatial 

cycle to determine if its area remains equal to the area of the cleat being modeled. 

Writing the cleat model without the offset distance d yields the following: 
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Evaluate the right hand side by taking advantage of the symmetry of the even function:  
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Splitting the function into two definite integrals:  
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Substituting variables and the corresponding limits of the definite integrals:  
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Integrating and simplifying the resulting definite integrals:  
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 { }0)0sin()sin( −+−= ππHfunctionofArea     (F.20) 

 

 πHfunctionofArea =        (F.21) 

By inspection, when L = π the area of the function (Hπ) is equal to the area of the cleat 

(HL). Therefore substituting: 

 xx
L

⇒
π          (F.22) 

into the state equations I.13 satisfies all of the established model criteria and provides the 

necessary mathematical representation for simulating the rectangular cleat:  
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  The final state equations for the point follower just developed for the cleat 

obstacle are modified for the two point contact patch model in a manner identical to that 

of the sinusoidal bump obstacle (equations I.9 and I.10). The equations for the contact 

patch leading edge (zL) and trailing edge (zR) are offset by subtracting or adding one half 

of the contact patch length ‘a’, respectively. For the leading edge of the contact patch 

(zL): 
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Similarly, for the trailing edge of the contact patch (zR): 
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Once the heights of the leading and trailing edges of the contact patch are defined, the 

expressions for the contact patch effective plane height (equation I.11) and the angle of 

incident α (equation I.12) are identical. 
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Appendix G
 

G. Future Simulation Improvements 
 

Modifications to the Constant Footprint Model 
 

For obstacles whose wavelength is significantly shorter than the contact patch 

length, the averaging effect of the constant footprint results in an underestimation of the 

vertical spindle forces. This is because the vertical stiffness in the contact patch is 

obtained by measuring the vertical deflection stiffness on a flat plate – there are no 

bending moments or shear forces between the tread elements and the summit that would 

be present if the measurements were taken with a cleat in the contact patch. As a result, 

the “window averaging” of the vertical stiffness in the constant footprint contact model 

will underestimate the vertical spindle forces as the model assumes no bending stiffness 

in the contact patch. Since the horizontal spindle components are calculated such that the 

resultant force vector is always normal to the obstacle surface, the horizontal spindle 

forces will also be underestimated. Figure G.1 illustrates these underestimations for the 

constant footprint model while traversing a rectangular cleat. 

In order to improve the vertical response, it is possible to adjust the distributed 

vertical stiffness in the contact patch models by a ratio of the contact patch length to the 

obstacle length, thereby restoring a representative value for the vertical spring stiffness. 

This improvement results in the simulated spindle forces as shown in Figure G.2: 
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Figure G.1: “Simple” Constant Footprint Model – Adjusted Vertical Stiffness 

 
Although the vertical spindle forces are improved, the horizontal forces are still 

underestimated. This is because the effective average angle of the constant footprint as it 

“drapes” over the filtered obstacle is small at the entry and exit of the contact patch, and 

zero as long as the entire obstacle is enveloped within the confines of the contact patch. 

Figure G.2 illustrates the potential to “tune” the constant footprint model by adjusting the 

engagement angle by a constant factor, thereby increasing or decreasing the horizontal 

spindle force gain.  
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Figure G.2: “Simple” Constant Footprint – Adjusted Model Traversing Cleat 

 
These two modifications on the work by Captain et al [5] – vertical stiffness and 

obstacle engagement angle – can provide significant improvements in the simulated 

spindle forces when the contact patch length is greater than the obstacle length (in this 

instance, the constant footprint is 8.3 times the length of the rectangular cleat). Although 

adjusting the vertical stiffness by the ratio of the contact patch length to cleat length can 

be justified, there is no clear justification for selecting a gain factor for the engagement 

angle. Since the purpose of this investigation is to evaluate the models without the benefit 

of a priori knowledge of the model performance, no gain or tuning adjustments are used 

in any of the simulations except for this illustrative example. 
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FTire Simulated Contact Patch Length 
 

Fixed spindle, tire force simulations indicate a discrepancy between the apparent 

engagement lengths of the cleat and the tire for all tire models. There are two reasons for 

this discrepancy: 

1. All the models assume a flat road surface instead of a curved laboratory 

road wheel. 

2. The MatLab Simulink models assume that the obstacle engagement length 

is the same as the contact patch length – the models do not take into 

account the effect of obstacle height on engagement length, as shown in 

Figure G.3. 

The engagement length for all tire models, with the exception of the FTire model, was 

assumed to be the same length as the contact patch. The FTire model engagement length 

accounts for the obstacle height automatically. Although the FTire model can simulate 

the curved surface of a laboratory road wheel, for consistency a flat surface was chosen 

for all models. 

The change in contact patch geometry on a road wheel versus a flat surface will 

depend upon: 

1. structural characteristics of the tire  

2. geometry associated with the loading of a small diameter tire on a large 

diameter road wheel 
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Although these effects of road wheel curvature are complex, they are considered to be 

small and constant between all of the tire models and will not be taken into account for 

this investigation. 

The geometry with which to calculate the exact change in obstacle engagement 

length, even on a flat surface, is complicated by the distortion of the tire radius before the 

entrance and after the exit of the contact patch. However, an approximation can be 

obtained by using geometry associated with the free radius of the tire, the tire contact 

patch length, and the height of the obstacle. 

The first step in approximating a percentage change in the engagement length is 

to analyze the geometry of a cleat engaging a deflected tire on a flat surface as in Figure 

G.3.  
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Figure G.3: Cleat Engagement of the Contact Patch on a Flat Surface 

 

For our models, Reff is the effective radius of the tire such that the tire spin velocity times 

the effective radius is equal to the forward velocity of the tire/wheel assembly (free 

rolling, no slip). The contact patch length, 2a, was previously determined for a given 

static vertical load by setting the load equal to the contact patch area multiplied by the 

inflation pressure. Using the prime notation to denote those variables whose length has 

been altered by taking into account the cleat obstacle height H: 

HRR effeff −=′        (G.1) 

Using the Pythagorean Theorem to solve for the half contact patch lengths a and a' yields: 

efffree RRa 22 −=        (G.2) 
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efffree RRa 22 ′−=′        (G.3) 

Writing the lengths of the half contact patch as a ratio of Equations G.2 and G.3: 

efffree

efffree

RR
RR

a
a

22

22

−
′−

=
′

       (G.4) 

Substituting in the expression for the effective radius taking into account the cleat height, 

R'eff, from Equation 5.1: 

efffree

effefffree

RR
HHRRR

a
a

22

222 2
−

−+−
=
′

     (G.5) 

Substituting for R2
free from Equation 5.2 and simplifying yields: 

2

22 2
a

HHRa
a
a eff −+
=
′

      (G.6) 

Or, to find the value of a' given a, H, and Reff yields: 

22 2 HHRaa eff −+=′       (G.7) 

Substituting in values for our road wheel, cleat height, and effective rolling radius of the 

deflected tire, it can be determined that the height of the cleat obstacle on a flat surface 

increases the effective engagement length by approximately 38% for this 

tire/load/obstacle combination.  

The MatLab Simulink models all use the contact patch length to define the 

engagement length. Referring to the simulation outputs, it can be seen that the MatLab 

Simulink simulations all underestimate the engagement length on the laboratory road 

wheel by approximately 30%. This underestimation is a combination of both: 

- cleat geometry 



  321 

  

- road wheel curvature 

The FTire simulation results for a flat surface overestimates the engagement length as 

measured on the road wheel by approximately 8%. Since the FTire simulations take into 

account the cleat geometry on a flat surface, one can assume that the 8% error is due to 

the road wheel curvature. One can then assume that the 30% underestimation of 

engagement length for the MatLab Simulink models is the combination of the 38% 

calculated underestimation due to cleat geometry on a flat surface and the 8% 

overestimation due to the drum curvature. 

The change in cleat engagement length using this calculation helps account for the 

differences in engagement lengths. However, the calculation is only a first order 

approximation, as it does not take into account the true radius of curvature of the tire 

before and after the contact patch, or differences associated with either the cleat length or 

cleat geometry (rectangular, sinusoidal, or trapezoidal). Therefore it was decided that the 

simulations would continue to use the contact patch length as the engagement length, and 

accounting for cleat height and geometry effects with the different models would be 

relegated to future work.
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